1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum==pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'A' BLOB 60 ** 'B' TEXT 61 ** 'C' NUMERIC 62 ** 'D' INTEGER 63 ** 'F' REAL 64 ** 65 ** An extra 'D' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 85 if( !pIdx->zColAff ){ 86 sqlite3OomFault(db); 87 return 0; 88 } 89 for(n=0; n<pIdx->nColumn; n++){ 90 i16 x = pIdx->aiColumn[n]; 91 if( x>=0 ){ 92 pIdx->zColAff[n] = pTab->aCol[x].affinity; 93 }else if( x==XN_ROWID ){ 94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER; 95 }else{ 96 char aff; 97 assert( x==XN_EXPR ); 98 assert( pIdx->aColExpr!=0 ); 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 100 if( aff==0 ) aff = SQLITE_AFF_BLOB; 101 pIdx->zColAff[n] = aff; 102 } 103 } 104 pIdx->zColAff[n] = 0; 105 } 106 107 return pIdx->zColAff; 108 } 109 110 /* 111 ** Compute the affinity string for table pTab, if it has not already been 112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 113 ** 114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 116 ** for register iReg and following. Or if affinities exists and iReg==0, 117 ** then just set the P4 operand of the previous opcode (which should be 118 ** an OP_MakeRecord) to the affinity string. 119 ** 120 ** A column affinity string has one character per column: 121 ** 122 ** Character Column affinity 123 ** ------------------------------ 124 ** 'A' BLOB 125 ** 'B' TEXT 126 ** 'C' NUMERIC 127 ** 'D' INTEGER 128 ** 'E' REAL 129 */ 130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 131 int i; 132 char *zColAff = pTab->zColAff; 133 if( zColAff==0 ){ 134 sqlite3 *db = sqlite3VdbeDb(v); 135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 136 if( !zColAff ){ 137 sqlite3OomFault(db); 138 return; 139 } 140 141 for(i=0; i<pTab->nCol; i++){ 142 zColAff[i] = pTab->aCol[i].affinity; 143 } 144 do{ 145 zColAff[i--] = 0; 146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); 147 pTab->zColAff = zColAff; 148 } 149 i = sqlite3Strlen30(zColAff); 150 if( i ){ 151 if( iReg ){ 152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 153 }else{ 154 sqlite3VdbeChangeP4(v, -1, zColAff, i); 155 } 156 } 157 } 158 159 /* 160 ** Return non-zero if the table pTab in database iDb or any of its indices 161 ** have been opened at any point in the VDBE program. This is used to see if 162 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 163 ** run without using a temporary table for the results of the SELECT. 164 */ 165 static int readsTable(Parse *p, int iDb, Table *pTab){ 166 Vdbe *v = sqlite3GetVdbe(p); 167 int i; 168 int iEnd = sqlite3VdbeCurrentAddr(v); 169 #ifndef SQLITE_OMIT_VIRTUALTABLE 170 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 171 #endif 172 173 for(i=1; i<iEnd; i++){ 174 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 175 assert( pOp!=0 ); 176 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 177 Index *pIndex; 178 int tnum = pOp->p2; 179 if( tnum==pTab->tnum ){ 180 return 1; 181 } 182 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 183 if( tnum==pIndex->tnum ){ 184 return 1; 185 } 186 } 187 } 188 #ifndef SQLITE_OMIT_VIRTUALTABLE 189 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 190 assert( pOp->p4.pVtab!=0 ); 191 assert( pOp->p4type==P4_VTAB ); 192 return 1; 193 } 194 #endif 195 } 196 return 0; 197 } 198 199 #ifndef SQLITE_OMIT_AUTOINCREMENT 200 /* 201 ** Locate or create an AutoincInfo structure associated with table pTab 202 ** which is in database iDb. Return the register number for the register 203 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 204 ** table. (Also return zero when doing a VACUUM since we do not want to 205 ** update the AUTOINCREMENT counters during a VACUUM.) 206 ** 207 ** There is at most one AutoincInfo structure per table even if the 208 ** same table is autoincremented multiple times due to inserts within 209 ** triggers. A new AutoincInfo structure is created if this is the 210 ** first use of table pTab. On 2nd and subsequent uses, the original 211 ** AutoincInfo structure is used. 212 ** 213 ** Three memory locations are allocated: 214 ** 215 ** (1) Register to hold the name of the pTab table. 216 ** (2) Register to hold the maximum ROWID of pTab. 217 ** (3) Register to hold the rowid in sqlite_sequence of pTab 218 ** 219 ** The 2nd register is the one that is returned. That is all the 220 ** insert routine needs to know about. 221 */ 222 static int autoIncBegin( 223 Parse *pParse, /* Parsing context */ 224 int iDb, /* Index of the database holding pTab */ 225 Table *pTab /* The table we are writing to */ 226 ){ 227 int memId = 0; /* Register holding maximum rowid */ 228 if( (pTab->tabFlags & TF_Autoincrement)!=0 229 && (pParse->db->flags & SQLITE_Vacuum)==0 230 ){ 231 Parse *pToplevel = sqlite3ParseToplevel(pParse); 232 AutoincInfo *pInfo; 233 234 pInfo = pToplevel->pAinc; 235 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 236 if( pInfo==0 ){ 237 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 238 if( pInfo==0 ) return 0; 239 pInfo->pNext = pToplevel->pAinc; 240 pToplevel->pAinc = pInfo; 241 pInfo->pTab = pTab; 242 pInfo->iDb = iDb; 243 pToplevel->nMem++; /* Register to hold name of table */ 244 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 245 pToplevel->nMem++; /* Rowid in sqlite_sequence */ 246 } 247 memId = pInfo->regCtr; 248 } 249 return memId; 250 } 251 252 /* 253 ** This routine generates code that will initialize all of the 254 ** register used by the autoincrement tracker. 255 */ 256 void sqlite3AutoincrementBegin(Parse *pParse){ 257 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 258 sqlite3 *db = pParse->db; /* The database connection */ 259 Db *pDb; /* Database only autoinc table */ 260 int memId; /* Register holding max rowid */ 261 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 262 263 /* This routine is never called during trigger-generation. It is 264 ** only called from the top-level */ 265 assert( pParse->pTriggerTab==0 ); 266 assert( sqlite3IsToplevel(pParse) ); 267 268 assert( v ); /* We failed long ago if this is not so */ 269 for(p = pParse->pAinc; p; p = p->pNext){ 270 static const int iLn = VDBE_OFFSET_LINENO(2); 271 static const VdbeOpList autoInc[] = { 272 /* 0 */ {OP_Null, 0, 0, 0}, 273 /* 1 */ {OP_Rewind, 0, 9, 0}, 274 /* 2 */ {OP_Column, 0, 0, 0}, 275 /* 3 */ {OP_Ne, 0, 7, 0}, 276 /* 4 */ {OP_Rowid, 0, 0, 0}, 277 /* 5 */ {OP_Column, 0, 1, 0}, 278 /* 6 */ {OP_Goto, 0, 9, 0}, 279 /* 7 */ {OP_Next, 0, 2, 0}, 280 /* 8 */ {OP_Integer, 0, 0, 0}, 281 /* 9 */ {OP_Close, 0, 0, 0} 282 }; 283 VdbeOp *aOp; 284 pDb = &db->aDb[p->iDb]; 285 memId = p->regCtr; 286 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 287 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 288 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 289 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 290 if( aOp==0 ) break; 291 aOp[0].p2 = memId; 292 aOp[0].p3 = memId+1; 293 aOp[2].p3 = memId; 294 aOp[3].p1 = memId-1; 295 aOp[3].p3 = memId; 296 aOp[3].p5 = SQLITE_JUMPIFNULL; 297 aOp[4].p2 = memId+1; 298 aOp[5].p3 = memId; 299 aOp[8].p2 = memId; 300 } 301 } 302 303 /* 304 ** Update the maximum rowid for an autoincrement calculation. 305 ** 306 ** This routine should be called when the regRowid register holds a 307 ** new rowid that is about to be inserted. If that new rowid is 308 ** larger than the maximum rowid in the memId memory cell, then the 309 ** memory cell is updated. 310 */ 311 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 312 if( memId>0 ){ 313 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 314 } 315 } 316 317 /* 318 ** This routine generates the code needed to write autoincrement 319 ** maximum rowid values back into the sqlite_sequence register. 320 ** Every statement that might do an INSERT into an autoincrement 321 ** table (either directly or through triggers) needs to call this 322 ** routine just before the "exit" code. 323 */ 324 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 325 AutoincInfo *p; 326 Vdbe *v = pParse->pVdbe; 327 sqlite3 *db = pParse->db; 328 329 assert( v ); 330 for(p = pParse->pAinc; p; p = p->pNext){ 331 static const int iLn = VDBE_OFFSET_LINENO(2); 332 static const VdbeOpList autoIncEnd[] = { 333 /* 0 */ {OP_NotNull, 0, 2, 0}, 334 /* 1 */ {OP_NewRowid, 0, 0, 0}, 335 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 336 /* 3 */ {OP_Insert, 0, 0, 0}, 337 /* 4 */ {OP_Close, 0, 0, 0} 338 }; 339 VdbeOp *aOp; 340 Db *pDb = &db->aDb[p->iDb]; 341 int iRec; 342 int memId = p->regCtr; 343 344 iRec = sqlite3GetTempReg(pParse); 345 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 346 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 347 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 348 if( aOp==0 ) break; 349 aOp[0].p1 = memId+1; 350 aOp[1].p2 = memId+1; 351 aOp[2].p1 = memId-1; 352 aOp[2].p3 = iRec; 353 aOp[3].p2 = iRec; 354 aOp[3].p3 = memId+1; 355 aOp[3].p5 = OPFLAG_APPEND; 356 sqlite3ReleaseTempReg(pParse, iRec); 357 } 358 } 359 void sqlite3AutoincrementEnd(Parse *pParse){ 360 if( pParse->pAinc ) autoIncrementEnd(pParse); 361 } 362 #else 363 /* 364 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 365 ** above are all no-ops 366 */ 367 # define autoIncBegin(A,B,C) (0) 368 # define autoIncStep(A,B,C) 369 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 370 371 372 /* Forward declaration */ 373 static int xferOptimization( 374 Parse *pParse, /* Parser context */ 375 Table *pDest, /* The table we are inserting into */ 376 Select *pSelect, /* A SELECT statement to use as the data source */ 377 int onError, /* How to handle constraint errors */ 378 int iDbDest /* The database of pDest */ 379 ); 380 381 /* 382 ** This routine is called to handle SQL of the following forms: 383 ** 384 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 385 ** insert into TABLE (IDLIST) select 386 ** insert into TABLE (IDLIST) default values 387 ** 388 ** The IDLIST following the table name is always optional. If omitted, 389 ** then a list of all (non-hidden) columns for the table is substituted. 