1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will open a table for reading. 19 */ 20 void sqlite3OpenTable( 21 Parse *p, /* Generate code into this VDBE */ 22 int iCur, /* The cursor number of the table */ 23 int iDb, /* The database index in sqlite3.aDb[] */ 24 Table *pTab, /* The table to be opened */ 25 int opcode /* OP_OpenRead or OP_OpenWrite */ 26 ){ 27 Vdbe *v; 28 assert( !IsVirtual(pTab) ); 29 v = sqlite3GetVdbe(p); 30 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 31 sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); 32 sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); 33 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); 34 VdbeComment((v, "%s", pTab->zName)); 35 } 36 37 /* 38 ** Return a pointer to the column affinity string associated with index 39 ** pIdx. A column affinity string has one character for each column in 40 ** the table, according to the affinity of the column: 41 ** 42 ** Character Column affinity 43 ** ------------------------------ 44 ** 'a' TEXT 45 ** 'b' NONE 46 ** 'c' NUMERIC 47 ** 'd' INTEGER 48 ** 'e' REAL 49 ** 50 ** An extra 'd' is appended to the end of the string to cover the 51 ** rowid that appears as the last column in every index. 52 ** 53 ** Memory for the buffer containing the column index affinity string 54 ** is managed along with the rest of the Index structure. It will be 55 ** released when sqlite3DeleteIndex() is called. 56 */ 57 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ 58 if( !pIdx->zColAff ){ 59 /* The first time a column affinity string for a particular index is 60 ** required, it is allocated and populated here. It is then stored as 61 ** a member of the Index structure for subsequent use. 62 ** 63 ** The column affinity string will eventually be deleted by 64 ** sqliteDeleteIndex() when the Index structure itself is cleaned 65 ** up. 66 */ 67 int n; 68 Table *pTab = pIdx->pTable; 69 sqlite3 *db = sqlite3VdbeDb(v); 70 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+2); 71 if( !pIdx->zColAff ){ 72 db->mallocFailed = 1; 73 return 0; 74 } 75 for(n=0; n<pIdx->nColumn; n++){ 76 pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; 77 } 78 pIdx->zColAff[n++] = SQLITE_AFF_INTEGER; 79 pIdx->zColAff[n] = 0; 80 } 81 82 return pIdx->zColAff; 83 } 84 85 /* 86 ** Set P4 of the most recently inserted opcode to a column affinity 87 ** string for table pTab. A column affinity string has one character 88 ** for each column indexed by the index, according to the affinity of the 89 ** column: 90 ** 91 ** Character Column affinity 92 ** ------------------------------ 93 ** 'a' TEXT 94 ** 'b' NONE 95 ** 'c' NUMERIC 96 ** 'd' INTEGER 97 ** 'e' REAL 98 */ 99 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ 100 /* The first time a column affinity string for a particular table 101 ** is required, it is allocated and populated here. It is then 102 ** stored as a member of the Table structure for subsequent use. 103 ** 104 ** The column affinity string will eventually be deleted by 105 ** sqlite3DeleteTable() when the Table structure itself is cleaned up. 106 */ 107 if( !pTab->zColAff ){ 108 char *zColAff; 109 int i; 110 sqlite3 *db = sqlite3VdbeDb(v); 111 112 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 113 if( !zColAff ){ 114 db->mallocFailed = 1; 115 return; 116 } 117 118 for(i=0; i<pTab->nCol; i++){ 119 zColAff[i] = pTab->aCol[i].affinity; 120 } 121 zColAff[pTab->nCol] = '\0'; 122 123 pTab->zColAff = zColAff; 124 } 125 126 sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT); 127 } 128 129 /* 130 ** Return non-zero if the table pTab in database iDb or any of its indices 131 ** have been opened at any point in the VDBE program beginning at location 132 ** iStartAddr throught the end of the program. This is used to see if 133 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 134 ** run without using temporary table for the results of the SELECT. 135 */ 136 static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){ 137 Vdbe *v = sqlite3GetVdbe(p); 138 int i; 139 int iEnd = sqlite3VdbeCurrentAddr(v); 140 #ifndef SQLITE_OMIT_VIRTUALTABLE 141 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 142 #endif 143 144 for(i=iStartAddr; i<iEnd; i++){ 145 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 146 assert( pOp!=0 ); 147 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 148 Index *pIndex; 149 int tnum = pOp->p2; 150 if( tnum==pTab->tnum ){ 151 return 1; 152 } 153 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 154 if( tnum==pIndex->tnum ){ 155 return 1; 156 } 157 } 158 } 159 #ifndef SQLITE_OMIT_VIRTUALTABLE 160 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 161 assert( pOp->p4.pVtab!=0 ); 162 assert( pOp->p4type==P4_VTAB ); 163 return 1; 164 } 165 #endif 166 } 167 return 0; 168 } 169 170 #ifndef SQLITE_OMIT_AUTOINCREMENT 171 /* 172 ** Locate or create an AutoincInfo structure associated with table pTab 173 ** which is in database iDb. Return the register number for the register 174 ** that holds the maximum rowid. 175 ** 176 ** There is at most one AutoincInfo structure per table even if the 177 ** same table is autoincremented multiple times due to inserts within 178 ** triggers. A new AutoincInfo structure is created if this is the 179 ** first use of table pTab. On 2nd and subsequent uses, the original 180 ** AutoincInfo structure is used. 181 ** 182 ** Three memory locations are allocated: 183 ** 184 ** (1) Register to hold the name of the pTab table. 185 ** (2) Register to hold the maximum ROWID of pTab. 186 ** (3) Register to hold the rowid in sqlite_sequence of pTab 187 ** 188 ** The 2nd register is the one that is returned. That is all the 189 ** insert routine needs to know about. 190 */ 191 static int autoIncBegin( 192 Parse *pParse, /* Parsing context */ 193 int iDb, /* Index of the database holding pTab */ 194 Table *pTab /* The table we are writing to */ 195 ){ 196 int memId = 0; /* Register holding maximum rowid */ 197 if( pTab->tabFlags & TF_Autoincrement ){ 198 Parse *pToplevel = sqlite3ParseToplevel(pParse); 199 AutoincInfo *pInfo; 200 201 pInfo = pToplevel->pAinc; 202 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 203 if( pInfo==0 ){ 204 pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo)); 205 if( pInfo==0 ) return 0; 206 pInfo->pNext = pToplevel->pAinc; 207 pToplevel->pAinc = pInfo; 208 pInfo->pTab = pTab; 209 pInfo->iDb = iDb; 210 pToplevel->nMem++; /* Register to hold name of table */ 211 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 212 pToplevel->nMem++; /* Rowid in sqlite_sequence */ 213 } 214 memId = pInfo->regCtr; 215 } 216 return memId; 217 } 218 219 /* 220 ** This routine generates code that will initialize all of the 221 ** register used by the autoincrement tracker. 222 */ 223 void sqlite3AutoincrementBegin(Parse *pParse){ 224 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 225 sqlite3 *db = pParse->db; /* The database connection */ 226 Db *pDb; /* Database only autoinc table */ 227 int memId; /* Register holding max rowid */ 228 int addr; /* A VDBE address */ 229 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 230 231 /* This routine is never called during trigger-generation. It is 232 ** only called from the top-level */ 233 assert( pParse->pTriggerTab==0 ); 234 assert( pParse==sqlite3ParseToplevel(pParse) ); 235 236 assert( v ); /* We failed long ago if this is not so */ 237 for(p = pParse->pAinc; p; p = p->pNext){ 238 pDb = &db->aDb[p->iDb]; 239 memId = p->regCtr; 240 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 241 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 242 sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); 243 addr = sqlite3VdbeCurrentAddr(v); 244 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); 245 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); 246 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); 247 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); 248 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 249 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); 250 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); 251 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); 252 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); 253 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); 254 sqlite3VdbeAddOp0(v, OP_Close); 255 } 256 } 257 258 /* 259 ** Update the maximum rowid for an autoincrement calculation. 