xref: /sqlite-3.40.0/src/insert.c (revision 4249b3f5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 **
15 ** $Id: insert.c,v 1.247 2008/07/08 23:40:20 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 /*
20 ** Set P4 of the most recently inserted opcode to a column affinity
21 ** string for index pIdx. A column affinity string has one character
22 ** for each column in the table, according to the affinity of the column:
23 **
24 **  Character      Column affinity
25 **  ------------------------------
26 **  'a'            TEXT
27 **  'b'            NONE
28 **  'c'            NUMERIC
29 **  'd'            INTEGER
30 **  'e'            REAL
31 **
32 ** An extra 'b' is appended to the end of the string to cover the
33 ** rowid that appears as the last column in every index.
34 */
35 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
36   if( !pIdx->zColAff ){
37     /* The first time a column affinity string for a particular index is
38     ** required, it is allocated and populated here. It is then stored as
39     ** a member of the Index structure for subsequent use.
40     **
41     ** The column affinity string will eventually be deleted by
42     ** sqliteDeleteIndex() when the Index structure itself is cleaned
43     ** up.
44     */
45     int n;
46     Table *pTab = pIdx->pTable;
47     sqlite3 *db = sqlite3VdbeDb(v);
48     pIdx->zColAff = (char *)sqlite3DbMallocRaw(db, pIdx->nColumn+2);
49     if( !pIdx->zColAff ){
50       return;
51     }
52     for(n=0; n<pIdx->nColumn; n++){
53       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
54     }
55     pIdx->zColAff[n++] = SQLITE_AFF_NONE;
56     pIdx->zColAff[n] = 0;
57   }
58 
59   sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
60 }
61 
62 /*
63 ** Set P4 of the most recently inserted opcode to a column affinity
64 ** string for table pTab. A column affinity string has one character
65 ** for each column indexed by the index, according to the affinity of the
66 ** column:
67 **
68 **  Character      Column affinity
69 **  ------------------------------
70 **  'a'            TEXT
71 **  'b'            NONE
72 **  'c'            NUMERIC
73 **  'd'            INTEGER
74 **  'e'            REAL
75 */
76 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
77   /* The first time a column affinity string for a particular table
78   ** is required, it is allocated and populated here. It is then
79   ** stored as a member of the Table structure for subsequent use.
80   **
81   ** The column affinity string will eventually be deleted by
82   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
83   */
84   if( !pTab->zColAff ){
85     char *zColAff;
86     int i;
87     sqlite3 *db = sqlite3VdbeDb(v);
88 
89     zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1);
90     if( !zColAff ){
91       return;
92     }
93 
94     for(i=0; i<pTab->nCol; i++){
95       zColAff[i] = pTab->aCol[i].affinity;
96     }
97     zColAff[pTab->nCol] = '\0';
98 
99     pTab->zColAff = zColAff;
100   }
101 
102   sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
103 }
104 
105 /*
106 ** Return non-zero if the table pTab in database iDb or any of its indices
107 ** have been opened at any point in the VDBE program beginning at location
108 ** iStartAddr throught the end of the program.  This is used to see if
109 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
110 ** run without using temporary table for the results of the SELECT.
111 */
112 static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
113   int i;
114   int iEnd = sqlite3VdbeCurrentAddr(v);
115   for(i=iStartAddr; i<iEnd; i++){
116     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
117     assert( pOp!=0 );
118     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
119       Index *pIndex;
120       int tnum = pOp->p2;
121       if( tnum==pTab->tnum ){
122         return 1;
123       }
124       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
125         if( tnum==pIndex->tnum ){
126           return 1;
127         }
128       }
129     }
130 #ifndef SQLITE_OMIT_VIRTUALTABLE
131     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){
132       assert( pOp->p4.pVtab!=0 );
133       assert( pOp->p4type==P4_VTAB );
134       return 1;
135     }
136 #endif
137   }
138   return 0;
139 }
140 
141 #ifndef SQLITE_OMIT_AUTOINCREMENT
142 /*
143 ** Write out code to initialize the autoincrement logic.  This code
144 ** looks up the current autoincrement value in the sqlite_sequence
145 ** table and stores that value in a register.  Code generated by
146 ** autoIncStep() will keep that register holding the largest
147 ** rowid value.  Code generated by autoIncEnd() will write the new
148 ** largest value of the counter back into the sqlite_sequence table.
149 **
150 ** This routine returns the index of the mem[] cell that contains
151 ** the maximum rowid counter.
152 **
153 ** Three consecutive registers are allocated by this routine.  The
154 ** first two hold the name of the target table and the maximum rowid
155 ** inserted into the target table, respectively.
156 ** The third holds the rowid in sqlite_sequence where we will
157 ** write back the revised maximum rowid.  This routine returns the
158 ** index of the second of these three registers.
159 */
160 static int autoIncBegin(
161   Parse *pParse,      /* Parsing context */
162   int iDb,            /* Index of the database holding pTab */
163   Table *pTab         /* The table we are writing to */
164 ){
165   int memId = 0;      /* Register holding maximum rowid */
166   if( pTab->autoInc ){
167     Vdbe *v = pParse->pVdbe;
168     Db *pDb = &pParse->db->aDb[iDb];
169     int iCur = pParse->nTab;
170     int addr;               /* Address of the top of the loop */
171     assert( v );
172     pParse->nMem++;         /* Holds name of table */
173     memId = ++pParse->nMem;
174     pParse->nMem++;
175     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
176     addr = sqlite3VdbeCurrentAddr(v);
177     sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
178     sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+9);
179     sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
180     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
181     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
182     sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
183     sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
184     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
185     sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
186     sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
187     sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
188   }
189   return memId;
190 }
191 
192 /*
193 ** Update the maximum rowid for an autoincrement calculation.
194 **
195 ** This routine should be called when the top of the stack holds a
196 ** new rowid that is about to be inserted.  If that new rowid is
197 ** larger than the maximum rowid in the memId memory cell, then the
198 ** memory cell is updated.  The stack is unchanged.
199 */
200 static void autoIncStep(Parse *pParse, int memId, int regRowid){
201   if( memId>0 ){
202     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
203   }
204 }
205 
206 /*
207 ** After doing one or more inserts, the maximum rowid is stored
208 ** in reg[memId].  Generate code to write this value back into the
209 ** the sqlite_sequence table.
