1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->aColExpr!=0 ); 100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 101 } 102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 104 pIdx->zColAff[n] = aff; 105 } 106 pIdx->zColAff[n] = 0; 107 } 108 109 return pIdx->zColAff; 110 } 111 112 /* 113 ** Make changes to the evolving bytecode to do affinity transformations 114 ** of values that are about to be gathered into a row for table pTab. 115 ** 116 ** For ordinary (legacy, non-strict) tables: 117 ** ----------------------------------------- 118 ** 119 ** Compute the affinity string for table pTab, if it has not already been 120 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 121 ** 122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 123 ** which were then optimized out) then this routine becomes a no-op. 124 ** 125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 126 ** affinities for register iReg and following. Or if iReg==0, 127 ** then just set the P4 operand of the previous opcode (which should be 128 ** an OP_MakeRecord) to the affinity string. 129 ** 130 ** A column affinity string has one character per column: 131 ** 132 ** Character Column affinity 133 ** --------- --------------- 134 ** 'A' BLOB 135 ** 'B' TEXT 136 ** 'C' NUMERIC 137 ** 'D' INTEGER 138 ** 'E' REAL 139 ** 140 ** For STRICT tables: 141 ** ------------------ 142 ** 143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the 144 ** datatypes against the column definitions in pTab. If iReg==0, that 145 ** means an OP_MakeRecord opcode has already been generated and should be 146 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 147 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 148 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 149 ** the first of a series of registers that will form the new record. 150 ** Apply the type checking to that array of registers. 151 */ 152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 153 int i, j; 154 char *zColAff; 155 if( pTab->tabFlags & TF_Strict ){ 156 if( iReg==0 ){ 157 /* Move the previous opcode (which should be OP_MakeRecord) forward 158 ** by one slot and insert a new OP_TypeCheck where the current 159 ** OP_MakeRecord is found */ 160 VdbeOp *pPrev; 161 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 162 pPrev = sqlite3VdbeGetOp(v, -1); 163 assert( pPrev!=0 ); 164 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 165 pPrev->opcode = OP_TypeCheck; 166 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 167 }else{ 168 /* Insert an isolated OP_Typecheck */ 169 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 170 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 171 } 172 return; 173 } 174 zColAff = pTab->zColAff; 175 if( zColAff==0 ){ 176 sqlite3 *db = sqlite3VdbeDb(v); 177 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 178 if( !zColAff ){ 179 sqlite3OomFault(db); 180 return; 181 } 182 183 for(i=j=0; i<pTab->nCol; i++){ 184 assert( pTab->aCol[i].affinity!=0 ); 185 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 186 zColAff[j++] = pTab->aCol[i].affinity; 187 } 188 } 189 do{ 190 zColAff[j--] = 0; 191 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 192 pTab->zColAff = zColAff; 193 } 194 assert( zColAff!=0 ); 195 i = sqlite3Strlen30NN(zColAff); 196 if( i ){ 197 if( iReg ){ 198 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 199 }else{ 200 assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord 201 || sqlite3VdbeDb(v)->mallocFailed ); 202 sqlite3VdbeChangeP4(v, -1, zColAff, i); 203 } 204 } 205 } 206 207 /* 208 ** Return non-zero if the table pTab in database iDb or any of its indices 209 ** have been opened at any point in the VDBE program. This is used to see if 210 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 211 ** run without using a temporary table for the results of the SELECT. 212 */ 213 static int readsTable(Parse *p, int iDb, Table *pTab){ 214 Vdbe *v = sqlite3GetVdbe(p); 215 int i; 216 int iEnd = sqlite3VdbeCurrentAddr(v); 217 #ifndef SQLITE_OMIT_VIRTUALTABLE 218 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 219 #endif 220 221 for(i=1; i<iEnd; i++){ 222 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 223 assert( pOp!=0 ); 224 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 225 Index *pIndex; 226 Pgno tnum = pOp->p2; 227 if( tnum==pTab->tnum ){ 228 return 1; 229 } 230 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 231 if( tnum==pIndex->tnum ){ 232 return 1; 233 } 234 } 235 } 236 #ifndef SQLITE_OMIT_VIRTUALTABLE 237 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 238 assert( pOp->p4.pVtab!=0 ); 239 assert( pOp->p4type==P4_VTAB ); 240 return 1; 241 } 242 #endif 243 } 244 return 0; 245 } 246 247 /* This walker callback will compute the union of colFlags flags for all 248 ** referenced columns in a CHECK constraint or generated column expression. 249 */ 250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 251 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 252 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 253 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 254 } 255 return WRC_Continue; 256 } 257 258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 259 /* 260 ** All regular columns for table pTab have been puts into registers 261 ** starting with iRegStore. The registers that correspond to STORED 262 ** or VIRTUAL columns have not yet been initialized. This routine goes 263 ** back and computes the values for those columns based on the previously 264 ** computed normal columns. 265 */ 266 void sqlite3ComputeGeneratedColumns( 267 Parse *pParse, /* Parsing context */ 268 int iRegStore, /* Register holding the first column */ 269 Table *pTab /* The table */ 270 ){ 271 int i; 272 Walker w; 273 Column *pRedo; 274 int eProgress; 275 VdbeOp *pOp; 276 277 assert( pTab->tabFlags & TF_HasGenerated ); 278 testcase( pTab->tabFlags & TF_HasVirtual ); 279 testcase( pTab->tabFlags & TF_HasStored ); 280 281 /* Before computing generated columns, first go through and make sure 282 ** that appropriate affinity has been applied to the regular columns 283 */ 284 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 285 if( (pTab->tabFlags & TF_HasStored)!=0 ){ 286 pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 287 if( pOp->opcode==OP_Affinity ){ 288 /* Change the OP_Affinity argument to '@' (NONE) for all stored 289 ** columns. '@' is the no-op affinity and those columns have not 290 ** yet been computed. */ 291 int ii, jj; 292 char *zP4 = pOp->p4.z; 293 assert( zP4!=0 ); 294 assert( pOp->p4type==P4_DYNAMIC ); 295 for(ii=jj=0; zP4[jj]; ii++){ 296 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 297 continue; 298 } 299 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 300 zP4[jj] = SQLITE_AFF_NONE; 301 } 302 jj++; 303 } 304 }else if( pOp->opcode==OP_TypeCheck ){ 305 /* If an OP_TypeCheck was generated because the table is STRICT, 306 ** then set the P3 operand to indicate that generated columns should 307 ** not be checked */ 308 pOp->p3 = 1; 309 } 310 } 311 312 /* Because there can be multiple generated columns that refer to one another, 313 ** this is a two-pass algorithm. On the first pass, mark all generated 314 ** columns as "not available". 315 */ 316 for(i=0; i<pTab->nCol; i++){ 317 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 318 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 319 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 320 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 321 } 322 } 323 324 w.u.pTab = pTab; 325 w.xExprCallback = exprColumnFlagUnion; 326 w.xSelectCallback = 0; 327 w.xSelectCallback2 = 0; 328 329 /* On the second pass, compute the value of each NOT-AVAILABLE column. 330 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 331 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 332 ** they are needed. 333 */ 334 pParse->iSelfTab = -iRegStore; 335 do{ 336 eProgress = 0; 337 pRedo = 0; 338 for(i=0; i<pTab->nCol; i++){ 339 Column *pCol = pTab->aCol + i; 340 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 341 int x; 342 pCol->colFlags |= COLFLAG_BUSY; 343 w.eCode = 0; 344 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 345 pCol->colFlags &= ~COLFLAG_BUSY; 346 if( w.eCode & COLFLAG_NOTAVAIL ){ 347 pRedo = pCol; 348 continue; 349 } 350 eProgress = 1; 351 assert( pCol->colFlags & COLFLAG_GENERATED ); 352 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 353 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 354 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 355 } 356 } 357 }while( pRedo && eProgress ); 358 if( pRedo ){ 359 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 360 } 361 pParse->iSelfTab = 0; 362 } 363 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 364 365 366 #ifndef SQLITE_OMIT_AUTOINCREMENT 367 /* 368 ** Locate or create an AutoincInfo structure associated with table pTab 369 ** which is in database iDb. Return the register number for the register 370 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 371 ** table. (Also return zero when doing a VACUUM since we do not want to 372 ** update the AUTOINCREMENT counters during a VACUUM.) 373 ** 374 ** There is at most one AutoincInfo structure per table even if the 375 ** same table is autoincremented multiple times due to inserts within 376 ** triggers. A new AutoincInfo structure is created if this is the 377 ** first use of table pTab. On 2nd and subsequent uses, the original 378 ** AutoincInfo structure is used. 379 ** 380 ** Four consecutive registers are allocated: 381 ** 382 ** (1) The name of the pTab table. 383 ** (2) The maximum ROWID of pTab. 384 ** (3) The rowid in sqlite_sequence of pTab 385 ** (4) The original value of the max ROWID in pTab, or NULL if none 386 ** 387 ** The 2nd register is the one that is returned. That is all the 388 ** insert routine needs to know about. 389 */ 390 static int autoIncBegin( 391 Parse *pParse, /* Parsing context */ 392 int iDb, /* Index of the database holding pTab */ 393 Table *pTab /* The table we are writing to */ 394 ){ 395 int memId = 0; /* Register holding maximum rowid */ 396 assert( pParse->db->aDb[iDb].pSchema!=0 ); 397 if( (pTab->tabFlags & TF_Autoincrement)!=0 398 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 399 ){ 400 Parse *pToplevel = sqlite3ParseToplevel(pParse); 401 AutoincInfo *pInfo; 402 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 403 404 /* Verify that the sqlite_sequence table exists and is an ordinary 405 ** rowid table with exactly two columns. 406 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 407 if( pSeqTab==0 408 || !HasRowid(pSeqTab) 409 || NEVER(IsVirtual(pSeqTab)) 410 || pSeqTab->nCol!=2 411 ){ 412 pParse->nErr++; 413 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 414 return 0; 415 } 416 417 pInfo = pToplevel->pAinc; 418 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 419 if( pInfo==0 ){ 420 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 421 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 422 testcase( pParse->earlyCleanup ); 423 if( pParse->db->mallocFailed ) return 0; 424 pInfo->pNext = pToplevel->pAinc; 425 pToplevel->pAinc = pInfo; 426 pInfo->pTab = pTab; 427 pInfo->iDb = iDb; 428 pToplevel->nMem++; /* Register to hold name of table */ 429 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 430 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 431 } 432 memId = pInfo->regCtr; 433 } 434 return memId; 435 } 436 437 /* 438 ** This routine generates code that will initialize all of the 439 ** register used by the autoincrement tracker. 440 */ 441 void sqlite3AutoincrementBegin(Parse *pParse){ 442 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 443 sqlite3 *db = pParse->db; /* The database connection */ 444 Db *pDb; /* Database only autoinc table */ 445 int memId; /* Register holding max rowid */ 446 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 447 448 /* This routine is never called during trigger-generation. It is 449 ** only called from the top-level */ 450 assert( pParse->pTriggerTab==0 ); 451 assert( sqlite3IsToplevel(pParse) ); 452 453 assert( v ); /* We failed long ago if this is not so */ 454 for(p = pParse->pAinc; p; p = p->pNext){ 455 static const int iLn = VDBE_OFFSET_LINENO(2); 456 static const VdbeOpList autoInc[] = { 457 /* 0 */ {OP_Null, 0, 0, 0}, 458 /* 1 */ {OP_Rewind, 0, 10, 0}, 459 /* 2 */ {OP_Column, 0, 0, 0}, 460 /* 3 */ {OP_Ne, 0, 9, 0}, 461 /* 4 */ {OP_Rowid, 0, 0, 0}, 462 /* 5 */ {OP_Column, 0, 1, 0}, 463 /* 6 */ {OP_AddImm, 0, 0, 0}, 464 /* 7 */ {OP_Copy, 0, 0, 0}, 465 /* 8 */ {OP_Goto, 0, 11, 0}, 466 /* 9 */ {OP_Next, 0, 2, 0}, 467 /* 10 */ {OP_Integer, 0, 0, 0}, 468 /* 11 */ {OP_Close, 0, 0, 0} 469 }; 470 VdbeOp *aOp; 471 pDb = &db->aDb[p->iDb]; 472 memId = p->regCtr; 473 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 474 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 475 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 476 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 477 if( aOp==0 ) break; 478 aOp[0].p2 = memId; 479 aOp[0].p3 = memId+2; 480 aOp[2].p3 = memId; 481 aOp[3].p1 = memId-1; 482 aOp[3].p3 = memId; 483 aOp[3].p5 = SQLITE_JUMPIFNULL; 484 aOp[4].p2 = memId+1; 485 aOp[5].p3 = memId; 486 aOp[6].p1 = memId; 487 aOp[7].p2 = memId+2; 488 aOp[7].p1 = memId; 489 aOp[10].p2 = memId; 490 if( pParse->nTab==0 ) pParse->nTab = 1; 491 } 492 } 493 494 /* 495 ** Update the maximum rowid for an autoincrement calculation. 496 ** 497 ** This routine should be called when the regRowid register holds a 498 ** new rowid that is about to be inserted. If that new rowid is 499 ** larger than the maximum rowid in the memId memory cell, then the 500 ** memory cell is updated. 501 */ 502 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 503 if( memId>0 ){ 504 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 505 } 506 } 507 508 /* 509 ** This routine generates the code needed to write autoincrement 510 ** maximum rowid values back into the sqlite_sequence register. 