1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum==pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'A' BLOB 60 ** 'B' TEXT 61 ** 'C' NUMERIC 62 ** 'D' INTEGER 63 ** 'F' REAL 64 ** 65 ** An extra 'D' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 85 if( !pIdx->zColAff ){ 86 sqlite3OomFault(db); 87 return 0; 88 } 89 for(n=0; n<pIdx->nColumn; n++){ 90 i16 x = pIdx->aiColumn[n]; 91 if( x>=0 ){ 92 pIdx->zColAff[n] = pTab->aCol[x].affinity; 93 }else if( x==XN_ROWID ){ 94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER; 95 }else{ 96 char aff; 97 assert( x==XN_EXPR ); 98 assert( pIdx->aColExpr!=0 ); 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 100 if( aff==0 ) aff = SQLITE_AFF_BLOB; 101 pIdx->zColAff[n] = aff; 102 } 103 } 104 pIdx->zColAff[n] = 0; 105 } 106 107 return pIdx->zColAff; 108 } 109 110 /* 111 ** Compute the affinity string for table pTab, if it has not already been 112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 113 ** 114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 116 ** for register iReg and following. Or if affinities exists and iReg==0, 117 ** then just set the P4 operand of the previous opcode (which should be 118 ** an OP_MakeRecord) to the affinity string. 119 ** 120 ** A column affinity string has one character per column: 121 ** 122 ** Character Column affinity 123 ** ------------------------------ 124 ** 'A' BLOB 125 ** 'B' TEXT 126 ** 'C' NUMERIC 127 ** 'D' INTEGER 128 ** 'E' REAL 129 */ 130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 131 int i; 132 char *zColAff = pTab->zColAff; 133 if( zColAff==0 ){ 134 sqlite3 *db = sqlite3VdbeDb(v); 135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 136 if( !zColAff ){ 137 sqlite3OomFault(db); 138 return; 139 } 140 141 for(i=0; i<pTab->nCol; i++){ 142 zColAff[i] = pTab->aCol[i].affinity; 143 } 144 do{ 145 zColAff[i--] = 0; 146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); 147 pTab->zColAff = zColAff; 148 } 149 i = sqlite3Strlen30(zColAff); 150 if( i ){ 151 if( iReg ){ 152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 153 }else{ 154 sqlite3VdbeChangeP4(v, -1, zColAff, i); 155 } 156 } 157 } 158 159 /* 160 ** Return non-zero if the table pTab in database iDb or any of its indices 161 ** have been opened at any point in the VDBE program. This is used to see if 162 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 163 ** run without using a temporary table for the results of the SELECT. 164 */ 165 static int readsTable(Parse *p, int iDb, Table *pTab){ 166 Vdbe *v = sqlite3GetVdbe(p); 167 int i; 168 int iEnd = sqlite3VdbeCurrentAddr(v); 169 #ifndef SQLITE_OMIT_VIRTUALTABLE 170 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 171 #endif 172 173 for(i=1; i<iEnd; i++){ 174 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 175 assert( pOp!=0 ); 176 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 177 Index *pIndex; 178 int tnum = pOp->p2; 179 if( tnum==pTab->tnum ){ 180 return 1; 181 } 182 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 183 if( tnum==pIndex->tnum ){ 184 return 1; 185 } 186 } 187 } 188 #ifndef SQLITE_OMIT_VIRTUALTABLE 189 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 190 assert( pOp->p4.pVtab!=0 ); 191 assert( pOp->p4type==P4_VTAB ); 192 return 1; 193 } 194 #endif 195 } 196 return 0; 197 } 198 199 #ifndef SQLITE_OMIT_AUTOINCREMENT 200 /* 201 ** Locate or create an AutoincInfo structure associated with table pTab 202 ** which is in database iDb. Return the register number for the register 203 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 204 ** table. (Also return zero when doing a VACUUM since we do not want to 205 ** update the AUTOINCREMENT counters during a VACUUM.) 206 ** 207 ** There is at most one AutoincInfo structure per table even if the 208 ** same table is autoincremented multiple times due to inserts within 209 ** triggers. A new AutoincInfo structure is created if this is the 210 ** first use of table pTab. On 2nd and subsequent uses, the original 211 ** AutoincInfo structure is used. 212 ** 213 ** Four consecutive registers are allocated: 214 ** 215 ** (1) The name of the pTab table. 216 ** (2) The maximum ROWID of pTab. 217 ** (3) The rowid in sqlite_sequence of pTab 218 ** (4) The original value of the max ROWID in pTab, or NULL if none 219 ** 220 ** The 2nd register is the one that is returned. That is all the 221 ** insert routine needs to know about. 222 */ 223 static int autoIncBegin( 224 Parse *pParse, /* Parsing context */ 225 int iDb, /* Index of the database holding pTab */ 226 Table *pTab /* The table we are writing to */ 227 ){ 228 int memId = 0; /* Register holding maximum rowid */ 229 if( (pTab->tabFlags & TF_Autoincrement)!=0 230 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 231 ){ 232 Parse *pToplevel = sqlite3ParseToplevel(pParse); 233 AutoincInfo *pInfo; 234 235 pInfo = pToplevel->pAinc; 236 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 237 if( pInfo==0 ){ 238 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 239 if( pInfo==0 ) return 0; 240 pInfo->pNext = pToplevel->pAinc; 241 pToplevel->pAinc = pInfo; 242 pInfo->pTab = pTab; 243 pInfo->iDb = iDb; 244 pToplevel->nMem++; /* Register to hold name of table */ 245 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 246 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 247 } 248 memId = pInfo->regCtr; 249 } 250 return memId; 251 } 252 253 /* 254 ** This routine generates code that will initialize all of the 255 ** register used by the autoincrement tracker. 256 */ 257 void sqlite3AutoincrementBegin(Parse *pParse){ 258 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 259 sqlite3 *db = pParse->db; /* The database connection */ 260 Db *pDb; /* Database only autoinc table */ 261 int memId; /* Register holding max rowid */ 262 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 263 264 /* This routine is never called during trigger-generation. It is 265 ** only called from the top-level */ 266 assert( pParse->pTriggerTab==0 ); 267 assert( sqlite3IsToplevel(pParse) ); 268 269 assert( v ); /* We failed long ago if this is not so */ 270 for(p = pParse->pAinc; p; p = p->pNext){ 271 static const int iLn = VDBE_OFFSET_LINENO(2); 272 static const VdbeOpList autoInc[] = { 273 /* 0 */ {OP_Null, 0, 0, 0}, 274 /* 1 */ {OP_Rewind, 0, 10, 0}, 275 /* 2 */ {OP_Column, 0, 0, 0}, 276 /* 3 */ {OP_Ne, 0, 9, 0}, 277 /* 4 */ {OP_Rowid, 0, 0, 0}, 278 /* 5 */ {OP_Column, 0, 1, 0}, 279 /* 6 */ {OP_AddImm, 0, 0, 0}, 280 /* 7 */ {OP_Copy, 0, 0, 0}, 281 /* 8 */ {OP_Goto, 0, 11, 0}, 282 /* 9 */ {OP_Next, 0, 2, 0}, 283 /* 10 */ {OP_Integer, 0, 0, 0}, 284 /* 11 */ {OP_Close, 0, 0, 0} 285 }; 286 VdbeOp *aOp; 287 pDb = &db->aDb[p->iDb]; 288 memId = p->regCtr; 289 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 290 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 291 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 292 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 293 if( aOp==0 ) break; 294 aOp[0].p2 = memId; 295 aOp[0].p3 = memId+2; 296 aOp[2].p3 = memId; 297 aOp[3].p1 = memId-1; 298 aOp[3].p3 = memId; 299 aOp[3].p5 = SQLITE_JUMPIFNULL; 300 aOp[4].p2 = memId+1; 301 aOp[5].p3 = memId; 302 aOp[6].p1 = memId; 303 aOp[7].p2 = memId+2; 304 aOp[7].p1 = memId; 305 aOp[10].p2 = memId; 306 } 307 } 308 309 /* 310 ** Update the maximum rowid for an autoincrement calculation. 311 ** 312 ** This routine should be called when the regRowid register holds a 313 ** new rowid that is about to be inserted. If that new rowid is 314 ** larger than the maximum rowid in the memId memory cell, then the 315 ** memory cell is updated. 316 */ 317 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 318 if( memId>0 ){ 319 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 320 } 321 } 322 323 /* 324 ** This routine generates the code needed to write autoincrement 325 ** maximum rowid values back into the sqlite_sequence register. 326 ** Every statement that might do an INSERT into an autoincrement 327 ** table (either directly or through triggers) needs to call this 328 ** routine just before the "exit" code. 329 */ 330 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 331 AutoincInfo *p; 332 Vdbe *v = pParse->pVdbe; 333 sqlite3 *db = pParse->db; 334 335 assert( v ); 336 for(p = pParse->pAinc; p; p = p->pNext){ 337 static const int iLn = VDBE_OFFSET_LINENO(2); 338 static const VdbeOpList autoIncEnd[] = { 339 /* 0 */ {OP_NotNull, 0, 2, 0}, 340 /* 1 */ {OP_NewRowid, 0, 0, 0}, 341 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 342 /* 3 */ {OP_Insert, 0, 0, 0}, 343 /* 4 */ {OP_Close, 0, 0, 0} 344 }; 345 VdbeOp *aOp; 346 Db *pDb = &db->aDb[p->iDb]; 347 int iRec; 348 int memId = p->regCtr; 349 350 iRec = sqlite3GetTempReg(pParse); 351 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 352 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 353 VdbeCoverage(v); 354 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 355 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 356 if( aOp==0 ) break; 357 aOp[0].p1 = memId+1; 358 aOp[1].p2 = memId+1; 359 aOp[2].p1 = memId-1; 360 aOp[2].p3 = iRec; 361 aOp[3].p2 = iRec; 362 aOp[3].p3 = memId+1; 363 aOp[3].p5 = OPFLAG_APPEND; 364 sqlite3ReleaseTempReg(pParse, iRec); 365 } 366 } 367 void sqlite3AutoincrementEnd(Parse *pParse){ 368 if( pParse->pAinc ) autoIncrementEnd(pParse); 369 } 370 #else 371 /* 372 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 373 ** above are all no-ops 374 */ 375 # define autoIncBegin(A,B,C) (0) 376 # define autoIncStep(A,B,C) 377 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 378 379 380 /* Forward declaration */ 381 static int xferOptimization( 382 Parse *pParse, /* Parser context */ 383 Table *pDest, /* The table we are inserting into */ 384 Select *pSelect, /* A SELECT statement to use as the data source */ 385 int onError, /* How to handle constraint errors */ 386 int iDbDest /* The database of pDest */ 387 ); 388 389 /* 390 ** This routine is called to handle SQL of the following forms: 391 ** 392 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 393 ** insert into TABLE (IDLIST) select 394 ** insert into TABLE (IDLIST) default values 395 ** 396 ** The IDLIST following the table name is always optional. If omitted, 397 ** then a list of all (non-hidden) columns for the table is substituted. 