xref: /sqlite-3.40.0/src/insert.c (revision 3c648882)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   assert( pParse->pVdbe!=0 );
36   v = pParse->pVdbe;
37   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
38   sqlite3TableLock(pParse, iDb, pTab->tnum,
39                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
40   if( HasRowid(pTab) ){
41     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
42     VdbeComment((v, "%s", pTab->zName));
43   }else{
44     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
45     assert( pPk!=0 );
46     assert( pPk->tnum==pTab->tnum || CORRUPT_DB );
47     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
48     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
49     VdbeComment((v, "%s", pTab->zName));
50   }
51 }
52 
53 /*
54 ** Return a pointer to the column affinity string associated with index
55 ** pIdx. A column affinity string has one character for each column in
56 ** the table, according to the affinity of the column:
57 **
58 **  Character      Column affinity
59 **  ------------------------------
60 **  'A'            BLOB
61 **  'B'            TEXT
62 **  'C'            NUMERIC
63 **  'D'            INTEGER
64 **  'F'            REAL
65 **
66 ** An extra 'D' is appended to the end of the string to cover the
67 ** rowid that appears as the last column in every index.
68 **
69 ** Memory for the buffer containing the column index affinity string
70 ** is managed along with the rest of the Index structure. It will be
71 ** released when sqlite3DeleteIndex() is called.
72 */
73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
74   if( !pIdx->zColAff ){
75     /* The first time a column affinity string for a particular index is
76     ** required, it is allocated and populated here. It is then stored as
77     ** a member of the Index structure for subsequent use.
78     **
79     ** The column affinity string will eventually be deleted by
80     ** sqliteDeleteIndex() when the Index structure itself is cleaned
81     ** up.
82     */
83     int n;
84     Table *pTab = pIdx->pTable;
85     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86     if( !pIdx->zColAff ){
87       sqlite3OomFault(db);
88       return 0;
89     }
90     for(n=0; n<pIdx->nColumn; n++){
91       i16 x = pIdx->aiColumn[n];
92       char aff;
93       if( x>=0 ){
94         aff = pTab->aCol[x].affinity;
95       }else if( x==XN_ROWID ){
96         aff = SQLITE_AFF_INTEGER;
97       }else{
98         assert( x==XN_EXPR );
99         assert( pIdx->aColExpr!=0 );
100         aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
101       }
102       if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
103       if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
104       pIdx->zColAff[n] = aff;
105     }
106     pIdx->zColAff[n] = 0;
107   }
108 
109   return pIdx->zColAff;
110 }
111 
112 /*
113 ** Make changes to the evolving bytecode to do affinity transformations
114 ** of values that are about to be gathered into a row for table pTab.
115 **
116 ** For ordinary (legacy, non-strict) tables:
117 ** -----------------------------------------
118 **
119 ** Compute the affinity string for table pTab, if it has not already been
120 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
121 **
122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
123 ** which were then optimized out) then this routine becomes a no-op.
124 **
125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
126 ** affinities for register iReg and following.  Or if iReg==0,
127 ** then just set the P4 operand of the previous opcode (which should  be
128 ** an OP_MakeRecord) to the affinity string.
129 **
130 ** A column affinity string has one character per column:
131 **
132 **    Character      Column affinity
133 **    ---------      ---------------
134 **    'A'            BLOB
135 **    'B'            TEXT
136 **    'C'            NUMERIC
137 **    'D'            INTEGER
138 **    'E'            REAL
139 **
140 ** For STRICT tables:
141 ** ------------------
142 **
143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the
144 ** datatypes against the column definitions in pTab.  If iReg==0, that
145 ** means an OP_MakeRecord opcode has already been generated and should be
146 ** the last opcode generated.  The new OP_TypeCheck needs to be inserted
147 ** before the OP_MakeRecord.  The new OP_TypeCheck should use the same
148 ** register set as the OP_MakeRecord.  If iReg>0 then register iReg is
149 ** the first of a series of registers that will form the new record.
150 ** Apply the type checking to that array of registers.
151 */
152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
153   int i, j;
154   char *zColAff;
155   if( pTab->tabFlags & TF_Strict ){
156     if( iReg==0 ){
157       /* Move the previous opcode (which should be OP_MakeRecord) forward
158       ** by one slot and insert a new OP_TypeCheck where the current
159       ** OP_MakeRecord is found */
160       VdbeOp *pPrev;
161       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
162       pPrev = sqlite3VdbeGetOp(v, -1);
163       assert( pPrev!=0 );
164       assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed );
165       pPrev->opcode = OP_TypeCheck;
166       sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3);
167     }else{
168       /* Insert an isolated OP_Typecheck */
169       sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol);
170       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
171     }
172     return;
173   }
174   zColAff = pTab->zColAff;
175   if( zColAff==0 ){
176     sqlite3 *db = sqlite3VdbeDb(v);
177     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
178     if( !zColAff ){
179       sqlite3OomFault(db);
180       return;
181     }
182 
183     for(i=j=0; i<pTab->nCol; i++){
184       assert( pTab->aCol[i].affinity!=0 );
185       if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
186         zColAff[j++] = pTab->aCol[i].affinity;
187       }
188     }
189     do{
190       zColAff[j--] = 0;
191     }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
192     pTab->zColAff = zColAff;
193   }
194   assert( zColAff!=0 );
195   i = sqlite3Strlen30NN(zColAff);
196   if( i ){
197     if( iReg ){
198       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
199     }else{
200       assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord
201               || sqlite3VdbeDb(v)->mallocFailed );
202       sqlite3VdbeChangeP4(v, -1, zColAff, i);
203     }
204   }
205 }
206 
207 /*
208 ** Return non-zero if the table pTab in database iDb or any of its indices
209 ** have been opened at any point in the VDBE program. This is used to see if
210 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
211 ** run without using a temporary table for the results of the SELECT.
212 */
213 static int readsTable(Parse *p, int iDb, Table *pTab){
214   Vdbe *v = sqlite3GetVdbe(p);
215   int i;
216   int iEnd = sqlite3VdbeCurrentAddr(v);
217 #ifndef SQLITE_OMIT_VIRTUALTABLE
218   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
219 #endif
220 
221   for(i=1; i<iEnd; i++){
222     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
223     assert( pOp!=0 );
224     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
225       Index *pIndex;
226       Pgno tnum = pOp->p2;
227       if( tnum==pTab->tnum ){
228         return 1;
229       }
230       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
231         if( tnum==pIndex->tnum ){
232           return 1;
233         }
234       }
235     }
236 #ifndef SQLITE_OMIT_VIRTUALTABLE
237     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
238       assert( pOp->p4.pVtab!=0 );
239       assert( pOp->p4type==P4_VTAB );
240       return 1;
241     }
242 #endif
243   }
244   return 0;
245 }
246 
247 /* This walker callback will compute the union of colFlags flags for all
248 ** referenced columns in a CHECK constraint or generated column expression.
249 */
250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
251   if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){
252     assert( pExpr->iColumn < pWalker->u.pTab->nCol );
253     pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
254   }
255   return WRC_Continue;
256 }
257 
258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
259 /*
260 ** All regular columns for table pTab have been puts into registers
261 ** starting with iRegStore.  The registers that correspond to STORED
262 ** or VIRTUAL columns have not yet been initialized.  This routine goes
263 ** back and computes the values for those columns based on the previously
264 ** computed normal columns.
