xref: /sqlite-3.40.0/src/insert.c (revision 697c50b9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   assert( pParse->pVdbe!=0 );
36   v = pParse->pVdbe;
37   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
38   sqlite3TableLock(pParse, iDb, pTab->tnum,
39                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
40   if( HasRowid(pTab) ){
41     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
42     VdbeComment((v, "%s", pTab->zName));
43   }else{
44     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
45     assert( pPk!=0 );
46     assert( pPk->tnum==pTab->tnum || CORRUPT_DB );
47     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
48     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
49     VdbeComment((v, "%s", pTab->zName));
50   }
51 }
52 
53 /*
54 ** Return a pointer to the column affinity string associated with index
55 ** pIdx. A column affinity string has one character for each column in
56 ** the table, according to the affinity of the column:
57 **
58 **  Character      Column affinity
59 **  ------------------------------
60 **  'A'            BLOB
61 **  'B'            TEXT
62 **  'C'            NUMERIC
63 **  'D'            INTEGER
64 **  'F'            REAL
65 **
66 ** An extra 'D' is appended to the end of the string to cover the
67 ** rowid that appears as the last column in every index.
68 **
69 ** Memory for the buffer containing the column index affinity string
70 ** is managed along with the rest of the Index structure. It will be
71 ** released when sqlite3DeleteIndex() is called.
72 */
73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
74   if( !pIdx->zColAff ){
75     /* The first time a column affinity string for a particular index is
76     ** required, it is allocated and populated here. It is then stored as
77     ** a member of the Index structure for subsequent use.
78     **
79     ** The column affinity string will eventually be deleted by
80     ** sqliteDeleteIndex() when the Index structure itself is cleaned
81     ** up.
82     */
83     int n;
84     Table *pTab = pIdx->pTable;
85     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86     if( !pIdx->zColAff ){
87       sqlite3OomFault(db);
88       return 0;
89     }
90     for(n=0; n<pIdx->nColumn; n++){
91       i16 x = pIdx->aiColumn[n];
92       char aff;
93       if( x>=0 ){
94         aff = pTab->aCol[x].affinity;
95       }else if( x==XN_ROWID ){
96         aff = SQLITE_AFF_INTEGER;
97       }else{
98         assert( x==XN_EXPR );
99         assert( pIdx->aColExpr!=0 );
100         aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
101       }
102       if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
103       if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
104       pIdx->zColAff[n] = aff;
105     }
106     pIdx->zColAff[n] = 0;
107   }
108 
109   return pIdx->zColAff;
110 }
111 
112 /*
113 ** Make changes to the evolving bytecode to do affinity transformations
114 ** of values that are about to be gathered into a row for table pTab.
115 **
116 ** For ordinary (legacy, non-strict) tables:
117 ** -----------------------------------------
118 **
119 ** Compute the affinity string for table pTab, if it has not already been
120 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
121 **
122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
123 ** which were then optimized out) then this routine becomes a no-op.
124 **
125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
126 ** affinities for register iReg and following.  Or if iReg==0,
127 ** then just set the P4 operand of the previous opcode (which should  be
128 ** an OP_MakeRecord) to the affinity string.
129 **
130 ** A column affinity string has one character per column:
131 **
132 **    Character      Column affinity
133 **    ---------      ---------------
134 **    'A'            BLOB
135 **    'B'            TEXT
136 **    'C'            NUMERIC
137 **    'D'            INTEGER
138 **    'E'            REAL
139 **
140 ** For STRICT tables:
141 ** ------------------
142 **
143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the
144 ** datatypes against the column definitions in pTab.  If iReg==0, that
145 ** means an OP_MakeRecord opcode has already been generated and should be
146 ** the last opcode generated.  The new OP_TypeCheck needs to be inserted
147 ** before the OP_MakeRecord.  The new OP_TypeCheck should use the same
148 ** register set as the OP_MakeRecord.  If iReg>0 then register iReg is
149 ** the first of a series of registers that will form the new record.
150 ** Apply the type checking to that array of registers.
151 */
152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
153   int i, j;
154   char *zColAff;
155   if( pTab->tabFlags & TF_Strict ){
156     if( iReg==0 ){
157       /* Move the previous opcode (which should be OP_MakeRecord) forward
158       ** by one slot and insert a new OP_TypeCheck where the current
159       ** OP_MakeRecord is found */
160       VdbeOp *pPrev;
161       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
162       pPrev = sqlite3VdbeGetOp(v, -1);
163       assert( pPrev!=0 );
164       assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed );
165       pPrev->opcode = OP_TypeCheck;
166       sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3);
167     }else{
168       /* Insert an isolated OP_Typecheck */
169       sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol);
170       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
171     }
172     return;
173   }
174   zColAff = pTab->zColAff;
175   if( zColAff==0 ){
176     sqlite3 *db = sqlite3VdbeDb(v);
177     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
178     if( !zColAff ){
179       sqlite3OomFault(db);
180       return;
181     }
182 
183     for(i=j=0; i<pTab->nCol; i++){
184       assert( pTab->aCol[i].affinity!=0 );
185       if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
186         zColAff[j++] = pTab->aCol[i].affinity;
187       }
188     }
189     do{
190       zColAff[j--] = 0;
191     }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
192     pTab->zColAff = zColAff;
193   }
194   assert( zColAff!=0 );
195   i = sqlite3Strlen30NN(zColAff);
196   if( i ){
197     if( iReg ){
198       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
199     }else{
200       assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord
201               || sqlite3VdbeDb(v)->mallocFailed );
202       sqlite3VdbeChangeP4(v, -1, zColAff, i);
203     }
204   }
205 }
206 
207 /*
208 ** Return non-zero if the table pTab in database iDb or any of its indices
209 ** have been opened at any point in the VDBE program. This is used to see if
210 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
211 ** run without using a temporary table for the results of the SELECT.
212 */
213 static int readsTable(Parse *p, int iDb, Table *pTab){
214   Vdbe *v = sqlite3GetVdbe(p);
215   int i;
216   int iEnd = sqlite3VdbeCurrentAddr(v);
217 #ifndef SQLITE_OMIT_VIRTUALTABLE
218   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
219 #endif
220 
221   for(i=1; i<iEnd; i++){
222     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
223     assert( pOp!=0 );
224     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
225       Index *pIndex;
226       Pgno tnum = pOp->p2;
227       if( tnum==pTab->tnum ){
228         return 1;
229       }
230       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
231         if( tnum==pIndex->tnum ){
232           return 1;
233         }
234       }
235     }
236 #ifndef SQLITE_OMIT_VIRTUALTABLE
237     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
238       assert( pOp->p4.pVtab!=0 );
239       assert( pOp->p4type==P4_VTAB );
240       return 1;
241     }
242 #endif
243   }
244   return 0;
245 }
246 
247 /* This walker callback will compute the union of colFlags flags for all
248 ** referenced columns in a CHECK constraint or generated column expression.
249 */
250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
251   if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){
252     assert( pExpr->iColumn < pWalker->u.pTab->nCol );
253     pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
254   }
255   return WRC_Continue;
256 }
257 
258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
259 /*
260 ** All regular columns for table pTab have been puts into registers
261 ** starting with iRegStore.  The registers that correspond to STORED
262 ** or VIRTUAL columns have not yet been initialized.  This routine goes
263 ** back and computes the values for those columns based on the previously
264 ** computed normal columns.
265 */
266 void sqlite3ComputeGeneratedColumns(
267   Parse *pParse,    /* Parsing context */
268   int iRegStore,    /* Register holding the first column */
269   Table *pTab       /* The table */
270 ){
271   int i;
272   Walker w;
273   Column *pRedo;
274   int eProgress;
275   VdbeOp *pOp;
276 
277   assert( pTab->tabFlags & TF_HasGenerated );
278   testcase( pTab->tabFlags & TF_HasVirtual );
279   testcase( pTab->tabFlags & TF_HasStored );
280 
281   /* Before computing generated columns, first go through and make sure
282   ** that appropriate affinity has been applied to the regular columns
283   */
284   sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore);
285   if( (pTab->tabFlags & TF_HasStored)!=0 ){
286     pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
287     if( pOp->opcode==OP_Affinity ){
288       /* Change the OP_Affinity argument to '@' (NONE) for all stored
289       ** columns.  '@' is the no-op affinity and those columns have not
290       ** yet been computed. */
291       int ii, jj;
292       char *zP4 = pOp->p4.z;
293       assert( zP4!=0 );
294       assert( pOp->p4type==P4_DYNAMIC );
295       for(ii=jj=0; zP4[jj]; ii++){
296         if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){
297           continue;
298         }
299         if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){
300           zP4[jj] = SQLITE_AFF_NONE;
301         }
302         jj++;
303       }
304     }else if( pOp->opcode==OP_TypeCheck ){
305       /* If an OP_TypeCheck was generated because the table is STRICT,
306       ** then set the P3 operand to indicate that generated columns should
307       ** not be checked */
308       pOp->p3 = 1;
309     }
310   }
311 
312   /* Because there can be multiple generated columns that refer to one another,
313   ** this is a two-pass algorithm.  On the first pass, mark all generated
314   ** columns as "not available".
315   */
316   for(i=0; i<pTab->nCol; i++){
317     if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
318       testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
319       testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
320       pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
321     }
322   }
323 
324   w.u.pTab = pTab;
325   w.xExprCallback = exprColumnFlagUnion;
326   w.xSelectCallback = 0;
327   w.xSelectCallback2 = 0;
328 
329   /* On the second pass, compute the value of each NOT-AVAILABLE column.
330   ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
331   ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
332   ** they are needed.
333   */
334   pParse->iSelfTab = -iRegStore;
335   do{
336     eProgress = 0;
337     pRedo = 0;
338     for(i=0; i<pTab->nCol; i++){
339       Column *pCol = pTab->aCol + i;
340       if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
341         int x;
342         pCol->colFlags |= COLFLAG_BUSY;
343         w.eCode = 0;
344         sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol));
345         pCol->colFlags &= ~COLFLAG_BUSY;
346         if( w.eCode & COLFLAG_NOTAVAIL ){
347           pRedo = pCol;
348           continue;
349         }
350         eProgress = 1;
351         assert( pCol->colFlags & COLFLAG_GENERATED );
352         x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
353         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x);
354         pCol->colFlags &= ~COLFLAG_NOTAVAIL;
355       }
356     }
357   }while( pRedo && eProgress );
358   if( pRedo ){
359     sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName);
360   }
361   pParse->iSelfTab = 0;
362 }
363 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
364 
365 
366 #ifndef SQLITE_OMIT_AUTOINCREMENT
367 /*
368 ** Locate or create an AutoincInfo structure associated with table pTab
369 ** which is in database iDb.  Return the register number for the register
370 ** that holds the maximum rowid.  Return zero if pTab is not an AUTOINCREMENT
371 ** table.  (Also return zero when doing a VACUUM since we do not want to
372 ** update the AUTOINCREMENT counters during a VACUUM.)
373 **
374 ** There is at most one AutoincInfo structure per table even if the
375 ** same table is autoincremented multiple times due to inserts within
376 ** triggers.  A new AutoincInfo structure is created if this is the
377 ** first use of table pTab.  On 2nd and subsequent uses, the original
378 ** AutoincInfo structure is used.
379 **
380 ** Four consecutive registers are allocated:
381 **
382 **   (1)  The name of the pTab table.
383 **   (2)  The maximum ROWID of pTab.
384 **   (3)  The rowid in sqlite_sequence of pTab
385 **   (4)  The original value of the max ROWID in pTab, or NULL if none
386 **
387 ** The 2nd register is the one that is returned.  That is all the
388 ** insert routine needs to know about.
389 */
390 static int autoIncBegin(
391   Parse *pParse,      /* Parsing context */
392   int iDb,            /* Index of the database holding pTab */
393   Table *pTab         /* The table we are writing to */
394 ){
395   int memId = 0;      /* Register holding maximum rowid */
396   assert( pParse->db->aDb[iDb].pSchema!=0 );
397   if( (pTab->tabFlags & TF_Autoincrement)!=0
398    && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
399   ){
400     Parse *pToplevel = sqlite3ParseToplevel(pParse);
401     AutoincInfo *pInfo;
402     Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
403 
404     /* Verify that the sqlite_sequence table exists and is an ordinary
405     ** rowid table with exactly two columns.
406     ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
407     if( pSeqTab==0
408      || !HasRowid(pSeqTab)
409      || NEVER(IsVirtual(pSeqTab))
410      || pSeqTab->nCol!=2
411     ){
412       pParse->nErr++;
413       pParse->rc = SQLITE_CORRUPT_SEQUENCE;
414       return 0;
415     }
416 
417     pInfo = pToplevel->pAinc;
418     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
419     if( pInfo==0 ){
420       pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
421       sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo);
422       testcase( pParse->earlyCleanup );
423       if( pParse->db->mallocFailed ) return 0;
424       pInfo->pNext = pToplevel->pAinc;
425       pToplevel->pAinc = pInfo;
426       pInfo->pTab = pTab;
427       pInfo->iDb = iDb;
428       pToplevel->nMem++;                  /* Register to hold name of table */
429       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
430       pToplevel->nMem +=2;       /* Rowid in sqlite_sequence + orig max val */
431     }
432     memId = pInfo->regCtr;
433   }
434   return memId;
435 }
436 
437 /*
438 ** This routine generates code that will initialize all of the
439 ** register used by the autoincrement tracker.
