1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 ** 15 ** $Id: insert.c,v 1.269 2009/06/23 20:28:54 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 /* 20 ** Generate code that will open a table for reading. 21 */ 22 void sqlite3OpenTable( 23 Parse *p, /* Generate code into this VDBE */ 24 int iCur, /* The cursor number of the table */ 25 int iDb, /* The database index in sqlite3.aDb[] */ 26 Table *pTab, /* The table to be opened */ 27 int opcode /* OP_OpenRead or OP_OpenWrite */ 28 ){ 29 Vdbe *v; 30 if( IsVirtual(pTab) ) return; 31 v = sqlite3GetVdbe(p); 32 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 33 sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); 34 sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); 35 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); 36 VdbeComment((v, "%s", pTab->zName)); 37 } 38 39 /* 40 ** Set P4 of the most recently inserted opcode to a column affinity 41 ** string for index pIdx. A column affinity string has one character 42 ** for each column in the table, according to the affinity of the column: 43 ** 44 ** Character Column affinity 45 ** ------------------------------ 46 ** 'a' TEXT 47 ** 'b' NONE 48 ** 'c' NUMERIC 49 ** 'd' INTEGER 50 ** 'e' REAL 51 ** 52 ** An extra 'b' is appended to the end of the string to cover the 53 ** rowid that appears as the last column in every index. 54 */ 55 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ 56 if( !pIdx->zColAff ){ 57 /* The first time a column affinity string for a particular index is 58 ** required, it is allocated and populated here. It is then stored as 59 ** a member of the Index structure for subsequent use. 60 ** 61 ** The column affinity string will eventually be deleted by 62 ** sqliteDeleteIndex() when the Index structure itself is cleaned 63 ** up. 64 */ 65 int n; 66 Table *pTab = pIdx->pTable; 67 sqlite3 *db = sqlite3VdbeDb(v); 68 pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2); 69 if( !pIdx->zColAff ){ 70 db->mallocFailed = 1; 71 return; 72 } 73 for(n=0; n<pIdx->nColumn; n++){ 74 pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; 75 } 76 pIdx->zColAff[n++] = SQLITE_AFF_NONE; 77 pIdx->zColAff[n] = 0; 78 } 79 80 sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0); 81 } 82 83 /* 84 ** Set P4 of the most recently inserted opcode to a column affinity 85 ** string for table pTab. A column affinity string has one character 86 ** for each column indexed by the index, according to the affinity of the 87 ** column: 88 ** 89 ** Character Column affinity 90 ** ------------------------------ 91 ** 'a' TEXT 92 ** 'b' NONE 93 ** 'c' NUMERIC 94 ** 'd' INTEGER 95 ** 'e' REAL 96 */ 97 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ 98 /* The first time a column affinity string for a particular table 99 ** is required, it is allocated and populated here. It is then 100 ** stored as a member of the Table structure for subsequent use. 101 ** 102 ** The column affinity string will eventually be deleted by 103 ** sqlite3DeleteTable() when the Table structure itself is cleaned up. 104 */ 105 if( !pTab->zColAff ){ 106 char *zColAff; 107 int i; 108 sqlite3 *db = sqlite3VdbeDb(v); 109 110 zColAff = (char *)sqlite3Malloc(pTab->nCol+1); 111 if( !zColAff ){ 112 db->mallocFailed = 1; 113 return; 114 } 115 116 for(i=0; i<pTab->nCol; i++){ 117 zColAff[i] = pTab->aCol[i].affinity; 118 } 119 zColAff[pTab->nCol] = '\0'; 120 121 pTab->zColAff = zColAff; 122 } 123 124 sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0); 125 } 126 127 /* 128 ** Return non-zero if the table pTab in database iDb or any of its indices 129 ** have been opened at any point in the VDBE program beginning at location 130 ** iStartAddr throught the end of the program. This is used to see if 131 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 132 ** run without using temporary table for the results of the SELECT. 133 */ 134 static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){ 135 int i; 136 int iEnd = sqlite3VdbeCurrentAddr(v); 137 for(i=iStartAddr; i<iEnd; i++){ 138 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 139 assert( pOp!=0 ); 140 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 141 Index *pIndex; 142 int tnum = pOp->p2; 143 if( tnum==pTab->tnum ){ 144 return 1; 145 } 146 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 147 if( tnum==pIndex->tnum ){ 148 return 1; 149 } 150 } 151 } 152 #ifndef SQLITE_OMIT_VIRTUALTABLE 153 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){ 154 assert( pOp->p4.pVtab!=0 ); 155 assert( pOp->p4type==P4_VTAB ); 156 return 1; 157 } 158 #endif 159 } 160 return 0; 161 } 162 163 #ifndef SQLITE_OMIT_AUTOINCREMENT 164 /* 165 ** Locate or create an AutoincInfo structure associated with table pTab 166 ** which is in database iDb. Return the register number for the register 167 ** that holds the maximum rowid. 168 ** 169 ** There is at most one AutoincInfo structure per table even if the 170 ** same table is autoincremented multiple times due to inserts within 171 ** triggers. A new AutoincInfo structure is created if this is the 172 ** first use of table pTab. On 2nd and subsequent uses, the original 173 ** AutoincInfo structure is used. 174 ** 175 ** Three memory locations are allocated: 176 ** 177 ** (1) Register to hold the name of the pTab table. 178 ** (2) Register to hold the maximum ROWID of pTab. 179 ** (3) Register to hold the rowid in sqlite_sequence of pTab 180 ** 181 ** The 2nd register is the one that is returned. That is all the 182 ** insert routine needs to know about. 183 */ 184 static int autoIncBegin( 185 Parse *pParse, /* Parsing context */ 186 int iDb, /* Index of the database holding pTab */ 187 Table *pTab /* The table we are writing to */ 188 ){ 189 int memId = 0; /* Register holding maximum rowid */ 190 if( pTab->tabFlags & TF_Autoincrement ){ 191 AutoincInfo *pInfo; 192 193 pInfo = pParse->pAinc; 194 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 195 if( pInfo==0 ){ 196 pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo)); 197 if( pInfo==0 ) return 0; 198 pInfo->pNext = pParse->pAinc; 199 pParse->pAinc = pInfo; 200 pInfo->pTab = pTab; 201 pInfo->iDb = iDb; 202 pParse->nMem++; /* Register to hold name of table */ 203 pInfo->regCtr = ++pParse->nMem; /* Max rowid register */ 204 pParse->nMem++; /* Rowid in sqlite_sequence */ 205 } 206 memId = pInfo->regCtr; 207 } 208 return memId; 209 } 210 211 /* 212 ** This routine generates code that will initialize all of the 213 ** register used by the autoincrement tracker. 214 */ 215 void sqlite3AutoincrementBegin(Parse *pParse){ 216 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 217 sqlite3 *db = pParse->db; /* The database connection */ 218 Db *pDb; /* Database only autoinc table */ 219 int memId; /* Register holding max rowid */ 220 int addr; /* A VDBE address */ 221 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 222 223 assert( v ); /* We failed long ago if this is not so */ 224 for(p = pParse->pAinc; p; p = p->pNext){ 225 pDb = &db->aDb[p->iDb]; 226 memId = p->regCtr; 227 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 228 addr = sqlite3VdbeCurrentAddr(v); 229 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); 230 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); 231 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); 232 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); 233 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 234 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); 235 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); 236 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); 237 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); 238 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); 239 sqlite3VdbeAddOp0(v, OP_Close); 240 } 241 } 242 243 /* 244 ** Update the maximum rowid for an autoincrement calculation. 