265 */
266 void sqlite3ComputeGeneratedColumns(
267   Parse *pParse,    /* Parsing context */
268   int iRegStore,    /* Register holding the first column */
269   Table *pTab       /* The table */
270 ){
271   int i;
272   Walker w;
273   Column *pRedo;
274   int eProgress;
275   VdbeOp *pOp;
276 
277   assert( pTab->tabFlags & TF_HasGenerated );
278   testcase( pTab->tabFlags & TF_HasVirtual );
279   testcase( pTab->tabFlags & TF_HasStored );
280 
281   /* Before computing generated columns, first go through and make sure
282   ** that appropriate affinity has been applied to the regular columns
283   */
284   sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore);
285   if( (pTab->tabFlags & TF_HasStored)!=0 ){
286     pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
287     if( pOp->opcode==OP_Affinity ){
288       /* Change the OP_Affinity argument to '@' (NONE) for all stored
289       ** columns.  '@' is the no-op affinity and those columns have not
290       ** yet been computed. */
291       int ii, jj;
292       char *zP4 = pOp->p4.z;
293       assert( zP4!=0 );
294       assert( pOp->p4type==P4_DYNAMIC );
295       for(ii=jj=0; zP4[jj]; ii++){
296         if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){
297           continue;
298         }
299         if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){
300           zP4[jj] = SQLITE_AFF_NONE;
301         }
302         jj++;
303       }
304     }else if( pOp->opcode==OP_TypeCheck ){
305       /* If an OP_TypeCheck was generated because the table is STRICT,
306       ** then set the P3 operand to indicate that generated columns should
307       ** not be checked */
308       pOp->p3 = 1;
309     }
310   }
311 
312   /* Because there can be multiple generated columns that refer to one another,
313   ** this is a two-pass algorithm.  On the first pass, mark all generated
314   ** columns as "not available".
315   */
316   for(i=0; i<pTab->nCol; i++){
317     if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
318       testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
319       testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
320       pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
321     }
322   }
323 
324   w.u.pTab = pTab;
325   w.xExprCallback = exprColumnFlagUnion;
326   w.xSelectCallback = 0;
327   w.xSelectCallback2 = 0;
328 
329   /* On the second pass, compute the value of each NOT-AVAILABLE column.
330   ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
331   ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
332   ** they are needed.
333   */
334   pParse->iSelfTab = -iRegStore;
335   do{
336     eProgress = 0;
337     pRedo = 0;
338     for(i=0; i<pTab->nCol; i++){
339       Column *pCol = pTab->aCol + i;
340       if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
341         int x;
342         pCol->colFlags |= COLFLAG_BUSY;
343         w.eCode = 0;
344         sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol));
345         pCol->colFlags &= ~COLFLAG_BUSY;
346         if( w.eCode & COLFLAG_NOTAVAIL ){
347           pRedo = pCol;
348           continue;
349         }
350         eProgress = 1;
351         assert( pCol->colFlags & COLFLAG_GENERATED );
352         x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
353         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x);
354         pCol->colFlags &= ~COLFLAG_NOTAVAIL;
355       }
356     }
357   }while( pRedo && eProgress );
358   if( pRedo ){
359     sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName);
360   }
361   pParse->iSelfTab = 0;
362 }
363 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
364 
365 
366 #ifndef SQLITE_OMIT_AUTOINCREMENT
367 /*
368 ** Locate or create an AutoincInfo structure associated with table pTab
369 ** which is in database iDb.  Return the register number for the register
370 ** that holds the maximum rowid.  Return zero if pTab is not an AUTOINCREMENT
371 ** table.  (Also return zero when doing a VACUUM since we do not want to
372 ** update the AUTOINCREMENT counters during a VACUUM.)
373 **
374 ** There is at most one AutoincInfo structure per table even if the
375 ** same table is autoincremented multiple times due to inserts within
376 ** triggers.  A new AutoincInfo structure is created if this is the
377 ** first use of table pTab.  On 2nd and subsequent uses, the original
378 ** AutoincInfo structure is used.
379 **
380 ** Four consecutive registers are allocated:
381 **
382 **   (1)  The name of the pTab table.
383 **   (2)  The maximum ROWID of pTab.
384 **   (3)  The rowid in sqlite_sequence of pTab
385 **   (4)  The original value of the max ROWID in pTab, or NULL if none
386 **
387 ** The 2nd register is the one that is returned.  That is all the
388 ** insert routine needs to know about.
389 */
390 static int autoIncBegin(
391   Parse *pParse,      /* Parsing context */
392   int iDb,            /* Index of the database holding pTab */
393   Table *pTab         /* The table we are writing to */
394 ){
395   int memId = 0;      /* Register holding maximum rowid */
396   assert( pParse->db->aDb[iDb].pSchema!=0 );
397   if( (pTab->tabFlags & TF_Autoincrement)!=0
398    && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
399   ){
400     Parse *pToplevel = sqlite3ParseToplevel(pParse);
401     AutoincInfo *pInfo;
402     Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
403 
404     /* Verify that the sqlite_sequence table exists and is an ordinary
405     ** rowid table with exactly two columns.
406     ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
407     if( pSeqTab==0
408      || !HasRowid(pSeqTab)
409      || NEVER(IsVirtual(pSeqTab))
410      || pSeqTab->nCol!=2
411     ){
412       pParse->nErr++;
413       pParse->rc = SQLITE_CORRUPT_SEQUENCE;
414       return 0;
415     }
416 
417     pInfo = pToplevel->pAinc;
418     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
419     if( pInfo==0 ){
420       pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
421       sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo);
422       testcase( pParse->earlyCleanup );
423       if( pParse->db->mallocFailed ) return 0;
424       pInfo->pNext = pToplevel->pAinc;
425       pToplevel->pAinc = pInfo;
426       pInfo->pTab = pTab;
427       pInfo->iDb = iDb;
428       pToplevel->nMem++;                  /* Register to hold name of table */
429       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
430       pToplevel->nMem +=2;       /* Rowid in sqlite_sequence + orig max val */
431     }
432     memId = pInfo->regCtr;
433   }
434   return memId;
435 }
436 
437 /*
438 ** This routine generates code that will initialize all of the
439 ** register used by the autoincrement tracker.
