xref: /sqlite-3.40.0/src/insert.c (revision 4dfe98a8)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   v = sqlite3GetVdbe(pParse);
36   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37   sqlite3TableLock(pParse, iDb, pTab->tnum,
38                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
39   if( HasRowid(pTab) ){
40     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41     VdbeComment((v, "%s", pTab->zName));
42   }else{
43     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44     assert( pPk!=0 );
45     assert( pPk->tnum==pTab->tnum );
46     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48     VdbeComment((v, "%s", pTab->zName));
49   }
50 }
51 
52 /*
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
56 **
57 **  Character      Column affinity
58 **  ------------------------------
59 **  'A'            BLOB
60 **  'B'            TEXT
61 **  'C'            NUMERIC
62 **  'D'            INTEGER
63 **  'F'            REAL
64 **
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
67 **
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
71 */
72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
73   if( !pIdx->zColAff ){
74     /* The first time a column affinity string for a particular index is
75     ** required, it is allocated and populated here. It is then stored as
76     ** a member of the Index structure for subsequent use.
77     **
78     ** The column affinity string will eventually be deleted by
79     ** sqliteDeleteIndex() when the Index structure itself is cleaned
80     ** up.
81     */
82     int n;
83     Table *pTab = pIdx->pTable;
84     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
85     if( !pIdx->zColAff ){
86       db->mallocFailed = 1;
87       return 0;
88     }
89     for(n=0; n<pIdx->nColumn; n++){
90       i16 x = pIdx->aiColumn[n];
91       pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity;
92     }
93     pIdx->zColAff[n] = 0;
94   }
95 
96   return pIdx->zColAff;
97 }
98 
99 /*
100 ** Compute the affinity string for table pTab, if it has not already been
101 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
102 **
103 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
104 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
105 ** for register iReg and following.  Or if affinities exists and iReg==0,
106 ** then just set the P4 operand of the previous opcode (which should  be
107 ** an OP_MakeRecord) to the affinity string.
108 **
109 ** A column affinity string has one character per column:
110 **
111 **  Character      Column affinity
112 **  ------------------------------
113 **  'A'            BLOB
114 **  'B'            TEXT
115 **  'C'            NUMERIC
116 **  'D'            INTEGER
117 **  'E'            REAL
118 */
119 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
120   int i;
121   char *zColAff = pTab->zColAff;
122   if( zColAff==0 ){
123     sqlite3 *db = sqlite3VdbeDb(v);
124     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
125     if( !zColAff ){
126       db->mallocFailed = 1;
127       return;
128     }
129 
130     for(i=0; i<pTab->nCol; i++){
131       zColAff[i] = pTab->aCol[i].affinity;
132     }
133     do{
134       zColAff[i--] = 0;
135     }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB );
136     pTab->zColAff = zColAff;
137   }
138   i = sqlite3Strlen30(zColAff);
139   if( i ){
140     if( iReg ){
141       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
142     }else{
143       sqlite3VdbeChangeP4(v, -1, zColAff, i);
144     }
145   }
146 }
147 
148 /*
149 ** Return non-zero if the table pTab in database iDb or any of its indices
150 ** have been opened at any point in the VDBE program. This is used to see if
151 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
152 ** run without using a temporary table for the results of the SELECT.
153 */
154 static int readsTable(Parse *p, int iDb, Table *pTab){
155   Vdbe *v = sqlite3GetVdbe(p);
156   int i;
157   int iEnd = sqlite3VdbeCurrentAddr(v);
158 #ifndef SQLITE_OMIT_VIRTUALTABLE
159   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
160 #endif
161 
162   for(i=1; i<iEnd; i++){
163     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
164     assert( pOp!=0 );
165     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
166       Index *pIndex;
167       int tnum = pOp->p2;
168       if( tnum==pTab->tnum ){
169         return 1;
170       }
171       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
172         if( tnum==pIndex->tnum ){
173           return 1;
174         }
175       }
176     }
177 #ifndef SQLITE_OMIT_VIRTUALTABLE
178     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
179       assert( pOp->p4.pVtab!=0 );
180       assert( pOp->p4type==P4_VTAB );
181       return 1;
182     }
183 #endif
184   }
185   return 0;
186 }
187 
188 #ifndef SQLITE_OMIT_AUTOINCREMENT
189 /*
190 ** Locate or create an AutoincInfo structure associated with table pTab
191 ** which is in database iDb.  Return the register number for the register
192 ** that holds the maximum rowid.
193 **
194 ** There is at most one AutoincInfo structure per table even if the
195 ** same table is autoincremented multiple times due to inserts within
196 ** triggers.  A new AutoincInfo structure is created if this is the
197 ** first use of table pTab.  On 2nd and subsequent uses, the original
198 ** AutoincInfo structure is used.
199 **
200 ** Three memory locations are allocated:
201 **
202 **   (1)  Register to hold the name of the pTab table.
203 **   (2)  Register to hold the maximum ROWID of pTab.
204 **   (3)  Register to hold the rowid in sqlite_sequence of pTab
205 **
206 ** The 2nd register is the one that is returned.  That is all the
207 ** insert routine needs to know about.
208 */
209 static int autoIncBegin(
210   Parse *pParse,      /* Parsing context */
211   int iDb,            /* Index of the database holding pTab */
212   Table *pTab         /* The table we are writing to */
213 ){
214   int memId = 0;      /* Register holding maximum rowid */
215   if( pTab->tabFlags & TF_Autoincrement ){
216     Parse *pToplevel = sqlite3ParseToplevel(pParse);
217     AutoincInfo *pInfo;
218 
219     pInfo = pToplevel->pAinc;
220     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
221     if( pInfo==0 ){
222       pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
223       if( pInfo==0 ) return 0;
224       pInfo->pNext = pToplevel->pAinc;
225       pToplevel->pAinc = pInfo;
226       pInfo->pTab = pTab;
227       pInfo->iDb = iDb;
228       pToplevel->nMem++;                  /* Register to hold name of table */
229       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
230       pToplevel->nMem++;                  /* Rowid in sqlite_sequence */
231     }
232     memId = pInfo->regCtr;
233   }
234   return memId;
235 }
236 
237 /*
238 ** This routine generates code that will initialize all of the
239 ** register used by the autoincrement tracker.
240 */
241 void sqlite3AutoincrementBegin(Parse *pParse){
242   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
243   sqlite3 *db = pParse->db;  /* The database connection */
244   Db *pDb;                   /* Database only autoinc table */
245   int memId;                 /* Register holding max rowid */
246   int addr;                  /* A VDBE address */
247   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
248 
249   /* This routine is never called during trigger-generation.  It is
250   ** only called from the top-level */
251   assert( pParse->pTriggerTab==0 );
252   assert( pParse==sqlite3ParseToplevel(pParse) );
253 
254   assert( v );   /* We failed long ago if this is not so */
255   for(p = pParse->pAinc; p; p = p->pNext){
256     pDb = &db->aDb[p->iDb];
257     memId = p->regCtr;
258     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
259     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
260     sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
261     addr = sqlite3VdbeCurrentAddr(v);
262     sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
263     sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v);
264     sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
265     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v);
266     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
267     sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
268     sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
269     sqlite3VdbeGoto(v, addr+9);
270     sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v);
271     sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
272     sqlite3VdbeAddOp0(v, OP_Close);
273   }
274 }
275 
276 /*
277 ** Update the maximum rowid for an autoincrement calculation.
278 **
279 ** This routine should be called when the top of the stack holds a
280 ** new rowid that is about to be inserted.  If that new rowid is
281 ** larger than the maximum rowid in the memId memory cell, then the
282 ** memory cell is updated.  The stack is unchanged.
283 */
284 static void autoIncStep(Parse *pParse, int memId, int regRowid){
285   if( memId>0 ){
286     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
287   }
288 }
289 
290 /*
291 ** This routine generates the code needed to write autoincrement
292 ** maximum rowid values back into the sqlite_sequence register.
293 ** Every statement that might do an INSERT into an autoincrement
294 ** table (either directly or through triggers) needs to call this
295 ** routine just before the "exit" code.