210 */
211 static void autoIncEnd(
212   Parse *pParse,     /* The parsing context */
213   int iDb,           /* Index of the database holding pTab */
214   Table *pTab,       /* Table we are inserting into */
215   int memId          /* Memory cell holding the maximum rowid */
216 ){
217   if( pTab->autoInc ){
218     int iCur = pParse->nTab;
219     Vdbe *v = pParse->pVdbe;
220     Db *pDb = &pParse->db->aDb[iDb];
221     int j1;
222     int iRec = ++pParse->nMem;    /* Memory cell used for record */
223 
224     assert( v );
225     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
226     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
227     sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
228     sqlite3VdbeJumpHere(v, j1);
229     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
230     sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1);
231     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
232     sqlite3VdbeAddOp1(v, OP_Close, iCur);
233   }
234 }
235 #else
236 /*
237 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
238 ** above are all no-ops
239 */
240 # define autoIncBegin(A,B,C) (0)
241 # define autoIncStep(A,B,C)
242 # define autoIncEnd(A,B,C,D)
243 #endif /* SQLITE_OMIT_AUTOINCREMENT */
244 
245 
246 /* Forward declaration */
247 static int xferOptimization(
248   Parse *pParse,        /* Parser context */
249   Table *pDest,         /* The table we are inserting into */
250   Select *pSelect,      /* A SELECT statement to use as the data source */
251   int onError,          /* How to handle constraint errors */
252   int iDbDest           /* The database of pDest */
253 );
254 
255 /*
256 ** This routine is call to handle SQL of the following forms:
257 **
258 **    insert into TABLE (IDLIST) values(EXPRLIST)
259 **    insert into TABLE (IDLIST) select
260 **
261 ** The IDLIST following the table name is always optional.  If omitted,
262 ** then a list of all columns for the table is substituted.  The IDLIST
263 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
264 **
265 ** The pList parameter holds EXPRLIST in the first form of the INSERT
266 ** statement above, and pSelect is NULL.  For the second form, pList is
267 ** NULL and pSelect is a pointer to the select statement used to generate
268 ** data for the insert.
269 **
270 ** The code generated follows one of four templates.  For a simple
271 ** select with data coming from a VALUES clause, the code executes
272 ** once straight down through.  Pseudo-code follows (we call this
273 ** the "1st template"):
274 **
275 **         open write cursor to <table> and its indices
276 **         puts VALUES clause expressions onto the stack
277 **         write the resulting record into <table>
278 **         cleanup
279 **
280 ** The three remaining templates assume the statement is of the form
281 **
282 **   INSERT INTO <table> SELECT ...
283 **
284 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
285 ** in other words if the SELECT pulls all columns from a single table
286 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
287 ** if <table2> and <table1> are distinct tables but have identical
288 ** schemas, including all the same indices, then a special optimization
289 ** is invoked that copies raw records from <table2> over to <table1>.
290 ** See the xferOptimization() function for the implementation of this
291 ** template.  This is the 2nd template.
292 **
293 **         open a write cursor to <table>
294 **         open read cursor on <table2>
295 **         transfer all records in <table2> over to <table>
296 **         close cursors
297 **         foreach index on <table>
298 **           open a write cursor on the <table> index
299 **           open a read cursor on the corresponding <table2> index
300 **           transfer all records from the read to the write cursors
301 **           close cursors
302 **         end foreach
303 **
304 ** The 3rd template is for when the second template does not apply
305 ** and the SELECT clause does not read from <table> at any time.
306 ** The generated code follows this template:
307 **
308 **         EOF <- 0
309 **         X <- A
310 **         goto B
311 **      A: setup for the SELECT
312 **         loop over the rows in the SELECT
313 **           load values into registers R..R+n
314 **           yield X
315 **         end loop
316 **         cleanup after the SELECT
317 **         EOF <- 1
318 **         yield X
319 **         goto A
320 **      B: open write cursor to <table> and its indices
321 **      C: yield X
322 **         if EOF goto D
323 **         insert the select result into <table> from R..R+n
324 **         goto C
325 **      D: cleanup
326 **
327 ** The 4th template is used if the insert statement takes its
328 ** values from a SELECT but the data is being inserted into a table
329 ** that is also read as part of the SELECT.  In the third form,
330 ** we have to use a intermediate table to store the results of
331 ** the select.  The template is like this:
332 **
333 **         EOF <- 0
334 **         X <- A
335 **         goto B
336 **      A: setup for the SELECT
337 **         loop over the tables in the SELECT
338 **           load value into register R..R+n
339 **           yield X
340 **         end loop
341 **         cleanup after the SELECT
342 **         EOF <- 1
343 **         yield X
344 **         halt-error
345 **      B: open temp table
346 **      L: yield X
347 **         if EOF goto M
348 **         insert row from R..R+n into temp table
349 **         goto L
350 **      M: open write cursor to <table> and its indices
351 **         rewind temp table
352 **      C: loop over rows of intermediate table
353 **           transfer values form intermediate table into <table>
354 **         end loop
355 **      D: cleanup
356 */
357 void sqlite3Insert(
358   Parse *pParse,        /* Parser context */
359   SrcList *pTabList,    /* Name of table into which we are inserting */
360   ExprList *pList,      /* List of values to be inserted */
361   Select *pSelect,      /* A SELECT statement to use as the data source */
362   IdList *pColumn,      /* Column names corresponding to IDLIST. */
363   int onError           /* How to handle constraint errors */
364 ){
365   sqlite3 *db;          /* The main database structure */
366   Table *pTab;          /* The table to insert into.  aka TABLE */
367   char *zTab;           /* Name of the table into which we are inserting */
368   const char *zDb;      /* Name of the database holding this table */
369   int i, j, idx;        /* Loop counters */
370   Vdbe *v;              /* Generate code into this virtual machine */
371   Index *pIdx;          /* For looping over indices of the table */
372   int nColumn;          /* Number of columns in the data */
373   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
374   int baseCur = 0;      /* VDBE Cursor number for pTab */
375   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
376   int endOfLoop;        /* Label for the end of the insertion loop */
377   int useTempTable = 0; /* Store SELECT results in intermediate table */
378   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
379   int addrInsTop = 0;   /* Jump to label "D" */
380   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
381   int addrSelect = 0;   /* Address of coroutine that implements the SELECT */
382   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
383   int newIdx = -1;      /* Cursor for the NEW pseudo-table */
384   int iDb;              /* Index of database holding TABLE */
385   Db *pDb;              /* The database containing table being inserted into */
386   int appendFlag = 0;   /* True if the insert is likely to be an append */
387 
388   /* Register allocations */
389   int regFromSelect;    /* Base register for data coming from SELECT */
390   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
391   int regRowCount = 0;  /* Memory cell used for the row counter */
392   int regIns;           /* Block of regs holding rowid+data being inserted */
393   int regRowid;         /* registers holding insert rowid */
394   int regData;          /* register holding first column to insert */
395   int regRecord;        /* Holds the assemblied row record */
396   int regEof;           /* Register recording end of SELECT data */
397   int *aRegIdx = 0;     /* One register allocated to each index */
398 
399 
400 #ifndef SQLITE_OMIT_TRIGGER
401   int isView;                 /* True if attempting to insert into a view */
402   int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
403 #endif
404 
405   db = pParse->db;
406   if( pParse->nErr || db->mallocFailed ){
407     goto insert_cleanup;
408   }
409 
410   /* Locate the table into which we will be inserting new information.