245 ** 246 ** This routine should be called when the top of the stack holds a 247 ** new rowid that is about to be inserted. If that new rowid is 248 ** larger than the maximum rowid in the memId memory cell, then the 249 ** memory cell is updated. The stack is unchanged. 250 */ 251 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 252 if( memId>0 ){ 253 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 254 } 255 } 256 257 /* 258 ** This routine generates the code needed to write autoincrement 259 ** maximum rowid values back into the sqlite_sequence register. 260 ** Every statement that might do an INSERT into an autoincrement 261 ** table (either directly or through triggers) needs to call this 262 ** routine just before the "exit" code. 263 */ 264 void sqlite3AutoincrementEnd(Parse *pParse){ 265 AutoincInfo *p; 266 Vdbe *v = pParse->pVdbe; 267 sqlite3 *db = pParse->db; 268 269 assert( v ); 270 for(p = pParse->pAinc; p; p = p->pNext){ 271 Db *pDb = &db->aDb[p->iDb]; 272 int j1, j2, j3, j4, j5; 273 int iRec; 274 int memId = p->regCtr; 275 276 iRec = sqlite3GetTempReg(pParse); 277 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 278 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); 279 j2 = sqlite3VdbeAddOp0(v, OP_Rewind); 280 j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec); 281 j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec); 282 sqlite3VdbeAddOp2(v, OP_Next, 0, j3); 283 sqlite3VdbeJumpHere(v, j2); 284 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); 285 j5 = sqlite3VdbeAddOp0(v, OP_Goto); 286 sqlite3VdbeJumpHere(v, j4); 287 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); 288 sqlite3VdbeJumpHere(v, j1); 289 sqlite3VdbeJumpHere(v, j5); 290 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); 291 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); 292 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 293 sqlite3VdbeAddOp0(v, OP_Close); 294 sqlite3ReleaseTempReg(pParse, iRec); 295 } 296 } 297 #else 298 /* 299 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 300 ** above are all no-ops 301 */ 302 # define autoIncBegin(A,B,C) (0) 303 # define autoIncStep(A,B,C) 304 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 305 306 307 /* Forward declaration */ 308 static int xferOptimization( 309 Parse *pParse, /* Parser context */ 310 Table *pDest, /* The table we are inserting into */ 311 Select *pSelect, /* A SELECT statement to use as the data source */ 312 int onError, /* How to handle constraint errors */ 313 int iDbDest /* The database of pDest */ 314 ); 315 316 /* 317 ** This routine is call to handle SQL of the following forms: 318 ** 319 ** insert into TABLE (IDLIST) values(EXPRLIST) 320 ** insert into TABLE (IDLIST) select 321 ** 322 ** The IDLIST following the table name is always optional. If omitted, 323 ** then a list of all columns for the table is substituted. The IDLIST 324 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. 325 ** 326 ** The pList parameter holds EXPRLIST in the first form of the INSERT 327 ** statement above, and pSelect is NULL. For the second form, pList is 328 ** NULL and pSelect is a pointer to the select statement used to generate 329 ** data for the insert. 330 ** 331 ** The code generated follows one of four templates. For a simple 332 ** select with data coming from a VALUES clause, the code executes 333 ** once straight down through. Pseudo-code follows (we call this 334 ** the "1st template"): 335 ** 336 ** open write cursor to <table> and its indices 337 ** puts VALUES clause expressions onto the stack 338 ** write the resulting record into <table> 339 ** cleanup 340 ** 341 ** The three remaining templates assume the statement is of the form 342 ** 343 ** INSERT INTO <table> SELECT ... 344 ** 345 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 346 ** in other words if the SELECT pulls all columns from a single table 347 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 348 ** if <table2> and <table1> are distinct tables but have identical 349 ** schemas, including all the same indices, then a special optimization 350 ** is invoked that copies raw records from <table2> over to <table1>. 351 ** See the xferOptimization() function for the implementation of this 352 ** template. This is the 2nd template. 353 ** 354 ** open a write cursor to <table> 355 ** open read cursor on <table2> 356 ** transfer all records in <table2> over to <table> 357 ** close cursors 358 ** foreach index on <table> 359 ** open a write cursor on the <table> index 360 ** open a read cursor on the corresponding <table2> index 361 ** transfer all records from the read to the write cursors 362 ** close cursors 363 ** end foreach 364 ** 365 ** The 3rd template is for when the second template does not apply 366 ** and the SELECT clause does not read from <table> at any time. 367 ** The generated code follows this template: 368 ** 369 ** EOF <- 0 370 ** X <- A 371 ** goto B 372 ** A: setup for the SELECT 373 ** loop over the rows in the SELECT 374 ** load values into registers R..R+n 375 ** yield X 376 ** end loop 377 ** cleanup after the SELECT 378 ** EOF <- 1 379 ** yield X 380 ** goto A 381 ** B: open write cursor to <table> and its indices 382 ** C: yield X 383 ** if EOF goto D 384 ** insert the select result into <table> from R..R+n 385 ** goto C 386 ** D: cleanup 387 ** 388 ** The 4th template is used if the insert statement takes its 389 ** values from a SELECT but the data is being inserted into a table 390 ** that is also read as part of the SELECT. In the third form, 391 ** we have to use a intermediate table to store the results of 392 ** the select. The template is like this: 393 ** 394 ** EOF <- 0 395 ** X <- A 396 ** goto B 397 ** A: setup for the SELECT 398 ** loop over the tables in the SELECT 399 ** load value into register R..R+n 400 ** yield X 401 ** end loop 402 ** cleanup after the SELECT 403 ** EOF <- 1 404 ** yield X 405 ** halt-error 406 ** B: open temp table 407 ** L: yield X 408 ** if EOF goto M 409 ** insert row from R..R+n into temp table 410 ** goto L 411 ** M: open write cursor to <table> and its indices 412 ** rewind temp table 413 ** C: loop over rows of intermediate table 414 ** transfer values form intermediate table into <table> 415 ** end loop 416 ** D: cleanup 417 */ 418 void sqlite3Insert( 419 Parse *pParse, /* Parser context */ 420 SrcList *pTabList, /* Name of table into which we are inserting */ 421 ExprList *pList, /* List of values to be inserted */ 422 Select *pSelect, /* A SELECT statement to use as the data source */ 423 IdList *pColumn, /* Column names corresponding to IDLIST. */ 424 int onError /* How to handle constraint errors */ 425 ){ 426 sqlite3 *db; /* The main database structure */ 427 Table *pTab; /* The table to insert into. aka TABLE */ 428 char *zTab; /* Name of the table into which we are inserting */ 429 const char *zDb; /* Name of the database holding this table */ 430 int i, j, idx; /* Loop counters */ 431 Vdbe *v; /* Generate code into this virtual machine */ 432 Index *pIdx; /* For looping over indices of the table */ 433 int nColumn; /* Number of columns in the data */ 434 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 435 int baseCur = 0; /* VDBE Cursor number for pTab */ 436 int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 437 int endOfLoop; /* Label for the end of the insertion loop */ 438 int useTempTable = 0; /* Store SELECT results in intermediate table */ 439 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 440 int addrInsTop = 0; /* Jump to label "D" */ 441 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 442 int addrSelect = 0; /* Address of coroutine that implements the SELECT */ 443 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 444 int newIdx = -1; /* Cursor for the NEW pseudo-table */ 445 int iDb; /* Index of database holding TABLE */ 446 Db *pDb; /* The database containing table being inserted into */ 447 int appendFlag = 0; /* True if the insert is likely to be an append */ 448 449 /* Register allocations */ 450 int regFromSelect = 0;/* Base register for data coming from SELECT */ 451 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 452 int regRowCount = 0; /* Memory cell used for the row counter */ 453 int regIns; /* Block of regs holding rowid+data being inserted */ 454 int regRowid; /* registers holding insert rowid */ 455 int regData; /* register holding first column to insert */ 456 int regRecord; /* Holds the assemblied row record */ 457 int regEof = 0; /* Register recording end of SELECT data */ 458 int *aRegIdx = 0; /* One register allocated to each index */ 459 460 461 #ifndef SQLITE_OMIT_TRIGGER 462 int isView; /* True if attempting to insert into a view */ 463 Trigger *pTrigger; /* List of triggers on pTab, if required */ 464 int tmask; /* Mask of trigger times */ 465 #endif 466 467 db = pParse->db; 468 memset(&dest, 0, sizeof(dest)); 469 if( pParse->nErr || db->mallocFailed ){ 470 goto insert_cleanup; 471 } 472 473 /* Locate the table into which we will be inserting new information. 