511 ** Every statement that might do an INSERT into an autoincrement 512 ** table (either directly or through triggers) needs to call this 513 ** routine just before the "exit" code. 514 */ 515 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 516 AutoincInfo *p; 517 Vdbe *v = pParse->pVdbe; 518 sqlite3 *db = pParse->db; 519 520 assert( v ); 521 for(p = pParse->pAinc; p; p = p->pNext){ 522 static const int iLn = VDBE_OFFSET_LINENO(2); 523 static const VdbeOpList autoIncEnd[] = { 524 /* 0 */ {OP_NotNull, 0, 2, 0}, 525 /* 1 */ {OP_NewRowid, 0, 0, 0}, 526 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 527 /* 3 */ {OP_Insert, 0, 0, 0}, 528 /* 4 */ {OP_Close, 0, 0, 0} 529 }; 530 VdbeOp *aOp; 531 Db *pDb = &db->aDb[p->iDb]; 532 int iRec; 533 int memId = p->regCtr; 534 535 iRec = sqlite3GetTempReg(pParse); 536 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 537 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 538 VdbeCoverage(v); 539 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 540 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 541 if( aOp==0 ) break; 542 aOp[0].p1 = memId+1; 543 aOp[1].p2 = memId+1; 544 aOp[2].p1 = memId-1; 545 aOp[2].p3 = iRec; 546 aOp[3].p2 = iRec; 547 aOp[3].p3 = memId+1; 548 aOp[3].p5 = OPFLAG_APPEND; 549 sqlite3ReleaseTempReg(pParse, iRec); 550 } 551 } 552 void sqlite3AutoincrementEnd(Parse *pParse){ 553 if( pParse->pAinc ) autoIncrementEnd(pParse); 554 } 555 #else 556 /* 557 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 558 ** above are all no-ops 559 */ 560 # define autoIncBegin(A,B,C) (0) 561 # define autoIncStep(A,B,C) 562 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 563 564 565 /* Forward declaration */ 566 static int xferOptimization( 567 Parse *pParse, /* Parser context */ 568 Table *pDest, /* The table we are inserting into */ 569 Select *pSelect, /* A SELECT statement to use as the data source */ 570 int onError, /* How to handle constraint errors */ 571 int iDbDest /* The database of pDest */ 572 ); 573 574 /* 575 ** This routine is called to handle SQL of the following forms: 576 ** 577 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 578 ** insert into TABLE (IDLIST) select 579 ** insert into TABLE (IDLIST) default values 580 ** 581 ** The IDLIST following the table name is always optional. If omitted, 582 ** then a list of all (non-hidden) columns for the table is substituted. 583 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 584 ** is omitted. 585 ** 586 ** For the pSelect parameter holds the values to be inserted for the 587 ** first two forms shown above. A VALUES clause is really just short-hand 588 ** for a SELECT statement that omits the FROM clause and everything else 589 ** that follows. If the pSelect parameter is NULL, that means that the 590 ** DEFAULT VALUES form of the INSERT statement is intended. 591 ** 592 ** The code generated follows one of four templates. For a simple 593 ** insert with data coming from a single-row VALUES clause, the code executes 594 ** once straight down through. Pseudo-code follows (we call this 595 ** the "1st template"): 596 ** 597 ** open write cursor to <table> and its indices 598 ** put VALUES clause expressions into registers 599 ** write the resulting record into <table> 600 ** cleanup 601 ** 602 ** The three remaining templates assume the statement is of the form 603 ** 604 ** INSERT INTO <table> SELECT ... 605 ** 606 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 607 ** in other words if the SELECT pulls all columns from a single table 608 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 609 ** if <table2> and <table1> are distinct tables but have identical 610 ** schemas, including all the same indices, then a special optimization 611 ** is invoked that copies raw records from <table2> over to <table1>. 612 ** See the xferOptimization() function for the implementation of this 613 ** template. This is the 2nd template. 614 ** 615 ** open a write cursor to <table> 616 ** open read cursor on <table2> 617 ** transfer all records in <table2> over to <table> 618 ** close cursors 619 ** foreach index on <table> 620 ** open a write cursor on the <table> index 621 ** open a read cursor on the corresponding <table2> index 622 ** transfer all records from the read to the write cursors 623 ** close cursors 624 ** end foreach 625 ** 626 ** The 3rd template is for when the second template does not apply 627 ** and the SELECT clause does not read from <table> at any time. 628 ** The generated code follows this template: 629 ** 630 ** X <- A 631 ** goto B 632 ** A: setup for the SELECT 633 ** loop over the rows in the SELECT 634 ** load values into registers R..R+n 635 ** yield X 636 ** end loop 637 ** cleanup after the SELECT 638 ** end-coroutine X 639 ** B: open write cursor to <table> and its indices 640 ** C: yield X, at EOF goto D 641 ** insert the select result into <table> from R..R+n 642 ** goto C 643 ** D: cleanup 644 ** 645 ** The 4th template is used if the insert statement takes its 646 ** values from a SELECT but the data is being inserted into a table 647 ** that is also read as part of the SELECT. In the third form, 648 ** we have to use an intermediate table to store the results of 649 ** the select. The template is like this: 650 ** 651 ** X <- A 652 ** goto B 653 ** A: setup for the SELECT 654 ** loop over the tables in the SELECT 655 ** load value into register R..R+n 656 ** yield X 657 ** end loop 658 ** cleanup after the SELECT 659 ** end co-routine R 660 ** B: open temp table 661 ** L: yield X, at EOF goto M 662 ** insert row from R..R+n into temp table 663 ** goto L 664 ** M: open write cursor to <table> and its indices 665 ** rewind temp table 666 ** C: loop over rows of intermediate table 667 ** transfer values form intermediate table into <table> 668 ** end loop 669 ** D: cleanup 670 */ 671 void sqlite3Insert( 672 Parse *pParse, /* Parser context */ 673 SrcList *pTabList, /* Name of table into which we are inserting */ 674 Select *pSelect, /* A SELECT statement to use as the data source */ 675 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 676 int onError, /* How to handle constraint errors */ 677 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 678 ){ 679 sqlite3 *db; /* The main database structure */ 680 Table *pTab; /* The table to insert into. aka TABLE */ 681 int i, j; /* Loop counters */ 682 Vdbe *v; /* Generate code into this virtual machine */ 683 Index *pIdx; /* For looping over indices of the table */ 684 int nColumn; /* Number of columns in the data */ 685 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 686 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 687 int iIdxCur = 0; /* First index cursor */ 688 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 689 int endOfLoop; /* Label for the end of the insertion loop */ 690 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 691 int addrInsTop = 0; /* Jump to label "D" */ 692 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 693 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 694 int iDb; /* Index of database holding TABLE */ 695 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 696 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 697 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 698 u8 bIdListInOrder; /* True if IDLIST is in table order */ 699 ExprList *pList = 0; /* List of VALUES() to be inserted */ 700 int iRegStore; /* Register in which to store next column */ 701 702 /* Register allocations */ 703 int regFromSelect = 0;/* Base register for data coming from SELECT */ 704 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 705 int regRowCount = 0; /* Memory cell used for the row counter */ 706 int regIns; /* Block of regs holding rowid+data being inserted */ 707 int regRowid; /* registers holding insert rowid */ 708 int regData; /* register holding first column to insert */ 709 int *aRegIdx = 0; /* One register allocated to each index */ 710 711 #ifndef SQLITE_OMIT_TRIGGER 712 int isView; /* True if attempting to insert into a view */ 713 Trigger *pTrigger; /* List of triggers on pTab, if required */ 714 int tmask; /* Mask of trigger times */ 715 #endif 716 717 db = pParse->db; 718 assert( db->pParse==pParse ); 719 if( pParse->nErr ){ 720 goto insert_cleanup; 721 } 722 assert( db->mallocFailed==0 ); 723 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 724 725 /* If the Select object is really just a simple VALUES() list with a 726 ** single row (the common case) then keep that one row of values 727 ** and discard the other (unused) parts of the pSelect object 728 */ 729 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 730 pList = pSelect->pEList; 731 pSelect->pEList = 0; 732 sqlite3SelectDelete(db, pSelect); 733 pSelect = 0; 734 } 735 736 /* Locate the table into which we will be inserting new information. 737 */ 738 assert( pTabList->nSrc==1 ); 739 pTab = sqlite3SrcListLookup(pParse, pTabList); 740 if( pTab==0 ){ 741 goto insert_cleanup; 742 } 743 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 744 assert( iDb<db->nDb ); 745 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 746 db->aDb[iDb].zDbSName) ){ 747 goto insert_cleanup; 748 } 749 withoutRowid = !HasRowid(pTab); 750 751 /* Figure out if we have any triggers and if the table being 752 ** inserted into is a view 753 */ 754 #ifndef SQLITE_OMIT_TRIGGER 755 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 756 isView = IsView(pTab); 757 #else 758 # define pTrigger 0 759 # define tmask 0 760 # define isView 0 761 #endif 762 #ifdef SQLITE_OMIT_VIEW 763 # undef isView 764 # define isView 0 765 #endif 766 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 767 768 /* If pTab is really a view, make sure it has been initialized. 769 ** ViewGetColumnNames() is a no-op if pTab is not a view. 770 */ 771 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 772 goto insert_cleanup; 773 } 774 775 /* Cannot insert into a read-only table. 776 */ 777 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 778 goto insert_cleanup; 779 } 780 781 /* Allocate a VDBE 782 */ 783 v = sqlite3GetVdbe(pParse); 784 if( v==0 ) goto insert_cleanup; 785 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 786 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 787 788 #ifndef SQLITE_OMIT_XFER_OPT 789 /* If the statement is of the form 790 ** 791 ** INSERT INTO <table1> SELECT * FROM <table2>; 792 ** 793 ** Then special optimizations can be applied that make the transfer 794 ** very fast and which reduce fragmentation of indices. 795 ** 796 ** This is the 2nd template. 797 */ 798 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 799 assert( !pTrigger ); 800 assert( pList==0 ); 801 goto insert_end; 802 } 803 #endif /* SQLITE_OMIT_XFER_OPT */ 804 805 /* If this is an AUTOINCREMENT table, look up the sequence number in the 806 ** sqlite_sequence table and store it in memory cell regAutoinc. 807 */ 808 regAutoinc = autoIncBegin(pParse, iDb, pTab); 809 810 /* Allocate a block registers to hold the rowid and the values 811 ** for all columns of the new row. 812 */ 813 regRowid = regIns = pParse->nMem+1; 814 pParse->nMem += pTab->nCol + 1; 815 if( IsVirtual(pTab) ){ 816 regRowid++; 817 pParse->nMem++; 818 } 819 regData = regRowid+1; 820 821 /* If the INSERT statement included an IDLIST term, then make sure 822 ** all elements of the IDLIST really are columns of the table and 823 ** remember the column indices. 824 ** 825 ** If the table has an INTEGER PRIMARY KEY column and that column 826 ** is named in the IDLIST, then record in the ipkColumn variable 827 ** the index into IDLIST of the primary key column. ipkColumn is 828 ** the index of the primary key as it appears in IDLIST, not as 829 ** is appears in the original table. (The index of the INTEGER 830 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 831 ** loop, if ipkColumn==(-1), that means that integer primary key 832 ** is unspecified, and hence the table is either WITHOUT ROWID or 833 ** it will automatically generated an integer primary key. 834 ** 835 ** bIdListInOrder is true if the columns in IDLIST are in storage 836 ** order. This enables an optimization that avoids shuffling the 837 ** columns into storage order. False negatives are harmless, 838 ** but false positives will cause database corruption. 839 */ 840 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 841 if( pColumn ){ 842 for(i=0; i<pColumn->nId; i++){ 843 pColumn->a[i].idx = -1; 844 } 845 for(i=0; i<pColumn->nId; i++){ 846 for(j=0; j<pTab->nCol; j++){ 847 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 848 pColumn->a[i].idx = j; 849 if( i!=j ) bIdListInOrder = 0; 850 if( j==pTab->iPKey ){ 851 ipkColumn = i; assert( !withoutRowid ); 852 } 853 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 854 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 855 sqlite3ErrorMsg(pParse, 856 "cannot INSERT into generated column \"%s\"", 857 pTab->aCol[j].zCnName); 858 goto insert_cleanup; 859 } 860 #endif 861 break; 862 } 863 } 864 if( j>=pTab->nCol ){ 865 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 866 ipkColumn = i; 867 bIdListInOrder = 0; 868 }else{ 869 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 870 pTabList->a, pColumn->a[i].zName); 871 pParse->checkSchema = 1; 872 goto insert_cleanup; 873 } 874 } 875 } 876 } 877 878 /* Figure out how many columns of data are supplied. If the data 879 ** is coming from a SELECT statement, then generate a co-routine that 880 ** produces a single row of the SELECT on each invocation. The 881 ** co-routine is the common header to the 3rd and 4th templates. 882 */ 883 if( pSelect ){ 884 /* Data is coming from a SELECT or from a multi-row VALUES clause. 885 ** Generate a co-routine to run the SELECT. */ 886 int regYield; /* Register holding co-routine entry-point */ 887 int addrTop; /* Top of the co-routine */ 888 int rc; /* Result code */ 889 890 regYield = ++pParse->nMem; 891 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 892 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 893 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 894 dest.iSdst = bIdListInOrder ? regData : 0; 895 dest.nSdst = pTab->nCol; 896 rc = sqlite3Select(pParse, pSelect, &dest); 897 regFromSelect = dest.iSdst; 898 assert( db->pParse==pParse ); 899 if( rc || pParse->nErr ) goto insert_cleanup; 900 assert( db->mallocFailed==0 ); 901 sqlite3VdbeEndCoroutine(v, regYield); 902 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 903 assert( pSelect->pEList ); 904 nColumn = pSelect->pEList->nExpr; 905 906 /* Set useTempTable to TRUE if the result of the SELECT statement 907 ** should be written into a temporary table (template 4). Set to 908 ** FALSE if each output row of the SELECT can be written directly into 909 ** the destination table (template 3). 