440 */
441 void sqlite3AutoincrementBegin(Parse *pParse){
442   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
443   sqlite3 *db = pParse->db;  /* The database connection */
444   Db *pDb;                   /* Database only autoinc table */
445   int memId;                 /* Register holding max rowid */
446   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
447 
448   /* This routine is never called during trigger-generation.  It is
449   ** only called from the top-level */
450   assert( pParse->pTriggerTab==0 );
451   assert( sqlite3IsToplevel(pParse) );
452 
453   assert( v );   /* We failed long ago if this is not so */
454   for(p = pParse->pAinc; p; p = p->pNext){
455     static const int iLn = VDBE_OFFSET_LINENO(2);
456     static const VdbeOpList autoInc[] = {
457       /* 0  */ {OP_Null,    0,  0, 0},
458       /* 1  */ {OP_Rewind,  0, 10, 0},
459       /* 2  */ {OP_Column,  0,  0, 0},
460       /* 3  */ {OP_Ne,      0,  9, 0},
461       /* 4  */ {OP_Rowid,   0,  0, 0},
462       /* 5  */ {OP_Column,  0,  1, 0},
463       /* 6  */ {OP_AddImm,  0,  0, 0},
464       /* 7  */ {OP_Copy,    0,  0, 0},
465       /* 8  */ {OP_Goto,    0, 11, 0},
466       /* 9  */ {OP_Next,    0,  2, 0},
467       /* 10 */ {OP_Integer, 0,  0, 0},
468       /* 11 */ {OP_Close,   0,  0, 0}
469     };
470     VdbeOp *aOp;
471     pDb = &db->aDb[p->iDb];
472     memId = p->regCtr;
473     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
474     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
475     sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
476     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
477     if( aOp==0 ) break;
478     aOp[0].p2 = memId;
479     aOp[0].p3 = memId+2;
480     aOp[2].p3 = memId;
481     aOp[3].p1 = memId-1;
482     aOp[3].p3 = memId;
483     aOp[3].p5 = SQLITE_JUMPIFNULL;
484     aOp[4].p2 = memId+1;
485     aOp[5].p3 = memId;
486     aOp[6].p1 = memId;
487     aOp[7].p2 = memId+2;
488     aOp[7].p1 = memId;
489     aOp[10].p2 = memId;
490     if( pParse->nTab==0 ) pParse->nTab = 1;
491   }
492 }
493 
494 /*
495 ** Update the maximum rowid for an autoincrement calculation.
496 **
497 ** This routine should be called when the regRowid register holds a
498 ** new rowid that is about to be inserted.  If that new rowid is
499 ** larger than the maximum rowid in the memId memory cell, then the
500 ** memory cell is updated.
501 */
502 static void autoIncStep(Parse *pParse, int memId, int regRowid){
503   if( memId>0 ){
504     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
505   }
506 }
507 
508 /*
509 ** This routine generates the code needed to write autoincrement
510 ** maximum rowid values back into the sqlite_sequence register.
511 ** Every statement that might do an INSERT into an autoincrement
512 ** table (either directly or through triggers) needs to call this
513 ** routine just before the "exit" code.
514 */
515 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
516   AutoincInfo *p;
517   Vdbe *v = pParse->pVdbe;
518   sqlite3 *db = pParse->db;
519 
520   assert( v );
521   for(p = pParse->pAinc; p; p = p->pNext){
522     static const int iLn = VDBE_OFFSET_LINENO(2);
523     static const VdbeOpList autoIncEnd[] = {
524       /* 0 */ {OP_NotNull,     0, 2, 0},
525       /* 1 */ {OP_NewRowid,    0, 0, 0},
526       /* 2 */ {OP_MakeRecord,  0, 2, 0},
527       /* 3 */ {OP_Insert,      0, 0, 0},
528       /* 4 */ {OP_Close,       0, 0, 0}
529     };
530     VdbeOp *aOp;
531     Db *pDb = &db->aDb[p->iDb];
532     int iRec;
533     int memId = p->regCtr;
534 
535     iRec = sqlite3GetTempReg(pParse);
536     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
537     sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
538     VdbeCoverage(v);
539     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
540     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
541     if( aOp==0 ) break;
542     aOp[0].p1 = memId+1;
543     aOp[1].p2 = memId+1;
544     aOp[2].p1 = memId-1;
545     aOp[2].p3 = iRec;
546     aOp[3].p2 = iRec;
547     aOp[3].p3 = memId+1;
548     aOp[3].p5 = OPFLAG_APPEND;
549     sqlite3ReleaseTempReg(pParse, iRec);
550   }
551 }
552 void sqlite3AutoincrementEnd(Parse *pParse){
553   if( pParse->pAinc ) autoIncrementEnd(pParse);
554 }
555 #else
556 /*
557 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
558 ** above are all no-ops
559 */
560 # define autoIncBegin(A,B,C) (0)
561 # define autoIncStep(A,B,C)
562 #endif /* SQLITE_OMIT_AUTOINCREMENT */
563 
564 
565 /* Forward declaration */
566 static int xferOptimization(
567   Parse *pParse,        /* Parser context */
568   Table *pDest,         /* The table we are inserting into */
569   Select *pSelect,      /* A SELECT statement to use as the data source */
570   int onError,          /* How to handle constraint errors */
571   int iDbDest           /* The database of pDest */
572 );
573 
574 /*
575 ** This routine is called to handle SQL of the following forms:
576 **
577 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
578 **    insert into TABLE (IDLIST) select
579 **    insert into TABLE (IDLIST) default values
580 **
581 ** The IDLIST following the table name is always optional.  If omitted,
582 ** then a list of all (non-hidden) columns for the table is substituted.
583 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
584 ** is omitted.
585 **
586 ** For the pSelect parameter holds the values to be inserted for the
587 ** first two forms shown above.  A VALUES clause is really just short-hand
588 ** for a SELECT statement that omits the FROM clause and everything else
589 ** that follows.  If the pSelect parameter is NULL, that means that the
590 ** DEFAULT VALUES form of the INSERT statement is intended.
591 **
592 ** The code generated follows one of four templates.  For a simple
593 ** insert with data coming from a single-row VALUES clause, the code executes
594 ** once straight down through.  Pseudo-code follows (we call this
595 ** the "1st template"):
596 **
597 **         open write cursor to <table> and its indices
598 **         put VALUES clause expressions into registers
599 **         write the resulting record into <table>
600 **         cleanup
601 **
602 ** The three remaining templates assume the statement is of the form
603 **
604 **   INSERT INTO <table> SELECT ...
605 **
606 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
607 ** in other words if the SELECT pulls all columns from a single table
608 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
609 ** if <table2> and <table1> are distinct tables but have identical
610 ** schemas, including all the same indices, then a special optimization
611 ** is invoked that copies raw records from <table2> over to <table1>.
612 ** See the xferOptimization() function for the implementation of this
613 ** template.  This is the 2nd template.
614 **
615 **         open a write cursor to <table>
616 **         open read cursor on <table2>
617 **         transfer all records in <table2> over to <table>
618 **         close cursors
619 **         foreach index on <table>
620 **           open a write cursor on the <table> index
621 **           open a read cursor on the corresponding <table2> index
622 **           transfer all records from the read to the write cursors
623 **           close cursors
624 **         end foreach
625 **
626 ** The 3rd template is for when the second template does not apply
627 ** and the SELECT clause does not read from <table> at any time.
