1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum==pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'A' BLOB 60 ** 'B' TEXT 61 ** 'C' NUMERIC 62 ** 'D' INTEGER 63 ** 'F' REAL 64 ** 65 ** An extra 'D' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 85 if( !pIdx->zColAff ){ 86 sqlite3OomFault(db); 87 return 0; 88 } 89 for(n=0; n<pIdx->nColumn; n++){ 90 i16 x = pIdx->aiColumn[n]; 91 if( x>=0 ){ 92 pIdx->zColAff[n] = pTab->aCol[x].affinity; 93 }else if( x==XN_ROWID ){ 94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER; 95 }else{ 96 char aff; 97 assert( x==XN_EXPR ); 98 assert( pIdx->aColExpr!=0 ); 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 100 if( aff==0 ) aff = SQLITE_AFF_BLOB; 101 pIdx->zColAff[n] = aff; 102 } 103 } 104 pIdx->zColAff[n] = 0; 105 } 106 107 return pIdx->zColAff; 108 } 109 110 /* 111 ** Compute the affinity string for table pTab, if it has not already been 112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 113 ** 114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 116 ** for register iReg and following. Or if affinities exists and iReg==0, 117 ** then just set the P4 operand of the previous opcode (which should be 118 ** an OP_MakeRecord) to the affinity string. 119 ** 120 ** A column affinity string has one character per column: 121 ** 122 ** Character Column affinity 123 ** ------------------------------ 124 ** 'A' BLOB 125 ** 'B' TEXT 126 ** 'C' NUMERIC 127 ** 'D' INTEGER 128 ** 'E' REAL 129 */ 130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 131 int i; 132 char *zColAff = pTab->zColAff; 133 if( zColAff==0 ){ 134 sqlite3 *db = sqlite3VdbeDb(v); 135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 136 if( !zColAff ){ 137 sqlite3OomFault(db); 138 return; 139 } 140 141 for(i=0; i<pTab->nCol; i++){ 142 zColAff[i] = pTab->aCol[i].affinity; 143 } 144 do{ 145 zColAff[i--] = 0; 146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); 147 pTab->zColAff = zColAff; 148 } 149 i = sqlite3Strlen30(zColAff); 150 if( i ){ 151 if( iReg ){ 152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 153 }else{ 154 sqlite3VdbeChangeP4(v, -1, zColAff, i); 155 } 156 } 157 } 158 159 /* 160 ** Return non-zero if the table pTab in database iDb or any of its indices 161 ** have been opened at any point in the VDBE program. This is used to see if 162 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 163 ** run without using a temporary table for the results of the SELECT. 164 */ 165 static int readsTable(Parse *p, int iDb, Table *pTab){ 166 Vdbe *v = sqlite3GetVdbe(p); 167 int i; 168 int iEnd = sqlite3VdbeCurrentAddr(v); 169 #ifndef SQLITE_OMIT_VIRTUALTABLE 170 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 171 #endif 172 173 for(i=1; i<iEnd; i++){ 174 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 175 assert( pOp!=0 ); 176 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 177 Index *pIndex; 178 int tnum = pOp->p2; 179 if( tnum==pTab->tnum ){ 180 return 1; 181 } 182 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 183 if( tnum==pIndex->tnum ){ 184 return 1; 185 } 186 } 187 } 188 #ifndef SQLITE_OMIT_VIRTUALTABLE 189 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 190 assert( pOp->p4.pVtab!=0 ); 191 assert( pOp->p4type==P4_VTAB ); 192 return 1; 193 } 194 #endif 195 } 196 return 0; 197 } 198 199 #ifndef SQLITE_OMIT_AUTOINCREMENT 200 /* 201 ** Locate or create an AutoincInfo structure associated with table pTab 202 ** which is in database iDb. Return the register number for the register 203 ** that holds the maximum rowid. 204 ** 205 ** There is at most one AutoincInfo structure per table even if the 206 ** same table is autoincremented multiple times due to inserts within 207 ** triggers. A new AutoincInfo structure is created if this is the 208 ** first use of table pTab. On 2nd and subsequent uses, the original 209 ** AutoincInfo structure is used. 210 ** 211 ** Three memory locations are allocated: 212 ** 213 ** (1) Register to hold the name of the pTab table. 214 ** (2) Register to hold the maximum ROWID of pTab. 215 ** (3) Register to hold the rowid in sqlite_sequence of pTab 216 ** 217 ** The 2nd register is the one that is returned. That is all the 218 ** insert routine needs to know about. 219 */ 220 static int autoIncBegin( 221 Parse *pParse, /* Parsing context */ 222 int iDb, /* Index of the database holding pTab */ 223 Table *pTab /* The table we are writing to */ 224 ){ 225 int memId = 0; /* Register holding maximum rowid */ 226 if( pTab->tabFlags & TF_Autoincrement ){ 227 Parse *pToplevel = sqlite3ParseToplevel(pParse); 228 AutoincInfo *pInfo; 229 230 pInfo = pToplevel->pAinc; 231 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 232 if( pInfo==0 ){ 233 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 234 if( pInfo==0 ) return 0; 235 pInfo->pNext = pToplevel->pAinc; 236 pToplevel->pAinc = pInfo; 237 pInfo->pTab = pTab; 238 pInfo->iDb = iDb; 239 pToplevel->nMem++; /* Register to hold name of table */ 240 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 241 pToplevel->nMem++; /* Rowid in sqlite_sequence */ 242 } 243 memId = pInfo->regCtr; 244 } 245 return memId; 246 } 247 248 /* 249 ** This routine generates code that will initialize all of the 250 ** register used by the autoincrement tracker. 251 */ 252 void sqlite3AutoincrementBegin(Parse *pParse){ 253 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 254 sqlite3 *db = pParse->db; /* The database connection */ 255 Db *pDb; /* Database only autoinc table */ 256 int memId; /* Register holding max rowid */ 257 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 258 259 /* This routine is never called during trigger-generation. It is 260 ** only called from the top-level */ 261 assert( pParse->pTriggerTab==0 ); 262 assert( sqlite3IsToplevel(pParse) ); 263 264 assert( v ); /* We failed long ago if this is not so */ 265 for(p = pParse->pAinc; p; p = p->pNext){ 266 static const int iLn = VDBE_OFFSET_LINENO(2); 267 static const VdbeOpList autoInc[] = { 268 /* 0 */ {OP_Null, 0, 0, 0}, 269 /* 1 */ {OP_Rewind, 0, 9, 0}, 270 /* 2 */ {OP_Column, 0, 0, 0}, 271 /* 3 */ {OP_Ne, 0, 7, 0}, 272 /* 4 */ {OP_Rowid, 0, 0, 0}, 273 /* 5 */ {OP_Column, 0, 1, 0}, 274 /* 6 */ {OP_Goto, 0, 9, 0}, 275 /* 7 */ {OP_Next, 0, 2, 0}, 276 /* 8 */ {OP_Integer, 0, 0, 0}, 277 /* 9 */ {OP_Close, 0, 0, 0} 278 }; 279 VdbeOp *aOp; 280 pDb = &db->aDb[p->iDb]; 281 memId = p->regCtr; 282 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 283 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 284 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 285 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 286 if( aOp==0 ) break; 287 aOp[0].p2 = memId; 288 aOp[0].p3 = memId+1; 289 aOp[2].p3 = memId; 290 aOp[3].p1 = memId-1; 291 aOp[3].p3 = memId; 292 aOp[3].p5 = SQLITE_JUMPIFNULL; 293 aOp[4].p2 = memId+1; 294 aOp[5].p3 = memId; 295 aOp[8].p2 = memId; 296 } 297 } 298 299 /* 300 ** Update the maximum rowid for an autoincrement calculation. 301 ** 302 ** This routine should be called when the regRowid register holds a 303 ** new rowid that is about to be inserted. If that new rowid is 304 ** larger than the maximum rowid in the memId memory cell, then the 305 ** memory cell is updated. 306 */ 307 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 308 if( memId>0 ){ 309 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 310 } 311 } 312 313 /* 314 ** This routine generates the code needed to write autoincrement 315 ** maximum rowid values back into the sqlite_sequence register. 316 ** Every statement that might do an INSERT into an autoincrement 317 ** table (either directly or through triggers) needs to call this 318 ** routine just before the "exit" code. 319 */ 320 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 321 AutoincInfo *p; 322 Vdbe *v = pParse->pVdbe; 323 sqlite3 *db = pParse->db; 324 325 assert( v ); 326 for(p = pParse->pAinc; p; p = p->pNext){ 327 static const int iLn = VDBE_OFFSET_LINENO(2); 328 static const VdbeOpList autoIncEnd[] = { 329 /* 0 */ {OP_NotNull, 0, 2, 0}, 330 /* 1 */ {OP_NewRowid, 0, 0, 0}, 331 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 332 /* 3 */ {OP_Insert, 0, 0, 0}, 333 /* 4 */ {OP_Close, 0, 0, 0} 334 }; 335 VdbeOp *aOp; 336 Db *pDb = &db->aDb[p->iDb]; 337 int iRec; 338 int memId = p->regCtr; 339 340 iRec = sqlite3GetTempReg(pParse); 341 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 342 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 343 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 344 if( aOp==0 ) break; 345 aOp[0].p1 = memId+1; 346 aOp[1].p2 = memId+1; 347 aOp[2].p1 = memId-1; 348 aOp[2].p3 = iRec; 349 aOp[3].p2 = iRec; 350 aOp[3].p3 = memId+1; 351 aOp[3].p5 = OPFLAG_APPEND; 352 sqlite3ReleaseTempReg(pParse, iRec); 353 } 354 } 355 void sqlite3AutoincrementEnd(Parse *pParse){ 356 if( pParse->pAinc ) autoIncrementEnd(pParse); 357 } 358 #else 359 /* 360 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 361 ** above are all no-ops 362 */ 363 # define autoIncBegin(A,B,C) (0) 364 # define autoIncStep(A,B,C) 365 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 366 367 368 /* Forward declaration */ 369 static int xferOptimization( 370 Parse *pParse, /* Parser context */ 371 Table *pDest, /* The table we are inserting into */ 372 Select *pSelect, /* A SELECT statement to use as the data source */ 373 int onError, /* How to handle constraint errors */ 374 int iDbDest /* The database of pDest */ 375 ); 376 377 /* 378 ** This routine is called to handle SQL of the following forms: 379 ** 380 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 381 ** insert into TABLE (IDLIST) select 382 ** insert into TABLE (IDLIST) default values 383 ** 384 ** The IDLIST following the table name is always optional. If omitted, 385 ** then a list of all (non-hidden) columns for the table is substituted. 