398 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 399 ** is omitted. 400 ** 401 ** For the pSelect parameter holds the values to be inserted for the 402 ** first two forms shown above. A VALUES clause is really just short-hand 403 ** for a SELECT statement that omits the FROM clause and everything else 404 ** that follows. If the pSelect parameter is NULL, that means that the 405 ** DEFAULT VALUES form of the INSERT statement is intended. 406 ** 407 ** The code generated follows one of four templates. For a simple 408 ** insert with data coming from a single-row VALUES clause, the code executes 409 ** once straight down through. Pseudo-code follows (we call this 410 ** the "1st template"): 411 ** 412 ** open write cursor to <table> and its indices 413 ** put VALUES clause expressions into registers 414 ** write the resulting record into <table> 415 ** cleanup 416 ** 417 ** The three remaining templates assume the statement is of the form 418 ** 419 ** INSERT INTO <table> SELECT ... 420 ** 421 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 422 ** in other words if the SELECT pulls all columns from a single table 423 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 424 ** if <table2> and <table1> are distinct tables but have identical 425 ** schemas, including all the same indices, then a special optimization 426 ** is invoked that copies raw records from <table2> over to <table1>. 427 ** See the xferOptimization() function for the implementation of this 428 ** template. This is the 2nd template. 429 ** 430 ** open a write cursor to <table> 431 ** open read cursor on <table2> 432 ** transfer all records in <table2> over to <table> 433 ** close cursors 434 ** foreach index on <table> 435 ** open a write cursor on the <table> index 436 ** open a read cursor on the corresponding <table2> index 437 ** transfer all records from the read to the write cursors 438 ** close cursors 439 ** end foreach 440 ** 441 ** The 3rd template is for when the second template does not apply 442 ** and the SELECT clause does not read from <table> at any time. 443 ** The generated code follows this template: 444 ** 445 ** X <- A 446 ** goto B 447 ** A: setup for the SELECT 448 ** loop over the rows in the SELECT 449 ** load values into registers R..R+n 450 ** yield X 451 ** end loop 452 ** cleanup after the SELECT 453 ** end-coroutine X 454 ** B: open write cursor to <table> and its indices 455 ** C: yield X, at EOF goto D 456 ** insert the select result into <table> from R..R+n 457 ** goto C 458 ** D: cleanup 459 ** 460 ** The 4th template is used if the insert statement takes its 461 ** values from a SELECT but the data is being inserted into a table 462 ** that is also read as part of the SELECT. In the third form, 463 ** we have to use an intermediate table to store the results of 464 ** the select. The template is like this: 465 ** 466 ** X <- A 467 ** goto B 468 ** A: setup for the SELECT 469 ** loop over the tables in the SELECT 470 ** load value into register R..R+n 471 ** yield X 472 ** end loop 473 ** cleanup after the SELECT 474 ** end co-routine R 475 ** B: open temp table 476 ** L: yield X, at EOF goto M 477 ** insert row from R..R+n into temp table 478 ** goto L 479 ** M: open write cursor to <table> and its indices 480 ** rewind temp table 481 ** C: loop over rows of intermediate table 482 ** transfer values form intermediate table into <table> 483 ** end loop 484 ** D: cleanup 485 */ 486 void sqlite3Insert( 487 Parse *pParse, /* Parser context */ 488 SrcList *pTabList, /* Name of table into which we are inserting */ 489 Select *pSelect, /* A SELECT statement to use as the data source */ 490 IdList *pColumn, /* Column names corresponding to IDLIST. */ 491 int onError /* How to handle constraint errors */ 492 ){ 493 sqlite3 *db; /* The main database structure */ 494 Table *pTab; /* The table to insert into. aka TABLE */ 495 int i, j; /* Loop counters */ 496 Vdbe *v; /* Generate code into this virtual machine */ 497 Index *pIdx; /* For looping over indices of the table */ 498 int nColumn; /* Number of columns in the data */ 499 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 500 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 501 int iIdxCur = 0; /* First index cursor */ 502 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 503 int endOfLoop; /* Label for the end of the insertion loop */ 504 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 505 int addrInsTop = 0; /* Jump to label "D" */ 506 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 507 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 508 int iDb; /* Index of database holding TABLE */ 509 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 510 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 511 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 512 u8 bIdListInOrder; /* True if IDLIST is in table order */ 513 ExprList *pList = 0; /* List of VALUES() to be inserted */ 514 515 /* Register allocations */ 516 int regFromSelect = 0;/* Base register for data coming from SELECT */ 517 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 518 int regRowCount = 0; /* Memory cell used for the row counter */ 519 int regIns; /* Block of regs holding rowid+data being inserted */ 520 int regRowid; /* registers holding insert rowid */ 521 int regData; /* register holding first column to insert */ 522 int *aRegIdx = 0; /* One register allocated to each index */ 523 524 #ifndef SQLITE_OMIT_TRIGGER 525 int isView; /* True if attempting to insert into a view */ 526 Trigger *pTrigger; /* List of triggers on pTab, if required */ 527 int tmask; /* Mask of trigger times */ 528 #endif 529 530 db = pParse->db; 531 if( pParse->nErr || db->mallocFailed ){ 532 goto insert_cleanup; 533 } 534 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 535 536 /* If the Select object is really just a simple VALUES() list with a 537 ** single row (the common case) then keep that one row of values 538 ** and discard the other (unused) parts of the pSelect object 539 */ 540 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 541 pList = pSelect->pEList; 542 pSelect->pEList = 0; 543 sqlite3SelectDelete(db, pSelect); 544 pSelect = 0; 545 } 546 547 /* Locate the table into which we will be inserting new information. 548 */ 549 assert( pTabList->nSrc==1 ); 550 pTab = sqlite3SrcListLookup(pParse, pTabList); 551 if( pTab==0 ){ 552 goto insert_cleanup; 553 } 554 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 555 assert( iDb<db->nDb ); 556 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 557 db->aDb[iDb].zDbSName) ){ 558 goto insert_cleanup; 559 } 560 withoutRowid = !HasRowid(pTab); 561 562 /* Figure out if we have any triggers and if the table being 563 ** inserted into is a view 564 */ 565 #ifndef SQLITE_OMIT_TRIGGER 566 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 567 isView = pTab->pSelect!=0; 568 #else 569 # define pTrigger 0 570 # define tmask 0 571 # define isView 0 572 #endif 573 #ifdef SQLITE_OMIT_VIEW 574 # undef isView 575 # define isView 0 576 #endif 577 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 578 579 /* If pTab is really a view, make sure it has been initialized. 580 ** ViewGetColumnNames() is a no-op if pTab is not a view. 581 */ 582 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 583 goto insert_cleanup; 584 } 585 586 /* Cannot insert into a read-only table. 587 */ 588 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 589 goto insert_cleanup; 590 } 591 592 /* Allocate a VDBE 593 */ 594 v = sqlite3GetVdbe(pParse); 595 if( v==0 ) goto insert_cleanup; 596 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 597 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 598 599 #ifndef SQLITE_OMIT_XFER_OPT 600 /* If the statement is of the form 601 ** 602 ** INSERT INTO <table1> SELECT * FROM <table2>; 603 ** 604 ** Then special optimizations can be applied that make the transfer 605 ** very fast and which reduce fragmentation of indices. 606 ** 607 ** This is the 2nd template. 608 */ 609 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 610 assert( !pTrigger ); 611 assert( pList==0 ); 612 goto insert_end; 613 } 614 #endif /* SQLITE_OMIT_XFER_OPT */ 615 616 /* If this is an AUTOINCREMENT table, look up the sequence number in the 617 ** sqlite_sequence table and store it in memory cell regAutoinc. 618 */ 619 regAutoinc = autoIncBegin(pParse, iDb, pTab); 620 621 /* Allocate registers for holding the rowid of the new row, 622 ** the content of the new row, and the assembled row record. 623 */ 624 regRowid = regIns = pParse->nMem+1; 625 pParse->nMem += pTab->nCol + 1; 626 if( IsVirtual(pTab) ){ 627 regRowid++; 628 pParse->nMem++; 629 } 630 regData = regRowid+1; 631 632 /* If the INSERT statement included an IDLIST term, then make sure 633 ** all elements of the IDLIST really are columns of the table and 634 ** remember the column indices. 635 ** 636 ** If the table has an INTEGER PRIMARY KEY column and that column 637 ** is named in the IDLIST, then record in the ipkColumn variable 638 ** the index into IDLIST of the primary key column. ipkColumn is 639 ** the index of the primary key as it appears in IDLIST, not as 640 ** is appears in the original table. (The index of the INTEGER 641 ** PRIMARY KEY in the original table is pTab->iPKey.) 642 */ 643 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; 644 if( pColumn ){ 645 for(i=0; i<pColumn->nId; i++){ 646 pColumn->a[i].idx = -1; 647 } 648 for(i=0; i<pColumn->nId; i++){ 649 for(j=0; j<pTab->nCol; j++){ 650 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 651 pColumn->a[i].idx = j; 652 if( i!