296 */
297 void sqlite3AutoincrementEnd(Parse *pParse){
298   AutoincInfo *p;
299   Vdbe *v = pParse->pVdbe;
300   sqlite3 *db = pParse->db;
301 
302   assert( v );
303   for(p = pParse->pAinc; p; p = p->pNext){
304     Db *pDb = &db->aDb[p->iDb];
305     int j1;
306     int iRec;
307     int memId = p->regCtr;
308 
309     iRec = sqlite3GetTempReg(pParse);
310     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
311     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
312     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v);
313     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
314     sqlite3VdbeJumpHere(v, j1);
315     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
316     sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
317     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
318     sqlite3VdbeAddOp0(v, OP_Close);
319     sqlite3ReleaseTempReg(pParse, iRec);
320   }
321 }
322 #else
323 /*
324 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
325 ** above are all no-ops
326 */
327 # define autoIncBegin(A,B,C) (0)
328 # define autoIncStep(A,B,C)
329 #endif /* SQLITE_OMIT_AUTOINCREMENT */
330 
331 
332 /* Forward declaration */
333 static int xferOptimization(
334   Parse *pParse,        /* Parser context */
335   Table *pDest,         /* The table we are inserting into */
336   Select *pSelect,      /* A SELECT statement to use as the data source */
337   int onError,          /* How to handle constraint errors */
338   int iDbDest           /* The database of pDest */
339 );
340 
341 /*
342 ** This routine is called to handle SQL of the following forms:
343 **
344 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
345 **    insert into TABLE (IDLIST) select
346 **    insert into TABLE (IDLIST) default values
347 **
348 ** The IDLIST following the table name is always optional.  If omitted,
349 ** then a list of all (non-hidden) columns for the table is substituted.
350 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
351 ** is omitted.
352 **
353 ** For the pSelect parameter holds the values to be inserted for the
354 ** first two forms shown above.  A VALUES clause is really just short-hand
355 ** for a SELECT statement that omits the FROM clause and everything else
356 ** that follows.  If the pSelect parameter is NULL, that means that the
357 ** DEFAULT VALUES form of the INSERT statement is intended.
358 **
359 ** The code generated follows one of four templates.  For a simple
360 ** insert with data coming from a single-row VALUES clause, the code executes
361 ** once straight down through.  Pseudo-code follows (we call this
362 ** the "1st template"):
363 **
364 **         open write cursor to <table> and its indices
365 **         put VALUES clause expressions into registers
366 **         write the resulting record into <table>
367 **         cleanup
368 **
369 ** The three remaining templates assume the statement is of the form
370 **
371 **   INSERT INTO <table> SELECT ...
372 **
373 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
374 ** in other words if the SELECT pulls all columns from a single table
375 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
376 ** if <table2> and <table1> are distinct tables but have identical
377 ** schemas, including all the same indices, then a special optimization
378 ** is invoked that copies raw records from <table2> over to <table1>.
379 ** See the xferOptimization() function for the implementation of this
380 ** template.  This is the 2nd template.
381 **
382 **         open a write cursor to <table>
383 **         open read cursor on <table2>
384 **         transfer all records in <table2> over to <table>
385 **         close cursors
386 **         foreach index on <table>
387 **           open a write cursor on the <table> index
388 **           open a read cursor on the corresponding <table2> index
389 **           transfer all records from the read to the write cursors
390 **           close cursors
391 **         end foreach
392 **
393 ** The 3rd template is for when the second template does not apply
394 ** and the SELECT clause does not read from <table> at any time.
395 ** The generated code follows this template:
396 **
397 **         X <- A
398 **         goto B
399 **      A: setup for the SELECT
400 **         loop over the rows in the SELECT
401 **           load values into registers R..R+n
402 **           yield X
403 **         end loop
404 **         cleanup after the SELECT
405 **         end-coroutine X
406 **      B: open write cursor to <table> and its indices
407 **      C: yield X, at EOF goto D
408 **         insert the select result into <table> from R..R+n
409 **         goto C
410 **      D: cleanup
411 **
412 ** The 4th template is used if the insert statement takes its
413 ** values from a SELECT but the data is being inserted into a table
414 ** that is also read as part of the SELECT.  In the third form,
415 ** we have to use an intermediate table to store the results of
416 ** the select.  The template is like this:
417 **
418 **         X <- A
419 **         goto B
420 **      A: setup for the SELECT
421 **         loop over the tables in the SELECT
422 **           load value into register R..R+n
423 **           yield X
424 **         end loop
425 **         cleanup after the SELECT
426 **         end co-routine R
427 **      B: open temp table
428 **      L: yield X, at EOF goto M
429 **         insert row from R..R+n into temp table
430 **         goto L
431 **      M: open write cursor to <table> and its indices
432 **         rewind temp table
433 **      C: loop over rows of intermediate table
434 **           transfer values form intermediate table into <table>
435 **         end loop
436 **      D: cleanup
437 */
438 void sqlite3Insert(
439   Parse *pParse,        /* Parser context */
440   SrcList *pTabList,    /* Name of table into which we are inserting */
441   Select *pSelect,      /* A SELECT statement to use as the data source */
442   IdList *pColumn,      /* Column names corresponding to IDLIST. */
443   int onError           /* How to handle constraint errors */
444 ){
445   sqlite3 *db;          /* The main database structure */
446   Table *pTab;          /* The table to insert into.  aka TABLE */
447   char *zTab;           /* Name of the table into which we are inserting */
448   const char *zDb;      /* Name of the database holding this table */
449   int i, j, idx;        /* Loop counters */
450   Vdbe *v;              /* Generate code into this virtual machine */
451   Index *pIdx;          /* For looping over indices of the table */
452   int nColumn;          /* Number of columns in the data */
453   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
454   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
455   int iIdxCur = 0;      /* First index cursor */
456   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
457   int endOfLoop;        /* Label for the end of the insertion loop */
458   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
459   int addrInsTop = 0;   /* Jump to label "D" */
460   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
461   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
462   int iDb;              /* Index of database holding TABLE */
463   Db *pDb;              /* The database containing table being inserted into */
464   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
465   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
466   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
467   u8 bIdListInOrder;    /* True if IDLIST is in table order */
468   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
469 
470   /* Register allocations */
471   int regFromSelect = 0;/* Base register for data coming from SELECT */
472   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
473   int regRowCount = 0;  /* Memory cell used for the row counter */
474   int regIns;           /* Block of regs holding rowid+data being inserted */
475   int regRowid;         /* registers holding insert rowid */
476   int regData;          /* register holding first column to insert */
477   int *aRegIdx = 0;     /* One register allocated to each index */
478 
479 #ifndef SQLITE_OMIT_TRIGGER
480   int isView;                 /* True if attempting to insert into a view */
481   Trigger *pTrigger;          /* List of triggers on pTab, if required */
482   int tmask;                  /* Mask of trigger times */
483 #endif
484 
485   db = pParse->db;
486   memset(&dest, 0, sizeof(dest));
487   if( pParse->nErr || db->mallocFailed ){
488     goto insert_cleanup;
489   }
490 
491   /* If the Select object is really just a simple VALUES() list with a
492   ** single row (the common case) then keep that one row of values
493   ** and discard the other (unused) parts of the pSelect object
494   */
495   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
496     pList = pSelect->pEList;
497     pSelect->pEList = 0;
498     sqlite3SelectDelete(db, pSelect);
499     pSelect = 0;
500   }
501 
502   /* Locate the table into which we will be inserting new information.
503   */
504   assert( pTabList->nSrc==1 );
505   zTab = pTabList->a[0].zName;
506   if( NEVER(zTab==0) ) goto insert_cleanup;
507   pTab = sqlite3SrcListLookup(pParse, pTabList);
508   if( pTab==0 ){
509     goto insert_cleanup;
510   }
511   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
512   assert( iDb<db->nDb );
513   pDb = &db->aDb[iDb];
514   zDb = pDb->zName;
515   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
516     goto insert_cleanup;
517   }
518   withoutRowid = !HasRowid(pTab);
519 
520   /* Figure out if we have any triggers and if the table being
521   ** inserted into is a view
522   */
523 #ifndef SQLITE_OMIT_TRIGGER
524   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
525   isView = pTab->pSelect!=0;
526 #else
527 # define pTrigger 0
528 # define tmask 0
529 # define isView 0
530 #endif
531 #ifdef SQLITE_OMIT_VIEW
532 # undef isView
533 # define isView 0
534 #endif
535   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
536 
537   /* If pTab is really a view, make sure it has been initialized.
538   ** ViewGetColumnNames() is a no-op if pTab is not a view.
539   */
540   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
541     goto insert_cleanup;
542   }
543 
544   /* Cannot insert into a read-only table.
545   */
546   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
547     goto insert_cleanup;
548   }
549 
550   /* Allocate a VDBE
551   */
552   v = sqlite3GetVdbe(pParse);
553   if( v==0 ) goto insert_cleanup;
554   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
555   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
556 
557 #ifndef SQLITE_OMIT_XFER_OPT
558   /* If the statement is of the form
559   **
560   **       INSERT INTO <table1> SELECT * FROM <table2>;
561   **
562   ** Then special optimizations can be applied that make the transfer
563   ** very fast and which reduce fragmentation of indices.