474 */ 475 assert( pTabList->nSrc==1 ); 476 zTab = pTabList->a[0].zName; 477 if( NEVER(zTab==0) ) goto insert_cleanup; 478 pTab = sqlite3SrcListLookup(pParse, pTabList); 479 if( pTab==0 ){ 480 goto insert_cleanup; 481 } 482 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 483 assert( iDb<db->nDb ); 484 pDb = &db->aDb[iDb]; 485 zDb = pDb->zName; 486 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ 487 goto insert_cleanup; 488 } 489 490 /* Figure out if we have any triggers and if the table being 491 ** inserted into is a view 492 */ 493 #ifndef SQLITE_OMIT_TRIGGER 494 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 495 isView = pTab->pSelect!=0; 496 #else 497 # define pTrigger 0 498 # define tmask 0 499 # define isView 0 500 #endif 501 #ifdef SQLITE_OMIT_VIEW 502 # undef isView 503 # define isView 0 504 #endif 505 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 506 507 /* Ensure that: 508 * (a) the table is not read-only, 509 * (b) that if it is a view then ON INSERT triggers exist 510 */ 511 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 512 goto insert_cleanup; 513 } 514 assert( pTab!=0 ); 515 516 /* If pTab is really a view, make sure it has been initialized. 517 ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 518 ** module table). 519 */ 520 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 521 goto insert_cleanup; 522 } 523 524 /* Allocate a VDBE 525 */ 526 v = sqlite3GetVdbe(pParse); 527 if( v==0 ) goto insert_cleanup; 528 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 529 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 530 531 /* if there are row triggers, allocate a temp table for new.* references. */ 532 if( pTrigger ){ 533 newIdx = pParse->nTab++; 534 } 535 536 #ifndef SQLITE_OMIT_XFER_OPT 537 /* If the statement is of the form 538 ** 539 ** INSERT INTO <table1> SELECT * FROM <table2>; 540 ** 541 ** Then special optimizations can be applied that make the transfer 542 ** very fast and which reduce fragmentation of indices. 543 ** 544 ** This is the 2nd template. 545 */ 546 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 547 assert( !pTrigger ); 548 assert( pList==0 ); 549 goto insert_end; 550 } 551 #endif /* SQLITE_OMIT_XFER_OPT */ 552 553 /* If this is an AUTOINCREMENT table, look up the sequence number in the 554 ** sqlite_sequence table and store it in memory cell regAutoinc. 555 */ 556 regAutoinc = autoIncBegin(pParse, iDb, pTab); 557 558 /* Figure out how many columns of data are supplied. If the data 559 ** is coming from a SELECT statement, then generate a co-routine that 560 ** produces a single row of the SELECT on each invocation. The 561 ** co-routine is the common header to the 3rd and 4th templates. 562 */ 563 if( pSelect ){ 564 /* Data is coming from a SELECT. Generate code to implement that SELECT 565 ** as a co-routine. The code is common to both the 3rd and 4th 566 ** templates: 567 ** 568 ** EOF <- 0 569 ** X <- A 570 ** goto B 571 ** A: setup for the SELECT 572 ** loop over the tables in the SELECT 573 ** load value into register R..R+n 574 ** yield X 575 ** end loop 576 ** cleanup after the SELECT 577 ** EOF <- 1 578 ** yield X 579 ** halt-error 580 ** 581 ** On each invocation of the co-routine, it puts a single row of the 582 ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1. 583 ** (These output registers are allocated by sqlite3Select().) When 584 ** the SELECT completes, it sets the EOF flag stored in regEof. 585 */ 586 int rc, j1; 587 588 regEof = ++pParse->nMem; 589 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ 590 VdbeComment((v, "SELECT eof flag")); 591 sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem); 592 addrSelect = sqlite3VdbeCurrentAddr(v)+2; 593 sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm); 594 j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); 595 VdbeComment((v, "Jump over SELECT coroutine")); 596 597 /* Resolve the expressions in the SELECT statement and execute it. */ 598 rc = sqlite3Select(pParse, pSelect, &dest); 599 assert( pParse->nErr==0 || rc ); 600 if( rc || NEVER(pParse->nErr) || db->mallocFailed ){ 601 goto insert_cleanup; 602 } 603 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */ 604 sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */ 605 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort); 606 VdbeComment((v, "End of SELECT coroutine")); 607 sqlite3VdbeJumpHere(v, j1); /* label B: */ 608 609 regFromSelect = dest.iMem; 610 assert( pSelect->pEList ); 611 nColumn = pSelect->pEList->nExpr; 612 assert( dest.nMem==nColumn ); 613 614 /* Set useTempTable to TRUE if the result of the SELECT statement 615 ** should be written into a temporary table (template 4). Set to 616 ** FALSE if each* row of the SELECT can be written directly into 617 ** the destination table (template 3). 618 ** 619 ** A temp table must be used if the table being updated is also one 620 ** of the tables being read by the SELECT statement. Also use a 621 ** temp table in the case of row triggers. 622 */ 623 if( pTrigger || readsTable(v, addrSelect, iDb, pTab) ){ 624 useTempTable = 1; 625 } 626 627 if( useTempTable ){ 628 /* Invoke the coroutine to extract information from the SELECT 629 ** and add it to a transient table srcTab. The code generated 630 ** here is from the 4th template: 631 ** 632 ** B: open temp table 633 ** L: yield X 634 ** if EOF goto M 635 ** insert row from R..R+n into temp table 636 ** goto L 637 ** M: ... 638 */ 639 int regRec; /* Register to hold packed record */ 640 int regTempRowid; /* Register to hold temp table ROWID */ 641 int addrTop; /* Label "L" */ 642 int addrIf; /* Address of jump to M */ 643 644 srcTab = pParse->nTab++; 645 regRec = sqlite3GetTempReg(pParse); 646 regTempRowid = sqlite3GetTempReg(pParse); 647 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 648 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); 649 addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof); 650 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 651 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 652 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 653 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 654 sqlite3VdbeJumpHere(v, addrIf); 655 sqlite3ReleaseTempReg(pParse, regRec); 656 sqlite3ReleaseTempReg(pParse, regTempRowid); 657 } 658 }else{ 659 /* This is the case if the data for the INSERT is coming from a VALUES 660 ** clause 661 */ 662 NameContext sNC; 663 memset(&sNC, 0, sizeof(sNC)); 664 sNC.pParse = pParse; 665 srcTab = -1; 666 assert( useTempTable==0 ); 667 nColumn = pList ? pList->nExpr : 0; 668 for(i=0; i<nColumn; i++){ 669 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ 670 goto insert_cleanup; 671 } 672 } 673 } 674 675 /* Make sure the number of columns in the source data matches the number 676 ** of columns to be inserted into the table. 