260 ** 261 ** This routine should be called when the top of the stack holds a 262 ** new rowid that is about to be inserted. If that new rowid is 263 ** larger than the maximum rowid in the memId memory cell, then the 264 ** memory cell is updated. The stack is unchanged. 265 */ 266 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 267 if( memId>0 ){ 268 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 269 } 270 } 271 272 /* 273 ** This routine generates the code needed to write autoincrement 274 ** maximum rowid values back into the sqlite_sequence register. 275 ** Every statement that might do an INSERT into an autoincrement 276 ** table (either directly or through triggers) needs to call this 277 ** routine just before the "exit" code. 278 */ 279 void sqlite3AutoincrementEnd(Parse *pParse){ 280 AutoincInfo *p; 281 Vdbe *v = pParse->pVdbe; 282 sqlite3 *db = pParse->db; 283 284 assert( v ); 285 for(p = pParse->pAinc; p; p = p->pNext){ 286 Db *pDb = &db->aDb[p->iDb]; 287 int j1, j2, j3, j4, j5; 288 int iRec; 289 int memId = p->regCtr; 290 291 iRec = sqlite3GetTempReg(pParse); 292 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 293 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 294 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); 295 j2 = sqlite3VdbeAddOp0(v, OP_Rewind); 296 j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec); 297 j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec); 298 sqlite3VdbeAddOp2(v, OP_Next, 0, j3); 299 sqlite3VdbeJumpHere(v, j2); 300 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); 301 j5 = sqlite3VdbeAddOp0(v, OP_Goto); 302 sqlite3VdbeJumpHere(v, j4); 303 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); 304 sqlite3VdbeJumpHere(v, j1); 305 sqlite3VdbeJumpHere(v, j5); 306 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); 307 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); 308 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 309 sqlite3VdbeAddOp0(v, OP_Close); 310 sqlite3ReleaseTempReg(pParse, iRec); 311 } 312 } 313 #else 314 /* 315 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 316 ** above are all no-ops 317 */ 318 # define autoIncBegin(A,B,C) (0) 319 # define autoIncStep(A,B,C) 320 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 321 322 323 /* 324 ** Generate code for a co-routine that will evaluate a subquery one 325 ** row at a time. 326 ** 327 ** The pSelect parameter is the subquery that the co-routine will evaluation. 328 ** Information about the location of co-routine and the registers it will use 329 ** is returned by filling in the pDest object. 330 ** 331 ** Registers are allocated as follows: 332 ** 333 ** pDest->iSDParm The register holding the next entry-point of the 334 ** co-routine. Run the co-routine to its next breakpoint 335 ** by calling "OP_Yield $X" where $X is pDest->iSDParm. 336 ** 337 ** pDest->iSDParm+1 The register holding the "completed" flag for the 338 ** co-routine. This register is 0 if the previous Yield 339 ** generated a new result row, or 1 if the subquery 340 ** has completed. If the Yield is called again 341 ** after this register becomes 1, then the VDBE will 342 ** halt with an SQLITE_INTERNAL error. 343 ** 344 ** pDest->iSdst First result register. 345 ** 346 ** pDest->nSdst Number of result registers. 347 ** 348 ** This routine handles all of the register allocation and fills in the 349 ** pDest structure appropriately. 350 ** 351 ** Here is a schematic of the generated code assuming that X is the 352 ** co-routine entry-point register reg[pDest->iSDParm], that EOF is the 353 ** completed flag reg[pDest->iSDParm+1], and R and S are the range of 354 ** registers that hold the result set, reg[pDest->iSdst] through 355 ** reg[pDest->iSdst+pDest->nSdst-1]: 356 ** 357 ** X <- A 358 ** EOF <- 0 359 ** goto B 360 ** A: setup for the SELECT 361 ** loop rows in the SELECT 362 ** load results into registers R..S 363 ** yield X 364 ** end loop 365 ** cleanup after the SELECT 366 ** EOF <- 1 367 ** yield X 368 ** halt-error 369 ** B: 370 ** 371 ** To use this subroutine, the caller generates code as follows: 372 ** 373 ** [ Co-routine generated by this subroutine, shown above ] 374 ** S: yield X 375 ** if EOF goto E 376 ** if skip this row, goto C 377 ** if terminate loop, goto E 378 ** deal with this row 379 ** C: goto S 380 ** E: 381 */ 382 int sqlite3CodeCoroutine(Parse *pParse, Select *pSelect, SelectDest *pDest){ 383 int regYield; /* Register holding co-routine entry-point */ 384 int regEof; /* Register holding co-routine completion flag */ 385 int addrTop; /* Top of the co-routine */ 386 int j1; /* Jump instruction */ 387 int rc; /* Result code */ 388 Vdbe *v; /* VDBE under construction */ 389 390 regYield = ++pParse->nMem; 391 regEof = ++pParse->nMem; 392 v = sqlite3GetVdbe(pParse); 393 addrTop = sqlite3VdbeCurrentAddr(v); 394 sqlite3VdbeAddOp2(v, OP_Integer, addrTop+2, regYield); /* X <- A */ 395 VdbeComment((v, "Co-routine entry point")); 396 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ 397 VdbeComment((v, "Co-routine completion flag")); 398 sqlite3SelectDestInit(pDest, SRT_Coroutine, regYield); 399 j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); 400 rc = sqlite3Select(pParse, pSelect, pDest); 401 assert( pParse->nErr==0 || rc ); 402 if( pParse->db->mallocFailed && rc==SQLITE_OK ) rc = SQLITE_NOMEM; 403 if( rc ) return rc; 404 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */ 405 sqlite3VdbeAddOp1(v, OP_Yield, regYield); /* yield X */ 406 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort); 407 VdbeComment((v, "End of coroutine")); 408 sqlite3VdbeJumpHere(v, j1); /* label B: */ 409 return rc; 410 } 411 412 413 414 /* Forward declaration */ 415 static int xferOptimization( 416 Parse *pParse, /* Parser context */ 417 Table *pDest, /* The table we are inserting into */ 418 Select *pSelect, /* A SELECT statement to use as the data source */ 419 int onError, /* How to handle constraint errors */ 420 int iDbDest /* The database of pDest */ 421 ); 422 423 /* 424 ** This routine is call to handle SQL of the following forms: 425 ** 426 ** insert into TABLE (IDLIST) values(EXPRLIST) 427 ** insert into TABLE (IDLIST) select 428 ** 429 ** The IDLIST following the table name is always optional. If omitted, 430 ** then a list of all columns for the table is substituted. The IDLIST 431 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. 432 ** 433 ** The pList parameter holds EXPRLIST in the first form of the INSERT 434 ** statement above, and pSelect is NULL. For the second form, pList is 435 ** NULL and pSelect is a pointer to the select statement used to generate 436 ** data for the insert. 437 ** 438 ** The code generated follows one of four templates. For a simple 439 ** select with data coming from a VALUES clause, the code executes 440 ** once straight down through. Pseudo-code follows (we call this 441 ** the "1st template"): 442 ** 443 ** open write cursor to <table> and its indices 444 ** puts VALUES clause expressions onto the stack 445 ** write the resulting record into <table> 446 ** cleanup 447 ** 448 ** The three remaining templates assume the statement is of the form 449 ** 450 ** INSERT INTO <table> SELECT ... 451 ** 452 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 453 ** in other words if the SELECT pulls all columns from a single table 454 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 455 ** if <table2> and <table1> are distinct tables but have identical 456 ** schemas, including all the same indices, then a special optimization 457 ** is invoked that copies raw records from <table2> over to <table1>. 458 ** See the xferOptimization() function for the implementation of this 459 ** template. This is the 2nd template. 