1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 ** 15 ** $Id: insert.c,v 1.142 2005/07/21 18:23:20 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 /* 20 ** Set P3 of the most recently inserted opcode to a column affinity 21 ** string for index pIdx. A column affinity string has one character 22 ** for each column in the table, according to the affinity of the column: 23 ** 24 ** Character Column affinity 25 ** ------------------------------ 26 ** 'n' NUMERIC 27 ** 'i' INTEGER 28 ** 't' TEXT 29 ** 'o' NONE 30 */ 31 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ 32 if( !pIdx->zColAff ){ 33 /* The first time a column affinity string for a particular index is 34 ** required, it is allocated and populated here. It is then stored as 35 ** a member of the Index structure for subsequent use. 36 ** 37 ** The column affinity string will eventually be deleted by 38 ** sqliteDeleteIndex() when the Index structure itself is cleaned 39 ** up. 40 */ 41 int n; 42 Table *pTab = pIdx->pTable; 43 pIdx->zColAff = (char *)sqliteMalloc(pIdx->nColumn+1); 44 if( !pIdx->zColAff ){ 45 return; 46 } 47 for(n=0; n<pIdx->nColumn; n++){ 48 pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; 49 } 50 pIdx->zColAff[pIdx->nColumn] = '\0'; 51 } 52 53 sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0); 54 } 55 56 /* 57 ** Set P3 of the most recently inserted opcode to a column affinity 58 ** string for table pTab. A column affinity string has one character 59 ** for each column indexed by the index, according to the affinity of the 60 ** column: 61 ** 62 ** Character Column affinity 63 ** ------------------------------ 64 ** 'n' NUMERIC 65 ** 'i' INTEGER 66 ** 't' TEXT 67 ** 'o' NONE 68 */ 69 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ 70 /* The first time a column affinity string for a particular table 71 ** is required, it is allocated and populated here. It is then 72 ** stored as a member of the Table structure for subsequent use. 73 ** 74 ** The column affinity string will eventually be deleted by 75 ** sqlite3DeleteTable() when the Table structure itself is cleaned up. 76 */ 77 if( !pTab->zColAff ){ 78 char *zColAff; 79 int i; 80 81 zColAff = (char *)sqliteMalloc(pTab->nCol+1); 82 if( !zColAff ){ 83 return; 84 } 85 86 for(i=0; i<pTab->nCol; i++){ 87 zColAff[i] = pTab->aCol[i].affinity; 88 } 89 zColAff[pTab->nCol] = '\0'; 90 91 pTab->zColAff = zColAff; 92 } 93 94 sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0); 95 } 96 97 /* 98 ** Return non-zero if SELECT statement p opens the table with rootpage 99 ** iTab in database iDb. This is used to see if a statement of the form 100 ** "INSERT INTO <iDb, iTab> SELECT ..." can run without using temporary 101 ** table for the results of the SELECT. 102 ** 103 ** No checking is done for sub-selects that are part of expressions. 104 */ 105 static int selectReadsTable(Select *p, int iDb, int iTab){ 106 int i; 107 struct SrcList_item *pItem; 108 if( p->pSrc==0 ) return 0; 109 for(i=0, pItem=p->pSrc->a; i<p->pSrc->nSrc; i++, pItem++){ 110 if( pItem->pSelect ){ 111 if( selectReadsTable(pItem->pSelect, iDb, iTab) ) return 1; 112 }else{ 113 if( pItem->pTab->iDb==iDb && pItem->pTab->tnum==iTab ) return 1; 114 } 115 } 116 return 0; 117 } 118 119 /* 120 ** This routine is call to handle SQL of the following forms: 121 ** 122 ** insert into TABLE (IDLIST) values(EXPRLIST) 123 ** insert into TABLE (IDLIST) select 124 ** 125 ** The IDLIST following the table name is always optional. If omitted, 126 ** then a list of all columns for the table is substituted. The IDLIST 127 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. 128 ** 129 ** The pList parameter holds EXPRLIST in the first form of the INSERT 130 ** statement above, and pSelect is NULL. For the second form, pList is 131 ** NULL and pSelect is a pointer to the select statement used to generate 132 ** data for the insert. 133 ** 134 ** The code generated follows one of three templates. For a simple 135 ** select with data coming from a VALUES clause, the code executes 136 ** once straight down through. The template looks like this: 137 ** 138 ** open write cursor to <table> and its indices 139 ** puts VALUES clause expressions onto the stack 140 ** write the resulting record into <table> 141 ** cleanup 142 ** 143 ** If the statement is of the form 144 ** 145 ** INSERT INTO <table> SELECT ... 