386 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 387 ** is omitted. 388 ** 389 ** For the pSelect parameter holds the values to be inserted for the 390 ** first two forms shown above. A VALUES clause is really just short-hand 391 ** for a SELECT statement that omits the FROM clause and everything else 392 ** that follows. If the pSelect parameter is NULL, that means that the 393 ** DEFAULT VALUES form of the INSERT statement is intended. 394 ** 395 ** The code generated follows one of four templates. For a simple 396 ** insert with data coming from a single-row VALUES clause, the code executes 397 ** once straight down through. Pseudo-code follows (we call this 398 ** the "1st template"): 399 ** 400 ** open write cursor to <table> and its indices 401 ** put VALUES clause expressions into registers 402 ** write the resulting record into <table> 403 ** cleanup 404 ** 405 ** The three remaining templates assume the statement is of the form 406 ** 407 ** INSERT INTO <table> SELECT ... 408 ** 409 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 410 ** in other words if the SELECT pulls all columns from a single table 411 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 412 ** if <table2> and <table1> are distinct tables but have identical 413 ** schemas, including all the same indices, then a special optimization 414 ** is invoked that copies raw records from <table2> over to <table1>. 415 ** See the xferOptimization() function for the implementation of this 416 ** template. This is the 2nd template. 417 ** 418 ** open a write cursor to <table> 419 ** open read cursor on <table2> 420 ** transfer all records in <table2> over to <table> 421 ** close cursors 422 ** foreach index on <table> 423 ** open a write cursor on the <table> index 424 ** open a read cursor on the corresponding <table2> index 425 ** transfer all records from the read to the write cursors 426 ** close cursors 427 ** end foreach 428 ** 429 ** The 3rd template is for when the second template does not apply 430 ** and the SELECT clause does not read from <table> at any time. 431 ** The generated code follows this template: 432 ** 433 ** X <- A 434 ** goto B 435 ** A: setup for the SELECT 436 ** loop over the rows in the SELECT 437 ** load values into registers R..R+n 438 ** yield X 439 ** end loop 440 ** cleanup after the SELECT 441 ** end-coroutine X 442 ** B: open write cursor to <table> and its indices 443 ** C: yield X, at EOF goto D 444 ** insert the select result into <table> from R..R+n 445 ** goto C 446 ** D: cleanup 447 ** 448 ** The 4th template is used if the insert statement takes its 449 ** values from a SELECT but the data is being inserted into a table 450 ** that is also read as part of the SELECT. In the third form, 451 ** we have to use an intermediate table to store the results of 452 ** the select. The template is like this: 453 ** 454 ** X <- A 455 ** goto B 456 ** A: setup for the SELECT 457 ** loop over the tables in the SELECT 458 ** load value into register R..R+n 459 ** yield X 460 ** end loop 461 ** cleanup after the SELECT 462 ** end co-routine R 463 ** B: open temp table 464 ** L: yield X, at EOF goto M 465 ** insert row from R..R+n into temp table 466 ** goto L 467 ** M: open write cursor to <table> and its indices 468 ** rewind temp table 469 ** C: loop over rows of intermediate table 470 ** transfer values form intermediate table into <table> 471 ** end loop 472 ** D: cleanup 473 */ 474 void sqlite3Insert( 475 Parse *pParse, /* Parser context */ 476 SrcList *pTabList, /* Name of table into which we are inserting */ 477 Select *pSelect, /* A SELECT statement to use as the data source */ 478 IdList *pColumn, /* Column names corresponding to IDLIST. */ 479 int onError /* How to handle constraint errors */ 480 ){ 481 sqlite3 *db; /* The main database structure */ 482 Table *pTab; /* The table to insert into. aka TABLE */ 483 char *zTab; /* Name of the table into which we are inserting */ 484 const char *zDb; /* Name of the database holding this table */ 485 int i, j, idx; /* Loop counters */ 486 Vdbe *v; /* Generate code into this virtual machine */ 487 Index *pIdx; /* For looping over indices of the table */ 488 int nColumn; /* Number of columns in the data */ 489 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 490 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 491 int iIdxCur = 0; /* First index cursor */ 492 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 493 int endOfLoop; /* Label for the end of the insertion loop */ 494 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 495 int addrInsTop = 0; /* Jump to label "D" */ 496 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 497 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 498 int iDb; /* Index of database holding TABLE */ 499 Db *pDb; /* The database containing table being inserted into */ 500 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 501 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 502 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 503 u8 bIdListInOrder; /* True if IDLIST is in table order */ 504 ExprList *pList = 0; /* List of VALUES() to be inserted */ 505 506 /* Register allocations */ 507 int regFromSelect = 0;/* Base register for data coming from SELECT */ 508 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 509 int regRowCount = 0; /* Memory cell used for the row counter */ 510 int regIns; /* Block of regs holding rowid+data being inserted */ 511 int regRowid; /* registers holding insert rowid */ 512 int regData; /* register holding first column to insert */ 513 int *aRegIdx = 0; /* One register allocated to each index */ 514 515 #ifndef SQLITE_OMIT_TRIGGER 516 int isView; /* True if attempting to insert into a view */ 517 Trigger *pTrigger; /* List of triggers on pTab, if required */ 518 int tmask; /* Mask of trigger times */ 519 #endif 520 521 db = pParse->db; 522 memset(&dest, 0, sizeof(dest)); 523 if( pParse->nErr || db->mallocFailed ){ 524 goto insert_cleanup; 525 } 526 527 /* If the Select object is really just a simple VALUES() list with a 528 ** single row (the common case) then keep that one row of values 529 ** and discard the other (unused) parts of the pSelect object 530 */ 531 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 532 pList = pSelect->pEList; 533 pSelect->pEList = 0; 534 sqlite3SelectDelete(db, pSelect); 535 pSelect = 0; 536 } 537 538 /* Locate the table into which we will be inserting new information. 539 */ 540 assert( pTabList->nSrc==1 ); 541 zTab = pTabList->a[0].zName; 542 if( NEVER(zTab==0) ) goto insert_cleanup; 543 pTab = sqlite3SrcListLookup(pParse, pTabList); 544 if( pTab==0 ){ 545 goto insert_cleanup; 546 } 547 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 548 assert( iDb<db->nDb ); 549 pDb = &db->aDb[iDb]; 550 zDb = pDb->zName; 551 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ 552 goto insert_cleanup; 553 } 554 withoutRowid = !HasRowid(pTab); 555 556 /* Figure out if we have any triggers and if the table being 557 ** inserted into is a view 558 */ 559 #ifndef SQLITE_OMIT_TRIGGER 560 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 561 isView = pTab->pSelect!=0; 562 #else 563 # define pTrigger 0 564 # define tmask 0 565 # define isView 0 566 #endif 567 #ifdef SQLITE_OMIT_VIEW 568 # undef isView 569 # define isView 0 570 #endif 571 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 572 573 /* If pTab is really a view, make sure it has been initialized. 574 ** ViewGetColumnNames() is a no-op if pTab is not a view. 575 */ 576 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 577 goto insert_cleanup; 578 } 579 580 /* Cannot insert into a read-only table. 581 */ 582 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 583 goto insert_cleanup; 584 } 585 586 /* Allocate a VDBE 587 */ 588 v = sqlite3GetVdbe(pParse); 589 if( v==0 ) goto insert_cleanup; 590 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 591 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 592 593 #ifndef SQLITE_OMIT_XFER_OPT 594 /* If the statement is of the form 595 ** 596 ** INSERT INTO <table1> SELECT * FROM <table2>; 597 ** 598 ** Then special optimizations can be applied that make the transfer 599 ** very fast and which reduce fragmentation of indices. 600 ** 601 ** This is the 2nd template. 602 */ 603 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 604 assert( !pTrigger ); 605 assert( pList==0 ); 606 goto insert_end; 607 } 608 #endif /* SQLITE_OMIT_XFER_OPT */ 609 610 /* If this is an AUTOINCREMENT table, look up the sequence number in the 611 ** sqlite_sequence table and store it in memory cell regAutoinc. 612 */ 613 regAutoinc = autoIncBegin(pParse, iDb, pTab); 614 615 /* Allocate registers for holding the rowid of the new row, 616 ** the content of the new row, and the assembled row record. 617 */ 618 regRowid = regIns = pParse->nMem+1; 619 pParse->nMem += pTab->nCol + 1; 620 if( IsVirtual(pTab) ){ 621 regRowid++; 622 pParse->nMem++; 623 } 624 regData = regRowid+1; 625 626 /* If the INSERT statement included an IDLIST term, then make sure 627 ** all elements of the IDLIST really are columns of the table and 628 ** remember the column indices. 629 ** 630 ** If the table has an INTEGER PRIMARY KEY column and that column 631 ** is named in the IDLIST, then record in the ipkColumn variable 632 ** the index into IDLIST of the primary key column. ipkColumn is 633 ** the index of the primary key as it appears in IDLIST, not as 634 ** is appears in the original table. (The index of the INTEGER 635 ** PRIMARY KEY in the original table is pTab->iPKey.) 