677 */ 678 if( IsVirtual(pTab) ){ 679 for(i=0; i<pTab->nCol; i++){ 680 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 681 } 682 } 683 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 684 sqlite3ErrorMsg(pParse, 685 "table %S has %d columns but %d values were supplied", 686 pTabList, 0, pTab->nCol-nHidden, nColumn); 687 goto insert_cleanup; 688 } 689 if( pColumn!=0 && nColumn!=pColumn->nId ){ 690 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 691 goto insert_cleanup; 692 } 693 694 /* If the INSERT statement included an IDLIST term, then make sure 695 ** all elements of the IDLIST really are columns of the table and 696 ** remember the column indices. 697 ** 698 ** If the table has an INTEGER PRIMARY KEY column and that column 699 ** is named in the IDLIST, then record in the keyColumn variable 700 ** the index into IDLIST of the primary key column. keyColumn is 701 ** the index of the primary key as it appears in IDLIST, not as 702 ** is appears in the original table. (The index of the primary 703 ** key in the original table is pTab->iPKey.) 704 */ 705 if( pColumn ){ 706 for(i=0; i<pColumn->nId; i++){ 707 pColumn->a[i].idx = -1; 708 } 709 for(i=0; i<pColumn->nId; i++){ 710 for(j=0; j<pTab->nCol; j++){ 711 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 712 pColumn->a[i].idx = j; 713 if( j==pTab->iPKey ){ 714 keyColumn = i; 715 } 716 break; 717 } 718 } 719 if( j>=pTab->nCol ){ 720 if( sqlite3IsRowid(pColumn->a[i].zName) ){ 721 keyColumn = i; 722 }else{ 723 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 724 pTabList, 0, pColumn->a[i].zName); 725 pParse->nErr++; 726 goto insert_cleanup; 727 } 728 } 729 } 730 } 731 732 /* If there is no IDLIST term but the table has an integer primary 733 ** key, the set the keyColumn variable to the primary key column index 734 ** in the original table definition. 735 */ 736 if( pColumn==0 && nColumn>0 ){ 737 keyColumn = pTab->iPKey; 738 } 739 740 /* Open the temp table for FOR EACH ROW triggers 741 */ 742 if( pTrigger ){ 743 sqlite3VdbeAddOp3(v, OP_OpenPseudo, newIdx, 0, pTab->nCol); 744 } 745 746 /* Initialize the count of rows to be inserted 747 */ 748 if( db->flags & SQLITE_CountRows ){ 749 regRowCount = ++pParse->nMem; 750 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 751 } 752 753 /* If this is not a view, open the table and and all indices */ 754 if( !isView ){ 755 int nIdx; 756 757 baseCur = pParse->nTab; 758 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite); 759 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); 760 if( aRegIdx==0 ){ 761 goto insert_cleanup; 762 } 763 for(i=0; i<nIdx; i++){ 764 aRegIdx[i] = ++pParse->nMem; 765 } 766 } 767 768 /* This is the top of the main insertion loop */ 769 if( useTempTable ){ 770 /* This block codes the top of loop only. The complete loop is the 771 ** following pseudocode (template 4): 772 ** 773 ** rewind temp table 774 ** C: loop over rows of intermediate table 775 ** transfer values form intermediate table into <table> 776 ** end loop 777 ** D: ... 778 */ 779 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); 780 addrCont = sqlite3VdbeCurrentAddr(v); 781 }else if( pSelect ){ 782 /* This block codes the top of loop only. The complete loop is the 783 ** following pseudocode (template 3): 784 ** 785 ** C: yield X 786 ** if EOF goto D 787 ** insert the select result into <table> from R..R+n 788 ** goto C 789 ** D: ... 790 */ 791 addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); 792 addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); 793 } 794 795 /* Allocate registers for holding the rowid of the new row, 796 ** the content of the new row, and the assemblied row record. 797 */ 798 regRecord = ++pParse->nMem; 799 regRowid = regIns = pParse->nMem+1; 800 pParse->nMem += pTab->nCol + 1; 801 if( IsVirtual(pTab) ){ 802 regRowid++; 803 pParse->nMem++; 804 } 805 regData = regRowid+1; 806 807 /* Run the BEFORE and INSTEAD OF triggers, if there are any 808 */ 809 endOfLoop = sqlite3VdbeMakeLabel(v); 810 if( tmask & TRIGGER_BEFORE ){ 811 int regTrigRowid; 812 int regCols; 813 int regRec; 814 815 /* build the NEW.* reference row. Note that if there is an INTEGER 816 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 817 ** translated into a unique ID for the row. But on a BEFORE trigger, 818 ** we do not know what the unique ID will be (because the insert has 819 ** not happened yet) so we substitute a rowid of -1 820 */ 821 regTrigRowid = sqlite3GetTempReg(pParse); 822 if( keyColumn<0 ){ 823 sqlite3VdbeAddOp2(v, OP_Integer, -1, regTrigRowid); 824 }else{ 825 int j1; 826 if( useTempTable ){ 827 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regTrigRowid); 828 }else{ 829 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 830 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regTrigRowid); 831 } 832 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regTrigRowid); 833 sqlite3VdbeAddOp2(v, OP_Integer, -1, regTrigRowid); 834 sqlite3VdbeJumpHere(v, j1); 835 sqlite3VdbeAddOp1(v, OP_MustBeInt, regTrigRowid); 836 } 837 838 /* Cannot have triggers on a virtual table. If it were possible, 839 ** this block would have to account for hidden column. 840 */ 841 assert(!IsVirtual(pTab)); 842 843 /* Create the new column data 844 */ 845 regCols = sqlite3GetTempRange(pParse, pTab->nCol); 846 for(i=0; i<pTab->nCol; i++){ 847 if( pColumn==0 ){ 848 j = i; 849 }else{ 850 for(j=0; j<pColumn->nId; j++){ 851 if( pColumn->a[j].idx==i ) break; 852 } 853 } 854 if( pColumn && j>=pColumn->nId ){ 855 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i); 856 }else if( useTempTable ){ 857 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i); 858 }else{ 859 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 860 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i); 861 } 862 } 863 regRec = sqlite3GetTempReg(pParse); 864 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec); 865 866 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 867 ** do not attempt any conversions before assembling the record. 868 ** If this is a real table, attempt conversions as required by the 869 ** table column affinities. 870 */ 871 if( !isView ){ 872 sqlite3TableAffinityStr(v, pTab); 873 } 874 sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regTrigRowid); 875 sqlite3ReleaseTempReg(pParse, regRec); 876 sqlite3ReleaseTempReg(pParse, regTrigRowid); 877 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol); 878 879 /* Fire BEFORE or INSTEAD OF triggers */ 880 if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 881 pTab, newIdx, -1, onError, endOfLoop, 0, 0) ){ 882 goto insert_cleanup; 883 } 884 } 885 886 /* Push the record number for the new entry onto the stack. The 887 ** record number is a randomly generate integer created by NewRowid 888 ** except when the table has an INTEGER PRIMARY KEY column, in which 889 ** case the record number is the same as that column. 890 */ 891 if( !isView ){ 892 if( IsVirtual(pTab) ){ 893 /* The row that the VUpdate opcode will delete: none */ 894 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 895 } 896 if( keyColumn>=0 ){ 897 if( useTempTable ){ 898 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); 899 }else if( pSelect ){ 900 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid); 901 }else{ 902 VdbeOp *pOp; 903 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); 904 pOp = sqlite3VdbeGetOp(v, -1); 905 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 906 appendFlag = 1; 907 pOp->opcode = OP_NewRowid; 908 pOp->p1 = baseCur; 909 pOp->p2 = regRowid; 910 pOp->p3 = regAutoinc; 911 } 912 } 913 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 914 ** to generate a unique primary key value. 