146 ** 147 ** And the SELECT clause does not read from <table> at any time, then 148 ** the generated code follows this template: 149 ** 150 ** goto B 151 ** A: setup for the SELECT 152 ** loop over the tables in the SELECT 153 ** gosub C 154 ** end loop 155 ** cleanup after the SELECT 156 ** goto D 157 ** B: open write cursor to <table> and its indices 158 ** goto A 159 ** C: insert the select result into <table> 160 ** return 161 ** D: cleanup 162 ** 163 ** The third template is used if the insert statement takes its 164 ** values from a SELECT but the data is being inserted into a table 165 ** that is also read as part of the SELECT. In the third form, 166 ** we have to use a intermediate table to store the results of 167 ** the select. The template is like this: 168 ** 169 ** goto B 170 ** A: setup for the SELECT 171 ** loop over the tables in the SELECT 172 ** gosub C 173 ** end loop 174 ** cleanup after the SELECT 175 ** goto D 176 ** C: insert the select result into the intermediate table 177 ** return 178 ** B: open a cursor to an intermediate table 179 ** goto A 180 ** D: open write cursor to <table> and its indices 181 ** loop over the intermediate table 182 ** transfer values form intermediate table into <table> 183 ** end the loop 184 ** cleanup 185 */ 186 void sqlite3Insert( 187 Parse *pParse, /* Parser context */ 188 SrcList *pTabList, /* Name of table into which we are inserting */ 189 ExprList *pList, /* List of values to be inserted */ 190 Select *pSelect, /* A SELECT statement to use as the data source */ 191 IdList *pColumn, /* Column names corresponding to IDLIST. */ 192 int onError /* How to handle constraint errors */ 193 ){ 194 Table *pTab; /* The table to insert into */ 195 char *zTab; /* Name of the table into which we are inserting */ 196 const char *zDb; /* Name of the database holding this table */ 197 int i, j, idx; /* Loop counters */ 198 Vdbe *v; /* Generate code into this virtual machine */ 199 Index *pIdx; /* For looping over indices of the table */ 200 int nColumn; /* Number of columns in the data */ 201 int base = 0; /* VDBE Cursor number for pTab */ 202 int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */ 203 sqlite3 *db; /* The main database structure */ 204 int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 205 int endOfLoop; /* Label for the end of the insertion loop */ 206 int useTempTable = 0; /* Store SELECT results in intermediate table */ 207 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 208 int iSelectLoop = 0; /* Address of code that implements the SELECT */ 209 int iCleanup = 0; /* Address of the cleanup code */ 210 int iInsertBlock = 0; /* Address of the subroutine used to insert data */ 211 int iCntMem = 0; /* Memory cell used for the row counter */ 212 int newIdx = -1; /* Cursor for the NEW table */ 213 Db *pDb; /* The database containing table being inserted into */ 214 int counterMem = 0; /* Memory cell holding AUTOINCREMENT counter */ 215 216 #ifndef SQLITE_OMIT_TRIGGER 217 int isView; /* True if attempting to insert into a view */ 218 int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ 219 #endif 220 221 #ifndef SQLITE_OMIT_AUTOINCREMENT 222 int counterRowid; /* Memory cell holding rowid of autoinc counter */ 223 #endif 224 225 if( pParse->nErr || sqlite3_malloc_failed ) goto insert_cleanup; 226 db = pParse->db; 227 228 /* Locate the table into which we will be inserting new information. 229 */ 230 assert( pTabList->nSrc==1 ); 231 zTab = pTabList->a[0].zName; 232 if( zTab==0 ) goto insert_cleanup; 233 pTab = sqlite3SrcListLookup(pParse, pTabList); 234 if( pTab==0 ){ 235 goto insert_cleanup; 236 } 237 assert( pTab->iDb<db->nDb ); 238 pDb = &db->aDb[pTab->iDb]; 239 zDb = pDb->zName; 240 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ 241 goto insert_cleanup; 242 } 243 244 /* Figure out if we have any triggers and if the table being 245 ** inserted into is a view 246 */ 247 #ifndef SQLITE_OMIT_TRIGGER 248 triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0); 249 isView = pTab->pSelect!=0; 250 #else 251 # define triggers_exist 0 252 # define isView 0 253 #endif 254 #ifdef SQLITE_OMIT_VIEW 255 # undef isView 256 # define isView 0 257 #endif 258 259 /* Ensure that: 260 * (a) the table is not read-only, 261 * (b) that if it is a view then ON INSERT triggers exist 262 */ 263 if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){ 264 goto insert_cleanup; 265 } 266 if( pTab==0 ) goto insert_cleanup; 267 268 /* If pTab is really a view, make sure it has been initialized. 269 */ 270 if( isView && sqlite3ViewGetColumnNames(pParse, pTab) ){ 271 goto insert_cleanup; 272 } 273 274 /* Ensure all required collation sequences are available. */ 275 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 276 if( sqlite3CheckIndexCollSeq(pParse, pIdx) ){ 277 goto insert_cleanup; 278 } 279 } 280 281 /* Allocate a VDBE 282 */ 283 v = sqlite3GetVdbe(pParse); 284 if( v==0 ) goto insert_cleanup; 285 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 286 sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, pTab->iDb); 287 288 /* if there are row triggers, allocate a temp table for new.* references. */ 289 if( triggers_exist ){ 290 newIdx = pParse->nTab++; 291 } 292 293 #ifndef SQLITE_OMIT_AUTOINCREMENT 294 /* If this is an AUTOINCREMENT table, look up the sequence number in the 295 ** sqlite_sequence table and store it in memory cell counterMem. Also 296 ** remember the rowid of the sqlite_sequence table entry in memory cell 297 ** counterRowid. 