636 */ 637 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; 638 if( pColumn ){ 639 for(i=0; i<pColumn->nId; i++){ 640 pColumn->a[i].idx = -1; 641 } 642 for(i=0; i<pColumn->nId; i++){ 643 for(j=0; j<pTab->nCol; j++){ 644 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 645 pColumn->a[i].idx = j; 646 if( i!=j ) bIdListInOrder = 0; 647 if( j==pTab->iPKey ){ 648 ipkColumn = i; assert( !withoutRowid ); 649 } 650 break; 651 } 652 } 653 if( j>=pTab->nCol ){ 654 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 655 ipkColumn = i; 656 bIdListInOrder = 0; 657 }else{ 658 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 659 pTabList, 0, pColumn->a[i].zName); 660 pParse->checkSchema = 1; 661 goto insert_cleanup; 662 } 663 } 664 } 665 } 666 667 /* Figure out how many columns of data are supplied. If the data 668 ** is coming from a SELECT statement, then generate a co-routine that 669 ** produces a single row of the SELECT on each invocation. The 670 ** co-routine is the common header to the 3rd and 4th templates. 671 */ 672 if( pSelect ){ 673 /* Data is coming from a SELECT or from a multi-row VALUES clause. 674 ** Generate a co-routine to run the SELECT. */ 675 int regYield; /* Register holding co-routine entry-point */ 676 int addrTop; /* Top of the co-routine */ 677 int rc; /* Result code */ 678 679 regYield = ++pParse->nMem; 680 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 681 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 682 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 683 dest.iSdst = bIdListInOrder ? regData : 0; 684 dest.nSdst = pTab->nCol; 685 rc = sqlite3Select(pParse, pSelect, &dest); 686 regFromSelect = dest.iSdst; 687 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 688 sqlite3VdbeEndCoroutine(v, regYield); 689 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 690 assert( pSelect->pEList ); 691 nColumn = pSelect->pEList->nExpr; 692 693 /* Set useTempTable to TRUE if the result of the SELECT statement 694 ** should be written into a temporary table (template 4). Set to 695 ** FALSE if each output row of the SELECT can be written directly into 696 ** the destination table (template 3). 697 ** 698 ** A temp table must be used if the table being updated is also one 699 ** of the tables being read by the SELECT statement. Also use a 700 ** temp table in the case of row triggers. 701 */ 702 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 703 useTempTable = 1; 704 } 705 706 if( useTempTable ){ 707 /* Invoke the coroutine to extract information from the SELECT 708 ** and add it to a transient table srcTab. The code generated 709 ** here is from the 4th template: 710 ** 711 ** B: open temp table 712 ** L: yield X, goto M at EOF 713 ** insert row from R..R+n into temp table 714 ** goto L 715 ** M: ... 716 */ 717 int regRec; /* Register to hold packed record */ 718 int regTempRowid; /* Register to hold temp table ROWID */ 719 int addrL; /* Label "L" */ 720 721 srcTab = pParse->nTab++; 722 regRec = sqlite3GetTempReg(pParse); 723 regTempRowid = sqlite3GetTempReg(pParse); 724 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 725 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 726 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 727 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 728 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 729 sqlite3VdbeGoto(v, addrL); 730 sqlite3VdbeJumpHere(v, addrL); 731 sqlite3ReleaseTempReg(pParse, regRec); 732 sqlite3ReleaseTempReg(pParse, regTempRowid); 733 } 734 }else{ 735 /* This is the case if the data for the INSERT is coming from a 736 ** single-row VALUES clause 737 */ 738 NameContext sNC; 739 memset(&sNC, 0, sizeof(sNC)); 740 sNC.pParse = pParse; 741 srcTab = -1; 742 assert( useTempTable==0 ); 743 if( pList ){ 744 nColumn = pList->nExpr; 745 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 746 goto insert_cleanup; 747 } 748 }else{ 749 nColumn = 0; 750 } 751 } 752 753 /* If there is no IDLIST term but the table has an integer primary 754 ** key, the set the ipkColumn variable to the integer primary key 755 ** column index in the original table definition. 756 */ 757 if( pColumn==0 && nColumn>0 ){ 758 ipkColumn = pTab->iPKey; 759 } 760 761 /* Make sure the number of columns in the source data matches the number 762 ** of columns to be inserted into the table. 763 */ 764 for(i=0; i<pTab->nCol; i++){ 765 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 766 } 767 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 768 sqlite3ErrorMsg(pParse, 769 "table %S has %d columns but %d values were supplied", 770 pTabList, 0, pTab->nCol-nHidden, nColumn); 771 goto insert_cleanup; 772 } 773 if( pColumn!=0 && nColumn!=pColumn->nId ){ 774 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 775 goto insert_cleanup; 776 } 777 778 /* Initialize the count of rows to be inserted 779 */ 780 if( db->flags & SQLITE_CountRows ){ 781 regRowCount = ++pParse->nMem; 782 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 783 } 784 785 /* If this is not a view, open the table and and all indices */ 786 if( !isView ){ 787 int nIdx; 788 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 789 &iDataCur, &iIdxCur); 790 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1)); 791 if( aRegIdx==0 ){ 792 goto insert_cleanup; 793 } 794 for(i=0; i<nIdx; i++){ 795 aRegIdx[i] = ++pParse->nMem; 796 } 797 } 798 799 /* This is the top of the main insertion loop */ 800 if( useTempTable ){ 801 /* This block codes the top of loop only. The complete loop is the 802 ** following pseudocode (template 4): 803 ** 804 ** rewind temp table, if empty goto D 805 ** C: loop over rows of intermediate table 806 ** transfer values form intermediate table into <table> 807 ** end loop 808 ** D: ... 809 */ 810 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 811 addrCont = sqlite3VdbeCurrentAddr(v); 812 }else if( pSelect ){ 813 /* This block codes the top of loop only. The complete loop is the 814 ** following pseudocode (template 3): 815 ** 816 ** C: yield X, at EOF goto D 817 ** insert the select result into <table> from R..R+n 818 ** goto C 819 ** D: ... 820 */ 821 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 822 VdbeCoverage(v); 823 } 824 825 /* Run the BEFORE and INSTEAD OF triggers, if there are any 826 */ 827 endOfLoop = sqlite3VdbeMakeLabel(v); 828 if( tmask & TRIGGER_BEFORE ){ 829 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 830 831 /* build the NEW.* reference row. Note that if there is an INTEGER 832 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 833 ** translated into a unique ID for the row. But on a BEFORE trigger, 834 ** we do not know what the unique ID will be (because the insert has 835 ** not happened yet) so we substitute a rowid of -1 836 */ 837 if( ipkColumn<0 ){ 838 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 839 }else{ 840 int addr1; 841 assert( !withoutRowid ); 842 if( useTempTable ){ 843 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 844 }else{ 845 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 846 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 847 } 848 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 849 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 850 sqlite3VdbeJumpHere(v, addr1); 851 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 852 } 853 854 /* Cannot have triggers on a virtual table. If it were possible, 855 ** this block would have to account for hidden column. 856 */ 857 assert( !IsVirtual(pTab) ); 858 859 /* Create the new column data 860 */ 861 for(i=j=0; i<pTab->nCol; i++){ 862 if( pColumn ){ 863 for(j=0; j<pColumn->nId; j++){ 864 if( pColumn->a[j].idx==i ) break; 865 } 866 } 867 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) 868 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ 869 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 870 }else if( useTempTable ){ 871 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 872 }else{ 873 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 874 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 875 } 876 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; 877 } 878 879 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 880 ** do not attempt any conversions before assembling the record. 881 ** If this is a real table, attempt conversions as required by the 882 ** table column affinities. 883 */ 884 if( !isView ){ 885 sqlite3TableAffinity(v, pTab, regCols+1); 886 } 887 888 /* Fire BEFORE or INSTEAD OF triggers */ 889 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 890 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 891 892 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 893 } 894 895 /* Compute the content of the next row to insert into a range of 896 ** registers beginning at regIns. 897 */ 898 if( !isView ){ 899 if( IsVirtual(pTab) ){ 900 /* The row that the VUpdate opcode will delete: none */ 901 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 902 } 903 if( ipkColumn>=0 ){ 904 if( useTempTable ){ 905 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 906 }else if( pSelect ){ 907 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 908 }else{ 909 VdbeOp *pOp; 910 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 911 pOp = sqlite3VdbeGetOp(v, -1); 912 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 913 appendFlag = 1; 914 pOp->opcode = OP_NewRowid; 915 pOp->p1 = iDataCur; 916 pOp->p2 = regRowid; 917 pOp->p3 = regAutoinc; 918 } 919 } 920 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 921 ** to generate a unique primary key value. 