564   **
565   ** This is the 2nd template.
566   */
567   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
568     assert( !pTrigger );
569     assert( pList==0 );
570     goto insert_end;
571   }
572 #endif /* SQLITE_OMIT_XFER_OPT */
573 
574   /* If this is an AUTOINCREMENT table, look up the sequence number in the
575   ** sqlite_sequence table and store it in memory cell regAutoinc.
576   */
577   regAutoinc = autoIncBegin(pParse, iDb, pTab);
578 
579   /* Allocate registers for holding the rowid of the new row,
580   ** the content of the new row, and the assembled row record.
581   */
582   regRowid = regIns = pParse->nMem+1;
583   pParse->nMem += pTab->nCol + 1;
584   if( IsVirtual(pTab) ){
585     regRowid++;
586     pParse->nMem++;
587   }
588   regData = regRowid+1;
589 
590   /* If the INSERT statement included an IDLIST term, then make sure
591   ** all elements of the IDLIST really are columns of the table and
592   ** remember the column indices.
593   **
594   ** If the table has an INTEGER PRIMARY KEY column and that column
595   ** is named in the IDLIST, then record in the ipkColumn variable
596   ** the index into IDLIST of the primary key column.  ipkColumn is
597   ** the index of the primary key as it appears in IDLIST, not as
598   ** is appears in the original table.  (The index of the INTEGER
599   ** PRIMARY KEY in the original table is pTab->iPKey.)
600   */
601   bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0;
602   if( pColumn ){
603     for(i=0; i<pColumn->nId; i++){
604       pColumn->a[i].idx = -1;
605     }
606     for(i=0; i<pColumn->nId; i++){
607       for(j=0; j<pTab->nCol; j++){
608         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
609           pColumn->a[i].idx = j;
610           if( i!=j ) bIdListInOrder = 0;
611           if( j==pTab->iPKey ){
612             ipkColumn = i;  assert( !withoutRowid );
613           }
614           break;
615         }
616       }
617       if( j>=pTab->nCol ){
618         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
619           ipkColumn = i;
620           bIdListInOrder = 0;
621         }else{
622           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
623               pTabList, 0, pColumn->a[i].zName);
624           pParse->checkSchema = 1;
625           goto insert_cleanup;
626         }
627       }
628     }
629   }
630 
631   /* Figure out how many columns of data are supplied.  If the data
632   ** is coming from a SELECT statement, then generate a co-routine that
633   ** produces a single row of the SELECT on each invocation.  The
634   ** co-routine is the common header to the 3rd and 4th templates.
635   */
636   if( pSelect ){
637     /* Data is coming from a SELECT or from a multi-row VALUES clause.
638     ** Generate a co-routine to run the SELECT. */
639     int regYield;       /* Register holding co-routine entry-point */
640     int addrTop;        /* Top of the co-routine */
641     int rc;             /* Result code */
642 
643     regYield = ++pParse->nMem;
644     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
645     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
646     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
647     dest.iSdst = bIdListInOrder ? regData : 0;
648     dest.nSdst = pTab->nCol;
649     rc = sqlite3Select(pParse, pSelect, &dest);
650     regFromSelect = dest.iSdst;
651     if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
652     sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
653     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
654     assert( pSelect->pEList );
655     nColumn = pSelect->pEList->nExpr;
656 
657     /* Set useTempTable to TRUE if the result of the SELECT statement
658     ** should be written into a temporary table (template 4).  Set to
659     ** FALSE if each output row of the SELECT can be written directly into
660     ** the destination table (template 3).
661     **
662     ** A temp table must be used if the table being updated is also one
663     ** of the tables being read by the SELECT statement.  Also use a
664     ** temp table in the case of row triggers.
665     */
666     if( pTrigger || readsTable(pParse, iDb, pTab) ){
667       useTempTable = 1;
668     }
669 
670     if( useTempTable ){
671       /* Invoke the coroutine to extract information from the SELECT
672       ** and add it to a transient table srcTab.  The code generated
673       ** here is from the 4th template:
674       **
675       **      B: open temp table
676       **      L: yield X, goto M at EOF
677       **         insert row from R..R+n into temp table
678       **         goto L
679       **      M: ...
680       */
681       int regRec;          /* Register to hold packed record */
682       int regTempRowid;    /* Register to hold temp table ROWID */
683       int addrL;           /* Label "L" */
684 
685       srcTab = pParse->nTab++;
686       regRec = sqlite3GetTempReg(pParse);
687       regTempRowid = sqlite3GetTempReg(pParse);
688       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
689       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
690       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
691       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
692       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
693       sqlite3VdbeGoto(v, addrL);
694       sqlite3VdbeJumpHere(v, addrL);
695       sqlite3ReleaseTempReg(pParse, regRec);
696       sqlite3ReleaseTempReg(pParse, regTempRowid);
697     }
698   }else{
699     /* This is the case if the data for the INSERT is coming from a
700     ** single-row VALUES clause
701     */
702     NameContext sNC;
703     memset(&sNC, 0, sizeof(sNC));
704     sNC.pParse = pParse;
705     srcTab = -1;
706     assert( useTempTable==0 );
707     if( pList ){
708       nColumn = pList->nExpr;
709       if( sqlite3ResolveExprListNames(&sNC, pList) ){
710         goto insert_cleanup;
711       }
712     }else{
713       nColumn = 0;
714     }
715   }
716 
717   /* If there is no IDLIST term but the table has an integer primary
718   ** key, the set the ipkColumn variable to the integer primary key
719   ** column index in the original table definition.
720   */
721   if( pColumn==0 && nColumn>0 ){
722     ipkColumn = pTab->iPKey;
723   }
724 
725   /* Make sure the number of columns in the source data matches the number
726   ** of columns to be inserted into the table.
727   */
728   if( IsVirtual(pTab) ){
729     for(i=0; i<pTab->nCol; i++){
730       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
731     }
732   }
733   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
734     sqlite3ErrorMsg(pParse,
735        "table %S has %d columns but %d values were supplied",
736        pTabList, 0, pTab->nCol-nHidden, nColumn);
737     goto insert_cleanup;
738   }
739   if( pColumn!=0 && nColumn!=pColumn->nId ){
740     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
741     goto insert_cleanup;
742   }
743 
744   /* Initialize the count of rows to be inserted
745   */
746   if( db->flags & SQLITE_CountRows ){
747     regRowCount = ++pParse->nMem;
748     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
749   }
750 
751   /* If this is not a view, open the table and and all indices */
752   if( !isView ){
753     int nIdx;
754     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0,
755                                       &iDataCur, &iIdxCur);
756     aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
757     if( aRegIdx==0 ){
758       goto insert_cleanup;
759     }
760     for(i=0; i<nIdx; i++){
761       aRegIdx[i] = ++pParse->nMem;
762     }
763   }
764 
765   /* This is the top of the main insertion loop */
766   if( useTempTable ){
767     /* This block codes the top of loop only.  The complete loop is the
768     ** following pseudocode (template 4):
769     **
770     **         rewind temp table, if empty goto D
771     **      C: loop over rows of intermediate table
772     **           transfer values form intermediate table into <table>
773     **         end loop
774     **      D: ...
775     */
776     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
777     addrCont = sqlite3VdbeCurrentAddr(v);
778   }else if( pSelect ){
779     /* This block codes the top of loop only.  The complete loop is the
780     ** following pseudocode (template 3):
781     **
782     **      C: yield X, at EOF goto D
783     **         insert the select result into <table> from R..R+n
784     **         goto C
785     **      D: ...
786     */
787     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
788     VdbeCoverage(v);
789   }
790 
791   /* Run the BEFORE and INSTEAD OF triggers, if there are any
792   */
793   endOfLoop = sqlite3VdbeMakeLabel(v);
794   if( tmask & TRIGGER_BEFORE ){
795     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
796 
797     /* build the NEW.* reference row.  Note that if there is an INTEGER
798     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
799     ** translated into a unique ID for the row.  But on a BEFORE trigger,
800     ** we do not know what the unique ID will be (because the insert has
801     ** not happened yet) so we substitute a rowid of -1
802     */
803     if( ipkColumn<0 ){
804       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
805     }else{
806       int j1;
807       assert( !withoutRowid );
808       if( useTempTable ){
809         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
810       }else{
811         assert( pSelect==0 );  /* Otherwise useTempTable is true */
812         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
813       }
814       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
815       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
816       sqlite3VdbeJumpHere(v, j1);
817       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
818     }
819 
820     /* Cannot have triggers on a virtual table. If it were possible,
821     ** this block would have to account for hidden column.