628 ** The generated code follows this template:
629 **
630 **         X <- A
631 **         goto B
632 **      A: setup for the SELECT
633 **         loop over the rows in the SELECT
634 **           load values into registers R..R+n
635 **           yield X
636 **         end loop
637 **         cleanup after the SELECT
638 **         end-coroutine X
639 **      B: open write cursor to <table> and its indices
640 **      C: yield X, at EOF goto D
641 **         insert the select result into <table> from R..R+n
642 **         goto C
643 **      D: cleanup
644 **
645 ** The 4th template is used if the insert statement takes its
646 ** values from a SELECT but the data is being inserted into a table
647 ** that is also read as part of the SELECT.  In the third form,
648 ** we have to use an intermediate table to store the results of
649 ** the select.  The template is like this:
650 **
651 **         X <- A
652 **         goto B
653 **      A: setup for the SELECT
654 **         loop over the tables in the SELECT
655 **           load value into register R..R+n
656 **           yield X
657 **         end loop
658 **         cleanup after the SELECT
659 **         end co-routine R
660 **      B: open temp table
661 **      L: yield X, at EOF goto M
662 **         insert row from R..R+n into temp table
663 **         goto L
664 **      M: open write cursor to <table> and its indices
665 **         rewind temp table
666 **      C: loop over rows of intermediate table
667 **           transfer values form intermediate table into <table>
668 **         end loop
669 **      D: cleanup
670 */
671 void sqlite3Insert(
672   Parse *pParse,        /* Parser context */
673   SrcList *pTabList,    /* Name of table into which we are inserting */
674   Select *pSelect,      /* A SELECT statement to use as the data source */
675   IdList *pColumn,      /* Column names corresponding to IDLIST, or NULL. */
676   int onError,          /* How to handle constraint errors */
677   Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */
678 ){
679   sqlite3 *db;          /* The main database structure */
680   Table *pTab;          /* The table to insert into.  aka TABLE */
681   int i, j;             /* Loop counters */
682   Vdbe *v;              /* Generate code into this virtual machine */
683   Index *pIdx;          /* For looping over indices of the table */
684   int nColumn;          /* Number of columns in the data */
685   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
686   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
687   int iIdxCur = 0;      /* First index cursor */
688   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
689   int endOfLoop;        /* Label for the end of the insertion loop */
690   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
691   int addrInsTop = 0;   /* Jump to label "D" */
692   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
693   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
694   int iDb;              /* Index of database holding TABLE */
695   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
696   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
697   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
698   u8 bIdListInOrder;    /* True if IDLIST is in table order */
699   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
700   int iRegStore;        /* Register in which to store next column */
701 
702   /* Register allocations */
703   int regFromSelect = 0;/* Base register for data coming from SELECT */
704   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
705   int regRowCount = 0;  /* Memory cell used for the row counter */
706   int regIns;           /* Block of regs holding rowid+data being inserted */
707   int regRowid;         /* registers holding insert rowid */
708   int regData;          /* register holding first column to insert */
709   int *aRegIdx = 0;     /* One register allocated to each index */
710 
711 #ifndef SQLITE_OMIT_TRIGGER
712   int isView;                 /* True if attempting to insert into a view */
713   Trigger *pTrigger;          /* List of triggers on pTab, if required */
714   int tmask;                  /* Mask of trigger times */
715 #endif
716 
717   db = pParse->db;
718   if( pParse->nErr || db->mallocFailed ){
719     goto insert_cleanup;
720   }
721   dest.iSDParm = 0;  /* Suppress a harmless compiler warning */
722 
723   /* If the Select object is really just a simple VALUES() list with a
724   ** single row (the common case) then keep that one row of values
725   ** and discard the other (unused) parts of the pSelect object
726   */
727   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
728     pList = pSelect->pEList;
729     pSelect->pEList = 0;
730     sqlite3SelectDelete(db, pSelect);
731     pSelect = 0;
732   }
733 
734   /* Locate the table into which we will be inserting new information.
735   */
736   assert( pTabList->nSrc==1 );
737   pTab = sqlite3SrcListLookup(pParse, pTabList);
738   if( pTab==0 ){
739     goto insert_cleanup;
740   }
741   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
742   assert( iDb<db->nDb );
743   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
744                        db->aDb[iDb].zDbSName) ){
745     goto insert_cleanup;
746   }
747   withoutRowid = !HasRowid(pTab);
748 
749   /* Figure out if we have any triggers and if the table being
750   ** inserted into is a view
751   */
752 #ifndef SQLITE_OMIT_TRIGGER
753   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
754   isView = IsView(pTab);
755 #else
756 # define pTrigger 0
757 # define tmask 0
758 # define isView 0
759 #endif
760 #ifdef SQLITE_OMIT_VIEW
761 # undef isView
762 # define isView 0
763 #endif
764   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
765 
766   /* If pTab is really a view, make sure it has been initialized.
767   ** ViewGetColumnNames() is a no-op if pTab is not a view.
768   */
769   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
770     goto insert_cleanup;
771   }
772 
773   /* Cannot insert into a read-only table.
774   */
775   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
776     goto insert_cleanup;
777   }
778 
779   /* Allocate a VDBE
780   */
781   v = sqlite3GetVdbe(pParse);
782   if( v==0 ) goto insert_cleanup;
783   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
784   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
785 
786 #ifndef SQLITE_OMIT_XFER_OPT
787   /* If the statement is of the form
788   **
789   **       INSERT INTO <table1> SELECT * FROM <table2>;
790   **
791   ** Then special optimizations can be applied that make the transfer
792   ** very fast and which reduce fragmentation of indices.
793   **
794   ** This is the 2nd template.
795   */
796   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
797     assert( !pTrigger );
798     assert( pList==0 );
799     goto insert_end;
800   }
801 #endif /* SQLITE_OMIT_XFER_OPT */
802 
803   /* If this is an AUTOINCREMENT table, look up the sequence number in the
804   ** sqlite_sequence table and store it in memory cell regAutoinc.
805   */
806   regAutoinc = autoIncBegin(pParse, iDb, pTab);
807 
808   /* Allocate a block registers to hold the rowid and the values
809   ** for all columns of the new row.
810   */
811   regRowid = regIns = pParse->nMem+1;
812   pParse->nMem += pTab->nCol + 1;
813   if( IsVirtual(pTab) ){
814     regRowid++;
815     pParse->nMem++;
816   }
817   regData = regRowid+1;
818 
819   /* If the INSERT statement included an IDLIST term, then make sure
820   ** all elements of the IDLIST really are columns of the table and
821   ** remember the column indices.
822   **
823   ** If the table has an INTEGER PRIMARY KEY column and that column
824   ** is named in the IDLIST, then record in the ipkColumn variable
825   ** the index into IDLIST of the primary key column.  ipkColumn is
826   ** the index of the primary key as it appears in IDLIST, not as
827   ** is appears in the original table.  (The index of the INTEGER
828   ** PRIMARY KEY in the original table is pTab->iPKey.)  After this
829   ** loop, if ipkColumn==(-1), that means that integer primary key
830   ** is unspecified, and hence the table is either WITHOUT ROWID or
831   ** it will automatically generated an integer primary key.
832   **
833   ** bIdListInOrder is true if the columns in IDLIST are in storage
834   ** order.  This enables an optimization that avoids shuffling the
835   ** columns into storage order.  False negatives are harmless,
836   ** but false positives will cause database corruption.
837   */
838   bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
839   if( pColumn ){
840     for(i=0; i<pColumn->nId; i++){
841       pColumn->a[i].idx = -1;
842     }
843     for(i=0; i<pColumn->nId; i++){
844       for(j=0; j<pTab->nCol; j++){
845         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){
846           pColumn->a[i].idx = j;
847           if( i!=j ) bIdListInOrder = 0;
848           if( j==pTab->iPKey ){
849             ipkColumn = i;  assert( !withoutRowid );
850           }
851 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
852           if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
853             sqlite3ErrorMsg(pParse,
854                "cannot INSERT into generated column \"%s\"",
855                pTab->aCol[j].zCnName);
856             goto insert_cleanup;
857           }
858 #endif
859           break;
860         }
861       }
862       if( j>=pTab->nCol ){
863         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
864           ipkColumn = i;
865           bIdListInOrder = 0;
866         }else{
867           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
868               pTabList->a, pColumn->a[i].zName);
869           pParse->checkSchema = 1;
870           goto insert_cleanup;
871         }
872       }
873     }
874   }
875 
876   /* Figure out how many columns of data are supplied.  If the data
877   ** is coming from a SELECT statement, then generate a co-routine that
878   ** produces a single row of the SELECT on each invocation.  The
879   ** co-routine is the common header to the 3rd and 4th templates.