915 */ 916 if( !appendFlag ){ 917 int j1; 918 if( !IsVirtual(pTab) ){ 919 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); 920 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); 921 sqlite3VdbeJumpHere(v, j1); 922 }else{ 923 j1 = sqlite3VdbeCurrentAddr(v); 924 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); 925 } 926 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); 927 } 928 }else if( IsVirtual(pTab) ){ 929 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 930 }else{ 931 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); 932 appendFlag = 1; 933 } 934 autoIncStep(pParse, regAutoinc, regRowid); 935 936 /* Push onto the stack, data for all columns of the new entry, beginning 937 ** with the first column. 938 */ 939 nHidden = 0; 940 for(i=0; i<pTab->nCol; i++){ 941 int iRegStore = regRowid+1+i; 942 if( i==pTab->iPKey ){ 943 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 944 ** Whenever this column is read, the record number will be substituted 945 ** in its place. So will fill this column with a NULL to avoid 946 ** taking up data space with information that will never be used. */ 947 sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); 948 continue; 949 } 950 if( pColumn==0 ){ 951 if( IsHiddenColumn(&pTab->aCol[i]) ){ 952 assert( IsVirtual(pTab) ); 953 j = -1; 954 nHidden++; 955 }else{ 956 j = i - nHidden; 957 } 958 }else{ 959 for(j=0; j<pColumn->nId; j++){ 960 if( pColumn->a[j].idx==i ) break; 961 } 962 } 963 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 964 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); 965 }else if( useTempTable ){ 966 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 967 }else if( pSelect ){ 968 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 969 }else{ 970 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 971 } 972 } 973 974 /* Generate code to check constraints and generate index keys and 975 ** do the insertion. 976 */ 977 #ifndef SQLITE_OMIT_VIRTUALTABLE 978 if( IsVirtual(pTab) ){ 979 sqlite3VtabMakeWritable(pParse, pTab); 980 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, 981 (const char*)pTab->pVtab, P4_VTAB); 982 }else 983 #endif 984 { 985 int isReplace; /* Set to true if constraints may cause a replace */ 986 sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, 987 keyColumn>=0, 0, onError, endOfLoop, &isReplace 988 ); 989 sqlite3CompleteInsertion( 990 pParse, pTab, baseCur, regIns, aRegIdx, 0, 991 (tmask&TRIGGER_AFTER) ? newIdx : -1, appendFlag, isReplace==0 992 ); 993 } 994 } 995 996 /* Update the count of rows that are inserted 997 */ 998 if( (db->flags & SQLITE_CountRows)!=0 ){ 999 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1000 } 1001 1002 if( pTrigger ){ 1003 /* Code AFTER triggers */ 1004 if( sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1005 pTab, newIdx, -1, onError, endOfLoop, 0, 0) ){ 1006 goto insert_cleanup; 1007 } 1008 } 1009 1010 /* The bottom of the main insertion loop, if the data source 1011 ** is a SELECT statement. 1012 */ 1013 sqlite3VdbeResolveLabel(v, endOfLoop); 1014 if( useTempTable ){ 1015 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); 1016 sqlite3VdbeJumpHere(v, addrInsTop); 1017 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1018 }else if( pSelect ){ 1019 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); 1020 sqlite3VdbeJumpHere(v, addrInsTop); 1021 } 1022 1023 if( !IsVirtual(pTab) && !isView ){ 1024 /* Close all tables opened */ 1025 sqlite3VdbeAddOp1(v, OP_Close, baseCur); 1026 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 1027 sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur); 1028 } 1029 } 1030 1031 insert_end: 1032 /* Update the sqlite_sequence table by storing the content of the 1033 ** maximum rowid counter values recorded while inserting into 1034 ** autoincrement tables. 1035 */ 1036 if( pParse->nested==0 && pParse->trigStack==0 ){ 1037 sqlite3AutoincrementEnd(pParse); 1038 } 1039 1040 /* 1041 ** Return the number of rows inserted. If this routine is 1042 ** generating code because of a call to sqlite3NestedParse(), do not 1043 ** invoke the callback function. 1044 */ 1045 if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){ 1046 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1047 sqlite3VdbeSetNumCols(v, 1); 1048 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1049 } 1050 1051 insert_cleanup: 1052 sqlite3SrcListDelete(db, pTabList); 1053 sqlite3ExprListDelete(db, pList); 1054 sqlite3SelectDelete(db, pSelect); 1055 sqlite3IdListDelete(db, pColumn); 1056 sqlite3DbFree(db, aRegIdx); 1057 } 1058 1059 /* 1060 ** Generate code to do constraint checks prior to an INSERT or an UPDATE. 1061 ** 1062 ** The input is a range of consecutive registers as follows: 1063 ** 1064 ** 1. The rowid of the row to be updated before the update. This 1065 ** value is omitted unless we are doing an UPDATE that involves a 1066 ** change to the record number or writing to a virtual table. 1067 ** 1068 ** 2. The rowid of the row after the update. 1069 ** 1070 ** 3. The data in the first column of the entry after the update. 1071 ** 1072 ** i. Data from middle columns... 1073 ** 1074 ** N. The data in the last column of the entry after the update. 1075 ** 1076 ** The regRowid parameter is the index of the register containing (2). 1077 ** 1078 ** The old rowid shown as entry (1) above is omitted unless both isUpdate 1079 ** and rowidChng are 1. isUpdate is true for UPDATEs and false for 1080 ** INSERTs. RowidChng means that the new rowid is explicitly specified by 1081 ** the update or insert statement. If rowidChng is false, it means that 1082 ** the rowid is computed automatically in an insert or that the rowid value 1083 ** is not modified by the update. 1084 ** 1085 ** The code generated by this routine store new index entries into 1086 ** registers identified by aRegIdx[]. No index entry is created for 1087 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1088 ** the same as the order of indices on the linked list of indices 1089 ** attached to the table. 1090 ** 1091 ** This routine also generates code to check constraints. NOT NULL, 1092 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1093 ** then the appropriate action is performed. There are five possible 1094 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1095 ** 1096 ** Constraint type Action What Happens 1097 ** --------------- ---------- ---------------------------------------- 1098 ** any ROLLBACK The current transaction is rolled back and 1099 ** sqlite3_exec() returns immediately with a 1100 ** return code of SQLITE_CONSTRAINT. 1101 ** 1102 ** any ABORT Back out changes from the current command 1103 ** only (do not do a complete rollback) then 1104 ** cause sqlite3_exec() to return immediately 1105 ** with SQLITE_CONSTRAINT. 1106 ** 1107 ** any FAIL Sqlite_exec() returns immediately with a 1108 ** return code of SQLITE_CONSTRAINT. The 1109 ** transaction is not rolled back and any 1110 ** prior changes are retained. 1111 ** 1112 ** any IGNORE The record number and data is popped from 1113 ** the stack and there is an immediate jump 1114 ** to label ignoreDest. 1115 ** 1116 ** NOT NULL REPLACE The NULL value is replace by the default 1117 ** value for that column. If the default value 1118 ** is NULL, the action is the same as ABORT. 1119 ** 1120 ** UNIQUE REPLACE The other row that conflicts with the row 1121 ** being inserted is removed. 1122 ** 1123 ** CHECK REPLACE Illegal. The results in an exception. 1124 ** 1125 ** Which action to take is determined by the overrideError parameter. 1126 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1127 ** is used. Or if pParse->onError==OE_Default then the onError value 1128 ** for the constraint is used. 1129 ** 1130 ** The calling routine must open a read/write cursor for pTab with 1131 ** cursor number "baseCur". All indices of pTab must also have open 1132 ** read/write cursors with cursor number baseCur+i for the i-th cursor. 