822     */
823     assert( !IsVirtual(pTab) );
824 
825     /* Create the new column data
826     */
827     for(i=0; i<pTab->nCol; i++){
828       if( pColumn==0 ){
829         j = i;
830       }else{
831         for(j=0; j<pColumn->nId; j++){
832           if( pColumn->a[j].idx==i ) break;
833         }
834       }
835       if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){
836         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
837       }else if( useTempTable ){
838         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
839       }else{
840         assert( pSelect==0 ); /* Otherwise useTempTable is true */
841         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
842       }
843     }
844 
845     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
846     ** do not attempt any conversions before assembling the record.
847     ** If this is a real table, attempt conversions as required by the
848     ** table column affinities.
849     */
850     if( !isView ){
851       sqlite3TableAffinity(v, pTab, regCols+1);
852     }
853 
854     /* Fire BEFORE or INSTEAD OF triggers */
855     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
856         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
857 
858     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
859   }
860 
861   /* Compute the content of the next row to insert into a range of
862   ** registers beginning at regIns.
863   */
864   if( !isView ){
865     if( IsVirtual(pTab) ){
866       /* The row that the VUpdate opcode will delete: none */
867       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
868     }
869     if( ipkColumn>=0 ){
870       if( useTempTable ){
871         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
872       }else if( pSelect ){
873         sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
874       }else{
875         VdbeOp *pOp;
876         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
877         pOp = sqlite3VdbeGetOp(v, -1);
878         if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
879           appendFlag = 1;
880           pOp->opcode = OP_NewRowid;
881           pOp->p1 = iDataCur;
882           pOp->p2 = regRowid;
883           pOp->p3 = regAutoinc;
884         }
885       }
886       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
887       ** to generate a unique primary key value.
888       */
889       if( !appendFlag ){
890         int j1;
891         if( !IsVirtual(pTab) ){
892           j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
893           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
894           sqlite3VdbeJumpHere(v, j1);
895         }else{
896           j1 = sqlite3VdbeCurrentAddr(v);
897           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); VdbeCoverage(v);
898         }
899         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
900       }
901     }else if( IsVirtual(pTab) || withoutRowid ){
902       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
903     }else{
904       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
905       appendFlag = 1;
906     }
907     autoIncStep(pParse, regAutoinc, regRowid);
908 
909     /* Compute data for all columns of the new entry, beginning
910     ** with the first column.
911     */
912     nHidden = 0;
913     for(i=0; i<pTab->nCol; i++){
914       int iRegStore = regRowid+1+i;
915       if( i==pTab->iPKey ){
916         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
917         ** Whenever this column is read, the rowid will be substituted
918         ** in its place.  Hence, fill this column with a NULL to avoid
919         ** taking up data space with information that will never be used.
920         ** As there may be shallow copies of this value, make it a soft-NULL */
921         sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
922         continue;
923       }
924       if( pColumn==0 ){
925         if( IsHiddenColumn(&pTab->aCol[i]) ){
926           assert( IsVirtual(pTab) );
927           j = -1;
928           nHidden++;
929         }else{
930           j = i - nHidden;
931         }
932       }else{
933         for(j=0; j<pColumn->nId; j++){
934           if( pColumn->a[j].idx==i ) break;
935         }
936       }
937       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
938         sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
939       }else if( useTempTable ){
940         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
941       }else if( pSelect ){
942         if( regFromSelect!=regData ){
943           sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
944         }
945       }else{
946         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
947       }
948     }
949 
950     /* Generate code to check constraints and generate index keys and
951     ** do the insertion.
952     */
953 #ifndef SQLITE_OMIT_VIRTUALTABLE
954     if( IsVirtual(pTab) ){
955       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
956       sqlite3VtabMakeWritable(pParse, pTab);
957       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
958       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
959       sqlite3MayAbort(pParse);
960     }else
961 #endif
962     {
963       int isReplace;    /* Set to true if constraints may cause a replace */
964       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
965           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace
966       );
967       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
968       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
969                                regIns, aRegIdx, 0, appendFlag, isReplace==0);
970     }
971   }
972 
973   /* Update the count of rows that are inserted
974   */
975   if( (db->flags & SQLITE_CountRows)!=0 ){
976     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
977   }
978 
979   if( pTrigger ){
980     /* Code AFTER triggers */
981     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
982         pTab, regData-2-pTab->nCol, onError, endOfLoop);
983   }
984 
985   /* The bottom of the main insertion loop, if the data source
986   ** is a SELECT statement.
987   */
988   sqlite3VdbeResolveLabel(v, endOfLoop);
989   if( useTempTable ){
990     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
991     sqlite3VdbeJumpHere(v, addrInsTop);
992     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
993   }else if( pSelect ){
994     sqlite3VdbeGoto(v, addrCont);
995     sqlite3VdbeJumpHere(v, addrInsTop);
996   }
997 
998   if( !IsVirtual(pTab) && !isView ){
999     /* Close all tables opened */
1000     if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur);
1001     for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
1002       sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur);
1003     }
1004   }
1005 
1006 insert_end:
1007   /* Update the sqlite_sequence table by storing the content of the
1008   ** maximum rowid counter values recorded while inserting into
1009   ** autoincrement tables.
1010   */
1011   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1012     sqlite3AutoincrementEnd(pParse);
1013   }
1014 
1015   /*
1016   ** Return the number of rows inserted. If this routine is
1017   ** generating code because of a call to sqlite3NestedParse(), do not
1018   ** invoke the callback function.
1019   */
1020   if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
1021     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1022     sqlite3VdbeSetNumCols(v, 1);
1023     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1024   }
1025 
1026 insert_cleanup:
1027   sqlite3SrcListDelete(db, pTabList);
1028   sqlite3ExprListDelete(db, pList);
1029   sqlite3SelectDelete(db, pSelect);
1030   sqlite3IdListDelete(db, pColumn);
1031   sqlite3DbFree(db, aRegIdx);
1032 }
1033 
1034 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1035 ** they may interfere with compilation of other functions in this file
1036 ** (or in another file, if this file becomes part of the amalgamation).  */
1037 #ifdef isView
1038  #undef isView
1039 #endif
1040 #ifdef pTrigger
1041  #undef pTrigger
1042 #endif
1043 #ifdef tmask
1044  #undef tmask
1045 #endif
1046 
1047 /*
1048 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1049 ** on table pTab.
1050 **
1051 ** The regNewData parameter is the first register in a range that contains
1052 ** the data to be inserted or the data after the update.  There will be
1053 ** pTab->nCol+1 registers in this range.  The first register (the one
1054 ** that regNewData points to) will contain the new rowid, or NULL in the
1055 ** case of a WITHOUT ROWID table.  The second register in the range will
1056 ** contain the content of the first table column.  The third register will
1057 ** contain the content of the second table column.  And so forth.
1058 **
1059 ** The regOldData parameter is similar to regNewData except that it contains
1060 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1061 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1062 ** checking regOldData for zero.
1063 **
1064 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1065 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1066 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1067 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1068 **
1069 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1070 ** was explicitly specified as part of the INSERT statement.  If pkChng
1071 ** is zero, it means that the either rowid is computed automatically or
1072 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1073 ** pkChng will only be true if the INSERT statement provides an integer
1074 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1075 **
1076 ** The code generated by this routine will store new index entries into
1077 ** registers identified by aRegIdx[].  No index entry is created for
1078 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1079 ** the same as the order of indices on the linked list of indices
1080 ** at pTab->pIndex.
1081 **
1082 ** The caller must have already opened writeable cursors on the main
1083 ** table and all applicable indices (that is to say, all indices for which
1084 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1085 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1086 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1087 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1088 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1089 **
1090 ** This routine also generates code to check constraints.  NOT NULL,
1091 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1092 ** then the appropriate action is performed.  There are five possible
1093 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1094 **
1095 **  Constraint type  Action       What Happens
1096 **  ---------------  ----------   ----------------------------------------
1097 **  any              ROLLBACK     The current transaction is rolled back and
1098 **                                sqlite3_step() returns immediately with a
1099 **                                return code of SQLITE_CONSTRAINT.
1100 **
1101 **  any              ABORT        Back out changes from the current command
1102 **                                only (do not do a complete rollback) then
1103 **                                cause sqlite3_step() to return immediately
1104 **                                with SQLITE_CONSTRAINT.