390 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 391 ** is omitted. 392 ** 393 ** For the pSelect parameter holds the values to be inserted for the 394 ** first two forms shown above. A VALUES clause is really just short-hand 395 ** for a SELECT statement that omits the FROM clause and everything else 396 ** that follows. If the pSelect parameter is NULL, that means that the 397 ** DEFAULT VALUES form of the INSERT statement is intended. 398 ** 399 ** The code generated follows one of four templates. For a simple 400 ** insert with data coming from a single-row VALUES clause, the code executes 401 ** once straight down through. Pseudo-code follows (we call this 402 ** the "1st template"): 403 ** 404 ** open write cursor to <table> and its indices 405 ** put VALUES clause expressions into registers 406 ** write the resulting record into <table> 407 ** cleanup 408 ** 409 ** The three remaining templates assume the statement is of the form 410 ** 411 ** INSERT INTO <table> SELECT ... 412 ** 413 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 414 ** in other words if the SELECT pulls all columns from a single table 415 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 416 ** if <table2> and <table1> are distinct tables but have identical 417 ** schemas, including all the same indices, then a special optimization 418 ** is invoked that copies raw records from <table2> over to <table1>. 419 ** See the xferOptimization() function for the implementation of this 420 ** template. This is the 2nd template. 421 ** 422 ** open a write cursor to <table> 423 ** open read cursor on <table2> 424 ** transfer all records in <table2> over to <table> 425 ** close cursors 426 ** foreach index on <table> 427 ** open a write cursor on the <table> index 428 ** open a read cursor on the corresponding <table2> index 429 ** transfer all records from the read to the write cursors 430 ** close cursors 431 ** end foreach 432 ** 433 ** The 3rd template is for when the second template does not apply 434 ** and the SELECT clause does not read from <table> at any time. 435 ** The generated code follows this template: 436 ** 437 ** X <- A 438 ** goto B 439 ** A: setup for the SELECT 440 ** loop over the rows in the SELECT 441 ** load values into registers R..R+n 442 ** yield X 443 ** end loop 444 ** cleanup after the SELECT 445 ** end-coroutine X 446 ** B: open write cursor to <table> and its indices 447 ** C: yield X, at EOF goto D 448 ** insert the select result into <table> from R..R+n 449 ** goto C 450 ** D: cleanup 451 ** 452 ** The 4th template is used if the insert statement takes its 453 ** values from a SELECT but the data is being inserted into a table 454 ** that is also read as part of the SELECT. In the third form, 455 ** we have to use an intermediate table to store the results of 456 ** the select. The template is like this: 457 ** 458 ** X <- A 459 ** goto B 460 ** A: setup for the SELECT 461 ** loop over the tables in the SELECT 462 ** load value into register R..R+n 463 ** yield X 464 ** end loop 465 ** cleanup after the SELECT 466 ** end co-routine R 467 ** B: open temp table 468 ** L: yield X, at EOF goto M 469 ** insert row from R..R+n into temp table 470 ** goto L 471 ** M: open write cursor to <table> and its indices 472 ** rewind temp table 473 ** C: loop over rows of intermediate table 474 ** transfer values form intermediate table into <table> 475 ** end loop 476 ** D: cleanup 477 */ 478 void sqlite3Insert( 479 Parse *pParse, /* Parser context */ 480 SrcList *pTabList, /* Name of table into which we are inserting */ 481 Select *pSelect, /* A SELECT statement to use as the data source */ 482 IdList *pColumn, /* Column names corresponding to IDLIST. */ 483 int onError /* How to handle constraint errors */ 484 ){ 485 sqlite3 *db; /* The main database structure */ 486 Table *pTab; /* The table to insert into. aka TABLE */ 487 char *zTab; /* Name of the table into which we are inserting */ 488 int i, j; /* Loop counters */ 489 Vdbe *v; /* Generate code into this virtual machine */ 490 Index *pIdx; /* For looping over indices of the table */ 491 int nColumn; /* Number of columns in the data */ 492 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 493 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 494 int iIdxCur = 0; /* First index cursor */ 495 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 496 int endOfLoop; /* Label for the end of the insertion loop */ 497 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 498 int addrInsTop = 0; /* Jump to label "D" */ 499 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 500 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 501 int iDb; /* Index of database holding TABLE */ 502 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 503 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 504 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 505 u8 bIdListInOrder; /* True if IDLIST is in table order */ 506 ExprList *pList = 0; /* List of VALUES() to be inserted */ 507 508 /* Register allocations */ 509 int regFromSelect = 0;/* Base register for data coming from SELECT */ 510 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 511 int regRowCount = 0; /* Memory cell used for the row counter */ 512 int regIns; /* Block of regs holding rowid+data being inserted */ 513 int regRowid; /* registers holding insert rowid */ 514 int regData; /* register holding first column to insert */ 515 int *aRegIdx = 0; /* One register allocated to each index */ 516 517 #ifndef SQLITE_OMIT_TRIGGER 518 int isView; /* True if attempting to insert into a view */ 519 Trigger *pTrigger; /* List of triggers on pTab, if required */ 520 int tmask; /* Mask of trigger times */ 521 #endif 522 523 db = pParse->db; 524 memset(&dest, 0, sizeof(dest)); 525 if( pParse->nErr || db->mallocFailed ){ 526 goto insert_cleanup; 527 } 528 529 /* If the Select object is really just a simple VALUES() list with a 530 ** single row (the common case) then keep that one row of values 531 ** and discard the other (unused) parts of the pSelect object 532 */ 533 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 534 pList = pSelect->pEList; 535 pSelect->pEList = 0; 536 sqlite3SelectDelete(db, pSelect); 537 pSelect = 0; 538 } 539 540 /* Locate the table into which we will be inserting new information. 541 */ 542 assert( pTabList->nSrc==1 ); 543 zTab = pTabList->a[0].zName; 544 if( NEVER(zTab==0) ) goto insert_cleanup; 545 pTab = sqlite3SrcListLookup(pParse, pTabList); 546 if( pTab==0 ){ 547 goto insert_cleanup; 548 } 549 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 550 assert( iDb<db->nDb ); 551 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 552 db->aDb[iDb].zDbSName) ){ 553 goto insert_cleanup; 554 } 555 withoutRowid = !HasRowid(pTab); 556 557 /* Figure out if we have any triggers and if the table being 558 ** inserted into is a view 559 */ 560 #ifndef SQLITE_OMIT_TRIGGER 561 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 562 isView = pTab->pSelect!=0; 563 #else 564 # define pTrigger 0 565 # define tmask 0 566 # define isView 0 567 #endif 568 #ifdef SQLITE_OMIT_VIEW 569 # undef isView 570 # define isView 0 571 #endif 572 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 573 574 /* If pTab is really a view, make sure it has been initialized. 575 ** ViewGetColumnNames() is a no-op if pTab is not a view. 576 */ 577 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 578 goto insert_cleanup; 579 } 580 581 /* Cannot insert into a read-only table. 582 */ 583 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 584 goto insert_cleanup; 585 } 586 587 /* Allocate a VDBE 588 */ 589 v = sqlite3GetVdbe(pParse); 590 if( v==0 ) goto insert_cleanup; 591 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 592 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 593 594 #ifndef SQLITE_OMIT_XFER_OPT 595 /* If the statement is of the form 596 ** 597 ** INSERT INTO <table1> SELECT * FROM <table2>; 598 ** 599 ** Then special optimizations can be applied that make the transfer 600 ** very fast and which reduce fragmentation of indices. 601 ** 602 ** This is the 2nd template. 603 */ 604 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 605 assert( !pTrigger ); 606 assert( pList==0 ); 607 goto insert_end; 608 } 609 #endif /* SQLITE_OMIT_XFER_OPT */ 610 611 /* If this is an AUTOINCREMENT table, look up the sequence number in the 612 ** sqlite_sequence table and store it in memory cell regAutoinc. 613 */ 614 regAutoinc = autoIncBegin(pParse, iDb, pTab); 615 616 /* Allocate registers for holding the rowid of the new row, 617 ** the content of the new row, and the assembled row record. 618 */ 619 regRowid = regIns = pParse->nMem+1; 620 pParse->nMem += pTab->nCol + 1; 621 if( IsVirtual(pTab) ){ 622 regRowid++; 623 pParse->nMem++; 624 } 625 regData = regRowid+1; 626 627 /* If the INSERT statement included an IDLIST term, then make sure 628 ** all elements of the IDLIST really are columns of the table and 629 ** remember the column indices. 630 ** 631 ** If the table has an INTEGER PRIMARY KEY column and that column 632 ** is named in the IDLIST, then record in the ipkColumn variable 633 ** the index into IDLIST of the primary key column. ipkColumn is 634 ** the index of the primary key as it appears in IDLIST, not as 635 ** is appears in the original table. (The index of the INTEGER 636 ** PRIMARY KEY in the original table is pTab->iPKey.) 637 */ 638 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; 639 if( pColumn ){ 640 for(i=0; i<pColumn->nId; i++){ 641 pColumn->a[i].idx = -1; 642 } 643 for(i=0; i<pColumn->nId; i++){ 644 for(j=0; j<pTab->nCol; j++){ 645 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 646 pColumn->a[i].idx = j; 647 if( i!