1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 ** 15 ** $Id: insert.c,v 1.270 2009/07/24 17:58:53 danielk1977 Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 /* 20 ** Generate code that will open a table for reading. 21 */ 22 void sqlite3OpenTable( 23 Parse *p, /* Generate code into this VDBE */ 24 int iCur, /* The cursor number of the table */ 25 int iDb, /* The database index in sqlite3.aDb[] */ 26 Table *pTab, /* The table to be opened */ 27 int opcode /* OP_OpenRead or OP_OpenWrite */ 28 ){ 29 Vdbe *v; 30 if( IsVirtual(pTab) ) return; 31 v = sqlite3GetVdbe(p); 32 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 33 sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); 34 sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); 35 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); 36 VdbeComment((v, "%s", pTab->zName)); 37 } 38 39 /* 40 ** Return a pointer to the column affinity string associated with index 41 ** pIdx. A column affinity string has one character for each column in 42 ** the table, according to the affinity of the column: 43 ** 44 ** Character Column affinity 45 ** ------------------------------ 46 ** 'a' TEXT 47 ** 'b' NONE 48 ** 'c' NUMERIC 49 ** 'd' INTEGER 50 ** 'e' REAL 51 ** 52 ** An extra 'b' is appended to the end of the string to cover the 53 ** rowid that appears as the last column in every index. 54 ** 55 ** Memory for the buffer containing the column index affinity string 56 ** is managed along with the rest of the Index structure. It will be 57 ** released when sqlite3DeleteIndex() is called. 58 */ 59 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ 60 if( !pIdx->zColAff ){ 61 /* The first time a column affinity string for a particular index is 62 ** required, it is allocated and populated here. It is then stored as 63 ** a member of the Index structure for subsequent use. 64 ** 65 ** The column affinity string will eventually be deleted by 66 ** sqliteDeleteIndex() when the Index structure itself is cleaned 67 ** up. 68 */ 69 int n; 70 Table *pTab = pIdx->pTable; 71 sqlite3 *db = sqlite3VdbeDb(v); 72 pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2); 73 if( !pIdx->zColAff ){ 74 db->mallocFailed = 1; 75 return 0; 76 } 77 for(n=0; n<pIdx->nColumn; n++){ 78 pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; 79 } 80 pIdx->zColAff[n++] = SQLITE_AFF_NONE; 81 pIdx->zColAff[n] = 0; 82 } 83 84 return pIdx->zColAff; 85 } 86 87 /* 88 ** Set P4 of the most recently inserted opcode to a column affinity 89 ** string for table pTab. A column affinity string has one character 90 ** for each column indexed by the index, according to the affinity of the 91 ** column: 92 ** 93 ** Character Column affinity 94 ** ------------------------------ 95 ** 'a' TEXT 96 ** 'b' NONE 97 ** 'c' NUMERIC 98 ** 'd' INTEGER 99 ** 'e' REAL 100 */ 101 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ 102 /* The first time a column affinity string for a particular table 103 ** is required, it is allocated and populated here. It is then 104 ** stored as a member of the Table structure for subsequent use. 105 ** 106 ** The column affinity string will eventually be deleted by 107 ** sqlite3DeleteTable() when the Table structure itself is cleaned up. 108 */ 109 if( !pTab->zColAff ){ 110 char *zColAff; 111 int i; 112 sqlite3 *db = sqlite3VdbeDb(v); 113 114 zColAff = (char *)sqlite3Malloc(pTab->nCol+1); 115 if( !zColAff ){ 116 db->mallocFailed = 1; 117 return; 118 } 119 120 for(i=0; i<pTab->nCol; i++){ 121 zColAff[i] = pTab->aCol[i].affinity; 122 } 123 zColAff[pTab->nCol] = '\0'; 124 125 pTab->zColAff = zColAff; 126 } 127 128 sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0); 129 } 130 131 /* 132 ** Return non-zero if the table pTab in database iDb or any of its indices 133 ** have been opened at any point in the VDBE program beginning at location 134 ** iStartAddr throught the end of the program. This is used to see if 135 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 136 ** run without using temporary table for the results of the SELECT. 137 */ 138 static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){ 139 Vdbe *v = sqlite3GetVdbe(p); 140 int i; 141 int iEnd = sqlite3VdbeCurrentAddr(v); 142 #ifndef SQLITE_OMIT_VIRTUALTABLE 143 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 144 #endif 145 146 for(i=iStartAddr; i<iEnd; i++){ 147 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 148 assert( pOp!=0 ); 149 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 150 Index *pIndex; 151 int tnum = pOp->p2; 152 if( tnum==pTab->tnum ){ 153 return 1; 154 } 155 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 156 if( tnum==pIndex->tnum ){ 157 return 1; 158 } 159 } 160 } 161 #ifndef SQLITE_OMIT_VIRTUALTABLE 162 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 163 assert( pOp->p4.pVtab!=0 ); 164 assert( pOp->p4type==P4_VTAB ); 165 return 1; 166 } 167 #endif 168 } 169 return 0; 170 } 171 172 #ifndef SQLITE_OMIT_AUTOINCREMENT 173 /* 174 ** Locate or create an AutoincInfo structure associated with table pTab 175 ** which is in database iDb. Return the register number for the register 176 ** that holds the maximum rowid. 177 ** 178 ** There is at most one AutoincInfo structure per table even if the 179 ** same table is autoincremented multiple times due to inserts within 180 ** triggers. A new AutoincInfo structure is created if this is the 181 ** first use of table pTab. On 2nd and subsequent uses, the original 182 ** AutoincInfo structure is used. 183 ** 184 ** Three memory locations are allocated: 185 ** 186 ** (1) Register to hold the name of the pTab table. 187 ** (2) Register to hold the maximum ROWID of pTab. 188 ** (3) Register to hold the rowid in sqlite_sequence of pTab 189 ** 190 ** The 2nd register is the one that is returned. That is all the 191 ** insert routine needs to know about. 192 */ 193 static int autoIncBegin( 194 Parse *pParse, /* Parsing context */ 195 int iDb, /* Index of the database holding pTab */ 196 Table *pTab /* The table we are writing to */ 197 ){ 198 int memId = 0; /* Register holding maximum rowid */ 199 if( pTab->tabFlags & TF_Autoincrement ){ 200 AutoincInfo *pInfo; 201 202 pInfo = pParse->pAinc; 203 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 204 if( pInfo==0 ){ 205 pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo)); 206 if( pInfo==0 ) return 0; 207 pInfo->pNext = pParse->pAinc; 208 pParse->pAinc = pInfo; 209 pInfo->pTab = pTab; 210 pInfo->iDb = iDb; 211 pParse->nMem++; /* Register to hold name of table */ 212 pInfo->regCtr = ++pParse->nMem; /* Max rowid register */ 213 pParse->nMem++; /* Rowid in sqlite_sequence */ 214 } 215 memId = pInfo->regCtr; 216 } 217 return memId; 218 } 219 220 /* 221 ** This routine generates code that will initialize all of the 222 ** register used by the autoincrement tracker. 223 */ 224 void sqlite3AutoincrementBegin(Parse *pParse){ 225 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 226 sqlite3 *db = pParse->db; /* The database connection */ 227 Db *pDb; /* Database only autoinc table */ 228 int memId; /* Register holding max rowid */ 229 int addr; /* A VDBE address */ 230 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 231 232 assert( v ); /* We failed long ago if this is not so */ 233 for(p = pParse->pAinc; p; p = p->pNext){ 234 pDb = &db->aDb[p->iDb]; 235 memId = p->regCtr; 236 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 237 addr = sqlite3VdbeCurrentAddr(v); 238 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); 239 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); 240 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); 241 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); 242 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 243 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); 244 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); 245 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); 246 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); 247 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); 248 sqlite3VdbeAddOp0(v, OP_Close); 249 } 250 } 251 252 /* 253 ** Update the maximum rowid for an autoincrement calculation. 