440 */
441 void sqlite3AutoincrementBegin(Parse *pParse){
442   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
443   sqlite3 *db = pParse->db;  /* The database connection */
444   Db *pDb;                   /* Database only autoinc table */
445   int memId;                 /* Register holding max rowid */
446   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
447 
448   /* This routine is never called during trigger-generation.  It is
449   ** only called from the top-level */
450   assert( pParse->pTriggerTab==0 );
451   assert( sqlite3IsToplevel(pParse) );
452 
453   assert( v );   /* We failed long ago if this is not so */
454   for(p = pParse->pAinc; p; p = p->pNext){
455     static const int iLn = VDBE_OFFSET_LINENO(2);
456     static const VdbeOpList autoInc[] = {
457       /* 0  */ {OP_Null,    0,  0, 0},
458       /* 1  */ {OP_Rewind,  0, 10, 0},
459       /* 2  */ {OP_Column,  0,  0, 0},
460       /* 3  */ {OP_Ne,      0,  9, 0},
461       /* 4  */ {OP_Rowid,   0,  0, 0},
462       /* 5  */ {OP_Column,  0,  1, 0},
463       /* 6  */ {OP_AddImm,  0,  0, 0},
464       /* 7  */ {OP_Copy,    0,  0, 0},
465       /* 8  */ {OP_Goto,    0, 11, 0},
466       /* 9  */ {OP_Next,    0,  2, 0},
467       /* 10 */ {OP_Integer, 0,  0, 0},
468       /* 11 */ {OP_Close,   0,  0, 0}
469     };
470     VdbeOp *aOp;
471     pDb = &db->aDb[p->iDb];
472     memId = p->regCtr;
473     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
474     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
475     sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
476     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
477     if( aOp==0 ) break;
478     aOp[0].p2 = memId;
479     aOp[0].p3 = memId+2;
480     aOp[2].p3 = memId;
481     aOp[3].p1 = memId-1;
482     aOp[3].p3 = memId;
483     aOp[3].p5 = SQLITE_JUMPIFNULL;
484     aOp[4].p2 = memId+1;
485     aOp[5].p3 = memId;
486     aOp[6].p1 = memId;
487     aOp[7].p2 = memId+2;
488     aOp[7].p1 = memId;
489     aOp[10].p2 = memId;
490     if( pParse->nTab==0 ) pParse->nTab = 1;
491   }
492 }
493 
494 /*
495 ** Update the maximum rowid for an autoincrement calculation.
496 **
497 ** This routine should be called when the regRowid register holds a
498 ** new rowid that is about to be inserted.  If that new rowid is
499 ** larger than the maximum rowid in the memId memory cell, then the
500 ** memory cell is updated.
501 */
502 static void autoIncStep(Parse *pParse, int memId, int regRowid){
503   if( memId>0 ){
504     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
505   }
506 }
507 
508 /*
509 ** This routine generates the code needed to write autoincrement
510 ** maximum rowid values back into the sqlite_sequence register.
511 ** Every statement that might do an INSERT into an autoincrement
512 ** table (either directly or through triggers) needs to call this
513 ** routine just before the "exit" code.
514 */
515 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
516   AutoincInfo *p;
517   Vdbe *v = pParse->pVdbe;
518   sqlite3 *db = pParse->db;
519 
520   assert( v );
521   for(p = pParse->pAinc; p; p = p->pNext){
522     static const int iLn = VDBE_OFFSET_LINENO(2);
523     static const VdbeOpList autoIncEnd[] = {
524       /* 0 */ {OP_NotNull,     0, 2, 0},
525       /* 1 */ {OP_NewRowid,    0, 0, 0},
526       /* 2 */ {OP_MakeRecord,  0, 2, 0},
527       /* 3 */ {OP_Insert,      0, 0, 0},
528       /* 4 */ {OP_Close,       0, 0, 0}
529     };
530     VdbeOp *aOp;
531     Db *pDb = &db->aDb[p->iDb];
532     int iRec;
533     int memId = p->regCtr;
534 
535     iRec = sqlite3GetTempReg(pParse);
536     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
537     sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
538     VdbeCoverage(v);
539     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
540     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
541     if( aOp==0 ) break;
542     aOp[0].p1 = memId+1;
543     aOp[1].p2 = memId+1;
544     aOp[2].p1 = memId-1;
545     aOp[2].p3 = iRec;
546     aOp[3].p2 = iRec;
547     aOp[3].p3 = memId+1;
548     aOp[3].p5 = OPFLAG_APPEND;
549     sqlite3ReleaseTempReg(pParse, iRec);
550   }
551 }
552 void sqlite3AutoincrementEnd(Parse *pParse){
553   if( pParse->pAinc ) autoIncrementEnd(pParse);
554 }
555 #else
556 /*
557 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
558 ** above are all no-ops
559 */
560 # define autoIncBegin(A,B,C) (0)
561 # define autoIncStep(A,B,C)
562 #endif /* SQLITE_OMIT_AUTOINCREMENT */
563 
564 
565 /* Forward declaration */
566 static int xferOptimization(
567   Parse *pParse,        /* Parser context */
568   Table *pDest,         /* The table we are inserting into */
569   Select *pSelect,      /* A SELECT statement to use as the data source */
570   int onError,          /* How to handle constraint errors */
571   int iDbDest           /* The database of pDest */
572 );
573 
574 /*
575 ** This routine is called to handle SQL of the following forms:
576 **
577 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
578 **    insert into TABLE (IDLIST) select
579 **    insert into TABLE (IDLIST) default values
580 **
581 ** The IDLIST following the table name is always optional.  If omitted,
582 ** then a list of all (non-hidden) columns for the table is substituted.
583 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
584 ** is omitted.
585 **
586 ** For the pSelect parameter holds the values to be inserted for the
587 ** first two forms shown above.  A VALUES clause is really just short-hand
588 ** for a SELECT statement that omits the FROM clause and everything else
589 ** that follows.  If the pSelect parameter is NULL, that means that the
590 ** DEFAULT VALUES form of the INSERT statement is intended.
591 **
592 ** The code generated follows one of four templates.  For a simple
593 ** insert with data coming from a single-row VALUES clause, the code executes
594 ** once straight down through.  Pseudo-code follows (we call this
595 ** the "1st template"):
596 **
597 **         open write cursor to <table> and its indices
598 **         put VALUES clause expressions into registers
599 **         write the resulting record into <table>
600 **         cleanup
601 **
602 ** The three remaining templates assume the statement is of the form
603 **
604 **   INSERT INTO <table> SELECT ...
605 **
606 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
607 ** in other words if the SELECT pulls all columns from a single table
608 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
609 ** if <table2> and <table1> are distinct tables but have identical
610 ** schemas, including all the same indices, then a special optimization
611 ** is invoked that copies raw records from <table2> over to <table1>.
612 ** See the xferOptimization() function for the implementation of this
613 ** template.  This is the 2nd template.
614 **
615 **         open a write cursor to <table>
616 **         open read cursor on <table2>
617 **         transfer all records in <table2> over to <table>
618 **         close cursors
619 **         foreach index on <table>
620 **           open a write cursor on the <table> index
621 **           open a read cursor on the corresponding <table2> index
622 **           transfer all records from the read to the write cursors
623 **           close cursors
624 **         end foreach
625 **
626 ** The 3rd template is for when the second template does not apply
627 ** and the SELECT clause does not read from <table> at any time.
628 ** The generated code follows this template:
629 **
630 **         X <- A
631 **         goto B
632 **      A: setup for the SELECT
633 **         loop over the rows in the SELECT
634 **           load values into registers R..R+n
635 **           yield X
636 **         end loop
637 **         cleanup after the SELECT
638 **         end-coroutine X
639 **      B: open write cursor to <table> and its indices
640 **      C: yield X, at EOF goto D
641 **         insert the select result into <table> from R..R+n
642 **         goto C
643 **      D: cleanup
644 **
645 ** The 4th template is used if the insert statement takes its
646 ** values from a SELECT but the data is being inserted into a table
647 ** that is also read as part of the SELECT.  In the third form,
648 ** we have to use an intermediate table to store the results of
649 ** the select.  The template is like this:
650 **
651 **         X <- A
652 **         goto B
653 **      A: setup for the SELECT
654 **         loop over the tables in the SELECT
655 **           load value into register R..R+n
656 **           yield X
657 **         end loop
658 **         cleanup after the SELECT
659 **         end co-routine R
660 **      B: open temp table
661 **      L: yield X, at EOF goto M
662 **         insert row from R..R+n into temp table
663 **         goto L
664 **      M: open write cursor to <table> and its indices
665 **         rewind temp table
666 **      C: loop over rows of intermediate table
667 **           transfer values form intermediate table into <table>
668 **         end loop
669 **      D: cleanup
670 */
671 void sqlite3Insert(
672   Parse *pParse,        /* Parser context */
673   SrcList *pTabList,    /* Name of table into which we are inserting */
674   Select *pSelect,      /* A SELECT statement to use as the data source */
675   IdList *pColumn,      /* Column names corresponding to IDLIST, or NULL. */
676   int onError,          /* How to handle constraint errors */
677   Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */
678 ){
679   sqlite3 *db;          /* The main database structure */
680   Table *pTab;          /* The table to insert into.  aka TABLE */
681   int i, j;             /* Loop counters */
682   Vdbe *v;              /* Generate code into this virtual machine */
683   Index *pIdx;          /* For looping over indices of the table */
684   int nColumn;          /* Number of columns in the data */
685   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
686   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
687   int iIdxCur = 0;      /* First index cursor */
688   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
689   int endOfLoop;        /* Label for the end of the insertion loop */
690   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
691   int addrInsTop = 0;   /* Jump to label "D" */
692   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
693   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
694   int iDb;              /* Index of database holding TABLE */
695   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
696   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
697   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
698   u8 bIdListInOrder;    /* True if IDLIST is in table order */
699   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
700   int iRegStore;        /* Register in which to store next column */
701 
702   /* Register allocations */
703   int regFromSelect = 0;/* Base register for data coming from SELECT */
704   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
705   int regRowCount = 0;  /* Memory cell used for the row counter */
706   int regIns;           /* Block of regs holding rowid+data being inserted */
707   int regRowid;         /* registers holding insert rowid */
708   int regData;          /* register holding first column to insert */
709   int *aRegIdx = 0;     /* One register allocated to each index */
710 
711 #ifndef SQLITE_OMIT_TRIGGER
712   int isView;                 /* True if attempting to insert into a view */
713   Trigger *pTrigger;          /* List of triggers on pTab, if required */
714   int tmask;                  /* Mask of trigger times */
715 #endif
716 
717   db = pParse->db;
718   assert( db->pParse==pParse );
719   if( pParse->nErr ){
720     goto insert_cleanup;
721   }
722   assert( db->mallocFailed==0 );
723   dest.iSDParm = 0;  /* Suppress a harmless compiler warning */
724 
725   /* If the Select object is really just a simple VALUES() list with a
726   ** single row (the common case) then keep that one row of values
727   ** and discard the other (unused) parts of the pSelect object
728   */
729   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
730     pList = pSelect->pEList;
731     pSelect->pEList = 0;
732     sqlite3SelectDelete(db, pSelect);
733     pSelect = 0;
734   }
735 
736   /* Locate the table into which we will be inserting new information.
737   */
738   assert( pTabList->nSrc==1 );
739   pTab = sqlite3SrcListLookup(pParse, pTabList);
740   if( pTab==0 ){
741     goto insert_cleanup;
742   }
743   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
744   assert( iDb<db->nDb );
745   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
746                        db->aDb[iDb].zDbSName) ){
747     goto insert_cleanup;
748   }
749   withoutRowid = !HasRowid(pTab);
750 
751   /* Figure out if we have any triggers and if the table being
752   ** inserted into is a view
753   */
754 #ifndef SQLITE_OMIT_TRIGGER
755   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
756   isView = IsView(pTab);
757 #else
758 # define pTrigger 0
759 # define tmask 0
760 # define isView 0
761 #endif
762 #ifdef SQLITE_OMIT_VIEW
763 # undef isView
764 # define isView 0
765 #endif
766   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
767 
768   /* If pTab is really a view, make sure it has been initialized.
769   ** ViewGetColumnNames() is a no-op if pTab is not a view.
770   */
771   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
772     goto insert_cleanup;
773   }
774 
775   /* Cannot insert into a read-only table.
776   */
777   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
778     goto insert_cleanup;
779   }
780 
781   /* Allocate a VDBE
782   */
783   v = sqlite3GetVdbe(pParse);
784   if( v==0 ) goto insert_cleanup;
785   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
786   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
787 
788 #ifndef SQLITE_OMIT_XFER_OPT
789   /* If the statement is of the form
790   **
791   **       INSERT INTO <table1> SELECT * FROM <table2>;
792   **
793   ** Then special optimizations can be applied that make the transfer
794   ** very fast and which reduce fragmentation of indices.
795   **
796   ** This is the 2nd template.
797   */
798   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
799     assert( !pTrigger );
800     assert( pList==0 );
801     goto insert_end;
802   }
803 #endif /* SQLITE_OMIT_XFER_OPT */
804 
805   /* If this is an AUTOINCREMENT table, look up the sequence number in the
806   ** sqlite_sequence table and store it in memory cell regAutoinc.
807   */
808   regAutoinc = autoIncBegin(pParse, iDb, pTab);
809 
810   /* Allocate a block registers to hold the rowid and the values
811   ** for all columns of the new row.
812   */
813   regRowid = regIns = pParse->nMem+1;
814   pParse->nMem += pTab->nCol + 1;
815   if( IsVirtual(pTab) ){
816     regRowid++;
817     pParse->nMem++;
818   }
819   regData = regRowid+1;
820 
821   /* If the INSERT statement included an IDLIST term, then make sure
822   ** all elements of the IDLIST really are columns of the table and
823   ** remember the column indices.