298 */ 299 if( pTab->autoInc ){ 300 int iCur = pParse->nTab; 301 int base = sqlite3VdbeCurrentAddr(v); 302 counterRowid = pParse->nMem++; 303 counterMem = pParse->nMem++; 304 sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0); 305 sqlite3VdbeAddOp(v, OP_OpenRead, iCur, pDb->pSeqTab->tnum); 306 sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, 2); 307 sqlite3VdbeAddOp(v, OP_Rewind, iCur, base+13); 308 sqlite3VdbeAddOp(v, OP_Column, iCur, 0); 309 sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); 310 sqlite3VdbeAddOp(v, OP_Ne, 28417, base+12); 311 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); 312 sqlite3VdbeAddOp(v, OP_MemStore, counterRowid, 1); 313 sqlite3VdbeAddOp(v, OP_Column, iCur, 1); 314 sqlite3VdbeAddOp(v, OP_MemStore, counterMem, 1); 315 sqlite3VdbeAddOp(v, OP_Goto, 0, base+13); 316 sqlite3VdbeAddOp(v, OP_Next, iCur, base+4); 317 sqlite3VdbeAddOp(v, OP_Close, iCur, 0); 318 } 319 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 320 321 /* Figure out how many columns of data are supplied. If the data 322 ** is coming from a SELECT statement, then this step also generates 323 ** all the code to implement the SELECT statement and invoke a subroutine 324 ** to process each row of the result. (Template 2.) If the SELECT 325 ** statement uses the the table that is being inserted into, then the 326 ** subroutine is also coded here. That subroutine stores the SELECT 327 ** results in a temporary table. (Template 3.) 328 */ 329 if( pSelect ){ 330 /* Data is coming from a SELECT. Generate code to implement that SELECT 331 */ 332 int rc, iInitCode; 333 iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 334 iSelectLoop = sqlite3VdbeCurrentAddr(v); 335 iInsertBlock = sqlite3VdbeMakeLabel(v); 336 337 /* Resolve the expressions in the SELECT statement and execute it. */ 338 rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0); 339 if( rc || pParse->nErr || sqlite3_malloc_failed ) goto insert_cleanup; 340 341 iCleanup = sqlite3VdbeMakeLabel(v); 342 sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup); 343 assert( pSelect->pEList ); 344 nColumn = pSelect->pEList->nExpr; 345 346 /* Set useTempTable to TRUE if the result of the SELECT statement 347 ** should be written into a temporary table. Set to FALSE if each 348 ** row of the SELECT can be written directly into the result table. 349 ** 350 ** A temp table must be used if the table being updated is also one 351 ** of the tables being read by the SELECT statement. Also use a 352 ** temp table in the case of row triggers. 353 */ 354 if( triggers_exist || selectReadsTable(pSelect, pTab->iDb, pTab->tnum) ){ 355 useTempTable = 1; 356 } 357 358 if( useTempTable ){ 359 /* Generate the subroutine that SELECT calls to process each row of 360 ** the result. Store the result in a temporary table 361 */ 362 srcTab = pParse->nTab++; 363 sqlite3VdbeResolveLabel(v, iInsertBlock); 364 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 365 sqlite3TableAffinityStr(v, pTab); 366 sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0); 367 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 368 sqlite3VdbeAddOp(v, OP_Insert, srcTab, 0); 369 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 370 371 /* The following code runs first because the GOTO at the very top 372 ** of the program jumps to it. Create the temporary table, then jump 373 ** back up and execute the SELECT code above. 374 */ 375 sqlite3VdbeChangeP2(v, iInitCode, sqlite3VdbeCurrentAddr(v)); 376 sqlite3VdbeAddOp(v, OP_OpenVirtual, srcTab, 0); 377 sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn); 378 sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); 379 sqlite3VdbeResolveLabel(v, iCleanup); 380 }else{ 381 sqlite3VdbeChangeP2(v, iInitCode, sqlite3VdbeCurrentAddr(v)); 382 } 383 }else{ 384 /* This is the case if the data for the INSERT is coming from a VALUES 385 ** clause 386 */ 387 NameContext sNC; 388 memset(&sNC, 0, sizeof(sNC)); 389 sNC.pParse = pParse; 390 assert( pList!=0 ); 391 srcTab = -1; 392 useTempTable = 0; 393 assert( pList ); 394 nColumn = pList->nExpr; 395 for(i=0; i<nColumn; i++){ 396 if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){ 397 goto insert_cleanup; 398 } 399 } 400 } 401 402 /* Make sure the number of columns in the source data matches the number 403 ** of columns to be inserted into the table. 404 */ 405 if( pColumn==0 && nColumn!=pTab->nCol ){ 406 sqlite3ErrorMsg(pParse, 407 "table %S has %d columns but %d values were supplied", 408 pTabList, 0, pTab->nCol, nColumn); 409 goto insert_cleanup; 410 } 411 if( pColumn!=0 && nColumn!=pColumn->nId ){ 412 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 413 goto insert_cleanup; 414 } 415 416 /* If the INSERT statement included an IDLIST term, then make sure 417 ** all elements of the IDLIST really are columns of the table and 418 ** remember the column indices. 