910 ** 911 ** A temp table must be used if the table being updated is also one 912 ** of the tables being read by the SELECT statement. Also use a 913 ** temp table in the case of row triggers. 914 */ 915 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 916 useTempTable = 1; 917 } 918 919 if( useTempTable ){ 920 /* Invoke the coroutine to extract information from the SELECT 921 ** and add it to a transient table srcTab. The code generated 922 ** here is from the 4th template: 923 ** 924 ** B: open temp table 925 ** L: yield X, goto M at EOF 926 ** insert row from R..R+n into temp table 927 ** goto L 928 ** M: ... 929 */ 930 int regRec; /* Register to hold packed record */ 931 int regTempRowid; /* Register to hold temp table ROWID */ 932 int addrL; /* Label "L" */ 933 934 srcTab = pParse->nTab++; 935 regRec = sqlite3GetTempReg(pParse); 936 regTempRowid = sqlite3GetTempReg(pParse); 937 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 938 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 939 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 940 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 941 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 942 sqlite3VdbeGoto(v, addrL); 943 sqlite3VdbeJumpHere(v, addrL); 944 sqlite3ReleaseTempReg(pParse, regRec); 945 sqlite3ReleaseTempReg(pParse, regTempRowid); 946 } 947 }else{ 948 /* This is the case if the data for the INSERT is coming from a 949 ** single-row VALUES clause 950 */ 951 NameContext sNC; 952 memset(&sNC, 0, sizeof(sNC)); 953 sNC.pParse = pParse; 954 srcTab = -1; 955 assert( useTempTable==0 ); 956 if( pList ){ 957 nColumn = pList->nExpr; 958 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 959 goto insert_cleanup; 960 } 961 }else{ 962 nColumn = 0; 963 } 964 } 965 966 /* If there is no IDLIST term but the table has an integer primary 967 ** key, the set the ipkColumn variable to the integer primary key 968 ** column index in the original table definition. 969 */ 970 if( pColumn==0 && nColumn>0 ){ 971 ipkColumn = pTab->iPKey; 972 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 973 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 974 testcase( pTab->tabFlags & TF_HasVirtual ); 975 testcase( pTab->tabFlags & TF_HasStored ); 976 for(i=ipkColumn-1; i>=0; i--){ 977 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 978 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 979 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 980 ipkColumn--; 981 } 982 } 983 } 984 #endif 985 986 /* Make sure the number of columns in the source data matches the number 987 ** of columns to be inserted into the table. 988 */ 989 assert( TF_HasHidden==COLFLAG_HIDDEN ); 990 assert( TF_HasGenerated==COLFLAG_GENERATED ); 991 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 992 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 993 for(i=0; i<pTab->nCol; i++){ 994 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 995 } 996 } 997 if( nColumn!=(pTab->nCol-nHidden) ){ 998 sqlite3ErrorMsg(pParse, 999 "table %S has %d columns but %d values were supplied", 1000 pTabList->a, pTab->nCol-nHidden, nColumn); 1001 goto insert_cleanup; 1002 } 1003 } 1004 if( pColumn!=0 && nColumn!=pColumn->nId ){ 1005 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 1006 goto insert_cleanup; 1007 } 1008 1009 /* Initialize the count of rows to be inserted 1010 */ 1011 if( (db->flags & SQLITE_CountRows)!=0 1012 && !pParse->nested 1013 && !pParse->pTriggerTab 1014 && !pParse->bReturning 1015 ){ 1016 regRowCount = ++pParse->nMem; 1017 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 1018 } 1019 1020 /* If this is not a view, open the table and and all indices */ 1021 if( !isView ){ 1022 int nIdx; 1023 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 1024 &iDataCur, &iIdxCur); 1025 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 1026 if( aRegIdx==0 ){ 1027 goto insert_cleanup; 1028 } 1029 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 1030 assert( pIdx ); 1031 aRegIdx[i] = ++pParse->nMem; 1032 pParse->nMem += pIdx->nColumn; 1033 } 1034 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 1035 } 1036 #ifndef SQLITE_OMIT_UPSERT 1037 if( pUpsert ){ 1038 Upsert *pNx; 1039 if( IsVirtual(pTab) ){ 1040 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 1041 pTab->zName); 1042 goto insert_cleanup; 1043 } 1044 if( IsView(pTab) ){ 1045 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 1046 goto insert_cleanup; 1047 } 1048 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 1049 goto insert_cleanup; 1050 } 1051 pTabList->a[0].iCursor = iDataCur; 1052 pNx = pUpsert; 1053 do{ 1054 pNx->pUpsertSrc = pTabList; 1055 pNx->regData = regData; 1056 pNx->iDataCur = iDataCur; 1057 pNx->iIdxCur = iIdxCur; 1058 if( pNx->pUpsertTarget ){ 1059 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ 1060 goto insert_cleanup; 1061 } 1062 } 1063 pNx = pNx->pNextUpsert; 1064 }while( pNx!=0 ); 1065 } 1066 #endif 1067 1068 1069 /* This is the top of the main insertion loop */ 1070 if( useTempTable ){ 1071 /* This block codes the top of loop only. The complete loop is the 1072 ** following pseudocode (template 4): 1073 ** 1074 ** rewind temp table, if empty goto D 1075 ** C: loop over rows of intermediate table 1076 ** transfer values form intermediate table into <table> 1077 ** end loop 1078 ** D: ... 1079 */ 1080 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1081 addrCont = sqlite3VdbeCurrentAddr(v); 1082 }else if( pSelect ){ 1083 /* This block codes the top of loop only. The complete loop is the 1084 ** following pseudocode (template 3): 1085 ** 1086 ** C: yield X, at EOF goto D 1087 ** insert the select result into <table> from R..R+n 1088 ** goto C 1089 ** D: ... 1090 */ 1091 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1092 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1093 VdbeCoverage(v); 1094 if( ipkColumn>=0 ){ 1095 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1096 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1097 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1098 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1099 } 1100 } 1101 1102 /* Compute data for ordinary columns of the new entry. Values 1103 ** are written in storage order into registers starting with regData. 1104 ** Only ordinary columns are computed in this loop. The rowid 1105 ** (if there is one) is computed later and generated columns are 1106 ** computed after the rowid since they might depend on the value 1107 ** of the rowid. 1108 */ 1109 nHidden = 0; 1110 iRegStore = regData; assert( regData==regRowid+1 ); 1111 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1112 int k; 1113 u32 colFlags; 1114 assert( i>=nHidden ); 1115 if( i==pTab->iPKey ){ 1116 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1117 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1118 ** using excess space. The file format definition requires this extra 1119 ** NULL - we cannot optimize further by skipping the column completely */ 1120 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1121 continue; 1122 } 1123 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1124 nHidden++; 1125 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1126 /* Virtual columns do not participate in OP_MakeRecord. So back up 1127 ** iRegStore by one slot to compensate for the iRegStore++ in the 1128 ** outer for() loop */ 1129 iRegStore--; 1130 continue; 1131 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1132 /* Stored columns are computed later. But if there are BEFORE 1133 ** triggers, the slots used for stored columns will be OP_Copy-ed 1134 ** to a second block of registers, so the register needs to be 1135 ** initialized to NULL to avoid an uninitialized register read */ 1136 if( tmask & TRIGGER_BEFORE ){ 1137 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1138 } 1139 continue; 1140 }else if( pColumn==0 ){ 1141 /* Hidden columns that are not explicitly named in the INSERT 1142 ** get there default value */ 1143 sqlite3ExprCodeFactorable(pParse, 1144 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1145 iRegStore); 1146 continue; 1147 } 1148 } 1149 if( pColumn ){ 1150 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){} 1151 if( j>=pColumn->nId ){ 1152 /* A column not named in the insert column list gets its 1153 ** default value */ 1154 sqlite3ExprCodeFactorable(pParse, 1155 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1156 iRegStore); 1157 continue; 1158 } 1159 k = j; 1160 }else if( nColumn==0 ){ 1161 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1162 sqlite3ExprCodeFactorable(pParse, 1163 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1164 iRegStore); 1165 continue; 1166 }else{ 1167 k = i - nHidden; 1168 } 1169 1170 if( useTempTable ){ 1171 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1172 }else if( pSelect ){ 1173 if( regFromSelect!=regData ){ 1174 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1175 } 1176 }else{ 1177 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1178 } 1179 } 1180 1181 1182 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1183 */ 1184 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1185 if( tmask & TRIGGER_BEFORE ){ 1186 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1187 1188 /* build the NEW.* reference row. Note that if there is an INTEGER 1189 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1190 ** translated into a unique ID for the row. But on a BEFORE trigger, 1191 ** we do not know what the unique ID will be (because the insert has 1192 ** not happened yet) so we substitute a rowid of -1 1193 */ 1194 if( ipkColumn<0 ){ 1195 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1196 }else{ 1197 int addr1; 1198 assert( !withoutRowid ); 1199 if( useTempTable ){ 1200 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1201 }else{ 1202 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1203 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1204 } 1205 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1206 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1207 sqlite3VdbeJumpHere(v, addr1); 1208 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1209 } 1210 1211 /* Copy the new data already generated. */ 1212 assert( pTab->nNVCol>0 ); 1213 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1214 1215 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1216 /* Compute the new value for generated columns after all other 1217 ** columns have already been computed. This must be done after 1218 ** computing the ROWID in case one of the generated columns 1219 ** refers to the ROWID. */ 1220 if( pTab->tabFlags & TF_HasGenerated ){ 1221 testcase( pTab->tabFlags & TF_HasVirtual ); 1222 testcase( pTab->tabFlags & TF_HasStored ); 1223 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1224 } 1225 #endif 1226 1227 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1228 ** do not attempt any conversions before assembling the record. 1229 ** If this is a real table, attempt conversions as required by the 1230 ** table column affinities. 1231 */ 1232 if( !isView ){ 1233 sqlite3TableAffinity(v, pTab, regCols+1); 1234 } 1235 1236 /* Fire BEFORE or INSTEAD OF triggers */ 1237 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1238 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1239 1240 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1241 } 1242 1243 if( !isView ){ 1244 if( IsVirtual(pTab) ){ 1245 /* The row that the VUpdate opcode will delete: none */ 1246 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1247 } 1248 if( ipkColumn>=0 ){ 1249 /* Compute the new rowid */ 1250 if( useTempTable ){ 1251 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1252 }else if( pSelect ){ 1253 /* Rowid already initialized at tag-20191021-001 */ 1254 }else{ 1255 Expr *pIpk = pList->a[ipkColumn].pExpr; 1256 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1257 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1258 appendFlag = 1; 1259 }else{ 1260 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1261 } 1262 } 1263 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1264 ** to generate a unique primary key value. 1265 */ 1266 if( !appendFlag ){ 1267 int addr1; 1268 if( !IsVirtual(pTab) ){ 1269 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1270 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1271 sqlite3VdbeJumpHere(v, addr1); 1272 }else{ 1273 addr1 = sqlite3VdbeCurrentAddr(v); 1274 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1275 } 1276 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1277 } 1278 }else if( IsVirtual(pTab) || withoutRowid ){ 1279 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1280 }else{ 1281 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1282 appendFlag = 1; 1283 } 1284 autoIncStep(pParse, regAutoinc, regRowid); 1285 1286 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1287 /* Compute the new value for generated columns after all other 1288 ** columns have already been computed. This must be done after 1289 ** computing the ROWID in case one of the generated columns 1290 ** is derived from the INTEGER PRIMARY KEY. */ 1291 if( pTab->tabFlags & TF_HasGenerated ){ 1292 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1293 } 1294 #endif 1295 1296 /* Generate code to check constraints and generate index keys and 1297 ** do the insertion. 