460 ** 461 ** open a write cursor to <table> 462 ** open read cursor on <table2> 463 ** transfer all records in <table2> over to <table> 464 ** close cursors 465 ** foreach index on <table> 466 ** open a write cursor on the <table> index 467 ** open a read cursor on the corresponding <table2> index 468 ** transfer all records from the read to the write cursors 469 ** close cursors 470 ** end foreach 471 ** 472 ** The 3rd template is for when the second template does not apply 473 ** and the SELECT clause does not read from <table> at any time. 474 ** The generated code follows this template: 475 ** 476 ** EOF <- 0 477 ** X <- A 478 ** goto B 479 ** A: setup for the SELECT 480 ** loop over the rows in the SELECT 481 ** load values into registers R..R+n 482 ** yield X 483 ** end loop 484 ** cleanup after the SELECT 485 ** EOF <- 1 486 ** yield X 487 ** goto A 488 ** B: open write cursor to <table> and its indices 489 ** C: yield X 490 ** if EOF goto D 491 ** insert the select result into <table> from R..R+n 492 ** goto C 493 ** D: cleanup 494 ** 495 ** The 4th template is used if the insert statement takes its 496 ** values from a SELECT but the data is being inserted into a table 497 ** that is also read as part of the SELECT. In the third form, 498 ** we have to use a intermediate table to store the results of 499 ** the select. The template is like this: 500 ** 501 ** EOF <- 0 502 ** X <- A 503 ** goto B 504 ** A: setup for the SELECT 505 ** loop over the tables in the SELECT 506 ** load value into register R..R+n 507 ** yield X 508 ** end loop 509 ** cleanup after the SELECT 510 ** EOF <- 1 511 ** yield X 512 ** halt-error 513 ** B: open temp table 514 ** L: yield X 515 ** if EOF goto M 516 ** insert row from R..R+n into temp table 517 ** goto L 518 ** M: open write cursor to <table> and its indices 519 ** rewind temp table 520 ** C: loop over rows of intermediate table 521 ** transfer values form intermediate table into <table> 522 ** end loop 523 ** D: cleanup 524 */ 525 void sqlite3Insert( 526 Parse *pParse, /* Parser context */ 527 SrcList *pTabList, /* Name of table into which we are inserting */ 528 ExprList *pList, /* List of values to be inserted */ 529 Select *pSelect, /* A SELECT statement to use as the data source */ 530 IdList *pColumn, /* Column names corresponding to IDLIST. */ 531 int onError /* How to handle constraint errors */ 532 ){ 533 sqlite3 *db; /* The main database structure */ 534 Table *pTab; /* The table to insert into. aka TABLE */ 535 char *zTab; /* Name of the table into which we are inserting */ 536 const char *zDb; /* Name of the database holding this table */ 537 int i, j, idx; /* Loop counters */ 538 Vdbe *v; /* Generate code into this virtual machine */ 539 Index *pIdx; /* For looping over indices of the table */ 540 int nColumn; /* Number of columns in the data */ 541 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 542 int baseCur = 0; /* VDBE Cursor number for pTab */ 543 int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 544 int endOfLoop; /* Label for the end of the insertion loop */ 545 int useTempTable = 0; /* Store SELECT results in intermediate table */ 546 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 547 int addrInsTop = 0; /* Jump to label "D" */ 548 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 549 int addrSelect = 0; /* Address of coroutine that implements the SELECT */ 550 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 551 int iDb; /* Index of database holding TABLE */ 552 Db *pDb; /* The database containing table being inserted into */ 553 int appendFlag = 0; /* True if the insert is likely to be an append */ 554 555 /* Register allocations */ 556 int regFromSelect = 0;/* Base register for data coming from SELECT */ 557 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 558 int regRowCount = 0; /* Memory cell used for the row counter */ 559 int regIns; /* Block of regs holding rowid+data being inserted */ 560 int regRowid; /* registers holding insert rowid */ 561 int regData; /* register holding first column to insert */ 562 int regEof = 0; /* Register recording end of SELECT data */ 563 int *aRegIdx = 0; /* One register allocated to each index */ 564 565 #ifndef SQLITE_OMIT_TRIGGER 566 int isView; /* True if attempting to insert into a view */ 567 Trigger *pTrigger; /* List of triggers on pTab, if required */ 568 int tmask; /* Mask of trigger times */ 569 #endif 570 571 db = pParse->db; 572 memset(&dest, 0, sizeof(dest)); 573 if( pParse->nErr || db->mallocFailed ){ 574 goto insert_cleanup; 575 } 576 577 /* Locate the table into which we will be inserting new information. 578 */ 579 assert( pTabList->nSrc==1 ); 580 zTab = pTabList->a[0].zName; 581 if( NEVER(zTab==0) ) goto insert_cleanup; 582 pTab = sqlite3SrcListLookup(pParse, pTabList); 583 if( pTab==0 ){ 584 goto insert_cleanup; 585 } 586 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 587 assert( iDb<db->nDb ); 588 pDb = &db->aDb[iDb]; 589 zDb = pDb->zName; 590 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ 591 goto insert_cleanup; 592 } 593 594 /* Figure out if we have any triggers and if the table being 595 ** inserted into is a view 596 */ 597 #ifndef SQLITE_OMIT_TRIGGER 598 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 599 isView = pTab->pSelect!=0; 600 #else 601 # define pTrigger 0 602 # define tmask 0 603 # define isView 0 604 #endif 605 #ifdef SQLITE_OMIT_VIEW 606 # undef isView 607 # define isView 0 608 #endif 609 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 610 611 /* If pTab is really a view, make sure it has been initialized. 612 ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 613 ** module table). 614 */ 615 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 616 goto insert_cleanup; 617 } 618 619 /* Ensure that: 620 * (a) the table is not read-only, 621 * (b) that if it is a view then ON INSERT triggers exist 622 */ 623 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 624 goto insert_cleanup; 625 } 626 627 /* Allocate a VDBE 628 */ 629 v = sqlite3GetVdbe(pParse); 630 if( v==0 ) goto insert_cleanup; 631 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 632 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 633 634 #ifndef SQLITE_OMIT_XFER_OPT 635 /* If the statement is of the form 636 ** 637 ** INSERT INTO <table1> SELECT * FROM <table2>; 638 ** 639 ** Then special optimizations can be applied that make the transfer 640 ** very fast and which reduce fragmentation of indices. 641 ** 642 ** This is the 2nd template. 643 */ 644 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 645 assert( !pTrigger ); 646 assert( pList==0 ); 647 goto insert_end; 648 } 649 #endif /* SQLITE_OMIT_XFER_OPT */ 650 651 /* If this is an AUTOINCREMENT table, look up the sequence number in the 652 ** sqlite_sequence table and store it in memory cell regAutoinc. 653 */ 654 regAutoinc = autoIncBegin(pParse, iDb, pTab); 655 656 /* Figure out how many columns of data are supplied. If the data 657 ** is coming from a SELECT statement, then generate a co-routine that 658 ** produces a single row of the SELECT on each invocation. The 659 ** co-routine is the common header to the 3rd and 4th templates. 660 */ 661 if( pSelect ){ 662 /* Data is coming from a SELECT. Generate a co-routine to run that 663 ** SELECT. */ 664 int rc = sqlite3CodeCoroutine(pParse, pSelect, &dest); 665 if( rc ) goto insert_cleanup; 666 667 regEof = dest.iSDParm + 1; 668 regFromSelect = dest.iSdst; 669 assert( pSelect->pEList ); 670 nColumn = pSelect->pEList->nExpr; 671 assert( dest.nSdst==nColumn ); 672 673 /* Set useTempTable to TRUE if the result of the SELECT statement 674 ** should be written into a temporary table (template 4). Set to 675 ** FALSE if each* row of the SELECT can be written directly into 676 ** the destination table (template 3). 677 ** 678 ** A temp table must be used if the table being updated is also one 679 ** of the tables being read by the SELECT statement. Also use a 680 ** temp table in the case of row triggers. 681 */ 682 if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){ 683 useTempTable = 1; 684 } 685 686 if( useTempTable ){ 687 /* Invoke the coroutine to extract information from the SELECT 688 ** and add it to a transient table srcTab. The code generated 689 ** here is from the 4th template: 690 ** 691 ** B: open temp table 692 ** L: yield X 693 ** if EOF goto M 694 ** insert row from R..R+n into temp table 695 ** goto L 696 ** M: ... 697 */ 698 int regRec; /* Register to hold packed record */ 699 int regTempRowid; /* Register to hold temp table ROWID */ 700 int addrTop; /* Label "L" */ 701 int addrIf; /* Address of jump to M */ 702 703 srcTab = pParse->nTab++; 704 regRec = sqlite3GetTempReg(pParse); 705 regTempRowid = sqlite3GetTempReg(pParse); 706 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 707 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 708 addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof); 709 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 710 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 711 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 712 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 713 sqlite3VdbeJumpHere(v, addrIf); 714 sqlite3ReleaseTempReg(pParse, regRec); 715 sqlite3ReleaseTempReg(pParse, regTempRowid); 716 } 717 }else{ 718 /* This is the case if the data for the INSERT is coming from a VALUES 719 ** clause 720 */ 721 NameContext sNC; 722 memset(&sNC, 0, sizeof(sNC)); 723 sNC.pParse = pParse; 724 srcTab = -1; 725 assert( useTempTable==0 ); 726 nColumn = pList ? pList->nExpr : 0; 727 for(i=0; i<nColumn; i++){ 728 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ 729 goto insert_cleanup; 730 } 731 } 732 } 733 734 /* Make sure the number of columns in the source data matches the number 735 ** of columns to be inserted into the table. 