1133 ** Except, if there is no possibility of a REPLACE action then 1134 ** cursors do not need to be open for indices where aRegIdx[i]==0. 1135 */ 1136 void sqlite3GenerateConstraintChecks( 1137 Parse *pParse, /* The parser context */ 1138 Table *pTab, /* the table into which we are inserting */ 1139 int baseCur, /* Index of a read/write cursor pointing at pTab */ 1140 int regRowid, /* Index of the range of input registers */ 1141 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1142 int rowidChng, /* True if the rowid might collide with existing entry */ 1143 int isUpdate, /* True for UPDATE, False for INSERT */ 1144 int overrideError, /* Override onError to this if not OE_Default */ 1145 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1146 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ 1147 ){ 1148 int i; /* loop counter */ 1149 Vdbe *v; /* VDBE under constrution */ 1150 int nCol; /* Number of columns */ 1151 int onError; /* Conflict resolution strategy */ 1152 int j1; /* Addresss of jump instruction */ 1153 int j2 = 0, j3; /* Addresses of jump instructions */ 1154 int regData; /* Register containing first data column */ 1155 int iCur; /* Table cursor number */ 1156 Index *pIdx; /* Pointer to one of the indices */ 1157 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1158 int hasTwoRowids = (isUpdate && rowidChng); 1159 1160 v = sqlite3GetVdbe(pParse); 1161 assert( v!=0 ); 1162 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1163 nCol = pTab->nCol; 1164 regData = regRowid + 1; 1165 1166 1167 /* Test all NOT NULL constraints. 1168 */ 1169 for(i=0; i<nCol; i++){ 1170 if( i==pTab->iPKey ){ 1171 continue; 1172 } 1173 onError = pTab->aCol[i].notNull; 1174 if( onError==OE_None ) continue; 1175 if( overrideError!=OE_Default ){ 1176 onError = overrideError; 1177 }else if( onError==OE_Default ){ 1178 onError = OE_Abort; 1179 } 1180 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1181 onError = OE_Abort; 1182 } 1183 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1184 || onError==OE_Ignore || onError==OE_Replace ); 1185 switch( onError ){ 1186 case OE_Rollback: 1187 case OE_Abort: 1188 case OE_Fail: { 1189 char *zMsg; 1190 j1 = sqlite3VdbeAddOp3(v, OP_HaltIfNull, 1191 SQLITE_CONSTRAINT, onError, regData+i); 1192 zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL", 1193 pTab->zName, pTab->aCol[i].zName); 1194 sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); 1195 break; 1196 } 1197 case OE_Ignore: { 1198 sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest); 1199 break; 1200 } 1201 default: { 1202 assert( onError==OE_Replace ); 1203 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i); 1204 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i); 1205 sqlite3VdbeJumpHere(v, j1); 1206 break; 1207 } 1208 } 1209 } 1210 1211 /* Test all CHECK constraints 1212 */ 1213 #ifndef SQLITE_OMIT_CHECK 1214 if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ 1215 int allOk = sqlite3VdbeMakeLabel(v); 1216 pParse->ckBase = regData; 1217 sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); 1218 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1219 if( onError==OE_Ignore ){ 1220 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1221 }else{ 1222 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError); 1223 } 1224 sqlite3VdbeResolveLabel(v, allOk); 1225 } 1226 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1227 1228 /* If we have an INTEGER PRIMARY KEY, make sure the primary key 1229 ** of the new record does not previously exist. Except, if this 1230 ** is an UPDATE and the primary key is not changing, that is OK. 1231 */ 1232 if( rowidChng ){ 1233 onError = pTab->keyConf; 1234 if( overrideError!=OE_Default ){ 1235 onError = overrideError; 1236 }else if( onError==OE_Default ){ 1237 onError = OE_Abort; 1238 } 1239 1240 if( onError!=OE_Replace || pTab->pIndex ){ 1241 if( isUpdate ){ 1242 j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1); 1243 } 1244 j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); 1245 switch( onError ){ 1246 default: { 1247 onError = OE_Abort; 1248 /* Fall thru into the next case */ 1249 } 1250 case OE_Rollback: 1251 case OE_Abort: 1252 case OE_Fail: { 1253 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, 1254 "PRIMARY KEY must be unique", P4_STATIC); 1255 break; 1256 } 1257 case OE_Replace: { 1258 sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); 1259 seenReplace = 1; 1260 break; 1261 } 1262 case OE_Ignore: { 1263 assert( seenReplace==0 ); 1264 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1265 break; 1266 } 1267 } 1268 sqlite3VdbeJumpHere(v, j3); 1269 if( isUpdate ){ 1270 sqlite3VdbeJumpHere(v, j2); 1271 } 1272 } 1273 } 1274 1275 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1276 ** index and making sure that duplicate entries do not already exist. 1277 ** Add the new records to the indices as we go. 1278 */ 1279 for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ 1280 int regIdx; 1281 int regR; 1282 1283 if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ 1284 1285 /* Create a key for accessing the index entry */ 1286 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); 1287 for(i=0; i<pIdx->nColumn; i++){ 1288 int idx = pIdx->aiColumn[i]; 1289 if( idx==pTab->iPKey ){ 1290 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); 1291 }else{ 1292 sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); 1293 } 1294 } 1295 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); 1296 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); 1297 sqlite3IndexAffinityStr(v, pIdx); 1298 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); 1299 1300 /* Find out what action to take in case there is an indexing conflict */ 1301 onError = pIdx->onError; 1302 if( onError==OE_None ){ 1303 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); 1304 continue; /* pIdx is not a UNIQUE index */ 1305 } 1306 if( overrideError!=OE_Default ){ 1307 onError = overrideError; 1308 }else if( onError==OE_Default ){ 1309 onError = OE_Abort; 1310 } 1311 if( seenReplace ){ 1312 if( onError==OE_Ignore ) onError = OE_Replace; 1313 else if( onError==OE_Fail ) onError = OE_Abort; 1314 } 1315 1316 1317 /* Check to see if the new index entry will be unique */ 1318 regR = sqlite3GetTempReg(pParse); 1319 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR); 1320 j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, 1321 regR, SQLITE_INT_TO_PTR(regIdx), 1322 P4_INT32); 1323 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); 1324 1325 /* Generate code that executes if the new index entry is not unique */ 1326 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1327 || onError==OE_Ignore || onError==OE_Replace ); 1328 switch( onError ){ 1329 case OE_Rollback: 1330 case OE_Abort: 1331 case OE_Fail: { 1332 int j; 1333 StrAccum errMsg; 1334 const char *zSep; 1335 char *zErr; 1336 1337 sqlite3StrAccumInit(&errMsg, 0, 0, 200); 1338 errMsg.db = pParse->db; 1339 zSep = pIdx->nColumn>1 ? "columns " : "column "; 1340 for(j=0; j<pIdx->nColumn; j++){ 1341 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 1342 sqlite3StrAccumAppend(&errMsg, zSep, -1); 1343 zSep = ", "; 1344 sqlite3StrAccumAppend(&errMsg, zCol, -1); 1345 } 1346 sqlite3StrAccumAppend(&errMsg, 1347 pIdx->nColumn>1 ? " are not unique" : " is not unique", -1); 1348 zErr = sqlite3StrAccumFinish(&errMsg); 1349 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErr, 0); 1350 sqlite3DbFree(errMsg.db, zErr); 1351 break; 1352 } 1353 case OE_Ignore: { 1354 assert( seenReplace==0 ); 1355 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1356 break; 1357 } 1358 default: { 1359 assert( onError==OE_Replace ); 1360 sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0); 1361 seenReplace = 1; 1362 break; 1363 } 1364 } 1365 sqlite3VdbeJumpHere(v, j3); 1366 sqlite3ReleaseTempReg(pParse, regR); 1367 } 1368 1369 if( pbMayReplace ){ 1370 *pbMayReplace = seenReplace; 1371 } 1372 } 1373 1374 /* 1375 ** This routine generates code to finish the INSERT or UPDATE operation 1376 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1377 ** A consecutive range of registers starting at regRowid contains the 1378 ** rowid and the content to be inserted. 