254 ** 255 ** This routine should be called when the top of the stack holds a 256 ** new rowid that is about to be inserted. If that new rowid is 257 ** larger than the maximum rowid in the memId memory cell, then the 258 ** memory cell is updated. The stack is unchanged. 259 */ 260 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 261 if( memId>0 ){ 262 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 263 } 264 } 265 266 /* 267 ** This routine generates the code needed to write autoincrement 268 ** maximum rowid values back into the sqlite_sequence register. 269 ** Every statement that might do an INSERT into an autoincrement 270 ** table (either directly or through triggers) needs to call this 271 ** routine just before the "exit" code. 272 */ 273 void sqlite3AutoincrementEnd(Parse *pParse){ 274 AutoincInfo *p; 275 Vdbe *v = pParse->pVdbe; 276 sqlite3 *db = pParse->db; 277 278 assert( v ); 279 for(p = pParse->pAinc; p; p = p->pNext){ 280 Db *pDb = &db->aDb[p->iDb]; 281 int j1, j2, j3, j4, j5; 282 int iRec; 283 int memId = p->regCtr; 284 285 iRec = sqlite3GetTempReg(pParse); 286 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 287 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); 288 j2 = sqlite3VdbeAddOp0(v, OP_Rewind); 289 j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec); 290 j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec); 291 sqlite3VdbeAddOp2(v, OP_Next, 0, j3); 292 sqlite3VdbeJumpHere(v, j2); 293 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); 294 j5 = sqlite3VdbeAddOp0(v, OP_Goto); 295 sqlite3VdbeJumpHere(v, j4); 296 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); 297 sqlite3VdbeJumpHere(v, j1); 298 sqlite3VdbeJumpHere(v, j5); 299 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); 300 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); 301 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 302 sqlite3VdbeAddOp0(v, OP_Close); 303 sqlite3ReleaseTempReg(pParse, iRec); 304 } 305 } 306 #else 307 /* 308 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 309 ** above are all no-ops 310 */ 311 # define autoIncBegin(A,B,C) (0) 312 # define autoIncStep(A,B,C) 313 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 314 315 316 /* Forward declaration */ 317 static int xferOptimization( 318 Parse *pParse, /* Parser context */ 319 Table *pDest, /* The table we are inserting into */ 320 Select *pSelect, /* A SELECT statement to use as the data source */ 321 int onError, /* How to handle constraint errors */ 322 int iDbDest /* The database of pDest */ 323 ); 324 325 /* 326 ** This routine is call to handle SQL of the following forms: 327 ** 328 ** insert into TABLE (IDLIST) values(EXPRLIST) 329 ** insert into TABLE (IDLIST) select 330 ** 331 ** The IDLIST following the table name is always optional. If omitted, 332 ** then a list of all columns for the table is substituted. The IDLIST 333 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. 334 ** 335 ** The pList parameter holds EXPRLIST in the first form of the INSERT 336 ** statement above, and pSelect is NULL. For the second form, pList is 337 ** NULL and pSelect is a pointer to the select statement used to generate 338 ** data for the insert. 339 ** 340 ** The code generated follows one of four templates. For a simple 341 ** select with data coming from a VALUES clause, the code executes 342 ** once straight down through. Pseudo-code follows (we call this 343 ** the "1st template"): 344 ** 345 ** open write cursor to <table> and its indices 346 ** puts VALUES clause expressions onto the stack 347 ** write the resulting record into <table> 348 ** cleanup 349 ** 350 ** The three remaining templates assume the statement is of the form 351 ** 352 ** INSERT INTO <table> SELECT ... 353 ** 354 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 355 ** in other words if the SELECT pulls all columns from a single table 356 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 357 ** if <table2> and <table1> are distinct tables but have identical 358 ** schemas, including all the same indices, then a special optimization 359 ** is invoked that copies raw records from <table2> over to <table1>. 360 ** See the xferOptimization() function for the implementation of this 361 ** template. This is the 2nd template. 362 ** 363 ** open a write cursor to <table> 364 ** open read cursor on <table2> 365 ** transfer all records in <table2> over to <table> 366 ** close cursors 367 ** foreach index on <table> 368 ** open a write cursor on the <table> index 369 ** open a read cursor on the corresponding <table2> index 370 ** transfer all records from the read to the write cursors 371 ** close cursors 372 ** end foreach 373 ** 374 ** The 3rd template is for when the second template does not apply 375 ** and the SELECT clause does not read from <table> at any time. 376 ** The generated code follows this template: 377 ** 378 ** EOF <- 0 379 ** X <- A 380 ** goto B 381 ** A: setup for the SELECT 382 ** loop over the rows in the SELECT 383 ** load values into registers R..R+n 384 ** yield X 385 ** end loop 386 ** cleanup after the SELECT 387 ** EOF <- 1 388 ** yield X 389 ** goto A 390 ** B: open write cursor to <table> and its indices 391 ** C: yield X 392 ** if EOF goto D 393 ** insert the select result into <table> from R..R+n 394 ** goto C 395 ** D: cleanup 396 ** 397 ** The 4th template is used if the insert statement takes its 398 ** values from a SELECT but the data is being inserted into a table 399 ** that is also read as part of the SELECT. In the third form, 400 ** we have to use a intermediate table to store the results of 401 ** the select. The template is like this: 402 ** 403 ** EOF <- 0 404 ** X <- A 405 ** goto B 406 ** A: setup for the SELECT 407 ** loop over the tables in the SELECT 408 ** load value into register R..R+n 409 ** yield X 410 ** end loop 411 ** cleanup after the SELECT 412 ** EOF <- 1 413 ** yield X 414 ** halt-error 415 ** B: open temp table 416 ** L: yield X 417 ** if EOF goto M 418 ** insert row from R..R+n into temp table 419 ** goto L 420 ** M: open write cursor to <table> and its indices 421 ** rewind temp table 422 ** C: loop over rows of intermediate table 423 ** transfer values form intermediate table into <table> 424 ** end loop 425 ** D: cleanup 426 */ 427 void sqlite3Insert( 428 Parse *pParse, /* Parser context */ 429 SrcList *pTabList, /* Name of table into which we are inserting */ 430 ExprList *pList, /* List of values to be inserted */ 431 Select *pSelect, /* A SELECT statement to use as the data source */ 432 IdList *pColumn, /* Column names corresponding to IDLIST. */ 433 int onError /* How to handle constraint errors */ 434 ){ 435 sqlite3 *db; /* The main database structure */ 436 Table *pTab; /* The table to insert into. aka TABLE */ 437 char *zTab; /* Name of the table into which we are inserting */ 438 const char *zDb; /* Name of the database holding this table */ 439 int i, j, idx; /* Loop counters */ 440 Vdbe *v; /* Generate code into this virtual machine */ 441 Index *pIdx; /* For looping over indices of the table */ 442 int nColumn; /* Number of columns in the data */ 443 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 444 int baseCur = 0; /* VDBE Cursor number for pTab */ 445 int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 446 int endOfLoop; /* Label for the end of the insertion loop */ 447 int useTempTable = 0; /* Store SELECT results in intermediate table */ 448 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 449 int addrInsTop = 0; /* Jump to label "D" */ 450 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 451 int addrSelect = 0; /* Address of coroutine that implements the SELECT */ 452 