=j ) bIdListInOrder = 0; 648 if( j==pTab->iPKey ){ 649 ipkColumn = i; assert( !withoutRowid ); 650 } 651 break; 652 } 653 } 654 if( j>=pTab->nCol ){ 655 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 656 ipkColumn = i; 657 bIdListInOrder = 0; 658 }else{ 659 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 660 pTabList, 0, pColumn->a[i].zName); 661 pParse->checkSchema = 1; 662 goto insert_cleanup; 663 } 664 } 665 } 666 } 667 668 /* Figure out how many columns of data are supplied. If the data 669 ** is coming from a SELECT statement, then generate a co-routine that 670 ** produces a single row of the SELECT on each invocation. The 671 ** co-routine is the common header to the 3rd and 4th templates. 672 */ 673 if( pSelect ){ 674 /* Data is coming from a SELECT or from a multi-row VALUES clause. 675 ** Generate a co-routine to run the SELECT. */ 676 int regYield; /* Register holding co-routine entry-point */ 677 int addrTop; /* Top of the co-routine */ 678 int rc; /* Result code */ 679 680 regYield = ++pParse->nMem; 681 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 682 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 683 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 684 dest.iSdst = bIdListInOrder ? regData : 0; 685 dest.nSdst = pTab->nCol; 686 rc = sqlite3Select(pParse, pSelect, &dest); 687 regFromSelect = dest.iSdst; 688 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 689 sqlite3VdbeEndCoroutine(v, regYield); 690 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 691 assert( pSelect->pEList ); 692 nColumn = pSelect->pEList->nExpr; 693 694 /* Set useTempTable to TRUE if the result of the SELECT statement 695 ** should be written into a temporary table (template 4). Set to 696 ** FALSE if each output row of the SELECT can be written directly into 697 ** the destination table (template 3). 698 ** 699 ** A temp table must be used if the table being updated is also one 700 ** of the tables being read by the SELECT statement. Also use a 701 ** temp table in the case of row triggers. 702 */ 703 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 704 useTempTable = 1; 705 } 706 707 if( useTempTable ){ 708 /* Invoke the coroutine to extract information from the SELECT 709 ** and add it to a transient table srcTab. The code generated 710 ** here is from the 4th template: 711 ** 712 ** B: open temp table 713 ** L: yield X, goto M at EOF 714 ** insert row from R..R+n into temp table 715 ** goto L 716 ** M: ... 717 */ 718 int regRec; /* Register to hold packed record */ 719 int regTempRowid; /* Register to hold temp table ROWID */ 720 int addrL; /* Label "L" */ 721 722 srcTab = pParse->nTab++; 723 regRec = sqlite3GetTempReg(pParse); 724 regTempRowid = sqlite3GetTempReg(pParse); 725 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 726 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 727 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 728 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 729 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 730 sqlite3VdbeGoto(v, addrL); 731 sqlite3VdbeJumpHere(v, addrL); 732 sqlite3ReleaseTempReg(pParse, regRec); 733 sqlite3ReleaseTempReg(pParse, regTempRowid); 734 } 735 }else{ 736 /* This is the case if the data for the INSERT is coming from a 737 ** single-row VALUES clause 738 */ 739 NameContext sNC; 740 memset(&sNC, 0, sizeof(sNC)); 741 sNC.pParse = pParse; 742 srcTab = -1; 743 assert( useTempTable==0 ); 744 if( pList ){ 745 nColumn = pList->nExpr; 746 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 747 goto insert_cleanup; 748 } 749 }else{ 750 nColumn = 0; 751 } 752 } 753 754 /* If there is no IDLIST term but the table has an integer primary 755 ** key, the set the ipkColumn variable to the integer primary key 756 ** column index in the original table definition. 757 */ 758 if( pColumn==0 && nColumn>0 ){ 759 ipkColumn = pTab->iPKey; 760 } 761 762 /* Make sure the number of columns in the source data matches the number 763 ** of columns to be inserted into the table. 764 */ 765 for(i=0; i<pTab->nCol; i++){ 766 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 767 } 768 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 769 sqlite3ErrorMsg(pParse, 770 "table %S has %d columns but %d values were supplied", 771 pTabList, 0, pTab->nCol-nHidden, nColumn); 772 goto insert_cleanup; 773 } 774 if( pColumn!=0 && nColumn!=pColumn->nId ){ 775 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 776 goto insert_cleanup; 777 } 778 779 /* Initialize the count of rows to be inserted 780 */ 781 if( db->flags & SQLITE_CountRows ){ 782 regRowCount = ++pParse->nMem; 783 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 784 } 785 786 /* If this is not a view, open the table and and all indices */ 787 if( !isView ){ 788 int nIdx; 789 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 790 &iDataCur, &iIdxCur); 791 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1)); 792 if( aRegIdx==0 ){ 793 goto insert_cleanup; 794 } 795 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 796 assert( pIdx ); 797 aRegIdx[i] = ++pParse->nMem; 798 pParse->nMem += pIdx->nColumn; 799 } 800 } 801 802 /* This is the top of the main insertion loop */ 803 if( useTempTable ){ 804 /* This block codes the top of loop only. The complete loop is the 805 ** following pseudocode (template 4): 806 ** 807 ** rewind temp table, if empty goto D 808 ** C: loop over rows of intermediate table 809 ** transfer values form intermediate table into <table> 810 ** end loop 811 ** D: ... 812 */ 813 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 814 addrCont = sqlite3VdbeCurrentAddr(v); 815 }else if( pSelect ){ 816 /* This block codes the top of loop only. The complete loop is the 817 ** following pseudocode (template 3): 818 ** 819 ** C: yield X, at EOF goto D 820 ** insert the select result into <table> from R..R+n 821 ** goto C 822 ** D: ... 823 */ 824 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 825 VdbeCoverage(v); 826 } 827 828 /* Run the BEFORE and INSTEAD OF triggers, if there are any 829 */ 830 endOfLoop = sqlite3VdbeMakeLabel(v); 831 if( tmask & TRIGGER_BEFORE ){ 832 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 833 834 /* build the NEW.* reference row. Note that if there is an INTEGER 835 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 836 ** translated into a unique ID for the row. But on a BEFORE trigger, 837 ** we do not know what the unique ID will be (because the insert has 838 ** not happened yet) so we substitute a rowid of -1 839 */ 840 if( ipkColumn<0 ){ 841 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 842 }else{ 843 int addr1; 844 assert( !withoutRowid ); 845 if( useTempTable ){ 846 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 847 }else{ 848 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 849 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 850 } 851 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 852 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 853 sqlite3VdbeJumpHere(v, addr1); 854 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 855 } 856 857 /* Cannot have triggers on a virtual table. If it were possible, 858 ** this block would have to account for hidden column. 859 */ 860 assert( !IsVirtual(pTab) ); 861 862 /* Create the new column data 863 */ 864 for(i=j=0; i<pTab->nCol; i++){ 865 if( pColumn ){ 866 for(j=0; j<pColumn->nId; j++){ 867 if( pColumn->a[j].idx==i ) break; 868 } 869 } 870 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) 871 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ 872 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 873 }else if( useTempTable ){ 874 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 875 }else{ 876 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 877 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 878 } 879 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; 880 } 881 882 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 883 ** do not attempt any conversions before assembling the record. 884 ** If this is a real table, attempt conversions as required by the 885 ** table column affinities. 886 */ 887 if( !isView ){ 888 sqlite3TableAffinity(v, pTab, regCols+1); 889 } 890 891 /* Fire BEFORE or INSTEAD OF triggers */ 892 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 893 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 894 895 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 896 } 897 898 /* Compute the content of the next row to insert into a range of 899 ** registers beginning at regIns. 900 */ 901 if( !isView ){ 902 if( IsVirtual(pTab) ){ 903 /* The row that the VUpdate opcode will delete: none */ 904 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 905 } 906 if( ipkColumn>=0 ){ 907 if( useTempTable ){ 908 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 909 }else if( pSelect ){ 910 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 911 }else{ 912 VdbeOp *pOp; 913 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 914 pOp = sqlite3VdbeGetOp(v, -1); 915 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 916 appendFlag = 1; 917 pOp->opcode = OP_NewRowid; 918 pOp->p1 = iDataCur; 919 pOp->p2 = regRowid; 920 pOp->p3 = regAutoinc; 921 } 922 } 923 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 924 ** to generate a unique primary key value. 925 */ 926 if( !appendFlag ){ 927 int addr1; 928 if( !IsVirtual(pTab) ){ 929 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 930 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 931 sqlite3VdbeJumpHere(v, addr1); 932 }else{ 933 addr1 = sqlite3VdbeCurrentAddr(v); 934 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 935 } 936 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 937 } 938 }else if( IsVirtual(pTab) || withoutRowid ){ 939 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 940 }else{ 941 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 942 appendFlag = 1; 943 } 944 autoIncStep(pParse, regAutoinc, regRowid); 945 946 /* Compute data for all columns of the new entry, beginning 947 ** with the first column. 