824   **
825   ** If the table has an INTEGER PRIMARY KEY column and that column
826   ** is named in the IDLIST, then record in the ipkColumn variable
827   ** the index into IDLIST of the primary key column.  ipkColumn is
828   ** the index of the primary key as it appears in IDLIST, not as
829   ** is appears in the original table.  (The index of the INTEGER
830   ** PRIMARY KEY in the original table is pTab->iPKey.)  After this
831   ** loop, if ipkColumn==(-1), that means that integer primary key
832   ** is unspecified, and hence the table is either WITHOUT ROWID or
833   ** it will automatically generated an integer primary key.
834   **
835   ** bIdListInOrder is true if the columns in IDLIST are in storage
836   ** order.  This enables an optimization that avoids shuffling the
837   ** columns into storage order.  False negatives are harmless,
838   ** but false positives will cause database corruption.
839   */
840   bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
841   if( pColumn ){
842     for(i=0; i<pColumn->nId; i++){
843       pColumn->a[i].idx = -1;
844     }
845     for(i=0; i<pColumn->nId; i++){
846       for(j=0; j<pTab->nCol; j++){
847         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){
848           pColumn->a[i].idx = j;
849           if( i!=j ) bIdListInOrder = 0;
850           if( j==pTab->iPKey ){
851             ipkColumn = i;  assert( !withoutRowid );
852           }
853 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
854           if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
855             sqlite3ErrorMsg(pParse,
856                "cannot INSERT into generated column \"%s\"",
857                pTab->aCol[j].zCnName);
858             goto insert_cleanup;
859           }
860 #endif
861           break;
862         }
863       }
864       if( j>=pTab->nCol ){
865         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
866           ipkColumn = i;
867           bIdListInOrder = 0;
868         }else{
869           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
870               pTabList->a, pColumn->a[i].zName);
871           pParse->checkSchema = 1;
872           goto insert_cleanup;
873         }
874       }
875     }
876   }
877 
878   /* Figure out how many columns of data are supplied.  If the data
879   ** is coming from a SELECT statement, then generate a co-routine that
880   ** produces a single row of the SELECT on each invocation.  The
881   ** co-routine is the common header to the 3rd and 4th templates.
882   */
883   if( pSelect ){
884     /* Data is coming from a SELECT or from a multi-row VALUES clause.
885     ** Generate a co-routine to run the SELECT. */
886     int regYield;       /* Register holding co-routine entry-point */
887     int addrTop;        /* Top of the co-routine */
888     int rc;             /* Result code */
889 
890     regYield = ++pParse->nMem;
891     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
892     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
893     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
894     dest.iSdst = bIdListInOrder ? regData : 0;
895     dest.nSdst = pTab->nCol;
896     rc = sqlite3Select(pParse, pSelect, &dest);
897     regFromSelect = dest.iSdst;
898     assert( db->pParse==pParse );
899     if( rc || pParse->nErr ) goto insert_cleanup;
900     assert( db->mallocFailed==0 );
901     sqlite3VdbeEndCoroutine(v, regYield);
902     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
903     assert( pSelect->pEList );
904     nColumn = pSelect->pEList->nExpr;
905 
906     /* Set useTempTable to TRUE if the result of the SELECT statement
907     ** should be written into a temporary table (template 4).  Set to
908     ** FALSE if each output row of the SELECT can be written directly into
909     ** the destination table (template 3).
910     **
911     ** A temp table must be used if the table being updated is also one
912     ** of the tables being read by the SELECT statement.  Also use a
913     ** temp table in the case of row triggers.
914     */
915     if( pTrigger || readsTable(pParse, iDb, pTab) ){
916       useTempTable = 1;
917     }
918 
919     if( useTempTable ){
920       /* Invoke the coroutine to extract information from the SELECT
921       ** and add it to a transient table srcTab.  The code generated
922       ** here is from the 4th template:
923       **
924       **      B: open temp table
925       **      L: yield X, goto M at EOF
926       **         insert row from R..R+n into temp table
927       **         goto L
928       **      M: ...
929       */
930       int regRec;          /* Register to hold packed record */
931       int regTempRowid;    /* Register to hold temp table ROWID */
932       int addrL;           /* Label "L" */
933 
934       srcTab = pParse->nTab++;
935       regRec = sqlite3GetTempReg(pParse);
936       regTempRowid = sqlite3GetTempReg(pParse);
937       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
938       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
939       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
940       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
941       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
942       sqlite3VdbeGoto(v, addrL);
943       sqlite3VdbeJumpHere(v, addrL);
944       sqlite3ReleaseTempReg(pParse, regRec);
945       sqlite3ReleaseTempReg(pParse, regTempRowid);
946     }
947   }else{
948     /* This is the case if the data for the INSERT is coming from a
949     ** single-row VALUES clause
950     */
951     NameContext sNC;
952     memset(&sNC, 0, sizeof(sNC));
953     sNC.pParse = pParse;
954     srcTab = -1;
955     assert( useTempTable==0 );
956     if( pList ){
957       nColumn = pList->nExpr;
958       if( sqlite3ResolveExprListNames(&sNC, pList) ){
959         goto insert_cleanup;
960       }
961     }else{
962       nColumn = 0;
963     }
964   }
965 
966   /* If there is no IDLIST term but the table has an integer primary
967   ** key, the set the ipkColumn variable to the integer primary key
968   ** column index in the original table definition.
969   */
970   if( pColumn==0 && nColumn>0 ){
971     ipkColumn = pTab->iPKey;
972 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
973     if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
974       testcase( pTab->tabFlags & TF_HasVirtual );
975       testcase( pTab->tabFlags & TF_HasStored );
976       for(i=ipkColumn-1; i>=0; i--){
977         if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
978           testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
979           testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
980           ipkColumn--;
981         }
982       }
983     }
984 #endif
985 
986     /* Make sure the number of columns in the source data matches the number
987     ** of columns to be inserted into the table.
988     */
989     assert( TF_HasHidden==COLFLAG_HIDDEN );
990     assert( TF_HasGenerated==COLFLAG_GENERATED );
991     assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) );
992     if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){
993       for(i=0; i<pTab->nCol; i++){
994         if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
995       }
996     }
997     if( nColumn!=(pTab->nCol-nHidden) ){
998       sqlite3ErrorMsg(pParse,
999          "table %S has %d columns but %d values were supplied",
1000          pTabList->a, pTab->nCol-nHidden, nColumn);
1001      goto insert_cleanup;
1002     }
1003   }
1004   if( pColumn!=0 && nColumn!=pColumn->nId ){
1005     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
1006     goto insert_cleanup;
1007   }
1008 
1009   /* Initialize the count of rows to be inserted
1010   */
1011   if( (db->flags & SQLITE_CountRows)!=0
1012    && !pParse->nested
1013    && !pParse->pTriggerTab
1014    && !pParse->bReturning
1015   ){
1016     regRowCount = ++pParse->nMem;
1017     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
1018   }
1019 
1020   /* If this is not a view, open the table and and all indices */
1021   if( !isView ){
1022     int nIdx;
1023     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
1024                                       &iDataCur, &iIdxCur);
1025     aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
1026     if( aRegIdx==0 ){
1027       goto insert_cleanup;
1028     }
1029     for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
1030       assert( pIdx );
1031       aRegIdx[i] = ++pParse->nMem;
1032       pParse->nMem += pIdx->nColumn;
1033     }
1034     aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */
1035   }
1036 #ifndef SQLITE_OMIT_UPSERT
1037   if( pUpsert ){
1038     Upsert *pNx;
1039     if( IsVirtual(pTab) ){
1040       sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
1041               pTab->zName);
1042       goto insert_cleanup;
1043     }
1044     if( IsView(pTab) ){
1045       sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
1046       goto insert_cleanup;
1047     }
1048     if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
1049       goto insert_cleanup;
1050     }
1051     pTabList->a[0].iCursor = iDataCur;
1052     pNx = pUpsert;
1053     do{
1054       pNx->pUpsertSrc = pTabList;
1055       pNx->regData = regData;
1056       pNx->iDataCur = iDataCur;
1057       pNx->iIdxCur = iIdxCur;
1058       if( pNx->pUpsertTarget ){
1059         if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){
1060           goto insert_cleanup;
1061         }
1062       }
1063       pNx = pNx->pNextUpsert;
1064     }while( pNx!=0 );
1065   }
1066 #endif
1067 
1068 
1069   /* This is the top of the main insertion loop */
1070   if( useTempTable ){
1071     /* This block codes the top of loop only.  The complete loop is the
1072     ** following pseudocode (template 4):
1073     **
1074     **         rewind temp table, if empty goto D
1075     **      C: loop over rows of intermediate table
1076     **           transfer values form intermediate table into <table>
1077     **         end loop
1078     **      D: ...
1079     */
1080     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
1081     addrCont = sqlite3VdbeCurrentAddr(v);
1082   }else if( pSelect ){
1083     /* This block codes the top of loop only.  The complete loop is the
1084     ** following pseudocode (template 3):
1085     **
1086     **      C: yield X, at EOF goto D
1087     **         insert the select result into <table> from R..R+n
1088     **         goto C
1089     **      D: ...
1090     */
1091     sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0);
1092     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1093     VdbeCoverage(v);
1094     if( ipkColumn>=0 ){
1095       /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1096       ** SELECT, go ahead and copy the value into the rowid slot now, so that
1097       ** the value does not get overwritten by a NULL at tag-20191021-002. */
1098       sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
1099     }
1100   }
1101 
1102   /* Compute data for ordinary columns of the new entry.  Values
1103   ** are written in storage order into registers starting with regData.
1104   ** Only ordinary columns are computed in this loop. The rowid
1105   ** (if there is one) is computed later and generated columns are
1106   ** computed after the rowid since they might depend on the value
1107   ** of the rowid.
1108   */
1109   nHidden = 0;
1110   iRegStore = regData;  assert( regData==regRowid+1 );
1111   for(i=0; i<pTab->nCol; i++, iRegStore++){
1112     int k;
1113     u32 colFlags;
1114     assert( i>=nHidden );
1115     if( i==pTab->iPKey ){
1116       /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1117       ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1118       ** using excess space.  The file format definition requires this extra
1119       ** NULL - we cannot optimize further by skipping the column completely */
1120       sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1121       continue;
1122     }
1123     if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
1124       nHidden++;
1125       if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
1126         /* Virtual columns do not participate in OP_MakeRecord.  So back up
1127         ** iRegStore by one slot to compensate for the iRegStore++ in the
1128         ** outer for() loop */
1129         iRegStore--;
1130         continue;
1131       }else if( (colFlags & COLFLAG_STORED)!=0 ){
1132         /* Stored columns are computed later.  But if there are BEFORE
1133         ** triggers, the slots used for stored columns will be OP_Copy-ed
1134         ** to a second block of registers, so the register needs to be
1135         ** initialized to NULL to avoid an uninitialized register read */
1136         if( tmask & TRIGGER_BEFORE ){
1137           sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1138         }
1139         continue;
1140       }else if( pColumn==0 ){
1141         /* Hidden columns that are not explicitly named in the INSERT
1142         ** get there default value */
1143         sqlite3ExprCodeFactorable(pParse,
1144             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1145             iRegStore);
1146         continue;
1147       }
1148     }
1149     if( pColumn ){
1150       for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){}
1151       if( j>=pColumn->nId ){
1152         /* A column not named in the insert column list gets its
1153         ** default value */
1154         sqlite3ExprCodeFactorable(pParse,
1155             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1156             iRegStore);
1157         continue;
1158       }
1159       k = j;
1160     }else if( nColumn==0 ){
1161       /* This is INSERT INTO ... DEFAULT VALUES.  Load the default value. */
1162       sqlite3ExprCodeFactorable(pParse,
1163           sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1164           iRegStore);
1165       continue;
1166     }else{
1167       k = i - nHidden;
1168     }
1169 
1170     if( useTempTable ){
1171       sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
1172     }else if( pSelect ){
1173       if( regFromSelect!=regData ){
1174         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
1175       }
1176     }else{
1177       sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore);
1178     }
1179   }
1180 
1181 
1182   /* Run the BEFORE and INSTEAD OF triggers, if there are any
1183   */
1184   endOfLoop = sqlite3VdbeMakeLabel(pParse);
1185   if( tmask & TRIGGER_BEFORE ){
1186     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
1187 
1188     /* build the NEW.* reference row.  Note that if there is an INTEGER
1189     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1190     ** translated into a unique ID for the row.  But on a BEFORE trigger,
1191     ** we do not know what the unique ID will be (because the insert has
1192     ** not happened yet) so we substitute a rowid of -1
1193     */
1194     if( ipkColumn<0 ){
1195       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1196     }else{
1197       int addr1;
1198       assert( !withoutRowid );
1199       if( useTempTable ){
1200         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
1201       }else{
1202         assert( pSelect==0 );  /* Otherwise useTempTable is true */
1203         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
1204       }
1205       addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
1206       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1207       sqlite3VdbeJumpHere(v, addr1);
1208       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
1209     }
1210 
1211     /* Copy the new data already generated. */
1212     assert( pTab->nNVCol>0 );
1213     sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
1214 
1215 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1216     /* Compute the new value for generated columns after all other
1217     ** columns have already been computed.  This must be done after
1218     ** computing the ROWID in case one of the generated columns
1219     ** refers to the ROWID. */
1220     if( pTab->tabFlags & TF_HasGenerated ){
1221       testcase( pTab->tabFlags & TF_HasVirtual );
1222       testcase( pTab->tabFlags & TF_HasStored );
1223       sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
1224     }
1225 #endif
1226 
1227     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1228     ** do not attempt any conversions before assembling the record.
1229     ** If this is a real table, attempt conversions as required by the
1230     ** table column affinities.