880   */
881   if( pSelect ){
882     /* Data is coming from a SELECT or from a multi-row VALUES clause.
883     ** Generate a co-routine to run the SELECT. */
884     int regYield;       /* Register holding co-routine entry-point */
885     int addrTop;        /* Top of the co-routine */
886     int rc;             /* Result code */
887 
888     regYield = ++pParse->nMem;
889     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
890     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
891     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
892     dest.iSdst = bIdListInOrder ? regData : 0;
893     dest.nSdst = pTab->nCol;
894     rc = sqlite3Select(pParse, pSelect, &dest);
895     regFromSelect = dest.iSdst;
896     if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
897     sqlite3VdbeEndCoroutine(v, regYield);
898     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
899     assert( pSelect->pEList );
900     nColumn = pSelect->pEList->nExpr;
901 
902     /* Set useTempTable to TRUE if the result of the SELECT statement
903     ** should be written into a temporary table (template 4).  Set to
904     ** FALSE if each output row of the SELECT can be written directly into
905     ** the destination table (template 3).
906     **
907     ** A temp table must be used if the table being updated is also one
908     ** of the tables being read by the SELECT statement.  Also use a
909     ** temp table in the case of row triggers.
910     */
911     if( pTrigger || readsTable(pParse, iDb, pTab) ){
912       useTempTable = 1;
913     }
914 
915     if( useTempTable ){
916       /* Invoke the coroutine to extract information from the SELECT
917       ** and add it to a transient table srcTab.  The code generated
918       ** here is from the 4th template:
919       **
920       **      B: open temp table
921       **      L: yield X, goto M at EOF
922       **         insert row from R..R+n into temp table
923       **         goto L
924       **      M: ...
925       */
926       int regRec;          /* Register to hold packed record */
927       int regTempRowid;    /* Register to hold temp table ROWID */
928       int addrL;           /* Label "L" */
929 
930       srcTab = pParse->nTab++;
931       regRec = sqlite3GetTempReg(pParse);
932       regTempRowid = sqlite3GetTempReg(pParse);
933       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
934       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
935       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
936       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
937       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
938       sqlite3VdbeGoto(v, addrL);
939       sqlite3VdbeJumpHere(v, addrL);
940       sqlite3ReleaseTempReg(pParse, regRec);
941       sqlite3ReleaseTempReg(pParse, regTempRowid);
942     }
943   }else{
944     /* This is the case if the data for the INSERT is coming from a
945     ** single-row VALUES clause
946     */
947     NameContext sNC;
948     memset(&sNC, 0, sizeof(sNC));
949     sNC.pParse = pParse;
950     srcTab = -1;
951     assert( useTempTable==0 );
952     if( pList ){
953       nColumn = pList->nExpr;
954       if( sqlite3ResolveExprListNames(&sNC, pList) ){
955         goto insert_cleanup;
956       }
957     }else{
958       nColumn = 0;
959     }
960   }
961 
962   /* If there is no IDLIST term but the table has an integer primary
963   ** key, the set the ipkColumn variable to the integer primary key
964   ** column index in the original table definition.
965   */
966   if( pColumn==0 && nColumn>0 ){
967     ipkColumn = pTab->iPKey;
968 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
969     if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
970       testcase( pTab->tabFlags & TF_HasVirtual );
971       testcase( pTab->tabFlags & TF_HasStored );
972       for(i=ipkColumn-1; i>=0; i--){
973         if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
974           testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
975           testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
976           ipkColumn--;
977         }
978       }
979     }
980 #endif
981 
982     /* Make sure the number of columns in the source data matches the number
983     ** of columns to be inserted into the table.
984     */
985     assert( TF_HasHidden==COLFLAG_HIDDEN );
986     assert( TF_HasGenerated==COLFLAG_GENERATED );
987     assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) );
988     if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){
989       for(i=0; i<pTab->nCol; i++){
990         if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
991       }
992     }
993     if( nColumn!=(pTab->nCol-nHidden) ){
994       sqlite3ErrorMsg(pParse,
995          "table %S has %d columns but %d values were supplied",
996          pTabList->a, pTab->nCol-nHidden, nColumn);
997      goto insert_cleanup;
998     }
999   }
1000   if( pColumn!=0 && nColumn!=pColumn->nId ){
1001     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
1002     goto insert_cleanup;
1003   }
1004 
1005   /* Initialize the count of rows to be inserted
1006   */
1007   if( (db->flags & SQLITE_CountRows)!=0
1008    && !pParse->nested
1009    && !pParse->pTriggerTab
1010    && !pParse->bReturning
1011   ){
1012     regRowCount = ++pParse->nMem;
1013     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
1014   }
1015 
1016   /* If this is not a view, open the table and and all indices */
1017   if( !isView ){
1018     int nIdx;
1019     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
1020                                       &iDataCur, &iIdxCur);
1021     aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
1022     if( aRegIdx==0 ){
1023       goto insert_cleanup;
1024     }
1025     for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
1026       assert( pIdx );
1027       aRegIdx[i] = ++pParse->nMem;
1028       pParse->nMem += pIdx->nColumn;
1029     }
1030     aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */
1031   }
1032 #ifndef SQLITE_OMIT_UPSERT
1033   if( pUpsert ){
1034     Upsert *pNx;
1035     if( IsVirtual(pTab) ){
1036       sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
1037               pTab->zName);
1038       goto insert_cleanup;
1039     }
1040     if( IsView(pTab) ){
1041       sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
1042       goto insert_cleanup;
1043     }
1044     if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
1045       goto insert_cleanup;
1046     }
1047     pTabList->a[0].iCursor = iDataCur;
1048     pNx = pUpsert;
1049     do{
1050       pNx->pUpsertSrc = pTabList;
1051       pNx->regData = regData;
1052       pNx->iDataCur = iDataCur;
1053       pNx->iIdxCur = iIdxCur;
1054       if( pNx->pUpsertTarget ){
1055         if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){
1056           goto insert_cleanup;
1057         }
1058       }
1059       pNx = pNx->pNextUpsert;
1060     }while( pNx!=0 );
1061   }
1062 #endif
1063 
1064 
1065   /* This is the top of the main insertion loop */
1066   if( useTempTable ){
1067     /* This block codes the top of loop only.  The complete loop is the
1068     ** following pseudocode (template 4):
1069     **
1070     **         rewind temp table, if empty goto D
1071     **      C: loop over rows of intermediate table
1072     **           transfer values form intermediate table into <table>
1073     **         end loop
1074     **      D: ...
1075     */
1076     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
1077     addrCont = sqlite3VdbeCurrentAddr(v);
1078   }else if( pSelect ){
1079     /* This block codes the top of loop only.  The complete loop is the
1080     ** following pseudocode (template 3):
1081     **
1082     **      C: yield X, at EOF goto D
1083     **         insert the select result into <table> from R..R+n
1084     **         goto C
1085     **      D: ...
1086     */
1087     sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0);
1088     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1089     VdbeCoverage(v);
1090     if( ipkColumn>=0 ){
1091       /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1092       ** SELECT, go ahead and copy the value into the rowid slot now, so that
1093       ** the value does not get overwritten by a NULL at tag-20191021-002. */
1094       sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
1095     }
1096   }
1097 
1098   /* Compute data for ordinary columns of the new entry.  Values
1099   ** are written in storage order into registers starting with regData.