1105 **
1106 **  any              FAIL         Sqlite3_step() returns immediately with a
1107 **                                return code of SQLITE_CONSTRAINT.  The
1108 **                                transaction is not rolled back and any
1109 **                                changes to prior rows are retained.
1110 **
1111 **  any              IGNORE       The attempt in insert or update the current
1112 **                                row is skipped, without throwing an error.
1113 **                                Processing continues with the next row.
1114 **                                (There is an immediate jump to ignoreDest.)
1115 **
1116 **  NOT NULL         REPLACE      The NULL value is replace by the default
1117 **                                value for that column.  If the default value
1118 **                                is NULL, the action is the same as ABORT.
1119 **
1120 **  UNIQUE           REPLACE      The other row that conflicts with the row
1121 **                                being inserted is removed.
1122 **
1123 **  CHECK            REPLACE      Illegal.  The results in an exception.
1124 **
1125 ** Which action to take is determined by the overrideError parameter.
1126 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1127 ** is used.  Or if pParse->onError==OE_Default then the onError value
1128 ** for the constraint is used.
1129 */
1130 void sqlite3GenerateConstraintChecks(
1131   Parse *pParse,       /* The parser context */
1132   Table *pTab,         /* The table being inserted or updated */
1133   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1134   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1135   int iIdxCur,         /* First index cursor */
1136   int regNewData,      /* First register in a range holding values to insert */
1137   int regOldData,      /* Previous content.  0 for INSERTs */
1138   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1139   u8 overrideError,    /* Override onError to this if not OE_Default */
1140   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1141   int *pbMayReplace    /* OUT: Set to true if constraint may cause a replace */
1142 ){
1143   Vdbe *v;             /* VDBE under constrution */
1144   Index *pIdx;         /* Pointer to one of the indices */
1145   Index *pPk = 0;      /* The PRIMARY KEY index */
1146   sqlite3 *db;         /* Database connection */
1147   int i;               /* loop counter */
1148   int ix;              /* Index loop counter */
1149   int nCol;            /* Number of columns */
1150   int onError;         /* Conflict resolution strategy */
1151   int j1;              /* Address of jump instruction */
1152   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1153   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1154   int ipkTop = 0;      /* Top of the rowid change constraint check */
1155   int ipkBottom = 0;   /* Bottom of the rowid change constraint check */
1156   u8 isUpdate;         /* True if this is an UPDATE operation */
1157   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1158   int regRowid = -1;   /* Register holding ROWID value */
1159 
1160   isUpdate = regOldData!=0;
1161   db = pParse->db;
1162   v = sqlite3GetVdbe(pParse);
1163   assert( v!=0 );
1164   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1165   nCol = pTab->nCol;
1166 
1167   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1168   ** normal rowid tables.  nPkField is the number of key fields in the
1169   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1170   ** number of fields in the true primary key of the table. */
1171   if( HasRowid(pTab) ){
1172     pPk = 0;
1173     nPkField = 1;
1174   }else{
1175     pPk = sqlite3PrimaryKeyIndex(pTab);
1176     nPkField = pPk->nKeyCol;
1177   }
1178 
1179   /* Record that this module has started */
1180   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1181                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1182 
1183   /* Test all NOT NULL constraints.
1184   */
1185   for(i=0; i<nCol; i++){
1186     if( i==pTab->iPKey ){
1187       continue;
1188     }
1189     onError = pTab->aCol[i].notNull;
1190     if( onError==OE_None ) continue;
1191     if( overrideError!=OE_Default ){
1192       onError = overrideError;
1193     }else if( onError==OE_Default ){
1194       onError = OE_Abort;
1195     }
1196     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1197       onError = OE_Abort;
1198     }
1199     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1200         || onError==OE_Ignore || onError==OE_Replace );
1201     switch( onError ){
1202       case OE_Abort:
1203         sqlite3MayAbort(pParse);
1204         /* Fall through */
1205       case OE_Rollback:
1206       case OE_Fail: {
1207         char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1208                                     pTab->aCol[i].zName);
1209         sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1210                           regNewData+1+i, zMsg, P4_DYNAMIC);
1211         sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1212         VdbeCoverage(v);
1213         break;
1214       }
1215       case OE_Ignore: {
1216         sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1217         VdbeCoverage(v);
1218         break;
1219       }
1220       default: {
1221         assert( onError==OE_Replace );
1222         j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); VdbeCoverage(v);
1223         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1224         sqlite3VdbeJumpHere(v, j1);
1225         break;
1226       }
1227     }
1228   }
1229 
1230   /* Test all CHECK constraints
1231   */
1232 #ifndef SQLITE_OMIT_CHECK
1233   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1234     ExprList *pCheck = pTab->pCheck;
1235     pParse->ckBase = regNewData+1;
1236     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1237     for(i=0; i<pCheck->nExpr; i++){
1238       int allOk = sqlite3VdbeMakeLabel(v);
1239       sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL);
1240       if( onError==OE_Ignore ){
1241         sqlite3VdbeGoto(v, ignoreDest);
1242       }else{
1243         char *zName = pCheck->a[i].zName;
1244         if( zName==0 ) zName = pTab->zName;
1245         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1246         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1247                               onError, zName, P4_TRANSIENT,
1248                               P5_ConstraintCheck);
1249       }
1250       sqlite3VdbeResolveLabel(v, allOk);
1251     }
1252   }
1253 #endif /* !defined(SQLITE_OMIT_CHECK) */
1254 
1255   /* If rowid is changing, make sure the new rowid does not previously
1256   ** exist in the table.
1257   */
1258   if( pkChng && pPk==0 ){
1259     int addrRowidOk = sqlite3VdbeMakeLabel(v);
1260 
1261     /* Figure out what action to take in case of a rowid collision */
1262     onError = pTab->keyConf;
1263     if( overrideError!=OE_Default ){
1264       onError = overrideError;
1265     }else if( onError==OE_Default ){
1266       onError = OE_Abort;
1267     }
1268 
1269     if( isUpdate ){
1270       /* pkChng!=0 does not mean that the rowid has change, only that
1271       ** it might have changed.  Skip the conflict logic below if the rowid
1272       ** is unchanged. */
1273       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1274       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1275       VdbeCoverage(v);
1276     }
1277 
1278     /* If the response to a rowid conflict is REPLACE but the response
1279     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1280     ** to defer the running of the rowid conflict checking until after
1281     ** the UNIQUE constraints have run.
1282     */
1283     if( onError==OE_Replace && overrideError!=OE_Replace ){
1284       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1285         if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
1286           ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
1287           break;
1288         }
1289       }
1290     }
1291 
1292     /* Check to see if the new rowid already exists in the table.  Skip
1293     ** the following conflict logic if it does not. */
1294     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1295     VdbeCoverage(v);
1296 
1297     /* Generate code that deals with a rowid collision */
1298     switch( onError ){
1299       default: {
1300         onError = OE_Abort;
1301         /* Fall thru into the next case */
1302       }
1303       case OE_Rollback:
1304       case OE_Abort:
1305       case OE_Fail: {
1306         sqlite3RowidConstraint(pParse, onError, pTab);
1307         break;
1308       }
1309       case OE_Replace: {
1310         /* If there are DELETE triggers on this table and the
1311         ** recursive-triggers flag is set, call GenerateRowDelete() to
1312         ** remove the conflicting row from the table. This will fire
1313         ** the triggers and remove both the table and index b-tree entries.
1314         **
1315         ** Otherwise, if there are no triggers or the recursive-triggers
1316         ** flag is not set, but the table has one or more indexes, call
1317         ** GenerateRowIndexDelete(). This removes the index b-tree entries
1318         ** only. The table b-tree entry will be replaced by the new entry
1319         ** when it is inserted.
1320         **
1321         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1322         ** also invoke MultiWrite() to indicate that this VDBE may require
1323         ** statement rollback (if the statement is aborted after the delete
1324         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1325         ** but being more selective here allows statements like:
1326         **
1327         **   REPLACE INTO t(rowid) VALUES($newrowid)
1328         **
1329         ** to run without a statement journal if there are no indexes on the
1330         ** table.
1331         */
1332         Trigger *pTrigger = 0;
1333         if( db->flags&SQLITE_RecTriggers ){
1334           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1335         }
1336         if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1337           sqlite3MultiWrite(pParse);
1338           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1339                                    regNewData, 1, 0, OE_Replace, 1);
1340         }else if( pTab->pIndex ){
1341           sqlite3MultiWrite(pParse);
1342           sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0);
1343         }
1344         seenReplace = 1;
1345         break;
1346       }
1347       case OE_Ignore: {
1348         /*assert( seenReplace==0 );*/
1349         sqlite3VdbeGoto(v, ignoreDest);
1350         break;
1351       }
1352     }
1353     sqlite3VdbeResolveLabel(v, addrRowidOk);
1354     if( ipkTop ){
1355       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1356       sqlite3VdbeJumpHere(v, ipkTop);
1357     }
1358   }
1359 
1360   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1361   ** index and making sure that duplicate entries do not already exist.