1298 */ 1299 #ifndef SQLITE_OMIT_VIRTUALTABLE 1300 if( IsVirtual(pTab) ){ 1301 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1302 sqlite3VtabMakeWritable(pParse, pTab); 1303 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1304 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1305 sqlite3MayAbort(pParse); 1306 }else 1307 #endif 1308 { 1309 int isReplace = 0;/* Set to true if constraints may cause a replace */ 1310 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1311 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1312 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1313 ); 1314 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1315 1316 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1317 ** constraints or (b) there are no triggers and this table is not a 1318 ** parent table in a foreign key constraint. It is safe to set the 1319 ** flag in the second case as if any REPLACE constraint is hit, an 1320 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1321 ** cursor that is disturbed. And these instructions both clear the 1322 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1323 ** functionality. */ 1324 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1325 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1326 regIns, aRegIdx, 0, appendFlag, bUseSeek 1327 ); 1328 } 1329 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1330 }else if( pParse->bReturning ){ 1331 /* If there is a RETURNING clause, populate the rowid register with 1332 ** constant value -1, in case one or more of the returned expressions 1333 ** refer to the "rowid" of the view. */ 1334 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 1335 #endif 1336 } 1337 1338 /* Update the count of rows that are inserted 1339 */ 1340 if( regRowCount ){ 1341 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1342 } 1343 1344 if( pTrigger ){ 1345 /* Code AFTER triggers */ 1346 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1347 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1348 } 1349 1350 /* The bottom of the main insertion loop, if the data source 1351 ** is a SELECT statement. 1352 */ 1353 sqlite3VdbeResolveLabel(v, endOfLoop); 1354 if( useTempTable ){ 1355 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1356 sqlite3VdbeJumpHere(v, addrInsTop); 1357 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1358 }else if( pSelect ){ 1359 sqlite3VdbeGoto(v, addrCont); 1360 #ifdef SQLITE_DEBUG 1361 /* If we are jumping back to an OP_Yield that is preceded by an 1362 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1363 ** OP_ReleaseReg will be included in the loop. */ 1364 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1365 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1366 sqlite3VdbeChangeP5(v, 1); 1367 } 1368 #endif 1369 sqlite3VdbeJumpHere(v, addrInsTop); 1370 } 1371 1372 #ifndef SQLITE_OMIT_XFER_OPT 1373 insert_end: 1374 #endif /* SQLITE_OMIT_XFER_OPT */ 1375 /* Update the sqlite_sequence table by storing the content of the 1376 ** maximum rowid counter values recorded while inserting into 1377 ** autoincrement tables. 1378 */ 1379 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1380 sqlite3AutoincrementEnd(pParse); 1381 } 1382 1383 /* 1384 ** Return the number of rows inserted. If this routine is 1385 ** generating code because of a call to sqlite3NestedParse(), do not 1386 ** invoke the callback function. 1387 */ 1388 if( regRowCount ){ 1389 sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); 1390 } 1391 1392 insert_cleanup: 1393 sqlite3SrcListDelete(db, pTabList); 1394 sqlite3ExprListDelete(db, pList); 1395 sqlite3UpsertDelete(db, pUpsert); 1396 sqlite3SelectDelete(db, pSelect); 1397 sqlite3IdListDelete(db, pColumn); 1398 sqlite3DbFree(db, aRegIdx); 1399 } 1400 1401 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1402 ** they may interfere with compilation of other functions in this file 1403 ** (or in another file, if this file becomes part of the amalgamation). */ 1404 #ifdef isView 1405 #undef isView 1406 #endif 1407 #ifdef pTrigger 1408 #undef pTrigger 1409 #endif 1410 #ifdef tmask 1411 #undef tmask 1412 #endif 1413 1414 /* 1415 ** Meanings of bits in of pWalker->eCode for 1416 ** sqlite3ExprReferencesUpdatedColumn() 1417 */ 1418 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1419 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1420 1421 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1422 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1423 ** expression node references any of the 1424 ** columns that are being modifed by an UPDATE statement. 1425 */ 1426 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1427 if( pExpr->op==TK_COLUMN ){ 1428 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1429 if( pExpr->iColumn>=0 ){ 1430 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1431 pWalker->eCode |= CKCNSTRNT_COLUMN; 1432 } 1433 }else{ 1434 pWalker->eCode |= CKCNSTRNT_ROWID; 1435 } 1436 } 1437 return WRC_Continue; 1438 } 1439 1440 /* 1441 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1442 ** only columns that are modified by the UPDATE are those for which 1443 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1444 ** 1445 ** Return true if CHECK constraint pExpr uses any of the 1446 ** changing columns (or the rowid if it is changing). In other words, 1447 ** return true if this CHECK constraint must be validated for 1448 ** the new row in the UPDATE statement. 1449 ** 1450 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1451 ** The operation of this routine is the same - return true if an only if 1452 ** the expression uses one or more of columns identified by the second and 1453 ** third arguments. 1454 */ 1455 int sqlite3ExprReferencesUpdatedColumn( 1456 Expr *pExpr, /* The expression to be checked */ 1457 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1458 int chngRowid /* True if UPDATE changes the rowid */ 1459 ){ 1460 Walker w; 1461 memset(&w, 0, sizeof(w)); 1462 w.eCode = 0; 1463 w.xExprCallback = checkConstraintExprNode; 1464 w.u.aiCol = aiChng; 1465 sqlite3WalkExpr(&w, pExpr); 1466 if( !chngRowid ){ 1467 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1468 w.eCode &= ~CKCNSTRNT_ROWID; 1469 } 1470 testcase( w.eCode==0 ); 1471 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1472 testcase( w.eCode==CKCNSTRNT_ROWID ); 1473 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1474 return w.eCode!=0; 1475 } 1476 1477 /* 1478 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1479 ** the indexes of a table in the order provided in the Table->pIndex list. 1480 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1481 ** the indexes in a different order. The following data structures accomplish 1482 ** this. 1483 ** 1484 ** The IndexIterator object is used to walk through all of the indexes 1485 ** of a table in either Index.pNext order, or in some other order established 1486 ** by an array of IndexListTerm objects. 1487 */ 1488 typedef struct IndexListTerm IndexListTerm; 1489 typedef struct IndexIterator IndexIterator; 1490 struct IndexIterator { 1491 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1492 int i; /* Index of the current item from the list */ 1493 union { 1494 struct { /* Use this object for eType==0: A Index.pNext list */ 1495 Index *pIdx; /* The current Index */ 1496 } lx; 1497 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1498 int nIdx; /* Size of the array */ 1499 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1500 } ax; 1501 } u; 1502 }; 1503 1504 /* When IndexIterator.eType==1, then each index is an array of instances 1505 ** of the following object 1506 */ 1507 struct IndexListTerm { 1508 Index *p; /* The index */ 1509 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1510 }; 1511 1512 /* Return the first index on the list */ 1513 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1514 assert( pIter->i==0 ); 1515 if( pIter->eType ){ 1516 *pIx = pIter->u.ax.aIdx[0].ix; 1517 return pIter->u.ax.aIdx[0].p; 1518 }else{ 1519 *pIx = 0; 1520 return pIter->u.lx.pIdx; 1521 } 1522 } 1523 1524 /* Return the next index from the list. Return NULL when out of indexes */ 1525 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1526 if( pIter->eType ){ 1527 int i = ++pIter->i; 1528 if( i>=pIter->u.ax.nIdx ){ 1529 *pIx = i; 1530 return 0; 1531 } 1532 *pIx = pIter->u.ax.aIdx[i].ix; 1533 return pIter->u.ax.aIdx[i].p; 1534 }else{ 1535 ++(*pIx); 1536 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1537 return pIter->u.lx.pIdx; 1538 } 1539 } 1540 1541 /* 1542 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1543 ** on table pTab. 1544 ** 1545 ** The regNewData parameter is the first register in a range that contains 1546 ** the data to be inserted or the data after the update. There will be 1547 ** pTab->nCol+1 registers in this range. The first register (the one 1548 ** that regNewData points to) will contain the new rowid, or NULL in the 1549 ** case of a WITHOUT ROWID table. The second register in the range will 1550 ** contain the content of the first table column. The third register will 1551 ** contain the content of the second table column. And so forth. 1552 ** 1553 ** The regOldData parameter is similar to regNewData except that it contains 1554 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1555 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1556 ** checking regOldData for zero. 1557 ** 1558 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1559 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1560 ** might be modified by the UPDATE. If pkChng is false, then the key of 1561 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1562 ** 1563 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1564 ** was explicitly specified as part of the INSERT statement. If pkChng 1565 ** is zero, it means that the either rowid is computed automatically or 1566 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1567 ** pkChng will only be true if the INSERT statement provides an integer 1568 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1569 ** 1570 ** The code generated by this routine will store new index entries into 1571 ** registers identified by aRegIdx[]. No index entry is created for 1572 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1573 ** the same as the order of indices on the linked list of indices 1574 ** at pTab->pIndex. 1575 ** 1576 ** (2019-05-07) The generated code also creates a new record for the 1577 ** main table, if pTab is a rowid table, and stores that record in the 1578 ** register identified by aRegIdx[nIdx] - in other words in the first 1579 ** entry of aRegIdx[] past the last index. It is important that the 1580 ** record be generated during constraint checks to avoid affinity changes 1581 ** to the register content that occur after constraint checks but before 1582 ** the new record is inserted. 1583 ** 1584 ** The caller must have already opened writeable cursors on the main 1585 ** table and all applicable indices (that is to say, all indices for which 1586 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1587 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1588 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1589 ** for the first index in the pTab->pIndex list. Cursors for other indices 1590 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1591 ** 1592 ** This routine also generates code to check constraints. NOT NULL, 1593 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1594 ** then the appropriate action is performed. There are five possible 1595 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1596 ** 1597 ** Constraint type Action What Happens 1598 ** --------------- ---------- ---------------------------------------- 1599 ** any ROLLBACK The current transaction is rolled back and 1600 ** sqlite3_step() returns immediately with a 1601 ** return code of SQLITE_CONSTRAINT. 1602 ** 1603 ** any ABORT Back out changes from the current command 1604 ** only (do not do a complete rollback) then 1605 ** cause sqlite3_step() to return immediately 1606 ** with SQLITE_CONSTRAINT. 1607 ** 1608 ** any FAIL Sqlite3_step() returns immediately with a 1609 ** return code of SQLITE_CONSTRAINT. The 1610 ** transaction is not rolled back and any 1611 ** changes to prior rows are retained. 1612 ** 1613 ** any IGNORE The attempt in insert or update the current 1614 ** row is skipped, without throwing an error. 1615 ** Processing continues with the next row. 1616 ** (There is an immediate jump to ignoreDest.) 1617 ** 1618 ** NOT NULL REPLACE The NULL value is replace by the default 1619 ** value for that column. If the default value 1620 ** is NULL, the action is the same as ABORT. 1621 ** 1622 ** UNIQUE REPLACE The other row that conflicts with the row 1623 ** being inserted is removed. 1624 ** 1625 ** CHECK REPLACE Illegal. The results in an exception. 1626 ** 1627 ** Which action to take is determined by the overrideError parameter. 1628 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1629 ** is used. Or if pParse->onError==OE_Default then the onError value 1630 ** for the constraint is used. 1631 */ 1632 void sqlite3GenerateConstraintChecks( 1633 Parse *pParse, /* The parser context */ 1634 Table *pTab, /* The table being inserted or updated */ 1635 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1636 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1637 int iIdxCur, /* First index cursor */ 1638 int regNewData, /* First register in a range holding values to insert */ 1639 int regOldData, /* Previous content. 