=j ) bIdListInOrder = 0; 653 if( j==pTab->iPKey ){ 654 ipkColumn = i; assert( !withoutRowid ); 655 } 656 break; 657 } 658 } 659 if( j>=pTab->nCol ){ 660 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 661 ipkColumn = i; 662 bIdListInOrder = 0; 663 }else{ 664 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 665 pTabList, 0, pColumn->a[i].zName); 666 pParse->checkSchema = 1; 667 goto insert_cleanup; 668 } 669 } 670 } 671 } 672 673 /* Figure out how many columns of data are supplied. If the data 674 ** is coming from a SELECT statement, then generate a co-routine that 675 ** produces a single row of the SELECT on each invocation. The 676 ** co-routine is the common header to the 3rd and 4th templates. 677 */ 678 if( pSelect ){ 679 /* Data is coming from a SELECT or from a multi-row VALUES clause. 680 ** Generate a co-routine to run the SELECT. */ 681 int regYield; /* Register holding co-routine entry-point */ 682 int addrTop; /* Top of the co-routine */ 683 int rc; /* Result code */ 684 685 regYield = ++pParse->nMem; 686 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 687 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 688 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 689 dest.iSdst = bIdListInOrder ? regData : 0; 690 dest.nSdst = pTab->nCol; 691 rc = sqlite3Select(pParse, pSelect, &dest); 692 regFromSelect = dest.iSdst; 693 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 694 sqlite3VdbeEndCoroutine(v, regYield); 695 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 696 assert( pSelect->pEList ); 697 nColumn = pSelect->pEList->nExpr; 698 699 /* Set useTempTable to TRUE if the result of the SELECT statement 700 ** should be written into a temporary table (template 4). Set to 701 ** FALSE if each output row of the SELECT can be written directly into 702 ** the destination table (template 3). 703 ** 704 ** A temp table must be used if the table being updated is also one 705 ** of the tables being read by the SELECT statement. Also use a 706 ** temp table in the case of row triggers. 707 */ 708 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 709 useTempTable = 1; 710 } 711 712 if( useTempTable ){ 713 /* Invoke the coroutine to extract information from the SELECT 714 ** and add it to a transient table srcTab. The code generated 715 ** here is from the 4th template: 716 ** 717 ** B: open temp table 718 ** L: yield X, goto M at EOF 719 ** insert row from R..R+n into temp table 720 ** goto L 721 ** M: ... 722 */ 723 int regRec; /* Register to hold packed record */ 724 int regTempRowid; /* Register to hold temp table ROWID */ 725 int addrL; /* Label "L" */ 726 727 srcTab = pParse->nTab++; 728 regRec = sqlite3GetTempReg(pParse); 729 regTempRowid = sqlite3GetTempReg(pParse); 730 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 731 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 732 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 733 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 734 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 735 sqlite3VdbeGoto(v, addrL); 736 sqlite3VdbeJumpHere(v, addrL); 737 sqlite3ReleaseTempReg(pParse, regRec); 738 sqlite3ReleaseTempReg(pParse, regTempRowid); 739 } 740 }else{ 741 /* This is the case if the data for the INSERT is coming from a 742 ** single-row VALUES clause 743 */ 744 NameContext sNC; 745 memset(&sNC, 0, sizeof(sNC)); 746 sNC.pParse = pParse; 747 srcTab = -1; 748 assert( useTempTable==0 ); 749 if( pList ){ 750 nColumn = pList->nExpr; 751 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 752 goto insert_cleanup; 753 } 754 }else{ 755 nColumn = 0; 756 } 757 } 758 759 /* If there is no IDLIST term but the table has an integer primary 760 ** key, the set the ipkColumn variable to the integer primary key 761 ** column index in the original table definition. 762 */ 763 if( pColumn==0 && nColumn>0 ){ 764 ipkColumn = pTab->iPKey; 765 } 766 767 /* Make sure the number of columns in the source data matches the number 768 ** of columns to be inserted into the table. 769 */ 770 for(i=0; i<pTab->nCol; i++){ 771 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 772 } 773 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 774 sqlite3ErrorMsg(pParse, 775 "table %S has %d columns but %d values were supplied", 776 pTabList, 0, pTab->nCol-nHidden, nColumn); 777 goto insert_cleanup; 778 } 779 if( pColumn!=0 && nColumn!=pColumn->nId ){ 780 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 781 goto insert_cleanup; 782 } 783 784 /* Initialize the count of rows to be inserted 785 */ 786 if( db->flags & SQLITE_CountRows ){ 787 regRowCount = ++pParse->nMem; 788 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 789 } 790 791 /* If this is not a view, open the table and and all indices */ 792 if( !isView ){ 793 int nIdx; 794 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 795 &iDataCur, &iIdxCur); 796 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1)); 797 if( aRegIdx==0 ){ 798 goto insert_cleanup; 799 } 800 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 801 assert( pIdx ); 802 aRegIdx[i] = ++pParse->nMem; 803 pParse->nMem += pIdx->nColumn; 804 } 805 } 806 807 /* This is the top of the main insertion loop */ 808 if( useTempTable ){ 809 /* This block codes the top of loop only. The complete loop is the 810 ** following pseudocode (template 4): 811 ** 812 ** rewind temp table, if empty goto D 813 ** C: loop over rows of intermediate table 814 ** transfer values form intermediate table into <table> 815 ** end loop 816 ** D: ... 817 */ 818 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 819 addrCont = sqlite3VdbeCurrentAddr(v); 820 }else if( pSelect ){ 821 /* This block codes the top of loop only. The complete loop is the 822 ** following pseudocode (template 3): 823 ** 824 ** C: yield X, at EOF goto D 825 ** insert the select result into <table> from R..R+n 826 ** goto C 827 ** D: ... 828 */ 829 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 830 VdbeCoverage(v); 831 } 832 833 /* Run the BEFORE and INSTEAD OF triggers, if there are any 834 */ 835 endOfLoop = sqlite3VdbeMakeLabel(v); 836 if( tmask & TRIGGER_BEFORE ){ 837 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 838 839 /* build the NEW.* reference row. Note that if there is an INTEGER 840 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 841 ** translated into a unique ID for the row. But on a BEFORE trigger, 842 ** we do not know what the unique ID will be (because the insert has 843 ** not happened yet) so we substitute a rowid of -1 844 */ 845 if( ipkColumn<0 ){ 846 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 847 }else{ 848 int addr1; 849 assert( !withoutRowid ); 850 if( useTempTable ){ 851 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 852 }else{ 853 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 854 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 855 } 856 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 857 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 858 sqlite3VdbeJumpHere(v, addr1); 859 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 860 } 861 862 /* Cannot have triggers on a virtual table. If it were possible, 863 ** this block would have to account for hidden column. 864 */ 865 assert( !IsVirtual(pTab) ); 866 867 /* Create the new column data 868 */ 869 for(i=j=0; i<pTab->nCol; i++){ 870 if( pColumn ){ 871 for(j=0; j<pColumn->nId; j++){ 872 if( pColumn->a[j].idx==i ) break; 873 } 874 } 875 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) 876 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ 877 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 878 }else if( useTempTable ){ 879 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 880 }else{ 881 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 882 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 883 } 884 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; 885 } 886 887 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 888 ** do not attempt any conversions before assembling the record. 889 ** If this is a real table, attempt conversions as required by the 890 ** table column affinities. 891 */ 892 if( !isView ){ 893 sqlite3TableAffinity(v, pTab, regCols+1); 894 } 895 896 /* Fire BEFORE or INSTEAD OF triggers */ 897 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 898 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 899 900 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 901 } 902 903 /* Compute the content of the next row to insert into a range of 904 ** registers beginning at regIns. 905 */ 906 if( !isView ){ 907 if( IsVirtual(pTab) ){ 908 /* The row that the VUpdate opcode will delete: none */ 909 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 910 } 911 if( ipkColumn>=0 ){ 912 if( useTempTable ){ 913 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 914 }else if( pSelect ){ 915 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 916 }else{ 917 VdbeOp *pOp; 918 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 919 pOp = sqlite3VdbeGetOp(v, -1); 920 assert( pOp!=0 ); 921 if( pOp->opcode==OP_Null && !IsVirtual(pTab) ){ 922 appendFlag = 1; 923 pOp->opcode = OP_NewRowid; 924 pOp->p1 = iDataCur; 925 pOp->p2 = regRowid; 926 pOp->p3 = regAutoinc; 927 } 928 } 929 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 930 ** to generate a unique primary key value. 931 */ 932 if( !appendFlag ){ 933 int addr1; 934 if( !IsVirtual(pTab) ){ 935 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 936 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 937 sqlite3VdbeJumpHere(v, addr1); 938 }else{ 939 addr1 = sqlite3VdbeCurrentAddr(v); 940 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 941 } 942 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 943 } 944 }else if( IsVirtual(pTab) || withoutRowid ){ 945 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 946 }else{ 947 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 948 appendFlag = 1; 949 } 950 autoIncStep(pParse, regAutoinc, regRowid); 951 952 /* Compute data for all columns of the new entry, beginning 953 ** with the first column. 