1379 ** 1380 ** The arguments to this routine should be the same as the first six 1381 ** arguments to sqlite3GenerateConstraintChecks. 1382 */ 1383 void sqlite3CompleteInsertion( 1384 Parse *pParse, /* The parser context */ 1385 Table *pTab, /* the table into which we are inserting */ 1386 int baseCur, /* Index of a read/write cursor pointing at pTab */ 1387 int regRowid, /* Range of content */ 1388 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1389 int isUpdate, /* True for UPDATE, False for INSERT */ 1390 int newIdx, /* Index of NEW table for triggers. -1 if none */ 1391 int appendBias, /* True if this is likely to be an append */ 1392 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1393 ){ 1394 int i; 1395 Vdbe *v; 1396 int nIdx; 1397 Index *pIdx; 1398 u8 pik_flags; 1399 int regData; 1400 int regRec; 1401 1402 v = sqlite3GetVdbe(pParse); 1403 assert( v!=0 ); 1404 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1405 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} 1406 for(i=nIdx-1; i>=0; i--){ 1407 if( aRegIdx[i]==0 ) continue; 1408 sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); 1409 if( useSeekResult ){ 1410 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1411 } 1412 } 1413 regData = regRowid + 1; 1414 regRec = sqlite3GetTempReg(pParse); 1415 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1416 sqlite3TableAffinityStr(v, pTab); 1417 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); 1418 #ifndef SQLITE_OMIT_TRIGGER 1419 if( newIdx>=0 ){ 1420 sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid); 1421 } 1422 #endif 1423 if( pParse->nested ){ 1424 pik_flags = 0; 1425 }else{ 1426 pik_flags = OPFLAG_NCHANGE; 1427 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); 1428 } 1429 if( appendBias ){ 1430 pik_flags |= OPFLAG_APPEND; 1431 } 1432 if( useSeekResult ){ 1433 pik_flags |= OPFLAG_USESEEKRESULT; 1434 } 1435 sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); 1436 if( !pParse->nested ){ 1437 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC); 1438 } 1439 sqlite3VdbeChangeP5(v, pik_flags); 1440 } 1441 1442 /* 1443 ** Generate code that will open cursors for a table and for all 1444 ** indices of that table. The "baseCur" parameter is the cursor number used 1445 ** for the table. Indices are opened on subsequent cursors. 1446 ** 1447 ** Return the number of indices on the table. 1448 */ 1449 int sqlite3OpenTableAndIndices( 1450 Parse *pParse, /* Parsing context */ 1451 Table *pTab, /* Table to be opened */ 1452 int baseCur, /* Cursor number assigned to the table */ 1453 int op /* OP_OpenRead or OP_OpenWrite */ 1454 ){ 1455 int i; 1456 int iDb; 1457 Index *pIdx; 1458 Vdbe *v; 1459 1460 if( IsVirtual(pTab) ) return 0; 1461 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1462 v = sqlite3GetVdbe(pParse); 1463 assert( v!=0 ); 1464 sqlite3OpenTable(pParse, baseCur, iDb, pTab, op); 1465 for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1466 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 1467 assert( pIdx->pSchema==pTab->pSchema ); 1468 sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb, 1469 (char*)pKey, P4_KEYINFO_HANDOFF); 1470 VdbeComment((v, "%s", pIdx->zName)); 1471 } 1472 if( pParse->nTab<baseCur+i ){ 1473 pParse->nTab = baseCur+i; 1474 } 1475 return i-1; 1476 } 1477 1478 1479 #ifdef SQLITE_TEST 1480 /* 1481 ** The following global variable is incremented whenever the 1482 ** transfer optimization is used. This is used for testing 1483 ** purposes only - to make sure the transfer optimization really 1484 ** is happening when it is suppose to. 1485 */ 1486 int sqlite3_xferopt_count; 1487 #endif /* SQLITE_TEST */ 1488 1489 1490 #ifndef SQLITE_OMIT_XFER_OPT 1491 /* 1492 ** Check to collation names to see if they are compatible. 1493 */ 1494 static int xferCompatibleCollation(const char *z1, const char *z2){ 1495 if( z1==0 ){ 1496 return z2==0; 1497 } 1498 if( z2==0 ){ 1499 return 0; 1500 } 1501 return sqlite3StrICmp(z1, z2)==0; 1502 } 1503 1504 1505 /* 1506 ** Check to see if index pSrc is compatible as a source of data 1507 ** for index pDest in an insert transfer optimization. The rules 1508 ** for a compatible index: 1509 ** 1510 ** * The index is over the same set of columns 1511 ** * The same DESC and ASC markings occurs on all columns 1512 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1513 ** * The same collating sequence on each column 1514 */ 1515 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1516 int i; 1517 assert( pDest && pSrc ); 1518 assert( pDest->pTable!=pSrc->pTable ); 1519 if( pDest->nColumn!=pSrc->nColumn ){ 1520 return 0; /* Different number of columns */ 1521 } 1522 if( pDest->onError!=pSrc->onError ){ 1523 return 0; /* Different conflict resolution strategies */ 1524 } 1525 for(i=0; i<pSrc->nColumn; i++){ 1526 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1527 return 0; /* Different columns indexed */ 1528 } 1529 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1530 return 0; /* Different sort orders */ 1531 } 1532 if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ 1533 return 0; /* Different collating sequences */ 1534 } 1535 } 1536 1537 /* If no test above fails then the indices must be compatible */ 1538 return 1; 1539 } 1540 1541 /* 1542 ** Attempt the transfer optimization on INSERTs of the form 1543 ** 1544 ** INSERT INTO tab1 SELECT * FROM tab2; 1545 ** 1546 ** This optimization is only attempted if 1547 ** 1548 ** (1) tab1 and tab2 have identical schemas including all the 1549 ** same indices and constraints 1550 ** 1551 ** (2) tab1 and tab2 are different tables 1552 ** 1553 ** (3) There must be no triggers on tab1 1554 ** 1555 ** (4) The result set of the SELECT statement is "*" 1556 ** 1557 ** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, 1558 ** or LIMIT clause. 1559 ** 1560 ** (6) The SELECT statement is a simple (not a compound) select that 1561 ** contains only tab2 in its FROM clause 1562 ** 1563 ** This method for implementing the INSERT transfers raw records from 1564 ** tab2 over to tab1. The columns are not decoded. Raw records from 1565 ** the indices of tab2 are transfered to tab1 as well. In so doing, 1566 ** the resulting tab1 has much less fragmentation. 1567 ** 1568 ** This routine returns TRUE if the optimization is attempted. If any 1569 ** of the conditions above fail so that the optimization should not 1570 ** be attempted, then this routine returns FALSE. 1571 */ 1572 static int xferOptimization( 1573 Parse *pParse, /* Parser context */ 1574 Table *pDest, /* The table we are inserting into */ 1575 Select *pSelect, /* A SELECT statement to use as the data source */ 1576 int onError, /* How to handle constraint errors */ 1577 int iDbDest /* The database of pDest */ 1578 ){ 1579 ExprList *pEList; /* The result set of the SELECT */ 1580 Table *pSrc; /* The table in the FROM clause of SELECT */ 1581 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1582 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1583 int i; /* Loop counter */ 1584 int iDbSrc; /* The database of pSrc */ 1585 int iSrc, iDest; /* Cursors from source and destination */ 1586 int addr1, addr2; /* Loop addresses */ 1587 int emptyDestTest; /* Address of test for empty pDest */ 1588 int emptySrcTest; /* Address of test for empty pSrc */ 1589 Vdbe *v; /* The VDBE we are building */ 1590 KeyInfo *pKey; /* Key information for an index */ 1591 int regAutoinc; /* Memory register used by AUTOINC */ 1592 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1593 int regData, regRowid; /* Registers holding data and rowid */ 1594 1595 if( pSelect==0 ){ 1596 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1597 } 1598 if( sqlite3TriggerList(pParse, pDest) ){ 1599 return 0; /* tab1 must not have triggers */ 1600 } 1601 #ifndef SQLITE_OMIT_VIRTUALTABLE 1602 if( pDest->tabFlags & TF_Virtual ){ 1603 return 0; /* tab1 must not be a virtual table */ 1604 } 1605 #endif 1606 if( onError==OE_Default ){ 1607 onError = OE_Abort; 1608 } 1609 if( onError!