922 */ 923 if( !appendFlag ){ 924 int addr1; 925 if( !IsVirtual(pTab) ){ 926 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 927 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 928 sqlite3VdbeJumpHere(v, addr1); 929 }else{ 930 addr1 = sqlite3VdbeCurrentAddr(v); 931 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 932 } 933 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 934 } 935 }else if( IsVirtual(pTab) || withoutRowid ){ 936 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 937 }else{ 938 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 939 appendFlag = 1; 940 } 941 autoIncStep(pParse, regAutoinc, regRowid); 942 943 /* Compute data for all columns of the new entry, beginning 944 ** with the first column. 945 */ 946 nHidden = 0; 947 for(i=0; i<pTab->nCol; i++){ 948 int iRegStore = regRowid+1+i; 949 if( i==pTab->iPKey ){ 950 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 951 ** Whenever this column is read, the rowid will be substituted 952 ** in its place. Hence, fill this column with a NULL to avoid 953 ** taking up data space with information that will never be used. 954 ** As there may be shallow copies of this value, make it a soft-NULL */ 955 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 956 continue; 957 } 958 if( pColumn==0 ){ 959 if( IsHiddenColumn(&pTab->aCol[i]) ){ 960 j = -1; 961 nHidden++; 962 }else{ 963 j = i - nHidden; 964 } 965 }else{ 966 for(j=0; j<pColumn->nId; j++){ 967 if( pColumn->a[j].idx==i ) break; 968 } 969 } 970 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 971 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 972 }else if( useTempTable ){ 973 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 974 }else if( pSelect ){ 975 if( regFromSelect!=regData ){ 976 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 977 } 978 }else{ 979 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 980 } 981 } 982 983 /* Generate code to check constraints and generate index keys and 984 ** do the insertion. 985 */ 986 #ifndef SQLITE_OMIT_VIRTUALTABLE 987 if( IsVirtual(pTab) ){ 988 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 989 sqlite3VtabMakeWritable(pParse, pTab); 990 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 991 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 992 sqlite3MayAbort(pParse); 993 }else 994 #endif 995 { 996 int isReplace; /* Set to true if constraints may cause a replace */ 997 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 998 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0 999 ); 1000 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1001 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1002 regIns, aRegIdx, 0, appendFlag, isReplace==0); 1003 } 1004 } 1005 1006 /* Update the count of rows that are inserted 1007 */ 1008 if( (db->flags & SQLITE_CountRows)!=0 ){ 1009 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1010 } 1011 1012 if( pTrigger ){ 1013 /* Code AFTER triggers */ 1014 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1015 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1016 } 1017 1018 /* The bottom of the main insertion loop, if the data source 1019 ** is a SELECT statement. 1020 */ 1021 sqlite3VdbeResolveLabel(v, endOfLoop); 1022 if( useTempTable ){ 1023 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1024 sqlite3VdbeJumpHere(v, addrInsTop); 1025 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1026 }else if( pSelect ){ 1027 sqlite3VdbeGoto(v, addrCont); 1028 sqlite3VdbeJumpHere(v, addrInsTop); 1029 } 1030 1031 if( !IsVirtual(pTab) && !isView ){ 1032 /* Close all tables opened */ 1033 if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur); 1034 for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 1035 sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur); 1036 } 1037 } 1038 1039 insert_end: 1040 /* Update the sqlite_sequence table by storing the content of the 1041 ** maximum rowid counter values recorded while inserting into 1042 ** autoincrement tables. 1043 */ 1044 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1045 sqlite3AutoincrementEnd(pParse); 1046 } 1047 1048 /* 1049 ** Return the number of rows inserted. If this routine is 1050 ** generating code because of a call to sqlite3NestedParse(), do not 1051 ** invoke the callback function. 1052 */ 1053 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ 1054 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1055 sqlite3VdbeSetNumCols(v, 1); 1056 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1057 } 1058 1059 insert_cleanup: 1060 sqlite3SrcListDelete(db, pTabList); 1061 sqlite3ExprListDelete(db, pList); 1062 sqlite3SelectDelete(db, pSelect); 1063 sqlite3IdListDelete(db, pColumn); 1064 sqlite3DbFree(db, aRegIdx); 1065 } 1066 1067 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1068 ** they may interfere with compilation of other functions in this file 1069 ** (or in another file, if this file becomes part of the amalgamation). */ 1070 #ifdef isView 1071 #undef isView 1072 #endif 1073 #ifdef pTrigger 1074 #undef pTrigger 1075 #endif 1076 #ifdef tmask 1077 #undef tmask 1078 #endif 1079 1080 /* 1081 ** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged() 1082 */ 1083 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1084 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1085 1086 /* This is the Walker callback from checkConstraintUnchanged(). Set 1087 ** bit 0x01 of pWalker->eCode if 1088 ** pWalker->eCode to 0 if this expression node references any of the 1089 ** columns that are being modifed by an UPDATE statement. 1090 */ 1091 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1092 if( pExpr->op==TK_COLUMN ){ 1093 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1094 if( pExpr->iColumn>=0 ){ 1095 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1096 pWalker->eCode |= CKCNSTRNT_COLUMN; 1097 } 1098 }else{ 1099 pWalker->eCode |= CKCNSTRNT_ROWID; 1100 } 1101 } 1102 return WRC_Continue; 1103 } 1104 1105 /* 1106 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1107 ** only columns that are modified by the UPDATE are those for which 1108 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1109 ** 1110 ** Return true if CHECK constraint pExpr does not use any of the 1111 ** changing columns (or the rowid if it is changing). In other words, 1112 ** return true if this CHECK constraint can be skipped when validating 1113 ** the new row in the UPDATE statement. 1114 */ 1115 static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){ 1116 Walker w; 1117 memset(&w, 0, sizeof(w)); 1118 w.eCode = 0; 1119 w.xExprCallback = checkConstraintExprNode; 1120 w.u.aiCol = aiChng; 1121 sqlite3WalkExpr(&w, pExpr); 1122 if( !chngRowid ){ 1123 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1124 w.eCode &= ~CKCNSTRNT_ROWID; 1125 } 1126 testcase( w.eCode==0 ); 1127 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1128 testcase( w.eCode==CKCNSTRNT_ROWID ); 1129 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1130 return !w.eCode; 1131 } 1132 1133 /* 1134 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1135 ** on table pTab. 1136 ** 1137 ** The regNewData parameter is the first register in a range that contains 1138 ** the data to be inserted or the data after the update. There will be 1139 ** pTab->nCol+1 registers in this range. The first register (the one 1140 ** that regNewData points to) will contain the new rowid, or NULL in the 1141 ** case of a WITHOUT ROWID table. The second register in the range will 1142 ** contain the content of the first table column. The third register will 1143 ** contain the content of the second table column. And so forth. 1144 ** 1145 ** The regOldData parameter is similar to regNewData except that it contains 1146 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1147 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1148 ** checking regOldData for zero. 1149 ** 1150 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1151 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1152 ** might be modified by the UPDATE. If pkChng is false, then the key of 1153 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1154 ** 1155 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1156 ** was explicitly specified as part of the INSERT statement. If pkChng 1157 ** is zero, it means that the either rowid is computed automatically or 1158 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1159 ** pkChng will only be true if the INSERT statement provides an integer 1160 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1161 ** 1162 ** The code generated by this routine will store new index entries into 1163 ** registers identified by aRegIdx[]. No index entry is created for 1164 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1165 ** the same as the order of indices on the linked list of indices 1166 ** at pTab->pIndex. 1167 ** 1168 ** The caller must have already opened writeable cursors on the main 1169 ** table and all applicable indices (that is to say, all indices for which 1170 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1171 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1172 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1173 ** for the first index in the pTab->pIndex list. Cursors for other indices 1174 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1175 ** 1176 ** This routine also generates code to check constraints. NOT NULL, 1177 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1178 ** then the appropriate action is performed. There are five possible 1179 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1180 ** 1181 ** Constraint type Action What Happens 1182 ** --------------- ---------- ---------------------------------------- 1183 ** any ROLLBACK The current transaction is rolled back and 1184 ** sqlite3_step() returns immediately with a 1185 ** return code of SQLITE_CONSTRAINT. 