411   */
412   assert( pTabList->nSrc==1 );
413   zTab = pTabList->a[0].zName;
414   if( zTab==0 ) goto insert_cleanup;
415   pTab = sqlite3SrcListLookup(pParse, pTabList);
416   if( pTab==0 ){
417     goto insert_cleanup;
418   }
419   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
420   assert( iDb<db->nDb );
421   pDb = &db->aDb[iDb];
422   zDb = pDb->zName;
423   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
424     goto insert_cleanup;
425   }
426 
427   /* Figure out if we have any triggers and if the table being
428   ** inserted into is a view
429   */
430 #ifndef SQLITE_OMIT_TRIGGER
431   triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
432   isView = pTab->pSelect!=0;
433 #else
434 # define triggers_exist 0
435 # define isView 0
436 #endif
437 #ifdef SQLITE_OMIT_VIEW
438 # undef isView
439 # define isView 0
440 #endif
441 
442   /* Ensure that:
443   *  (a) the table is not read-only,
444   *  (b) that if it is a view then ON INSERT triggers exist
445   */
446   if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
447     goto insert_cleanup;
448   }
449   assert( pTab!=0 );
450 
451   /* If pTab is really a view, make sure it has been initialized.
452   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
453   ** module table).
454   */
455   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
456     goto insert_cleanup;
457   }
458 
459   /* Allocate a VDBE
460   */
461   v = sqlite3GetVdbe(pParse);
462   if( v==0 ) goto insert_cleanup;
463   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
464   sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
465 
466   /* if there are row triggers, allocate a temp table for new.* references. */
467   if( triggers_exist ){
468     newIdx = pParse->nTab++;
469   }
470 
471 #ifndef SQLITE_OMIT_XFER_OPT
472   /* If the statement is of the form
473   **
474   **       INSERT INTO <table1> SELECT * FROM <table2>;
475   **
476   ** Then special optimizations can be applied that make the transfer
477   ** very fast and which reduce fragmentation of indices.
478   **
479   ** This is the 2nd template.
480   */
481   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
482     assert( !triggers_exist );
483     assert( pList==0 );
484     goto insert_cleanup;
485   }
486 #endif /* SQLITE_OMIT_XFER_OPT */
487 
488   /* If this is an AUTOINCREMENT table, look up the sequence number in the
489   ** sqlite_sequence table and store it in memory cell regAutoinc.
490   */
491   regAutoinc = autoIncBegin(pParse, iDb, pTab);
492 
493   /* Figure out how many columns of data are supplied.  If the data
494   ** is coming from a SELECT statement, then generate a co-routine that
495   ** produces a single row of the SELECT on each invocation.  The
496   ** co-routine is the common header to the 3rd and 4th templates.
497   */
498   if( pSelect ){
499     /* Data is coming from a SELECT.  Generate code to implement that SELECT
500     ** as a co-routine.  The code is common to both the 3rd and 4th
501     ** templates:
502     **
503     **         EOF <- 0
504     **         X <- A
505     **         goto B
506     **      A: setup for the SELECT
507     **         loop over the tables in the SELECT
508     **           load value into register R..R+n
509     **           yield X
510     **         end loop
511     **         cleanup after the SELECT
512     **         EOF <- 1
513     **         yield X
514     **         halt-error
515     **
516     ** On each invocation of the co-routine, it puts a single row of the
517     ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
518     ** (These output registers are allocated by sqlite3Select().)  When
519     ** the SELECT completes, it sets the EOF flag stored in regEof.
520     */
521     int rc, j1;
522 
523     regEof = ++pParse->nMem;
524     sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof);      /* EOF <- 0 */
525     VdbeComment((v, "SELECT eof flag"));
526     sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
527     addrSelect = sqlite3VdbeCurrentAddr(v)+2;
528     sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
529     j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
530     VdbeComment((v, "Jump over SELECT coroutine"));
531 
532     /* Resolve the expressions in the SELECT statement and execute it. */
533     rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0);
534     if( rc || pParse->nErr || db->mallocFailed ){
535       goto insert_cleanup;
536     }
537     sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof);         /* EOF <- 1 */
538     sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);   /* yield X */
539     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
540     VdbeComment((v, "End of SELECT coroutine"));
541     sqlite3VdbeJumpHere(v, j1);                          /* label B: */
542 
543     regFromSelect = dest.iMem;
544     assert( pSelect->pEList );
545     nColumn = pSelect->pEList->nExpr;
546     assert( dest.nMem==nColumn );
547 
548     /* Set useTempTable to TRUE if the result of the SELECT statement
549     ** should be written into a temporary table (template 4).  Set to
550     ** FALSE if each* row of the SELECT can be written directly into
551     ** the destination table (template 3).
552     **
553     ** A temp table must be used if the table being updated is also one
554     ** of the tables being read by the SELECT statement.  Also use a
555     ** temp table in the case of row triggers.
556     */
557     if( triggers_exist || readsTable(v, addrSelect, iDb, pTab) ){
558       useTempTable = 1;
559     }
560 
561     if( useTempTable ){
562       /* Invoke the coroutine to extract information from the SELECT
563       ** and add it to a transient table srcTab.  The code generated
564       ** here is from the 4th template:
565       **
566       **      B: open temp table
567       **      L: yield X
568       **         if EOF goto M
569       **         insert row from R..R+n into temp table
570       **         goto L
571       **      M: ...
572       */
573       int regRec;      /* Register to hold packed record */
574       int regRowid;    /* Register to hold temp table ROWID */
575       int addrTop;     /* Label "L" */
576       int addrIf;      /* Address of jump to M */
577 
578       srcTab = pParse->nTab++;
579       regRec = sqlite3GetTempReg(pParse);
580       regRowid = sqlite3GetTempReg(pParse);
581       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
582       addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
583       addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
584       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
585       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid);
586       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid);
587       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
588       sqlite3VdbeJumpHere(v, addrIf);
589       sqlite3ReleaseTempReg(pParse, regRec);
590       sqlite3ReleaseTempReg(pParse, regRowid);
591     }
592   }else{
593     /* This is the case if the data for the INSERT is coming from a VALUES
594     ** clause
595     */
596     NameContext sNC;
597     memset(&sNC, 0, sizeof(sNC));
598     sNC.pParse = pParse;
599     srcTab = -1;
600     assert( useTempTable==0 );
601     nColumn = pList ? pList->nExpr : 0;
602     for(i=0; i<nColumn; i++){
603       if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
604         goto insert_cleanup;
605       }
606     }
607   }
608 
609   /* Make sure the number of columns in the source data matches the number
610   ** of columns to be inserted into the table.
611   */
612   if( IsVirtual(pTab) ){
613     for(i=0; i<pTab->nCol; i++){
614       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
615     }
616   }
617   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
618     sqlite3ErrorMsg(pParse,
619        "table %S has %d columns but %d values were supplied",
620        pTabList, 0, pTab->nCol, nColumn);
621     goto insert_cleanup;
622   }
623   if( pColumn!=0 && nColumn!=pColumn->nId ){
624     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
625     goto insert_cleanup;
626   }
627 
628   /* If the INSERT statement included an IDLIST term, then make sure
629   ** all elements of the IDLIST really are columns of the table and
630   ** remember the column indices.
631   **
632   ** If the table has an INTEGER PRIMARY KEY column and that column
633   ** is named in the IDLIST, then record in the keyColumn variable
634   ** the index into IDLIST of the primary key column.  keyColumn is
635   ** the index of the primary key as it appears in IDLIST, not as
636   ** is appears in the original table.  (The index of the primary
637   ** key in the original table is pTab->iPKey.)