954 */ 955 nHidden = 0; 956 for(i=0; i<pTab->nCol; i++){ 957 int iRegStore = regRowid+1+i; 958 if( i==pTab->iPKey ){ 959 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 960 ** Whenever this column is read, the rowid will be substituted 961 ** in its place. Hence, fill this column with a NULL to avoid 962 ** taking up data space with information that will never be used. 963 ** As there may be shallow copies of this value, make it a soft-NULL */ 964 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 965 continue; 966 } 967 if( pColumn==0 ){ 968 if( IsHiddenColumn(&pTab->aCol[i]) ){ 969 j = -1; 970 nHidden++; 971 }else{ 972 j = i - nHidden; 973 } 974 }else{ 975 for(j=0; j<pColumn->nId; j++){ 976 if( pColumn->a[j].idx==i ) break; 977 } 978 } 979 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 980 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 981 }else if( useTempTable ){ 982 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 983 }else if( pSelect ){ 984 if( regFromSelect!=regData ){ 985 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 986 } 987 }else{ 988 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 989 } 990 } 991 992 /* Generate code to check constraints and generate index keys and 993 ** do the insertion. 994 */ 995 #ifndef SQLITE_OMIT_VIRTUALTABLE 996 if( IsVirtual(pTab) ){ 997 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 998 sqlite3VtabMakeWritable(pParse, pTab); 999 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1000 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1001 sqlite3MayAbort(pParse); 1002 }else 1003 #endif 1004 { 1005 int isReplace; /* Set to true if constraints may cause a replace */ 1006 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1007 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1008 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0 1009 ); 1010 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1011 1012 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1013 ** constraints or (b) there are no triggers and this table is not a 1014 ** parent table in a foreign key constraint. It is safe to set the 1015 ** flag in the second case as if any REPLACE constraint is hit, an 1016 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1017 ** cursor that is disturbed. And these instructions both clear the 1018 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1019 ** functionality. */ 1020 bUseSeek = (isReplace==0 || (pTrigger==0 && 1021 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0) 1022 )); 1023 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1024 regIns, aRegIdx, 0, appendFlag, bUseSeek 1025 ); 1026 } 1027 } 1028 1029 /* Update the count of rows that are inserted 1030 */ 1031 if( (db->flags & SQLITE_CountRows)!=0 ){ 1032 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1033 } 1034 1035 if( pTrigger ){ 1036 /* Code AFTER triggers */ 1037 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1038 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1039 } 1040 1041 /* The bottom of the main insertion loop, if the data source 1042 ** is a SELECT statement. 1043 */ 1044 sqlite3VdbeResolveLabel(v, endOfLoop); 1045 if( useTempTable ){ 1046 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1047 sqlite3VdbeJumpHere(v, addrInsTop); 1048 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1049 }else if( pSelect ){ 1050 sqlite3VdbeGoto(v, addrCont); 1051 sqlite3VdbeJumpHere(v, addrInsTop); 1052 } 1053 1054 insert_end: 1055 /* Update the sqlite_sequence table by storing the content of the 1056 ** maximum rowid counter values recorded while inserting into 1057 ** autoincrement tables. 1058 */ 1059 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1060 sqlite3AutoincrementEnd(pParse); 1061 } 1062 1063 /* 1064 ** Return the number of rows inserted. If this routine is 1065 ** generating code because of a call to sqlite3NestedParse(), do not 1066 ** invoke the callback function. 1067 */ 1068 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ 1069 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1070 sqlite3VdbeSetNumCols(v, 1); 1071 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1072 } 1073 1074 insert_cleanup: 1075 sqlite3SrcListDelete(db, pTabList); 1076 sqlite3ExprListDelete(db, pList); 1077 sqlite3SelectDelete(db, pSelect); 1078 sqlite3IdListDelete(db, pColumn); 1079 sqlite3DbFree(db, aRegIdx); 1080 } 1081 1082 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1083 ** they may interfere with compilation of other functions in this file 1084 ** (or in another file, if this file becomes part of the amalgamation). */ 1085 #ifdef isView 1086 #undef isView 1087 #endif 1088 #ifdef pTrigger 1089 #undef pTrigger 1090 #endif 1091 #ifdef tmask 1092 #undef tmask 1093 #endif 1094 1095 /* 1096 ** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged() 1097 */ 1098 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1099 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1100 1101 /* This is the Walker callback from checkConstraintUnchanged(). Set 1102 ** bit 0x01 of pWalker->eCode if 1103 ** pWalker->eCode to 0 if this expression node references any of the 1104 ** columns that are being modifed by an UPDATE statement. 1105 */ 1106 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1107 if( pExpr->op==TK_COLUMN ){ 1108 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1109 if( pExpr->iColumn>=0 ){ 1110 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1111 pWalker->eCode |= CKCNSTRNT_COLUMN; 1112 } 1113 }else{ 1114 pWalker->eCode |= CKCNSTRNT_ROWID; 1115 } 1116 } 1117 return WRC_Continue; 1118 } 1119 1120 /* 1121 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1122 ** only columns that are modified by the UPDATE are those for which 1123 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1124 ** 1125 ** Return true if CHECK constraint pExpr does not use any of the 1126 ** changing columns (or the rowid if it is changing). In other words, 1127 ** return true if this CHECK constraint can be skipped when validating 1128 ** the new row in the UPDATE statement. 1129 */ 1130 static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){ 1131 Walker w; 1132 memset(&w, 0, sizeof(w)); 1133 w.eCode = 0; 1134 w.xExprCallback = checkConstraintExprNode; 1135 w.u.aiCol = aiChng; 1136 sqlite3WalkExpr(&w, pExpr); 1137 if( !chngRowid ){ 1138 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1139 w.eCode &= ~CKCNSTRNT_ROWID; 1140 } 1141 testcase( w.eCode==0 ); 1142 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1143 testcase( w.eCode==CKCNSTRNT_ROWID ); 1144 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1145 return !w.eCode; 1146 } 1147 1148 /* 1149 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1150 ** on table pTab. 1151 ** 1152 ** The regNewData parameter is the first register in a range that contains 1153 ** the data to be inserted or the data after the update. There will be 1154 ** pTab->nCol+1 registers in this range. The first register (the one 1155 ** that regNewData points to) will contain the new rowid, or NULL in the 1156 ** case of a WITHOUT ROWID table. The second register in the range will 1157 ** contain the content of the first table column. The third register will 1158 ** contain the content of the second table column. And so forth. 1159 ** 1160 ** The regOldData parameter is similar to regNewData except that it contains 1161 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1162 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1163 ** checking regOldData for zero. 1164 ** 1165 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1166 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1167 ** might be modified by the UPDATE. If pkChng is false, then the key of 1168 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1169 ** 1170 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1171 ** was explicitly specified as part of the INSERT statement. If pkChng 1172 ** is zero, it means that the either rowid is computed automatically or 1173 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1174 ** pkChng will only be true if the INSERT statement provides an integer 1175 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1176 ** 1177 ** The code generated by this routine will store new index entries into 1178 ** registers identified by aRegIdx[]. No index entry is created for 1179 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1180 ** the same as the order of indices on the linked list of indices 1181 ** at pTab->pIndex. 1182 ** 1183 ** The caller must have already opened writeable cursors on the main 1184 ** table and all applicable indices (that is to say, all indices for which 1185 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1186 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1187 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1188 ** for the first index in the pTab->pIndex list. Cursors for other indices 1189 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1190 ** 1191 ** This routine also generates code to check constraints. NOT NULL, 1192 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1193 ** then the appropriate action is performed. There are five possible 1194 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1195 ** 1196 ** Constraint type Action What Happens 1197 ** --------------- ---------- ---------------------------------------- 1198 ** any ROLLBACK The current transaction is rolled back and 1199 ** sqlite3_step() returns immediately with a 1200 ** return code of SQLITE_CONSTRAINT. 1201 ** 1202 ** any ABORT Back out changes from the current command 1203 ** only (do not do a complete rollback) then 1204 ** cause sqlite3_step() to return immediately 1205 ** with SQLITE_CONSTRAINT. 1206 ** 1207 ** any FAIL Sqlite3_step() returns immediately with a 1208 ** return code of SQLITE_CONSTRAINT. The 1209 ** transaction is not rolled back and any 1210 ** changes to prior rows are retained. 1211 ** 1212 ** any IGNORE The attempt in insert or update the current 1213 ** row is skipped, without throwing an error. 1214 ** Processing continues with the next row. 1215 ** (There is an immediate jump to ignoreDest.) 