419 ** 420 ** If the table has an INTEGER PRIMARY KEY column and that column 421 ** is named in the IDLIST, then record in the keyColumn variable 422 ** the index into IDLIST of the primary key column. keyColumn is 423 ** the index of the primary key as it appears in IDLIST, not as 424 ** is appears in the original table. (The index of the primary 425 ** key in the original table is pTab->iPKey.) 426 */ 427 if( pColumn ){ 428 for(i=0; i<pColumn->nId; i++){ 429 pColumn->a[i].idx = -1; 430 } 431 for(i=0; i<pColumn->nId; i++){ 432 for(j=0; j<pTab->nCol; j++){ 433 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 434 pColumn->a[i].idx = j; 435 if( j==pTab->iPKey ){ 436 keyColumn = i; 437 } 438 break; 439 } 440 } 441 if( j>=pTab->nCol ){ 442 if( sqlite3IsRowid(pColumn->a[i].zName) ){ 443 keyColumn = i; 444 }else{ 445 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 446 pTabList, 0, pColumn->a[i].zName); 447 pParse->nErr++; 448 goto insert_cleanup; 449 } 450 } 451 } 452 } 453 454 /* If there is no IDLIST term but the table has an integer primary 455 ** key, the set the keyColumn variable to the primary key column index 456 ** in the original table definition. 457 */ 458 if( pColumn==0 ){ 459 keyColumn = pTab->iPKey; 460 } 461 462 /* Open the temp table for FOR EACH ROW triggers 463 */ 464 if( triggers_exist ){ 465 sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0); 466 sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol); 467 } 468 469 /* Initialize the count of rows to be inserted 470 */ 471 if( db->flags & SQLITE_CountRows ){ 472 iCntMem = pParse->nMem++; 473 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 474 sqlite3VdbeAddOp(v, OP_MemStore, iCntMem, 1); 475 } 476 477 /* Open tables and indices if there are no row triggers */ 478 if( !triggers_exist ){ 479 base = pParse->nTab; 480 sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); 481 } 482 483 /* If the data source is a temporary table, then we have to create 484 ** a loop because there might be multiple rows of data. If the data 485 ** source is a subroutine call from the SELECT statement, then we need 486 ** to launch the SELECT statement processing. 487 */ 488 if( useTempTable ){ 489 iBreak = sqlite3VdbeMakeLabel(v); 490 sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak); 491 iCont = sqlite3VdbeCurrentAddr(v); 492 }else if( pSelect ){ 493 sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop); 494 sqlite3VdbeResolveLabel(v, iInsertBlock); 495 } 496 497 /* Run the BEFORE and INSTEAD OF triggers, if there are any 498 */ 499 endOfLoop = sqlite3VdbeMakeLabel(v); 500 if( triggers_exist & TRIGGER_BEFORE ){ 501 502 /* build the NEW.* reference row. Note that if there is an INTEGER 503 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 504 ** translated into a unique ID for the row. But on a BEFORE trigger, 505 ** we do not know what the unique ID will be (because the insert has 506 ** not happened yet) so we substitute a rowid of -1 507 */ 508 if( keyColumn<0 ){ 509 sqlite3VdbeAddOp(v, OP_Integer, -1, 0); 510 }else if( useTempTable ){ 511 sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); 512 }else{ 513 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 514 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); 515 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 516 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 517 sqlite3VdbeAddOp(v, OP_Integer, -1, 0); 518 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 519 } 520 521 /* Create the new column data 522 */ 523 for(i=0; i<pTab->nCol; i++){ 524 if( pColumn==0 ){ 525 j = i; 526 }else{ 527 for(j=0; j<pColumn->nId; j++){ 528 if( pColumn->a[j].idx==i ) break; 529 } 530 } 531 if( pColumn && j>=pColumn->nId ){ 532 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 533 }else if( useTempTable ){ 534 sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 535 }else{ 536 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 537 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr); 538 } 539 } 540 sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); 541 542 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 543 ** do not attempt any conversions before assembling the record. 544 ** If this is a real table, attempt conversions as required by the 545 ** table column affinities. 546 */ 547 if( !isView ){ 548 sqlite3TableAffinityStr(v, pTab); 549 } 550 sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0); 551 552 /* Fire BEFORE or INSTEAD OF triggers */ 553 if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, 554 newIdx, -1, onError, endOfLoop) ){ 555 goto insert_cleanup; 556 } 557 } 558 559 /* If any triggers exists, the opening of tables and indices is deferred 560 ** until now. 561 */ 562 if( triggers_exist && !isView ){ 563 base = pParse->nTab; 564 sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite); 565 } 566 567 /* Push the record number for the new entry onto the stack. The 568 ** record number is a randomly generate integer created by NewRowid 569 ** except when the table has an INTEGER PRIMARY KEY column, in which 570 ** case the record number is the same as that column. 