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 453 int newIdx = -1; /* Cursor for the NEW pseudo-table */ 454 int iDb; /* Index of database holding TABLE */ 455 Db *pDb; /* The database containing table being inserted into */ 456 int appendFlag = 0; /* True if the insert is likely to be an append */ 457 458 /* Register allocations */ 459 int regFromSelect = 0;/* Base register for data coming from SELECT */ 460 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 461 int regRowCount = 0; /* Memory cell used for the row counter */ 462 int regIns; /* Block of regs holding rowid+data being inserted */ 463 int regRowid; /* registers holding insert rowid */ 464 int regData; /* register holding first column to insert */ 465 int regRecord; /* Holds the assemblied row record */ 466 int regEof = 0; /* Register recording end of SELECT data */ 467 int *aRegIdx = 0; /* One register allocated to each index */ 468 469 470 #ifndef SQLITE_OMIT_TRIGGER 471 int isView; /* True if attempting to insert into a view */ 472 Trigger *pTrigger; /* List of triggers on pTab, if required */ 473 int tmask; /* Mask of trigger times */ 474 #endif 475 476 db = pParse->db; 477 memset(&dest, 0, sizeof(dest)); 478 if( pParse->nErr || db->mallocFailed ){ 479 goto insert_cleanup; 480 } 481 482 /* Locate the table into which we will be inserting new information. 483 */ 484 assert( pTabList->nSrc==1 ); 485 zTab = pTabList->a[0].zName; 486 if( NEVER(zTab==0) ) goto insert_cleanup; 487 pTab = sqlite3SrcListLookup(pParse, pTabList); 488 if( pTab==0 ){ 489 goto insert_cleanup; 490 } 491 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 492 assert( iDb<db->nDb ); 493 pDb = &db->aDb[iDb]; 494 zDb = pDb->zName; 495 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ 496 goto insert_cleanup; 497 } 498 499 /* Figure out if we have any triggers and if the table being 500 ** inserted into is a view 501 */ 502 #ifndef SQLITE_OMIT_TRIGGER 503 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 504 isView = pTab->pSelect!=0; 505 #else 506 # define pTrigger 0 507 # define tmask 0 508 # define isView 0 509 #endif 510 #ifdef SQLITE_OMIT_VIEW 511 # undef isView 512 # define isView 0 513 #endif 514 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 515 516 /* If pTab is really a view, make sure it has been initialized. 517 ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 518 ** module table). 519 */ 520 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 521 goto insert_cleanup; 522 } 523 524 /* Ensure that: 525 * (a) the table is not read-only, 526 * (b) that if it is a view then ON INSERT triggers exist 527 */ 528 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 529 goto insert_cleanup; 530 } 531 532 /* Allocate a VDBE 533 */ 534 v = sqlite3GetVdbe(pParse); 535 if( v==0 ) goto insert_cleanup; 536 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 537 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 538 539 /* if there are row triggers, allocate a temp table for new.* references. */ 540 if( pTrigger ){ 541 newIdx = pParse->nTab++; 542 } 543 544 #ifndef SQLITE_OMIT_XFER_OPT 545 /* If the statement is of the form 546 ** 547 ** INSERT INTO <table1> SELECT * FROM <table2>; 548 ** 549 ** Then special optimizations can be applied that make the transfer 550 ** very fast and which reduce fragmentation of indices. 551 ** 552 ** This is the 2nd template. 553 */ 554 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 555 assert( !pTrigger ); 556 assert( pList==0 ); 557 goto insert_end; 558 } 559 #endif /* SQLITE_OMIT_XFER_OPT */ 560 561 /* If this is an AUTOINCREMENT table, look up the sequence number in the 562 ** sqlite_sequence table and store it in memory cell regAutoinc. 563 */ 564 regAutoinc = autoIncBegin(pParse, iDb, pTab); 565 566 /* Figure out how many columns of data are supplied. If the data 567 ** is coming from a SELECT statement, then generate a co-routine that 568 ** produces a single row of the SELECT on each invocation. The 569 ** co-routine is the common header to the 3rd and 4th templates. 570 */ 571 if( pSelect ){ 572 /* Data is coming from a SELECT. Generate code to implement that SELECT 573 ** as a co-routine. The code is common to both the 3rd and 4th 574 ** templates: 575 ** 576 ** EOF <- 0 577 ** X <- A 578 ** goto B 579 ** A: setup for the SELECT 580 ** loop over the tables in the SELECT 581 ** load value into register R..R+n 582 ** yield X 583 ** end loop 584 ** cleanup after the SELECT 585 ** EOF <- 1 586 ** yield X 587 ** halt-error 588 ** 589 ** On each invocation of the co-routine, it puts a single row of the 590 ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1. 591 ** (These output registers are allocated by sqlite3Select().) When 592 ** the SELECT completes, it sets the EOF flag stored in regEof. 593 */ 594 int rc, j1; 595 596 regEof = ++pParse->nMem; 597 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ 598 VdbeComment((v, "SELECT eof flag")); 599 sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem); 600 addrSelect = sqlite3VdbeCurrentAddr(v)+2; 601 sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm); 602 j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); 603 VdbeComment((v, "Jump over SELECT coroutine")); 604 605 /* Resolve the expressions in the SELECT statement and execute it. */ 606 rc = sqlite3Select(pParse, pSelect, &dest); 607 assert( pParse->nErr==0 || rc ); 608 if( rc || NEVER(pParse->nErr) || db->mallocFailed ){ 609 goto insert_cleanup; 610 } 611 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */ 612 sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */ 613 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort); 614 VdbeComment((v, "End of SELECT coroutine")); 615 sqlite3VdbeJumpHere(v, j1); /* label B: */ 616 617 regFromSelect = dest.iMem; 618 assert( pSelect->pEList ); 619 nColumn = pSelect->pEList->nExpr; 620 assert( dest.nMem==nColumn ); 621 622 /* Set useTempTable to TRUE if the result of the SELECT statement 623 ** should be written into a temporary table (template 4). Set to 624 ** FALSE if each* row of the SELECT can be written directly into 625 ** the destination table (template 3). 626 ** 627 ** A temp table must be used if the table being updated is also one 628 ** of the tables being read by the SELECT statement. Also use a 629 ** temp table in the case of row triggers. 630 */ 631 if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){ 632 useTempTable = 1; 633 } 634 635 if( useTempTable ){ 636 /* Invoke the coroutine to extract information from the SELECT 637 ** and add it to a transient table srcTab. The code generated 638 ** here is from the 4th template: 639 ** 640 ** B: open temp table 641 ** L: yield X 642 ** if EOF goto M 643 ** insert row from R..R+n into temp table 644 ** goto L 645 ** M: ... 646 */ 647 int regRec; /* Register to hold packed record */ 648 int regTempRowid; /* Register to hold temp table ROWID */ 649 int addrTop; /* Label "L" */ 650 int addrIf; /* Address of jump to M */ 651 652 srcTab = pParse->nTab++; 653 regRec = sqlite3GetTempReg(pParse); 654 regTempRowid = sqlite3GetTempReg(pParse); 655 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 656 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); 657 addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof); 658 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 659 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 660 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 661 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 662 sqlite3VdbeJumpHere(v, addrIf); 663 sqlite3ReleaseTempReg(pParse, regRec); 664 sqlite3ReleaseTempReg(pParse, regTempRowid); 665 } 666 }else{ 667 /* This is the case if the data for the INSERT is coming from a VALUES 668 ** clause 669 */ 670 NameContext sNC; 671 memset(&sNC, 0, sizeof(sNC)); 672 sNC.pParse = pParse; 673 srcTab = -1; 674 assert( useTempTable==0 ); 675 nColumn = pList ? pList->nExpr : 0; 676 for(i=0; i<nColumn; i++){ 677 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ 678 goto insert_cleanup; 679 } 680 } 681 } 682 683 /* Make sure the number of columns in the source data matches the number 684 ** of columns to be inserted into the table. 