1216 ** 1217 ** NOT NULL REPLACE The NULL value is replace by the default 1218 ** value for that column. If the default value 1219 ** is NULL, the action is the same as ABORT. 1220 ** 1221 ** UNIQUE REPLACE The other row that conflicts with the row 1222 ** being inserted is removed. 1223 ** 1224 ** CHECK REPLACE Illegal. The results in an exception. 1225 ** 1226 ** Which action to take is determined by the overrideError parameter. 1227 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1228 ** is used. Or if pParse->onError==OE_Default then the onError value 1229 ** for the constraint is used. 1230 */ 1231 void sqlite3GenerateConstraintChecks( 1232 Parse *pParse, /* The parser context */ 1233 Table *pTab, /* The table being inserted or updated */ 1234 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1235 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1236 int iIdxCur, /* First index cursor */ 1237 int regNewData, /* First register in a range holding values to insert */ 1238 int regOldData, /* Previous content. 0 for INSERTs */ 1239 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1240 u8 overrideError, /* Override onError to this if not OE_Default */ 1241 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1242 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1243 int *aiChng /* column i is unchanged if aiChng[i]<0 */ 1244 ){ 1245 Vdbe *v; /* VDBE under constrution */ 1246 Index *pIdx; /* Pointer to one of the indices */ 1247 Index *pPk = 0; /* The PRIMARY KEY index */ 1248 sqlite3 *db; /* Database connection */ 1249 int i; /* loop counter */ 1250 int ix; /* Index loop counter */ 1251 int nCol; /* Number of columns */ 1252 int onError; /* Conflict resolution strategy */ 1253 int addr1; /* Address of jump instruction */ 1254 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1255 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1256 int ipkTop = 0; /* Top of the rowid change constraint check */ 1257 int ipkBottom = 0; /* Bottom of the rowid change constraint check */ 1258 u8 isUpdate; /* True if this is an UPDATE operation */ 1259 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1260 1261 isUpdate = regOldData!=0; 1262 db = pParse->db; 1263 v = sqlite3GetVdbe(pParse); 1264 assert( v!=0 ); 1265 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1266 nCol = pTab->nCol; 1267 1268 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1269 ** normal rowid tables. nPkField is the number of key fields in the 1270 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1271 ** number of fields in the true primary key of the table. */ 1272 if( HasRowid(pTab) ){ 1273 pPk = 0; 1274 nPkField = 1; 1275 }else{ 1276 pPk = sqlite3PrimaryKeyIndex(pTab); 1277 nPkField = pPk->nKeyCol; 1278 } 1279 1280 /* Record that this module has started */ 1281 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1282 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1283 1284 /* Test all NOT NULL constraints. 1285 */ 1286 for(i=0; i<nCol; i++){ 1287 if( i==pTab->iPKey ){ 1288 continue; /* ROWID is never NULL */ 1289 } 1290 if( aiChng && aiChng[i]<0 ){ 1291 /* Don't bother checking for NOT NULL on columns that do not change */ 1292 continue; 1293 } 1294 onError = pTab->aCol[i].notNull; 1295 if( onError==OE_None ) continue; /* This column is allowed to be NULL */ 1296 if( overrideError!=OE_Default ){ 1297 onError = overrideError; 1298 }else if( onError==OE_Default ){ 1299 onError = OE_Abort; 1300 } 1301 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1302 onError = OE_Abort; 1303 } 1304 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1305 || onError==OE_Ignore || onError==OE_Replace ); 1306 switch( onError ){ 1307 case OE_Abort: 1308 sqlite3MayAbort(pParse); 1309 /* Fall through */ 1310 case OE_Rollback: 1311 case OE_Fail: { 1312 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1313 pTab->aCol[i].zName); 1314 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 1315 regNewData+1+i); 1316 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1317 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1318 VdbeCoverage(v); 1319 break; 1320 } 1321 case OE_Ignore: { 1322 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 1323 VdbeCoverage(v); 1324 break; 1325 } 1326 default: { 1327 assert( onError==OE_Replace ); 1328 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); 1329 VdbeCoverage(v); 1330 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1331 sqlite3VdbeJumpHere(v, addr1); 1332 break; 1333 } 1334 } 1335 } 1336 1337 /* Test all CHECK constraints 1338 */ 1339 #ifndef SQLITE_OMIT_CHECK 1340 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1341 ExprList *pCheck = pTab->pCheck; 1342 pParse->iSelfTab = -(regNewData+1); 1343 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1344 for(i=0; i<pCheck->nExpr; i++){ 1345 int allOk; 1346 Expr *pExpr = pCheck->a[i].pExpr; 1347 if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue; 1348 allOk = sqlite3VdbeMakeLabel(v); 1349 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 1350 if( onError==OE_Ignore ){ 1351 sqlite3VdbeGoto(v, ignoreDest); 1352 }else{ 1353 char *zName = pCheck->a[i].zName; 1354 if( zName==0 ) zName = pTab->zName; 1355 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ 1356 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1357 onError, zName, P4_TRANSIENT, 1358 P5_ConstraintCheck); 1359 } 1360 sqlite3VdbeResolveLabel(v, allOk); 1361 } 1362 pParse->iSelfTab = 0; 1363 } 1364 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1365 1366 /* If rowid is changing, make sure the new rowid does not previously 1367 ** exist in the table. 1368 */ 1369 if( pkChng && pPk==0 ){ 1370 int addrRowidOk = sqlite3VdbeMakeLabel(v); 1371 1372 /* Figure out what action to take in case of a rowid collision */ 1373 onError = pTab->keyConf; 1374 if( overrideError!=OE_Default ){ 1375 onError = overrideError; 1376 }else if( onError==OE_Default ){ 1377 onError = OE_Abort; 1378 } 1379 1380 if( isUpdate ){ 1381 /* pkChng!=0 does not mean that the rowid has changed, only that 1382 ** it might have changed. Skip the conflict logic below if the rowid 1383 ** is unchanged. */ 1384 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1385 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1386 VdbeCoverage(v); 1387 } 1388 1389 /* If the response to a rowid conflict is REPLACE but the response 1390 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1391 ** to defer the running of the rowid conflict checking until after 1392 ** the UNIQUE constraints have run. 1393 */ 1394 if( onError==OE_Replace && overrideError!=OE_Replace ){ 1395 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1396 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ 1397 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); 1398 break; 1399 } 1400 } 1401 } 1402 1403 /* Check to see if the new rowid already exists in the table. Skip 1404 ** the following conflict logic if it does not. */ 1405 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1406 VdbeCoverage(v); 1407 1408 /* Generate code that deals with a rowid collision */ 1409 switch( onError ){ 1410 default: { 1411 onError = OE_Abort; 1412 /* Fall thru into the next case */ 1413 } 1414 case OE_Rollback: 1415 case OE_Abort: 1416 case OE_Fail: { 1417 sqlite3RowidConstraint(pParse, onError, pTab); 1418 break; 1419 } 1420 case OE_Replace: { 1421 /* If there are DELETE triggers on this table and the 1422 ** recursive-triggers flag is set, call GenerateRowDelete() to 1423 ** remove the conflicting row from the table. This will fire 1424 ** the triggers and remove both the table and index b-tree entries. 1425 ** 1426 ** Otherwise, if there are no triggers or the recursive-triggers 1427 ** flag is not set, but the table has one or more indexes, call 1428 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1429 ** only. The table b-tree entry will be replaced by the new entry 1430 ** when it is inserted. 1431 ** 1432 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1433 ** also invoke MultiWrite() to indicate that this VDBE may require 1434 ** statement rollback (if the statement is aborted after the delete 1435 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1436 ** but being more selective here allows statements like: 1437 ** 1438 ** REPLACE INTO t(rowid) VALUES($newrowid) 1439 ** 1440 ** to run without a statement journal if there are no indexes on the 1441 ** table. 1442 */ 1443 Trigger *pTrigger = 0; 1444 if( db->flags&SQLITE_RecTriggers ){ 1445 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1446 } 1447 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1448 sqlite3MultiWrite(pParse); 1449 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1450 regNewData, 1, 0, OE_Replace, 1, -1); 1451 }else{ 1452 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1453 if( HasRowid(pTab) ){ 1454 /* This OP_Delete opcode fires the pre-update-hook only. It does 1455 ** not modify the b-tree. It is more efficient to let the coming 1456 ** OP_Insert replace the existing entry than it is to delete the 1457 ** existing entry and then insert a new one. */ 1458 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1459 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1460 } 1461 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1462 if( pTab->pIndex ){ 1463 sqlite3MultiWrite(pParse); 1464 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1465 } 1466 } 1467 seenReplace = 1; 1468 break; 1469 } 1470 case OE_Ignore: { 1471 /*assert( seenReplace==0 );*/ 1472 sqlite3VdbeGoto(v, ignoreDest); 1473 break; 1474 } 1475 } 1476 sqlite3VdbeResolveLabel(v, addrRowidOk); 1477 if( ipkTop ){ 1478 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1479 sqlite3VdbeJumpHere(v, ipkTop); 1480 } 1481 } 1482 1483 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1484 ** index and making sure that duplicate entries do not already exist. 1485 ** Compute the revised record entries for indices as we go. 1486 ** 1487 ** This loop also handles the case of the PRIMARY KEY index for a 1488 ** WITHOUT ROWID table. 