1186 ** 1187 ** any ABORT Back out changes from the current command 1188 ** only (do not do a complete rollback) then 1189 ** cause sqlite3_step() to return immediately 1190 ** with SQLITE_CONSTRAINT. 1191 ** 1192 ** any FAIL Sqlite3_step() returns immediately with a 1193 ** return code of SQLITE_CONSTRAINT. The 1194 ** transaction is not rolled back and any 1195 ** changes to prior rows are retained. 1196 ** 1197 ** any IGNORE The attempt in insert or update the current 1198 ** row is skipped, without throwing an error. 1199 ** Processing continues with the next row. 1200 ** (There is an immediate jump to ignoreDest.) 1201 ** 1202 ** NOT NULL REPLACE The NULL value is replace by the default 1203 ** value for that column. If the default value 1204 ** is NULL, the action is the same as ABORT. 1205 ** 1206 ** UNIQUE REPLACE The other row that conflicts with the row 1207 ** being inserted is removed. 1208 ** 1209 ** CHECK REPLACE Illegal. The results in an exception. 1210 ** 1211 ** Which action to take is determined by the overrideError parameter. 1212 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1213 ** is used. Or if pParse->onError==OE_Default then the onError value 1214 ** for the constraint is used. 1215 */ 1216 void sqlite3GenerateConstraintChecks( 1217 Parse *pParse, /* The parser context */ 1218 Table *pTab, /* The table being inserted or updated */ 1219 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1220 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1221 int iIdxCur, /* First index cursor */ 1222 int regNewData, /* First register in a range holding values to insert */ 1223 int regOldData, /* Previous content. 0 for INSERTs */ 1224 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1225 u8 overrideError, /* Override onError to this if not OE_Default */ 1226 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1227 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1228 int *aiChng /* column i is unchanged if aiChng[i]<0 */ 1229 ){ 1230 Vdbe *v; /* VDBE under constrution */ 1231 Index *pIdx; /* Pointer to one of the indices */ 1232 Index *pPk = 0; /* The PRIMARY KEY index */ 1233 sqlite3 *db; /* Database connection */ 1234 int i; /* loop counter */ 1235 int ix; /* Index loop counter */ 1236 int nCol; /* Number of columns */ 1237 int onError; /* Conflict resolution strategy */ 1238 int addr1; /* Address of jump instruction */ 1239 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1240 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1241 int ipkTop = 0; /* Top of the rowid change constraint check */ 1242 int ipkBottom = 0; /* Bottom of the rowid change constraint check */ 1243 u8 isUpdate; /* True if this is an UPDATE operation */ 1244 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1245 int regRowid = -1; /* Register holding ROWID value */ 1246 1247 isUpdate = regOldData!=0; 1248 db = pParse->db; 1249 v = sqlite3GetVdbe(pParse); 1250 assert( v!=0 ); 1251 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1252 nCol = pTab->nCol; 1253 1254 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1255 ** normal rowid tables. nPkField is the number of key fields in the 1256 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1257 ** number of fields in the true primary key of the table. */ 1258 if( HasRowid(pTab) ){ 1259 pPk = 0; 1260 nPkField = 1; 1261 }else{ 1262 pPk = sqlite3PrimaryKeyIndex(pTab); 1263 nPkField = pPk->nKeyCol; 1264 } 1265 1266 /* Record that this module has started */ 1267 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1268 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1269 1270 /* Test all NOT NULL constraints. 1271 */ 1272 for(i=0; i<nCol; i++){ 1273 if( i==pTab->iPKey ){ 1274 continue; /* ROWID is never NULL */ 1275 } 1276 if( aiChng && aiChng[i]<0 ){ 1277 /* Don't bother checking for NOT NULL on columns that do not change */ 1278 continue; 1279 } 1280 onError = pTab->aCol[i].notNull; 1281 if( onError==OE_None ) continue; /* This column is allowed to be NULL */ 1282 if( overrideError!=OE_Default ){ 1283 onError = overrideError; 1284 }else if( onError==OE_Default ){ 1285 onError = OE_Abort; 1286 } 1287 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1288 onError = OE_Abort; 1289 } 1290 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1291 || onError==OE_Ignore || onError==OE_Replace ); 1292 switch( onError ){ 1293 case OE_Abort: 1294 sqlite3MayAbort(pParse); 1295 /* Fall through */ 1296 case OE_Rollback: 1297 case OE_Fail: { 1298 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1299 pTab->aCol[i].zName); 1300 sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 1301 regNewData+1+i, zMsg, P4_DYNAMIC); 1302 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1303 VdbeCoverage(v); 1304 break; 1305 } 1306 case OE_Ignore: { 1307 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 1308 VdbeCoverage(v); 1309 break; 1310 } 1311 default: { 1312 assert( onError==OE_Replace ); 1313 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); 1314 VdbeCoverage(v); 1315 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1316 sqlite3VdbeJumpHere(v, addr1); 1317 break; 1318 } 1319 } 1320 } 1321 1322 /* Test all CHECK constraints 1323 */ 1324 #ifndef SQLITE_OMIT_CHECK 1325 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1326 ExprList *pCheck = pTab->pCheck; 1327 pParse->ckBase = regNewData+1; 1328 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1329 for(i=0; i<pCheck->nExpr; i++){ 1330 int allOk; 1331 Expr *pExpr = pCheck->a[i].pExpr; 1332 if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue; 1333 allOk = sqlite3VdbeMakeLabel(v); 1334 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 1335 if( onError==OE_Ignore ){ 1336 sqlite3VdbeGoto(v, ignoreDest); 1337 }else{ 1338 char *zName = pCheck->a[i].zName; 1339 if( zName==0 ) zName = pTab->zName; 1340 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ 1341 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1342 onError, zName, P4_TRANSIENT, 1343 P5_ConstraintCheck); 1344 } 1345 sqlite3VdbeResolveLabel(v, allOk); 1346 } 1347 } 1348 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1349 1350 /* If rowid is changing, make sure the new rowid does not previously 1351 ** exist in the table. 1352 */ 1353 if( pkChng && pPk==0 ){ 1354 int addrRowidOk = sqlite3VdbeMakeLabel(v); 1355 1356 /* Figure out what action to take in case of a rowid collision */ 1357 onError = pTab->keyConf; 1358 if( overrideError!=OE_Default ){ 1359 onError = overrideError; 1360 }else if( onError==OE_Default ){ 1361 onError = OE_Abort; 1362 } 1363 1364 if( isUpdate ){ 1365 /* pkChng!=0 does not mean that the rowid has change, only that 1366 ** it might have changed. Skip the conflict logic below if the rowid 1367 ** is unchanged. */ 1368 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1369 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1370 VdbeCoverage(v); 1371 } 1372 1373 /* If the response to a rowid conflict is REPLACE but the response 1374 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1375 ** to defer the running of the rowid conflict checking until after 1376 ** the UNIQUE constraints have run. 1377 */ 1378 if( onError==OE_Replace && overrideError!=OE_Replace ){ 1379 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1380 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ 1381 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); 1382 break; 1383 } 1384 } 1385 } 1386 1387 /* Check to see if the new rowid already exists in the table. Skip 1388 ** the following conflict logic if it does not. */ 1389 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1390 VdbeCoverage(v); 1391 1392 /* Generate code that deals with a rowid collision */ 1393 switch( onError ){ 1394 default: { 1395 onError = OE_Abort; 1396 /* Fall thru into the next case */ 1397 } 1398 case OE_Rollback: 1399 case OE_Abort: 1400 case OE_Fail: { 1401 sqlite3RowidConstraint(pParse, onError, pTab); 1402 break; 1403 } 1404 case OE_Replace: { 1405 /* If there are DELETE triggers on this table and the 1406 ** recursive-triggers flag is set, call GenerateRowDelete() to 1407 ** remove the conflicting row from the table. This will fire 1408 ** the triggers and remove both the table and index b-tree entries. 1409 ** 1410 ** Otherwise, if there are no triggers or the recursive-triggers 1411 ** flag is not set, but the table has one or more indexes, call 1412 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1413 ** only. The table b-tree entry will be replaced by the new entry 1414 ** when it is inserted. 1415 ** 1416 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1417 ** also invoke MultiWrite() to indicate that this VDBE may require 1418 ** statement rollback (if the statement is aborted after the delete 1419 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1420 ** but being more selective here allows statements like: 1421 ** 1422 ** REPLACE INTO t(rowid) VALUES($newrowid) 1423 ** 1424 ** to run without a statement journal if there are no indexes on the 1425 ** table. 