685 */ 686 if( IsVirtual(pTab) ){ 687 for(i=0; i<pTab->nCol; i++){ 688 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 689 } 690 } 691 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 692 sqlite3ErrorMsg(pParse, 693 "table %S has %d columns but %d values were supplied", 694 pTabList, 0, pTab->nCol-nHidden, nColumn); 695 goto insert_cleanup; 696 } 697 if( pColumn!=0 && nColumn!=pColumn->nId ){ 698 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 699 goto insert_cleanup; 700 } 701 702 /* If the INSERT statement included an IDLIST term, then make sure 703 ** all elements of the IDLIST really are columns of the table and 704 ** remember the column indices. 705 ** 706 ** If the table has an INTEGER PRIMARY KEY column and that column 707 ** is named in the IDLIST, then record in the keyColumn variable 708 ** the index into IDLIST of the primary key column. keyColumn is 709 ** the index of the primary key as it appears in IDLIST, not as 710 ** is appears in the original table. (The index of the primary 711 ** key in the original table is pTab->iPKey.) 712 */ 713 if( pColumn ){ 714 for(i=0; i<pColumn->nId; i++){ 715 pColumn->a[i].idx = -1; 716 } 717 for(i=0; i<pColumn->nId; i++){ 718 for(j=0; j<pTab->nCol; j++){ 719 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 720 pColumn->a[i].idx = j; 721 if( j==pTab->iPKey ){ 722 keyColumn = i; 723 } 724 break; 725 } 726 } 727 if( j>=pTab->nCol ){ 728 if( sqlite3IsRowid(pColumn->a[i].zName) ){ 729 keyColumn = i; 730 }else{ 731 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 732 pTabList, 0, pColumn->a[i].zName); 733 pParse->nErr++; 734 goto insert_cleanup; 735 } 736 } 737 } 738 } 739 740 /* If there is no IDLIST term but the table has an integer primary 741 ** key, the set the keyColumn variable to the primary key column index 742 ** in the original table definition. 743 */ 744 if( pColumn==0 && nColumn>0 ){ 745 keyColumn = pTab->iPKey; 746 } 747 748 /* Open the temp table for FOR EACH ROW triggers 749 */ 750 if( pTrigger ){ 751 sqlite3VdbeAddOp3(v, OP_OpenPseudo, newIdx, 0, pTab->nCol); 752 } 753 754 /* Initialize the count of rows to be inserted 755 */ 756 if( db->flags & SQLITE_CountRows ){ 757 regRowCount = ++pParse->nMem; 758 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 759 } 760 761 /* If this is not a view, open the table and and all indices */ 762 if( !isView ){ 763 int nIdx; 764 765 baseCur = pParse->nTab; 766 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite); 767 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); 768 if( aRegIdx==0 ){ 769 goto insert_cleanup; 770 } 771 for(i=0; i<nIdx; i++){ 772 aRegIdx[i] = ++pParse->nMem; 773 } 774 } 775 776 /* This is the top of the main insertion loop */ 777 if( useTempTable ){ 778 /* This block codes the top of loop only. The complete loop is the 779 ** following pseudocode (template 4): 780 ** 781 ** rewind temp table 782 ** C: loop over rows of intermediate table 783 ** transfer values form intermediate table into <table> 784 ** end loop 785 ** D: ... 786 */ 787 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); 788 addrCont = sqlite3VdbeCurrentAddr(v); 789 }else if( pSelect ){ 790 /* This block codes the top of loop only. The complete loop is the 791 ** following pseudocode (template 3): 792 ** 793 ** C: yield X 794 ** if EOF goto D 795 ** insert the select result into <table> from R..R+n 796 ** goto C 797 ** D: ... 798 */ 799 addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); 800 addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); 801 } 802 803 /* Allocate registers for holding the rowid of the new row, 804 ** the content of the new row, and the assemblied row record. 805 */ 806 regRecord = ++pParse->nMem; 807 regRowid = regIns = pParse->nMem+1; 808 pParse->nMem += pTab->nCol + 1; 809 if( IsVirtual(pTab) ){ 810 regRowid++; 811 pParse->nMem++; 812 } 813 regData = regRowid+1; 814 815 /* Run the BEFORE and INSTEAD OF triggers, if there are any 816 */ 817 endOfLoop = sqlite3VdbeMakeLabel(v); 818 if( tmask & TRIGGER_BEFORE ){ 819 int regTrigRowid; 820 int regCols; 821 int regRec; 822 823 /* build the NEW.* reference row. Note that if there is an INTEGER 824 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 825 ** translated into a unique ID for the row. But on a BEFORE trigger, 826 ** we do not know what the unique ID will be (because the insert has 827 ** not happened yet) so we substitute a rowid of -1 828 */ 829 regTrigRowid = sqlite3GetTempReg(pParse); 830 if( keyColumn<0 ){ 831 sqlite3VdbeAddOp2(v, OP_Integer, -1, regTrigRowid); 832 }else{ 833 int j1; 834 if( useTempTable ){ 835 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regTrigRowid); 836 }else{ 837 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 838 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regTrigRowid); 839 } 840 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regTrigRowid); 841 sqlite3VdbeAddOp2(v, OP_Integer, -1, regTrigRowid); 842 sqlite3VdbeJumpHere(v, j1); 843 sqlite3VdbeAddOp1(v, OP_MustBeInt, regTrigRowid); 844 } 845 846 /* Cannot have triggers on a virtual table. If it were possible, 847 ** this block would have to account for hidden column. 848 */ 849 assert(!IsVirtual(pTab)); 850 851 /* Create the new column data 852 */ 853 regCols = sqlite3GetTempRange(pParse, pTab->nCol); 854 for(i=0; i<pTab->nCol; i++){ 855 if( pColumn==0 ){ 856 j = i; 857 }else{ 858 for(j=0; j<pColumn->nId; j++){ 859 if( pColumn->a[j].idx==i ) break; 860 } 861 } 862 if( pColumn && j>=pColumn->nId ){ 863 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i); 864 }else if( useTempTable ){ 865 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i); 866 }else{ 867 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 868 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i); 869 } 870 } 871 regRec = sqlite3GetTempReg(pParse); 872 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec); 873 874 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 875 ** do not attempt any conversions before assembling the record. 876 ** If this is a real table, attempt conversions as required by the 877 ** table column affinities. 878 */ 879 if( !isView ){ 880 sqlite3TableAffinityStr(v, pTab); 881 } 882 sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regTrigRowid); 883 sqlite3ReleaseTempReg(pParse, regRec); 884 sqlite3ReleaseTempReg(pParse, regTrigRowid); 885 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol); 886 887 /* Fire BEFORE or INSTEAD OF triggers */ 888 if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 889 pTab, newIdx, -1, onError, endOfLoop, 0, 0) ){ 890 goto insert_cleanup; 891 } 892 } 893 894 /* Push the record number for the new entry onto the stack. The 895 ** record number is a randomly generate integer created by NewRowid 896 ** except when the table has an INTEGER PRIMARY KEY column, in which 897 ** case the record number is the same as that column. 898 */ 899 if( !isView ){ 900 if( IsVirtual(pTab) ){ 901 /* The row that the VUpdate opcode will delete: none */ 902 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 903 } 904 if( keyColumn>=0 ){ 905 if( useTempTable ){ 906 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); 907 }else if( pSelect ){ 908 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid); 909 }else{ 910 VdbeOp *pOp; 911 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); 912 pOp = sqlite3VdbeGetOp(v, -1); 913 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 914 appendFlag = 1; 915 pOp->opcode = OP_NewRowid; 916 pOp->p1 = baseCur; 917 pOp->p2 = regRowid; 918 pOp->p3 = regAutoinc; 919 } 920 } 921 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 922 ** to generate a unique primary key value. 