1489 */ 1490 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1491 int regIdx; /* Range of registers hold conent for pIdx */ 1492 int regR; /* Range of registers holding conflicting PK */ 1493 int iThisCur; /* Cursor for this UNIQUE index */ 1494 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1495 1496 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1497 if( bAffinityDone==0 ){ 1498 sqlite3TableAffinity(v, pTab, regNewData+1); 1499 bAffinityDone = 1; 1500 } 1501 iThisCur = iIdxCur+ix; 1502 addrUniqueOk = sqlite3VdbeMakeLabel(v); 1503 1504 /* Skip partial indices for which the WHERE clause is not true */ 1505 if( pIdx->pPartIdxWhere ){ 1506 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1507 pParse->iSelfTab = -(regNewData+1); 1508 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1509 SQLITE_JUMPIFNULL); 1510 pParse->iSelfTab = 0; 1511 } 1512 1513 /* Create a record for this index entry as it should appear after 1514 ** the insert or update. Store that record in the aRegIdx[ix] register 1515 */ 1516 regIdx = aRegIdx[ix]+1; 1517 for(i=0; i<pIdx->nColumn; i++){ 1518 int iField = pIdx->aiColumn[i]; 1519 int x; 1520 if( iField==XN_EXPR ){ 1521 pParse->iSelfTab = -(regNewData+1); 1522 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1523 pParse->iSelfTab = 0; 1524 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1525 }else{ 1526 if( iField==XN_ROWID || iField==pTab->iPKey ){ 1527 x = regNewData; 1528 }else{ 1529 x = iField + regNewData + 1; 1530 } 1531 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); 1532 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 1533 } 1534 } 1535 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1536 VdbeComment((v, "for %s", pIdx->zName)); 1537 #ifdef SQLITE_ENABLE_NULL_TRIM 1538 if( pIdx->idxType==2 ) sqlite3SetMakeRecordP5(v, pIdx->pTable); 1539 #endif 1540 1541 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1542 ** of a WITHOUT ROWID table and there has been no change the 1543 ** primary key, then no collision is possible. The collision detection 1544 ** logic below can all be skipped. */ 1545 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1546 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1547 continue; 1548 } 1549 1550 /* Find out what action to take in case there is a uniqueness conflict */ 1551 onError = pIdx->onError; 1552 if( onError==OE_None ){ 1553 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1554 continue; /* pIdx is not a UNIQUE index */ 1555 } 1556 if( overrideError!=OE_Default ){ 1557 onError = overrideError; 1558 }else if( onError==OE_Default ){ 1559 onError = OE_Abort; 1560 } 1561 1562 /* Collision detection may be omitted if all of the following are true: 1563 ** (1) The conflict resolution algorithm is REPLACE 1564 ** (2) The table is a WITHOUT ROWID table 1565 ** (3) There are no secondary indexes on the table 1566 ** (4) No delete triggers need to be fired if there is a conflict 1567 ** (5) No FK constraint counters need to be updated if a conflict occurs. 1568 */ 1569 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 1570 && pPk==pIdx /* Condition 2 */ 1571 && onError==OE_Replace /* Condition 1 */ 1572 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 1573 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 1574 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 1575 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 1576 ){ 1577 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1578 continue; 1579 } 1580 1581 /* Check to see if the new index entry will be unique */ 1582 sqlite3ExprCachePush(pParse); 1583 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1584 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 1585 1586 /* Generate code to handle collisions */ 1587 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1588 if( isUpdate || onError==OE_Replace ){ 1589 if( HasRowid(pTab) ){ 1590 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1591 /* Conflict only if the rowid of the existing index entry 1592 ** is different from old-rowid */ 1593 if( isUpdate ){ 1594 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1595 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1596 VdbeCoverage(v); 1597 } 1598 }else{ 1599 int x; 1600 /* Extract the PRIMARY KEY from the end of the index entry and 1601 ** store it in registers regR..regR+nPk-1 */ 1602 if( pIdx!=pPk ){ 1603 for(i=0; i<pPk->nKeyCol; i++){ 1604 assert( pPk->aiColumn[i]>=0 ); 1605 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 1606 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1607 VdbeComment((v, "%s.%s", pTab->zName, 1608 pTab->aCol[pPk->aiColumn[i]].zName)); 1609 } 1610 } 1611 if( isUpdate ){ 1612 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1613 ** table, only conflict if the new PRIMARY KEY values are actually 1614 ** different from the old. 1615 ** 1616 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 1617 ** of the matched index row are different from the original PRIMARY 1618 ** KEY values of this row before the update. */ 1619 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 1620 int op = OP_Ne; 1621 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 1622 1623 for(i=0; i<pPk->nKeyCol; i++){ 1624 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 1625 x = pPk->aiColumn[i]; 1626 assert( x>=0 ); 1627 if( i==(pPk->nKeyCol-1) ){ 1628 addrJump = addrUniqueOk; 1629 op = OP_Eq; 1630 } 1631 sqlite3VdbeAddOp4(v, op, 1632 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 1633 ); 1634 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1635 VdbeCoverageIf(v, op==OP_Eq); 1636 VdbeCoverageIf(v, op==OP_Ne); 1637 } 1638 } 1639 } 1640 } 1641 1642 /* Generate code that executes if the new index entry is not unique */ 1643 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1644 || onError==OE_Ignore || onError==OE_Replace ); 1645 switch( onError ){ 1646 case OE_Rollback: 1647 case OE_Abort: 1648 case OE_Fail: { 1649 sqlite3UniqueConstraint(pParse, onError, pIdx); 1650 break; 1651 } 1652 case OE_Ignore: { 1653 sqlite3VdbeGoto(v, ignoreDest); 1654 break; 1655 } 1656 default: { 1657 Trigger *pTrigger = 0; 1658 assert( onError==OE_Replace ); 1659 sqlite3MultiWrite(pParse); 1660 if( db->flags&SQLITE_RecTriggers ){ 1661 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1662 } 1663 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1664 regR, nPkField, 0, OE_Replace, 1665 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 1666 seenReplace = 1; 1667 break; 1668 } 1669 } 1670 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1671 sqlite3ExprCachePop(pParse); 1672 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 1673 } 1674 if( ipkTop ){ 1675 sqlite3VdbeGoto(v, ipkTop+1); 1676 sqlite3VdbeJumpHere(v, ipkBottom); 1677 } 1678 1679 *pbMayReplace = seenReplace; 1680 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 1681 } 1682 1683 #ifdef SQLITE_ENABLE_NULL_TRIM 1684 /* 1685 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 1686 ** to be the number of columns in table pTab that must not be NULL-trimmed. 1687 ** 1688 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 1689 */ 1690 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 1691 u16 i; 1692 1693 /* Records with omitted columns are only allowed for schema format 1694 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 1695 if( pTab->pSchema->file_format<2 ) return; 1696 1697 for(i=pTab->nCol-1; i>0; i--){ 1698 if( pTab->aCol[i].pDflt!=0 ) break; 1699 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 1700 } 1701 sqlite3VdbeChangeP5(v, i+1); 1702 } 1703 #endif 1704 1705 /* 1706 ** This routine generates code to finish the INSERT or UPDATE operation 1707 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1708 ** A consecutive range of registers starting at regNewData contains the 1709 ** rowid and the content to be inserted. 1710 ** 1711 ** The arguments to this routine should be the same as the first six 1712 ** arguments to sqlite3GenerateConstraintChecks. 1713 */ 1714 void sqlite3CompleteInsertion( 1715 Parse *pParse, /* The parser context */ 1716 Table *pTab, /* the table into which we are inserting */ 1717 int iDataCur, /* Cursor of the canonical data source */ 1718 int iIdxCur, /* First index cursor */ 1719 int regNewData, /* Range of content */ 1720 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1721 int update_flags, /* True for UPDATE, False for INSERT */ 1722 int appendBias, /* True if this is likely to be an append */ 1723 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1724 ){ 1725 Vdbe *v; /* Prepared statements under construction */ 1726 Index *pIdx; /* An index being inserted or updated */ 1727 u8 pik_flags; /* flag values passed to the btree insert */ 1728 int regData; /* Content registers (after the rowid) */ 1729 int regRec; /* Register holding assembled record for the table */ 1730 int i; /* Loop counter */ 1731 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ 1732 1733 assert( update_flags==0 1734 || update_flags==OPFLAG_ISUPDATE 1735 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 1736 ); 1737 1738 v = sqlite3GetVdbe(pParse); 1739 assert( v!