1231     */
1232     if( !isView ){
1233       sqlite3TableAffinity(v, pTab, regCols+1);
1234     }
1235 
1236     /* Fire BEFORE or INSTEAD OF triggers */
1237     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
1238         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
1239 
1240     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
1241   }
1242 
1243   if( !isView ){
1244     if( IsVirtual(pTab) ){
1245       /* The row that the VUpdate opcode will delete: none */
1246       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
1247     }
1248     if( ipkColumn>=0 ){
1249       /* Compute the new rowid */
1250       if( useTempTable ){
1251         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
1252       }else if( pSelect ){
1253         /* Rowid already initialized at tag-20191021-001 */
1254       }else{
1255         Expr *pIpk = pList->a[ipkColumn].pExpr;
1256         if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
1257           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1258           appendFlag = 1;
1259         }else{
1260           sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
1261         }
1262       }
1263       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1264       ** to generate a unique primary key value.
1265       */
1266       if( !appendFlag ){
1267         int addr1;
1268         if( !IsVirtual(pTab) ){
1269           addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
1270           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1271           sqlite3VdbeJumpHere(v, addr1);
1272         }else{
1273           addr1 = sqlite3VdbeCurrentAddr(v);
1274           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
1275         }
1276         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
1277       }
1278     }else if( IsVirtual(pTab) || withoutRowid ){
1279       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
1280     }else{
1281       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1282       appendFlag = 1;
1283     }
1284     autoIncStep(pParse, regAutoinc, regRowid);
1285 
1286 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1287     /* Compute the new value for generated columns after all other
1288     ** columns have already been computed.  This must be done after
1289     ** computing the ROWID in case one of the generated columns
1290     ** is derived from the INTEGER PRIMARY KEY. */
1291     if( pTab->tabFlags & TF_HasGenerated ){
1292       sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
1293     }
1294 #endif
1295 
1296     /* Generate code to check constraints and generate index keys and
1297     ** do the insertion.
1298     */
1299 #ifndef SQLITE_OMIT_VIRTUALTABLE
1300     if( IsVirtual(pTab) ){
1301       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1302       sqlite3VtabMakeWritable(pParse, pTab);
1303       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1304       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1305       sqlite3MayAbort(pParse);
1306     }else
1307 #endif
1308     {
1309       int isReplace = 0;/* Set to true if constraints may cause a replace */
1310       int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
1311       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1312           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1313       );
1314       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1315 
1316       /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1317       ** constraints or (b) there are no triggers and this table is not a
1318       ** parent table in a foreign key constraint. It is safe to set the
1319       ** flag in the second case as if any REPLACE constraint is hit, an
1320       ** OP_Delete or OP_IdxDelete instruction will be executed on each
1321       ** cursor that is disturbed. And these instructions both clear the
1322       ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1323       ** functionality.  */
1324       bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
1325       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1326           regIns, aRegIdx, 0, appendFlag, bUseSeek
1327       );
1328     }
1329 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1330   }else if( pParse->bReturning ){
1331     /* If there is a RETURNING clause, populate the rowid register with
1332     ** constant value -1, in case one or more of the returned expressions
1333     ** refer to the "rowid" of the view.  */
1334     sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
1335 #endif
1336   }
1337 
1338   /* Update the count of rows that are inserted
1339   */
1340   if( regRowCount ){
1341     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1342   }
1343 
1344   if( pTrigger ){
1345     /* Code AFTER triggers */
1346     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1347         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1348   }
1349 
1350   /* The bottom of the main insertion loop, if the data source
1351   ** is a SELECT statement.
1352   */
1353   sqlite3VdbeResolveLabel(v, endOfLoop);
1354   if( useTempTable ){
1355     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1356     sqlite3VdbeJumpHere(v, addrInsTop);
1357     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1358   }else if( pSelect ){
1359     sqlite3VdbeGoto(v, addrCont);
1360 #ifdef SQLITE_DEBUG
1361     /* If we are jumping back to an OP_Yield that is preceded by an
1362     ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1363     ** OP_ReleaseReg will be included in the loop. */
1364     if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){
1365       assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield );
1366       sqlite3VdbeChangeP5(v, 1);
1367     }
1368 #endif
1369     sqlite3VdbeJumpHere(v, addrInsTop);
1370   }
1371 
1372 #ifndef SQLITE_OMIT_XFER_OPT
1373 insert_end:
1374 #endif /* SQLITE_OMIT_XFER_OPT */
1375   /* Update the sqlite_sequence table by storing the content of the
1376   ** maximum rowid counter values recorded while inserting into
1377   ** autoincrement tables.
1378   */
1379   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1380     sqlite3AutoincrementEnd(pParse);
1381   }
1382 
1383   /*
1384   ** Return the number of rows inserted. If this routine is
1385   ** generating code because of a call to sqlite3NestedParse(), do not
1386   ** invoke the callback function.
1387   */
1388   if( regRowCount ){
1389     sqlite3CodeChangeCount(v, regRowCount, "rows inserted");
1390   }
1391 
1392 insert_cleanup:
1393   sqlite3SrcListDelete(db, pTabList);
1394   sqlite3ExprListDelete(db, pList);
1395   sqlite3UpsertDelete(db, pUpsert);
1396   sqlite3SelectDelete(db, pSelect);
1397   sqlite3IdListDelete(db, pColumn);
1398   sqlite3DbFree(db, aRegIdx);
1399 }
1400 
1401 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1402 ** they may interfere with compilation of other functions in this file
1403 ** (or in another file, if this file becomes part of the amalgamation).  */
1404 #ifdef isView
1405  #undef isView
1406 #endif
1407 #ifdef pTrigger
1408  #undef pTrigger
1409 #endif
1410 #ifdef tmask
1411  #undef tmask
1412 #endif
1413 
1414 /*
1415 ** Meanings of bits in of pWalker->eCode for
1416 ** sqlite3ExprReferencesUpdatedColumn()
1417 */
1418 #define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
1419 #define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */
1420 
1421 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1422 *  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1423 ** expression node references any of the
1424 ** columns that are being modifed by an UPDATE statement.
1425 */
1426 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1427   if( pExpr->op==TK_COLUMN ){
1428     assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1429     if( pExpr->iColumn>=0 ){
1430       if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1431         pWalker->eCode |= CKCNSTRNT_COLUMN;
1432       }
1433     }else{
1434       pWalker->eCode |= CKCNSTRNT_ROWID;
1435     }
1436   }
1437   return WRC_Continue;
1438 }
1439 
1440 /*
1441 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
1442 ** only columns that are modified by the UPDATE are those for which
1443 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1444 **
1445 ** Return true if CHECK constraint pExpr uses any of the
1446 ** changing columns (or the rowid if it is changing).  In other words,
1447 ** return true if this CHECK constraint must be validated for
1448 ** the new row in the UPDATE statement.
1449 **
1450 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1451 ** The operation of this routine is the same - return true if an only if
1452 ** the expression uses one or more of columns identified by the second and
1453 ** third arguments.
1454 */
1455 int sqlite3ExprReferencesUpdatedColumn(
1456   Expr *pExpr,    /* The expression to be checked */
1457   int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */
1458   int chngRowid   /* True if UPDATE changes the rowid */
1459 ){
1460   Walker w;
1461   memset(&w, 0, sizeof(w));
1462   w.eCode = 0;
1463   w.xExprCallback = checkConstraintExprNode;
1464   w.u.aiCol = aiChng;
1465   sqlite3WalkExpr(&w, pExpr);
1466   if( !chngRowid ){
1467     testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1468     w.eCode &= ~CKCNSTRNT_ROWID;
1469   }
1470   testcase( w.eCode==0 );
1471   testcase( w.eCode==CKCNSTRNT_COLUMN );
1472   testcase( w.eCode==CKCNSTRNT_ROWID );
1473   testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1474   return w.eCode!=0;
1475 }
1476 
1477 /*
1478 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit
1479 ** the indexes of a table in the order provided in the Table->pIndex list.
1480 ** However, sometimes (rarely - when there is an upsert) it wants to visit
1481 ** the indexes in a different order.  The following data structures accomplish
1482 ** this.
1483 **
1484 ** The IndexIterator object is used to walk through all of the indexes
1485 ** of a table in either Index.pNext order, or in some other order established
1486 ** by an array of IndexListTerm objects.
1487 */
1488 typedef struct IndexListTerm IndexListTerm;
1489 typedef struct IndexIterator IndexIterator;
1490 struct IndexIterator {
1491   int eType;    /* 0 for Index.pNext list.  1 for an array of IndexListTerm */
1492   int i;        /* Index of the current item from the list */
1493   union {
1494     struct {    /* Use this object for eType==0: A Index.pNext list */
1495       Index *pIdx;   /* The current Index */
1496     } lx;
1497     struct {    /* Use this object for eType==1; Array of IndexListTerm */
1498       int nIdx;               /* Size of the array */
1499       IndexListTerm *aIdx;    /* Array of IndexListTerms */
1500     } ax;
1501   } u;
1502 };
1503 
1504 /* When IndexIterator.eType==1, then each index is an array of instances
1505 ** of the following object
1506 */
1507 struct IndexListTerm {
1508   Index *p;  /* The index */
1509   int ix;    /* Which entry in the original Table.pIndex list is this index*/
1510 };
1511 
1512 /* Return the first index on the list */
1513 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){
1514   assert( pIter->i==0 );
1515   if( pIter->eType ){
1516     *pIx = pIter->u.ax.aIdx[0].ix;
1517     return pIter->u.ax.aIdx[0].p;
1518   }else{
1519     *pIx = 0;
1520     return pIter->u.lx.pIdx;
1521   }
1522 }
1523 
1524 /* Return the next index from the list.  Return NULL when out of indexes */
1525 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){
1526   if( pIter->eType ){
1527     int i = ++pIter->i;
1528     if( i>=pIter->u.ax.nIdx ){
1529       *pIx = i;
1530       return 0;
1531     }
1532     *pIx = pIter->u.ax.aIdx[i].ix;
1533     return pIter->u.ax.aIdx[i].p;
1534   }else{
1535     ++(*pIx);
1536     pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext;
1537     return pIter->u.lx.pIdx;
1538   }
1539 }
1540 
1541 /*
1542 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1543 ** on table pTab.
1544 **
1545 ** The regNewData parameter is the first register in a range that contains
1546 ** the data to be inserted or the data after the update.  There will be
1547 ** pTab->nCol+1 registers in this range.  The first register (the one
1548 ** that regNewData points to) will contain the new rowid, or NULL in the
1549 ** case of a WITHOUT ROWID table.  The second register in the range will
1550 ** contain the content of the first table column.  The third register will
1551 ** contain the content of the second table column.  And so forth.
1552 **
1553 ** The regOldData parameter is similar to regNewData except that it contains
1554 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1555 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1556 ** checking regOldData for zero.
1557 **
1558 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1559 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1560 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1561 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1562 **
1563 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1564 ** was explicitly specified as part of the INSERT statement.  If pkChng
1565 ** is zero, it means that the either rowid is computed automatically or
1566 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1567 ** pkChng will only be true if the INSERT statement provides an integer
1568 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1569 **
1570 ** The code generated by this routine will store new index entries into
1571 ** registers identified by aRegIdx[].  No index entry is created for
1572 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1573 ** the same as the order of indices on the linked list of indices
1574 ** at pTab->pIndex.
1575 **
1576 ** (2019-05-07) The generated code also creates a new record for the
1577 ** main table, if pTab is a rowid table, and stores that record in the
1578 ** register identified by aRegIdx[nIdx] - in other words in the first
1579 ** entry of aRegIdx[] past the last index.  It is important that the
1580 ** record be generated during constraint checks to avoid affinity changes
1581 ** to the register content that occur after constraint checks but before
1582 ** the new record is inserted.
1583 **
1584 ** The caller must have already opened writeable cursors on the main
1585 ** table and all applicable indices (that is to say, all indices for which
1586 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1587 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1588 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1589 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1590 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1591 **
1592 ** This routine also generates code to check constraints.  NOT NULL,
1593 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1594 ** then the appropriate action is performed.  There are five possible
1595 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1596 **
1597 **  Constraint type  Action       What Happens
1598 **  ---------------  ----------   ----------------------------------------
1599 **  any              ROLLBACK     The current transaction is rolled back and
1600 **                                sqlite3_step() returns immediately with a
1601 **                                return code of SQLITE_CONSTRAINT.
1602 **
1603 **  any              ABORT        Back out changes from the current command
1604 **                                only (do not do a complete rollback) then
1605 **                                cause sqlite3_step() to return immediately
1606 **                                with SQLITE_CONSTRAINT.
1607 **
1608 **  any              FAIL         Sqlite3_step() returns immediately with a
1609 **                                return code of SQLITE_CONSTRAINT.  The
1610 **                                transaction is not rolled back and any
1611 **                                changes to prior rows are retained.
1612 **
1613 **  any              IGNORE       The attempt in insert or update the current
1614 **                                row is skipped, without throwing an error.
1615 **                                Processing continues with the next row.
1616 **                                (There is an immediate jump to ignoreDest.)
1617 **
1618 **  NOT NULL         REPLACE      The NULL value is replace by the default
1619 **                                value for that column.  If the default value
1620 **                                is NULL, the action is the same as ABORT.
1621 **
1622 **  UNIQUE           REPLACE      The other row that conflicts with the row
1623 **                                being inserted is removed.
1624 **
1625 **  CHECK            REPLACE      Illegal.  The results in an exception.
1626 **
1627 ** Which action to take is determined by the overrideError parameter.
1628 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1629 ** is used.  Or if pParse->onError==OE_Default then the onError value
1630 ** for the constraint is used.