948 */ 949 nHidden = 0; 950 for(i=0; i<pTab->nCol; i++){ 951 int iRegStore = regRowid+1+i; 952 if( i==pTab->iPKey ){ 953 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 954 ** Whenever this column is read, the rowid will be substituted 955 ** in its place. Hence, fill this column with a NULL to avoid 956 ** taking up data space with information that will never be used. 957 ** As there may be shallow copies of this value, make it a soft-NULL */ 958 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 959 continue; 960 } 961 if( pColumn==0 ){ 962 if( IsHiddenColumn(&pTab->aCol[i]) ){ 963 j = -1; 964 nHidden++; 965 }else{ 966 j = i - nHidden; 967 } 968 }else{ 969 for(j=0; j<pColumn->nId; j++){ 970 if( pColumn->a[j].idx==i ) break; 971 } 972 } 973 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 974 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 975 }else if( useTempTable ){ 976 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 977 }else if( pSelect ){ 978 if( regFromSelect!=regData ){ 979 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 980 } 981 }else{ 982 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 983 } 984 } 985 986 /* Generate code to check constraints and generate index keys and 987 ** do the insertion. 988 */ 989 #ifndef SQLITE_OMIT_VIRTUALTABLE 990 if( IsVirtual(pTab) ){ 991 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 992 sqlite3VtabMakeWritable(pParse, pTab); 993 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 994 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 995 sqlite3MayAbort(pParse); 996 }else 997 #endif 998 { 999 int isReplace; /* Set to true if constraints may cause a replace */ 1000 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1001 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1002 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0 1003 ); 1004 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1005 1006 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1007 ** constraints or (b) there are no triggers and this table is not a 1008 ** parent table in a foreign key constraint. It is safe to set the 1009 ** flag in the second case as if any REPLACE constraint is hit, an 1010 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1011 ** cursor that is disturbed. And these instructions both clear the 1012 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1013 ** functionality. */ 1014 bUseSeek = (isReplace==0 || (pTrigger==0 && 1015 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0) 1016 )); 1017 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1018 regIns, aRegIdx, 0, appendFlag, bUseSeek 1019 ); 1020 } 1021 } 1022 1023 /* Update the count of rows that are inserted 1024 */ 1025 if( (db->flags & SQLITE_CountRows)!=0 ){ 1026 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1027 } 1028 1029 if( pTrigger ){ 1030 /* Code AFTER triggers */ 1031 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1032 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1033 } 1034 1035 /* The bottom of the main insertion loop, if the data source 1036 ** is a SELECT statement. 1037 */ 1038 sqlite3VdbeResolveLabel(v, endOfLoop); 1039 if( useTempTable ){ 1040 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1041 sqlite3VdbeJumpHere(v, addrInsTop); 1042 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1043 }else if( pSelect ){ 1044 sqlite3VdbeGoto(v, addrCont); 1045 sqlite3VdbeJumpHere(v, addrInsTop); 1046 } 1047 1048 insert_end: 1049 /* Update the sqlite_sequence table by storing the content of the 1050 ** maximum rowid counter values recorded while inserting into 1051 ** autoincrement tables. 1052 */ 1053 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1054 sqlite3AutoincrementEnd(pParse); 1055 } 1056 1057 /* 1058 ** Return the number of rows inserted. If this routine is 1059 ** generating code because of a call to sqlite3NestedParse(), do not 1060 ** invoke the callback function. 1061 */ 1062 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ 1063 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1064 sqlite3VdbeSetNumCols(v, 1); 1065 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1066 } 1067 1068 insert_cleanup: 1069 sqlite3SrcListDelete(db, pTabList); 1070 sqlite3ExprListDelete(db, pList); 1071 sqlite3SelectDelete(db, pSelect); 1072 sqlite3IdListDelete(db, pColumn); 1073 sqlite3DbFree(db, aRegIdx); 1074 } 1075 1076 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1077 ** they may interfere with compilation of other functions in this file 1078 ** (or in another file, if this file becomes part of the amalgamation). */ 1079 #ifdef isView 1080 #undef isView 1081 #endif 1082 #ifdef pTrigger 1083 #undef pTrigger 1084 #endif 1085 #ifdef tmask 1086 #undef tmask 1087 #endif 1088 1089 /* 1090 ** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged() 1091 */ 1092 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1093 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1094 1095 /* This is the Walker callback from checkConstraintUnchanged(). Set 1096 ** bit 0x01 of pWalker->eCode if 1097 ** pWalker->eCode to 0 if this expression node references any of the 1098 ** columns that are being modifed by an UPDATE statement. 1099 */ 1100 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1101 if( pExpr->op==TK_COLUMN ){ 1102 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1103 if( pExpr->iColumn>=0 ){ 1104 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1105 pWalker->eCode |= CKCNSTRNT_COLUMN; 1106 } 1107 }else{ 1108 pWalker->eCode |= CKCNSTRNT_ROWID; 1109 } 1110 } 1111 return WRC_Continue; 1112 } 1113 1114 /* 1115 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1116 ** only columns that are modified by the UPDATE are those for which 1117 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1118 ** 1119 ** Return true if CHECK constraint pExpr does not use any of the 1120 ** changing columns (or the rowid if it is changing). In other words, 1121 ** return true if this CHECK constraint can be skipped when validating 1122 ** the new row in the UPDATE statement. 1123 */ 1124 static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){ 1125 Walker w; 1126 memset(&w, 0, sizeof(w)); 1127 w.eCode = 0; 1128 w.xExprCallback = checkConstraintExprNode; 1129 w.u.aiCol = aiChng; 1130 sqlite3WalkExpr(&w, pExpr); 1131 if( !chngRowid ){ 1132 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1133 w.eCode &= ~CKCNSTRNT_ROWID; 1134 } 1135 testcase( w.eCode==0 ); 1136 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1137 testcase( w.eCode==CKCNSTRNT_ROWID ); 1138 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1139 return !w.eCode; 1140 } 1141 1142 /* 1143 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1144 ** on table pTab. 1145 ** 1146 ** The regNewData parameter is the first register in a range that contains 1147 ** the data to be inserted or the data after the update. There will be 1148 ** pTab->nCol+1 registers in this range. The first register (the one 1149 ** that regNewData points to) will contain the new rowid, or NULL in the 1150 ** case of a WITHOUT ROWID table. The second register in the range will 1151 ** contain the content of the first table column. The third register will 1152 ** contain the content of the second table column. And so forth. 1153 ** 1154 ** The regOldData parameter is similar to regNewData except that it contains 1155 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1156 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1157 ** checking regOldData for zero. 1158 ** 1159 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1160 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1161 ** might be modified by the UPDATE. If pkChng is false, then the key of 1162 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1163 ** 1164 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1165 ** was explicitly specified as part of the INSERT statement. If pkChng 1166 ** is zero, it means that the either rowid is computed automatically or 1167 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1168 ** pkChng will only be true if the INSERT statement provides an integer 1169 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1170 ** 1171 ** The code generated by this routine will store new index entries into 1172 ** registers identified by aRegIdx[]. No index entry is created for 1173 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1174 ** the same as the order of indices on the linked list of indices 1175 ** at pTab->pIndex. 1176 ** 1177 ** The caller must have already opened writeable cursors on the main 1178 ** table and all applicable indices (that is to say, all indices for which 1179 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1180 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1181 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1182 ** for the first index in the pTab->pIndex list. Cursors for other indices 1183 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1184 ** 1185 ** This routine also generates code to check constraints. NOT NULL, 1186 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1187 ** then the appropriate action is performed. There are five possible 1188 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1189 ** 1190 ** Constraint type Action What Happens 1191 ** --------------- ---------- ---------------------------------------- 1192 ** any ROLLBACK The current transaction is rolled back and 1193 ** sqlite3_step() returns immediately with a 1194 ** return code of SQLITE_CONSTRAINT. 1195 ** 1196 ** any ABORT Back out changes from the current command 1197 ** only (do not do a complete rollback) then 1198 ** cause sqlite3_step() to return immediately 1199 ** with SQLITE_CONSTRAINT. 1200 ** 1201 ** any FAIL Sqlite3_step() returns immediately with a 1202 ** return code of SQLITE_CONSTRAINT. The 1203 ** transaction is not rolled back and any 1204 ** changes to prior rows are retained. 1205 ** 1206 ** any IGNORE The attempt in insert or update the current 1207 ** row is skipped, without throwing an error. 1208 ** Processing continues with the next row. 1209 ** (There is an immediate jump to ignoreDest.) 