571 */ 572 if( !isView ){ 573 if( keyColumn>=0 ){ 574 if( useTempTable ){ 575 sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn); 576 }else if( pSelect ){ 577 sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1); 578 }else{ 579 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr); 580 } 581 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 582 ** to generate a unique primary key value. 583 */ 584 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 585 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 586 sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem); 587 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 588 }else{ 589 sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem); 590 } 591 #ifndef SQLITE_OMIT_AUTOINCREMENT 592 if( pTab->autoInc ){ 593 sqlite3VdbeAddOp(v, OP_MemMax, counterMem, 0); 594 } 595 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 596 597 /* Push onto the stack, data for all columns of the new entry, beginning 598 ** with the first column. 599 */ 600 for(i=0; i<pTab->nCol; i++){ 601 if( i==pTab->iPKey ){ 602 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 603 ** Whenever this column is read, the record number will be substituted 604 ** in its place. So will fill this column with a NULL to avoid 605 ** taking up data space with information that will never be used. */ 606 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 607 continue; 608 } 609 if( pColumn==0 ){ 610 j = i; 611 }else{ 612 for(j=0; j<pColumn->nId; j++){ 613 if( pColumn->a[j].idx==i ) break; 614 } 615 } 616 if( pColumn && j>=pColumn->nId ){ 617 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 618 }else if( useTempTable ){ 619 sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 620 }else if( pSelect ){ 621 sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j, 1); 622 }else{ 623 sqlite3ExprCode(pParse, pList->a[j].pExpr); 624 } 625 } 626 627 /* Generate code to check constraints and generate index keys and 628 ** do the insertion. 629 */ 630 sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0, 631 0, onError, endOfLoop); 632 sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0, 633 (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1); 634 } 635 636 /* Update the count of rows that are inserted 637 */ 638 if( (db->flags & SQLITE_CountRows)!=0 ){ 639 sqlite3VdbeAddOp(v, OP_MemIncr, iCntMem, 0); 640 } 641 642 if( triggers_exist ){ 643 /* Close all tables opened */ 644 if( !isView ){ 645 sqlite3VdbeAddOp(v, OP_Close, base, 0); 646 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 647 sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); 648 } 649 } 650 651 /* Code AFTER triggers */ 652 if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab, 653 newIdx, -1, onError, endOfLoop) ){ 654 goto insert_cleanup; 655 } 656 } 657 658 /* The bottom of the loop, if the data source is a SELECT statement 659 */ 660 sqlite3VdbeResolveLabel(v, endOfLoop); 661 if( useTempTable ){ 662 sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont); 663 sqlite3VdbeResolveLabel(v, iBreak); 664 sqlite3VdbeAddOp(v, OP_Close, srcTab, 0); 665 }else if( pSelect ){ 666 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 667 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 668 sqlite3VdbeResolveLabel(v, iCleanup); 669 } 670 671 if( !triggers_exist ){ 672 /* Close all tables opened */ 673 sqlite3VdbeAddOp(v, OP_Close, base, 0); 674 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 675 sqlite3VdbeAddOp(v, OP_Close, idx+base, 0); 676 } 677 } 678 679 #ifndef SQLITE_OMIT_AUTOINCREMENT 680 /* Update the sqlite_sequence table by storing the content of the 681 ** counter value in memory counterMem back into the sqlite_sequence 682 ** table. 683 */ 684 if( pTab->autoInc ){ 685 int iCur = pParse->nTab; 686 int base = sqlite3VdbeCurrentAddr(v); 687 sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0); 688 sqlite3VdbeAddOp(v, OP_OpenWrite, iCur, pDb->pSeqTab->tnum); 689 sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, 2); 690 sqlite3VdbeAddOp(v, OP_MemLoad, counterRowid, 0); 691 sqlite3VdbeAddOp(v, OP_NotNull, -1, base+7); 692 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 693 sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0); 694 sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); 695 sqlite3VdbeAddOp(v, OP_MemLoad, counterMem, 0); 696 sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0); 697 sqlite3VdbeAddOp(v, OP_Insert, iCur, 0); 698 sqlite3VdbeAddOp(v, OP_Close, iCur, 0); 699 } 700 #endif 701 702 /* 703 ** Return the number of rows inserted. If this routine is 704 ** generating code because of a call to sqlite3NestedParse(), do not 705 ** invoke the callback function. 