1426 */ 1427 Trigger *pTrigger = 0; 1428 if( db->flags&SQLITE_RecTriggers ){ 1429 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1430 } 1431 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1432 sqlite3MultiWrite(pParse); 1433 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1434 regNewData, 1, 0, OE_Replace, 1, -1); 1435 }else{ 1436 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1437 if( HasRowid(pTab) ){ 1438 /* This OP_Delete opcode fires the pre-update-hook only. It does 1439 ** not modify the b-tree. It is more efficient to let the coming 1440 ** OP_Insert replace the existing entry than it is to delete the 1441 ** existing entry and then insert a new one. */ 1442 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1443 sqlite3VdbeChangeP4(v, -1, (char *)pTab, P4_TABLE); 1444 } 1445 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1446 if( pTab->pIndex ){ 1447 sqlite3MultiWrite(pParse); 1448 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1449 } 1450 } 1451 seenReplace = 1; 1452 break; 1453 } 1454 case OE_Ignore: { 1455 /*assert( seenReplace==0 );*/ 1456 sqlite3VdbeGoto(v, ignoreDest); 1457 break; 1458 } 1459 } 1460 sqlite3VdbeResolveLabel(v, addrRowidOk); 1461 if( ipkTop ){ 1462 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1463 sqlite3VdbeJumpHere(v, ipkTop); 1464 } 1465 } 1466 1467 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1468 ** index and making sure that duplicate entries do not already exist. 1469 ** Compute the revised record entries for indices as we go. 1470 ** 1471 ** This loop also handles the case of the PRIMARY KEY index for a 1472 ** WITHOUT ROWID table. 1473 */ 1474 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1475 int regIdx; /* Range of registers hold conent for pIdx */ 1476 int regR; /* Range of registers holding conflicting PK */ 1477 int iThisCur; /* Cursor for this UNIQUE index */ 1478 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1479 1480 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1481 if( bAffinityDone==0 ){ 1482 sqlite3TableAffinity(v, pTab, regNewData+1); 1483 bAffinityDone = 1; 1484 } 1485 iThisCur = iIdxCur+ix; 1486 addrUniqueOk = sqlite3VdbeMakeLabel(v); 1487 1488 /* Skip partial indices for which the WHERE clause is not true */ 1489 if( pIdx->pPartIdxWhere ){ 1490 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1491 pParse->ckBase = regNewData+1; 1492 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1493 SQLITE_JUMPIFNULL); 1494 pParse->ckBase = 0; 1495 } 1496 1497 /* Create a record for this index entry as it should appear after 1498 ** the insert or update. Store that record in the aRegIdx[ix] register 1499 */ 1500 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn); 1501 for(i=0; i<pIdx->nColumn; i++){ 1502 int iField = pIdx->aiColumn[i]; 1503 int x; 1504 if( iField==XN_EXPR ){ 1505 pParse->ckBase = regNewData+1; 1506 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1507 pParse->ckBase = 0; 1508 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1509 }else{ 1510 if( iField==XN_ROWID || iField==pTab->iPKey ){ 1511 if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */ 1512 x = regNewData; 1513 regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i; 1514 }else{ 1515 x = iField + regNewData + 1; 1516 } 1517 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); 1518 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 1519 } 1520 } 1521 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1522 VdbeComment((v, "for %s", pIdx->zName)); 1523 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn); 1524 1525 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1526 ** of a WITHOUT ROWID table and there has been no change the 1527 ** primary key, then no collision is possible. The collision detection 1528 ** logic below can all be skipped. */ 1529 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1530 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1531 continue; 1532 } 1533 1534 /* Find out what action to take in case there is a uniqueness conflict */ 1535 onError = pIdx->onError; 1536 if( onError==OE_None ){ 1537 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); 1538 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1539 continue; /* pIdx is not a UNIQUE index */ 1540 } 1541 if( overrideError!=OE_Default ){ 1542 onError = overrideError; 1543 }else if( onError==OE_Default ){ 1544 onError = OE_Abort; 1545 } 1546 1547 /* Check to see if the new index entry will be unique */ 1548 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1549 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 1550 1551 /* Generate code to handle collisions */ 1552 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1553 if( isUpdate || onError==OE_Replace ){ 1554 if( HasRowid(pTab) ){ 1555 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1556 /* Conflict only if the rowid of the existing index entry 1557 ** is different from old-rowid */ 1558 if( isUpdate ){ 1559 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1560 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1561 VdbeCoverage(v); 1562 } 1563 }else{ 1564 int x; 1565 /* Extract the PRIMARY KEY from the end of the index entry and 1566 ** store it in registers regR..regR+nPk-1 */ 1567 if( pIdx!=pPk ){ 1568 for(i=0; i<pPk->nKeyCol; i++){ 1569 assert( pPk->aiColumn[i]>=0 ); 1570 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 1571 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1572 VdbeComment((v, "%s.%s", pTab->zName, 1573 pTab->aCol[pPk->aiColumn[i]].zName)); 1574 } 1575 } 1576 if( isUpdate ){ 1577 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1578 ** table, only conflict if the new PRIMARY KEY values are actually 1579 ** different from the old. 1580 ** 1581 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 1582 ** of the matched index row are different from the original PRIMARY 1583 ** KEY values of this row before the update. */ 1584 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 1585 int op = OP_Ne; 1586 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 1587 1588 for(i=0; i<pPk->nKeyCol; i++){ 1589 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 1590 x = pPk->aiColumn[i]; 1591 assert( x>=0 ); 1592 if( i==(pPk->nKeyCol-1) ){ 1593 addrJump = addrUniqueOk; 1594 op = OP_Eq; 1595 } 1596 sqlite3VdbeAddOp4(v, op, 1597 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 1598 ); 1599 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1600 VdbeCoverageIf(v, op==OP_Eq); 1601 VdbeCoverageIf(v, op==OP_Ne); 1602 } 1603 } 1604 } 1605 } 1606 1607 /* Generate code that executes if the new index entry is not unique */ 1608 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1609 || onError==OE_Ignore || onError==OE_Replace ); 1610 switch( onError ){ 1611 case OE_Rollback: 1612 case OE_Abort: 1613 case OE_Fail: { 1614 sqlite3UniqueConstraint(pParse, onError, pIdx); 1615 break; 1616 } 1617 case OE_Ignore: { 1618 sqlite3VdbeGoto(v, ignoreDest); 1619 break; 1620 } 1621 default: { 1622 Trigger *pTrigger = 0; 1623 assert( onError==OE_Replace ); 1624 sqlite3MultiWrite(pParse); 1625 if( db->flags&SQLITE_RecTriggers ){ 1626 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1627 } 1628 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1629 regR, nPkField, 0, OE_Replace, 1630 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), -1); 1631 seenReplace = 1; 1632 break; 1633 } 1634 } 1635 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1636 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); 1637 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 1638 } 1639 if( ipkTop ){ 1640 sqlite3VdbeGoto(v, ipkTop+1); 1641 sqlite3VdbeJumpHere(v, ipkBottom); 1642 } 1643 1644 *pbMayReplace = seenReplace; 1645 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 1646 } 1647 1648 /* 1649 ** This routine generates code to finish the INSERT or UPDATE operation 1650 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1651 ** A consecutive range of registers starting at regNewData contains the 1652 ** rowid and the content to be inserted. 1653 ** 1654 ** The arguments to this routine should be the same as the first six 1655 ** arguments to sqlite3GenerateConstraintChecks. 1656 */ 1657 void sqlite3CompleteInsertion( 1658 Parse *pParse, /* The parser context */ 1659 Table *pTab, /* the table into which we are inserting */ 1660 int iDataCur, /* Cursor of the canonical data source */ 1661 int iIdxCur, /* First index cursor */ 1662 int regNewData, /* Range of content */ 1663 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1664 int isUpdate, /* True for UPDATE, False for INSERT */ 1665 int appendBias, /* True if this is likely to be an append */ 1666 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1667 ){ 1668 Vdbe *v; /* Prepared statements under construction */ 1669 Index *pIdx; /* An index being inserted or updated */ 1670 u8 pik_flags; /* flag values passed to the btree insert */ 1671 int regData; /* Content registers (after the rowid) */ 1672 int regRec; /* Register holding assembled record for the table */ 1673 int i; /* Loop counter */ 1674 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ 1675 1676 v = sqlite3GetVdbe(pParse); 1677 assert( v!=0 ); 1678 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1679 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1680 if( aRegIdx[i]==0 ) continue; 1681 bAffinityDone = 1; 1682 if( pIdx->pPartIdxWhere ){ 1683 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 1684 VdbeCoverage(v); 1685 } 1686 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]); 1687 pik_flags = 0; 1688 if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT; 1689 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1690 assert( pParse->nested==0 ); 1691 pik_flags |= OPFLAG_NCHANGE; 1692 } 1693 sqlite3VdbeChangeP5(v, pik_flags); 1694 } 1695 if( !HasRowid(pTab) ) return; 1696 regData = regNewData + 1; 1697 regRec = sqlite3GetTempReg(pParse); 1698 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1699 if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0); 1700 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); 1701 if( pParse->nested ){ 1702 pik_flags = 0; 1703 }else{ 1704 pik_flags = OPFLAG_NCHANGE; 1705 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); 1706 } 1707 if( appendBias ){ 1708 pik_flags |= OPFLAG_APPEND; 1709 } 1710 if( useSeekResult ){ 1711 pik_flags |= OPFLAG_USESEEKRESULT; 1712 } 1713 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); 1714 if( !pParse->nested ){ 1715 sqlite3VdbeChangeP4(v, -1, (char *)pTab, P4_TABLE); 1716 } 1717 sqlite3VdbeChangeP5(v, pik_flags); 1718 } 1719 1720 /* 1721 ** Allocate cursors for the pTab table and all its indices and generate 1722 ** code to open and initialized those cursors. 