=0 ); 1740 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1741 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1742 if( aRegIdx[i]==0 ) continue; 1743 bAffinityDone = 1; 1744 if( pIdx->pPartIdxWhere ){ 1745 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 1746 VdbeCoverage(v); 1747 } 1748 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 1749 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1750 assert( pParse->nested==0 ); 1751 pik_flags |= OPFLAG_NCHANGE; 1752 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 1753 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1754 if( update_flags==0 ){ 1755 sqlite3VdbeAddOp4(v, OP_InsertInt, 1756 iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE 1757 ); 1758 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 1759 } 1760 #endif 1761 } 1762 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 1763 aRegIdx[i]+1, 1764 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 1765 sqlite3VdbeChangeP5(v, pik_flags); 1766 } 1767 if( !HasRowid(pTab) ) return; 1768 regData = regNewData + 1; 1769 regRec = sqlite3GetTempReg(pParse); 1770 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); 1771 sqlite3SetMakeRecordP5(v, pTab); 1772 if( !bAffinityDone ){ 1773 sqlite3TableAffinity(v, pTab, 0); 1774 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); 1775 } 1776 if( pParse->nested ){ 1777 pik_flags = 0; 1778 }else{ 1779 pik_flags = OPFLAG_NCHANGE; 1780 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 1781 } 1782 if( appendBias ){ 1783 pik_flags |= OPFLAG_APPEND; 1784 } 1785 if( useSeekResult ){ 1786 pik_flags |= OPFLAG_USESEEKRESULT; 1787 } 1788 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); 1789 if( !pParse->nested ){ 1790 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1791 } 1792 sqlite3VdbeChangeP5(v, pik_flags); 1793 } 1794 1795 /* 1796 ** Allocate cursors for the pTab table and all its indices and generate 1797 ** code to open and initialized those cursors. 1798 ** 1799 ** The cursor for the object that contains the complete data (normally 1800 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 1801 ** ROWID table) is returned in *piDataCur. The first index cursor is 1802 ** returned in *piIdxCur. The number of indices is returned. 1803 ** 1804 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 1805 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 1806 ** If iBase is negative, then allocate the next available cursor. 1807 ** 1808 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 1809 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 1810 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 1811 ** pTab->pIndex list. 1812 ** 1813 ** If pTab is a virtual table, then this routine is a no-op and the 1814 ** *piDataCur and *piIdxCur values are left uninitialized. 1815 */ 1816 int sqlite3OpenTableAndIndices( 1817 Parse *pParse, /* Parsing context */ 1818 Table *pTab, /* Table to be opened */ 1819 int op, /* OP_OpenRead or OP_OpenWrite */ 1820 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 1821 int iBase, /* Use this for the table cursor, if there is one */ 1822 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 1823 int *piDataCur, /* Write the database source cursor number here */ 1824 int *piIdxCur /* Write the first index cursor number here */ 1825 ){ 1826 int i; 1827 int iDb; 1828 int iDataCur; 1829 Index *pIdx; 1830 Vdbe *v; 1831 1832 assert( op==OP_OpenRead || op==OP_OpenWrite ); 1833 assert( op==OP_OpenWrite || p5==0 ); 1834 if( IsVirtual(pTab) ){ 1835 /* This routine is a no-op for virtual tables. Leave the output 1836 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 1837 ** can detect if they are used by mistake in the caller. */ 1838 return 0; 1839 } 1840 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1841 v = sqlite3GetVdbe(pParse); 1842 assert( v!=0 ); 1843 if( iBase<0 ) iBase = pParse->nTab; 1844 iDataCur = iBase++; 1845 if( piDataCur ) *piDataCur = iDataCur; 1846 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 1847 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 1848 }else{ 1849 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 1850 } 1851 if( piIdxCur ) *piIdxCur = iBase; 1852 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1853 int iIdxCur = iBase++; 1854 assert( pIdx->pSchema==pTab->pSchema ); 1855 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1856 if( piDataCur ) *piDataCur = iIdxCur; 1857 p5 = 0; 1858 } 1859 if( aToOpen==0 || aToOpen[i+1] ){ 1860 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 1861 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1862 sqlite3VdbeChangeP5(v, p5); 1863 VdbeComment((v, "%s", pIdx->zName)); 1864 } 1865 } 1866 if( iBase>pParse->nTab ) pParse->nTab = iBase; 1867 return i; 1868 } 1869 1870 1871 #ifdef SQLITE_TEST 1872 /* 1873 ** The following global variable is incremented whenever the 1874 ** transfer optimization is used. This is used for testing 1875 ** purposes only - to make sure the transfer optimization really 1876 ** is happening when it is supposed to. 1877 */ 1878 int sqlite3_xferopt_count; 1879 #endif /* SQLITE_TEST */ 1880 1881 1882 #ifndef SQLITE_OMIT_XFER_OPT 1883 /* 1884 ** Check to see if index pSrc is compatible as a source of data 1885 ** for index pDest in an insert transfer optimization. The rules 1886 ** for a compatible index: 1887 ** 1888 ** * The index is over the same set of columns 1889 ** * The same DESC and ASC markings occurs on all columns 1890 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 1891 ** * The same collating sequence on each column 1892 ** * The index has the exact same WHERE clause 1893 */ 1894 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 1895 int i; 1896 assert( pDest && pSrc ); 1897 assert( pDest->pTable!=pSrc->pTable ); 1898 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 1899 return 0; /* Different number of columns */ 1900 } 1901 if( pDest->onError!=pSrc->onError ){ 1902 return 0; /* Different conflict resolution strategies */ 1903 } 1904 for(i=0; i<pSrc->nKeyCol; i++){ 1905 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 1906 return 0; /* Different columns indexed */ 1907 } 1908 if( pSrc->aiColumn[i]==XN_EXPR ){ 1909 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 1910 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 1911 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 1912 return 0; /* Different expressions in the index */ 1913 } 1914 } 1915 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 1916 return 0; /* Different sort orders */ 1917 } 1918 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 1919 return 0; /* Different collating sequences */ 1920 } 1921 } 1922 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 1923 return 0; /* Different WHERE clauses */ 1924 } 1925 1926 /* If no test above fails then the indices must be compatible */ 1927 return 1; 1928 } 1929 1930 /* 1931 ** Attempt the transfer optimization on INSERTs of the form 1932 ** 1933 ** INSERT INTO tab1 SELECT * FROM tab2; 1934 ** 1935 ** The xfer optimization transfers raw records from tab2 over to tab1. 1936 ** Columns are not decoded and reassembled, which greatly improves 1937 ** performance. Raw index records are transferred in the same way. 1938 ** 1939 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 1940 ** There are lots of rules for determining compatibility - see comments 1941 ** embedded in the code for details. 1942 ** 1943 ** This routine returns TRUE if the optimization is guaranteed to be used. 1944 ** Sometimes the xfer optimization will only work if the destination table 1945 ** is empty - a factor that can only be determined at run-time. In that 1946 ** case, this routine generates code for the xfer optimization but also 1947 ** does a test to see if the destination table is empty and jumps over the 1948 ** xfer optimization code if the test fails. In that case, this routine 1949 ** returns FALSE so that the caller will know to go ahead and generate 1950 ** an unoptimized transfer. This routine also returns FALSE if there 1951 ** is no chance that the xfer optimization can be applied. 1952 ** 1953 ** This optimization is particularly useful at making VACUUM run faster. 1954 */ 1955 static int xferOptimization( 1956 Parse *pParse, /* Parser context */ 1957 Table *pDest, /* The table we are inserting into */ 1958 Select *pSelect, /* A SELECT statement to use as the data source */ 1959 int onError, /* How to handle constraint errors */ 1960 int iDbDest /* The database of pDest */ 1961 ){ 1962 sqlite3 *db = pParse->db; 1963 ExprList *pEList; /* The result set of the SELECT */ 1964 Table *pSrc; /* The table in the FROM clause of SELECT */ 1965 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 1966 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 1967 int i; /* Loop counter */ 1968 int iDbSrc; /* The database of pSrc */ 1969 int iSrc, iDest; /* Cursors from source and destination */ 1970 int addr1, addr2; /* Loop addresses */ 1971 int emptyDestTest = 0; /* Address of test for empty pDest */ 1972 int emptySrcTest = 0; /* Address of test for empty pSrc */ 1973 Vdbe *v; /* The VDBE we are building */ 1974 int regAutoinc; /* Memory register used by AUTOINC */ 1975 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 1976 int regData, regRowid; /* Registers holding data and rowid */ 1977 1978 if( pSelect==0 ){ 1979 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 1980 } 1981 if( pParse->pWith || pSelect->pWith ){ 1982 /* Do not attempt to process this query if there are an WITH clauses 1983 ** attached to it. Proceeding may generate a false "no such table: xxx" 1984 ** error if pSelect reads from a CTE named "xxx". */ 1985 return 0; 1986 } 1987 if( sqlite3TriggerList(pParse, pDest) ){ 1988 return 0; /* tab1 must not have triggers */ 1989 } 1990 #ifndef SQLITE_OMIT_VIRTUALTABLE 1991 if( IsVirtual(pDest) ){ 1992 return 0; /* tab1 must not be a virtual table */ 1993 } 1994 #endif 1995 if( onError==OE_Default ){ 1996 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 1997 if( onError==OE_Default ) onError = OE_Abort; 1998 } 1999 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2000 if( pSelect->pSrc->nSrc!=1 ){ 2001 return 0; /* FROM clause must have exactly one term */ 2002 } 2003 if( pSelect->pSrc->a[0].pSelect ){ 2004 return 0; /* FROM clause cannot contain a subquery */ 2005 } 2006 if( pSelect->pWhere ){ 2007 return 0; /* SELECT may not have a WHERE clause */ 2008 } 2009 if( pSelect->pOrderBy ){ 2010 return 0; /* SELECT may not have an ORDER BY clause */ 2011 } 2012 /* Do not need to test for a HAVING clause. If HAVING is present but 2013 ** there is no ORDER BY, we will get an error. */ 2014 if( pSelect->pGroupBy ){ 2015 return 0; /* SELECT may not have a GROUP BY clause */ 2016 } 2017 if( pSelect->pLimit ){ 2018 return 0; /* SELECT may not have a LIMIT clause */ 2019 } 2020 if( pSelect->pPrior ){ 2021 return 0; /* SELECT may not be a compound query */ 2022 } 2023 if( pSelect->selFlags & SF_Distinct ){ 2024 return 0; /* SELECT may not be DISTINCT */ 2025 } 2026 pEList = pSelect->pEList; 2027 assert( pEList!