706 */ 707 if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){ 708 sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0); 709 sqlite3VdbeAddOp(v, OP_Callback, 1, 0); 710 sqlite3VdbeSetNumCols(v, 1); 711 sqlite3VdbeSetColName(v, 0, "rows inserted", P3_STATIC); 712 } 713 714 insert_cleanup: 715 sqlite3SrcListDelete(pTabList); 716 sqlite3ExprListDelete(pList); 717 sqlite3SelectDelete(pSelect); 718 sqlite3IdListDelete(pColumn); 719 } 720 721 /* 722 ** Generate code to do a constraint check prior to an INSERT or an UPDATE. 723 ** 724 ** When this routine is called, the stack contains (from bottom to top) 725 ** the following values: 726 ** 727 ** 1. The rowid of the row to be updated before the update. This 728 ** value is omitted unless we are doing an UPDATE that involves a 729 ** change to the record number. 730 ** 731 ** 2. The rowid of the row after the update. 732 ** 733 ** 3. The data in the first column of the entry after the update. 734 ** 735 ** i. Data from middle columns... 736 ** 737 ** N. The data in the last column of the entry after the update. 738 ** 739 ** The old rowid shown as entry (1) above is omitted unless both isUpdate 740 ** and rowidChng are 1. isUpdate is true for UPDATEs and false for 741 ** INSERTs and rowidChng is true if the record number is being changed. 742 ** 743 ** The code generated by this routine pushes additional entries onto 744 ** the stack which are the keys for new index entries for the new record. 745 ** The order of index keys is the same as the order of the indices on 746 ** the pTable->pIndex list. A key is only created for index i if 747 ** aIdxUsed!=0 and aIdxUsed[i]!=0. 748 ** 749 ** This routine also generates code to check constraints. NOT NULL, 750 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 751 ** then the appropriate action is performed. There are five possible 752 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 753 ** 754 ** Constraint type Action What Happens 755 ** --------------- ---------- ---------------------------------------- 756 ** any ROLLBACK The current transaction is rolled back and 757 ** sqlite3_exec() returns immediately with a 758 ** return code of SQLITE_CONSTRAINT. 759 ** 760 ** any ABORT Back out changes from the current command 761 ** only (do not do a complete rollback) then 762 ** cause sqlite3_exec() to return immediately 763 ** with SQLITE_CONSTRAINT. 764 ** 765 ** any FAIL Sqlite_exec() returns immediately with a 766 ** return code of SQLITE_CONSTRAINT. The 767 ** transaction is not rolled back and any 768 ** prior changes are retained. 769 ** 770 ** any IGNORE The record number and data is popped from 771 ** the stack and there is an immediate jump 772 ** to label ignoreDest. 773 ** 774 ** NOT NULL REPLACE The NULL value is replace by the default 775 ** value for that column. If the default value 776 ** is NULL, the action is the same as ABORT. 777 ** 778 ** UNIQUE REPLACE The other row that conflicts with the row 779 ** being inserted is removed. 780 ** 781 ** CHECK REPLACE Illegal. The results in an exception. 782 ** 783 ** Which action to take is determined by the overrideError parameter. 784 ** Or if overrideError==OE_Default, then the pParse->onError parameter 785 ** is used. Or if pParse->onError==OE_Default then the onError value 786 ** for the constraint is used. 787 ** 788 ** The calling routine must open a read/write cursor for pTab with 789 ** cursor number "base". All indices of pTab must also have open 790 ** read/write cursors with cursor number base+i for the i-th cursor. 791 ** Except, if there is no possibility of a REPLACE action then 792 ** cursors do not need to be open for indices where aIdxUsed[i]==0. 793 ** 794 ** If the isUpdate flag is true, it means that the "base" cursor is 795 ** initially pointing to an entry that is being updated. The isUpdate 796 ** flag causes extra code to be generated so that the "base" cursor 797 ** is still pointing at the same entry after the routine returns. 798 ** Without the isUpdate flag, the "base" cursor might be moved. 799 */ 800 void sqlite3GenerateConstraintChecks( 801 Parse *pParse, /* The parser context */ 802 Table *pTab, /* the table into which we are inserting */ 803 int base, /* Index of a read/write cursor pointing at pTab */ 804 char *aIdxUsed, /* Which indices are used. NULL means all are used */ 805 int rowidChng, /* True if the record number will change */ 806 int isUpdate, /* True for UPDATE, False for INSERT */ 807 int overrideError, /* Override onError to this if not OE_Default */ 808 int ignoreDest /* Jump to this label on an OE_Ignore resolution */ 809 ){ 810 int i; 811 Vdbe *v; 812 int nCol; 813 int onError; 814 int addr; 815 int extra; 816 int iCur; 817 Index *pIdx; 818 int seenReplace = 0; 819 int jumpInst1=0, jumpInst2; 820 int contAddr; 821 int hasTwoRowids = (isUpdate && rowidChng); 822 823 v = sqlite3GetVdbe(pParse); 824 assert( v!