1723 ** 1724 ** The cursor for the object that contains the complete data (normally 1725 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 1726 ** ROWID table) is returned in *piDataCur. The first index cursor is 1727 ** returned in *piIdxCur. The number of indices is returned. 1728 ** 1729 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 1730 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 1731 ** If iBase is negative, then allocate the next available cursor. 1732 ** 1733 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 1734 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 1735 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 1736 ** pTab->pIndex list. 1737 ** 1738 ** If pTab is a virtual table, then this routine is a no-op and the 1739 ** *piDataCur and *piIdxCur values are left uninitialized. 1740 */ 1741 int sqlite3OpenTableAndIndices( 1742 Parse *pParse, /* Parsing context */ 1743 Table *pTab, /* Table to be opened */ 1744 int op, /* OP_OpenRead or OP_OpenWrite */ 1745 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 1746 int iBase, /* Use this for the table cursor, if there is one */ 1747 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 1748 int *piDataCur, /* Write the database source cursor number here */ 1749 int *piIdxCur /* Write the first index cursor number here */ 1750 ){ 1751 int i; 1752 int iDb; 1753 int iDataCur; 1754 Index *pIdx; 1755 Vdbe *v; 1756 1757 assert( op==OP_OpenRead || op==OP_OpenWrite ); 1758 assert( op==OP_OpenWrite || p5==0 ); 1759 if( IsVirtual(pTab) ){ 1760 /* This routine is a no-op for virtual tables. Leave the output 1761 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 1762 ** can detect if they are used by mistake in the caller. */ 1763 return 0; 1764 } 1765 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1766 v = sqlite3GetVdbe(pParse); 1767 assert( v!=0 ); 1768 if( iBase<0 ) iBase = pParse->nTab; 1769 iDataCur = iBase++; 1770 if( piDataCur ) *piDataCur = iDataCur; 1771 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 1772 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 1773 }else{ 1774 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 1775 } 1776 if( piIdxCur ) *piIdxCur = iBase; 1777 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1778 int iIdxCur = iBase++; 1779 assert( pIdx->pSchema==pTab->pSchema ); 1780 if( aToOpen==0 || aToOpen[i+1] ){ 1781 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 1782 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1783 VdbeComment((v, "%s", pIdx->zName)); 1784 } 1785 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1786 if( piDataCur ) *piDataCur = iIdxCur; 1787 }else{ 1788 sqlite3VdbeChangeP5(v, p5); 1789 } 1790 } 1791 if( iBase>pParse->nTab ) pParse->nTab = iBase; 1792 return i; 1793 } 1794 1795 1796 #ifdef SQLITE_TEST 1797 /* 1798 ** The following global variable is incremented whenever the 1799 ** transfer optimization is used. This is used for testing 1800 ** purposes only - to make sure the transfer optimization really 1801 ** is happening when it is supposed to. 1802 */ 1803 int sqlite3_xferopt_count; 1804 #endif /* SQLITE_TEST */ 1805 1806 1807 #ifndef SQLITE_OMIT_XFER_OPT 1808 /* 1809 ** Check to see if index pSrc is compatible as a source of data 1810 ** for index pDest in an insert transfer optimization. The rules 1811 ** for a compatible index: 1812 ** 1813 ** * The index is over the same set of columns 1814 ** * The same DESC and ASC markings occurs on all columns 1815 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1816 ** * The same collating sequence on each column 1817 ** * The index has the exact same WHERE clause 1818 */ 1819 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1820 int i; 1821 assert( pDest && pSrc ); 1822 assert( pDest->pTable!=pSrc->pTable ); 1823 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 1824 return 0; /* Different number of columns */ 1825 } 1826 if( pDest->onError!=pSrc->onError ){ 1827 return 0; /* Different conflict resolution strategies */ 1828 } 1829 for(i=0; i<pSrc->nKeyCol; i++){ 1830 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1831 return 0; /* Different columns indexed */ 1832 } 1833 if( pSrc->aiColumn[i]==XN_EXPR ){ 1834 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 1835 if( sqlite3ExprCompare(pSrc->aColExpr->a[i].pExpr, 1836 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 1837 return 0; /* Different expressions in the index */ 1838 } 1839 } 1840 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1841 return 0; /* Different sort orders */ 1842 } 1843 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 1844 return 0; /* Different collating sequences */ 1845 } 1846 } 1847 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 1848 return 0; /* Different WHERE clauses */ 1849 } 1850 1851 /* If no test above fails then the indices must be compatible */ 1852 return 1; 1853 } 1854 1855 /* 1856 ** Attempt the transfer optimization on INSERTs of the form 1857 ** 1858 ** INSERT INTO tab1 SELECT * FROM tab2; 1859 ** 1860 ** The xfer optimization transfers raw records from tab2 over to tab1. 1861 ** Columns are not decoded and reassembled, which greatly improves 1862 ** performance. Raw index records are transferred in the same way. 1863 ** 1864 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 1865 ** There are lots of rules for determining compatibility - see comments 1866 ** embedded in the code for details. 1867 ** 1868 ** This routine returns TRUE if the optimization is guaranteed to be used. 1869 ** Sometimes the xfer optimization will only work if the destination table 1870 ** is empty - a factor that can only be determined at run-time. In that 1871 ** case, this routine generates code for the xfer optimization but also 1872 ** does a test to see if the destination table is empty and jumps over the 1873 ** xfer optimization code if the test fails. In that case, this routine 1874 ** returns FALSE so that the caller will know to go ahead and generate 1875 ** an unoptimized transfer. This routine also returns FALSE if there 1876 ** is no chance that the xfer optimization can be applied. 1877 ** 1878 ** This optimization is particularly useful at making VACUUM run faster. 1879 */ 1880 static int xferOptimization( 1881 Parse *pParse, /* Parser context */ 1882 Table *pDest, /* The table we are inserting into */ 1883 Select *pSelect, /* A SELECT statement to use as the data source */ 1884 int onError, /* How to handle constraint errors */ 1885 int iDbDest /* The database of pDest */ 1886 ){ 1887 sqlite3 *db = pParse->db; 1888 ExprList *pEList; /* The result set of the SELECT */ 1889 Table *pSrc; /* The table in the FROM clause of SELECT */ 1890 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1891 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1892 int i; /* Loop counter */ 1893 int iDbSrc; /* The database of pSrc */ 1894 int iSrc, iDest; /* Cursors from source and destination */ 1895 int addr1, addr2; /* Loop addresses */ 1896 int emptyDestTest = 0; /* Address of test for empty pDest */ 1897 int emptySrcTest = 0; /* Address of test for empty pSrc */ 1898 Vdbe *v; /* The VDBE we are building */ 1899 int regAutoinc; /* Memory register used by AUTOINC */ 1900 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1901 int regData, regRowid; /* Registers holding data and rowid */ 1902 1903 if( pSelect==0 ){ 1904 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1905 } 1906 if( pParse->pWith || pSelect->pWith ){ 1907 /* Do not attempt to process this query if there are an WITH clauses 1908 ** attached to it. Proceeding may generate a false "no such table: xxx" 1909 ** error if pSelect reads from a CTE named "xxx". */ 1910 return 0; 1911 } 1912 if( sqlite3TriggerList(pParse, pDest) ){ 1913 return 0; /* tab1 must not have triggers */ 1914 } 1915 #ifndef SQLITE_OMIT_VIRTUALTABLE 1916 if( pDest->tabFlags & TF_Virtual ){ 1917 return 0; /* tab1 must not be a virtual table */ 1918 } 1919 #endif 1920 if( onError==OE_Default ){ 1921 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 1922 if( onError==OE_Default ) onError = OE_Abort; 1923 } 1924 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 1925 if( pSelect->pSrc->nSrc!=1 ){ 1926 return 0; /* FROM clause must have exactly one term */ 1927 } 1928 if( pSelect->pSrc->a[0].pSelect ){ 1929 return 0; /* FROM clause cannot contain a subquery */ 1930 } 1931 if( pSelect->pWhere ){ 1932 return 0; /* SELECT may not have a WHERE clause */ 1933 } 1934 if( pSelect->pOrderBy ){ 1935 return 0; /* SELECT may not have an ORDER BY clause */ 1936 } 1937 /* Do not need to test for a HAVING clause. If HAVING is present but 1938 ** there is no ORDER BY, we will get an error. */ 1939 if( pSelect->pGroupBy ){ 1940 return 0; /* SELECT may not have a GROUP BY clause */ 1941 } 1942 if( pSelect->pLimit ){ 1943 return 0; /* SELECT may not have a LIMIT clause */ 1944 } 1945 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 1946 if( pSelect->pPrior ){ 1947 return 0; /* SELECT may not be a compound query */ 1948 } 1949 if( pSelect->selFlags & SF_Distinct ){ 1950 return 0; /* SELECT may not be DISTINCT */ 1951 } 1952 pEList = pSelect->pEList; 1953 assert( pEList!