1362   ** Compute the revised record entries for indices as we go.
1363   **
1364   ** This loop also handles the case of the PRIMARY KEY index for a
1365   ** WITHOUT ROWID table.
1366   */
1367   for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1368     int regIdx;          /* Range of registers hold conent for pIdx */
1369     int regR;            /* Range of registers holding conflicting PK */
1370     int iThisCur;        /* Cursor for this UNIQUE index */
1371     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
1372 
1373     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
1374     if( bAffinityDone==0 ){
1375       sqlite3TableAffinity(v, pTab, regNewData+1);
1376       bAffinityDone = 1;
1377     }
1378     iThisCur = iIdxCur+ix;
1379     addrUniqueOk = sqlite3VdbeMakeLabel(v);
1380 
1381     /* Skip partial indices for which the WHERE clause is not true */
1382     if( pIdx->pPartIdxWhere ){
1383       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1384       pParse->ckBase = regNewData+1;
1385       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1386                             SQLITE_JUMPIFNULL);
1387       pParse->ckBase = 0;
1388     }
1389 
1390     /* Create a record for this index entry as it should appear after
1391     ** the insert or update.  Store that record in the aRegIdx[ix] register
1392     */
1393     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn);
1394     for(i=0; i<pIdx->nColumn; i++){
1395       int iField = pIdx->aiColumn[i];
1396       int x;
1397       if( iField<0 || iField==pTab->iPKey ){
1398         if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */
1399         x = regNewData;
1400         regRowid =  pIdx->pPartIdxWhere ? -1 : regIdx+i;
1401       }else{
1402         x = iField + regNewData + 1;
1403       }
1404       sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
1405       VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1406     }
1407     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1408     VdbeComment((v, "for %s", pIdx->zName));
1409     sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);
1410 
1411     /* In an UPDATE operation, if this index is the PRIMARY KEY index
1412     ** of a WITHOUT ROWID table and there has been no change the
1413     ** primary key, then no collision is possible.  The collision detection
1414     ** logic below can all be skipped. */
1415     if( isUpdate && pPk==pIdx && pkChng==0 ){
1416       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1417       continue;
1418     }
1419 
1420     /* Find out what action to take in case there is a uniqueness conflict */
1421     onError = pIdx->onError;
1422     if( onError==OE_None ){
1423       sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1424       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1425       continue;  /* pIdx is not a UNIQUE index */
1426     }
1427     if( overrideError!=OE_Default ){
1428       onError = overrideError;
1429     }else if( onError==OE_Default ){
1430       onError = OE_Abort;
1431     }
1432 
1433     /* Check to see if the new index entry will be unique */
1434     sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1435                          regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1436 
1437     /* Generate code to handle collisions */
1438     regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1439     if( isUpdate || onError==OE_Replace ){
1440       if( HasRowid(pTab) ){
1441         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1442         /* Conflict only if the rowid of the existing index entry
1443         ** is different from old-rowid */
1444         if( isUpdate ){
1445           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1446           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1447           VdbeCoverage(v);
1448         }
1449       }else{
1450         int x;
1451         /* Extract the PRIMARY KEY from the end of the index entry and
1452         ** store it in registers regR..regR+nPk-1 */
1453         if( pIdx!=pPk ){
1454           for(i=0; i<pPk->nKeyCol; i++){
1455             x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1456             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1457             VdbeComment((v, "%s.%s", pTab->zName,
1458                          pTab->aCol[pPk->aiColumn[i]].zName));
1459           }
1460         }
1461         if( isUpdate ){
1462           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1463           ** table, only conflict if the new PRIMARY KEY values are actually
1464           ** different from the old.
1465           **
1466           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1467           ** of the matched index row are different from the original PRIMARY
1468           ** KEY values of this row before the update.  */
1469           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1470           int op = OP_Ne;
1471           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
1472 
1473           for(i=0; i<pPk->nKeyCol; i++){
1474             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1475             x = pPk->aiColumn[i];
1476             if( i==(pPk->nKeyCol-1) ){
1477               addrJump = addrUniqueOk;
1478               op = OP_Eq;
1479             }
1480             sqlite3VdbeAddOp4(v, op,
1481                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1482             );
1483             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1484             VdbeCoverageIf(v, op==OP_Eq);
1485             VdbeCoverageIf(v, op==OP_Ne);
1486           }
1487         }
1488       }
1489     }
1490 
1491     /* Generate code that executes if the new index entry is not unique */
1492     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1493         || onError==OE_Ignore || onError==OE_Replace );
1494     switch( onError ){
1495       case OE_Rollback:
1496       case OE_Abort:
1497       case OE_Fail: {
1498         sqlite3UniqueConstraint(pParse, onError, pIdx);
1499         break;
1500       }
1501       case OE_Ignore: {
1502         sqlite3VdbeGoto(v, ignoreDest);
1503         break;
1504       }
1505       default: {
1506         Trigger *pTrigger = 0;
1507         assert( onError==OE_Replace );
1508         sqlite3MultiWrite(pParse);
1509         if( db->flags&SQLITE_RecTriggers ){
1510           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1511         }
1512         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1513                                  regR, nPkField, 0, OE_Replace, pIdx==pPk);
1514         seenReplace = 1;
1515         break;
1516       }
1517     }
1518     sqlite3VdbeResolveLabel(v, addrUniqueOk);
1519     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1520     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1521   }
1522   if( ipkTop ){
1523     sqlite3VdbeGoto(v, ipkTop+1);
1524     sqlite3VdbeJumpHere(v, ipkBottom);
1525   }
1526 
1527   *pbMayReplace = seenReplace;
1528   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1529 }
1530 
1531 /*
1532 ** This routine generates code to finish the INSERT or UPDATE operation
1533 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1534 ** A consecutive range of registers starting at regNewData contains the
1535 ** rowid and the content to be inserted.
1536 **
1537 ** The arguments to this routine should be the same as the first six
1538 ** arguments to sqlite3GenerateConstraintChecks.
1539 */
1540 void sqlite3CompleteInsertion(
1541   Parse *pParse,      /* The parser context */
1542   Table *pTab,        /* the table into which we are inserting */
1543   int iDataCur,       /* Cursor of the canonical data source */
1544   int iIdxCur,        /* First index cursor */
1545   int regNewData,     /* Range of content */
1546   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1547   int isUpdate,       /* True for UPDATE, False for INSERT */
1548   int appendBias,     /* True if this is likely to be an append */
1549   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1550 ){
1551   Vdbe *v;            /* Prepared statements under construction */
1552   Index *pIdx;        /* An index being inserted or updated */
1553   u8 pik_flags;       /* flag values passed to the btree insert */
1554   int regData;        /* Content registers (after the rowid) */
1555   int regRec;         /* Register holding assembled record for the table */
1556   int i;              /* Loop counter */
1557   u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
1558 
1559   v = sqlite3GetVdbe(pParse);
1560   assert( v!=0 );
1561   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1562   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1563     if( aRegIdx[i]==0 ) continue;
1564     bAffinityDone = 1;
1565     if( pIdx->pPartIdxWhere ){
1566       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1567       VdbeCoverage(v);
1568     }
1569     sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
1570     pik_flags = 0;
1571     if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
1572     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1573       assert( pParse->nested==0 );
1574       pik_flags |= OPFLAG_NCHANGE;
1575     }
1576     if( pik_flags )  sqlite3VdbeChangeP5(v, pik_flags);
1577   }
1578   if( !HasRowid(pTab) ) return;
1579   regData = regNewData + 1;
1580   regRec = sqlite3GetTempReg(pParse);
1581   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1582   if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0);
1583   sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1584   if( pParse->nested ){
1585     pik_flags = 0;
1586   }else{
1587     pik_flags = OPFLAG_NCHANGE;
1588     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1589   }
1590   if( appendBias ){
1591     pik_flags |= OPFLAG_APPEND;
1592   }
1593   if( useSeekResult ){
1594     pik_flags |= OPFLAG_USESEEKRESULT;
1595   }
1596   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
1597   if( !pParse->nested ){
1598     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
1599   }
1600   sqlite3VdbeChangeP5(v, pik_flags);
1601 }
1602 
1603 /*
1604 ** Allocate cursors for the pTab table and all its indices and generate
1605 ** code to open and initialized those cursors.