=0 ); 825 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 826 nCol = pTab->nCol; 827 828 /* Test all NOT NULL constraints. 829 */ 830 for(i=0; i<nCol; i++){ 831 if( i==pTab->iPKey ){ 832 continue; 833 } 834 onError = pTab->aCol[i].notNull; 835 if( onError==OE_None ) continue; 836 if( overrideError!=OE_Default ){ 837 onError = overrideError; 838 }else if( onError==OE_Default ){ 839 onError = OE_Abort; 840 } 841 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 842 onError = OE_Abort; 843 } 844 sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1); 845 addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0); 846 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 847 || onError==OE_Ignore || onError==OE_Replace ); 848 switch( onError ){ 849 case OE_Rollback: 850 case OE_Abort: 851 case OE_Fail: { 852 char *zMsg = 0; 853 sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); 854 sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName, 855 " may not be NULL", (char*)0); 856 sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC); 857 break; 858 } 859 case OE_Ignore: { 860 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 861 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 862 break; 863 } 864 case OE_Replace: { 865 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt); 866 sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0); 867 break; 868 } 869 } 870 sqlite3VdbeChangeP2(v, addr, sqlite3VdbeCurrentAddr(v)); 871 } 872 873 /* Test all CHECK constraints 874 */ 875 /**** TBD ****/ 876 877 /* If we have an INTEGER PRIMARY KEY, make sure the primary key 878 ** of the new record does not previously exist. Except, if this 879 ** is an UPDATE and the primary key is not changing, that is OK. 880 */ 881 if( rowidChng ){ 882 onError = pTab->keyConf; 883 if( overrideError!=OE_Default ){ 884 onError = overrideError; 885 }else if( onError==OE_Default ){ 886 onError = OE_Abort; 887 } 888 889 if( isUpdate ){ 890 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 891 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 892 jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0); 893 } 894 sqlite3VdbeAddOp(v, OP_Dup, nCol, 1); 895 jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0); 896 switch( onError ){ 897 default: { 898 onError = OE_Abort; 899 /* Fall thru into the next case */ 900 } 901 case OE_Rollback: 902 case OE_Abort: 903 case OE_Fail: { 904 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, 905 "PRIMARY KEY must be unique", P3_STATIC); 906 break; 907 } 908 case OE_Replace: { 909 sqlite3GenerateRowIndexDelete(pParse->db, v, pTab, base, 0); 910 if( isUpdate ){ 911 sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1); 912 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 913 } 914 seenReplace = 1; 915 break; 916 } 917 case OE_Ignore: { 918 assert( seenReplace==0 ); 919 sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0); 920 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 921 break; 922 } 923 } 924 contAddr = sqlite3VdbeCurrentAddr(v); 925 sqlite3VdbeChangeP2(v, jumpInst2, contAddr); 926 if( isUpdate ){ 927 sqlite3VdbeChangeP2(v, jumpInst1, contAddr); 928 sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1); 929 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 930 } 931 } 932 933 /* Test all UNIQUE constraints by creating entries for each UNIQUE 934 ** index and making sure that duplicate entries do not already exist. 935 ** Add the new records to the indices as we go. 936 */ 937 extra = -1; 938 for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ 939 if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */ 940 extra++; 941 942 /* Create a key for accessing the index entry */ 943 sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1); 944 for(i=0; i<pIdx->nColumn; i++){ 945 int idx = pIdx->aiColumn[i]; 946 if( idx==pTab->iPKey ){ 947 sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1); 948 }else{ 949 sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1); 950 } 951 } 952 jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0); 953 sqlite3IndexAffinityStr(v, pIdx); 954 955 /* Find out what action to take in case there is an indexing conflict */ 956 onError = pIdx->onError; 957 if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */ 958 if( overrideError!