1210 ** 1211 ** NOT NULL REPLACE The NULL value is replace by the default 1212 ** value for that column. If the default value 1213 ** is NULL, the action is the same as ABORT. 1214 ** 1215 ** UNIQUE REPLACE The other row that conflicts with the row 1216 ** being inserted is removed. 1217 ** 1218 ** CHECK REPLACE Illegal. The results in an exception. 1219 ** 1220 ** Which action to take is determined by the overrideError parameter. 1221 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1222 ** is used. Or if pParse->onError==OE_Default then the onError value 1223 ** for the constraint is used. 1224 */ 1225 void sqlite3GenerateConstraintChecks( 1226 Parse *pParse, /* The parser context */ 1227 Table *pTab, /* The table being inserted or updated */ 1228 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1229 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1230 int iIdxCur, /* First index cursor */ 1231 int regNewData, /* First register in a range holding values to insert */ 1232 int regOldData, /* Previous content. 0 for INSERTs */ 1233 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1234 u8 overrideError, /* Override onError to this if not OE_Default */ 1235 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1236 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1237 int *aiChng /* column i is unchanged if aiChng[i]<0 */ 1238 ){ 1239 Vdbe *v; /* VDBE under constrution */ 1240 Index *pIdx; /* Pointer to one of the indices */ 1241 Index *pPk = 0; /* The PRIMARY KEY index */ 1242 sqlite3 *db; /* Database connection */ 1243 int i; /* loop counter */ 1244 int ix; /* Index loop counter */ 1245 int nCol; /* Number of columns */ 1246 int onError; /* Conflict resolution strategy */ 1247 int addr1; /* Address of jump instruction */ 1248 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1249 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1250 int ipkTop = 0; /* Top of the rowid change constraint check */ 1251 int ipkBottom = 0; /* Bottom of the rowid change constraint check */ 1252 u8 isUpdate; /* True if this is an UPDATE operation */ 1253 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1254 1255 isUpdate = regOldData!=0; 1256 db = pParse->db; 1257 v = sqlite3GetVdbe(pParse); 1258 assert( v!=0 ); 1259 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1260 nCol = pTab->nCol; 1261 1262 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1263 ** normal rowid tables. nPkField is the number of key fields in the 1264 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1265 ** number of fields in the true primary key of the table. */ 1266 if( HasRowid(pTab) ){ 1267 pPk = 0; 1268 nPkField = 1; 1269 }else{ 1270 pPk = sqlite3PrimaryKeyIndex(pTab); 1271 nPkField = pPk->nKeyCol; 1272 } 1273 1274 /* Record that this module has started */ 1275 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1276 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1277 1278 /* Test all NOT NULL constraints. 1279 */ 1280 for(i=0; i<nCol; i++){ 1281 if( i==pTab->iPKey ){ 1282 continue; /* ROWID is never NULL */ 1283 } 1284 if( aiChng && aiChng[i]<0 ){ 1285 /* Don't bother checking for NOT NULL on columns that do not change */ 1286 continue; 1287 } 1288 onError = pTab->aCol[i].notNull; 1289 if( onError==OE_None ) continue; /* This column is allowed to be NULL */ 1290 if( overrideError!=OE_Default ){ 1291 onError = overrideError; 1292 }else if( onError==OE_Default ){ 1293 onError = OE_Abort; 1294 } 1295 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1296 onError = OE_Abort; 1297 } 1298 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1299 || onError==OE_Ignore || onError==OE_Replace ); 1300 switch( onError ){ 1301 case OE_Abort: 1302 sqlite3MayAbort(pParse); 1303 /* Fall through */ 1304 case OE_Rollback: 1305 case OE_Fail: { 1306 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1307 pTab->aCol[i].zName); 1308 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 1309 regNewData+1+i); 1310 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1311 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1312 VdbeCoverage(v); 1313 break; 1314 } 1315 case OE_Ignore: { 1316 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 1317 VdbeCoverage(v); 1318 break; 1319 } 1320 default: { 1321 assert( onError==OE_Replace ); 1322 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); 1323 VdbeCoverage(v); 1324 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1325 sqlite3VdbeJumpHere(v, addr1); 1326 break; 1327 } 1328 } 1329 } 1330 1331 /* Test all CHECK constraints 1332 */ 1333 #ifndef SQLITE_OMIT_CHECK 1334 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1335 ExprList *pCheck = pTab->pCheck; 1336 pParse->ckBase = regNewData+1; 1337 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1338 for(i=0; i<pCheck->nExpr; i++){ 1339 int allOk; 1340 Expr *pExpr = pCheck->a[i].pExpr; 1341 if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue; 1342 allOk = sqlite3VdbeMakeLabel(v); 1343 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 1344 if( onError==OE_Ignore ){ 1345 sqlite3VdbeGoto(v, ignoreDest); 1346 }else{ 1347 char *zName = pCheck->a[i].zName; 1348 if( zName==0 ) zName = pTab->zName; 1349 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ 1350 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1351 onError, zName, P4_TRANSIENT, 1352 P5_ConstraintCheck); 1353 } 1354 sqlite3VdbeResolveLabel(v, allOk); 1355 } 1356 } 1357 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1358 1359 /* If rowid is changing, make sure the new rowid does not previously 1360 ** exist in the table. 1361 */ 1362 if( pkChng && pPk==0 ){ 1363 int addrRowidOk = sqlite3VdbeMakeLabel(v); 1364 1365 /* Figure out what action to take in case of a rowid collision */ 1366 onError = pTab->keyConf; 1367 if( overrideError!=OE_Default ){ 1368 onError = overrideError; 1369 }else if( onError==OE_Default ){ 1370 onError = OE_Abort; 1371 } 1372 1373 if( isUpdate ){ 1374 /* pkChng!=0 does not mean that the rowid has changed, only that 1375 ** it might have changed. Skip the conflict logic below if the rowid 1376 ** is unchanged. */ 1377 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1378 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1379 VdbeCoverage(v); 1380 } 1381 1382 /* If the response to a rowid conflict is REPLACE but the response 1383 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1384 ** to defer the running of the rowid conflict checking until after 1385 ** the UNIQUE constraints have run. 1386 */ 1387 if( onError==OE_Replace && overrideError!=OE_Replace ){ 1388 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1389 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ 1390 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); 1391 break; 1392 } 1393 } 1394 } 1395 1396 /* Check to see if the new rowid already exists in the table. Skip 1397 ** the following conflict logic if it does not. */ 1398 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1399 VdbeCoverage(v); 1400 1401 /* Generate code that deals with a rowid collision */ 1402 switch( onError ){ 1403 default: { 1404 onError = OE_Abort; 1405 /* Fall thru into the next case */ 1406 } 1407 case OE_Rollback: 1408 case OE_Abort: 1409 case OE_Fail: { 1410 sqlite3RowidConstraint(pParse, onError, pTab); 1411 break; 1412 } 1413 case OE_Replace: { 1414 /* If there are DELETE triggers on this table and the 1415 ** recursive-triggers flag is set, call GenerateRowDelete() to 1416 ** remove the conflicting row from the table. This will fire 1417 ** the triggers and remove both the table and index b-tree entries. 1418 ** 1419 ** Otherwise, if there are no triggers or the recursive-triggers 1420 ** flag is not set, but the table has one or more indexes, call 1421 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1422 ** only. The table b-tree entry will be replaced by the new entry 1423 ** when it is inserted. 1424 ** 1425 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1426 ** also invoke MultiWrite() to indicate that this VDBE may require 1427 ** statement rollback (if the statement is aborted after the delete 1428 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1429 ** but being more selective here allows statements like: 1430 ** 1431 ** REPLACE INTO t(rowid) VALUES($newrowid) 1432 ** 1433 ** to run without a statement journal if there are no indexes on the 1434 ** table. 1435 */ 1436 Trigger *pTrigger = 0; 1437 if( db->flags&SQLITE_RecTriggers ){ 1438 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1439 } 1440 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1441 sqlite3MultiWrite(pParse); 1442 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1443 regNewData, 1, 0, OE_Replace, 1, -1); 1444 }else{ 1445 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1446 if( HasRowid(pTab) ){ 1447 /* This OP_Delete opcode fires the pre-update-hook only. It does 1448 ** not modify the b-tree. It is more efficient to let the coming 1449 ** OP_Insert replace the existing entry than it is to delete the 1450 ** existing entry and then insert a new one. */ 1451 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1452 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1453 } 1454 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1455 if( pTab->pIndex ){ 1456 sqlite3MultiWrite(pParse); 1457 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1458 } 1459 } 1460 seenReplace = 1; 1461 break; 1462 } 1463 case OE_Ignore: { 1464 /*assert( seenReplace==0 );*/ 1465 sqlite3VdbeGoto(v, ignoreDest); 1466 break; 1467 } 1468 } 1469 sqlite3VdbeResolveLabel(v, addrRowidOk); 1470 if( ipkTop ){ 1471 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1472 sqlite3VdbeJumpHere(v, ipkTop); 1473 } 1474 } 1475 1476 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1477 ** index and making sure that duplicate entries do not already exist. 1478 ** Compute the revised record entries for indices as we go. 1479 ** 1480 ** This loop also handles the case of the PRIMARY KEY index for a 1481 ** WITHOUT ROWID table. 