1606 **
1607 ** The cursor for the object that contains the complete data (normally
1608 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1609 ** ROWID table) is returned in *piDataCur.  The first index cursor is
1610 ** returned in *piIdxCur.  The number of indices is returned.
1611 **
1612 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1613 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1614 ** If iBase is negative, then allocate the next available cursor.
1615 **
1616 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1617 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1618 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1619 ** pTab->pIndex list.
1620 **
1621 ** If pTab is a virtual table, then this routine is a no-op and the
1622 ** *piDataCur and *piIdxCur values are left uninitialized.
1623 */
1624 int sqlite3OpenTableAndIndices(
1625   Parse *pParse,   /* Parsing context */
1626   Table *pTab,     /* Table to be opened */
1627   int op,          /* OP_OpenRead or OP_OpenWrite */
1628   int iBase,       /* Use this for the table cursor, if there is one */
1629   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
1630   int *piDataCur,  /* Write the database source cursor number here */
1631   int *piIdxCur    /* Write the first index cursor number here */
1632 ){
1633   int i;
1634   int iDb;
1635   int iDataCur;
1636   Index *pIdx;
1637   Vdbe *v;
1638 
1639   assert( op==OP_OpenRead || op==OP_OpenWrite );
1640   if( IsVirtual(pTab) ){
1641     /* This routine is a no-op for virtual tables. Leave the output
1642     ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
1643     ** can detect if they are used by mistake in the caller. */
1644     return 0;
1645   }
1646   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1647   v = sqlite3GetVdbe(pParse);
1648   assert( v!=0 );
1649   if( iBase<0 ) iBase = pParse->nTab;
1650   iDataCur = iBase++;
1651   if( piDataCur ) *piDataCur = iDataCur;
1652   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
1653     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
1654   }else{
1655     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
1656   }
1657   if( piIdxCur ) *piIdxCur = iBase;
1658   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1659     int iIdxCur = iBase++;
1660     assert( pIdx->pSchema==pTab->pSchema );
1661     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){
1662       *piDataCur = iIdxCur;
1663     }
1664     if( aToOpen==0 || aToOpen[i+1] ){
1665       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
1666       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1667       VdbeComment((v, "%s", pIdx->zName));
1668     }
1669   }
1670   if( iBase>pParse->nTab ) pParse->nTab = iBase;
1671   return i;
1672 }
1673 
1674 
1675 #ifdef SQLITE_TEST
1676 /*
1677 ** The following global variable is incremented whenever the
1678 ** transfer optimization is used.  This is used for testing
1679 ** purposes only - to make sure the transfer optimization really
1680 ** is happening when it is supposed to.
1681 */
1682 int sqlite3_xferopt_count;
1683 #endif /* SQLITE_TEST */
1684 
1685 
1686 #ifndef SQLITE_OMIT_XFER_OPT
1687 /*
1688 ** Check to collation names to see if they are compatible.
1689 */
1690 static int xferCompatibleCollation(const char *z1, const char *z2){
1691   if( z1==0 ){
1692     return z2==0;
1693   }
1694   if( z2==0 ){
1695     return 0;
1696   }
1697   return sqlite3StrICmp(z1, z2)==0;
1698 }
1699 
1700 
1701 /*
1702 ** Check to see if index pSrc is compatible as a source of data
1703 ** for index pDest in an insert transfer optimization.  The rules
1704 ** for a compatible index:
1705 **
1706 **    *   The index is over the same set of columns
1707 **    *   The same DESC and ASC markings occurs on all columns
1708 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
1709 **    *   The same collating sequence on each column
1710 **    *   The index has the exact same WHERE clause
1711 */
1712 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1713   int i;
1714   assert( pDest && pSrc );
1715   assert( pDest->pTable!=pSrc->pTable );
1716   if( pDest->nKeyCol!=pSrc->nKeyCol ){
1717     return 0;   /* Different number of columns */
1718   }
1719   if( pDest->onError!=pSrc->onError ){
1720     return 0;   /* Different conflict resolution strategies */
1721   }
1722   for(i=0; i<pSrc->nKeyCol; i++){
1723     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1724       return 0;   /* Different columns indexed */
1725     }
1726     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1727       return 0;   /* Different sort orders */
1728     }
1729     if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
1730       return 0;   /* Different collating sequences */
1731     }
1732   }
1733   if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
1734     return 0;     /* Different WHERE clauses */
1735   }
1736 
1737   /* If no test above fails then the indices must be compatible */
1738   return 1;
1739 }
1740 
1741 /*
1742 ** Attempt the transfer optimization on INSERTs of the form
1743 **
1744 **     INSERT INTO tab1 SELECT * FROM tab2;
1745 **
1746 ** The xfer optimization transfers raw records from tab2 over to tab1.
1747 ** Columns are not decoded and reassembled, which greatly improves
1748 ** performance.  Raw index records are transferred in the same way.
1749 **
1750 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
1751 ** There are lots of rules for determining compatibility - see comments
1752 ** embedded in the code for details.
1753 **
1754 ** This routine returns TRUE if the optimization is guaranteed to be used.
1755 ** Sometimes the xfer optimization will only work if the destination table
1756 ** is empty - a factor that can only be determined at run-time.  In that
1757 ** case, this routine generates code for the xfer optimization but also
1758 ** does a test to see if the destination table is empty and jumps over the
1759 ** xfer optimization code if the test fails.  In that case, this routine
1760 ** returns FALSE so that the caller will know to go ahead and generate
1761 ** an unoptimized transfer.  This routine also returns FALSE if there
1762 ** is no chance that the xfer optimization can be applied.
1763 **
1764 ** This optimization is particularly useful at making VACUUM run faster.
1765 */
1766 static int xferOptimization(
1767   Parse *pParse,        /* Parser context */
1768   Table *pDest,         /* The table we are inserting into */
1769   Select *pSelect,      /* A SELECT statement to use as the data source */
1770   int onError,          /* How to handle constraint errors */
1771   int iDbDest           /* The database of pDest */
1772 ){
1773   sqlite3 *db = pParse->db;
1774   ExprList *pEList;                /* The result set of the SELECT */
1775   Table *pSrc;                     /* The table in the FROM clause of SELECT */
1776   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
1777   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
1778   int i;                           /* Loop counter */
1779   int iDbSrc;                      /* The database of pSrc */
1780   int iSrc, iDest;                 /* Cursors from source and destination */
1781   int addr1, addr2;                /* Loop addresses */
1782   int emptyDestTest = 0;           /* Address of test for empty pDest */
1783   int emptySrcTest = 0;            /* Address of test for empty pSrc */
1784   Vdbe *v;                         /* The VDBE we are building */
1785   int regAutoinc;                  /* Memory register used by AUTOINC */
1786   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
1787   int regData, regRowid;           /* Registers holding data and rowid */
1788 
1789   if( pSelect==0 ){
1790     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
1791   }
1792   if( pParse->pWith || pSelect->pWith ){
1793     /* Do not attempt to process this query if there are an WITH clauses
1794     ** attached to it. Proceeding may generate a false "no such table: xxx"
1795     ** error if pSelect reads from a CTE named "xxx".  */
1796     return 0;
1797   }
1798   if( sqlite3TriggerList(pParse, pDest) ){
1799     return 0;   /* tab1 must not have triggers */
1800   }
1801 #ifndef SQLITE_OMIT_VIRTUALTABLE
1802   if( pDest->tabFlags & TF_Virtual ){
1803     return 0;   /* tab1 must not be a virtual table */
1804   }
1805 #endif
1806   if( onError==OE_Default ){
1807     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
1808     if( onError==OE_Default ) onError = OE_Abort;
1809   }
1810   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
1811   if( pSelect->pSrc->nSrc!=1 ){
1812     return 0;   /* FROM clause must have exactly one term */
1813   }
1814   if( pSelect->pSrc->a[0].pSelect ){
1815     return 0;   /* FROM clause cannot contain a subquery */
1816   }
1817   if( pSelect->pWhere ){
1818     return 0;   /* SELECT may not have a WHERE clause */
1819   }
1820   if( pSelect->pOrderBy ){
1821     return 0;   /* SELECT may not have an ORDER BY clause */
1822   }
1823   /* Do not need to test for a HAVING clause.  If HAVING is present but
1824   ** there is no ORDER BY, we will get an error. */
1825   if( pSelect->pGroupBy ){
1826     return 0;   /* SELECT may not have a GROUP BY clause */
1827   }
1828   if( pSelect->pLimit ){
1829     return 0;   /* SELECT may not have a LIMIT clause */
1830   }
1831   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
1832   if( pSelect->pPrior ){
1833     return 0;   /* SELECT may not be a compound query */
1834   }
1835   if( pSelect->selFlags & SF_Distinct ){
1836     return 0;   /* SELECT may not be DISTINCT */
1837   }
1838   pEList = pSelect->pEList;
1839   assert( pEList!=0 );
1840   if( pEList->nExpr!=1 ){
1841     return 0;   /* The result set must have exactly one column */
1842   }
1843   assert( pEList->a[0].pExpr );
1844   if( pEList->a[0].pExpr->op!=TK_ALL ){
1845     return 0;   /* The result set must be the special operator "*" */
1846   }
1847 
1848   /* At this point we have established that the statement is of the
1849   ** correct syntactic form to participate in this optimization.  Now
1850   ** we have to check the semantics.