736 */ 737 if( IsVirtual(pTab) ){ 738 for(i=0; i<pTab->nCol; i++){ 739 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 740 } 741 } 742 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 743 sqlite3ErrorMsg(pParse, 744 "table %S has %d columns but %d values were supplied", 745 pTabList, 0, pTab->nCol-nHidden, nColumn); 746 goto insert_cleanup; 747 } 748 if( pColumn!=0 && nColumn!=pColumn->nId ){ 749 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 750 goto insert_cleanup; 751 } 752 753 /* If the INSERT statement included an IDLIST term, then make sure 754 ** all elements of the IDLIST really are columns of the table and 755 ** remember the column indices. 756 ** 757 ** If the table has an INTEGER PRIMARY KEY column and that column 758 ** is named in the IDLIST, then record in the keyColumn variable 759 ** the index into IDLIST of the primary key column. keyColumn is 760 ** the index of the primary key as it appears in IDLIST, not as 761 ** is appears in the original table. (The index of the primary 762 ** key in the original table is pTab->iPKey.) 763 */ 764 if( pColumn ){ 765 for(i=0; i<pColumn->nId; i++){ 766 pColumn->a[i].idx = -1; 767 } 768 for(i=0; i<pColumn->nId; i++){ 769 for(j=0; j<pTab->nCol; j++){ 770 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 771 pColumn->a[i].idx = j; 772 if( j==pTab->iPKey ){ 773 keyColumn = i; 774 } 775 break; 776 } 777 } 778 if( j>=pTab->nCol ){ 779 if( sqlite3IsRowid(pColumn->a[i].zName) ){ 780 keyColumn = i; 781 }else{ 782 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 783 pTabList, 0, pColumn->a[i].zName); 784 pParse->checkSchema = 1; 785 goto insert_cleanup; 786 } 787 } 788 } 789 } 790 791 /* If there is no IDLIST term but the table has an integer primary 792 ** key, the set the keyColumn variable to the primary key column index 793 ** in the original table definition. 794 */ 795 if( pColumn==0 && nColumn>0 ){ 796 keyColumn = pTab->iPKey; 797 } 798 799 /* Initialize the count of rows to be inserted 800 */ 801 if( db->flags & SQLITE_CountRows ){ 802 regRowCount = ++pParse->nMem; 803 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 804 } 805 806 /* If this is not a view, open the table and and all indices */ 807 if( !isView ){ 808 int nIdx; 809 810 baseCur = pParse->nTab; 811 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite); 812 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); 813 if( aRegIdx==0 ){ 814 goto insert_cleanup; 815 } 816 for(i=0; i<nIdx; i++){ 817 aRegIdx[i] = ++pParse->nMem; 818 } 819 } 820 821 /* This is the top of the main insertion loop */ 822 if( useTempTable ){ 823 /* This block codes the top of loop only. The complete loop is the 824 ** following pseudocode (template 4): 825 ** 826 ** rewind temp table 827 ** C: loop over rows of intermediate table 828 ** transfer values form intermediate table into <table> 829 ** end loop 830 ** D: ... 831 */ 832 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); 833 addrCont = sqlite3VdbeCurrentAddr(v); 834 }else if( pSelect ){ 835 /* This block codes the top of loop only. The complete loop is the 836 ** following pseudocode (template 3): 837 ** 838 ** C: yield X 839 ** if EOF goto D 840 ** insert the select result into <table> from R..R+n 841 ** goto C 842 ** D: ... 843 */ 844 addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 845 addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); 846 } 847 848 /* Allocate registers for holding the rowid of the new row, 849 ** the content of the new row, and the assemblied row record. 850 */ 851 regRowid = regIns = pParse->nMem+1; 852 pParse->nMem += pTab->nCol + 1; 853 if( IsVirtual(pTab) ){ 854 regRowid++; 855 pParse->nMem++; 856 } 857 regData = regRowid+1; 858 859 /* Run the BEFORE and INSTEAD OF triggers, if there are any 860 */ 861 endOfLoop = sqlite3VdbeMakeLabel(v); 862 if( tmask & TRIGGER_BEFORE ){ 863 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 864 865 /* build the NEW.* reference row. Note that if there is an INTEGER 866 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 867 ** translated into a unique ID for the row. But on a BEFORE trigger, 868 ** we do not know what the unique ID will be (because the insert has 869 ** not happened yet) so we substitute a rowid of -1 870 */ 871 if( keyColumn<0 ){ 872 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 873 }else{ 874 int j1; 875 if( useTempTable ){ 876 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols); 877 }else{ 878 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 879 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols); 880 } 881 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); 882 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 883 sqlite3VdbeJumpHere(v, j1); 884 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); 885 } 886 887 /* Cannot have triggers on a virtual table. If it were possible, 888 ** this block would have to account for hidden column. 889 */ 890 assert( !IsVirtual(pTab) ); 891 892 /* Create the new column data 893 */ 894 for(i=0; i<pTab->nCol; i++){ 895 if( pColumn==0 ){ 896 j = i; 897 }else{ 898 for(j=0; j<pColumn->nId; j++){ 899 if( pColumn->a[j].idx==i ) break; 900 } 901 } 902 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){ 903 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 904 }else if( useTempTable ){ 905 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 906 }else{ 907 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 908 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 909 } 910 } 911 912 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 913 ** do not attempt any conversions before assembling the record. 914 ** If this is a real table, attempt conversions as required by the 915 ** table column affinities. 916 */ 917 if( !isView ){ 918 sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol); 919 sqlite3TableAffinityStr(v, pTab); 920 } 921 922 /* Fire BEFORE or INSTEAD OF triggers */ 923 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 924 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 925 926 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 927 } 928 929 /* Push the record number for the new entry onto the stack. The 930 ** record number is a randomly generate integer created by NewRowid 931 ** except when the table has an INTEGER PRIMARY KEY column, in which 932 ** case the record number is the same as that column. 933 */ 934 if( !isView ){ 935 if( IsVirtual(pTab) ){ 936 /* The row that the VUpdate opcode will delete: none */ 937 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 938 } 939 if( keyColumn>=0 ){ 940 if( useTempTable ){ 941 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); 942 }else if( pSelect ){ 943 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid); 944 }else{ 945 VdbeOp *pOp; 946 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); 947 pOp = sqlite3VdbeGetOp(v, -1); 948 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 949 appendFlag = 1; 950 pOp->opcode = OP_NewRowid; 951 pOp->p1 = baseCur; 952 pOp->p2 = regRowid; 953 pOp->p3 = regAutoinc; 954 } 955 } 956 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 957 ** to generate a unique primary key value. 958 */ 959 if( !appendFlag ){ 960 int j1; 961 if( !IsVirtual(pTab) ){ 962 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); 963 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); 964 sqlite3VdbeJumpHere(v, j1); 965 }else{ 966 j1 = sqlite3VdbeCurrentAddr(v); 967 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); 968 } 969 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); 970 } 971 }else if( IsVirtual(pTab) ){ 972 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 973 }else{ 974 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); 975 appendFlag = 1; 976 } 977 autoIncStep(pParse, regAutoinc, regRowid); 978 979 /* Push onto the stack, data for all columns of the new entry, beginning 980 ** with the first column. 