1631 */
1632 void sqlite3GenerateConstraintChecks(
1633   Parse *pParse,       /* The parser context */
1634   Table *pTab,         /* The table being inserted or updated */
1635   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1636   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1637   int iIdxCur,         /* First index cursor */
1638   int regNewData,      /* First register in a range holding values to insert */
1639   int regOldData,      /* Previous content.  0 for INSERTs */
1640   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1641   u8 overrideError,    /* Override onError to this if not OE_Default */
1642   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1643   int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
1644   int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
1645   Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
1646 ){
1647   Vdbe *v;             /* VDBE under constrution */
1648   Index *pIdx;         /* Pointer to one of the indices */
1649   Index *pPk = 0;      /* The PRIMARY KEY index for WITHOUT ROWID tables */
1650   sqlite3 *db;         /* Database connection */
1651   int i;               /* loop counter */
1652   int ix;              /* Index loop counter */
1653   int nCol;            /* Number of columns */
1654   int onError;         /* Conflict resolution strategy */
1655   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1656   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1657   Upsert *pUpsertClause = 0;  /* The specific ON CONFLICT clause for pIdx */
1658   u8 isUpdate;           /* True if this is an UPDATE operation */
1659   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1660   int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */
1661   int upsertIpkDelay = 0;  /* Address of Goto to bypass initial IPK check */
1662   int ipkTop = 0;        /* Top of the IPK uniqueness check */
1663   int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
1664   /* Variables associated with retesting uniqueness constraints after
1665   ** replace triggers fire have run */
1666   int regTrigCnt;       /* Register used to count replace trigger invocations */
1667   int addrRecheck = 0;  /* Jump here to recheck all uniqueness constraints */
1668   int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
1669   Trigger *pTrigger;    /* List of DELETE triggers on the table pTab */
1670   int nReplaceTrig = 0; /* Number of replace triggers coded */
1671   IndexIterator sIdxIter;  /* Index iterator */
1672 
1673   isUpdate = regOldData!=0;
1674   db = pParse->db;
1675   v = pParse->pVdbe;
1676   assert( v!=0 );
1677   assert( !IsView(pTab) );  /* This table is not a VIEW */
1678   nCol = pTab->nCol;
1679 
1680   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1681   ** normal rowid tables.  nPkField is the number of key fields in the
1682   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1683   ** number of fields in the true primary key of the table. */
1684   if( HasRowid(pTab) ){
1685     pPk = 0;
1686     nPkField = 1;
1687   }else{
1688     pPk = sqlite3PrimaryKeyIndex(pTab);
1689     nPkField = pPk->nKeyCol;
1690   }
1691 
1692   /* Record that this module has started */
1693   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1694                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1695 
1696   /* Test all NOT NULL constraints.
1697   */
1698   if( pTab->tabFlags & TF_HasNotNull ){
1699     int b2ndPass = 0;         /* True if currently running 2nd pass */
1700     int nSeenReplace = 0;     /* Number of ON CONFLICT REPLACE operations */
1701     int nGenerated = 0;       /* Number of generated columns with NOT NULL */
1702     while(1){  /* Make 2 passes over columns. Exit loop via "break" */
1703       for(i=0; i<nCol; i++){
1704         int iReg;                        /* Register holding column value */
1705         Column *pCol = &pTab->aCol[i];   /* The column to check for NOT NULL */
1706         int isGenerated;                 /* non-zero if column is generated */
1707         onError = pCol->notNull;
1708         if( onError==OE_None ) continue; /* No NOT NULL on this column */
1709         if( i==pTab->iPKey ){
1710           continue;        /* ROWID is never NULL */
1711         }
1712         isGenerated = pCol->colFlags & COLFLAG_GENERATED;
1713         if( isGenerated && !b2ndPass ){
1714           nGenerated++;
1715           continue;        /* Generated columns processed on 2nd pass */
1716         }
1717         if( aiChng && aiChng[i]<0 && !isGenerated ){
1718           /* Do not check NOT NULL on columns that do not change */
1719           continue;
1720         }
1721         if( overrideError!=OE_Default ){
1722           onError = overrideError;
1723         }else if( onError==OE_Default ){
1724           onError = OE_Abort;
1725         }
1726         if( onError==OE_Replace ){
1727           if( b2ndPass        /* REPLACE becomes ABORT on the 2nd pass */
1728            || pCol->iDflt==0  /* REPLACE is ABORT if no DEFAULT value */
1729           ){
1730             testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1731             testcase( pCol->colFlags & COLFLAG_STORED );
1732             testcase( pCol->colFlags & COLFLAG_GENERATED );
1733             onError = OE_Abort;
1734           }else{
1735             assert( !isGenerated );
1736           }
1737         }else if( b2ndPass && !isGenerated ){
1738           continue;
1739         }
1740         assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1741             || onError==OE_Ignore || onError==OE_Replace );
1742         testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
1743         iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
1744         switch( onError ){
1745           case OE_Replace: {
1746             int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg);
1747             VdbeCoverage(v);
1748             assert( (pCol->colFlags & COLFLAG_GENERATED)==0 );
1749             nSeenReplace++;
1750             sqlite3ExprCodeCopy(pParse,
1751                sqlite3ColumnExpr(pTab, pCol), iReg);
1752             sqlite3VdbeJumpHere(v, addr1);
1753             break;
1754           }
1755           case OE_Abort:
1756             sqlite3MayAbort(pParse);
1757             /* no break */ deliberate_fall_through
1758           case OE_Rollback:
1759           case OE_Fail: {
1760             char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1761                                         pCol->zCnName);
1762             sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
1763                               onError, iReg);
1764             sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1765             sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1766             VdbeCoverage(v);
1767             break;
1768           }
1769           default: {
1770             assert( onError==OE_Ignore );
1771             sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
1772             VdbeCoverage(v);
1773             break;
1774           }
1775         } /* end switch(onError) */
1776       } /* end loop i over columns */
1777       if( nGenerated==0 && nSeenReplace==0 ){
1778         /* If there are no generated columns with NOT NULL constraints
1779         ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1780         ** pass is sufficient */
1781         break;
1782       }
1783       if( b2ndPass ) break;  /* Never need more than 2 passes */
1784       b2ndPass = 1;
1785 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1786       if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
1787         /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1788         ** first pass, recomputed values for all generated columns, as
1789         ** those values might depend on columns affected by the REPLACE.
1790         */
1791         sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab);
1792       }
1793 #endif
1794     } /* end of 2-pass loop */
1795   } /* end if( has-not-null-constraints ) */
1796 
1797   /* Test all CHECK constraints
1798   */
1799 #ifndef SQLITE_OMIT_CHECK
1800   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1801     ExprList *pCheck = pTab->pCheck;
1802     pParse->iSelfTab = -(regNewData+1);
1803     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1804     for(i=0; i<pCheck->nExpr; i++){
1805       int allOk;
1806       Expr *pCopy;
1807       Expr *pExpr = pCheck->a[i].pExpr;
1808       if( aiChng
1809        && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1810       ){
1811         /* The check constraints do not reference any of the columns being
1812         ** updated so there is no point it verifying the check constraint */
1813         continue;
1814       }
1815       if( bAffinityDone==0 ){
1816         sqlite3TableAffinity(v, pTab, regNewData+1);
1817         bAffinityDone = 1;
1818       }
1819       allOk = sqlite3VdbeMakeLabel(pParse);
1820       sqlite3VdbeVerifyAbortable(v, onError);
1821       pCopy = sqlite3ExprDup(db, pExpr, 0);
1822       if( !db->mallocFailed ){
1823         sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL);
1824       }
1825       sqlite3ExprDelete(db, pCopy);
1826       if( onError==OE_Ignore ){
1827         sqlite3VdbeGoto(v, ignoreDest);
1828       }else{
1829         char *zName = pCheck->a[i].zEName;
1830         assert( zName!=0 || pParse->db->mallocFailed );
1831         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1832         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1833                               onError, zName, P4_TRANSIENT,
1834                               P5_ConstraintCheck);
1835       }
1836       sqlite3VdbeResolveLabel(v, allOk);
1837     }
1838     pParse->iSelfTab = 0;
1839   }
1840 #endif /* !defined(SQLITE_OMIT_CHECK) */
1841 
1842   /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1843   ** order:
1844   **
1845   **   (1)  OE_Update
1846   **   (2)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1847   **   (3)  OE_Replace
1848   **
1849   ** OE_Fail and OE_Ignore must happen before any changes are made.
1850   ** OE_Update guarantees that only a single row will change, so it
1851   ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback
1852   ** could happen in any order, but they are grouped up front for
1853   ** convenience.
1854   **
1855   ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1856   ** The order of constraints used to have OE_Update as (2) and OE_Abort
1857   ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1858   ** constraint before any others, so it had to be moved.
1859   **
1860   ** Constraint checking code is generated in this order:
1861   **   (A)  The rowid constraint
1862   **   (B)  Unique index constraints that do not have OE_Replace as their
1863   **        default conflict resolution strategy
1864   **   (C)  Unique index that do use OE_Replace by default.
1865   **
1866   ** The ordering of (2) and (3) is accomplished by making sure the linked
1867   ** list of indexes attached to a table puts all OE_Replace indexes last
1868   ** in the list.  See sqlite3CreateIndex() for where that happens.
1869   */
1870   sIdxIter.eType = 0;
1871   sIdxIter.i = 0;
1872   sIdxIter.u.ax.aIdx = 0;  /* Silence harmless compiler warning */
1873   sIdxIter.u.lx.pIdx = pTab->pIndex;
1874   if( pUpsert ){
1875     if( pUpsert->pUpsertTarget==0 ){
1876       /* There is just on ON CONFLICT clause and it has no constraint-target */
1877       assert( pUpsert->pNextUpsert==0 );
1878       if( pUpsert->isDoUpdate==0 ){
1879         /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
1880         ** Make all unique constraint resolution be OE_Ignore */
1881         overrideError = OE_Ignore;
1882         pUpsert = 0;
1883       }else{
1884         /* A single ON CONFLICT DO UPDATE.  Make all resolutions OE_Update */
1885         overrideError = OE_Update;
1886       }
1887     }else if( pTab->pIndex!=0 ){
1888       /* Otherwise, we'll need to run the IndexListTerm array version of the
1889       ** iterator to ensure that all of the ON CONFLICT conditions are
1890       ** checked first and in order. */
1891       int nIdx, jj;
1892       u64 nByte;
1893       Upsert *pTerm;
1894       u8 *bUsed;
1895       for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
1896          assert( aRegIdx[nIdx]>0 );
1897       }
1898       sIdxIter.eType = 1;
1899       sIdxIter.u.ax.nIdx = nIdx;
1900       nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx;
1901       sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte);
1902       if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */
1903       bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx];
1904       pUpsert->pToFree = sIdxIter.u.ax.aIdx;
1905       for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){
1906         if( pTerm->pUpsertTarget==0 ) break;
1907         if( pTerm->pUpsertIdx==0 ) continue;  /* Skip ON CONFLICT for the IPK */
1908         jj = 0;
1909         pIdx = pTab->pIndex;
1910         while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){
1911            pIdx = pIdx->pNext;
1912            jj++;
1913         }
1914         if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */
1915         bUsed[jj] = 1;
1916         sIdxIter.u.ax.aIdx[i].p = pIdx;
1917         sIdxIter.u.ax.aIdx[i].ix = jj;
1918         i++;
1919       }
1920       for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){
1921         if( bUsed[jj] ) continue;
1922         sIdxIter.u.ax.aIdx[i].p = pIdx;
1923         sIdxIter.u.ax.aIdx[i].ix = jj;
1924         i++;
1925       }
1926       assert( i==nIdx );
1927     }
1928   }
1929 
1930   /* Determine if it is possible that triggers (either explicitly coded
1931   ** triggers or FK resolution actions) might run as a result of deletes
1932   ** that happen when OE_Replace conflict resolution occurs. (Call these
1933   ** "replace triggers".)  If any replace triggers run, we will need to
1934   ** recheck all of the uniqueness constraints after they have all run.
1935   ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1936   **
1937   ** If replace triggers are a possibility, then
1938   **
1939   **   (1) Allocate register regTrigCnt and initialize it to zero.
1940   **       That register will count the number of replace triggers that
1941   **       fire.  Constraint recheck only occurs if the number is positive.
1942   **   (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1943   **   (3) Initialize addrRecheck and lblRecheckOk
1944   **
1945   ** The uniqueness rechecking code will create a series of tests to run
1946   ** in a second pass.  The addrRecheck and lblRecheckOk variables are
1947   ** used to link together these tests which are separated from each other
1948   ** in the generate bytecode.
1949   */
1950   if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
1951     /* There are not DELETE triggers nor FK constraints.  No constraint
1952     ** rechecks are needed. */
1953     pTrigger = 0;
1954     regTrigCnt = 0;
1955   }else{
1956     if( db->flags&SQLITE_RecTriggers ){
1957       pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1958       regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
1959     }else{
1960       pTrigger = 0;
1961       regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
1962     }
1963     if( regTrigCnt ){
1964       /* Replace triggers might exist.  Allocate the counter and
1965       ** initialize it to zero. */
1966       regTrigCnt = ++pParse->nMem;
1967       sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
1968       VdbeComment((v, "trigger count"));
1969       lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
1970       addrRecheck = lblRecheckOk;
1971     }
1972   }
1973 
1974   /* If rowid is changing, make sure the new rowid does not previously
1975   ** exist in the table.