1851   */
1852   pItem = pSelect->pSrc->a;
1853   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
1854   if( pSrc==0 ){
1855     return 0;   /* FROM clause does not contain a real table */
1856   }
1857   if( pSrc==pDest ){
1858     return 0;   /* tab1 and tab2 may not be the same table */
1859   }
1860   if( HasRowid(pDest)!=HasRowid(pSrc) ){
1861     return 0;   /* source and destination must both be WITHOUT ROWID or not */
1862   }
1863 #ifndef SQLITE_OMIT_VIRTUALTABLE
1864   if( pSrc->tabFlags & TF_Virtual ){
1865     return 0;   /* tab2 must not be a virtual table */
1866   }
1867 #endif
1868   if( pSrc->pSelect ){
1869     return 0;   /* tab2 may not be a view */
1870   }
1871   if( pDest->nCol!=pSrc->nCol ){
1872     return 0;   /* Number of columns must be the same in tab1 and tab2 */
1873   }
1874   if( pDest->iPKey!=pSrc->iPKey ){
1875     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
1876   }
1877   for(i=0; i<pDest->nCol; i++){
1878     Column *pDestCol = &pDest->aCol[i];
1879     Column *pSrcCol = &pSrc->aCol[i];
1880     if( pDestCol->affinity!=pSrcCol->affinity ){
1881       return 0;    /* Affinity must be the same on all columns */
1882     }
1883     if( !xferCompatibleCollation(pDestCol->zColl, pSrcCol->zColl) ){
1884       return 0;    /* Collating sequence must be the same on all columns */
1885     }
1886     if( pDestCol->notNull && !pSrcCol->notNull ){
1887       return 0;    /* tab2 must be NOT NULL if tab1 is */
1888     }
1889     /* Default values for second and subsequent columns need to match. */
1890     if( i>0
1891      && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0)
1892          || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0))
1893     ){
1894       return 0;    /* Default values must be the same for all columns */
1895     }
1896   }
1897   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1898     if( IsUniqueIndex(pDestIdx) ){
1899       destHasUniqueIdx = 1;
1900     }
1901     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1902       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1903     }
1904     if( pSrcIdx==0 ){
1905       return 0;    /* pDestIdx has no corresponding index in pSrc */
1906     }
1907   }
1908 #ifndef SQLITE_OMIT_CHECK
1909   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
1910     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
1911   }
1912 #endif
1913 #ifndef SQLITE_OMIT_FOREIGN_KEY
1914   /* Disallow the transfer optimization if the destination table constains
1915   ** any foreign key constraints.  This is more restrictive than necessary.
1916   ** But the main beneficiary of the transfer optimization is the VACUUM
1917   ** command, and the VACUUM command disables foreign key constraints.  So
1918   ** the extra complication to make this rule less restrictive is probably
1919   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
1920   */
1921   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
1922     return 0;
1923   }
1924 #endif
1925   if( (db->flags & SQLITE_CountRows)!=0 ){
1926     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
1927   }
1928 
1929   /* If we get this far, it means that the xfer optimization is at
1930   ** least a possibility, though it might only work if the destination
1931   ** table (tab1) is initially empty.
1932   */
1933 #ifdef SQLITE_TEST
1934   sqlite3_xferopt_count++;
1935 #endif
1936   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
1937   v = sqlite3GetVdbe(pParse);
1938   sqlite3CodeVerifySchema(pParse, iDbSrc);
1939   iSrc = pParse->nTab++;
1940   iDest = pParse->nTab++;
1941   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
1942   regData = sqlite3GetTempReg(pParse);
1943   regRowid = sqlite3GetTempReg(pParse);
1944   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1945   assert( HasRowid(pDest) || destHasUniqueIdx );
1946   if( (db->flags & SQLITE_Vacuum)==0 && (
1947       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
1948    || destHasUniqueIdx                              /* (2) */
1949    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
1950   )){
1951     /* In some circumstances, we are able to run the xfer optimization
1952     ** only if the destination table is initially empty. Unless the
1953     ** SQLITE_Vacuum flag is set, this block generates code to make
1954     ** that determination. If SQLITE_Vacuum is set, then the destination
1955     ** table is always empty.
1956     **
1957     ** Conditions under which the destination must be empty:
1958     **
1959     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
1960     **     (If the destination is not initially empty, the rowid fields
1961     **     of index entries might need to change.)
1962     **
1963     ** (2) The destination has a unique index.  (The xfer optimization
1964     **     is unable to test uniqueness.)
1965     **
1966     ** (3) onError is something other than OE_Abort and OE_Rollback.
1967     */
1968     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
1969     emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
1970     sqlite3VdbeJumpHere(v, addr1);
1971   }
1972   if( HasRowid(pSrc) ){
1973     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1974     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
1975     if( pDest->iPKey>=0 ){
1976       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1977       addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
1978       VdbeCoverage(v);
1979       sqlite3RowidConstraint(pParse, onError, pDest);
1980       sqlite3VdbeJumpHere(v, addr2);
1981       autoIncStep(pParse, regAutoinc, regRowid);
1982     }else if( pDest->pIndex==0 ){
1983       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
1984     }else{
1985       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1986       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
1987     }
1988     sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
1989     sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
1990     sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
1991     sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
1992     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
1993     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1994     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1995   }else{
1996     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
1997     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
1998   }
1999   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2000     u8 idxInsFlags = 0;
2001     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2002       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2003     }
2004     assert( pSrcIdx );
2005     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2006     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2007     VdbeComment((v, "%s", pSrcIdx->zName));
2008     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2009     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2010     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2011     VdbeComment((v, "%s", pDestIdx->zName));
2012     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2013     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
2014     if( db->flags & SQLITE_Vacuum ){
2015       /* This INSERT command is part of a VACUUM operation, which guarantees
2016       ** that the destination table is empty. If all indexed columns use
2017       ** collation sequence BINARY, then it can also be assumed that the
2018       ** index will be populated by inserting keys in strictly sorted
2019       ** order. In this case, instead of seeking within the b-tree as part
2020       ** of every OP_IdxInsert opcode, an OP_Last is added before the
2021       ** OP_IdxInsert to seek to the point within the b-tree where each key
2022       ** should be inserted. This is faster.
2023       **
2024       ** If any of the indexed columns use a collation sequence other than
2025       ** BINARY, this optimization is disabled. This is because the user
2026       ** might change the definition of a collation sequence and then run
2027       ** a VACUUM command. In that case keys may not be written in strictly
2028       ** sorted order.  */
2029       for(i=0; i<pSrcIdx->nColumn; i++){
2030         char *zColl = pSrcIdx->azColl[i];
2031         assert( zColl!=0 );
2032         if( sqlite3_stricmp("BINARY", zColl) ) break;
2033       }
2034       if( i==pSrcIdx->nColumn ){
2035         idxInsFlags = OPFLAG_USESEEKRESULT;
2036         sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1);
2037       }
2038     }
2039     if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){
2040       idxInsFlags |= OPFLAG_NCHANGE;
2041     }
2042     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
2043     sqlite3VdbeChangeP5(v, idxInsFlags);
2044     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2045     sqlite3VdbeJumpHere(v, addr1);
2046     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2047     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2048   }
2049   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2050   sqlite3ReleaseTempReg(pParse, regRowid);
2051   sqlite3ReleaseTempReg(pParse, regData);
2052   if( emptyDestTest ){
2053     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2054     sqlite3VdbeJumpHere(v, emptyDestTest);
2055     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2056     return 0;
2057   }else{
2058     return 1;
2059   }
2060 }
2061 #endif /* SQLITE_OMIT_XFER_OPT */
2062