981 */ 982 nHidden = 0; 983 for(i=0; i<pTab->nCol; i++){ 984 int iRegStore = regRowid+1+i; 985 if( i==pTab->iPKey ){ 986 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 987 ** Whenever this column is read, the record number will be substituted 988 ** in its place. So will fill this column with a NULL to avoid 989 ** taking up data space with information that will never be used. */ 990 sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); 991 continue; 992 } 993 if( pColumn==0 ){ 994 if( IsHiddenColumn(&pTab->aCol[i]) ){ 995 assert( IsVirtual(pTab) ); 996 j = -1; 997 nHidden++; 998 }else{ 999 j = i - nHidden; 1000 } 1001 }else{ 1002 for(j=0; j<pColumn->nId; j++){ 1003 if( pColumn->a[j].idx==i ) break; 1004 } 1005 } 1006 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 1007 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); 1008 }else if( useTempTable ){ 1009 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 1010 }else if( pSelect ){ 1011 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 1012 }else{ 1013 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 1014 } 1015 } 1016 1017 /* Generate code to check constraints and generate index keys and 1018 ** do the insertion. 1019 */ 1020 #ifndef SQLITE_OMIT_VIRTUALTABLE 1021 if( IsVirtual(pTab) ){ 1022 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1023 sqlite3VtabMakeWritable(pParse, pTab); 1024 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1025 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1026 sqlite3MayAbort(pParse); 1027 }else 1028 #endif 1029 { 1030 int isReplace; /* Set to true if constraints may cause a replace */ 1031 sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, 1032 keyColumn>=0, 0, onError, endOfLoop, &isReplace 1033 ); 1034 sqlite3FkCheck(pParse, pTab, 0, regIns); 1035 sqlite3CompleteInsertion( 1036 pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0 1037 ); 1038 } 1039 } 1040 1041 /* Update the count of rows that are inserted 1042 */ 1043 if( (db->flags & SQLITE_CountRows)!=0 ){ 1044 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1045 } 1046 1047 if( pTrigger ){ 1048 /* Code AFTER triggers */ 1049 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1050 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1051 } 1052 1053 /* The bottom of the main insertion loop, if the data source 1054 ** is a SELECT statement. 1055 */ 1056 sqlite3VdbeResolveLabel(v, endOfLoop); 1057 if( useTempTable ){ 1058 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); 1059 sqlite3VdbeJumpHere(v, addrInsTop); 1060 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1061 }else if( pSelect ){ 1062 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); 1063 sqlite3VdbeJumpHere(v, addrInsTop); 1064 } 1065 1066 if( !IsVirtual(pTab) && !isView ){ 1067 /* Close all tables opened */ 1068 sqlite3VdbeAddOp1(v, OP_Close, baseCur); 1069 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ 1070 sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur); 1071 } 1072 } 1073 1074 insert_end: 1075 /* Update the sqlite_sequence table by storing the content of the 1076 ** maximum rowid counter values recorded while inserting into 1077 ** autoincrement tables. 1078 */ 1079 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1080 sqlite3AutoincrementEnd(pParse); 1081 } 1082 1083 /* 1084 ** Return the number of rows inserted. If this routine is 1085 ** generating code because of a call to sqlite3NestedParse(), do not 1086 ** invoke the callback function. 1087 */ 1088 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ 1089 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1090 sqlite3VdbeSetNumCols(v, 1); 1091 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1092 } 1093 1094 insert_cleanup: 1095 sqlite3SrcListDelete(db, pTabList); 1096 sqlite3ExprListDelete(db, pList); 1097 sqlite3SelectDelete(db, pSelect); 1098 sqlite3IdListDelete(db, pColumn); 1099 sqlite3DbFree(db, aRegIdx); 1100 } 1101 1102 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1103 ** thely may interfere with compilation of other functions in this file 1104 ** (or in another file, if this file becomes part of the amalgamation). */ 1105 #ifdef isView 1106 #undef isView 1107 #endif 1108 #ifdef pTrigger 1109 #undef pTrigger 1110 #endif 1111 #ifdef tmask 1112 #undef tmask 1113 #endif 1114 1115 1116 /* 1117 ** Generate code to do constraint checks prior to an INSERT or an UPDATE. 1118 ** 1119 ** The input is a range of consecutive registers as follows: 1120 ** 1121 ** 1. The rowid of the row after the update. 1122 ** 1123 ** 2. The data in the first column of the entry after the update. 1124 ** 1125 ** i. Data from middle columns... 1126 ** 1127 ** N. The data in the last column of the entry after the update. 1128 ** 1129 ** The regRowid parameter is the index of the register containing (1). 1130 ** 1131 ** If isUpdate is true and rowidChng is non-zero, then rowidChng contains 1132 ** the address of a register containing the rowid before the update takes 1133 ** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate 1134 ** is false, indicating an INSERT statement, then a non-zero rowidChng 1135 ** indicates that the rowid was explicitly specified as part of the 1136 ** INSERT statement. If rowidChng is false, it means that the rowid is 1137 ** computed automatically in an insert or that the rowid value is not 1138 ** modified by an update. 1139 ** 1140 ** The code generated by this routine store new index entries into 1141 ** registers identified by aRegIdx[]. No index entry is created for 1142 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1143 ** the same as the order of indices on the linked list of indices 1144 ** attached to the table. 1145 ** 1146 ** This routine also generates code to check constraints. NOT NULL, 1147 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1148 ** then the appropriate action is performed. There are five possible 1149 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1150 ** 1151 ** Constraint type Action What Happens 1152 ** --------------- ---------- ---------------------------------------- 1153 ** any ROLLBACK The current transaction is rolled back and 1154 ** sqlite3_exec() returns immediately with a 1155 ** return code of SQLITE_CONSTRAINT. 1156 ** 1157 ** any ABORT Back out changes from the current command 1158 ** only (do not do a complete rollback) then 1159 ** cause sqlite3_exec() to return immediately 1160 ** with SQLITE_CONSTRAINT. 1161 ** 1162 ** any FAIL Sqlite3_exec() returns immediately with a 1163 ** return code of SQLITE_CONSTRAINT. The 1164 ** transaction is not rolled back and any 1165 ** prior changes are retained. 1166 ** 1167 ** any IGNORE The record number and data is popped from 1168 ** the stack and there is an immediate jump 1169 ** to label ignoreDest. 1170 ** 1171 ** NOT NULL REPLACE The NULL value is replace by the default 1172 ** value for that column. If the default value 1173 ** is NULL, the action is the same as ABORT. 1174 ** 1175 ** UNIQUE REPLACE The other row that conflicts with the row 1176 ** being inserted is removed. 1177 ** 1178 ** CHECK REPLACE Illegal. The results in an exception. 1179 ** 1180 ** Which action to take is determined by the overrideError parameter. 1181 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1182 ** is used. Or if pParse->onError==OE_Default then the onError value 1183 ** for the constraint is used. 1184 ** 1185 ** The calling routine must open a read/write cursor for pTab with 1186 ** cursor number "baseCur". All indices of pTab must also have open 1187 ** read/write cursors with cursor number baseCur+i for the i-th cursor. 1188 ** Except, if there is no possibility of a REPLACE action then 1189 ** cursors do not need to be open for indices where aRegIdx[i]==0. 1190 */ 1191 void sqlite3GenerateConstraintChecks( 1192 Parse *pParse, /* The parser context */ 1193 Table *pTab, /* the table into which we are inserting */ 1194 int baseCur, /* Index of a read/write cursor pointing at pTab */ 1195 int regRowid, /* Index of the range of input registers */ 1196 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1197 int rowidChng, /* True if the rowid might collide with existing entry */ 1198 int isUpdate, /* True for UPDATE, False for INSERT */ 1199 int overrideError, /* Override onError to this if not OE_Default */ 1200 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1201 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ 1202 ){ 1203 int i; /* loop counter */ 1204 Vdbe *v; /* VDBE under constrution */ 1205 int nCol; /* Number of columns */ 1206 int onError; /* Conflict resolution strategy */ 1207 int j1; /* Addresss of jump instruction */ 1208 int j2 = 0, j3; /* Addresses of jump instructions */ 1209 int regData; /* Register containing first data column */ 1210 int iCur; /* Table cursor number */ 1211 Index *pIdx; /* Pointer to one of the indices */ 1212 sqlite3 *db; /* Database connection */ 1213 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1214 int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid; 1215 1216 db = pParse->db; 1217 v = sqlite3GetVdbe(pParse); 1218 assert( v!