1100   ** Only ordinary columns are computed in this loop. The rowid
1101   ** (if there is one) is computed later and generated columns are
1102   ** computed after the rowid since they might depend on the value
1103   ** of the rowid.
1104   */
1105   nHidden = 0;
1106   iRegStore = regData;  assert( regData==regRowid+1 );
1107   for(i=0; i<pTab->nCol; i++, iRegStore++){
1108     int k;
1109     u32 colFlags;
1110     assert( i>=nHidden );
1111     if( i==pTab->iPKey ){
1112       /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1113       ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1114       ** using excess space.  The file format definition requires this extra
1115       ** NULL - we cannot optimize further by skipping the column completely */
1116       sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1117       continue;
1118     }
1119     if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
1120       nHidden++;
1121       if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
1122         /* Virtual columns do not participate in OP_MakeRecord.  So back up
1123         ** iRegStore by one slot to compensate for the iRegStore++ in the
1124         ** outer for() loop */
1125         iRegStore--;
1126         continue;
1127       }else if( (colFlags & COLFLAG_STORED)!=0 ){
1128         /* Stored columns are computed later.  But if there are BEFORE
1129         ** triggers, the slots used for stored columns will be OP_Copy-ed
1130         ** to a second block of registers, so the register needs to be
1131         ** initialized to NULL to avoid an uninitialized register read */
1132         if( tmask & TRIGGER_BEFORE ){
1133           sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1134         }
1135         continue;
1136       }else if( pColumn==0 ){
1137         /* Hidden columns that are not explicitly named in the INSERT
1138         ** get there default value */
1139         sqlite3ExprCodeFactorable(pParse,
1140             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1141             iRegStore);
1142         continue;
1143       }
1144     }
1145     if( pColumn ){
1146       for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){}
1147       if( j>=pColumn->nId ){
1148         /* A column not named in the insert column list gets its
1149         ** default value */
1150         sqlite3ExprCodeFactorable(pParse,
1151             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1152             iRegStore);
1153         continue;
1154       }
1155       k = j;
1156     }else if( nColumn==0 ){
1157       /* This is INSERT INTO ... DEFAULT VALUES.  Load the default value. */
1158       sqlite3ExprCodeFactorable(pParse,
1159           sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1160           iRegStore);
1161       continue;
1162     }else{
1163       k = i - nHidden;
1164     }
1165 
1166     if( useTempTable ){
1167       sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
1168     }else if( pSelect ){
1169       if( regFromSelect!=regData ){
1170         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
1171       }
1172     }else{
1173       sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore);
1174     }
1175   }
1176 
1177 
1178   /* Run the BEFORE and INSTEAD OF triggers, if there are any
1179   */
1180   endOfLoop = sqlite3VdbeMakeLabel(pParse);
1181   if( tmask & TRIGGER_BEFORE ){
1182     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
1183 
1184     /* build the NEW.* reference row.  Note that if there is an INTEGER
1185     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1186     ** translated into a unique ID for the row.  But on a BEFORE trigger,
1187     ** we do not know what the unique ID will be (because the insert has
1188     ** not happened yet) so we substitute a rowid of -1
1189     */
1190     if( ipkColumn<0 ){
1191       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1192     }else{
1193       int addr1;
1194       assert( !withoutRowid );
1195       if( useTempTable ){
1196         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
1197       }else{
1198         assert( pSelect==0 );  /* Otherwise useTempTable is true */
1199         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
1200       }
1201       addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
1202       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1203       sqlite3VdbeJumpHere(v, addr1);
1204       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
1205     }
1206 
1207     /* Copy the new data already generated. */
1208     assert( pTab->nNVCol>0 );
1209     sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
1210 
1211 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1212     /* Compute the new value for generated columns after all other
1213     ** columns have already been computed.  This must be done after
1214     ** computing the ROWID in case one of the generated columns
1215     ** refers to the ROWID. */
1216     if( pTab->tabFlags & TF_HasGenerated ){
1217       testcase( pTab->tabFlags & TF_HasVirtual );
1218       testcase( pTab->tabFlags & TF_HasStored );
1219       sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
1220     }
1221 #endif
1222 
1223     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1224     ** do not attempt any conversions before assembling the record.
1225     ** If this is a real table, attempt conversions as required by the
1226     ** table column affinities.
1227     */
1228     if( !isView ){
1229       sqlite3TableAffinity(v, pTab, regCols+1);
1230     }
1231 
1232     /* Fire BEFORE or INSTEAD OF triggers */
1233     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
1234         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
1235 
1236     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
1237   }
1238 
1239   if( !isView ){
1240     if( IsVirtual(pTab) ){
1241       /* The row that the VUpdate opcode will delete: none */
1242       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
1243     }
1244     if( ipkColumn>=0 ){
1245       /* Compute the new rowid */
1246       if( useTempTable ){
1247         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
1248       }else if( pSelect ){
1249         /* Rowid already initialized at tag-20191021-001 */
1250       }else{
1251         Expr *pIpk = pList->a[ipkColumn].pExpr;
1252         if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
1253           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1254           appendFlag = 1;
1255         }else{
1256           sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
1257         }
1258       }
1259       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1260       ** to generate a unique primary key value.
1261       */
1262       if( !appendFlag ){
1263         int addr1;
1264         if( !IsVirtual(pTab) ){
1265           addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
1266           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1267           sqlite3VdbeJumpHere(v, addr1);
1268         }else{
1269           addr1 = sqlite3VdbeCurrentAddr(v);
1270           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
1271         }
1272         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
1273       }
1274     }else if( IsVirtual(pTab) || withoutRowid ){
1275       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
1276     }else{
1277       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1278       appendFlag = 1;
1279     }
1280     autoIncStep(pParse, regAutoinc, regRowid);
1281 
1282 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1283     /* Compute the new value for generated columns after all other
1284     ** columns have already been computed.  This must be done after
1285     ** computing the ROWID in case one of the generated columns
1286     ** is derived from the INTEGER PRIMARY KEY. */
1287     if( pTab->tabFlags & TF_HasGenerated ){
1288       sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
1289     }
1290 #endif
1291 
1292     /* Generate code to check constraints and generate index keys and
1293     ** do the insertion.
1294     */
1295 #ifndef SQLITE_OMIT_VIRTUALTABLE
1296     if( IsVirtual(pTab) ){
1297       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1298       sqlite3VtabMakeWritable(pParse, pTab);
1299       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1300       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1301       sqlite3MayAbort(pParse);
1302     }else
1303 #endif
1304     {
1305       int isReplace = 0;/* Set to true if constraints may cause a replace */
1306       int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
1307       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1308           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1309       );
1310       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1311 
1312       /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1313       ** constraints or (b) there are no triggers and this table is not a
1314       ** parent table in a foreign key constraint. It is safe to set the
1315       ** flag in the second case as if any REPLACE constraint is hit, an
1316       ** OP_Delete or OP_IdxDelete instruction will be executed on each
1317       ** cursor that is disturbed. And these instructions both clear the
1318       ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1319       ** functionality.  */
1320       bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
1321       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1322           regIns, aRegIdx, 0, appendFlag, bUseSeek
1323       );
1324     }
1325 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1326   }else if( pParse->bReturning ){
1327     /* If there is a RETURNING clause, populate the rowid register with
1328     ** constant value -1, in case one or more of the returned expressions
1329     ** refer to the "rowid" of the view.  */
1330     sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
1331 #endif
1332   }
1333 
1334   /* Update the count of rows that are inserted
1335   */
1336   if( regRowCount ){
1337     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1338   }
1339 
1340   if( pTrigger ){
1341     /* Code AFTER triggers */
1342     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1343         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1344   }
1345 
1346   /* The bottom of the main insertion loop, if the data source
1347   ** is a SELECT statement.