1482 */ 1483 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1484 int regIdx; /* Range of registers hold conent for pIdx */ 1485 int regR; /* Range of registers holding conflicting PK */ 1486 int iThisCur; /* Cursor for this UNIQUE index */ 1487 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1488 1489 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1490 if( bAffinityDone==0 ){ 1491 sqlite3TableAffinity(v, pTab, regNewData+1); 1492 bAffinityDone = 1; 1493 } 1494 iThisCur = iIdxCur+ix; 1495 addrUniqueOk = sqlite3VdbeMakeLabel(v); 1496 1497 /* Skip partial indices for which the WHERE clause is not true */ 1498 if( pIdx->pPartIdxWhere ){ 1499 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1500 pParse->ckBase = regNewData+1; 1501 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1502 SQLITE_JUMPIFNULL); 1503 pParse->ckBase = 0; 1504 } 1505 1506 /* Create a record for this index entry as it should appear after 1507 ** the insert or update. Store that record in the aRegIdx[ix] register 1508 */ 1509 regIdx = aRegIdx[ix]+1; 1510 for(i=0; i<pIdx->nColumn; i++){ 1511 int iField = pIdx->aiColumn[i]; 1512 int x; 1513 if( iField==XN_EXPR ){ 1514 pParse->ckBase = regNewData+1; 1515 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1516 pParse->ckBase = 0; 1517 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1518 }else{ 1519 if( iField==XN_ROWID || iField==pTab->iPKey ){ 1520 x = regNewData; 1521 }else{ 1522 x = iField + regNewData + 1; 1523 } 1524 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); 1525 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 1526 } 1527 } 1528 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1529 VdbeComment((v, "for %s", pIdx->zName)); 1530 #ifdef SQLITE_ENABLE_NULL_TRIM 1531 if( pIdx->idxType==2 ) sqlite3SetMakeRecordP5(v, pIdx->pTable); 1532 #endif 1533 1534 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1535 ** of a WITHOUT ROWID table and there has been no change the 1536 ** primary key, then no collision is possible. The collision detection 1537 ** logic below can all be skipped. */ 1538 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1539 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1540 continue; 1541 } 1542 1543 /* Find out what action to take in case there is a uniqueness conflict */ 1544 onError = pIdx->onError; 1545 if( onError==OE_None ){ 1546 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1547 continue; /* pIdx is not a UNIQUE index */ 1548 } 1549 if( overrideError!=OE_Default ){ 1550 onError = overrideError; 1551 }else if( onError==OE_Default ){ 1552 onError = OE_Abort; 1553 } 1554 1555 /* Collision detection may be omitted if all of the following are true: 1556 ** (1) The conflict resolution algorithm is REPLACE 1557 ** (2) The table is a WITHOUT ROWID table 1558 ** (3) There are no secondary indexes on the table 1559 ** (4) No delete triggers need to be fired if there is a conflict 1560 ** (5) No FK constraint counters need to be updated if a conflict occurs. 1561 */ 1562 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 1563 && pPk==pIdx /* Condition 2 */ 1564 && onError==OE_Replace /* Condition 1 */ 1565 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 1566 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 1567 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 1568 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 1569 ){ 1570 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1571 continue; 1572 } 1573 1574 /* Check to see if the new index entry will be unique */ 1575 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1576 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 1577 1578 /* Generate code to handle collisions */ 1579 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1580 if( isUpdate || onError==OE_Replace ){ 1581 if( HasRowid(pTab) ){ 1582 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1583 /* Conflict only if the rowid of the existing index entry 1584 ** is different from old-rowid */ 1585 if( isUpdate ){ 1586 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1587 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1588 VdbeCoverage(v); 1589 } 1590 }else{ 1591 int x; 1592 /* Extract the PRIMARY KEY from the end of the index entry and 1593 ** store it in registers regR..regR+nPk-1 */ 1594 if( pIdx!=pPk ){ 1595 for(i=0; i<pPk->nKeyCol; i++){ 1596 assert( pPk->aiColumn[i]>=0 ); 1597 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 1598 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1599 VdbeComment((v, "%s.%s", pTab->zName, 1600 pTab->aCol[pPk->aiColumn[i]].zName)); 1601 } 1602 } 1603 if( isUpdate ){ 1604 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1605 ** table, only conflict if the new PRIMARY KEY values are actually 1606 ** different from the old. 1607 ** 1608 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 1609 ** of the matched index row are different from the original PRIMARY 1610 ** KEY values of this row before the update. */ 1611 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 1612 int op = OP_Ne; 1613 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 1614 1615 for(i=0; i<pPk->nKeyCol; i++){ 1616 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 1617 x = pPk->aiColumn[i]; 1618 assert( x>=0 ); 1619 if( i==(pPk->nKeyCol-1) ){ 1620 addrJump = addrUniqueOk; 1621 op = OP_Eq; 1622 } 1623 sqlite3VdbeAddOp4(v, op, 1624 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 1625 ); 1626 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1627 VdbeCoverageIf(v, op==OP_Eq); 1628 VdbeCoverageIf(v, op==OP_Ne); 1629 } 1630 } 1631 } 1632 } 1633 1634 /* Generate code that executes if the new index entry is not unique */ 1635 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1636 || onError==OE_Ignore || onError==OE_Replace ); 1637 switch( onError ){ 1638 case OE_Rollback: 1639 case OE_Abort: 1640 case OE_Fail: { 1641 sqlite3UniqueConstraint(pParse, onError, pIdx); 1642 break; 1643 } 1644 case OE_Ignore: { 1645 sqlite3VdbeGoto(v, ignoreDest); 1646 break; 1647 } 1648 default: { 1649 Trigger *pTrigger = 0; 1650 assert( onError==OE_Replace ); 1651 sqlite3MultiWrite(pParse); 1652 if( db->flags&SQLITE_RecTriggers ){ 1653 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1654 } 1655 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1656 regR, nPkField, 0, OE_Replace, 1657 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 1658 seenReplace = 1; 1659 break; 1660 } 1661 } 1662 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1663 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 1664 } 1665 if( ipkTop ){ 1666 sqlite3VdbeGoto(v, ipkTop+1); 1667 sqlite3VdbeJumpHere(v, ipkBottom); 1668 } 1669 1670 *pbMayReplace = seenReplace; 1671 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 1672 } 1673 1674 #ifdef SQLITE_ENABLE_NULL_TRIM 1675 /* 1676 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 1677 ** to be the number of columns in table pTab that must not be NULL-trimmed. 1678 ** 1679 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 1680 */ 1681 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 1682 u16 i; 1683 1684 /* Records with omitted columns are only allowed for schema format 1685 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 1686 if( pTab->pSchema->file_format<2 ) return; 1687 1688 for(i=pTab->nCol-1; i>0; i--){ 1689 if( pTab->aCol[i].pDflt!=0 ) break; 1690 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 1691 } 1692 sqlite3VdbeChangeP5(v, i+1); 1693 } 1694 #endif 1695 1696 /* 1697 ** This routine generates code to finish the INSERT or UPDATE operation 1698 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1699 ** A consecutive range of registers starting at regNewData contains the 1700 ** rowid and the content to be inserted. 1701 ** 1702 ** The arguments to this routine should be the same as the first six 1703 ** arguments to sqlite3GenerateConstraintChecks. 1704 */ 1705 void sqlite3CompleteInsertion( 1706 Parse *pParse, /* The parser context */ 1707 Table *pTab, /* the table into which we are inserting */ 1708 int iDataCur, /* Cursor of the canonical data source */ 1709 int iIdxCur, /* First index cursor */ 1710 int regNewData, /* Range of content */ 1711 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1712 int update_flags, /* True for UPDATE, False for INSERT */ 1713 int appendBias, /* True if this is likely to be an append */ 1714 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1715 ){ 1716 Vdbe *v; /* Prepared statements under construction */ 1717 Index *pIdx; /* An index being inserted or updated */ 1718 u8 pik_flags; /* flag values passed to the btree insert */ 1719 int regData; /* Content registers (after the rowid) */ 1720 int regRec; /* Register holding assembled record for the table */ 1721 int i; /* Loop counter */ 1722 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ 1723 1724 assert( update_flags==0 1725 || update_flags==OPFLAG_ISUPDATE 1726 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 1727 ); 1728 1729 v = sqlite3GetVdbe(pParse); 1730 assert( v!=0 ); 1731 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1732 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1733 if( aRegIdx[i]==0 ) continue; 1734 bAffinityDone = 1; 1735 if( pIdx->pPartIdxWhere ){ 1736 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 1737 VdbeCoverage(v); 1738 } 1739 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 1740 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1741 assert( pParse->nested==0 ); 1742 pik_flags |= OPFLAG_NCHANGE; 1743 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 1744 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1745 if( update_flags==0 ){ 1746 sqlite3VdbeAddOp4(v, OP_InsertInt, 1747 iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE 1748 ); 1749 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 1750 } 1751 #endif 1752 } 1753 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 1754 aRegIdx[i]+1, 1755 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 1756 sqlite3VdbeChangeP5(v, pik_flags); 1757 } 1758 if( !HasRowid(pTab) ) return; 1759 regData = regNewData + 1; 1760 regRec = sqlite3GetTempReg(pParse); 1761 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1762 sqlite3SetMakeRecordP5(v, pTab); 1763 if( !bAffinityDone ){ 1764 sqlite3TableAffinity(v, pTab, 0); 1765 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); 1766 } 1767 if( pParse->nested ){ 1768 pik_flags = 0; 1769 }else{ 1770 pik_flags = OPFLAG_NCHANGE; 1771 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 1772 } 1773 if( appendBias ){ 1774 pik_flags |= OPFLAG_APPEND; 1775 } 1776 if( useSeekResult ){ 1777 pik_flags |= OPFLAG_USESEEKRESULT; 1778 } 1779 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); 1780 if( !pParse->nested ){ 1781 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1782 } 1783 sqlite3VdbeChangeP5(v, pik_flags); 1784 } 1785 1786 /* 1787 ** Allocate cursors for the pTab table and all its indices and generate 1788 ** code to open and initialized those cursors. 