923 */ 924 if( !appendFlag ){ 925 int j1; 926 if( !IsVirtual(pTab) ){ 927 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); 928 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); 929 sqlite3VdbeJumpHere(v, j1); 930 }else{ 931 j1 = sqlite3VdbeCurrentAddr(v); 932 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); 933 } 934 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); 935 } 936 }else if( IsVirtual(pTab) ){ 937 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 938 }else{ 939 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); 940 appendFlag = 1; 941 } 942 autoIncStep(pParse, regAutoinc, regRowid); 943 944 /* Push onto the stack, data for all columns of the new entry, beginning 945 ** with the first column. 946 */ 947 nHidden = 0; 948 for(i=0; i<pTab->nCol; i++){ 949 int iRegStore = regRowid+1+i; 950 if( i==pTab->iPKey ){ 951 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 952 ** Whenever this column is read, the record number will be substituted 953 ** in its place. So will fill this column with a NULL to avoid 954 ** taking up data space with information that will never be used. */ 955 sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); 956 continue; 957 } 958 if( pColumn==0 ){ 959 if( IsHiddenColumn(&pTab->aCol[i]) ){ 960 assert( IsVirtual(pTab) ); 961 j = -1; 962 nHidden++; 963 }else{ 964 j = i - nHidden; 965 } 966 }else{ 967 for(j=0; j<pColumn->nId; j++){ 968 if( pColumn->a[j].idx==i ) break; 969 } 970 } 971 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 972 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); 973 }else if( useTempTable ){ 974 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 975 }else if( pSelect ){ 976 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 977 }else{ 978 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 979 } 980 } 981 982 /* Generate code to check constraints and generate index keys and 983 ** do the insertion. 984 */ 985 #ifndef SQLITE_OMIT_VIRTUALTABLE 986 if( IsVirtual(pTab) ){ 987 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 988 sqlite3VtabMakeWritable(pParse, pTab); 989 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 990 }else 991 #endif 992 { 993 int isReplace; /* Set to true if constraints may cause a replace */ 994 sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, 995 keyColumn>=0, 0, onError, endOfLoop, &isReplace 996 ); 997 sqlite3CompleteInsertion( 998 pParse, pTab, baseCur, regIns, aRegIdx, 0, 999 (tmask&TRIGGER_AFTER) ? newIdx : -1, appendFlag, isReplace==0 1000 ); 1001 } 1002 } 1003 1004 /* Update the count of rows that are inserted 1005 */ 1006 if( (db->flags & SQLITE_CountRows)!=0 ){ 1007 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1008 } 1009 1010 if( pTrigger ){ 1011 /* Code AFTER triggers */ 1012 if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1013 pTab, newIdx, -1, onError, endOfLoop, 0, 0) ){ 1014 goto insert_cleanup; 1015 } 1016 } 1017 1018 /* The bottom of the main insertion loop, if the data source 1019 ** is a SELECT statement. 1020 */ 1021 sqlite3VdbeResolveLabel(v, endOfLoop); 1022 if( useTempTable ){ 1023 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); 1024 sqlite3VdbeJumpHere(v, addrInsTop); 1025 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1026 }else if( pSelect ){ 1027 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); 1028 sqlite3VdbeJumpHere(v, addrInsTop); 1029 } 1030 1031 if( !IsVirtual(pTab) && !isView ){ 1032 /* Close all tables opened */ 1033 sqlite3VdbeAddOp1(v, OP_Close, baseCur); 1034 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 1035 sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur); 1036 } 1037 } 1038 1039 insert_end: 1040 /* Update the sqlite_sequence table by storing the content of the 1041 ** maximum rowid counter values recorded while inserting into 1042 ** autoincrement tables. 1043 */ 1044 if( pParse->nested==0 && pParse->trigStack==0 ){ 1045 sqlite3AutoincrementEnd(pParse); 1046 } 1047 1048 /* 1049 ** Return the number of rows inserted. If this routine is 1050 ** generating code because of a call to sqlite3NestedParse(), do not 1051 ** invoke the callback function. 1052 */ 1053 if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){ 1054 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1055 sqlite3VdbeSetNumCols(v, 1); 1056 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1057 } 1058 1059 insert_cleanup: 1060 sqlite3SrcListDelete(db, pTabList); 1061 sqlite3ExprListDelete(db, pList); 1062 sqlite3SelectDelete(db, pSelect); 1063 sqlite3IdListDelete(db, pColumn); 1064 sqlite3DbFree(db, aRegIdx); 1065 } 1066 1067 /* 1068 ** Generate code to do constraint checks prior to an INSERT or an UPDATE. 1069 ** 1070 ** The input is a range of consecutive registers as follows: 1071 ** 1072 ** 1. The rowid of the row to be updated before the update. This 1073 ** value is omitted unless we are doing an UPDATE that involves a 1074 ** change to the record number or writing to a virtual table. 1075 ** 1076 ** 2. The rowid of the row after the update. 1077 ** 1078 ** 3. The data in the first column of the entry after the update. 1079 ** 1080 ** i. Data from middle columns... 1081 ** 1082 ** N. The data in the last column of the entry after the update. 1083 ** 1084 ** The regRowid parameter is the index of the register containing (2). 1085 ** 1086 ** The old rowid shown as entry (1) above is omitted unless both isUpdate 1087 ** and rowidChng are 1. isUpdate is true for UPDATEs and false for 1088 ** INSERTs. RowidChng means that the new rowid is explicitly specified by 1089 ** the update or insert statement. If rowidChng is false, it means that 1090 ** the rowid is computed automatically in an insert or that the rowid value 1091 ** is not modified by the update. 1092 ** 1093 ** The code generated by this routine store new index entries into 1094 ** registers identified by aRegIdx[]. No index entry is created for 1095 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1096 ** the same as the order of indices on the linked list of indices 1097 ** attached to the table. 1098 ** 1099 ** This routine also generates code to check constraints. NOT NULL, 1100 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1101 ** then the appropriate action is performed. There are five possible 1102 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1103 ** 1104 ** Constraint type Action What Happens 1105 ** --------------- ---------- ---------------------------------------- 1106 ** any ROLLBACK The current transaction is rolled back and 1107 ** sqlite3_exec() returns immediately with a 1108 ** return code of SQLITE_CONSTRAINT. 1109 ** 1110 ** any ABORT Back out changes from the current command 1111 ** only (do not do a complete rollback) then 1112 ** cause sqlite3_exec() to return immediately 1113 ** with SQLITE_CONSTRAINT. 1114 ** 1115 ** any FAIL Sqlite_exec() returns immediately with a 1116 ** return code of SQLITE_CONSTRAINT. The 1117 ** transaction is not rolled back and any 1118 ** prior changes are retained. 1119 ** 1120 ** any IGNORE The record number and data is popped from 1121 ** the stack and there is an immediate jump 1122 ** to label ignoreDest. 1123 ** 1124 ** NOT NULL REPLACE The NULL value is replace by the default 1125 ** value for that column. If the default value 1126 ** is NULL, the action is the same as ABORT. 1127 ** 1128 ** UNIQUE REPLACE The other row that conflicts with the row 1129 ** being inserted is removed. 1130 ** 1131 ** CHECK REPLACE Illegal. The results in an exception. 1132 ** 1133 ** Which action to take is determined by the overrideError parameter. 1134 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1135 ** is used. Or if pParse->onError==OE_Default then the onError value 1136 ** for the constraint is used. 1137 ** 1138 ** The calling routine must open a read/write cursor for pTab with 1139 ** cursor number "baseCur". All indices of pTab must also have open 1140 ** read/write cursors with cursor number baseCur+i for the i-th cursor. 