1976   */
1977   if( pkChng && pPk==0 ){
1978     int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
1979 
1980     /* Figure out what action to take in case of a rowid collision */
1981     onError = pTab->keyConf;
1982     if( overrideError!=OE_Default ){
1983       onError = overrideError;
1984     }else if( onError==OE_Default ){
1985       onError = OE_Abort;
1986     }
1987 
1988     /* figure out whether or not upsert applies in this case */
1989     if( pUpsert ){
1990       pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0);
1991       if( pUpsertClause!=0 ){
1992         if( pUpsertClause->isDoUpdate==0 ){
1993           onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
1994         }else{
1995           onError = OE_Update;  /* DO UPDATE */
1996         }
1997       }
1998       if( pUpsertClause!=pUpsert ){
1999         /* The first ON CONFLICT clause has a conflict target other than
2000         ** the IPK.  We have to jump ahead to that first ON CONFLICT clause
2001         ** and then come back here and deal with the IPK afterwards */
2002         upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto);
2003       }
2004     }
2005 
2006     /* If the response to a rowid conflict is REPLACE but the response
2007     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
2008     ** to defer the running of the rowid conflict checking until after
2009     ** the UNIQUE constraints have run.
2010     */
2011     if( onError==OE_Replace      /* IPK rule is REPLACE */
2012      && onError!=overrideError   /* Rules for other constraints are different */
2013      && pTab->pIndex             /* There exist other constraints */
2014      && !upsertIpkDelay          /* IPK check already deferred by UPSERT */
2015     ){
2016       ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
2017       VdbeComment((v, "defer IPK REPLACE until last"));
2018     }
2019 
2020     if( isUpdate ){
2021       /* pkChng!=0 does not mean that the rowid has changed, only that
2022       ** it might have changed.  Skip the conflict logic below if the rowid
2023       ** is unchanged. */
2024       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
2025       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2026       VdbeCoverage(v);
2027     }
2028 
2029     /* Check to see if the new rowid already exists in the table.  Skip
2030     ** the following conflict logic if it does not. */
2031     VdbeNoopComment((v, "uniqueness check for ROWID"));
2032     sqlite3VdbeVerifyAbortable(v, onError);
2033     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
2034     VdbeCoverage(v);
2035 
2036     switch( onError ){
2037       default: {
2038         onError = OE_Abort;
2039         /* no break */ deliberate_fall_through
2040       }
2041       case OE_Rollback:
2042       case OE_Abort:
2043       case OE_Fail: {
2044         testcase( onError==OE_Rollback );
2045         testcase( onError==OE_Abort );
2046         testcase( onError==OE_Fail );
2047         sqlite3RowidConstraint(pParse, onError, pTab);
2048         break;
2049       }
2050       case OE_Replace: {
2051         /* If there are DELETE triggers on this table and the
2052         ** recursive-triggers flag is set, call GenerateRowDelete() to
2053         ** remove the conflicting row from the table. This will fire
2054         ** the triggers and remove both the table and index b-tree entries.
2055         **
2056         ** Otherwise, if there are no triggers or the recursive-triggers
2057         ** flag is not set, but the table has one or more indexes, call
2058         ** GenerateRowIndexDelete(). This removes the index b-tree entries
2059         ** only. The table b-tree entry will be replaced by the new entry
2060         ** when it is inserted.
2061         **
2062         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
2063         ** also invoke MultiWrite() to indicate that this VDBE may require
2064         ** statement rollback (if the statement is aborted after the delete
2065         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
2066         ** but being more selective here allows statements like:
2067         **
2068         **   REPLACE INTO t(rowid) VALUES($newrowid)
2069         **
2070         ** to run without a statement journal if there are no indexes on the
2071         ** table.
2072         */
2073         if( regTrigCnt ){
2074           sqlite3MultiWrite(pParse);
2075           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2076                                    regNewData, 1, 0, OE_Replace, 1, -1);
2077           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2078           nReplaceTrig++;
2079         }else{
2080 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2081           assert( HasRowid(pTab) );
2082           /* This OP_Delete opcode fires the pre-update-hook only. It does
2083           ** not modify the b-tree. It is more efficient to let the coming
2084           ** OP_Insert replace the existing entry than it is to delete the
2085           ** existing entry and then insert a new one. */
2086           sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
2087           sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2088 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2089           if( pTab->pIndex ){
2090             sqlite3MultiWrite(pParse);
2091             sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
2092           }
2093         }
2094         seenReplace = 1;
2095         break;
2096       }
2097 #ifndef SQLITE_OMIT_UPSERT
2098       case OE_Update: {
2099         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
2100         /* no break */ deliberate_fall_through
2101       }
2102 #endif
2103       case OE_Ignore: {
2104         testcase( onError==OE_Ignore );
2105         sqlite3VdbeGoto(v, ignoreDest);
2106         break;
2107       }
2108     }
2109     sqlite3VdbeResolveLabel(v, addrRowidOk);
2110     if( pUpsert && pUpsertClause!=pUpsert ){
2111       upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto);
2112     }else if( ipkTop ){
2113       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
2114       sqlite3VdbeJumpHere(v, ipkTop-1);
2115     }
2116   }
2117 
2118   /* Test all UNIQUE constraints by creating entries for each UNIQUE
2119   ** index and making sure that duplicate entries do not already exist.
2120   ** Compute the revised record entries for indices as we go.
2121   **
2122   ** This loop also handles the case of the PRIMARY KEY index for a
2123   ** WITHOUT ROWID table.
2124   */
2125   for(pIdx = indexIteratorFirst(&sIdxIter, &ix);
2126       pIdx;
2127       pIdx = indexIteratorNext(&sIdxIter, &ix)
2128   ){
2129     int regIdx;          /* Range of registers hold conent for pIdx */
2130     int regR;            /* Range of registers holding conflicting PK */
2131     int iThisCur;        /* Cursor for this UNIQUE index */
2132     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
2133     int addrConflictCk;  /* First opcode in the conflict check logic */
2134 
2135     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
2136     if( pUpsert ){
2137       pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx);
2138       if( upsertIpkDelay && pUpsertClause==pUpsert ){
2139         sqlite3VdbeJumpHere(v, upsertIpkDelay);
2140       }
2141     }
2142     addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
2143     if( bAffinityDone==0 ){
2144       sqlite3TableAffinity(v, pTab, regNewData+1);
2145       bAffinityDone = 1;
2146     }
2147     VdbeNoopComment((v, "prep index %s", pIdx->zName));
2148     iThisCur = iIdxCur+ix;
2149 
2150 
2151     /* Skip partial indices for which the WHERE clause is not true */
2152     if( pIdx->pPartIdxWhere ){
2153       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
2154       pParse->iSelfTab = -(regNewData+1);
2155       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
2156                             SQLITE_JUMPIFNULL);
2157       pParse->iSelfTab = 0;
2158     }
2159 
2160     /* Create a record for this index entry as it should appear after
2161     ** the insert or update.  Store that record in the aRegIdx[ix] register
2162     */
2163     regIdx = aRegIdx[ix]+1;
2164     for(i=0; i<pIdx->nColumn; i++){
2165       int iField = pIdx->aiColumn[i];
2166       int x;
2167       if( iField==XN_EXPR ){
2168         pParse->iSelfTab = -(regNewData+1);
2169         sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
2170         pParse->iSelfTab = 0;
2171         VdbeComment((v, "%s column %d", pIdx->zName, i));
2172       }else if( iField==XN_ROWID || iField==pTab->iPKey ){
2173         x = regNewData;
2174         sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
2175         VdbeComment((v, "rowid"));
2176       }else{
2177         testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
2178         x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
2179         sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
2180         VdbeComment((v, "%s", pTab->aCol[iField].zCnName));
2181       }
2182     }
2183     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
2184     VdbeComment((v, "for %s", pIdx->zName));
2185 #ifdef SQLITE_ENABLE_NULL_TRIM
2186     if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2187       sqlite3SetMakeRecordP5(v, pIdx->pTable);
2188     }
2189 #endif
2190     sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0);
2191 
2192     /* In an UPDATE operation, if this index is the PRIMARY KEY index
2193     ** of a WITHOUT ROWID table and there has been no change the
2194     ** primary key, then no collision is possible.  The collision detection
2195     ** logic below can all be skipped. */
2196     if( isUpdate && pPk==pIdx && pkChng==0 ){
2197       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2198       continue;
2199     }
2200 
2201     /* Find out what action to take in case there is a uniqueness conflict */
2202     onError = pIdx->onError;
2203     if( onError==OE_None ){
2204       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2205       continue;  /* pIdx is not a UNIQUE index */
2206     }
2207     if( overrideError!=OE_Default ){
2208       onError = overrideError;
2209     }else if( onError==OE_Default ){
2210       onError = OE_Abort;
2211     }
2212 
2213     /* Figure out if the upsert clause applies to this index */
2214     if( pUpsertClause ){
2215       if( pUpsertClause->isDoUpdate==0 ){
2216         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
2217       }else{
2218         onError = OE_Update;  /* DO UPDATE */
2219       }
2220     }
2221 
2222     /* Collision detection may be omitted if all of the following are true:
2223     **   (1) The conflict resolution algorithm is REPLACE
2224     **   (2) The table is a WITHOUT ROWID table
2225     **   (3) There are no secondary indexes on the table
2226     **   (4) No delete triggers need to be fired if there is a conflict
2227     **   (5) No FK constraint counters need to be updated if a conflict occurs.
2228     **
2229     ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2230     ** must be explicitly deleted in order to ensure any pre-update hook
2231     ** is invoked.  */
2232     assert( IsOrdinaryTable(pTab) );
2233 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2234     if( (ix==0 && pIdx->pNext==0)                   /* Condition 3 */
2235      && pPk==pIdx                                   /* Condition 2 */
2236      && onError==OE_Replace                         /* Condition 1 */
2237      && ( 0==(db->flags&SQLITE_RecTriggers) ||      /* Condition 4 */
2238           0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
2239      && ( 0==(db->flags&SQLITE_ForeignKeys) ||      /* Condition 5 */
2240          (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab)))
2241     ){
2242       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2243       continue;
2244     }
2245 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2246 
2247     /* Check to see if the new index entry will be unique */
2248     sqlite3VdbeVerifyAbortable(v, onError);
2249     addrConflictCk =
2250       sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
2251                            regIdx, pIdx->nKeyCol); VdbeCoverage(v);
2252 
2253     /* Generate code to handle collisions */
2254     regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField);
2255     if( isUpdate || onError==OE_Replace ){
2256       if( HasRowid(pTab) ){
2257         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
2258         /* Conflict only if the rowid of the existing index entry
2259         ** is different from old-rowid */
2260         if( isUpdate ){
2261           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
2262           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2263           VdbeCoverage(v);
2264         }
2265       }else{
2266         int x;
2267         /* Extract the PRIMARY KEY from the end of the index entry and
2268         ** store it in registers regR..regR+nPk-1 */
2269         if( pIdx!=pPk ){
2270           for(i=0; i<pPk->nKeyCol; i++){
2271             assert( pPk->aiColumn[i]>=0 );
2272             x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
2273             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
2274             VdbeComment((v, "%s.%s", pTab->zName,
2275                          pTab->aCol[pPk->aiColumn[i]].zCnName));
2276           }
2277         }
2278         if( isUpdate ){
2279           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2280           ** table, only conflict if the new PRIMARY KEY values are actually
2281           ** different from the old.