638   */
639   if( pColumn ){
640     for(i=0; i<pColumn->nId; i++){
641       pColumn->a[i].idx = -1;
642     }
643     for(i=0; i<pColumn->nId; i++){
644       for(j=0; j<pTab->nCol; j++){
645         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
646           pColumn->a[i].idx = j;
647           if( j==pTab->iPKey ){
648             keyColumn = i;
649           }
650           break;
651         }
652       }
653       if( j>=pTab->nCol ){
654         if( sqlite3IsRowid(pColumn->a[i].zName) ){
655           keyColumn = i;
656         }else{
657           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
658               pTabList, 0, pColumn->a[i].zName);
659           pParse->nErr++;
660           goto insert_cleanup;
661         }
662       }
663     }
664   }
665 
666   /* If there is no IDLIST term but the table has an integer primary
667   ** key, the set the keyColumn variable to the primary key column index
668   ** in the original table definition.
669   */
670   if( pColumn==0 && nColumn>0 ){
671     keyColumn = pTab->iPKey;
672   }
673 
674   /* Open the temp table for FOR EACH ROW triggers
675   */
676   if( triggers_exist ){
677     sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
678     sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
679   }
680 
681   /* Initialize the count of rows to be inserted
682   */
683   if( db->flags & SQLITE_CountRows ){
684     regRowCount = ++pParse->nMem;
685     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
686   }
687 
688   /* If this is not a view, open the table and and all indices */
689   if( !isView ){
690     int nIdx;
691     int i;
692 
693     baseCur = pParse->nTab;
694     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
695     aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
696     if( aRegIdx==0 ){
697       goto insert_cleanup;
698     }
699     for(i=0; i<nIdx; i++){
700       aRegIdx[i] = ++pParse->nMem;
701     }
702   }
703 
704   /* This is the top of the main insertion loop */
705   if( useTempTable ){
706     /* This block codes the top of loop only.  The complete loop is the
707     ** following pseudocode (template 4):
708     **
709     **         rewind temp table
710     **      C: loop over rows of intermediate table
711     **           transfer values form intermediate table into <table>
712     **         end loop
713     **      D: ...
714     */
715     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
716     addrCont = sqlite3VdbeCurrentAddr(v);
717   }else if( pSelect ){
718     /* This block codes the top of loop only.  The complete loop is the
719     ** following pseudocode (template 3):
720     **
721     **      C: yield X
722     **         if EOF goto D
723     **         insert the select result into <table> from R..R+n
724     **         goto C
725     **      D: ...
726     */
727     addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
728     addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
729   }
730 
731   /* Allocate registers for holding the rowid of the new row,
732   ** the content of the new row, and the assemblied row record.
733   */
734   regRecord = ++pParse->nMem;
735   regRowid = regIns = pParse->nMem+1;
736   pParse->nMem += pTab->nCol + 1;
737   if( IsVirtual(pTab) ){
738     regRowid++;
739     pParse->nMem++;
740   }
741   regData = regRowid+1;
742 
743   /* Run the BEFORE and INSTEAD OF triggers, if there are any
744   */
745   endOfLoop = sqlite3VdbeMakeLabel(v);
746   if( triggers_exist & TRIGGER_BEFORE ){
747     int regRowid;
748     int regCols;
749     int regRec;
750 
751     /* build the NEW.* reference row.  Note that if there is an INTEGER
752     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
753     ** translated into a unique ID for the row.  But on a BEFORE trigger,
754     ** we do not know what the unique ID will be (because the insert has
755     ** not happened yet) so we substitute a rowid of -1
756     */
757     regRowid = sqlite3GetTempReg(pParse);
758     if( keyColumn<0 ){
759       sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
760     }else if( useTempTable ){
761       sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
762     }else{
763       int j1;
764       assert( pSelect==0 );  /* Otherwise useTempTable is true */
765       sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
766       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
767       sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
768       sqlite3VdbeJumpHere(v, j1);
769       sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
770     }
771 
772     /* Cannot have triggers on a virtual table. If it were possible,
773     ** this block would have to account for hidden column.
774     */
775     assert(!IsVirtual(pTab));
776 
777     /* Create the new column data
778     */
779     regCols = sqlite3GetTempRange(pParse, pTab->nCol);
780     for(i=0; i<pTab->nCol; i++){
781       if( pColumn==0 ){
782         j = i;
783       }else{
784         for(j=0; j<pColumn->nId; j++){
785           if( pColumn->a[j].idx==i ) break;
786         }
787       }
788       if( pColumn && j>=pColumn->nId ){
789         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
790       }else if( useTempTable ){
791         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i);
792       }else{
793         assert( pSelect==0 ); /* Otherwise useTempTable is true */
794         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
795       }
796     }
797     regRec = sqlite3GetTempReg(pParse);
798     sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
799 
800     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
801     ** do not attempt any conversions before assembling the record.
802     ** If this is a real table, attempt conversions as required by the
803     ** table column affinities.
804     */
805     if( !isView ){
806       sqlite3TableAffinityStr(v, pTab);
807     }
808     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
809     sqlite3ReleaseTempReg(pParse, regRec);
810     sqlite3ReleaseTempReg(pParse, regRowid);
811     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
812 
813     /* Fire BEFORE or INSTEAD OF triggers */
814     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
815         newIdx, -1, onError, endOfLoop, 0, 0) ){
816       goto insert_cleanup;
817     }
818   }
819 
820   /* Push the record number for the new entry onto the stack.  The
821   ** record number is a randomly generate integer created by NewRowid
822   ** except when the table has an INTEGER PRIMARY KEY column, in which
823   ** case the record number is the same as that column.
824   */
825   if( !isView ){
826     if( IsVirtual(pTab) ){
827       /* The row that the VUpdate opcode will delete: none */
828       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
829     }
830     if( keyColumn>=0 ){
831       if( useTempTable ){
832         sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
833       }else if( pSelect ){
834         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
835       }else{
836         VdbeOp *pOp;
837         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
838         pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
839         if( pOp && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
840           appendFlag = 1;
841           pOp->opcode = OP_NewRowid;
842           pOp->p1 = baseCur;
843           pOp->p2 = regRowid;
844           pOp->p3 = regAutoinc;
845         }
846       }
847       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
848       ** to generate a unique primary key value.
849       */
850       if( !appendFlag ){
851         int j1;
852         if( !IsVirtual(pTab) ){
853           j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
854           sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
855           sqlite3VdbeJumpHere(v, j1);
856         }else{
857           j1 = sqlite3VdbeCurrentAddr(v);
858           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
859         }
860         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
861       }
862     }else if( IsVirtual(pTab) ){
863       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
864     }else{
865       sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
866       appendFlag = 1;
867     }
868     autoIncStep(pParse, regAutoinc, regRowid);
869 
870     /* Push onto the stack, data for all columns of the new entry, beginning
871     ** with the first column.