=0 ); 2028 if( pEList->nExpr!=1 ){ 2029 return 0; /* The result set must have exactly one column */ 2030 } 2031 assert( pEList->a[0].pExpr ); 2032 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2033 return 0; /* The result set must be the special operator "*" */ 2034 } 2035 2036 /* At this point we have established that the statement is of the 2037 ** correct syntactic form to participate in this optimization. Now 2038 ** we have to check the semantics. 2039 */ 2040 pItem = pSelect->pSrc->a; 2041 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2042 if( pSrc==0 ){ 2043 return 0; /* FROM clause does not contain a real table */ 2044 } 2045 if( pSrc==pDest ){ 2046 return 0; /* tab1 and tab2 may not be the same table */ 2047 } 2048 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2049 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2050 } 2051 #ifndef SQLITE_OMIT_VIRTUALTABLE 2052 if( IsVirtual(pSrc) ){ 2053 return 0; /* tab2 must not be a virtual table */ 2054 } 2055 #endif 2056 if( pSrc->pSelect ){ 2057 return 0; /* tab2 may not be a view */ 2058 } 2059 if( pDest->nCol!=pSrc->nCol ){ 2060 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2061 } 2062 if( pDest->iPKey!=pSrc->iPKey ){ 2063 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2064 } 2065 for(i=0; i<pDest->nCol; i++){ 2066 Column *pDestCol = &pDest->aCol[i]; 2067 Column *pSrcCol = &pSrc->aCol[i]; 2068 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2069 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2070 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2071 ){ 2072 return 0; /* Neither table may have __hidden__ columns */ 2073 } 2074 #endif 2075 if( pDestCol->affinity!=pSrcCol->affinity ){ 2076 return 0; /* Affinity must be the same on all columns */ 2077 } 2078 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2079 return 0; /* Collating sequence must be the same on all columns */ 2080 } 2081 if( pDestCol->notNull && !pSrcCol->notNull ){ 2082 return 0; /* tab2 must be NOT NULL if tab1 is */ 2083 } 2084 /* Default values for second and subsequent columns need to match. */ 2085 if( i>0 ){ 2086 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2087 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2088 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2089 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2090 pSrcCol->pDflt->u.zToken)!=0) 2091 ){ 2092 return 0; /* Default values must be the same for all columns */ 2093 } 2094 } 2095 } 2096 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2097 if( IsUniqueIndex(pDestIdx) ){ 2098 destHasUniqueIdx = 1; 2099 } 2100 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2101 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2102 } 2103 if( pSrcIdx==0 ){ 2104 return 0; /* pDestIdx has no corresponding index in pSrc */ 2105 } 2106 } 2107 #ifndef SQLITE_OMIT_CHECK 2108 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2109 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2110 } 2111 #endif 2112 #ifndef SQLITE_OMIT_FOREIGN_KEY 2113 /* Disallow the transfer optimization if the destination table constains 2114 ** any foreign key constraints. This is more restrictive than necessary. 2115 ** But the main beneficiary of the transfer optimization is the VACUUM 2116 ** command, and the VACUUM command disables foreign key constraints. So 2117 ** the extra complication to make this rule less restrictive is probably 2118 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2119 */ 2120 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2121 return 0; 2122 } 2123 #endif 2124 if( (db->flags & SQLITE_CountRows)!=0 ){ 2125 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2126 } 2127 2128 /* If we get this far, it means that the xfer optimization is at 2129 ** least a possibility, though it might only work if the destination 2130 ** table (tab1) is initially empty. 2131 */ 2132 #ifdef SQLITE_TEST 2133 sqlite3_xferopt_count++; 2134 #endif 2135 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2136 v = sqlite3GetVdbe(pParse); 2137 sqlite3CodeVerifySchema(pParse, iDbSrc); 2138 iSrc = pParse->nTab++; 2139 iDest = pParse->nTab++; 2140 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2141 regData = sqlite3GetTempReg(pParse); 2142 regRowid = sqlite3GetTempReg(pParse); 2143 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2144 assert( HasRowid(pDest) || destHasUniqueIdx ); 2145 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2146 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2147 || destHasUniqueIdx /* (2) */ 2148 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2149 )){ 2150 /* In some circumstances, we are able to run the xfer optimization 2151 ** only if the destination table is initially empty. Unless the 2152 ** DBFLAG_Vacuum flag is set, this block generates code to make 2153 ** that determination. If DBFLAG_Vacuum is set, then the destination 2154 ** table is always empty. 2155 ** 2156 ** Conditions under which the destination must be empty: 2157 ** 2158 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2159 ** (If the destination is not initially empty, the rowid fields 2160 ** of index entries might need to change.) 2161 ** 2162 ** (2) The destination has a unique index. (The xfer optimization 2163 ** is unable to test uniqueness.) 2164 ** 2165 ** (3) onError is something other than OE_Abort and OE_Rollback. 2166 */ 2167 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2168 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2169 sqlite3VdbeJumpHere(v, addr1); 2170 } 2171 if( HasRowid(pSrc) ){ 2172 u8 insFlags; 2173 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2174 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2175 if( pDest->iPKey>=0 ){ 2176 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2177 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2178 VdbeCoverage(v); 2179 sqlite3RowidConstraint(pParse, onError, pDest); 2180 sqlite3VdbeJumpHere(v, addr2); 2181 autoIncStep(pParse, regAutoinc, regRowid); 2182 }else if( pDest->pIndex==0 ){ 2183 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2184 }else{ 2185 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2186 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2187 } 2188 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2189 if( db->mDbFlags & DBFLAG_Vacuum ){ 2190 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2191 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| 2192 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 2193 }else{ 2194 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 2195 } 2196 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2197 (char*)pDest, P4_TABLE); 2198 sqlite3VdbeChangeP5(v, insFlags); 2199 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2200 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2201 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2202 }else{ 2203 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2204 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2205 } 2206 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2207 u8 idxInsFlags = 0; 2208 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2209 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2210 } 2211 assert( pSrcIdx ); 2212 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2213 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2214 VdbeComment((v, "%s", pSrcIdx->zName)); 2215 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2216 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2217 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2218 VdbeComment((v, "%s", pDestIdx->zName)); 2219 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2220 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2221 if( db->mDbFlags & DBFLAG_Vacuum ){ 2222 /* This INSERT command is part of a VACUUM operation, which guarantees 2223 ** that the destination table is empty. If all indexed columns use 2224 ** collation sequence BINARY, then it can also be assumed that the 2225 ** index will be populated by inserting keys in strictly sorted 2226 ** order. In this case, instead of seeking within the b-tree as part 2227 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2228 ** OP_IdxInsert to seek to the point within the b-tree where each key 2229 ** should be inserted. This is faster. 2230 ** 2231 ** If any of the indexed columns use a collation sequence other than 2232 ** BINARY, this optimization is disabled. This is because the user 2233 ** might change the definition of a collation sequence and then run 2234 ** a VACUUM command. In that case keys may not be written in strictly 2235 ** sorted order. */ 2236 for(i=0; i<pSrcIdx->nColumn; i++){ 2237 const char *zColl = pSrcIdx->azColl[i]; 2238 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2239 } 2240 if( i==pSrcIdx->nColumn ){ 2241 idxInsFlags = OPFLAG_USESEEKRESULT; 2242 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2243 } 2244 } 2245 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){ 2246 idxInsFlags |= OPFLAG_NCHANGE; 2247 } 2248 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 2249 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 2250 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2251 sqlite3VdbeJumpHere(v, addr1); 2252 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2253 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2254 } 2255 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2256 sqlite3ReleaseTempReg(pParse, regRowid); 2257 sqlite3ReleaseTempReg(pParse, regData); 2258 if( emptyDestTest ){ 2259 sqlite3AutoincrementEnd(pParse); 2260 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2261 sqlite3VdbeJumpHere(v, emptyDestTest); 2262 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2263 return 0; 2264 }else{ 2265 return 1; 2266 } 2267 } 2268 #endif /* SQLITE_OMIT_XFER_OPT */ 2269