1348   */
1349   sqlite3VdbeResolveLabel(v, endOfLoop);
1350   if( useTempTable ){
1351     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1352     sqlite3VdbeJumpHere(v, addrInsTop);
1353     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1354   }else if( pSelect ){
1355     sqlite3VdbeGoto(v, addrCont);
1356 #ifdef SQLITE_DEBUG
1357     /* If we are jumping back to an OP_Yield that is preceded by an
1358     ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1359     ** OP_ReleaseReg will be included in the loop. */
1360     if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){
1361       assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield );
1362       sqlite3VdbeChangeP5(v, 1);
1363     }
1364 #endif
1365     sqlite3VdbeJumpHere(v, addrInsTop);
1366   }
1367 
1368 #ifndef SQLITE_OMIT_XFER_OPT
1369 insert_end:
1370 #endif /* SQLITE_OMIT_XFER_OPT */
1371   /* Update the sqlite_sequence table by storing the content of the
1372   ** maximum rowid counter values recorded while inserting into
1373   ** autoincrement tables.
1374   */
1375   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1376     sqlite3AutoincrementEnd(pParse);
1377   }
1378 
1379   /*
1380   ** Return the number of rows inserted. If this routine is
1381   ** generating code because of a call to sqlite3NestedParse(), do not
1382   ** invoke the callback function.
1383   */
1384   if( regRowCount ){
1385     sqlite3CodeChangeCount(v, regRowCount, "rows inserted");
1386   }
1387 
1388 insert_cleanup:
1389   sqlite3SrcListDelete(db, pTabList);
1390   sqlite3ExprListDelete(db, pList);
1391   sqlite3UpsertDelete(db, pUpsert);
1392   sqlite3SelectDelete(db, pSelect);
1393   sqlite3IdListDelete(db, pColumn);
1394   sqlite3DbFree(db, aRegIdx);
1395 }
1396 
1397 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1398 ** they may interfere with compilation of other functions in this file
1399 ** (or in another file, if this file becomes part of the amalgamation).  */
1400 #ifdef isView
1401  #undef isView
1402 #endif
1403 #ifdef pTrigger
1404  #undef pTrigger
1405 #endif
1406 #ifdef tmask
1407  #undef tmask
1408 #endif
1409 
1410 /*
1411 ** Meanings of bits in of pWalker->eCode for
1412 ** sqlite3ExprReferencesUpdatedColumn()
1413 */
1414 #define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
1415 #define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */
1416 
1417 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1418 *  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1419 ** expression node references any of the
1420 ** columns that are being modifed by an UPDATE statement.
1421 */
1422 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1423   if( pExpr->op==TK_COLUMN ){
1424     assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1425     if( pExpr->iColumn>=0 ){
1426       if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1427         pWalker->eCode |= CKCNSTRNT_COLUMN;
1428       }
1429     }else{
1430       pWalker->eCode |= CKCNSTRNT_ROWID;
1431     }
1432   }
1433   return WRC_Continue;
1434 }
1435 
1436 /*
1437 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
1438 ** only columns that are modified by the UPDATE are those for which
1439 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1440 **
1441 ** Return true if CHECK constraint pExpr uses any of the
1442 ** changing columns (or the rowid if it is changing).  In other words,
1443 ** return true if this CHECK constraint must be validated for
1444 ** the new row in the UPDATE statement.
1445 **
1446 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1447 ** The operation of this routine is the same - return true if an only if
1448 ** the expression uses one or more of columns identified by the second and
1449 ** third arguments.
1450 */
1451 int sqlite3ExprReferencesUpdatedColumn(
1452   Expr *pExpr,    /* The expression to be checked */
1453   int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */
1454   int chngRowid   /* True if UPDATE changes the rowid */
1455 ){
1456   Walker w;
1457   memset(&w, 0, sizeof(w));
1458   w.eCode = 0;
1459   w.xExprCallback = checkConstraintExprNode;
1460   w.u.aiCol = aiChng;
1461   sqlite3WalkExpr(&w, pExpr);
1462   if( !chngRowid ){
1463     testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1464     w.eCode &= ~CKCNSTRNT_ROWID;
1465   }
1466   testcase( w.eCode==0 );
1467   testcase( w.eCode==CKCNSTRNT_COLUMN );
1468   testcase( w.eCode==CKCNSTRNT_ROWID );
1469   testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1470   return w.eCode!=0;
1471 }
1472 
1473 /*
1474 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit
1475 ** the indexes of a table in the order provided in the Table->pIndex list.
1476 ** However, sometimes (rarely - when there is an upsert) it wants to visit
1477 ** the indexes in a different order.  The following data structures accomplish
1478 ** this.
1479 **
1480 ** The IndexIterator object is used to walk through all of the indexes
1481 ** of a table in either Index.pNext order, or in some other order established
1482 ** by an array of IndexListTerm objects.
1483 */
1484 typedef struct IndexListTerm IndexListTerm;
1485 typedef struct IndexIterator IndexIterator;
1486 struct IndexIterator {
1487   int eType;    /* 0 for Index.pNext list.  1 for an array of IndexListTerm */
1488   int i;        /* Index of the current item from the list */
1489   union {
1490     struct {    /* Use this object for eType==0: A Index.pNext list */
1491       Index *pIdx;   /* The current Index */
1492     } lx;
1493     struct {    /* Use this object for eType==1; Array of IndexListTerm */
1494       int nIdx;               /* Size of the array */
1495       IndexListTerm *aIdx;    /* Array of IndexListTerms */
1496     } ax;
1497   } u;
1498 };
1499 
1500 /* When IndexIterator.eType==1, then each index is an array of instances
1501 ** of the following object
1502 */
1503 struct IndexListTerm {
1504   Index *p;  /* The index */
1505   int ix;    /* Which entry in the original Table.pIndex list is this index*/
1506 };
1507 
1508 /* Return the first index on the list */
1509 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){
1510   assert( pIter->i==0 );
1511   if( pIter->eType ){
1512     *pIx = pIter->u.ax.aIdx[0].ix;
1513     return pIter->u.ax.aIdx[0].p;
1514   }else{
1515     *pIx = 0;
1516     return pIter->u.lx.pIdx;
1517   }
1518 }
1519 
1520 /* Return the next index from the list.  Return NULL when out of indexes */
1521 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){
1522   if( pIter->eType ){
1523     int i = ++pIter->i;
1524     if( i>=pIter->u.ax.nIdx ){
1525       *pIx = i;
1526       return 0;
1527     }
1528     *pIx = pIter->u.ax.aIdx[i].ix;
1529     return pIter->u.ax.aIdx[i].p;
1530   }else{
1531     ++(*pIx);
1532     pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext;
1533     return pIter->u.lx.pIdx;
1534   }
1535 }
1536 
1537 /*
1538 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1539 ** on table pTab.