872     */
873     nHidden = 0;
874     for(i=0; i<pTab->nCol; i++){
875       int iRegStore = regRowid+1+i;
876       if( i==pTab->iPKey ){
877         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
878         ** Whenever this column is read, the record number will be substituted
879         ** in its place.  So will fill this column with a NULL to avoid
880         ** taking up data space with information that will never be used. */
881         sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
882         continue;
883       }
884       if( pColumn==0 ){
885         if( IsHiddenColumn(&pTab->aCol[i]) ){
886           assert( IsVirtual(pTab) );
887           j = -1;
888           nHidden++;
889         }else{
890           j = i - nHidden;
891         }
892       }else{
893         for(j=0; j<pColumn->nId; j++){
894           if( pColumn->a[j].idx==i ) break;
895         }
896       }
897       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
898         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
899       }else if( useTempTable ){
900         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
901       }else if( pSelect ){
902         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
903       }else{
904         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
905       }
906     }
907 
908     /* Generate code to check constraints and generate index keys and
909     ** do the insertion.
910     */
911 #ifndef SQLITE_OMIT_VIRTUALTABLE
912     if( IsVirtual(pTab) ){
913       sqlite3VtabMakeWritable(pParse, pTab);
914       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
915                      (const char*)pTab->pVtab, P4_VTAB);
916     }else
917 #endif
918     {
919       sqlite3GenerateConstraintChecks(
920           pParse,
921           pTab,
922           baseCur,
923           regIns,
924           aRegIdx,
925           keyColumn>=0,
926           0,
927           onError,
928           endOfLoop
929       );
930       sqlite3CompleteInsertion(
931           pParse,
932           pTab,
933           baseCur,
934           regIns,
935           aRegIdx,
936           0,
937           0,
938           (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
939           appendFlag
940        );
941     }
942   }
943 
944   /* Update the count of rows that are inserted
945   */
946   if( (db->flags & SQLITE_CountRows)!=0 ){
947     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
948   }
949 
950   if( triggers_exist ){
951     /* Code AFTER triggers */
952     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
953           newIdx, -1, onError, endOfLoop, 0, 0) ){
954       goto insert_cleanup;
955     }
956   }
957 
958   /* The bottom of the main insertion loop, if the data source
959   ** is a SELECT statement.
960   */
961   sqlite3VdbeResolveLabel(v, endOfLoop);
962   if( useTempTable ){
963     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
964     sqlite3VdbeJumpHere(v, addrInsTop);
965     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
966   }else if( pSelect ){
967     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
968     sqlite3VdbeJumpHere(v, addrInsTop);
969   }
970 
971   if( !IsVirtual(pTab) && !isView ){
972     /* Close all tables opened */
973     sqlite3VdbeAddOp1(v, OP_Close, baseCur);
974     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
975       sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur);
976     }
977   }
978 
979   /* Update the sqlite_sequence table by storing the content of the
980   ** counter value in memory regAutoinc back into the sqlite_sequence
981   ** table.
982   */
983   autoIncEnd(pParse, iDb, pTab, regAutoinc);
984 
985   /*
986   ** Return the number of rows inserted. If this routine is
987   ** generating code because of a call to sqlite3NestedParse(), do not
988   ** invoke the callback function.
989   */
990   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
991     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
992     sqlite3VdbeSetNumCols(v, 1);
993     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
994   }
995 
996 insert_cleanup:
997   sqlite3SrcListDelete(pTabList);
998   sqlite3ExprListDelete(pList);
999   sqlite3SelectDelete(pSelect);
1000   sqlite3IdListDelete(pColumn);
1001   sqlite3_free(aRegIdx);
1002 }
1003 
1004 /*
1005 ** Generate code to do constraint checks prior to an INSERT or an UPDATE.
1006 **
1007 ** The input is a range of consecutive registers as follows:
1008 **
1009 **    1.  The rowid of the row to be updated before the update.  This
1010 **        value is omitted unless we are doing an UPDATE that involves a
1011 **        change to the record number or writing to a virtual table.
1012 **
1013 **    2.  The rowid of the row after the update.
1014 **
1015 **    3.  The data in the first column of the entry after the update.
1016 **
1017 **    i.  Data from middle columns...
1018 **
1019 **    N.  The data in the last column of the entry after the update.
1020 **
1021 ** The regRowid parameter is the index of the register containing (2).
1022 **
1023 ** The old rowid shown as entry (1) above is omitted unless both isUpdate
1024 ** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
1025 ** INSERTs.  RowidChng means that the new rowid is explicitly specified by
1026 ** the update or insert statement.  If rowidChng is false, it means that
1027 ** the rowid is computed automatically in an insert or that the rowid value
1028 ** is not modified by the update.
1029 **
1030 ** The code generated by this routine store new index entries into
1031 ** registers identified by aRegIdx[].  No index entry is created for
1032 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1033 ** the same as the order of indices on the linked list of indices
1034 ** attached to the table.
1035 **
1036 ** This routine also generates code to check constraints.  NOT NULL,
1037 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1038 ** then the appropriate action is performed.  There are five possible
1039 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1040 **
1041 **  Constraint type  Action       What Happens
1042 **  ---------------  ----------   ----------------------------------------
1043 **  any              ROLLBACK     The current transaction is rolled back and
1044 **                                sqlite3_exec() returns immediately with a
1045 **                                return code of SQLITE_CONSTRAINT.
1046 **
1047 **  any              ABORT        Back out changes from the current command
1048 **                                only (do not do a complete rollback) then
1049 **                                cause sqlite3_exec() to return immediately
1050 **                                with SQLITE_CONSTRAINT.
1051 **
1052 **  any              FAIL         Sqlite_exec() returns immediately with a
1053 **                                return code of SQLITE_CONSTRAINT.  The
1054 **                                transaction is not rolled back and any
1055 **                                prior changes are retained.
1056 **
1057 **  any              IGNORE       The record number and data is popped from
1058 **                                the stack and there is an immediate jump
1059 **                                to label ignoreDest.
1060 **
1061 **  NOT NULL         REPLACE      The NULL value is replace by the default
1062 **                                value for that column.  If the default value
1063 **                                is NULL, the action is the same as ABORT.
1064 **
1065 **  UNIQUE           REPLACE      The other row that conflicts with the row
1066 **                                being inserted is removed.
1067 **
1068 **  CHECK            REPLACE      Illegal.  The results in an exception.
1069 **
1070 ** Which action to take is determined by the overrideError parameter.
1071 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1072 ** is used.  Or if pParse->onError==OE_Default then the onError value
1073 ** for the constraint is used.
1074 **
1075 ** The calling routine must open a read/write cursor for pTab with
1076 ** cursor number "baseCur".  All indices of pTab must also have open
1077 ** read/write cursors with cursor number baseCur+i for the i-th cursor.
1078 ** Except, if there is no possibility of a REPLACE action then
1079 ** cursors do not need to be open for indices where aRegIdx[i]==0.