=OE_Abort && onError!=OE_Rollback ){ 1610 return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ 1611 } 1612 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 1613 if( pSelect->pSrc->nSrc!=1 ){ 1614 return 0; /* FROM clause must have exactly one term */ 1615 } 1616 if( pSelect->pSrc->a[0].pSelect ){ 1617 return 0; /* FROM clause cannot contain a subquery */ 1618 } 1619 if( pSelect->pWhere ){ 1620 return 0; /* SELECT may not have a WHERE clause */ 1621 } 1622 if( pSelect->pOrderBy ){ 1623 return 0; /* SELECT may not have an ORDER BY clause */ 1624 } 1625 /* Do not need to test for a HAVING clause. If HAVING is present but 1626 ** there is no ORDER BY, we will get an error. */ 1627 if( pSelect->pGroupBy ){ 1628 return 0; /* SELECT may not have a GROUP BY clause */ 1629 } 1630 if( pSelect->pLimit ){ 1631 return 0; /* SELECT may not have a LIMIT clause */ 1632 } 1633 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 1634 if( pSelect->pPrior ){ 1635 return 0; /* SELECT may not be a compound query */ 1636 } 1637 if( pSelect->selFlags & SF_Distinct ){ 1638 return 0; /* SELECT may not be DISTINCT */ 1639 } 1640 pEList = pSelect->pEList; 1641 assert( pEList!=0 ); 1642 if( pEList->nExpr!=1 ){ 1643 return 0; /* The result set must have exactly one column */ 1644 } 1645 assert( pEList->a[0].pExpr ); 1646 if( pEList->a[0].pExpr->op!=TK_ALL ){ 1647 return 0; /* The result set must be the special operator "*" */ 1648 } 1649 1650 /* At this point we have established that the statement is of the 1651 ** correct syntactic form to participate in this optimization. Now 1652 ** we have to check the semantics. 1653 */ 1654 pItem = pSelect->pSrc->a; 1655 pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); 1656 if( pSrc==0 ){ 1657 return 0; /* FROM clause does not contain a real table */ 1658 } 1659 if( pSrc==pDest ){ 1660 return 0; /* tab1 and tab2 may not be the same table */ 1661 } 1662 #ifndef SQLITE_OMIT_VIRTUALTABLE 1663 if( pSrc->tabFlags & TF_Virtual ){ 1664 return 0; /* tab2 must not be a virtual table */ 1665 } 1666 #endif 1667 if( pSrc->pSelect ){ 1668 return 0; /* tab2 may not be a view */ 1669 } 1670 if( pDest->nCol!=pSrc->nCol ){ 1671 return 0; /* Number of columns must be the same in tab1 and tab2 */ 1672 } 1673 if( pDest->iPKey!=pSrc->iPKey ){ 1674 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 1675 } 1676 for(i=0; i<pDest->nCol; i++){ 1677 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ 1678 return 0; /* Affinity must be the same on all columns */ 1679 } 1680 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ 1681 return 0; /* Collating sequence must be the same on all columns */ 1682 } 1683 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ 1684 return 0; /* tab2 must be NOT NULL if tab1 is */ 1685 } 1686 } 1687 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1688 if( pDestIdx->onError!=OE_None ){ 1689 destHasUniqueIdx = 1; 1690 } 1691 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1692 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1693 } 1694 if( pSrcIdx==0 ){ 1695 return 0; /* pDestIdx has no corresponding index in pSrc */ 1696 } 1697 } 1698 #ifndef SQLITE_OMIT_CHECK 1699 if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ 1700 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 1701 } 1702 #endif 1703 1704 /* If we get this far, it means either: 1705 ** 1706 ** * We can always do the transfer if the table contains an 1707 ** an integer primary key 1708 ** 1709 ** * We can conditionally do the transfer if the destination 1710 ** table is empty. 1711 */ 1712 #ifdef SQLITE_TEST 1713 sqlite3_xferopt_count++; 1714 #endif 1715 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); 1716 v = sqlite3GetVdbe(pParse); 1717 sqlite3CodeVerifySchema(pParse, iDbSrc); 1718 iSrc = pParse->nTab++; 1719 iDest = pParse->nTab++; 1720 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 1721 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 1722 if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ 1723 /* If tables do not have an INTEGER PRIMARY KEY and there 1724 ** are indices to be copied and the destination is not empty, 1725 ** we have to disallow the transfer optimization because the 1726 ** the rowids might change which will mess up indexing. 1727 ** 1728 ** Or if the destination has a UNIQUE index and is not empty, 1729 ** we also disallow the transfer optimization because we cannot 1730 ** insure that all entries in the union of DEST and SRC will be 1731 ** unique. 1732 */ 1733 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); 1734 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); 1735 sqlite3VdbeJumpHere(v, addr1); 1736 }else{ 1737 emptyDestTest = 0; 1738 } 1739 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 1740 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); 1741 regData = sqlite3GetTempReg(pParse); 1742 regRowid = sqlite3GetTempReg(pParse); 1743 if( pDest->iPKey>=0 ){ 1744 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 1745 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 1746 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, 1747 "PRIMARY KEY must be unique", P4_STATIC); 1748 sqlite3VdbeJumpHere(v, addr2); 1749 autoIncStep(pParse, regAutoinc, regRowid); 1750 }else if( pDest->pIndex==0 ){ 1751 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 1752 }else{ 1753 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 1754 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 1755 } 1756 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); 1757 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 1758 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); 1759 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); 1760 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); 1761 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1762 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 1763 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1764 } 1765 assert( pSrcIdx ); 1766 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 1767 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 1768 pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); 1769 sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc, 1770 (char*)pKey, P4_KEYINFO_HANDOFF); 1771 VdbeComment((v, "%s", pSrcIdx->zName)); 1772 pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); 1773 sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest, 1774 (char*)pKey, P4_KEYINFO_HANDOFF); 1775 VdbeComment((v, "%s", pDestIdx->zName)); 1776 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); 1777 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); 1778 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); 1779 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); 1780 sqlite3VdbeJumpHere(v, addr1); 1781 } 1782 sqlite3VdbeJumpHere(v, emptySrcTest); 1783 sqlite3ReleaseTempReg(pParse, regRowid); 1784 sqlite3ReleaseTempReg(pParse, regData); 1785 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 1786 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 1787 if( emptyDestTest ){ 1788 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 1789 sqlite3VdbeJumpHere(v, emptyDestTest); 1790 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 1791 return 0; 1792 }else{ 1793 return 1; 1794 } 1795 } 1796 #endif /* SQLITE_OMIT_XFER_OPT */ 1797 1798 /* Make sure "isView" gets undefined in case this file becomes part of 1799 ** the amalgamation - so that subsequent files do not see isView as a 1800 ** macro. */ 1801 #undef isView 1802