1789 ** 1790 ** The cursor for the object that contains the complete data (normally 1791 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 1792 ** ROWID table) is returned in *piDataCur. The first index cursor is 1793 ** returned in *piIdxCur. The number of indices is returned. 1794 ** 1795 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 1796 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 1797 ** If iBase is negative, then allocate the next available cursor. 1798 ** 1799 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 1800 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 1801 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 1802 ** pTab->pIndex list. 1803 ** 1804 ** If pTab is a virtual table, then this routine is a no-op and the 1805 ** *piDataCur and *piIdxCur values are left uninitialized. 1806 */ 1807 int sqlite3OpenTableAndIndices( 1808 Parse *pParse, /* Parsing context */ 1809 Table *pTab, /* Table to be opened */ 1810 int op, /* OP_OpenRead or OP_OpenWrite */ 1811 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 1812 int iBase, /* Use this for the table cursor, if there is one */ 1813 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 1814 int *piDataCur, /* Write the database source cursor number here */ 1815 int *piIdxCur /* Write the first index cursor number here */ 1816 ){ 1817 int i; 1818 int iDb; 1819 int iDataCur; 1820 Index *pIdx; 1821 Vdbe *v; 1822 1823 assert( op==OP_OpenRead || op==OP_OpenWrite ); 1824 assert( op==OP_OpenWrite || p5==0 ); 1825 if( IsVirtual(pTab) ){ 1826 /* This routine is a no-op for virtual tables. Leave the output 1827 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 1828 ** can detect if they are used by mistake in the caller. */ 1829 return 0; 1830 } 1831 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1832 v = sqlite3GetVdbe(pParse); 1833 assert( v!=0 ); 1834 if( iBase<0 ) iBase = pParse->nTab; 1835 iDataCur = iBase++; 1836 if( piDataCur ) *piDataCur = iDataCur; 1837 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 1838 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 1839 }else{ 1840 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 1841 } 1842 if( piIdxCur ) *piIdxCur = iBase; 1843 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1844 int iIdxCur = iBase++; 1845 assert( pIdx->pSchema==pTab->pSchema ); 1846 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1847 if( piDataCur ) *piDataCur = iIdxCur; 1848 p5 = 0; 1849 } 1850 if( aToOpen==0 || aToOpen[i+1] ){ 1851 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 1852 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1853 sqlite3VdbeChangeP5(v, p5); 1854 VdbeComment((v, "%s", pIdx->zName)); 1855 } 1856 } 1857 if( iBase>pParse->nTab ) pParse->nTab = iBase; 1858 return i; 1859 } 1860 1861 1862 #ifdef SQLITE_TEST 1863 /* 1864 ** The following global variable is incremented whenever the 1865 ** transfer optimization is used. This is used for testing 1866 ** purposes only - to make sure the transfer optimization really 1867 ** is happening when it is supposed to. 1868 */ 1869 int sqlite3_xferopt_count; 1870 #endif /* SQLITE_TEST */ 1871 1872 1873 #ifndef SQLITE_OMIT_XFER_OPT 1874 /* 1875 ** Check to see if index pSrc is compatible as a source of data 1876 ** for index pDest in an insert transfer optimization. The rules 1877 ** for a compatible index: 1878 ** 1879 ** * The index is over the same set of columns 1880 ** * The same DESC and ASC markings occurs on all columns 1881 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1882 ** * The same collating sequence on each column 1883 ** * The index has the exact same WHERE clause 1884 */ 1885 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1886 int i; 1887 assert( pDest && pSrc ); 1888 assert( pDest->pTable!=pSrc->pTable ); 1889 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 1890 return 0; /* Different number of columns */ 1891 } 1892 if( pDest->onError!=pSrc->onError ){ 1893 return 0; /* Different conflict resolution strategies */ 1894 } 1895 for(i=0; i<pSrc->nKeyCol; i++){ 1896 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1897 return 0; /* Different columns indexed */ 1898 } 1899 if( pSrc->aiColumn[i]==XN_EXPR ){ 1900 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 1901 if( sqlite3ExprCompare(pSrc->aColExpr->a[i].pExpr, 1902 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 1903 return 0; /* Different expressions in the index */ 1904 } 1905 } 1906 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1907 return 0; /* Different sort orders */ 1908 } 1909 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 1910 return 0; /* Different collating sequences */ 1911 } 1912 } 1913 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 1914 return 0; /* Different WHERE clauses */ 1915 } 1916 1917 /* If no test above fails then the indices must be compatible */ 1918 return 1; 1919 } 1920 1921 /* 1922 ** Attempt the transfer optimization on INSERTs of the form 1923 ** 1924 ** INSERT INTO tab1 SELECT * FROM tab2; 1925 ** 1926 ** The xfer optimization transfers raw records from tab2 over to tab1. 1927 ** Columns are not decoded and reassembled, which greatly improves 1928 ** performance. Raw index records are transferred in the same way. 1929 ** 1930 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 1931 ** There are lots of rules for determining compatibility - see comments 1932 ** embedded in the code for details. 1933 ** 1934 ** This routine returns TRUE if the optimization is guaranteed to be used. 1935 ** Sometimes the xfer optimization will only work if the destination table 1936 ** is empty - a factor that can only be determined at run-time. In that 1937 ** case, this routine generates code for the xfer optimization but also 1938 ** does a test to see if the destination table is empty and jumps over the 1939 ** xfer optimization code if the test fails. In that case, this routine 1940 ** returns FALSE so that the caller will know to go ahead and generate 1941 ** an unoptimized transfer. This routine also returns FALSE if there 1942 ** is no chance that the xfer optimization can be applied. 1943 ** 1944 ** This optimization is particularly useful at making VACUUM run faster. 1945 */ 1946 static int xferOptimization( 1947 Parse *pParse, /* Parser context */ 1948 Table *pDest, /* The table we are inserting into */ 1949 Select *pSelect, /* A SELECT statement to use as the data source */ 1950 int onError, /* How to handle constraint errors */ 1951 int iDbDest /* The database of pDest */ 1952 ){ 1953 sqlite3 *db = pParse->db; 1954 ExprList *pEList; /* The result set of the SELECT */ 1955 Table *pSrc; /* The table in the FROM clause of SELECT */ 1956 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1957 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1958 int i; /* Loop counter */ 1959 int iDbSrc; /* The database of pSrc */ 1960 int iSrc, iDest; /* Cursors from source and destination */ 1961 int addr1, addr2; /* Loop addresses */ 1962 int emptyDestTest = 0; /* Address of test for empty pDest */ 1963 int emptySrcTest = 0; /* Address of test for empty pSrc */ 1964 Vdbe *v; /* The VDBE we are building */ 1965 int regAutoinc; /* Memory register used by AUTOINC */ 1966 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1967 int regData, regRowid; /* Registers holding data and rowid */ 1968 1969 if( pSelect==0 ){ 1970 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1971 } 1972 if( pParse->pWith || pSelect->pWith ){ 1973 /* Do not attempt to process this query if there are an WITH clauses 1974 ** attached to it. Proceeding may generate a false "no such table: xxx" 1975 ** error if pSelect reads from a CTE named "xxx". */ 1976 return 0; 1977 } 1978 if( sqlite3TriggerList(pParse, pDest) ){ 1979 return 0; /* tab1 must not have triggers */ 1980 } 1981 #ifndef SQLITE_OMIT_VIRTUALTABLE 1982 if( IsVirtual(pDest) ){ 1983 return 0; /* tab1 must not be a virtual table */ 1984 } 1985 #endif 1986 if( onError==OE_Default ){ 1987 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 1988 if( onError==OE_Default ) onError = OE_Abort; 1989 } 1990 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 1991 if( pSelect->pSrc->nSrc!=1 ){ 1992 return 0; /* FROM clause must have exactly one term */ 1993 } 1994 if( pSelect->pSrc->a[0].pSelect ){ 1995 return 0; /* FROM clause cannot contain a subquery */ 1996 } 1997 if( pSelect->pWhere ){ 1998 return 0; /* SELECT may not have a WHERE clause */ 1999 } 2000 if( pSelect->pOrderBy ){ 2001 return 0; /* SELECT may not have an ORDER BY clause */ 2002 } 2003 /* Do not need to test for a HAVING clause. If HAVING is present but 2004 ** there is no ORDER BY, we will get an error. */ 2005 if( pSelect->pGroupBy ){ 2006 return 0; /* SELECT may not have a GROUP BY clause */ 2007 } 2008 if( pSelect->pLimit ){ 2009 return 0; /* SELECT may not have a LIMIT clause */ 2010 } 2011 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 2012 if( pSelect->pPrior ){ 2013 return 0; /* SELECT may not be a compound query */ 2014 } 2015 if( pSelect->selFlags & SF_Distinct ){ 2016 return 0; /* SELECT may not be DISTINCT */ 2017 } 2018 pEList = pSelect->pEList; 2019 assert( pEList!