0 for INSERTs */ 1640 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1641 u8 overrideError, /* Override onError to this if not OE_Default */ 1642 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1643 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1644 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1645 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1646 ){ 1647 Vdbe *v; /* VDBE under constrution */ 1648 Index *pIdx; /* Pointer to one of the indices */ 1649 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1650 sqlite3 *db; /* Database connection */ 1651 int i; /* loop counter */ 1652 int ix; /* Index loop counter */ 1653 int nCol; /* Number of columns */ 1654 int onError; /* Conflict resolution strategy */ 1655 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1656 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1657 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1658 u8 isUpdate; /* True if this is an UPDATE operation */ 1659 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1660 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1661 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1662 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1663 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1664 /* Variables associated with retesting uniqueness constraints after 1665 ** replace triggers fire have run */ 1666 int regTrigCnt; /* Register used to count replace trigger invocations */ 1667 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1668 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1669 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1670 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1671 IndexIterator sIdxIter; /* Index iterator */ 1672 1673 isUpdate = regOldData!=0; 1674 db = pParse->db; 1675 v = pParse->pVdbe; 1676 assert( v!=0 ); 1677 assert( !IsView(pTab) ); /* This table is not a VIEW */ 1678 nCol = pTab->nCol; 1679 1680 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1681 ** normal rowid tables. nPkField is the number of key fields in the 1682 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1683 ** number of fields in the true primary key of the table. */ 1684 if( HasRowid(pTab) ){ 1685 pPk = 0; 1686 nPkField = 1; 1687 }else{ 1688 pPk = sqlite3PrimaryKeyIndex(pTab); 1689 nPkField = pPk->nKeyCol; 1690 } 1691 1692 /* Record that this module has started */ 1693 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1694 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1695 1696 /* Test all NOT NULL constraints. 1697 */ 1698 if( pTab->tabFlags & TF_HasNotNull ){ 1699 int b2ndPass = 0; /* True if currently running 2nd pass */ 1700 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1701 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1702 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1703 for(i=0; i<nCol; i++){ 1704 int iReg; /* Register holding column value */ 1705 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1706 int isGenerated; /* non-zero if column is generated */ 1707 onError = pCol->notNull; 1708 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1709 if( i==pTab->iPKey ){ 1710 continue; /* ROWID is never NULL */ 1711 } 1712 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1713 if( isGenerated && !b2ndPass ){ 1714 nGenerated++; 1715 continue; /* Generated columns processed on 2nd pass */ 1716 } 1717 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1718 /* Do not check NOT NULL on columns that do not change */ 1719 continue; 1720 } 1721 if( overrideError!=OE_Default ){ 1722 onError = overrideError; 1723 }else if( onError==OE_Default ){ 1724 onError = OE_Abort; 1725 } 1726 if( onError==OE_Replace ){ 1727 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1728 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1729 ){ 1730 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1731 testcase( pCol->colFlags & COLFLAG_STORED ); 1732 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1733 onError = OE_Abort; 1734 }else{ 1735 assert( !isGenerated ); 1736 } 1737 }else if( b2ndPass && !isGenerated ){ 1738 continue; 1739 } 1740 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1741 || onError==OE_Ignore || onError==OE_Replace ); 1742 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1743 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1744 switch( onError ){ 1745 case OE_Replace: { 1746 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1747 VdbeCoverage(v); 1748 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1749 nSeenReplace++; 1750 sqlite3ExprCodeCopy(pParse, 1751 sqlite3ColumnExpr(pTab, pCol), iReg); 1752 sqlite3VdbeJumpHere(v, addr1); 1753 break; 1754 } 1755 case OE_Abort: 1756 sqlite3MayAbort(pParse); 1757 /* no break */ deliberate_fall_through 1758 case OE_Rollback: 1759 case OE_Fail: { 1760 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1761 pCol->zCnName); 1762 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1763 onError, iReg); 1764 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1765 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1766 VdbeCoverage(v); 1767 break; 1768 } 1769 default: { 1770 assert( onError==OE_Ignore ); 1771 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1772 VdbeCoverage(v); 1773 break; 1774 } 1775 } /* end switch(onError) */ 1776 } /* end loop i over columns */ 1777 if( nGenerated==0 && nSeenReplace==0 ){ 1778 /* If there are no generated columns with NOT NULL constraints 1779 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1780 ** pass is sufficient */ 1781 break; 1782 } 1783 if( b2ndPass ) break; /* Never need more than 2 passes */ 1784 b2ndPass = 1; 1785 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1786 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1787 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1788 ** first pass, recomputed values for all generated columns, as 1789 ** those values might depend on columns affected by the REPLACE. 1790 */ 1791 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1792 } 1793 #endif 1794 } /* end of 2-pass loop */ 1795 } /* end if( has-not-null-constraints ) */ 1796 1797 /* Test all CHECK constraints 1798 */ 1799 #ifndef SQLITE_OMIT_CHECK 1800 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1801 ExprList *pCheck = pTab->pCheck; 1802 pParse->iSelfTab = -(regNewData+1); 1803 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1804 for(i=0; i<pCheck->nExpr; i++){ 1805 int allOk; 1806 Expr *pCopy; 1807 Expr *pExpr = pCheck->a[i].pExpr; 1808 if( aiChng 1809 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1810 ){ 1811 /* The check constraints do not reference any of the columns being 1812 ** updated so there is no point it verifying the check constraint */ 1813 continue; 1814 } 1815 if( bAffinityDone==0 ){ 1816 sqlite3TableAffinity(v, pTab, regNewData+1); 1817 bAffinityDone = 1; 1818 } 1819 allOk = sqlite3VdbeMakeLabel(pParse); 1820 sqlite3VdbeVerifyAbortable(v, onError); 1821 pCopy = sqlite3ExprDup(db, pExpr, 0); 1822 if( !db->mallocFailed ){ 1823 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1824 } 1825 sqlite3ExprDelete(db, pCopy); 1826 if( onError==OE_Ignore ){ 1827 sqlite3VdbeGoto(v, ignoreDest); 1828 }else{ 1829 char *zName = pCheck->a[i].zEName; 1830 assert( zName!=0 || pParse->db->mallocFailed ); 1831 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1832 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1833 onError, zName, P4_TRANSIENT, 1834 P5_ConstraintCheck); 1835 } 1836 sqlite3VdbeResolveLabel(v, allOk); 1837 } 1838 pParse->iSelfTab = 0; 1839 } 1840 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1841 1842 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1843 ** order: 1844 ** 1845 ** (1) OE_Update 1846 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1847 ** (3) OE_Replace 1848 ** 1849 ** OE_Fail and OE_Ignore must happen before any changes are made. 1850 ** OE_Update guarantees that only a single row will change, so it 1851 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1852 ** could happen in any order, but they are grouped up front for 1853 ** convenience. 1854 ** 1855 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1856 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1857 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1858 ** constraint before any others, so it had to be moved. 1859 ** 1860 ** Constraint checking code is generated in this order: 1861 ** (A) The rowid constraint 1862 ** (B) Unique index constraints that do not have OE_Replace as their 1863 ** default conflict resolution strategy 1864 ** (C) Unique index that do use OE_Replace by default. 1865 ** 1866 ** The ordering of (2) and (3) is accomplished by making sure the linked 1867 ** list of indexes attached to a table puts all OE_Replace indexes last 1868 ** in the list. See sqlite3CreateIndex() for where that happens. 1869 */ 1870 sIdxIter.eType = 0; 1871 sIdxIter.i = 0; 1872 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1873 sIdxIter.u.lx.pIdx = pTab->pIndex; 1874 if( pUpsert ){ 1875 if( pUpsert->pUpsertTarget==0 ){ 1876 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1877 assert( pUpsert->pNextUpsert==0 ); 1878 if( pUpsert->isDoUpdate==0 ){ 1879 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1880 ** Make all unique constraint resolution be OE_Ignore */ 1881 overrideError = OE_Ignore; 1882 pUpsert = 0; 1883 }else{ 1884 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1885 overrideError = OE_Update; 1886 } 1887 }else if( pTab->pIndex!=0 ){ 1888 /* Otherwise, we'll need to run the IndexListTerm array version of the 1889 ** iterator to ensure that all of the ON CONFLICT conditions are 1890 ** checked first and in order. */ 1891 int nIdx, jj; 1892 u64 nByte; 1893 Upsert *pTerm; 1894 u8 *bUsed; 1895 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1896 assert( aRegIdx[nIdx]>0 ); 1897 } 1898 sIdxIter.eType = 1; 1899 sIdxIter.u.ax.nIdx = nIdx; 1900 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1901 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1902 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1903 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1904 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1905 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1906 if( pTerm->pUpsertTarget==0 ) break; 1907 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1908 jj = 0; 1909 pIdx = pTab->pIndex; 1910 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1911 pIdx = pIdx->pNext; 1912 jj++; 1913 } 1914 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1915 bUsed[jj] = 1; 1916 sIdxIter.u.ax.aIdx[i].p = pIdx; 1917 sIdxIter.u.ax.aIdx[i].ix = jj; 1918 i++; 1919 } 1920 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1921 if( bUsed[jj] ) continue; 1922 sIdxIter.u.ax.aIdx[i].p = pIdx; 1923 sIdxIter.u.ax.aIdx[i].ix = jj; 1924 i++; 1925 } 1926 assert( i==nIdx ); 1927 } 1928 } 1929 1930 /* Determine if it is possible that triggers (either explicitly coded 1931 ** triggers or FK resolution actions) might run as a result of deletes 1932 ** that happen when OE_Replace conflict resolution occurs. (Call these 1933 ** "replace triggers".) If any replace triggers run, we will need to 1934 ** recheck all of the uniqueness constraints after they have all run. 1935 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1936 ** 1937 ** If replace triggers are a possibility, then 1938 ** 1939 ** (1) Allocate register regTrigCnt and initialize it to zero. 1940 ** That register will count the number of replace triggers that 1941 ** fire. Constraint recheck only occurs if the number is positive. 1942 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1943 ** (3) Initialize addrRecheck and lblRecheckOk 1944 ** 1945 ** The uniqueness rechecking code will create a series of tests to run 1946 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1947 ** used to link together these tests which are separated from each other 1948 ** in the generate bytecode. 1949 */ 1950 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1951 /* There are not DELETE triggers nor FK constraints. No constraint 1952 ** rechecks are needed. */ 1953 pTrigger = 0; 1954 regTrigCnt = 0; 1955 }else{ 1956 if( db->flags&SQLITE_RecTriggers ){ 1957 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1958 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1959 }else{ 1960 pTrigger = 0; 1961 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1962 } 1963 if( regTrigCnt ){ 1964 /* Replace triggers might exist. Allocate the counter and 1965 ** initialize it to zero. */ 1966 regTrigCnt = ++pParse->nMem; 1967 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1968 VdbeComment((v, "trigger count")); 1969 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1970 addrRecheck = lblRecheckOk; 1971 } 1972 } 1973 1974 /* If rowid is changing, make sure the new rowid does not previously 1975 ** exist in the table. 1976 */ 1977 if( pkChng && pPk==0 ){ 1978 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1979 1980 /* Figure out what action to take in case of a rowid collision */ 1981 onError = pTab->keyConf; 1982 if( overrideError!=OE_Default ){ 1983 onError = overrideError; 1984 }else if( onError==OE_Default ){ 1985 onError = OE_Abort; 1986 } 1987 1988 /* figure out whether or not upsert applies in this case */ 1989 if( pUpsert ){ 1990 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 1991 if( pUpsertClause!=0 ){ 1992 if( pUpsertClause->isDoUpdate==0 ){ 1993 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1994 }else{ 1995 onError = OE_Update; /* DO UPDATE */ 1996 } 1997 } 1998 if( pUpsertClause!=pUpsert ){ 1999 /* The first ON CONFLICT clause has a conflict target other than 2000 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 2001 ** and then come back here and deal with the IPK afterwards */ 2002 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 2003 } 2004 } 2005 2006 /* If the response to a rowid conflict is REPLACE but the response 2007 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 2008 ** to defer the running of the rowid conflict checking until after 2009 ** the UNIQUE constraints have run. 2010 */ 2011 if( onError==OE_Replace /* IPK rule is REPLACE */ 2012 && onError!=overrideError /* Rules for other constraints are different */ 2013 && pTab->pIndex /* There exist other constraints */ 2014 && !upsertIpkDelay /* IPK check already deferred by UPSERT */ 2015 ){ 2016 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 2017 VdbeComment((v, "defer IPK REPLACE until last")); 2018 } 2019 2020 if( isUpdate ){ 2021 /* pkChng!