1141 ** Except, if there is no possibility of a REPLACE action then 1142 ** cursors do not need to be open for indices where aRegIdx[i]==0. 1143 */ 1144 void sqlite3GenerateConstraintChecks( 1145 Parse *pParse, /* The parser context */ 1146 Table *pTab, /* the table into which we are inserting */ 1147 int baseCur, /* Index of a read/write cursor pointing at pTab */ 1148 int regRowid, /* Index of the range of input registers */ 1149 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1150 int rowidChng, /* True if the rowid might collide with existing entry */ 1151 int isUpdate, /* True for UPDATE, False for INSERT */ 1152 int overrideError, /* Override onError to this if not OE_Default */ 1153 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1154 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ 1155 ){ 1156 int i; /* loop counter */ 1157 Vdbe *v; /* VDBE under constrution */ 1158 int nCol; /* Number of columns */ 1159 int onError; /* Conflict resolution strategy */ 1160 int j1; /* Addresss of jump instruction */ 1161 int j2 = 0, j3; /* Addresses of jump instructions */ 1162 int regData; /* Register containing first data column */ 1163 int iCur; /* Table cursor number */ 1164 Index *pIdx; /* Pointer to one of the indices */ 1165 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1166 int hasTwoRowids = (isUpdate && rowidChng); 1167 1168 v = sqlite3GetVdbe(pParse); 1169 assert( v!=0 ); 1170 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1171 nCol = pTab->nCol; 1172 regData = regRowid + 1; 1173 1174 1175 /* Test all NOT NULL constraints. 1176 */ 1177 for(i=0; i<nCol; i++){ 1178 if( i==pTab->iPKey ){ 1179 continue; 1180 } 1181 onError = pTab->aCol[i].notNull; 1182 if( onError==OE_None ) continue; 1183 if( overrideError!=OE_Default ){ 1184 onError = overrideError; 1185 }else if( onError==OE_Default ){ 1186 onError = OE_Abort; 1187 } 1188 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1189 onError = OE_Abort; 1190 } 1191 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1192 || onError==OE_Ignore || onError==OE_Replace ); 1193 switch( onError ){ 1194 case OE_Rollback: 1195 case OE_Abort: 1196 case OE_Fail: { 1197 char *zMsg; 1198 j1 = sqlite3VdbeAddOp3(v, OP_HaltIfNull, 1199 SQLITE_CONSTRAINT, onError, regData+i); 1200 zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL", 1201 pTab->zName, pTab->aCol[i].zName); 1202 sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); 1203 break; 1204 } 1205 case OE_Ignore: { 1206 sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest); 1207 break; 1208 } 1209 default: { 1210 assert( onError==OE_Replace ); 1211 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i); 1212 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i); 1213 sqlite3VdbeJumpHere(v, j1); 1214 break; 1215 } 1216 } 1217 } 1218 1219 /* Test all CHECK constraints 1220 */ 1221 #ifndef SQLITE_OMIT_CHECK 1222 if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ 1223 int allOk = sqlite3VdbeMakeLabel(v); 1224 pParse->ckBase = regData; 1225 sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); 1226 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1227 if( onError==OE_Ignore ){ 1228 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1229 }else{ 1230 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError); 1231 } 1232 sqlite3VdbeResolveLabel(v, allOk); 1233 } 1234 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1235 1236 /* If we have an INTEGER PRIMARY KEY, make sure the primary key 1237 ** of the new record does not previously exist. Except, if this 1238 ** is an UPDATE and the primary key is not changing, that is OK. 1239 */ 1240 if( rowidChng ){ 1241 onError = pTab->keyConf; 1242 if( overrideError!=OE_Default ){ 1243 onError = overrideError; 1244 }else if( onError==OE_Default ){ 1245 onError = OE_Abort; 1246 } 1247 1248 if( onError!=OE_Replace || pTab->pIndex ){ 1249 if( isUpdate ){ 1250 j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1); 1251 } 1252 j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); 1253 switch( onError ){ 1254 default: { 1255 onError = OE_Abort; 1256 /* Fall thru into the next case */ 1257 } 1258 case OE_Rollback: 1259 case OE_Abort: 1260 case OE_Fail: { 1261 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, 1262 "PRIMARY KEY must be unique", P4_STATIC); 1263 break; 1264 } 1265 case OE_Replace: { 1266 sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); 1267 seenReplace = 1; 1268 break; 1269 } 1270 case OE_Ignore: { 1271 assert( seenReplace==0 ); 1272 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1273 break; 1274 } 1275 } 1276 sqlite3VdbeJumpHere(v, j3); 1277 if( isUpdate ){ 1278 sqlite3VdbeJumpHere(v, j2); 1279 } 1280 } 1281 } 1282 1283 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1284 ** index and making sure that duplicate entries do not already exist. 1285 ** Add the new records to the indices as we go. 1286 */ 1287 for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ 1288 int regIdx; 1289 int regR; 1290 1291 if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ 1292 1293 /* Create a key for accessing the index entry */ 1294 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); 1295 for(i=0; i<pIdx->nColumn; i++){ 1296 int idx = pIdx->aiColumn[i]; 1297 if( idx==pTab->iPKey ){ 1298 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); 1299 }else{ 1300 sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); 1301 } 1302 } 1303 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); 1304 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); 1305 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0); 1306 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); 1307 1308 /* Find out what action to take in case there is an indexing conflict */ 1309 onError = pIdx->onError; 1310 if( onError==OE_None ){ 1311 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); 1312 continue; /* pIdx is not a UNIQUE index */ 1313 } 1314 if( overrideError!=OE_Default ){ 1315 onError = overrideError; 1316 }else if( onError==OE_Default ){ 1317 onError = OE_Abort; 1318 } 1319 if( seenReplace ){ 1320 if( onError==OE_Ignore ) onError = OE_Replace; 1321 else if( onError==OE_Fail ) onError = OE_Abort; 1322 } 1323 1324 1325 /* Check to see if the new index entry will be unique */ 1326 regR = sqlite3GetTempReg(pParse); 1327 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR); 1328 j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, 1329 regR, SQLITE_INT_TO_PTR(regIdx), 1330 P4_INT32); 1331 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); 1332 1333 /* Generate code that executes if the new index entry is not unique */ 1334 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1335 || onError==OE_Ignore || onError==OE_Replace ); 1336 switch( onError ){ 1337 case OE_Rollback: 1338 case OE_Abort: 1339 case OE_Fail: { 1340 int j; 1341 StrAccum errMsg; 1342 const char *zSep; 1343 char *zErr; 1344 1345 sqlite3StrAccumInit(&errMsg, 0, 0, 200); 1346 errMsg.db = pParse->db; 1347 zSep = pIdx->nColumn>1 ? "columns " : "column "; 1348 for(j=0; j<pIdx->nColumn; j++){ 1349 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 1350 sqlite3StrAccumAppend(&errMsg, zSep, -1); 1351 zSep = ", "; 1352 sqlite3StrAccumAppend(&errMsg, zCol, -1); 1353 } 1354 sqlite3StrAccumAppend(&errMsg, 1355 pIdx->nColumn>1 ? " are not unique" : " is not unique", -1); 1356 zErr = sqlite3StrAccumFinish(&errMsg); 1357 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErr, 0); 1358 sqlite3DbFree(errMsg.db, zErr); 1359 break; 1360 } 1361 case OE_Ignore: { 1362 assert( seenReplace==0 ); 1363 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1364 break; 1365 } 1366 default: { 1367 assert( onError==OE_Replace ); 1368 sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0); 1369 seenReplace = 1; 1370 break; 1371 } 1372 } 1373 sqlite3VdbeJumpHere(v, j3); 1374 sqlite3ReleaseTempReg(pParse, regR); 1375 } 1376 1377 if( pbMayReplace ){ 1378 *pbMayReplace = seenReplace; 1379 } 1380 } 1381 1382 /* 1383 ** This routine generates code to finish the INSERT or UPDATE operation 1384 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1385 ** A consecutive range of registers starting at regRowid contains the 1386 ** rowid and the content to be inserted. 