=0 ); 2020 if( pEList->nExpr!=1 ){ 2021 return 0; /* The result set must have exactly one column */ 2022 } 2023 assert( pEList->a[0].pExpr ); 2024 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2025 return 0; /* The result set must be the special operator "*" */ 2026 } 2027 2028 /* At this point we have established that the statement is of the 2029 ** correct syntactic form to participate in this optimization. Now 2030 ** we have to check the semantics. 2031 */ 2032 pItem = pSelect->pSrc->a; 2033 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2034 if( pSrc==0 ){ 2035 return 0; /* FROM clause does not contain a real table */ 2036 } 2037 if( pSrc==pDest ){ 2038 return 0; /* tab1 and tab2 may not be the same table */ 2039 } 2040 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2041 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2042 } 2043 #ifndef SQLITE_OMIT_VIRTUALTABLE 2044 if( IsVirtual(pSrc) ){ 2045 return 0; /* tab2 must not be a virtual table */ 2046 } 2047 #endif 2048 if( pSrc->pSelect ){ 2049 return 0; /* tab2 may not be a view */ 2050 } 2051 if( pDest->nCol!=pSrc->nCol ){ 2052 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2053 } 2054 if( pDest->iPKey!=pSrc->iPKey ){ 2055 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2056 } 2057 for(i=0; i<pDest->nCol; i++){ 2058 Column *pDestCol = &pDest->aCol[i]; 2059 Column *pSrcCol = &pSrc->aCol[i]; 2060 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2061 if( (db->flags & SQLITE_Vacuum)==0 2062 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2063 ){ 2064 return 0; /* Neither table may have __hidden__ columns */ 2065 } 2066 #endif 2067 if( pDestCol->affinity!=pSrcCol->affinity ){ 2068 return 0; /* Affinity must be the same on all columns */ 2069 } 2070 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2071 return 0; /* Collating sequence must be the same on all columns */ 2072 } 2073 if( pDestCol->notNull && !pSrcCol->notNull ){ 2074 return 0; /* tab2 must be NOT NULL if tab1 is */ 2075 } 2076 /* Default values for second and subsequent columns need to match. */ 2077 if( i>0 ){ 2078 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2079 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2080 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2081 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2082 pSrcCol->pDflt->u.zToken)!=0) 2083 ){ 2084 return 0; /* Default values must be the same for all columns */ 2085 } 2086 } 2087 } 2088 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2089 if( IsUniqueIndex(pDestIdx) ){ 2090 destHasUniqueIdx = 1; 2091 } 2092 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2093 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2094 } 2095 if( pSrcIdx==0 ){ 2096 return 0; /* pDestIdx has no corresponding index in pSrc */ 2097 } 2098 } 2099 #ifndef SQLITE_OMIT_CHECK 2100 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2101 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2102 } 2103 #endif 2104 #ifndef SQLITE_OMIT_FOREIGN_KEY 2105 /* Disallow the transfer optimization if the destination table constains 2106 ** any foreign key constraints. This is more restrictive than necessary. 2107 ** But the main beneficiary of the transfer optimization is the VACUUM 2108 ** command, and the VACUUM command disables foreign key constraints. So 2109 ** the extra complication to make this rule less restrictive is probably 2110 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2111 */ 2112 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2113 return 0; 2114 } 2115 #endif 2116 if( (db->flags & SQLITE_CountRows)!=0 ){ 2117 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2118 } 2119 2120 /* If we get this far, it means that the xfer optimization is at 2121 ** least a possibility, though it might only work if the destination 2122 ** table (tab1) is initially empty. 2123 */ 2124 #ifdef SQLITE_TEST 2125 sqlite3_xferopt_count++; 2126 #endif 2127 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2128 v = sqlite3GetVdbe(pParse); 2129 sqlite3CodeVerifySchema(pParse, iDbSrc); 2130 iSrc = pParse->nTab++; 2131 iDest = pParse->nTab++; 2132 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2133 regData = sqlite3GetTempReg(pParse); 2134 regRowid = sqlite3GetTempReg(pParse); 2135 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2136 assert( HasRowid(pDest) || destHasUniqueIdx ); 2137 if( (db->flags & SQLITE_Vacuum)==0 && ( 2138 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2139 || destHasUniqueIdx /* (2) */ 2140 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2141 )){ 2142 /* In some circumstances, we are able to run the xfer optimization 2143 ** only if the destination table is initially empty. Unless the 2144 ** SQLITE_Vacuum flag is set, this block generates code to make 2145 ** that determination. If SQLITE_Vacuum is set, then the destination 2146 ** table is always empty. 2147 ** 2148 ** Conditions under which the destination must be empty: 2149 ** 2150 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2151 ** (If the destination is not initially empty, the rowid fields 2152 ** of index entries might need to change.) 2153 ** 2154 ** (2) The destination has a unique index. (The xfer optimization 2155 ** is unable to test uniqueness.) 2156 ** 2157 ** (3) onError is something other than OE_Abort and OE_Rollback. 2158 */ 2159 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2160 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2161 sqlite3VdbeJumpHere(v, addr1); 2162 } 2163 if( HasRowid(pSrc) ){ 2164 u8 insFlags; 2165 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2166 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2167 if( pDest->iPKey>=0 ){ 2168 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2169 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2170 VdbeCoverage(v); 2171 sqlite3RowidConstraint(pParse, onError, pDest); 2172 sqlite3VdbeJumpHere(v, addr2); 2173 autoIncStep(pParse, regAutoinc, regRowid); 2174 }else if( pDest->pIndex==0 ){ 2175 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2176 }else{ 2177 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2178 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2179 } 2180 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2181 if( db->flags & SQLITE_Vacuum ){ 2182 sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1); 2183 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| 2184 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 2185 }else{ 2186 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 2187 } 2188 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2189 (char*)pDest, P4_TABLE); 2190 sqlite3VdbeChangeP5(v, insFlags); 2191 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2192 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2193 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2194 }else{ 2195 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2196 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2197 } 2198 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2199 u8 idxInsFlags = 0; 2200 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2201 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2202 } 2203 assert( pSrcIdx ); 2204 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2205 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2206 VdbeComment((v, "%s", pSrcIdx->zName)); 2207 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2208 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2209 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2210 VdbeComment((v, "%s", pDestIdx->zName)); 2211 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2212 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2213 if( db->flags & SQLITE_Vacuum ){ 2214 /* This INSERT command is part of a VACUUM operation, which guarantees 2215 ** that the destination table is empty. If all indexed columns use 2216 ** collation sequence BINARY, then it can also be assumed that the 2217 ** index will be populated by inserting keys in strictly sorted 2218 ** order. In this case, instead of seeking within the b-tree as part 2219 ** of every OP_IdxInsert opcode, an OP_Last is added before the 2220 ** OP_IdxInsert to seek to the point within the b-tree where each key 2221 ** should be inserted. This is faster. 2222 ** 2223 ** If any of the indexed columns use a collation sequence other than 2224 ** BINARY, this optimization is disabled. This is because the user 2225 ** might change the definition of a collation sequence and then run 2226 ** a VACUUM command. In that case keys may not be written in strictly 2227 ** sorted order. */ 2228 for(i=0; i<pSrcIdx->nColumn; i++){ 2229 const char *zColl = pSrcIdx->azColl[i]; 2230 assert( sqlite3_stricmp(sqlite3StrBINARY, zColl)!=0 2231 || sqlite3StrBINARY==zColl ); 2232 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2233 } 2234 if( i==pSrcIdx->nColumn ){ 2235 idxInsFlags = OPFLAG_USESEEKRESULT; 2236 sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1); 2237 } 2238 } 2239 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){ 2240 idxInsFlags |= OPFLAG_NCHANGE; 2241 } 2242 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 2243 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 2244 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2245 sqlite3VdbeJumpHere(v, addr1); 2246 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2247 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2248 } 2249 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2250 sqlite3ReleaseTempReg(pParse, regRowid); 2251 sqlite3ReleaseTempReg(pParse, regData); 2252 if( emptyDestTest ){ 2253 sqlite3AutoincrementEnd(pParse); 2254 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2255 sqlite3VdbeJumpHere(v, emptyDestTest); 2256 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2257 return 0; 2258 }else{ 2259 return 1; 2260 } 2261 } 2262 #endif /* SQLITE_OMIT_XFER_OPT */ 2263