=0 ); 1954 if( pEList->nExpr!=1 ){ 1955 return 0; /* The result set must have exactly one column */ 1956 } 1957 assert( pEList->a[0].pExpr ); 1958 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 1959 return 0; /* The result set must be the special operator "*" */ 1960 } 1961 1962 /* At this point we have established that the statement is of the 1963 ** correct syntactic form to participate in this optimization. Now 1964 ** we have to check the semantics. 1965 */ 1966 pItem = pSelect->pSrc->a; 1967 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 1968 if( pSrc==0 ){ 1969 return 0; /* FROM clause does not contain a real table */ 1970 } 1971 if( pSrc==pDest ){ 1972 return 0; /* tab1 and tab2 may not be the same table */ 1973 } 1974 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 1975 return 0; /* source and destination must both be WITHOUT ROWID or not */ 1976 } 1977 #ifndef SQLITE_OMIT_VIRTUALTABLE 1978 if( pSrc->tabFlags & TF_Virtual ){ 1979 return 0; /* tab2 must not be a virtual table */ 1980 } 1981 #endif 1982 if( pSrc->pSelect ){ 1983 return 0; /* tab2 may not be a view */ 1984 } 1985 if( pDest->nCol!=pSrc->nCol ){ 1986 return 0; /* Number of columns must be the same in tab1 and tab2 */ 1987 } 1988 if( pDest->iPKey!=pSrc->iPKey ){ 1989 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 1990 } 1991 for(i=0; i<pDest->nCol; i++){ 1992 Column *pDestCol = &pDest->aCol[i]; 1993 Column *pSrcCol = &pSrc->aCol[i]; 1994 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 1995 if( (db->flags & SQLITE_Vacuum)==0 1996 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 1997 ){ 1998 return 0; /* Neither table may have __hidden__ columns */ 1999 } 2000 #endif 2001 if( pDestCol->affinity!=pSrcCol->affinity ){ 2002 return 0; /* Affinity must be the same on all columns */ 2003 } 2004 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2005 return 0; /* Collating sequence must be the same on all columns */ 2006 } 2007 if( pDestCol->notNull && !pSrcCol->notNull ){ 2008 return 0; /* tab2 must be NOT NULL if tab1 is */ 2009 } 2010 /* Default values for second and subsequent columns need to match. */ 2011 if( i>0 ){ 2012 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2013 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2014 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2015 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2016 pSrcCol->pDflt->u.zToken)!=0) 2017 ){ 2018 return 0; /* Default values must be the same for all columns */ 2019 } 2020 } 2021 } 2022 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2023 if( IsUniqueIndex(pDestIdx) ){ 2024 destHasUniqueIdx = 1; 2025 } 2026 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2027 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2028 } 2029 if( pSrcIdx==0 ){ 2030 return 0; /* pDestIdx has no corresponding index in pSrc */ 2031 } 2032 } 2033 #ifndef SQLITE_OMIT_CHECK 2034 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2035 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2036 } 2037 #endif 2038 #ifndef SQLITE_OMIT_FOREIGN_KEY 2039 /* Disallow the transfer optimization if the destination table constains 2040 ** any foreign key constraints. This is more restrictive than necessary. 2041 ** But the main beneficiary of the transfer optimization is the VACUUM 2042 ** command, and the VACUUM command disables foreign key constraints. So 2043 ** the extra complication to make this rule less restrictive is probably 2044 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2045 */ 2046 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2047 return 0; 2048 } 2049 #endif 2050 if( (db->flags & SQLITE_CountRows)!=0 ){ 2051 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2052 } 2053 2054 /* If we get this far, it means that the xfer optimization is at 2055 ** least a possibility, though it might only work if the destination 2056 ** table (tab1) is initially empty. 2057 */ 2058 #ifdef SQLITE_TEST 2059 sqlite3_xferopt_count++; 2060 #endif 2061 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2062 v = sqlite3GetVdbe(pParse); 2063 sqlite3CodeVerifySchema(pParse, iDbSrc); 2064 iSrc = pParse->nTab++; 2065 iDest = pParse->nTab++; 2066 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2067 regData = sqlite3GetTempReg(pParse); 2068 regRowid = sqlite3GetTempReg(pParse); 2069 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2070 assert( HasRowid(pDest) || destHasUniqueIdx ); 2071 if( (db->flags & SQLITE_Vacuum)==0 && ( 2072 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2073 || destHasUniqueIdx /* (2) */ 2074 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2075 )){ 2076 /* In some circumstances, we are able to run the xfer optimization 2077 ** only if the destination table is initially empty. Unless the 2078 ** SQLITE_Vacuum flag is set, this block generates code to make 2079 ** that determination. If SQLITE_Vacuum is set, then the destination 2080 ** table is always empty. 2081 ** 2082 ** Conditions under which the destination must be empty: 2083 ** 2084 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2085 ** (If the destination is not initially empty, the rowid fields 2086 ** of index entries might need to change.) 2087 ** 2088 ** (2) The destination has a unique index. (The xfer optimization 2089 ** is unable to test uniqueness.) 2090 ** 2091 ** (3) onError is something other than OE_Abort and OE_Rollback. 2092 */ 2093 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2094 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2095 sqlite3VdbeJumpHere(v, addr1); 2096 } 2097 if( HasRowid(pSrc) ){ 2098 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2099 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2100 if( pDest->iPKey>=0 ){ 2101 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2102 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2103 VdbeCoverage(v); 2104 sqlite3RowidConstraint(pParse, onError, pDest); 2105 sqlite3VdbeJumpHere(v, addr2); 2106 autoIncStep(pParse, regAutoinc, regRowid); 2107 }else if( pDest->pIndex==0 ){ 2108 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2109 }else{ 2110 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2111 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2112 } 2113 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); 2114 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2115 (char*)pDest, P4_TABLE); 2116 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); 2117 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2118 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2119 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2120 }else{ 2121 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2122 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2123 } 2124 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2125 u8 idxInsFlags = 0; 2126 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2127 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2128 } 2129 assert( pSrcIdx ); 2130 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2131 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2132 VdbeComment((v, "%s", pSrcIdx->zName)); 2133 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2134 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2135 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2136 VdbeComment((v, "%s", pDestIdx->zName)); 2137 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2138 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); 2139 if( db->flags & SQLITE_Vacuum ){ 2140 /* This INSERT command is part of a VACUUM operation, which guarantees 2141 ** that the destination table is empty. If all indexed columns use 2142 ** collation sequence BINARY, then it can also be assumed that the 2143 ** index will be populated by inserting keys in strictly sorted 2144 ** order. In this case, instead of seeking within the b-tree as part 2145 ** of every OP_IdxInsert opcode, an OP_Last is added before the 2146 ** OP_IdxInsert to seek to the point within the b-tree where each key 2147 ** should be inserted. This is faster. 2148 ** 2149 ** If any of the indexed columns use a collation sequence other than 2150 ** BINARY, this optimization is disabled. This is because the user 2151 ** might change the definition of a collation sequence and then run 2152 ** a VACUUM command. In that case keys may not be written in strictly 2153 ** sorted order. */ 2154 for(i=0; i<pSrcIdx->nColumn; i++){ 2155 const char *zColl = pSrcIdx->azColl[i]; 2156 assert( sqlite3_stricmp(sqlite3StrBINARY, zColl)!=0 2157 || sqlite3StrBINARY==zColl ); 2158 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2159 } 2160 if( i==pSrcIdx->nColumn ){ 2161 idxInsFlags = OPFLAG_USESEEKRESULT; 2162 sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1); 2163 } 2164 } 2165 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){ 2166 idxInsFlags |= OPFLAG_NCHANGE; 2167 } 2168 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); 2169 sqlite3VdbeChangeP5(v, idxInsFlags); 2170 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2171 sqlite3VdbeJumpHere(v, addr1); 2172 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2173 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2174 } 2175 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2176 sqlite3ReleaseTempReg(pParse, regRowid); 2177 sqlite3ReleaseTempReg(pParse, regData); 2178 if( emptyDestTest ){ 2179 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2180 sqlite3VdbeJumpHere(v, emptyDestTest); 2181 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2182 return 0; 2183 }else{ 2184 return 1; 2185 } 2186 } 2187 #endif /* SQLITE_OMIT_XFER_OPT */ 2188