=OE_Default ){ 959 onError = overrideError; 960 }else if( onError==OE_Default ){ 961 onError = OE_Abort; 962 } 963 if( seenReplace ){ 964 if( onError==OE_Ignore ) onError = OE_Replace; 965 else if( onError==OE_Fail ) onError = OE_Abort; 966 } 967 968 969 /* Check to see if the new index entry will be unique */ 970 sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1); 971 jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0); 972 973 /* Generate code that executes if the new index entry is not unique */ 974 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 975 || onError==OE_Ignore || onError==OE_Replace ); 976 switch( onError ){ 977 case OE_Rollback: 978 case OE_Abort: 979 case OE_Fail: { 980 int j, n1, n2; 981 char zErrMsg[200]; 982 strcpy(zErrMsg, pIdx->nColumn>1 ? "columns " : "column "); 983 n1 = strlen(zErrMsg); 984 for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){ 985 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 986 n2 = strlen(zCol); 987 if( j>0 ){ 988 strcpy(&zErrMsg[n1], ", "); 989 n1 += 2; 990 } 991 if( n1+n2>sizeof(zErrMsg)-30 ){ 992 strcpy(&zErrMsg[n1], "..."); 993 n1 += 3; 994 break; 995 }else{ 996 strcpy(&zErrMsg[n1], zCol); 997 n1 += n2; 998 } 999 } 1000 strcpy(&zErrMsg[n1], 1001 pIdx->nColumn>1 ? " are not unique" : " is not unique"); 1002 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0); 1003 break; 1004 } 1005 case OE_Ignore: { 1006 assert( seenReplace==0 ); 1007 sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0); 1008 sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest); 1009 break; 1010 } 1011 case OE_Replace: { 1012 sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0); 1013 if( isUpdate ){ 1014 sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1); 1015 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 1016 } 1017 seenReplace = 1; 1018 break; 1019 } 1020 } 1021 contAddr = sqlite3VdbeCurrentAddr(v); 1022 #if NULL_DISTINCT_FOR_UNIQUE 1023 sqlite3VdbeChangeP2(v, jumpInst1, contAddr); 1024 #endif 1025 sqlite3VdbeChangeP2(v, jumpInst2, contAddr); 1026 } 1027 } 1028 1029 /* 1030 ** This routine generates code to finish the INSERT or UPDATE operation 1031 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1032 ** The stack must contain keys for all active indices followed by data 1033 ** and the rowid for the new entry. This routine creates the new 1034 ** entries in all indices and in the main table. 1035 ** 1036 ** The arguments to this routine should be the same as the first six 1037 ** arguments to sqlite3GenerateConstraintChecks. 1038 */ 1039 void sqlite3CompleteInsertion( 1040 Parse *pParse, /* The parser context */ 1041 Table *pTab, /* the table into which we are inserting */ 1042 int base, /* Index of a read/write cursor pointing at pTab */ 1043 char *aIdxUsed, /* Which indices are used. NULL means all are used */ 1044 int rowidChng, /* True if the record number will change */ 1045 int isUpdate, /* True for UPDATE, False for INSERT */ 1046 int newIdx /* Index of NEW table for triggers. -1 if none */ 1047 ){ 1048 int i; 1049 Vdbe *v; 1050 int nIdx; 1051 Index *pIdx; 1052 int pik_flags; 1053 1054 v = sqlite3GetVdbe(pParse); 1055 assert( v!=0 ); 1056 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1057 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} 1058 for(i=nIdx-1; i>=0; i--){ 1059 if( aIdxUsed && aIdxUsed[i]==0 ) continue; 1060 sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0); 1061 } 1062 sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); 1063 sqlite3TableAffinityStr(v, pTab); 1064 #ifndef SQLITE_OMIT_TRIGGER 1065 if( newIdx>=0 ){ 1066 sqlite3VdbeAddOp(v, OP_Dup, 1, 0); 1067 sqlite3VdbeAddOp(v, OP_Dup, 1, 0); 1068 sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0); 1069 } 1070 #endif 1071 if( pParse->nested ){ 1072 pik_flags = 0; 1073 }else{ 1074 pik_flags = (OPFLAG_NCHANGE|(isUpdate?0:OPFLAG_LASTROWID)); 1075 } 1076 sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags); 1077 1078 if( isUpdate && rowidChng ){ 1079 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1080 } 1081 } 1082 1083 /* 1084 ** Generate code that will open cursors for a table and for all 1085 ** indices of that table. The "base" parameter is the cursor number used 1086 ** for the table. Indices are opened on subsequent cursors. 1087 */ 1088 void sqlite3OpenTableAndIndices( 1089 Parse *pParse, /* Parsing context */ 1090 Table *pTab, /* Table to be opened */ 1091 int base, /* Cursor number assigned to the table */ 1092 int op /* OP_OpenRead or OP_OpenWrite */ 1093 ){ 1094 int i; 1095 Index *pIdx; 1096 Vdbe *v = sqlite3GetVdbe(pParse); 1097 assert( v!=0 ); 1098 sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0); 1099 VdbeComment((v, "# %s", pTab->zName)); 1100 sqlite3VdbeAddOp(v, op, base, pTab->tnum); 1101 sqlite3VdbeAddOp(v, OP_SetNumColumns, base, pTab->nCol); 1102 for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1103 sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0); 1104 VdbeComment((v, "# %s", pIdx->zName)); 1105 sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, 1106 (char*)&pIdx->keyInfo, P3_KEYINFO); 1107 } 1108 if( pParse->nTab<=base+i ){ 1109 pParse->nTab = base+i; 1110 } 1111 } 1112