=0 ); 1219 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1220 nCol = pTab->nCol; 1221 regData = regRowid + 1; 1222 1223 /* Test all NOT NULL constraints. 1224 */ 1225 for(i=0; i<nCol; i++){ 1226 if( i==pTab->iPKey ){ 1227 continue; 1228 } 1229 onError = pTab->aCol[i].notNull; 1230 if( onError==OE_None ) continue; 1231 if( overrideError!=OE_Default ){ 1232 onError = overrideError; 1233 }else if( onError==OE_Default ){ 1234 onError = OE_Abort; 1235 } 1236 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1237 onError = OE_Abort; 1238 } 1239 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1240 || onError==OE_Ignore || onError==OE_Replace ); 1241 switch( onError ){ 1242 case OE_Abort: 1243 sqlite3MayAbort(pParse); 1244 case OE_Rollback: 1245 case OE_Fail: { 1246 char *zMsg; 1247 sqlite3VdbeAddOp3(v, OP_HaltIfNull, 1248 SQLITE_CONSTRAINT_NOTNULL, onError, regData+i); 1249 zMsg = sqlite3MPrintf(db, "%s.%s may not be NULL", 1250 pTab->zName, pTab->aCol[i].zName); 1251 sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); 1252 break; 1253 } 1254 case OE_Ignore: { 1255 sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest); 1256 break; 1257 } 1258 default: { 1259 assert( onError==OE_Replace ); 1260 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i); 1261 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i); 1262 sqlite3VdbeJumpHere(v, j1); 1263 break; 1264 } 1265 } 1266 } 1267 1268 /* Test all CHECK constraints 1269 */ 1270 #ifndef SQLITE_OMIT_CHECK 1271 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1272 ExprList *pCheck = pTab->pCheck; 1273 pParse->ckBase = regData; 1274 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1275 for(i=0; i<pCheck->nExpr; i++){ 1276 int allOk = sqlite3VdbeMakeLabel(v); 1277 sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL); 1278 if( onError==OE_Ignore ){ 1279 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1280 }else{ 1281 char *zConsName = pCheck->a[i].zName; 1282 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ 1283 if( zConsName ){ 1284 zConsName = sqlite3MPrintf(db, "constraint %s failed", zConsName); 1285 }else{ 1286 zConsName = 0; 1287 } 1288 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1289 onError, zConsName, P4_DYNAMIC); 1290 } 1291 sqlite3VdbeResolveLabel(v, allOk); 1292 } 1293 } 1294 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1295 1296 /* If we have an INTEGER PRIMARY KEY, make sure the primary key 1297 ** of the new record does not previously exist. Except, if this 1298 ** is an UPDATE and the primary key is not changing, that is OK. 1299 */ 1300 if( rowidChng ){ 1301 onError = pTab->keyConf; 1302 if( overrideError!=OE_Default ){ 1303 onError = overrideError; 1304 }else if( onError==OE_Default ){ 1305 onError = OE_Abort; 1306 } 1307 1308 if( isUpdate ){ 1309 j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng); 1310 } 1311 j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); 1312 switch( onError ){ 1313 default: { 1314 onError = OE_Abort; 1315 /* Fall thru into the next case */ 1316 } 1317 case OE_Rollback: 1318 case OE_Abort: 1319 case OE_Fail: { 1320 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_PRIMARYKEY, 1321 onError, "PRIMARY KEY must be unique", P4_STATIC); 1322 break; 1323 } 1324 case OE_Replace: { 1325 /* If there are DELETE triggers on this table and the 1326 ** recursive-triggers flag is set, call GenerateRowDelete() to 1327 ** remove the conflicting row from the table. This will fire 1328 ** the triggers and remove both the table and index b-tree entries. 1329 ** 1330 ** Otherwise, if there are no triggers or the recursive-triggers 1331 ** flag is not set, but the table has one or more indexes, call 1332 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1333 ** only. The table b-tree entry will be replaced by the new entry 1334 ** when it is inserted. 1335 ** 1336 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1337 ** also invoke MultiWrite() to indicate that this VDBE may require 1338 ** statement rollback (if the statement is aborted after the delete 1339 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1340 ** but being more selective here allows statements like: 1341 ** 1342 ** REPLACE INTO t(rowid) VALUES($newrowid) 1343 ** 1344 ** to run without a statement journal if there are no indexes on the 1345 ** table. 1346 */ 1347 Trigger *pTrigger = 0; 1348 if( db->flags&SQLITE_RecTriggers ){ 1349 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1350 } 1351 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1352 sqlite3MultiWrite(pParse); 1353 sqlite3GenerateRowDelete( 1354 pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace 1355 ); 1356 }else if( pTab->pIndex ){ 1357 sqlite3MultiWrite(pParse); 1358 sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); 1359 } 1360 seenReplace = 1; 1361 break; 1362 } 1363 case OE_Ignore: { 1364 assert( seenReplace==0 ); 1365 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1366 break; 1367 } 1368 } 1369 sqlite3VdbeJumpHere(v, j3); 1370 if( isUpdate ){ 1371 sqlite3VdbeJumpHere(v, j2); 1372 } 1373 } 1374 1375 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1376 ** index and making sure that duplicate entries do not already exist. 1377 ** Add the new records to the indices as we go. 1378 */ 1379 for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ 1380 int regIdx; 1381 int regR; 1382 1383 if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ 1384 1385 /* Create a key for accessing the index entry */ 1386 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); 1387 for(i=0; i<pIdx->nColumn; i++){ 1388 int idx = pIdx->aiColumn[i]; 1389 if( idx==pTab->iPKey ){ 1390 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); 1391 }else{ 1392 sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); 1393 } 1394 } 1395 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); 1396 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); 1397 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT); 1398 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); 1399 1400 /* Find out what action to take in case there is an indexing conflict */ 1401 onError = pIdx->onError; 1402 if( onError==OE_None ){ 1403 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); 1404 continue; /* pIdx is not a UNIQUE index */ 1405 } 1406 if( overrideError!=OE_Default ){ 1407 onError = overrideError; 1408 }else if( onError==OE_Default ){ 1409 onError = OE_Abort; 1410 } 1411 if( seenReplace ){ 1412 if( onError==OE_Ignore ) onError = OE_Replace; 1413 else if( onError==OE_Fail ) onError = OE_Abort; 1414 } 1415 1416 /* Check to see if the new index entry will be unique */ 1417 regR = sqlite3GetTempReg(pParse); 1418 sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR); 1419 j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, 1420 regR, SQLITE_INT_TO_PTR(regIdx), 1421 P4_INT32); 1422 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); 1423 1424 /* Generate code that executes if the new index entry is not unique */ 1425 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1426 || onError==OE_Ignore || onError==OE_Replace ); 1427 switch( onError ){ 1428 case OE_Rollback: 1429 case OE_Abort: 1430 case OE_Fail: { 1431 int j; 1432 StrAccum errMsg; 1433 const char *zSep; 1434 char *zErr; 1435 1436 sqlite3StrAccumInit(&errMsg, 0, 0, 200); 1437 errMsg.db = db; 1438 zSep = pIdx->nColumn>1 ? "columns " : "column "; 1439 for(j=0; j<pIdx->nColumn; j++){ 1440 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 1441 sqlite3StrAccumAppend(&errMsg, zSep, -1); 1442 zSep = ", "; 1443 sqlite3StrAccumAppend(&errMsg, zCol, -1); 1444 } 1445 sqlite3StrAccumAppend(&errMsg, 1446 pIdx->nColumn>1 ? " are not unique" : " is not unique", -1); 1447 zErr = sqlite3StrAccumFinish(&errMsg); 1448 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_UNIQUE, 1449 onError, zErr, 0); 1450 sqlite3DbFree(errMsg.db, zErr); 1451 break; 1452 } 1453 case OE_Ignore: { 1454 assert( seenReplace==0 ); 1455 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); 1456 break; 1457 } 1458 default: { 1459 Trigger *pTrigger = 0; 1460 assert( onError==OE_Replace ); 1461 sqlite3MultiWrite(pParse); 1462 if( db->flags&SQLITE_RecTriggers ){ 1463 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1464 } 1465 sqlite3GenerateRowDelete( 1466 pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace 1467 ); 1468 seenReplace = 1; 1469 break; 1470 } 1471 } 1472 sqlite3VdbeJumpHere(v, j3); 1473 sqlite3ReleaseTempReg(pParse, regR); 1474 } 1475 1476 if( pbMayReplace ){ 1477 *pbMayReplace = seenReplace; 1478 } 1479 } 1480 1481 /* 1482 ** This routine generates code to finish the INSERT or UPDATE operation 1483 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1484 ** A consecutive range of registers starting at regRowid contains the 1485 ** rowid and the content to be inserted. 