1080 */
1081 void sqlite3GenerateConstraintChecks(
1082   Parse *pParse,      /* The parser context */
1083   Table *pTab,        /* the table into which we are inserting */
1084   int baseCur,        /* Index of a read/write cursor pointing at pTab */
1085   int regRowid,       /* Index of the range of input registers */
1086   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1087   int rowidChng,      /* True if the rowid might collide with existing entry */
1088   int isUpdate,       /* True for UPDATE, False for INSERT */
1089   int overrideError,  /* Override onError to this if not OE_Default */
1090   int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
1091 ){
1092   int i;
1093   Vdbe *v;
1094   int nCol;
1095   int onError;
1096   int j1, j2, j3;     /* Addresses of jump instructions */
1097   int regData;        /* Register containing first data column */
1098   int iCur;
1099   Index *pIdx;
1100   int seenReplace = 0;
1101   int hasTwoRowids = (isUpdate && rowidChng);
1102 
1103   v = sqlite3GetVdbe(pParse);
1104   assert( v!=0 );
1105   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1106   nCol = pTab->nCol;
1107   regData = regRowid + 1;
1108 
1109 
1110   /* Test all NOT NULL constraints.
1111   */
1112   for(i=0; i<nCol; i++){
1113     if( i==pTab->iPKey ){
1114       continue;
1115     }
1116     onError = pTab->aCol[i].notNull;
1117     if( onError==OE_None ) continue;
1118     if( overrideError!=OE_Default ){
1119       onError = overrideError;
1120     }else if( onError==OE_Default ){
1121       onError = OE_Abort;
1122     }
1123     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1124       onError = OE_Abort;
1125     }
1126     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
1127     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1128         || onError==OE_Ignore || onError==OE_Replace );
1129     switch( onError ){
1130       case OE_Rollback:
1131       case OE_Abort:
1132       case OE_Fail: {
1133         char *zMsg;
1134         sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1135         zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
1136                               pTab->zName, pTab->aCol[i].zName);
1137         sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
1138         break;
1139       }
1140       case OE_Ignore: {
1141         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1142         break;
1143       }
1144       case OE_Replace: {
1145         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
1146         break;
1147       }
1148     }
1149     sqlite3VdbeJumpHere(v, j1);
1150   }
1151 
1152   /* Test all CHECK constraints
1153   */
1154 #ifndef SQLITE_OMIT_CHECK
1155   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
1156     int allOk = sqlite3VdbeMakeLabel(v);
1157     pParse->ckBase = regData;
1158     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
1159     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1160     if( onError==OE_Ignore ){
1161       sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1162     }else{
1163       sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1164     }
1165     sqlite3VdbeResolveLabel(v, allOk);
1166   }
1167 #endif /* !defined(SQLITE_OMIT_CHECK) */
1168 
1169   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
1170   ** of the new record does not previously exist.  Except, if this
1171   ** is an UPDATE and the primary key is not changing, that is OK.
1172   */
1173   if( rowidChng ){
1174     onError = pTab->keyConf;
1175     if( overrideError!=OE_Default ){
1176       onError = overrideError;
1177     }else if( onError==OE_Default ){
1178       onError = OE_Abort;
1179     }
1180 
1181     if( onError!=OE_Replace || pTab->pIndex ){
1182       if( isUpdate ){
1183         j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
1184       }
1185       j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
1186       switch( onError ){
1187         default: {
1188           onError = OE_Abort;
1189           /* Fall thru into the next case */
1190         }
1191         case OE_Rollback:
1192         case OE_Abort:
1193         case OE_Fail: {
1194           sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
1195                            "PRIMARY KEY must be unique", P4_STATIC);
1196           break;
1197         }
1198         case OE_Replace: {
1199           sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
1200           seenReplace = 1;
1201           break;
1202         }
1203         case OE_Ignore: {
1204           assert( seenReplace==0 );
1205           sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1206           break;
1207         }
1208       }
1209       sqlite3VdbeJumpHere(v, j3);
1210       if( isUpdate ){
1211         sqlite3VdbeJumpHere(v, j2);
1212       }
1213     }
1214   }
1215 
1216   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1217   ** index and making sure that duplicate entries do not already exist.
1218   ** Add the new records to the indices as we go.
1219   */
1220   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
1221     int regIdx;
1222     int regR;
1223 
1224     if( aRegIdx[iCur]==0 ) continue;  /* Skip unused indices */
1225 
1226     /* Create a key for accessing the index entry */
1227     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
1228     for(i=0; i<pIdx->nColumn; i++){
1229       int idx = pIdx->aiColumn[i];
1230       if( idx==pTab->iPKey ){
1231         sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
1232       }else{
1233         sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
1234       }
1235     }
1236     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
1237     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
1238     sqlite3IndexAffinityStr(v, pIdx);
1239     sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
1240     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
1241 
1242     /* Find out what action to take in case there is an indexing conflict */
1243     onError = pIdx->onError;
1244     if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
1245     if( overrideError!=OE_Default ){
1246       onError = overrideError;
1247     }else if( onError==OE_Default ){
1248       onError = OE_Abort;
1249     }
1250     if( seenReplace ){
1251       if( onError==OE_Ignore ) onError = OE_Replace;
1252       else if( onError==OE_Fail ) onError = OE_Abort;
1253     }
1254 
1255 
1256     /* Check to see if the new index entry will be unique */
1257     j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
1258     regR = sqlite3GetTempReg(pParse);
1259     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
1260     j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
1261                            regR, SQLITE_INT_TO_PTR(aRegIdx[iCur]),
1262                            P4_INT32);
1263 
1264     /* Generate code that executes if the new index entry is not unique */
1265     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1266         || onError==OE_Ignore || onError==OE_Replace );
1267     switch( onError ){
1268       case OE_Rollback:
1269       case OE_Abort:
1270       case OE_Fail: {
1271         int j, n1, n2;
1272         char zErrMsg[200];
1273         sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
1274                          pIdx->nColumn>1 ? "columns " : "column ");
1275         n1 = strlen(zErrMsg);
1276         for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
1277           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
1278           n2 = strlen(zCol);
1279           if( j>0 ){
1280             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
1281             n1 += 2;
1282           }
1283           if( n1+n2>sizeof(zErrMsg)-30 ){
1284             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
1285             n1 += 3;
1286             break;
1287           }else{
1288             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
1289             n1 += n2;
1290           }
1291         }
1292         sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
1293             pIdx->nColumn>1 ? " are not unique" : " is not unique");
1294         sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
1295         break;
1296       }
1297       case OE_Ignore: {
1298         assert( seenReplace==0 );
1299         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1300         break;
1301       }
1302       case OE_Replace: {
1303         sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
1304         seenReplace = 1;
1305         break;
1306       }
1307     }
1308     sqlite3VdbeJumpHere(v, j2);
1309     sqlite3VdbeJumpHere(v, j3);
1310     sqlite3ReleaseTempReg(pParse, regR);
1311   }
1312 }
1313 
1314 /*
1315 ** This routine generates code to finish the INSERT or UPDATE operation
1316 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1317 ** A consecutive range of registers starting at regRowid contains the
1318 ** rowid and the content to be inserted.
1319 **
1320 ** The arguments to this routine should be the same as the first six
1321 ** arguments to sqlite3GenerateConstraintChecks.