1387 ** 1388 ** The arguments to this routine should be the same as the first six 1389 ** arguments to sqlite3GenerateConstraintChecks. 1390 */ 1391 void sqlite3CompleteInsertion( 1392 Parse *pParse, /* The parser context */ 1393 Table *pTab, /* the table into which we are inserting */ 1394 int baseCur, /* Index of a read/write cursor pointing at pTab */ 1395 int regRowid, /* Range of content */ 1396 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1397 int isUpdate, /* True for UPDATE, False for INSERT */ 1398 int newIdx, /* Index of NEW table for triggers. -1 if none */ 1399 int appendBias, /* True if this is likely to be an append */ 1400 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1401 ){ 1402 int i; 1403 Vdbe *v; 1404 int nIdx; 1405 Index *pIdx; 1406 u8 pik_flags; 1407 int regData; 1408 int regRec; 1409 1410 v = sqlite3GetVdbe(pParse); 1411 assert( v!=0 ); 1412 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1413 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} 1414 for(i=nIdx-1; i>=0; i--){ 1415 if( aRegIdx[i]==0 ) continue; 1416 sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); 1417 if( useSeekResult ){ 1418 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1419 } 1420 } 1421 regData = regRowid + 1; 1422 regRec = sqlite3GetTempReg(pParse); 1423 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1424 sqlite3TableAffinityStr(v, pTab); 1425 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); 1426 #ifndef SQLITE_OMIT_TRIGGER 1427 if( newIdx>=0 ){ 1428 sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid); 1429 } 1430 #endif 1431 if( pParse->nested ){ 1432 pik_flags = 0; 1433 }else{ 1434 pik_flags = OPFLAG_NCHANGE; 1435 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); 1436 } 1437 if( appendBias ){ 1438 pik_flags |= OPFLAG_APPEND; 1439 } 1440 if( useSeekResult ){ 1441 pik_flags |= OPFLAG_USESEEKRESULT; 1442 } 1443 sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); 1444 if( !pParse->nested ){ 1445 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC); 1446 } 1447 sqlite3VdbeChangeP5(v, pik_flags); 1448 } 1449 1450 /* 1451 ** Generate code that will open cursors for a table and for all 1452 ** indices of that table. The "baseCur" parameter is the cursor number used 1453 ** for the table. Indices are opened on subsequent cursors. 1454 ** 1455 ** Return the number of indices on the table. 1456 */ 1457 int sqlite3OpenTableAndIndices( 1458 Parse *pParse, /* Parsing context */ 1459 Table *pTab, /* Table to be opened */ 1460 int baseCur, /* Cursor number assigned to the table */ 1461 int op /* OP_OpenRead or OP_OpenWrite */ 1462 ){ 1463 int i; 1464 int iDb; 1465 Index *pIdx; 1466 Vdbe *v; 1467 1468 if( IsVirtual(pTab) ) return 0; 1469 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1470 v = sqlite3GetVdbe(pParse); 1471 assert( v!=0 ); 1472 sqlite3OpenTable(pParse, baseCur, iDb, pTab, op); 1473 for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1474 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 1475 assert( pIdx->pSchema==pTab->pSchema ); 1476 sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb, 1477 (char*)pKey, P4_KEYINFO_HANDOFF); 1478 VdbeComment((v, "%s", pIdx->zName)); 1479 } 1480 if( pParse->nTab<baseCur+i ){ 1481 pParse->nTab = baseCur+i; 1482 } 1483 return i-1; 1484 } 1485 1486 1487 #ifdef SQLITE_TEST 1488 /* 1489 ** The following global variable is incremented whenever the 1490 ** transfer optimization is used. This is used for testing 1491 ** purposes only - to make sure the transfer optimization really 1492 ** is happening when it is suppose to. 1493 */ 1494 int sqlite3_xferopt_count; 1495 #endif /* SQLITE_TEST */ 1496 1497 1498 #ifndef SQLITE_OMIT_XFER_OPT 1499 /* 1500 ** Check to collation names to see if they are compatible. 1501 */ 1502 static int xferCompatibleCollation(const char *z1, const char *z2){ 1503 if( z1==0 ){ 1504 return z2==0; 1505 } 1506 if( z2==0 ){ 1507 return 0; 1508 } 1509 return sqlite3StrICmp(z1, z2)==0; 1510 } 1511 1512 1513 /* 1514 ** Check to see if index pSrc is compatible as a source of data 1515 ** for index pDest in an insert transfer optimization. The rules 1516 ** for a compatible index: 1517 ** 1518 ** * The index is over the same set of columns 1519 ** * The same DESC and ASC markings occurs on all columns 1520 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1521 ** * The same collating sequence on each column 1522 */ 1523 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1524 int i; 1525 assert( pDest && pSrc ); 1526 assert( pDest->pTable!=pSrc->pTable ); 1527 if( pDest->nColumn!=pSrc->nColumn ){ 1528 return 0; /* Different number of columns */ 1529 } 1530 if( pDest->onError!=pSrc->onError ){ 1531 return 0; /* Different conflict resolution strategies */ 1532 } 1533 for(i=0; i<pSrc->nColumn; i++){ 1534 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1535 return 0; /* Different columns indexed */ 1536 } 1537 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1538 return 0; /* Different sort orders */ 1539 } 1540 if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ 1541 return 0; /* Different collating sequences */ 1542 } 1543 } 1544 1545 /* If no test above fails then the indices must be compatible */ 1546 return 1; 1547 } 1548 1549 /* 1550 ** Attempt the transfer optimization on INSERTs of the form 1551 ** 1552 ** INSERT INTO tab1 SELECT * FROM tab2; 1553 ** 1554 ** This optimization is only attempted if 1555 ** 1556 ** (1) tab1 and tab2 have identical schemas including all the 1557 ** same indices and constraints 1558 ** 1559 ** (2) tab1 and tab2 are different tables 1560 ** 1561 ** (3) There must be no triggers on tab1 1562 ** 1563 ** (4) The result set of the SELECT statement is "*" 1564 ** 1565 ** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, 1566 ** or LIMIT clause. 1567 ** 1568 ** (6) The SELECT statement is a simple (not a compound) select that 1569 ** contains only tab2 in its FROM clause 1570 ** 1571 ** This method for implementing the INSERT transfers raw records from 1572 ** tab2 over to tab1. The columns are not decoded. Raw records from 1573 ** the indices of tab2 are transfered to tab1 as well. In so doing, 1574 ** the resulting tab1 has much less fragmentation. 1575 ** 1576 ** This routine returns TRUE if the optimization is attempted. If any 1577 ** of the conditions above fail so that the optimization should not 1578 ** be attempted, then this routine returns FALSE. 1579 */ 1580 static int xferOptimization( 1581 Parse *pParse, /* Parser context */ 1582 Table *pDest, /* The table we are inserting into */ 1583 Select *pSelect, /* A SELECT statement to use as the data source */ 1584 int onError, /* How to handle constraint errors */ 1585 int iDbDest /* The database of pDest */ 1586 ){ 1587 ExprList *pEList; /* The result set of the SELECT */ 1588 Table *pSrc; /* The table in the FROM clause of SELECT */ 1589 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1590 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1591 int i; /* Loop counter */ 1592 int iDbSrc; /* The database of pSrc */ 1593 int iSrc, iDest; /* Cursors from source and destination */ 1594 int addr1, addr2; /* Loop addresses */ 1595 int emptyDestTest; /* Address of test for empty pDest */ 1596 int emptySrcTest; /* Address of test for empty pSrc */ 1597 Vdbe *v; /* The VDBE we are building */ 1598 KeyInfo *pKey; /* Key information for an index */ 1599 int regAutoinc; /* Memory register used by AUTOINC */ 1600 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1601 int regData, regRowid; /* Registers holding data and rowid */ 1602 1603 if( pSelect==0 ){ 1604 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1605 } 1606 if( sqlite3TriggerList(pParse, pDest) ){ 1607 return 0; /* tab1 must not have triggers */ 1608 } 1609 #ifndef SQLITE_OMIT_VIRTUALTABLE 1610 if( pDest->tabFlags & TF_Virtual ){ 1611 return 0; /* tab1 must not be a virtual table */ 1612 } 1613 #endif 1614 if( onError==OE_Default ){ 1615 onError = OE_Abort; 1616 } 1617 if( onError!