2282           **
2283           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2284           ** of the matched index row are different from the original PRIMARY
2285           ** KEY values of this row before the update.  */
2286           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
2287           int op = OP_Ne;
2288           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
2289 
2290           for(i=0; i<pPk->nKeyCol; i++){
2291             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
2292             x = pPk->aiColumn[i];
2293             assert( x>=0 );
2294             if( i==(pPk->nKeyCol-1) ){
2295               addrJump = addrUniqueOk;
2296               op = OP_Eq;
2297             }
2298             x = sqlite3TableColumnToStorage(pTab, x);
2299             sqlite3VdbeAddOp4(v, op,
2300                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
2301             );
2302             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2303             VdbeCoverageIf(v, op==OP_Eq);
2304             VdbeCoverageIf(v, op==OP_Ne);
2305           }
2306         }
2307       }
2308     }
2309 
2310     /* Generate code that executes if the new index entry is not unique */
2311     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
2312         || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
2313     switch( onError ){
2314       case OE_Rollback:
2315       case OE_Abort:
2316       case OE_Fail: {
2317         testcase( onError==OE_Rollback );
2318         testcase( onError==OE_Abort );
2319         testcase( onError==OE_Fail );
2320         sqlite3UniqueConstraint(pParse, onError, pIdx);
2321         break;
2322       }
2323 #ifndef SQLITE_OMIT_UPSERT
2324       case OE_Update: {
2325         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
2326         /* no break */ deliberate_fall_through
2327       }
2328 #endif
2329       case OE_Ignore: {
2330         testcase( onError==OE_Ignore );
2331         sqlite3VdbeGoto(v, ignoreDest);
2332         break;
2333       }
2334       default: {
2335         int nConflictCk;   /* Number of opcodes in conflict check logic */
2336 
2337         assert( onError==OE_Replace );
2338         nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
2339         assert( nConflictCk>0 || db->mallocFailed );
2340         testcase( nConflictCk<=0 );
2341         testcase( nConflictCk>1 );
2342         if( regTrigCnt ){
2343           sqlite3MultiWrite(pParse);
2344           nReplaceTrig++;
2345         }
2346         if( pTrigger && isUpdate ){
2347           sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur);
2348         }
2349         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2350             regR, nPkField, 0, OE_Replace,
2351             (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
2352         if( pTrigger && isUpdate ){
2353           sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur);
2354         }
2355         if( regTrigCnt ){
2356           int addrBypass;  /* Jump destination to bypass recheck logic */
2357 
2358           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2359           addrBypass = sqlite3VdbeAddOp0(v, OP_Goto);  /* Bypass recheck */
2360           VdbeComment((v, "bypass recheck"));
2361 
2362           /* Here we insert code that will be invoked after all constraint
2363           ** checks have run, if and only if one or more replace triggers
2364           ** fired. */
2365           sqlite3VdbeResolveLabel(v, lblRecheckOk);
2366           lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
2367           if( pIdx->pPartIdxWhere ){
2368             /* Bypass the recheck if this partial index is not defined
2369             ** for the current row */
2370             sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
2371             VdbeCoverage(v);
2372           }
2373           /* Copy the constraint check code from above, except change
2374           ** the constraint-ok jump destination to be the address of
2375           ** the next retest block */
2376           while( nConflictCk>0 ){
2377             VdbeOp x;    /* Conflict check opcode to copy */
2378             /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2379             ** Hence, make a complete copy of the opcode, rather than using
2380             ** a pointer to the opcode. */
2381             x = *sqlite3VdbeGetOp(v, addrConflictCk);
2382             if( x.opcode!=OP_IdxRowid ){
2383               int p2;      /* New P2 value for copied conflict check opcode */
2384               const char *zP4;
2385               if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
2386                 p2 = lblRecheckOk;
2387               }else{
2388                 p2 = x.p2;
2389               }
2390               zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z;
2391               sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type);
2392               sqlite3VdbeChangeP5(v, x.p5);
2393               VdbeCoverageIf(v, p2!=x.p2);
2394             }
2395             nConflictCk--;
2396             addrConflictCk++;
2397           }
2398           /* If the retest fails, issue an abort */
2399           sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
2400 
2401           sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
2402         }
2403         seenReplace = 1;
2404         break;
2405       }
2406     }
2407     sqlite3VdbeResolveLabel(v, addrUniqueOk);
2408     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
2409     if( pUpsertClause
2410      && upsertIpkReturn
2411      && sqlite3UpsertNextIsIPK(pUpsertClause)
2412     ){
2413       sqlite3VdbeGoto(v, upsertIpkDelay+1);
2414       sqlite3VdbeJumpHere(v, upsertIpkReturn);
2415       upsertIpkReturn = 0;
2416     }
2417   }
2418 
2419   /* If the IPK constraint is a REPLACE, run it last */
2420   if( ipkTop ){
2421     sqlite3VdbeGoto(v, ipkTop);
2422     VdbeComment((v, "Do IPK REPLACE"));
2423     assert( ipkBottom>0 );
2424     sqlite3VdbeJumpHere(v, ipkBottom);
2425   }
2426 
2427   /* Recheck all uniqueness constraints after replace triggers have run */
2428   testcase( regTrigCnt!=0 && nReplaceTrig==0 );
2429   assert( regTrigCnt!=0 || nReplaceTrig==0 );
2430   if( nReplaceTrig ){
2431     sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
2432     if( !pPk ){
2433       if( isUpdate ){
2434         sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
2435         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2436         VdbeCoverage(v);
2437       }
2438       sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
2439       VdbeCoverage(v);
2440       sqlite3RowidConstraint(pParse, OE_Abort, pTab);
2441     }else{
2442       sqlite3VdbeGoto(v, addrRecheck);
2443     }
2444     sqlite3VdbeResolveLabel(v, lblRecheckOk);
2445   }
2446 
2447   /* Generate the table record */
2448   if( HasRowid(pTab) ){
2449     int regRec = aRegIdx[ix];
2450     sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
2451     sqlite3SetMakeRecordP5(v, pTab);
2452     if( !bAffinityDone ){
2453       sqlite3TableAffinity(v, pTab, 0);
2454     }
2455   }
2456 
2457   *pbMayReplace = seenReplace;
2458   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
2459 }
2460 
2461 #ifdef SQLITE_ENABLE_NULL_TRIM
2462 /*
2463 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2464 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2465 **
2466 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2467 */
2468 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
2469   u16 i;
2470 
2471   /* Records with omitted columns are only allowed for schema format
2472   ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2473   if( pTab->pSchema->file_format<2 ) return;
2474 
2475   for(i=pTab->nCol-1; i>0; i--){
2476     if( pTab->aCol[i].iDflt!=0 ) break;
2477     if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
2478   }
2479   sqlite3VdbeChangeP5(v, i+1);
2480 }
2481 #endif
2482 
2483 /*
2484 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
2485 ** number is iCur, and register regData contains the new record for the
2486 ** PK index. This function adds code to invoke the pre-update hook,
2487 ** if one is registered.
2488 */
2489 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2490 static void codeWithoutRowidPreupdate(
2491   Parse *pParse,                  /* Parse context */
2492   Table *pTab,                    /* Table being updated */
2493   int iCur,                       /* Cursor number for table */
2494   int regData                     /* Data containing new record */
2495 ){
2496   Vdbe *v = pParse->pVdbe;
2497   int r = sqlite3GetTempReg(pParse);
2498   assert( !HasRowid(pTab) );
2499   assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB );
2500   sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
2501   sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE);
2502   sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
2503   sqlite3ReleaseTempReg(pParse, r);
2504 }
2505 #else
2506 # define codeWithoutRowidPreupdate(a,b,c,d)
2507 #endif
2508 
2509 /*
2510 ** This routine generates code to finish the INSERT or UPDATE operation
2511 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2512 ** A consecutive range of registers starting at regNewData contains the
2513 ** rowid and the content to be inserted.
2514 **
2515 ** The arguments to this routine should be the same as the first six
2516 ** arguments to sqlite3GenerateConstraintChecks.
2517 */
2518 void sqlite3CompleteInsertion(
2519   Parse *pParse,      /* The parser context */
2520   Table *pTab,        /* the table into which we are inserting */
2521   int iDataCur,       /* Cursor of the canonical data source */
2522   int iIdxCur,        /* First index cursor */
2523   int regNewData,     /* Range of content */
2524   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
2525   int update_flags,   /* True for UPDATE, False for INSERT */
2526   int appendBias,     /* True if this is likely to be an append */
2527   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2528 ){
2529   Vdbe *v;            /* Prepared statements under construction */
2530   Index *pIdx;        /* An index being inserted or updated */
2531   u8 pik_flags;       /* flag values passed to the btree insert */
2532   int i;              /* Loop counter */
2533 
2534   assert( update_flags==0
2535        || update_flags==OPFLAG_ISUPDATE
2536        || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
2537   );
2538 
2539   v = pParse->pVdbe;
2540   assert( v!=0 );
2541   assert( !IsView(pTab) );  /* This table is not a VIEW */
2542   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2543     /* All REPLACE indexes are at the end of the list */
2544     assert( pIdx->onError!=OE_Replace
2545          || pIdx->pNext==0
2546          || pIdx->pNext->onError==OE_Replace );
2547     if( aRegIdx[i]==0 ) continue;
2548     if( pIdx->pPartIdxWhere ){
2549       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
2550       VdbeCoverage(v);
2551     }
2552     pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
2553     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2554       pik_flags |= OPFLAG_NCHANGE;
2555       pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
2556       if( update_flags==0 ){
2557         codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]);
2558       }
2559     }
2560     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
2561                          aRegIdx[i]+1,
2562                          pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
2563     sqlite3VdbeChangeP5(v, pik_flags);
2564   }
2565   if( !HasRowid(pTab) ) return;
2566   if( pParse->nested ){
2567     pik_flags = 0;
2568   }else{
2569     pik_flags = OPFLAG_NCHANGE;
2570     pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
2571   }
2572   if( appendBias ){
2573     pik_flags |= OPFLAG_APPEND;
2574   }
2575   if( useSeekResult ){
2576     pik_flags |= OPFLAG_USESEEKRESULT;
2577   }
2578   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
2579   if( !pParse->nested ){
2580     sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2581   }
2582   sqlite3VdbeChangeP5(v, pik_flags);
2583 }
2584 
2585 /*
2586 ** Allocate cursors for the pTab table and all its indices and generate
2587 ** code to open and initialized those cursors.
2588 **
2589 ** The cursor for the object that contains the complete data (normally
2590 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2591 ** ROWID table) is returned in *piDataCur.  The first index cursor is
2592 ** returned in *piIdxCur.  The number of indices is returned.
2593 **
2594 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2595 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2596 ** If iBase is negative, then allocate the next available cursor.
2597 **
2598 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2599 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2600 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2601 ** pTab->pIndex list.
2602 **
2603 ** If pTab is a virtual table, then this routine is a no-op and the
2604 ** *piDataCur and *piIdxCur values are left uninitialized.
2605 */
2606 int sqlite3OpenTableAndIndices(
2607   Parse *pParse,   /* Parsing context */
2608   Table *pTab,     /* Table to be opened */
2609   int op,          /* OP_OpenRead or OP_OpenWrite */
2610   u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2611   int iBase,       /* Use this for the table cursor, if there is one */
2612   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
2613   int *piDataCur,  /* Write the database source cursor number here */
2614   int *piIdxCur    /* Write the first index cursor number here */
2615 ){
2616   int i;
2617   int iDb;
2618   int iDataCur;
2619   Index *pIdx;
2620   Vdbe *v;
2621 
2622   assert( op==OP_OpenRead || op==OP_OpenWrite );
2623   assert( op==OP_OpenWrite || p5==0 );
2624   if( IsVirtual(pTab) ){
2625     /* This routine is a no-op for virtual tables. Leave the output
2626     ** variables *piDataCur and *piIdxCur set to illegal cursor numbers
2627     ** for improved error detection. */
2628     *piDataCur = *piIdxCur = -999;
2629     return 0;
2630   }
2631   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2632   v = pParse->pVdbe;
2633   assert( v!=0 );
2634   if( iBase<0 ) iBase = pParse->nTab;
2635   iDataCur = iBase++;
2636   if( piDataCur ) *piDataCur = iDataCur;
2637   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2638     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2639   }else{
2640     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2641   }
2642   if( piIdxCur ) *piIdxCur = iBase;
2643   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2644     int iIdxCur = iBase++;
2645     assert( pIdx->pSchema==pTab->pSchema );
2646     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2647       if( piDataCur ) *piDataCur = iIdxCur;
2648       p5 = 0;
2649     }
2650     if( aToOpen==0 || aToOpen[i+1] ){
2651       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2652       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2653       sqlite3VdbeChangeP5(v, p5);
2654       VdbeComment((v, "%s", pIdx->zName));
2655     }
2656   }
2657   if( iBase>pParse->nTab ) pParse->nTab = iBase;
2658   return i;
2659 }
2660 
2661 
2662 #ifdef SQLITE_TEST
2663 /*
2664 ** The following global variable is incremented whenever the
2665 ** transfer optimization is used.  This is used for testing
2666 ** purposes only - to make sure the transfer optimization really
2667 ** is happening when it is supposed to.
2668 */
2669 int sqlite3_xferopt_count;
2670 #endif /* SQLITE_TEST */
2671 
2672 
2673 #ifndef SQLITE_OMIT_XFER_OPT
2674 /*
2675 ** Check to see if index pSrc is compatible as a source of data
2676 ** for index pDest in an insert transfer optimization.  The rules
2677 ** for a compatible index:
2678 **
2679 **    *   The index is over the same set of columns
2680 **    *   The same DESC and ASC markings occurs on all columns
2681 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
2682 **    *   The same collating sequence on each column
2683 **    *   The index has the exact same WHERE clause
2684 */
2685 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2686   int i;
2687   assert( pDest && pSrc );
2688   assert( pDest->pTable!=pSrc->pTable );
2689   if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
2690     return 0;   /* Different number of columns */
2691   }
2692   if( pDest->onError!=pSrc->onError ){
2693     return 0;   /* Different conflict resolution strategies */
2694   }
2695   for(i=0; i<pSrc->nKeyCol; i++){
2696     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2697       return 0;   /* Different columns indexed */
2698     }
2699     if( pSrc->aiColumn[i]==XN_EXPR ){
2700       assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2701       if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2702                              pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2703         return 0;   /* Different expressions in the index */
2704       }
2705     }
2706     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2707       return 0;   /* Different sort orders */
2708     }
2709     if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2710       return 0;   /* Different collating sequences */
2711     }
2712   }
2713   if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2714     return 0;     /* Different WHERE clauses */
2715   }
2716 
2717   /* If no test above fails then the indices must be compatible */
2718   return 1;
2719 }
2720 
2721 /*
2722 ** Attempt the transfer optimization on INSERTs of the form
2723 **
2724 **     INSERT INTO tab1 SELECT * FROM tab2;
2725 **
2726 ** The xfer optimization transfers raw records from tab2 over to tab1.
2727 ** Columns are not decoded and reassembled, which greatly improves
2728 ** performance.  Raw index records are transferred in the same way.
2729 **
2730 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2731 ** There are lots of rules for determining compatibility - see comments
2732 ** embedded in the code for details.
2733 **
2734 ** This routine returns TRUE if the optimization is guaranteed to be used.
2735 ** Sometimes the xfer optimization will only work if the destination table
2736 ** is empty - a factor that can only be determined at run-time.  In that
2737 ** case, this routine generates code for the xfer optimization but also
2738 ** does a test to see if the destination table is empty and jumps over the
2739 ** xfer optimization code if the test fails.  In that case, this routine
2740 ** returns FALSE so that the caller will know to go ahead and generate
2741 ** an unoptimized transfer.  This routine also returns FALSE if there
2742 ** is no chance that the xfer optimization can be applied.
2743 **
2744 ** This optimization is particularly useful at making VACUUM run faster.