1486 ** 1487 ** The arguments to this routine should be the same as the first six 1488 ** arguments to sqlite3GenerateConstraintChecks. 1489 */ 1490 void sqlite3CompleteInsertion( 1491 Parse *pParse, /* The parser context */ 1492 Table *pTab, /* the table into which we are inserting */ 1493 int baseCur, /* Index of a read/write cursor pointing at pTab */ 1494 int regRowid, /* Range of content */ 1495 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1496 int isUpdate, /* True for UPDATE, False for INSERT */ 1497 int appendBias, /* True if this is likely to be an append */ 1498 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1499 ){ 1500 int i; 1501 Vdbe *v; 1502 int nIdx; 1503 Index *pIdx; 1504 u8 pik_flags; 1505 int regData; 1506 int regRec; 1507 1508 v = sqlite3GetVdbe(pParse); 1509 assert( v!=0 ); 1510 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1511 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} 1512 for(i=nIdx-1; i>=0; i--){ 1513 if( aRegIdx[i]==0 ) continue; 1514 sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); 1515 if( useSeekResult ){ 1516 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1517 } 1518 } 1519 regData = regRowid + 1; 1520 regRec = sqlite3GetTempReg(pParse); 1521 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1522 sqlite3TableAffinityStr(v, pTab); 1523 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); 1524 if( pParse->nested ){ 1525 pik_flags = 0; 1526 }else{ 1527 pik_flags = OPFLAG_NCHANGE; 1528 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); 1529 } 1530 if( appendBias ){ 1531 pik_flags |= OPFLAG_APPEND; 1532 } 1533 if( useSeekResult ){ 1534 pik_flags |= OPFLAG_USESEEKRESULT; 1535 } 1536 sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); 1537 if( !pParse->nested ){ 1538 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); 1539 } 1540 sqlite3VdbeChangeP5(v, pik_flags); 1541 } 1542 1543 /* 1544 ** Generate code that will open cursors for a table and for all 1545 ** indices of that table. The "baseCur" parameter is the cursor number used 1546 ** for the table. Indices are opened on subsequent cursors. 1547 ** 1548 ** Return the number of indices on the table. 1549 */ 1550 int sqlite3OpenTableAndIndices( 1551 Parse *pParse, /* Parsing context */ 1552 Table *pTab, /* Table to be opened */ 1553 int baseCur, /* Cursor number assigned to the table */ 1554 int op /* OP_OpenRead or OP_OpenWrite */ 1555 ){ 1556 int i; 1557 int iDb; 1558 Index *pIdx; 1559 Vdbe *v; 1560 1561 if( IsVirtual(pTab) ) return 0; 1562 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1563 v = sqlite3GetVdbe(pParse); 1564 assert( v!=0 ); 1565 sqlite3OpenTable(pParse, baseCur, iDb, pTab, op); 1566 for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1567 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 1568 assert( pIdx->pSchema==pTab->pSchema ); 1569 sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb, 1570 (char*)pKey, P4_KEYINFO_HANDOFF); 1571 VdbeComment((v, "%s", pIdx->zName)); 1572 } 1573 if( pParse->nTab<baseCur+i ){ 1574 pParse->nTab = baseCur+i; 1575 } 1576 return i-1; 1577 } 1578 1579 1580 #ifdef SQLITE_TEST 1581 /* 1582 ** The following global variable is incremented whenever the 1583 ** transfer optimization is used. This is used for testing 1584 ** purposes only - to make sure the transfer optimization really 1585 ** is happening when it is suppose to. 1586 */ 1587 int sqlite3_xferopt_count; 1588 #endif /* SQLITE_TEST */ 1589 1590 1591 #ifndef SQLITE_OMIT_XFER_OPT 1592 /* 1593 ** Check to collation names to see if they are compatible. 1594 */ 1595 static int xferCompatibleCollation(const char *z1, const char *z2){ 1596 if( z1==0 ){ 1597 return z2==0; 1598 } 1599 if( z2==0 ){ 1600 return 0; 1601 } 1602 return sqlite3StrICmp(z1, z2)==0; 1603 } 1604 1605 1606 /* 1607 ** Check to see if index pSrc is compatible as a source of data 1608 ** for index pDest in an insert transfer optimization. The rules 1609 ** for a compatible index: 1610 ** 1611 ** * The index is over the same set of columns 1612 ** * The same DESC and ASC markings occurs on all columns 1613 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1614 ** * The same collating sequence on each column 1615 */ 1616 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1617 int i; 1618 assert( pDest && pSrc ); 1619 assert( pDest->pTable!=pSrc->pTable ); 1620 if( pDest->nColumn!=pSrc->nColumn ){ 1621 return 0; /* Different number of columns */ 1622 } 1623 if( pDest->onError!=pSrc->onError ){ 1624 return 0; /* Different conflict resolution strategies */ 1625 } 1626 for(i=0; i<pSrc->nColumn; i++){ 1627 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1628 return 0; /* Different columns indexed */ 1629 } 1630 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1631 return 0; /* Different sort orders */ 1632 } 1633 if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ 1634 return 0; /* Different collating sequences */ 1635 } 1636 } 1637 1638 /* If no test above fails then the indices must be compatible */ 1639 return 1; 1640 } 1641 1642 /* 1643 ** Attempt the transfer optimization on INSERTs of the form 1644 ** 1645 ** INSERT INTO tab1 SELECT * FROM tab2; 1646 ** 1647 ** The xfer optimization transfers raw records from tab2 over to tab1. 1648 ** Columns are not decoded and reassemblied, which greatly improves 1649 ** performance. Raw index records are transferred in the same way. 1650 ** 1651 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 1652 ** There are lots of rules for determining compatibility - see comments 1653 ** embedded in the code for details. 1654 ** 1655 ** This routine returns TRUE if the optimization is guaranteed to be used. 1656 ** Sometimes the xfer optimization will only work if the destination table 1657 ** is empty - a factor that can only be determined at run-time. In that 1658 ** case, this routine generates code for the xfer optimization but also 1659 ** does a test to see if the destination table is empty and jumps over the 1660 ** xfer optimization code if the test fails. In that case, this routine 1661 ** returns FALSE so that the caller will know to go ahead and generate 1662 ** an unoptimized transfer. This routine also returns FALSE if there 1663 ** is no chance that the xfer optimization can be applied. 1664 ** 1665 ** This optimization is particularly useful at making VACUUM run faster. 1666 */ 1667 static int xferOptimization( 1668 Parse *pParse, /* Parser context */ 1669 Table *pDest, /* The table we are inserting into */ 1670 Select *pSelect, /* A SELECT statement to use as the data source */ 1671 int onError, /* How to handle constraint errors */ 1672 int iDbDest /* The database of pDest */ 1673 ){ 1674 ExprList *pEList; /* The result set of the SELECT */ 1675 Table *pSrc; /* The table in the FROM clause of SELECT */ 1676 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1677 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1678 int i; /* Loop counter */ 1679 int iDbSrc; /* The database of pSrc */ 1680 int iSrc, iDest; /* Cursors from source and destination */ 1681 int addr1, addr2; /* Loop addresses */ 1682 int emptyDestTest; /* Address of test for empty pDest */ 1683 int emptySrcTest; /* Address of test for empty pSrc */ 1684 Vdbe *v; /* The VDBE we are building */ 1685 KeyInfo *pKey; /* Key information for an index */ 1686 int regAutoinc; /* Memory register used by AUTOINC */ 1687 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1688 int regData, regRowid; /* Registers holding data and rowid */ 1689 1690 if( pSelect==0 ){ 1691 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1692 } 1693 if( sqlite3TriggerList(pParse, pDest) ){ 1694 return 0; /* tab1 must not have triggers */ 1695 } 1696 #ifndef SQLITE_OMIT_VIRTUALTABLE 1697 if( pDest->tabFlags & TF_Virtual ){ 1698 return 0; /* tab1 must not be a virtual table */ 1699 } 1700 #endif 1701 if( onError==OE_Default ){ 1702 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 1703 if( onError==OE_Default ) onError = OE_Abort; 1704 } 1705 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 1706 if( pSelect->pSrc->nSrc!