=0 does not mean that the rowid has changed, only that 2022 ** it might have changed. Skip the conflict logic below if the rowid 2023 ** is unchanged. */ 2024 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 2025 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2026 VdbeCoverage(v); 2027 } 2028 2029 /* Check to see if the new rowid already exists in the table. Skip 2030 ** the following conflict logic if it does not. */ 2031 VdbeNoopComment((v, "uniqueness check for ROWID")); 2032 sqlite3VdbeVerifyAbortable(v, onError); 2033 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 2034 VdbeCoverage(v); 2035 2036 switch( onError ){ 2037 default: { 2038 onError = OE_Abort; 2039 /* no break */ deliberate_fall_through 2040 } 2041 case OE_Rollback: 2042 case OE_Abort: 2043 case OE_Fail: { 2044 testcase( onError==OE_Rollback ); 2045 testcase( onError==OE_Abort ); 2046 testcase( onError==OE_Fail ); 2047 sqlite3RowidConstraint(pParse, onError, pTab); 2048 break; 2049 } 2050 case OE_Replace: { 2051 /* If there are DELETE triggers on this table and the 2052 ** recursive-triggers flag is set, call GenerateRowDelete() to 2053 ** remove the conflicting row from the table. This will fire 2054 ** the triggers and remove both the table and index b-tree entries. 2055 ** 2056 ** Otherwise, if there are no triggers or the recursive-triggers 2057 ** flag is not set, but the table has one or more indexes, call 2058 ** GenerateRowIndexDelete(). This removes the index b-tree entries 2059 ** only. The table b-tree entry will be replaced by the new entry 2060 ** when it is inserted. 2061 ** 2062 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 2063 ** also invoke MultiWrite() to indicate that this VDBE may require 2064 ** statement rollback (if the statement is aborted after the delete 2065 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 2066 ** but being more selective here allows statements like: 2067 ** 2068 ** REPLACE INTO t(rowid) VALUES($newrowid) 2069 ** 2070 ** to run without a statement journal if there are no indexes on the 2071 ** table. 2072 */ 2073 if( regTrigCnt ){ 2074 sqlite3MultiWrite(pParse); 2075 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2076 regNewData, 1, 0, OE_Replace, 1, -1); 2077 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2078 nReplaceTrig++; 2079 }else{ 2080 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2081 assert( HasRowid(pTab) ); 2082 /* This OP_Delete opcode fires the pre-update-hook only. It does 2083 ** not modify the b-tree. It is more efficient to let the coming 2084 ** OP_Insert replace the existing entry than it is to delete the 2085 ** existing entry and then insert a new one. */ 2086 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2087 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2088 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2089 if( pTab->pIndex ){ 2090 sqlite3MultiWrite(pParse); 2091 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2092 } 2093 } 2094 seenReplace = 1; 2095 break; 2096 } 2097 #ifndef SQLITE_OMIT_UPSERT 2098 case OE_Update: { 2099 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2100 /* no break */ deliberate_fall_through 2101 } 2102 #endif 2103 case OE_Ignore: { 2104 testcase( onError==OE_Ignore ); 2105 sqlite3VdbeGoto(v, ignoreDest); 2106 break; 2107 } 2108 } 2109 sqlite3VdbeResolveLabel(v, addrRowidOk); 2110 if( pUpsert && pUpsertClause!=pUpsert ){ 2111 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2112 }else if( ipkTop ){ 2113 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2114 sqlite3VdbeJumpHere(v, ipkTop-1); 2115 } 2116 } 2117 2118 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2119 ** index and making sure that duplicate entries do not already exist. 2120 ** Compute the revised record entries for indices as we go. 2121 ** 2122 ** This loop also handles the case of the PRIMARY KEY index for a 2123 ** WITHOUT ROWID table. 2124 */ 2125 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2126 pIdx; 2127 pIdx = indexIteratorNext(&sIdxIter, &ix) 2128 ){ 2129 int regIdx; /* Range of registers hold conent for pIdx */ 2130 int regR; /* Range of registers holding conflicting PK */ 2131 int iThisCur; /* Cursor for this UNIQUE index */ 2132 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2133 int addrConflictCk; /* First opcode in the conflict check logic */ 2134 2135 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2136 if( pUpsert ){ 2137 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2138 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2139 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2140 } 2141 } 2142 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2143 if( bAffinityDone==0 ){ 2144 sqlite3TableAffinity(v, pTab, regNewData+1); 2145 bAffinityDone = 1; 2146 } 2147 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2148 iThisCur = iIdxCur+ix; 2149 2150 2151 /* Skip partial indices for which the WHERE clause is not true */ 2152 if( pIdx->pPartIdxWhere ){ 2153 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2154 pParse->iSelfTab = -(regNewData+1); 2155 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2156 SQLITE_JUMPIFNULL); 2157 pParse->iSelfTab = 0; 2158 } 2159 2160 /* Create a record for this index entry as it should appear after 2161 ** the insert or update. Store that record in the aRegIdx[ix] register 2162 */ 2163 regIdx = aRegIdx[ix]+1; 2164 for(i=0; i<pIdx->nColumn; i++){ 2165 int iField = pIdx->aiColumn[i]; 2166 int x; 2167 if( iField==XN_EXPR ){ 2168 pParse->iSelfTab = -(regNewData+1); 2169 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2170 pParse->iSelfTab = 0; 2171 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2172 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2173 x = regNewData; 2174 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2175 VdbeComment((v, "rowid")); 2176 }else{ 2177 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2178 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2179 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2180 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 2181 } 2182 } 2183 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2184 VdbeComment((v, "for %s", pIdx->zName)); 2185 #ifdef SQLITE_ENABLE_NULL_TRIM 2186 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2187 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2188 } 2189 #endif 2190 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2191 2192 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2193 ** of a WITHOUT ROWID table and there has been no change the 2194 ** primary key, then no collision is possible. The collision detection 2195 ** logic below can all be skipped. */ 2196 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2197 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2198 continue; 2199 } 2200 2201 /* Find out what action to take in case there is a uniqueness conflict */ 2202 onError = pIdx->onError; 2203 if( onError==OE_None ){ 2204 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2205 continue; /* pIdx is not a UNIQUE index */ 2206 } 2207 if( overrideError!=OE_Default ){ 2208 onError = overrideError; 2209 }else if( onError==OE_Default ){ 2210 onError = OE_Abort; 2211 } 2212 2213 /* Figure out if the upsert clause applies to this index */ 2214 if( pUpsertClause ){ 2215 if( pUpsertClause->isDoUpdate==0 ){ 2216 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2217 }else{ 2218 onError = OE_Update; /* DO UPDATE */ 2219 } 2220 } 2221 2222 /* Collision detection may be omitted if all of the following are true: 2223 ** (1) The conflict resolution algorithm is REPLACE 2224 ** (2) The table is a WITHOUT ROWID table 2225 ** (3) There are no secondary indexes on the table 2226 ** (4) No delete triggers need to be fired if there is a conflict 2227 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2228 ** 2229 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2230 ** must be explicitly deleted in order to ensure any pre-update hook 2231 ** is invoked. */ 2232 assert( IsOrdinaryTable(pTab) ); 2233 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2234 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2235 && pPk==pIdx /* Condition 2 */ 2236 && onError==OE_Replace /* Condition 1 */ 2237 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2238 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2239 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2240 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 2241 ){ 2242 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2243 continue; 2244 } 2245 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2246 2247 /* Check to see if the new index entry will be unique */ 2248 sqlite3VdbeVerifyAbortable(v, onError); 2249 addrConflictCk = 2250 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2251 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2252 2253 /* Generate code to handle collisions */ 2254 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2255 if( isUpdate || onError==OE_Replace ){ 2256 if( HasRowid(pTab) ){ 2257 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2258 /* Conflict only if the rowid of the existing index entry 2259 ** is different from old-rowid */ 2260 if( isUpdate ){ 2261 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2262 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2263 VdbeCoverage(v); 2264 } 2265 }else{ 2266 int x; 2267 /* Extract the PRIMARY KEY from the end of the index entry and 2268 ** store it in registers regR..regR+nPk-1 */ 2269 if( pIdx!=pPk ){ 2270 for(i=0; i<pPk->nKeyCol; i++){ 2271 assert( pPk->aiColumn[i]>=0 ); 2272 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2273 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2274 VdbeComment((v, "%s.%s", pTab->zName, 2275 pTab->aCol[pPk->aiColumn[i]].zCnName)); 2276 } 2277 } 2278 if( isUpdate ){ 2279 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2280 ** table, only conflict if the new PRIMARY KEY values are actually 2281 ** different from the old. 2282 ** 2283 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2284 ** of the matched index row are different from the original PRIMARY 2285 ** KEY values of this row before the update. */ 2286 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2287 int op = OP_Ne; 2288 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2289 2290 for(i=0; i<pPk->nKeyCol; i++){ 2291 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2292 x = pPk->aiColumn[i]; 2293 assert( x>=0 ); 2294 if( i==(pPk->nKeyCol-1) ){ 2295 addrJump = addrUniqueOk; 2296 op = OP_Eq; 2297 } 2298 x = sqlite3TableColumnToStorage(pTab, x); 2299 sqlite3VdbeAddOp4(v, op, 2300 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2301 ); 2302 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2303 VdbeCoverageIf(v, op==OP_Eq); 2304 VdbeCoverageIf(v, op==OP_Ne); 2305 } 2306 } 2307 } 2308 } 2309 2310 /* Generate code that executes if the new index entry is not unique */ 2311 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2312 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2313 switch( onError ){ 2314 case OE_Rollback: 2315 case OE_Abort: 2316 case OE_Fail: { 2317 testcase( onError==OE_Rollback ); 2318 testcase( onError==OE_Abort ); 2319 testcase( onError==OE_Fail ); 2320 sqlite3UniqueConstraint(pParse, onError, pIdx); 2321 break; 2322 } 2323 #ifndef SQLITE_OMIT_UPSERT 2324 case OE_Update: { 2325 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2326 /* no break */ deliberate_fall_through 2327 } 2328 #endif 2329 case OE_Ignore: { 2330 testcase( onError==OE_Ignore ); 2331 sqlite3VdbeGoto(v, ignoreDest); 2332 break; 2333 } 2334 default: { 2335 int nConflictCk; /* Number of opcodes in conflict check logic */ 2336 2337 assert( onError==OE_Replace ); 2338 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2339 assert( nConflictCk>0 || db->mallocFailed ); 2340 testcase( nConflictCk<=0 ); 2341 testcase( nConflictCk>1 ); 2342 if( regTrigCnt ){ 2343 sqlite3MultiWrite(pParse); 2344 nReplaceTrig++; 2345 } 2346 if( pTrigger && isUpdate ){ 2347 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2348 } 2349 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2350 regR, nPkField, 0, OE_Replace, 2351 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2352 if( pTrigger && isUpdate ){ 2353 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2354 } 2355 if( regTrigCnt ){ 2356 int addrBypass; /* Jump destination to bypass recheck logic */ 2357 2358 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2359 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2360 VdbeComment((v, "bypass recheck")); 2361 2362 /* Here we insert code that will be invoked after all constraint 2363 ** checks have run, if and only if one or more replace triggers 2364 ** fired. */ 2365 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2366 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2367 if( pIdx->pPartIdxWhere ){ 2368 /* Bypass the recheck if this partial index is not defined 2369 ** for the current row */ 2370 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2371 VdbeCoverage(v); 2372 } 2373 /* Copy the constraint check code from above, except change 2374 ** the constraint-ok jump destination to be the address of 2375 ** the next retest block */ 2376 while( nConflictCk>0 ){ 2377 VdbeOp x; /* Conflict check opcode to copy */ 2378 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2379 ** Hence, make a complete copy of the opcode, rather than using 2380 ** a pointer to the opcode. */ 2381 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2382 if( x.opcode!=OP_IdxRowid ){ 2383 int p2; /* New P2 value for copied conflict check opcode */ 2384 const char *zP4; 2385 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2386 p2 = lblRecheckOk; 2387 }else{ 2388 p2 = x.p2; 2389 } 2390 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2391 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2392 sqlite3VdbeChangeP5(v, x.p5); 2393 VdbeCoverageIf(v, p2!