2745 */
2746 static int xferOptimization(
2747   Parse *pParse,        /* Parser context */
2748   Table *pDest,         /* The table we are inserting into */
2749   Select *pSelect,      /* A SELECT statement to use as the data source */
2750   int onError,          /* How to handle constraint errors */
2751   int iDbDest           /* The database of pDest */
2752 ){
2753   sqlite3 *db = pParse->db;
2754   ExprList *pEList;                /* The result set of the SELECT */
2755   Table *pSrc;                     /* The table in the FROM clause of SELECT */
2756   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
2757   SrcItem *pItem;                  /* An element of pSelect->pSrc */
2758   int i;                           /* Loop counter */
2759   int iDbSrc;                      /* The database of pSrc */
2760   int iSrc, iDest;                 /* Cursors from source and destination */
2761   int addr1, addr2;                /* Loop addresses */
2762   int emptyDestTest = 0;           /* Address of test for empty pDest */
2763   int emptySrcTest = 0;            /* Address of test for empty pSrc */
2764   Vdbe *v;                         /* The VDBE we are building */
2765   int regAutoinc;                  /* Memory register used by AUTOINC */
2766   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
2767   int regData, regRowid;           /* Registers holding data and rowid */
2768 
2769   if( pSelect==0 ){
2770     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
2771   }
2772   if( pParse->pWith || pSelect->pWith ){
2773     /* Do not attempt to process this query if there are an WITH clauses
2774     ** attached to it. Proceeding may generate a false "no such table: xxx"
2775     ** error if pSelect reads from a CTE named "xxx".  */
2776     return 0;
2777   }
2778   if( sqlite3TriggerList(pParse, pDest) ){
2779     return 0;   /* tab1 must not have triggers */
2780   }
2781 #ifndef SQLITE_OMIT_VIRTUALTABLE
2782   if( IsVirtual(pDest) ){
2783     return 0;   /* tab1 must not be a virtual table */
2784   }
2785 #endif
2786   if( onError==OE_Default ){
2787     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2788     if( onError==OE_Default ) onError = OE_Abort;
2789   }
2790   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
2791   if( pSelect->pSrc->nSrc!=1 ){
2792     return 0;   /* FROM clause must have exactly one term */
2793   }
2794   if( pSelect->pSrc->a[0].pSelect ){
2795     return 0;   /* FROM clause cannot contain a subquery */
2796   }
2797   if( pSelect->pWhere ){
2798     return 0;   /* SELECT may not have a WHERE clause */
2799   }
2800   if( pSelect->pOrderBy ){
2801     return 0;   /* SELECT may not have an ORDER BY clause */
2802   }
2803   /* Do not need to test for a HAVING clause.  If HAVING is present but
2804   ** there is no ORDER BY, we will get an error. */
2805   if( pSelect->pGroupBy ){
2806     return 0;   /* SELECT may not have a GROUP BY clause */
2807   }
2808   if( pSelect->pLimit ){
2809     return 0;   /* SELECT may not have a LIMIT clause */
2810   }
2811   if( pSelect->pPrior ){
2812     return 0;   /* SELECT may not be a compound query */
2813   }
2814   if( pSelect->selFlags & SF_Distinct ){
2815     return 0;   /* SELECT may not be DISTINCT */
2816   }
2817   pEList = pSelect->pEList;
2818   assert( pEList!=0 );
2819   if( pEList->nExpr!=1 ){
2820     return 0;   /* The result set must have exactly one column */
2821   }
2822   assert( pEList->a[0].pExpr );
2823   if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2824     return 0;   /* The result set must be the special operator "*" */
2825   }
2826 
2827   /* At this point we have established that the statement is of the
2828   ** correct syntactic form to participate in this optimization.  Now
2829   ** we have to check the semantics.
2830   */
2831   pItem = pSelect->pSrc->a;
2832   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2833   if( pSrc==0 ){
2834     return 0;   /* FROM clause does not contain a real table */
2835   }
2836   if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2837     testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */
2838     return 0;   /* tab1 and tab2 may not be the same table */
2839   }
2840   if( HasRowid(pDest)!=HasRowid(pSrc) ){
2841     return 0;   /* source and destination must both be WITHOUT ROWID or not */
2842   }
2843   if( !IsOrdinaryTable(pSrc) ){
2844     return 0;   /* tab2 may not be a view or virtual table */
2845   }
2846   if( pDest->nCol!=pSrc->nCol ){
2847     return 0;   /* Number of columns must be the same in tab1 and tab2 */
2848   }
2849   if( pDest->iPKey!=pSrc->iPKey ){
2850     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
2851   }
2852   if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){
2853     return 0;   /* Cannot feed from a non-strict into a strict table */
2854   }
2855   for(i=0; i<pDest->nCol; i++){
2856     Column *pDestCol = &pDest->aCol[i];
2857     Column *pSrcCol = &pSrc->aCol[i];
2858 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2859     if( (db->mDbFlags & DBFLAG_Vacuum)==0
2860      && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2861     ){
2862       return 0;    /* Neither table may have __hidden__ columns */
2863     }
2864 #endif
2865 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2866     /* Even if tables t1 and t2 have identical schemas, if they contain
2867     ** generated columns, then this statement is semantically incorrect:
2868     **
2869     **     INSERT INTO t2 SELECT * FROM t1;
2870     **
2871     ** The reason is that generated column values are returned by the
2872     ** the SELECT statement on the right but the INSERT statement on the
2873     ** left wants them to be omitted.
2874     **
2875     ** Nevertheless, this is a useful notational shorthand to tell SQLite
2876     ** to do a bulk transfer all of the content from t1 over to t2.
2877     **
2878     ** We could, in theory, disable this (except for internal use by the
2879     ** VACUUM command where it is actually needed).  But why do that?  It
2880     ** seems harmless enough, and provides a useful service.
2881     */
2882     if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
2883         (pSrcCol->colFlags & COLFLAG_GENERATED) ){
2884       return 0;    /* Both columns have the same generated-column type */
2885     }
2886     /* But the transfer is only allowed if both the source and destination
2887     ** tables have the exact same expressions for generated columns.
2888     ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2889     */
2890     if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
2891       if( sqlite3ExprCompare(0,
2892              sqlite3ColumnExpr(pSrc, pSrcCol),
2893              sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){
2894         testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
2895         testcase( pDestCol->colFlags & COLFLAG_STORED );
2896         return 0;  /* Different generator expressions */
2897       }
2898     }
2899 #endif
2900     if( pDestCol->affinity!=pSrcCol->affinity ){
2901       return 0;    /* Affinity must be the same on all columns */
2902     }
2903     if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol),
2904                         sqlite3ColumnColl(pSrcCol))!=0 ){
2905       return 0;    /* Collating sequence must be the same on all columns */
2906     }
2907     if( pDestCol->notNull && !pSrcCol->notNull ){
2908       return 0;    /* tab2 must be NOT NULL if tab1 is */
2909     }
2910     /* Default values for second and subsequent columns need to match. */
2911     if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
2912       Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol);
2913       Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol);
2914       assert( pDestExpr==0 || pDestExpr->op==TK_SPAN );
2915       assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) );
2916       assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN );
2917       assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) );
2918       if( (pDestExpr==0)!=(pSrcExpr==0)
2919        || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken,
2920                                        pSrcExpr->u.zToken)!=0)
2921       ){
2922         return 0;    /* Default values must be the same for all columns */
2923       }
2924     }
2925   }
2926   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2927     if( IsUniqueIndex(pDestIdx) ){
2928       destHasUniqueIdx = 1;
2929     }
2930     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2931       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2932     }
2933     if( pSrcIdx==0 ){
2934       return 0;    /* pDestIdx has no corresponding index in pSrc */
2935     }
2936     if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2937          && sqlite3FaultSim(411)==SQLITE_OK ){
2938       /* The sqlite3FaultSim() call allows this corruption test to be
2939       ** bypassed during testing, in order to exercise other corruption tests
2940       ** further downstream. */
2941       return 0;   /* Corrupt schema - two indexes on the same btree */
2942     }
2943   }
2944 #ifndef SQLITE_OMIT_CHECK
2945   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2946     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
2947   }
2948 #endif
2949 #ifndef SQLITE_OMIT_FOREIGN_KEY
2950   /* Disallow the transfer optimization if the destination table constains
2951   ** any foreign key constraints.  This is more restrictive than necessary.
2952   ** But the main beneficiary of the transfer optimization is the VACUUM
2953   ** command, and the VACUUM command disables foreign key constraints.  So
2954   ** the extra complication to make this rule less restrictive is probably
2955   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2956   */
2957   assert( IsOrdinaryTable(pDest) );
2958   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){
2959     return 0;
2960   }
2961 #endif
2962   if( (db->flags & SQLITE_CountRows)!=0 ){
2963     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
2964   }
2965 
2966   /* If we get this far, it means that the xfer optimization is at
2967   ** least a possibility, though it might only work if the destination
2968   ** table (tab1) is initially empty.
2969   */
2970 #ifdef SQLITE_TEST
2971   sqlite3_xferopt_count++;
2972 #endif
2973   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2974   v = sqlite3GetVdbe(pParse);
2975   sqlite3CodeVerifySchema(pParse, iDbSrc);
2976   iSrc = pParse->nTab++;
2977   iDest = pParse->nTab++;
2978   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2979   regData = sqlite3GetTempReg(pParse);
2980   sqlite3VdbeAddOp2(v, OP_Null, 0, regData);
2981   regRowid = sqlite3GetTempReg(pParse);
2982   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2983   assert( HasRowid(pDest) || destHasUniqueIdx );
2984   if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2985       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
2986    || destHasUniqueIdx                              /* (2) */
2987    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
2988   )){
2989     /* In some circumstances, we are able to run the xfer optimization
2990     ** only if the destination table is initially empty. Unless the
2991     ** DBFLAG_Vacuum flag is set, this block generates code to make
2992     ** that determination. If DBFLAG_Vacuum is set, then the destination
2993     ** table is always empty.
2994     **
2995     ** Conditions under which the destination must be empty:
2996     **
2997     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2998     **     (If the destination is not initially empty, the rowid fields
2999     **     of index entries might need to change.)
3000     **
3001     ** (2) The destination has a unique index.  (The xfer optimization
3002     **     is unable to test uniqueness.)
3003     **
3004     ** (3) onError is something other than OE_Abort and OE_Rollback.
3005     */
3006     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
3007     emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
3008     sqlite3VdbeJumpHere(v, addr1);
3009   }
3010   if( HasRowid(pSrc) ){
3011     u8 insFlags;
3012     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
3013     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3014     if( pDest->iPKey>=0 ){
3015       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3016       if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3017         sqlite3VdbeVerifyAbortable(v, onError);
3018         addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
3019         VdbeCoverage(v);
3020         sqlite3RowidConstraint(pParse, onError, pDest);
3021         sqlite3VdbeJumpHere(v, addr2);
3022       }
3023       autoIncStep(pParse, regAutoinc, regRowid);
3024     }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
3025       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
3026     }else{
3027       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3028       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
3029     }
3030 
3031     if( db->mDbFlags & DBFLAG_Vacuum ){
3032       sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3033       insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3034     }else{
3035       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT;
3036     }
3037 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
3038     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3039       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3040       insFlags &= ~OPFLAG_PREFORMAT;
3041     }else
3042 #endif
3043     {
3044       sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid);
3045     }
3046     sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
3047     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3048       sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE);
3049     }
3050     sqlite3VdbeChangeP5(v, insFlags);
3051 
3052     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
3053     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3054     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3055   }else{
3056     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
3057     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
3058   }
3059   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
3060     u8 idxInsFlags = 0;
3061     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
3062       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
3063     }
3064     assert( pSrcIdx );
3065     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
3066     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
3067     VdbeComment((v, "%s", pSrcIdx->zName));
3068     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
3069     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
3070     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
3071     VdbeComment((v, "%s", pDestIdx->zName));
3072     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3073     if( db->mDbFlags & DBFLAG_Vacuum ){
3074       /* This INSERT command is part of a VACUUM operation, which guarantees
3075       ** that the destination table is empty. If all indexed columns use
3076       ** collation sequence BINARY, then it can also be assumed that the
3077       ** index will be populated by inserting keys in strictly sorted
3078       ** order. In this case, instead of seeking within the b-tree as part
3079       ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
3080       ** OP_IdxInsert to seek to the point within the b-tree where each key
3081       ** should be inserted. This is faster.
3082       **
3083       ** If any of the indexed columns use a collation sequence other than
3084       ** BINARY, this optimization is disabled. This is because the user
3085       ** might change the definition of a collation sequence and then run
3086       ** a VACUUM command. In that case keys may not be written in strictly
3087       ** sorted order.  */
3088       for(i=0; i<pSrcIdx->nColumn; i++){
3089         const char *zColl = pSrcIdx->azColl[i];
3090         if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
3091       }
3092       if( i==pSrcIdx->nColumn ){
3093         idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3094         sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3095         sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc);
3096       }
3097     }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
3098       idxInsFlags |= OPFLAG_NCHANGE;
3099     }
3100     if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){
3101       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3102       if( (db->mDbFlags & DBFLAG_Vacuum)==0
3103        && !HasRowid(pDest)
3104        && IsPrimaryKeyIndex(pDestIdx)
3105       ){
3106         codeWithoutRowidPreupdate(pParse, pDest, iDest, regData);
3107       }
3108     }
3109     sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
3110     sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
3111     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
3112     sqlite3VdbeJumpHere(v, addr1);
3113     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3114     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3115   }
3116   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
3117   sqlite3ReleaseTempReg(pParse, regRowid);
3118   sqlite3ReleaseTempReg(pParse, regData);
3119   if( emptyDestTest ){
3120     sqlite3AutoincrementEnd(pParse);
3121     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
3122     sqlite3VdbeJumpHere(v, emptyDestTest);
3123     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3124     return 0;
3125   }else{
3126     return 1;
3127   }
3128 }
3129 #endif /* SQLITE_OMIT_XFER_OPT */
3130