=1 ){ 1707 return 0; /* FROM clause must have exactly one term */ 1708 } 1709 if( pSelect->pSrc->a[0].pSelect ){ 1710 return 0; /* FROM clause cannot contain a subquery */ 1711 } 1712 if( pSelect->pWhere ){ 1713 return 0; /* SELECT may not have a WHERE clause */ 1714 } 1715 if( pSelect->pOrderBy ){ 1716 return 0; /* SELECT may not have an ORDER BY clause */ 1717 } 1718 /* Do not need to test for a HAVING clause. If HAVING is present but 1719 ** there is no ORDER BY, we will get an error. */ 1720 if( pSelect->pGroupBy ){ 1721 return 0; /* SELECT may not have a GROUP BY clause */ 1722 } 1723 if( pSelect->pLimit ){ 1724 return 0; /* SELECT may not have a LIMIT clause */ 1725 } 1726 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ 1727 if( pSelect->pPrior ){ 1728 return 0; /* SELECT may not be a compound query */ 1729 } 1730 if( pSelect->selFlags & SF_Distinct ){ 1731 return 0; /* SELECT may not be DISTINCT */ 1732 } 1733 pEList = pSelect->pEList; 1734 assert( pEList!=0 ); 1735 if( pEList->nExpr!=1 ){ 1736 return 0; /* The result set must have exactly one column */ 1737 } 1738 assert( pEList->a[0].pExpr ); 1739 if( pEList->a[0].pExpr->op!=TK_ALL ){ 1740 return 0; /* The result set must be the special operator "*" */ 1741 } 1742 1743 /* At this point we have established that the statement is of the 1744 ** correct syntactic form to participate in this optimization. Now 1745 ** we have to check the semantics. 1746 */ 1747 pItem = pSelect->pSrc->a; 1748 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 1749 if( pSrc==0 ){ 1750 return 0; /* FROM clause does not contain a real table */ 1751 } 1752 if( pSrc==pDest ){ 1753 return 0; /* tab1 and tab2 may not be the same table */ 1754 } 1755 #ifndef SQLITE_OMIT_VIRTUALTABLE 1756 if( pSrc->tabFlags & TF_Virtual ){ 1757 return 0; /* tab2 must not be a virtual table */ 1758 } 1759 #endif 1760 if( pSrc->pSelect ){ 1761 return 0; /* tab2 may not be a view */ 1762 } 1763 if( pDest->nCol!=pSrc->nCol ){ 1764 return 0; /* Number of columns must be the same in tab1 and tab2 */ 1765 } 1766 if( pDest->iPKey!=pSrc->iPKey ){ 1767 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 1768 } 1769 for(i=0; i<pDest->nCol; i++){ 1770 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ 1771 return 0; /* Affinity must be the same on all columns */ 1772 } 1773 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ 1774 return 0; /* Collating sequence must be the same on all columns */ 1775 } 1776 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ 1777 return 0; /* tab2 must be NOT NULL if tab1 is */ 1778 } 1779 } 1780 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1781 if( pDestIdx->onError!=OE_None ){ 1782 destHasUniqueIdx = 1; 1783 } 1784 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 1785 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1786 } 1787 if( pSrcIdx==0 ){ 1788 return 0; /* pDestIdx has no corresponding index in pSrc */ 1789 } 1790 } 1791 #ifndef SQLITE_OMIT_CHECK 1792 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck, pDest->pCheck) ){ 1793 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 1794 } 1795 #endif 1796 #ifndef SQLITE_OMIT_FOREIGN_KEY 1797 /* Disallow the transfer optimization if the destination table constains 1798 ** any foreign key constraints. This is more restrictive than necessary. 1799 ** But the main beneficiary of the transfer optimization is the VACUUM 1800 ** command, and the VACUUM command disables foreign key constraints. So 1801 ** the extra complication to make this rule less restrictive is probably 1802 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 1803 */ 1804 if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 1805 return 0; 1806 } 1807 #endif 1808 if( (pParse->db->flags & SQLITE_CountRows)!=0 ){ 1809 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 1810 } 1811 1812 /* If we get this far, it means that the xfer optimization is at 1813 ** least a possibility, though it might only work if the destination 1814 ** table (tab1) is initially empty. 1815 */ 1816 #ifdef SQLITE_TEST 1817 sqlite3_xferopt_count++; 1818 #endif 1819 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); 1820 v = sqlite3GetVdbe(pParse); 1821 sqlite3CodeVerifySchema(pParse, iDbSrc); 1822 iSrc = pParse->nTab++; 1823 iDest = pParse->nTab++; 1824 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 1825 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 1826 if( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 1827 || destHasUniqueIdx /* (2) */ 1828 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 1829 ){ 1830 /* In some circumstances, we are able to run the xfer optimization 1831 ** only if the destination table is initially empty. This code makes 1832 ** that determination. Conditions under which the destination must 1833 ** be empty: 1834 ** 1835 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 1836 ** (If the destination is not initially empty, the rowid fields 1837 ** of index entries might need to change.) 1838 ** 1839 ** (2) The destination has a unique index. (The xfer optimization 1840 ** is unable to test uniqueness.) 1841 ** 1842 ** (3) onError is something other than OE_Abort and OE_Rollback. 1843 */ 1844 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); 1845 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); 1846 sqlite3VdbeJumpHere(v, addr1); 1847 }else{ 1848 emptyDestTest = 0; 1849 } 1850 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 1851 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); 1852 regData = sqlite3GetTempReg(pParse); 1853 regRowid = sqlite3GetTempReg(pParse); 1854 if( pDest->iPKey>=0 ){ 1855 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 1856 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 1857 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_PRIMARYKEY, 1858 onError, "PRIMARY KEY must be unique", P4_STATIC); 1859 sqlite3VdbeJumpHere(v, addr2); 1860 autoIncStep(pParse, regAutoinc, regRowid); 1861 }else if( pDest->pIndex==0 ){ 1862 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 1863 }else{ 1864 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 1865 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 1866 } 1867 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); 1868 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 1869 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); 1870 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); 1871 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); 1872 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 1873 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 1874 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 1875 } 1876 assert( pSrcIdx ); 1877 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 1878 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 1879 pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); 1880 sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc, 1881 (char*)pKey, P4_KEYINFO_HANDOFF); 1882 VdbeComment((v, "%s", pSrcIdx->zName)); 1883 pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); 1884 sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest, 1885 (char*)pKey, P4_KEYINFO_HANDOFF); 1886 VdbeComment((v, "%s", pDestIdx->zName)); 1887 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); 1888 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); 1889 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); 1890 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); 1891 sqlite3VdbeJumpHere(v, addr1); 1892 } 1893 sqlite3VdbeJumpHere(v, emptySrcTest); 1894 sqlite3ReleaseTempReg(pParse, regRowid); 1895 sqlite3ReleaseTempReg(pParse, regData); 1896 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 1897 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 1898 if( emptyDestTest ){ 1899 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 1900 sqlite3VdbeJumpHere(v, emptyDestTest); 1901 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 1902 return 0; 1903 }else{ 1904 return 1; 1905 } 1906 } 1907 #endif /* SQLITE_OMIT_XFER_OPT */ 1908