=x.p2); 2394 } 2395 nConflictCk--; 2396 addrConflictCk++; 2397 } 2398 /* If the retest fails, issue an abort */ 2399 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2400 2401 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2402 } 2403 seenReplace = 1; 2404 break; 2405 } 2406 } 2407 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2408 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2409 if( pUpsertClause 2410 && upsertIpkReturn 2411 && sqlite3UpsertNextIsIPK(pUpsertClause) 2412 ){ 2413 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2414 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2415 upsertIpkReturn = 0; 2416 } 2417 } 2418 2419 /* If the IPK constraint is a REPLACE, run it last */ 2420 if( ipkTop ){ 2421 sqlite3VdbeGoto(v, ipkTop); 2422 VdbeComment((v, "Do IPK REPLACE")); 2423 assert( ipkBottom>0 ); 2424 sqlite3VdbeJumpHere(v, ipkBottom); 2425 } 2426 2427 /* Recheck all uniqueness constraints after replace triggers have run */ 2428 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2429 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2430 if( nReplaceTrig ){ 2431 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2432 if( !pPk ){ 2433 if( isUpdate ){ 2434 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2435 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2436 VdbeCoverage(v); 2437 } 2438 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2439 VdbeCoverage(v); 2440 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2441 }else{ 2442 sqlite3VdbeGoto(v, addrRecheck); 2443 } 2444 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2445 } 2446 2447 /* Generate the table record */ 2448 if( HasRowid(pTab) ){ 2449 int regRec = aRegIdx[ix]; 2450 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2451 sqlite3SetMakeRecordP5(v, pTab); 2452 if( !bAffinityDone ){ 2453 sqlite3TableAffinity(v, pTab, 0); 2454 } 2455 } 2456 2457 *pbMayReplace = seenReplace; 2458 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2459 } 2460 2461 #ifdef SQLITE_ENABLE_NULL_TRIM 2462 /* 2463 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2464 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2465 ** 2466 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2467 */ 2468 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2469 u16 i; 2470 2471 /* Records with omitted columns are only allowed for schema format 2472 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2473 if( pTab->pSchema->file_format<2 ) return; 2474 2475 for(i=pTab->nCol-1; i>0; i--){ 2476 if( pTab->aCol[i].iDflt!=0 ) break; 2477 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2478 } 2479 sqlite3VdbeChangeP5(v, i+1); 2480 } 2481 #endif 2482 2483 /* 2484 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 2485 ** number is iCur, and register regData contains the new record for the 2486 ** PK index. This function adds code to invoke the pre-update hook, 2487 ** if one is registered. 2488 */ 2489 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2490 static void codeWithoutRowidPreupdate( 2491 Parse *pParse, /* Parse context */ 2492 Table *pTab, /* Table being updated */ 2493 int iCur, /* Cursor number for table */ 2494 int regData /* Data containing new record */ 2495 ){ 2496 Vdbe *v = pParse->pVdbe; 2497 int r = sqlite3GetTempReg(pParse); 2498 assert( !HasRowid(pTab) ); 2499 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 2500 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2501 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 2502 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2503 sqlite3ReleaseTempReg(pParse, r); 2504 } 2505 #else 2506 # define codeWithoutRowidPreupdate(a,b,c,d) 2507 #endif 2508 2509 /* 2510 ** This routine generates code to finish the INSERT or UPDATE operation 2511 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2512 ** A consecutive range of registers starting at regNewData contains the 2513 ** rowid and the content to be inserted. 2514 ** 2515 ** The arguments to this routine should be the same as the first six 2516 ** arguments to sqlite3GenerateConstraintChecks. 2517 */ 2518 void sqlite3CompleteInsertion( 2519 Parse *pParse, /* The parser context */ 2520 Table *pTab, /* the table into which we are inserting */ 2521 int iDataCur, /* Cursor of the canonical data source */ 2522 int iIdxCur, /* First index cursor */ 2523 int regNewData, /* Range of content */ 2524 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2525 int update_flags, /* True for UPDATE, False for INSERT */ 2526 int appendBias, /* True if this is likely to be an append */ 2527 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2528 ){ 2529 Vdbe *v; /* Prepared statements under construction */ 2530 Index *pIdx; /* An index being inserted or updated */ 2531 u8 pik_flags; /* flag values passed to the btree insert */ 2532 int i; /* Loop counter */ 2533 2534 assert( update_flags==0 2535 || update_flags==OPFLAG_ISUPDATE 2536 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2537 ); 2538 2539 v = pParse->pVdbe; 2540 assert( v!=0 ); 2541 assert( !IsView(pTab) ); /* This table is not a VIEW */ 2542 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2543 /* All REPLACE indexes are at the end of the list */ 2544 assert( pIdx->onError!=OE_Replace 2545 || pIdx->pNext==0 2546 || pIdx->pNext->onError==OE_Replace ); 2547 if( aRegIdx[i]==0 ) continue; 2548 if( pIdx->pPartIdxWhere ){ 2549 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2550 VdbeCoverage(v); 2551 } 2552 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2553 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2554 pik_flags |= OPFLAG_NCHANGE; 2555 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2556 if( update_flags==0 ){ 2557 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 2558 } 2559 } 2560 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2561 aRegIdx[i]+1, 2562 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2563 sqlite3VdbeChangeP5(v, pik_flags); 2564 } 2565 if( !HasRowid(pTab) ) return; 2566 if( pParse->nested ){ 2567 pik_flags = 0; 2568 }else{ 2569 pik_flags = OPFLAG_NCHANGE; 2570 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2571 } 2572 if( appendBias ){ 2573 pik_flags |= OPFLAG_APPEND; 2574 } 2575 if( useSeekResult ){ 2576 pik_flags |= OPFLAG_USESEEKRESULT; 2577 } 2578 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2579 if( !pParse->nested ){ 2580 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2581 } 2582 sqlite3VdbeChangeP5(v, pik_flags); 2583 } 2584 2585 /* 2586 ** Allocate cursors for the pTab table and all its indices and generate 2587 ** code to open and initialized those cursors. 2588 ** 2589 ** The cursor for the object that contains the complete data (normally 2590 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2591 ** ROWID table) is returned in *piDataCur. The first index cursor is 2592 ** returned in *piIdxCur. The number of indices is returned. 2593 ** 2594 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2595 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2596 ** If iBase is negative, then allocate the next available cursor. 2597 ** 2598 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2599 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2600 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2601 ** pTab->pIndex list. 2602 ** 2603 ** If pTab is a virtual table, then this routine is a no-op and the 2604 ** *piDataCur and *piIdxCur values are left uninitialized. 2605 */ 2606 int sqlite3OpenTableAndIndices( 2607 Parse *pParse, /* Parsing context */ 2608 Table *pTab, /* Table to be opened */ 2609 int op, /* OP_OpenRead or OP_OpenWrite */ 2610 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2611 int iBase, /* Use this for the table cursor, if there is one */ 2612 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2613 int *piDataCur, /* Write the database source cursor number here */ 2614 int *piIdxCur /* Write the first index cursor number here */ 2615 ){ 2616 int i; 2617 int iDb; 2618 int iDataCur; 2619 Index *pIdx; 2620 Vdbe *v; 2621 2622 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2623 assert( op==OP_OpenWrite || p5==0 ); 2624 if( IsVirtual(pTab) ){ 2625 /* This routine is a no-op for virtual tables. Leave the output 2626 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers 2627 ** for improved error detection. */ 2628 *piDataCur = *piIdxCur = -999; 2629 return 0; 2630 } 2631 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2632 v = pParse->pVdbe; 2633 assert( v!=0 ); 2634 if( iBase<0 ) iBase = pParse->nTab; 2635 iDataCur = iBase++; 2636 if( piDataCur ) *piDataCur = iDataCur; 2637 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2638 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2639 }else{ 2640 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2641 } 2642 if( piIdxCur ) *piIdxCur = iBase; 2643 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2644 int iIdxCur = iBase++; 2645 assert( pIdx->pSchema==pTab->pSchema ); 2646 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2647 if( piDataCur ) *piDataCur = iIdxCur; 2648 p5 = 0; 2649 } 2650 if( aToOpen==0 || aToOpen[i+1] ){ 2651 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2652 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2653 sqlite3VdbeChangeP5(v, p5); 2654 VdbeComment((v, "%s", pIdx->zName)); 2655 } 2656 } 2657 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2658 return i; 2659 } 2660 2661 2662 #ifdef SQLITE_TEST 2663 /* 2664 ** The following global variable is incremented whenever the 2665 ** transfer optimization is used. This is used for testing 2666 ** purposes only - to make sure the transfer optimization really 2667 ** is happening when it is supposed to. 2668 */ 2669 int sqlite3_xferopt_count; 2670 #endif /* SQLITE_TEST */ 2671 2672 2673 #ifndef SQLITE_OMIT_XFER_OPT 2674 /* 2675 ** Check to see if index pSrc is compatible as a source of data 2676 ** for index pDest in an insert transfer optimization. The rules 2677 ** for a compatible index: 2678 ** 2679 ** * The index is over the same set of columns 2680 ** * The same DESC and ASC markings occurs on all columns 2681 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2682 ** * The same collating sequence on each column 2683 ** * The index has the exact same WHERE clause 2684 */ 2685 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2686 int i; 2687 assert( pDest && pSrc ); 2688 assert( pDest->pTable!=pSrc->pTable ); 2689 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2690 return 0; /* Different number of columns */ 2691 } 2692 if( pDest->onError!=pSrc->onError ){ 2693 return 0; /* Different conflict resolution strategies */ 2694 } 2695 for(i=0; i<pSrc->nKeyCol; i++){ 2696 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2697 return 0; /* Different columns indexed */ 2698 } 2699 if( pSrc->aiColumn[i]==XN_EXPR ){ 2700 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2701 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2702 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2703 return 0; /* Different expressions in the index */ 2704 } 2705 } 2706 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2707 return 0; /* Different sort orders */ 2708 } 2709 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2710 return 0; /* Different collating sequences */ 2711 } 2712 } 2713 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2714 return 0; /* Different WHERE clauses */ 2715 } 2716 2717 /* If no test above fails then the indices must be compatible */ 2718 return 1; 2719 } 2720 2721 /* 2722 ** Attempt the transfer optimization on INSERTs of the form 2723 ** 2724 ** INSERT INTO tab1 SELECT * FROM tab2; 2725 ** 2726 ** The xfer optimization transfers raw records from tab2 over to tab1. 2727 ** Columns are not decoded and reassembled, which greatly improves 2728 ** performance. Raw index records are transferred in the same way. 2729 ** 2730 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2731 ** There are lots of rules for determining compatibility - see comments 2732 ** embedded in the code for details. 2733 ** 2734 ** This routine returns TRUE if the optimization is guaranteed to be used. 2735 ** Sometimes the xfer optimization will only work if the destination table 2736 ** is empty - a factor that can only be determined at run-time. In that 2737 ** case, this routine generates code for the xfer optimization but also 2738 ** does a test to see if the destination table is empty and jumps over the 2739 ** xfer optimization code if the test fails. In that case, this routine 2740 ** returns FALSE so that the caller will know to go ahead and generate 2741 ** an unoptimized transfer. This routine also returns FALSE if there 2742 ** is no chance that the xfer optimization can be applied. 2743 ** 2744 ** This optimization is particularly useful at making VACUUM run faster. 2745 */ 2746 static int xferOptimization( 2747 Parse *pParse, /* Parser context */ 2748 Table *pDest, /* The table we are inserting into */ 2749 Select *pSelect, /* A SELECT statement to use as the data source */ 2750 int onError, /* How to handle constraint errors */ 2751 int iDbDest /* The database of pDest */ 2752 ){ 2753 sqlite3 *db = pParse->db; 2754 ExprList *pEList; /* The result set of the SELECT */ 2755 Table *pSrc; /* The table in the FROM clause of SELECT */ 2756 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2757 SrcItem *pItem; /* An element of pSelect->pSrc */ 2758 int i; /* Loop counter */ 2759 int iDbSrc; /* The database of pSrc */ 2760 int iSrc, iDest; /* Cursors from source and destination */ 2761 int addr1, addr2; /* Loop addresses */ 2762 int emptyDestTest = 0; /* Address of test for empty pDest */ 2763 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2764 Vdbe *v; /* The VDBE we are building */ 2765 int regAutoinc; /* Memory register used by AUTOINC */ 2766 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2767 int regData, regRowid; /* Registers holding data and rowid */ 2768 2769 if( pSelect==0 ){ 2770 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2771 } 2772 if( pParse->pWith || pSelect->pWith ){ 2773 /* Do not attempt to process this query if there are an WITH clauses 2774 ** attached to it. Proceeding may generate a false "no such table: xxx" 2775 ** error if pSelect reads from a CTE named "xxx". */ 2776 return 0; 2777 } 2778 if( sqlite3TriggerList(pParse, pDest) ){ 2779 return 0; /* tab1 must not have triggers */ 2780 } 2781 #ifndef SQLITE_OMIT_VIRTUALTABLE 2782 if( IsVirtual(pDest) ){ 2783 return 0; /* tab1 must not be a virtual table */ 2784 } 2785 #endif 2786 if( onError==OE_Default ){ 2787 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2788 if( onError==OE_Default ) onError = OE_Abort; 2789 } 2790 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2791 if( pSelect->pSrc->nSrc!