=OE_Abort && onError!=OE_Rollback ){ 1618 return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ 1619 } 1620 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 1621 if( pSelect->pSrc->nSrc!=1 ){ 1622 return 0; /* FROM clause must have exactly one term */ 1623 } 1624 if( pSelect->pSrc->a[0].pSelect ){ 1625 return 0; /* FROM clause cannot contain a subquery */ 1626 } 1627 if( pSelect->pWhere ){ 1628 return 0; /* SELECT may not have a WHERE clause */ 1629 } 1630 if( pSelect->pOrderBy ){ 1631 return 0; /* SELECT may not have an ORDER BY clause */ 1632 } 1633 /* Do not need to test for a HAVING clause. If HAVING is present but 1634 ** there is no ORDER BY, we will get an error. */ 1635 if( pSelect->pGroupBy ){ 1636 return 0; /* SELECT may not have a GROUP BY clause */ 1637 } 1638 if( pSelect->pLimit ){ 1639 return 0; /* SELECT may not have a LIMIT clause */ 1640 } 1641 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 1642 if( pSelect->pPrior ){ 1643 return 0; /* SELECT may not be a compound query */ 1644 } 1645 if( pSelect->selFlags & SF_Distinct ){ 1646 return 0; /* SELECT may not be DISTINCT */ 1647 } 1648 pEList = pSelect->pEList; 1649 assert( pEList!=0 ); 1650 if( pEList->nExpr!=1 ){ 1651 return 0; /* The result set must have exactly one column */ 1652 } 1653 assert( pEList->a[0].pExpr ); 1654 if( pEList->a[0].pExpr->op!=TK_ALL ){ 1655 return 0; /* The result set must be the special operator "*" */ 1656 } 1657 1658 /* At this point we have established that the statement is of the 1659 ** correct syntactic form to participate in this optimization. Now 1660 ** we have to check the semantics. 1661 */ 1662 pItem = pSelect->pSrc->a; 1663 pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); 1664 if( pSrc==0 ){ 1665 return 0; /* FROM clause does not contain a real table */ 1666 } 1667 if( pSrc==pDest ){ 1668 return 0; /* tab1 and tab2 may not be the same table */ 1669 } 1670 #ifndef SQLITE_OMIT_VIRTUALTABLE 1671 if( pSrc->tabFlags & TF_Virtual ){ 1672 return 0; /* tab2 must not be a virtual table */ 1673 } 1674 #endif 1675 if( pSrc->pSelect ){ 1676 return 0; /* tab2 may not be a view */ 1677 } 1678 if( pDest->nCol!=pSrc->nCol ){ 1679 return 0; /* Number of columns must be the same in tab1 and tab2 */ 1680 } 1681 if( pDest->iPKey!=pSrc->iPKey ){ 1682 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 1683 } 1684 for(i=0; i<pDest->nCol; i++){ 1685 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ 1686 return 0; /* Affinity must be the same on all columns */ 1687 } 1688 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ 1689 return 0; /* Collating sequence must be the same on all columns */ 1690 } 1691 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ 1692 return 0; /* tab2 must be NOT NULL if tab1 is */ 1693 } 1694 } 1695 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1696 if( pDestIdx->onError!=OE_None ){ 1697 destHasUniqueIdx = 1; 1698 } 1699 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1700 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1701 } 1702 if( pSrcIdx==0 ){ 1703 return 0; /* pDestIdx has no corresponding index in pSrc */ 1704 } 1705 } 1706 #ifndef SQLITE_OMIT_CHECK 1707 if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ 1708 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 1709 } 1710 #endif 1711 1712 /* If we get this far, it means either: 1713 ** 1714 ** * We can always do the transfer if the table contains an 1715 ** an integer primary key 1716 ** 1717 ** * We can conditionally do the transfer if the destination 1718 ** table is empty. 1719 */ 1720 #ifdef SQLITE_TEST 1721 sqlite3_xferopt_count++; 1722 #endif 1723 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); 1724 v = sqlite3GetVdbe(pParse); 1725 sqlite3CodeVerifySchema(pParse, iDbSrc); 1726 iSrc = pParse->nTab++; 1727 iDest = pParse->nTab++; 1728 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 1729 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 1730 if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ 1731 /* If tables do not have an INTEGER PRIMARY KEY and there 1732 ** are indices to be copied and the destination is not empty, 1733 ** we have to disallow the transfer optimization because the 1734 ** the rowids might change which will mess up indexing. 1735 ** 1736 ** Or if the destination has a UNIQUE index and is not empty, 1737 ** we also disallow the transfer optimization because we cannot 1738 ** insure that all entries in the union of DEST and SRC will be 1739 ** unique. 1740 */ 1741 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); 1742 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); 1743 sqlite3VdbeJumpHere(v, addr1); 1744 }else{ 1745 emptyDestTest = 0; 1746 } 1747 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 1748 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); 1749 regData = sqlite3GetTempReg(pParse); 1750 regRowid = sqlite3GetTempReg(pParse); 1751 if( pDest->iPKey>=0 ){ 1752 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 1753 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 1754 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, 1755 "PRIMARY KEY must be unique", P4_STATIC); 1756 sqlite3VdbeJumpHere(v, addr2); 1757 autoIncStep(pParse, regAutoinc, regRowid); 1758 }else if( pDest->pIndex==0 ){ 1759 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 1760 }else{ 1761 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 1762 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 1763 } 1764 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); 1765 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 1766 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); 1767 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); 1768 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); 1769 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1770 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 1771 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1772 } 1773 assert( pSrcIdx ); 1774 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 1775 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 1776 pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); 1777 sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc, 1778 (char*)pKey, P4_KEYINFO_HANDOFF); 1779 VdbeComment((v, "%s", pSrcIdx->zName)); 1780 pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); 1781 sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest, 1782 (char*)pKey, P4_KEYINFO_HANDOFF); 1783 VdbeComment((v, "%s", pDestIdx->zName)); 1784 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); 1785 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); 1786 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); 1787 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); 1788 sqlite3VdbeJumpHere(v, addr1); 1789 } 1790 sqlite3VdbeJumpHere(v, emptySrcTest); 1791 sqlite3ReleaseTempReg(pParse, regRowid); 1792 sqlite3ReleaseTempReg(pParse, regData); 1793 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 1794 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 1795 if( emptyDestTest ){ 1796 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 1797 sqlite3VdbeJumpHere(v, emptyDestTest); 1798 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 1799 return 0; 1800 }else{ 1801 return 1; 1802 } 1803 } 1804 #endif /* SQLITE_OMIT_XFER_OPT */ 1805 1806 /* Make sure "isView" gets undefined in case this file becomes part of 1807 ** the amalgamation - so that subsequent files do not see isView as a 1808 ** macro. */ 1809 #undef isView 1810