1322 */
1323 void sqlite3CompleteInsertion(
1324   Parse *pParse,      /* The parser context */
1325   Table *pTab,        /* the table into which we are inserting */
1326   int baseCur,        /* Index of a read/write cursor pointing at pTab */
1327   int regRowid,       /* Range of content */
1328   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1329   int rowidChng,      /* True if the record number will change */
1330   int isUpdate,       /* True for UPDATE, False for INSERT */
1331   int newIdx,         /* Index of NEW table for triggers.  -1 if none */
1332   int appendBias      /* True if this is likely to be an append */
1333 ){
1334   int i;
1335   Vdbe *v;
1336   int nIdx;
1337   Index *pIdx;
1338   int pik_flags;
1339   int regData;
1340   int regRec;
1341 
1342   v = sqlite3GetVdbe(pParse);
1343   assert( v!=0 );
1344   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1345   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
1346   for(i=nIdx-1; i>=0; i--){
1347     if( aRegIdx[i]==0 ) continue;
1348     sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
1349   }
1350   regData = regRowid + 1;
1351   regRec = sqlite3GetTempReg(pParse);
1352   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1353   sqlite3TableAffinityStr(v, pTab);
1354   sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1355 #ifndef SQLITE_OMIT_TRIGGER
1356   if( newIdx>=0 ){
1357     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
1358   }
1359 #endif
1360   if( pParse->nested ){
1361     pik_flags = 0;
1362   }else{
1363     pik_flags = OPFLAG_NCHANGE;
1364     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1365   }
1366   if( appendBias ){
1367     pik_flags |= OPFLAG_APPEND;
1368   }
1369   sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
1370   if( !pParse->nested ){
1371     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
1372   }
1373   sqlite3VdbeChangeP5(v, pik_flags);
1374 }
1375 
1376 /*
1377 ** Generate code that will open cursors for a table and for all
1378 ** indices of that table.  The "baseCur" parameter is the cursor number used
1379 ** for the table.  Indices are opened on subsequent cursors.
1380 **
1381 ** Return the number of indices on the table.
1382 */
1383 int sqlite3OpenTableAndIndices(
1384   Parse *pParse,   /* Parsing context */
1385   Table *pTab,     /* Table to be opened */
1386   int baseCur,        /* Cursor number assigned to the table */
1387   int op           /* OP_OpenRead or OP_OpenWrite */
1388 ){
1389   int i;
1390   int iDb;
1391   Index *pIdx;
1392   Vdbe *v;
1393 
1394   if( IsVirtual(pTab) ) return 0;
1395   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1396   v = sqlite3GetVdbe(pParse);
1397   assert( v!=0 );
1398   sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
1399   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1400     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
1401     assert( pIdx->pSchema==pTab->pSchema );
1402     sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
1403                       (char*)pKey, P4_KEYINFO_HANDOFF);
1404     VdbeComment((v, "%s", pIdx->zName));
1405   }
1406   if( pParse->nTab<=baseCur+i ){
1407     pParse->nTab = baseCur+i;
1408   }
1409   return i-1;
1410 }
1411 
1412 
1413 #ifdef SQLITE_TEST
1414 /*
1415 ** The following global variable is incremented whenever the
1416 ** transfer optimization is used.  This is used for testing
1417 ** purposes only - to make sure the transfer optimization really
1418 ** is happening when it is suppose to.
1419 */
1420 int sqlite3_xferopt_count;
1421 #endif /* SQLITE_TEST */
1422 
1423 
1424 #ifndef SQLITE_OMIT_XFER_OPT
1425 /*
1426 ** Check to collation names to see if they are compatible.
1427 */
1428 static int xferCompatibleCollation(const char *z1, const char *z2){
1429   if( z1==0 ){
1430     return z2==0;
1431   }
1432   if( z2==0 ){
1433     return 0;
1434   }
1435   return sqlite3StrICmp(z1, z2)==0;
1436 }
1437 
1438 
1439 /*
1440 ** Check to see if index pSrc is compatible as a source of data
1441 ** for index pDest in an insert transfer optimization.  The rules
1442 ** for a compatible index:
1443 **
1444 **    *   The index is over the same set of columns
1445 **    *   The same DESC and ASC markings occurs on all columns
1446 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
1447 **    *   The same collating sequence on each column
1448 */
1449 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1450   int i;
1451   assert( pDest && pSrc );
1452   assert( pDest->pTable!=pSrc->pTable );
1453   if( pDest->nColumn!=pSrc->nColumn ){
1454     return 0;   /* Different number of columns */
1455   }
1456   if( pDest->onError!=pSrc->onError ){
1457     return 0;   /* Different conflict resolution strategies */
1458   }
1459   for(i=0; i<pSrc->nColumn; i++){
1460     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1461       return 0;   /* Different columns indexed */
1462     }
1463     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1464       return 0;   /* Different sort orders */
1465     }
1466     if( pSrc->azColl[i]!=pDest->azColl[i] ){
1467       return 0;   /* Different collating sequences */
1468     }
1469   }
1470 
1471   /* If no test above fails then the indices must be compatible */
1472   return 1;
1473 }
1474 
1475 /*
1476 ** Attempt the transfer optimization on INSERTs of the form
1477 **
1478 **     INSERT INTO tab1 SELECT * FROM tab2;
1479 **
1480 ** This optimization is only attempted if
1481 **
1482 **    (1)  tab1 and tab2 have identical schemas including all the
1483 **         same indices and constraints
1484 **
1485 **    (2)  tab1 and tab2 are different tables
1486 **
1487 **    (3)  There must be no triggers on tab1
1488 **
1489 **    (4)  The result set of the SELECT statement is "*"
1490 **
1491 **    (5)  The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
1492 **         or LIMIT clause.
1493 **
1494 **    (6)  The SELECT statement is a simple (not a compound) select that
1495 **         contains only tab2 in its FROM clause
1496 **
1497 ** This method for implementing the INSERT transfers raw records from
1498 ** tab2 over to tab1.  The columns are not decoded.  Raw records from
1499 ** the indices of tab2 are transfered to tab1 as well.  In so doing,
1500 ** the resulting tab1 has much less fragmentation.
1501 **
1502 ** This routine returns TRUE if the optimization is attempted.  If any
1503 ** of the conditions above fail so that the optimization should not
1504 ** be attempted, then this routine returns FALSE.