=1 ){ 2792 return 0; /* FROM clause must have exactly one term */ 2793 } 2794 if( pSelect->pSrc->a[0].pSelect ){ 2795 return 0; /* FROM clause cannot contain a subquery */ 2796 } 2797 if( pSelect->pWhere ){ 2798 return 0; /* SELECT may not have a WHERE clause */ 2799 } 2800 if( pSelect->pOrderBy ){ 2801 return 0; /* SELECT may not have an ORDER BY clause */ 2802 } 2803 /* Do not need to test for a HAVING clause. If HAVING is present but 2804 ** there is no ORDER BY, we will get an error. */ 2805 if( pSelect->pGroupBy ){ 2806 return 0; /* SELECT may not have a GROUP BY clause */ 2807 } 2808 if( pSelect->pLimit ){ 2809 return 0; /* SELECT may not have a LIMIT clause */ 2810 } 2811 if( pSelect->pPrior ){ 2812 return 0; /* SELECT may not be a compound query */ 2813 } 2814 if( pSelect->selFlags & SF_Distinct ){ 2815 return 0; /* SELECT may not be DISTINCT */ 2816 } 2817 pEList = pSelect->pEList; 2818 assert( pEList!=0 ); 2819 if( pEList->nExpr!=1 ){ 2820 return 0; /* The result set must have exactly one column */ 2821 } 2822 assert( pEList->a[0].pExpr ); 2823 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2824 return 0; /* The result set must be the special operator "*" */ 2825 } 2826 2827 /* At this point we have established that the statement is of the 2828 ** correct syntactic form to participate in this optimization. Now 2829 ** we have to check the semantics. 2830 */ 2831 pItem = pSelect->pSrc->a; 2832 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2833 if( pSrc==0 ){ 2834 return 0; /* FROM clause does not contain a real table */ 2835 } 2836 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2837 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2838 return 0; /* tab1 and tab2 may not be the same table */ 2839 } 2840 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2841 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2842 } 2843 if( !IsOrdinaryTable(pSrc) ){ 2844 return 0; /* tab2 may not be a view or virtual table */ 2845 } 2846 if( pDest->nCol!=pSrc->nCol ){ 2847 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2848 } 2849 if( pDest->iPKey!=pSrc->iPKey ){ 2850 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2851 } 2852 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 2853 return 0; /* Cannot feed from a non-strict into a strict table */ 2854 } 2855 for(i=0; i<pDest->nCol; i++){ 2856 Column *pDestCol = &pDest->aCol[i]; 2857 Column *pSrcCol = &pSrc->aCol[i]; 2858 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2859 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2860 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2861 ){ 2862 return 0; /* Neither table may have __hidden__ columns */ 2863 } 2864 #endif 2865 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2866 /* Even if tables t1 and t2 have identical schemas, if they contain 2867 ** generated columns, then this statement is semantically incorrect: 2868 ** 2869 ** INSERT INTO t2 SELECT * FROM t1; 2870 ** 2871 ** The reason is that generated column values are returned by the 2872 ** the SELECT statement on the right but the INSERT statement on the 2873 ** left wants them to be omitted. 2874 ** 2875 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2876 ** to do a bulk transfer all of the content from t1 over to t2. 2877 ** 2878 ** We could, in theory, disable this (except for internal use by the 2879 ** VACUUM command where it is actually needed). But why do that? It 2880 ** seems harmless enough, and provides a useful service. 2881 */ 2882 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2883 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2884 return 0; /* Both columns have the same generated-column type */ 2885 } 2886 /* But the transfer is only allowed if both the source and destination 2887 ** tables have the exact same expressions for generated columns. 2888 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2889 */ 2890 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2891 if( sqlite3ExprCompare(0, 2892 sqlite3ColumnExpr(pSrc, pSrcCol), 2893 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 2894 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2895 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2896 return 0; /* Different generator expressions */ 2897 } 2898 } 2899 #endif 2900 if( pDestCol->affinity!=pSrcCol->affinity ){ 2901 return 0; /* Affinity must be the same on all columns */ 2902 } 2903 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 2904 sqlite3ColumnColl(pSrcCol))!=0 ){ 2905 return 0; /* Collating sequence must be the same on all columns */ 2906 } 2907 if( pDestCol->notNull && !pSrcCol->notNull ){ 2908 return 0; /* tab2 must be NOT NULL if tab1 is */ 2909 } 2910 /* Default values for second and subsequent columns need to match. */ 2911 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2912 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 2913 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 2914 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 2915 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); 2916 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 2917 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); 2918 if( (pDestExpr==0)!=(pSrcExpr==0) 2919 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 2920 pSrcExpr->u.zToken)!=0) 2921 ){ 2922 return 0; /* Default values must be the same for all columns */ 2923 } 2924 } 2925 } 2926 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2927 if( IsUniqueIndex(pDestIdx) ){ 2928 destHasUniqueIdx = 1; 2929 } 2930 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2931 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2932 } 2933 if( pSrcIdx==0 ){ 2934 return 0; /* pDestIdx has no corresponding index in pSrc */ 2935 } 2936 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2937 && sqlite3FaultSim(411)==SQLITE_OK ){ 2938 /* The sqlite3FaultSim() call allows this corruption test to be 2939 ** bypassed during testing, in order to exercise other corruption tests 2940 ** further downstream. */ 2941 return 0; /* Corrupt schema - two indexes on the same btree */ 2942 } 2943 } 2944 #ifndef SQLITE_OMIT_CHECK 2945 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2946 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2947 } 2948 #endif 2949 #ifndef SQLITE_OMIT_FOREIGN_KEY 2950 /* Disallow the transfer optimization if the destination table constains 2951 ** any foreign key constraints. This is more restrictive than necessary. 2952 ** But the main beneficiary of the transfer optimization is the VACUUM 2953 ** command, and the VACUUM command disables foreign key constraints. So 2954 ** the extra complication to make this rule less restrictive is probably 2955 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2956 */ 2957 assert( IsOrdinaryTable(pDest) ); 2958 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 2959 return 0; 2960 } 2961 #endif 2962 if( (db->flags & SQLITE_CountRows)!=0 ){ 2963 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2964 } 2965 2966 /* If we get this far, it means that the xfer optimization is at 2967 ** least a possibility, though it might only work if the destination 2968 ** table (tab1) is initially empty. 2969 */ 2970 #ifdef SQLITE_TEST 2971 sqlite3_xferopt_count++; 2972 #endif 2973 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2974 v = sqlite3GetVdbe(pParse); 2975 sqlite3CodeVerifySchema(pParse, iDbSrc); 2976 iSrc = pParse->nTab++; 2977 iDest = pParse->nTab++; 2978 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2979 regData = sqlite3GetTempReg(pParse); 2980 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 2981 regRowid = sqlite3GetTempReg(pParse); 2982 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2983 assert( HasRowid(pDest) || destHasUniqueIdx ); 2984 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2985 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2986 || destHasUniqueIdx /* (2) */ 2987 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2988 )){ 2989 /* In some circumstances, we are able to run the xfer optimization 2990 ** only if the destination table is initially empty. Unless the 2991 ** DBFLAG_Vacuum flag is set, this block generates code to make 2992 ** that determination. If DBFLAG_Vacuum is set, then the destination 2993 ** table is always empty. 2994 ** 2995 ** Conditions under which the destination must be empty: 2996 ** 2997 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2998 ** (If the destination is not initially empty, the rowid fields 2999 ** of index entries might need to change.) 3000 ** 3001 ** (2) The destination has a unique index. (The xfer optimization 3002 ** is unable to test uniqueness.) 3003 ** 3004 ** (3) onError is something other than OE_Abort and OE_Rollback. 3005 */ 3006 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 3007 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 3008 sqlite3VdbeJumpHere(v, addr1); 3009 } 3010 if( HasRowid(pSrc) ){ 3011 u8 insFlags; 3012 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 3013 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3014 if( pDest->iPKey>=0 ){ 3015 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3016 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3017 sqlite3VdbeVerifyAbortable(v, onError); 3018 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 3019 VdbeCoverage(v); 3020 sqlite3RowidConstraint(pParse, onError, pDest); 3021 sqlite3VdbeJumpHere(v, addr2); 3022 } 3023 autoIncStep(pParse, regAutoinc, regRowid); 3024 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 3025 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 3026 }else{ 3027 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3028 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 3029 } 3030 3031 if( db->mDbFlags & DBFLAG_Vacuum ){ 3032 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3033 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3034 }else{ 3035 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 3036 } 3037 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 3038 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3039 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3040 insFlags &= ~OPFLAG_PREFORMAT; 3041 }else 3042 #endif 3043 { 3044 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 3045 } 3046 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 3047 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3048 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 3049 } 3050 sqlite3VdbeChangeP5(v, insFlags); 3051 3052 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 3053 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3054 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3055 }else{ 3056 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 3057 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 3058 } 3059 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 3060 u8 idxInsFlags = 0; 3061 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 3062 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 3063 } 3064 assert( pSrcIdx ); 3065 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 3066 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 3067 VdbeComment((v, "%s", pSrcIdx->zName)); 3068 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 3069 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 3070 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 3071 VdbeComment((v, "%s", pDestIdx->zName)); 3072 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3073 if( db->mDbFlags & DBFLAG_Vacuum ){ 3074 /* This INSERT command is part of a VACUUM operation, which guarantees 3075 ** that the destination table is empty. If all indexed columns use 3076 ** collation sequence BINARY, then it can also be assumed that the 3077 ** index will be populated by inserting keys in strictly sorted 3078 ** order. In this case, instead of seeking within the b-tree as part 3079 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 3080 ** OP_IdxInsert to seek to the point within the b-tree where each key 3081 ** should be inserted. This is faster. 3082 ** 3083 ** If any of the indexed columns use a collation sequence other than 3084 ** BINARY, this optimization is disabled. This is because the user 3085 ** might change the definition of a collation sequence and then run 3086 ** a VACUUM command. In that case keys may not be written in strictly 3087 ** sorted order. */ 3088 for(i=0; i<pSrcIdx->nColumn; i++){ 3089 const char *zColl = pSrcIdx->azColl[i]; 3090 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 3091 } 3092 if( i==pSrcIdx->nColumn ){ 3093 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3094 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3095 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 3096 } 3097 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 3098 idxInsFlags |= OPFLAG_NCHANGE; 3099 } 3100 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3101 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3102 if( (db->mDbFlags & DBFLAG_Vacuum)==0 3103 && !HasRowid(pDest) 3104 && IsPrimaryKeyIndex(pDestIdx) 3105 ){ 3106 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 3107 } 3108 } 3109 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3110 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3111 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3112 sqlite3VdbeJumpHere(v, addr1); 3113 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3114 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3115 } 3116 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3117 sqlite3ReleaseTempReg(pParse, regRowid); 3118 sqlite3ReleaseTempReg(pParse, regData); 3119 if( emptyDestTest ){ 3120 sqlite3AutoincrementEnd(pParse); 3121 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3122 sqlite3VdbeJumpHere(v, emptyDestTest); 3123 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3124 return 0; 3125 }else{ 3126 return 1; 3127 } 3128 } 3129 #endif /* SQLITE_OMIT_XFER_OPT */ 3130