1505 */
1506 static int xferOptimization(
1507   Parse *pParse,        /* Parser context */
1508   Table *pDest,         /* The table we are inserting into */
1509   Select *pSelect,      /* A SELECT statement to use as the data source */
1510   int onError,          /* How to handle constraint errors */
1511   int iDbDest           /* The database of pDest */
1512 ){
1513   ExprList *pEList;                /* The result set of the SELECT */
1514   Table *pSrc;                     /* The table in the FROM clause of SELECT */
1515   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
1516   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
1517   int i;                           /* Loop counter */
1518   int iDbSrc;                      /* The database of pSrc */
1519   int iSrc, iDest;                 /* Cursors from source and destination */
1520   int addr1, addr2;                /* Loop addresses */
1521   int emptyDestTest;               /* Address of test for empty pDest */
1522   int emptySrcTest;                /* Address of test for empty pSrc */
1523   Vdbe *v;                         /* The VDBE we are building */
1524   KeyInfo *pKey;                   /* Key information for an index */
1525   int regAutoinc;                  /* Memory register used by AUTOINC */
1526   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
1527   int regData, regRowid;           /* Registers holding data and rowid */
1528 
1529   if( pSelect==0 ){
1530     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
1531   }
1532   if( pDest->pTrigger ){
1533     return 0;   /* tab1 must not have triggers */
1534   }
1535 #ifndef SQLITE_OMIT_VIRTUALTABLE
1536   if( pDest->isVirtual ){
1537     return 0;   /* tab1 must not be a virtual table */
1538   }
1539 #endif
1540   if( onError==OE_Default ){
1541     onError = OE_Abort;
1542   }
1543   if( onError!=OE_Abort && onError!=OE_Rollback ){
1544     return 0;   /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
1545   }
1546   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
1547   if( pSelect->pSrc->nSrc!=1 ){
1548     return 0;   /* FROM clause must have exactly one term */
1549   }
1550   if( pSelect->pSrc->a[0].pSelect ){
1551     return 0;   /* FROM clause cannot contain a subquery */
1552   }
1553   if( pSelect->pWhere ){
1554     return 0;   /* SELECT may not have a WHERE clause */
1555   }
1556   if( pSelect->pOrderBy ){
1557     return 0;   /* SELECT may not have an ORDER BY clause */
1558   }
1559   /* Do not need to test for a HAVING clause.  If HAVING is present but
1560   ** there is no ORDER BY, we will get an error. */
1561   if( pSelect->pGroupBy ){
1562     return 0;   /* SELECT may not have a GROUP BY clause */
1563   }
1564   if( pSelect->pLimit ){
1565     return 0;   /* SELECT may not have a LIMIT clause */
1566   }
1567   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
1568   if( pSelect->pPrior ){
1569     return 0;   /* SELECT may not be a compound query */
1570   }
1571   if( pSelect->isDistinct ){
1572     return 0;   /* SELECT may not be DISTINCT */
1573   }
1574   pEList = pSelect->pEList;
1575   assert( pEList!=0 );
1576   if( pEList->nExpr!=1 ){
1577     return 0;   /* The result set must have exactly one column */
1578   }
1579   assert( pEList->a[0].pExpr );
1580   if( pEList->a[0].pExpr->op!=TK_ALL ){
1581     return 0;   /* The result set must be the special operator "*" */
1582   }
1583 
1584   /* At this point we have established that the statement is of the
1585   ** correct syntactic form to participate in this optimization.  Now
1586   ** we have to check the semantics.
1587   */
1588   pItem = pSelect->pSrc->a;
1589   pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
1590   if( pSrc==0 ){
1591     return 0;   /* FROM clause does not contain a real table */
1592   }
1593   if( pSrc==pDest ){
1594     return 0;   /* tab1 and tab2 may not be the same table */
1595   }
1596 #ifndef SQLITE_OMIT_VIRTUALTABLE
1597   if( pSrc->isVirtual ){
1598     return 0;   /* tab2 must not be a virtual table */
1599   }
1600 #endif
1601   if( pSrc->pSelect ){
1602     return 0;   /* tab2 may not be a view */
1603   }
1604   if( pDest->nCol!=pSrc->nCol ){
1605     return 0;   /* Number of columns must be the same in tab1 and tab2 */
1606   }
1607   if( pDest->iPKey!=pSrc->iPKey ){
1608     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
1609   }
1610   for(i=0; i<pDest->nCol; i++){
1611     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
1612       return 0;    /* Affinity must be the same on all columns */
1613     }
1614     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
1615       return 0;    /* Collating sequence must be the same on all columns */
1616     }
1617     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
1618       return 0;    /* tab2 must be NOT NULL if tab1 is */
1619     }
1620   }
1621   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1622     if( pDestIdx->onError!=OE_None ){
1623       destHasUniqueIdx = 1;
1624     }
1625     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1626       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1627     }
1628     if( pSrcIdx==0 ){
1629       return 0;    /* pDestIdx has no corresponding index in pSrc */
1630     }
1631   }
1632 #ifndef SQLITE_OMIT_CHECK
1633   if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
1634     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
1635   }
1636 #endif
1637 
1638   /* If we get this far, it means either:
1639   **
1640   **    *   We can always do the transfer if the table contains an
1641   **        an integer primary key
1642   **
1643   **    *   We can conditionally do the transfer if the destination
1644   **        table is empty.
1645   */
1646 #ifdef SQLITE_TEST
1647   sqlite3_xferopt_count++;
1648 #endif
1649   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1650   v = sqlite3GetVdbe(pParse);
1651   sqlite3CodeVerifySchema(pParse, iDbSrc);
1652   iSrc = pParse->nTab++;
1653   iDest = pParse->nTab++;
1654   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
1655   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1656   if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
1657     /* If tables do not have an INTEGER PRIMARY KEY and there
1658     ** are indices to be copied and the destination is not empty,
1659     ** we have to disallow the transfer optimization because the
1660     ** the rowids might change which will mess up indexing.
1661     **
1662     ** Or if the destination has a UNIQUE index and is not empty,
1663     ** we also disallow the transfer optimization because we cannot
1664     ** insure that all entries in the union of DEST and SRC will be
1665     ** unique.
1666     */
1667     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
1668     emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
1669     sqlite3VdbeJumpHere(v, addr1);
1670   }else{
1671     emptyDestTest = 0;
1672   }
1673   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1674   emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1675   regData = sqlite3GetTempReg(pParse);
1676   regRowid = sqlite3GetTempReg(pParse);
1677   if( pDest->iPKey>=0 ){
1678     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1679     addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
1680     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
1681                       "PRIMARY KEY must be unique", P4_STATIC);
1682     sqlite3VdbeJumpHere(v, addr2);
1683     autoIncStep(pParse, regAutoinc, regRowid);
1684   }else if( pDest->pIndex==0 ){
1685     addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
1686   }else{
1687     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1688     assert( pDest->autoInc==0 );
1689   }
1690   sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
1691   sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
1692   sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
1693   sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
1694   sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
1695   autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
1696   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1697     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1698       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1699     }
1700     assert( pSrcIdx );
1701     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1702     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1703     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
1704     sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
1705                       (char*)pKey, P4_KEYINFO_HANDOFF);
1706     VdbeComment((v, "%s", pSrcIdx->zName));
1707     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
1708     sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
1709                       (char*)pKey, P4_KEYINFO_HANDOFF);
1710     VdbeComment((v, "%s", pDestIdx->zName));
1711     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1712     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
1713     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
1714     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
1715     sqlite3VdbeJumpHere(v, addr1);
1716   }
1717   sqlite3VdbeJumpHere(v, emptySrcTest);
1718   sqlite3ReleaseTempReg(pParse, regRowid);
1719   sqlite3ReleaseTempReg(pParse, regData);
1720   sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1721   sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1722   if( emptyDestTest ){
1723     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
1724     sqlite3VdbeJumpHere(v, emptyDestTest);
1725     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1726     return 0;
1727   }else{
1728     return 1;
1729   }
1730 }
1731 #endif /* SQLITE_OMIT_XFER_OPT */
1732 
1733 /* Make sure "isView" gets undefined in case this file becomes part of
1734 ** the amalgamation - so that subsequent files do not see isView as a
1735 ** macro. */
1736 #undef isView
1737