1540 **
1541 ** The regNewData parameter is the first register in a range that contains
1542 ** the data to be inserted or the data after the update.  There will be
1543 ** pTab->nCol+1 registers in this range.  The first register (the one
1544 ** that regNewData points to) will contain the new rowid, or NULL in the
1545 ** case of a WITHOUT ROWID table.  The second register in the range will
1546 ** contain the content of the first table column.  The third register will
1547 ** contain the content of the second table column.  And so forth.
1548 **
1549 ** The regOldData parameter is similar to regNewData except that it contains
1550 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1551 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1552 ** checking regOldData for zero.
1553 **
1554 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1555 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1556 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1557 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1558 **
1559 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1560 ** was explicitly specified as part of the INSERT statement.  If pkChng
1561 ** is zero, it means that the either rowid is computed automatically or
1562 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1563 ** pkChng will only be true if the INSERT statement provides an integer
1564 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1565 **
1566 ** The code generated by this routine will store new index entries into
1567 ** registers identified by aRegIdx[].  No index entry is created for
1568 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1569 ** the same as the order of indices on the linked list of indices
1570 ** at pTab->pIndex.
1571 **
1572 ** (2019-05-07) The generated code also creates a new record for the
1573 ** main table, if pTab is a rowid table, and stores that record in the
1574 ** register identified by aRegIdx[nIdx] - in other words in the first
1575 ** entry of aRegIdx[] past the last index.  It is important that the
1576 ** record be generated during constraint checks to avoid affinity changes
1577 ** to the register content that occur after constraint checks but before
1578 ** the new record is inserted.
1579 **
1580 ** The caller must have already opened writeable cursors on the main
1581 ** table and all applicable indices (that is to say, all indices for which
1582 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1583 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1584 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1585 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1586 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1587 **
1588 ** This routine also generates code to check constraints.  NOT NULL,
1589 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1590 ** then the appropriate action is performed.  There are five possible
1591 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1592 **
1593 **  Constraint type  Action       What Happens
1594 **  ---------------  ----------   ----------------------------------------
1595 **  any              ROLLBACK     The current transaction is rolled back and
1596 **                                sqlite3_step() returns immediately with a
1597 **                                return code of SQLITE_CONSTRAINT.
1598 **
1599 **  any              ABORT        Back out changes from the current command
1600 **                                only (do not do a complete rollback) then
1601 **                                cause sqlite3_step() to return immediately
1602 **                                with SQLITE_CONSTRAINT.
1603 **
1604 **  any              FAIL         Sqlite3_step() returns immediately with a
1605 **                                return code of SQLITE_CONSTRAINT.  The
1606 **                                transaction is not rolled back and any
1607 **                                changes to prior rows are retained.
1608 **
1609 **  any              IGNORE       The attempt in insert or update the current
1610 **                                row is skipped, without throwing an error.
1611 **                                Processing continues with the next row.
1612 **                                (There is an immediate jump to ignoreDest.)
1613 **
1614 **  NOT NULL         REPLACE      The NULL value is replace by the default
1615 **                                value for that column.  If the default value
1616 **                                is NULL, the action is the same as ABORT.
1617 **
1618 **  UNIQUE           REPLACE      The other row that conflicts with the row
1619 **                                being inserted is removed.
1620 **
1621 **  CHECK            REPLACE      Illegal.  The results in an exception.
1622 **
1623 ** Which action to take is determined by the overrideError parameter.
1624 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1625 ** is used.  Or if pParse->onError==OE_Default then the onError value
1626 ** for the constraint is used.
1627 */
1628 void sqlite3GenerateConstraintChecks(
1629   Parse *pParse,       /* The parser context */
1630   Table *pTab,         /* The table being inserted or updated */
1631   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1632   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1633   int iIdxCur,         /* First index cursor */
1634   int regNewData,      /* First register in a range holding values to insert */
1635   int regOldData,      /* Previous content.  0 for INSERTs */
1636   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1637   u8 overrideError,    /* Override onError to this if not OE_Default */
1638   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1639   int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
1640   int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
1641   Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
1642 ){
1643   Vdbe *v;             /* VDBE under constrution */
1644   Index *pIdx;         /* Pointer to one of the indices */
1645   Index *pPk = 0;      /* The PRIMARY KEY index for WITHOUT ROWID tables */
1646   sqlite3 *db;         /* Database connection */
1647   int i;               /* loop counter */
1648   int ix;              /* Index loop counter */
1649   int nCol;            /* Number of columns */
1650   int onError;         /* Conflict resolution strategy */
1651   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1652   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1653   Upsert *pUpsertClause = 0;  /* The specific ON CONFLICT clause for pIdx */
1654   u8 isUpdate;           /* True if this is an UPDATE operation */
1655   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1656   int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */
1657   int upsertIpkDelay = 0;  /* Address of Goto to bypass initial IPK check */
1658   int ipkTop = 0;        /* Top of the IPK uniqueness check */
1659   int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
1660   /* Variables associated with retesting uniqueness constraints after
1661   ** replace triggers fire have run */
1662   int regTrigCnt;       /* Register used to count replace trigger invocations */
1663   int addrRecheck = 0;  /* Jump here to recheck all uniqueness constraints */
1664   int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
1665   Trigger *pTrigger;    /* List of DELETE triggers on the table pTab */
1666   int nReplaceTrig = 0; /* Number of replace triggers coded */
1667   IndexIterator sIdxIter;  /* Index iterator */
1668 
1669   isUpdate = regOldData!=0;
1670   db = pParse->db;
1671   v = pParse->pVdbe;
1672   assert( v!=0 );
1673   assert( !IsView(pTab) );  /* This table is not a VIEW */
1674   nCol = pTab->nCol;
1675 
1676   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1677   ** normal rowid tables.  nPkField is the number of key fields in the
1678   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1679   ** number of fields in the true primary key of the table. */
1680   if( HasRowid(pTab) ){
1681     pPk = 0;
1682     nPkField = 1;
1683   }else{
1684     pPk = sqlite3PrimaryKeyIndex(pTab);
1685     nPkField = pPk->nKeyCol;
1686   }
1687 
1688   /* Record that this module has started */
1689   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1690                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1691 
1692   /* Test all NOT NULL constraints.
1693   */
1694   if( pTab->tabFlags & TF_HasNotNull ){
1695     int b2ndPass = 0;         /* True if currently running 2nd pass */
1696     int nSeenReplace = 0;     /* Number of ON CONFLICT REPLACE operations */
1697     int nGenerated = 0;       /* Number of generated columns with NOT NULL */
1698     while(1){  /* Make 2 passes over columns. Exit loop via "break" */
1699       for(i=0; i<nCol; i++){
1700         int iReg;                        /* Register holding column value */
1701         Column *pCol = &pTab->aCol[i];   /* The column to check for NOT NULL */
1702         int isGenerated;                 /* non-zero if column is generated */
1703         onError = pCol->notNull;
1704         if( onError==OE_None ) continue; /* No NOT NULL on this column */
1705         if( i==pTab->iPKey ){
1706           continue;        /* ROWID is never NULL */
1707         }
1708         isGenerated = pCol->colFlags & COLFLAG_GENERATED;
1709         if( isGenerated && !b2ndPass ){
1710           nGenerated++;
1711           continue;        /* Generated columns processed on 2nd pass */
1712         }
1713         if( aiChng && aiChng[i]<0 && !isGenerated ){
1714           /* Do not check NOT NULL on columns that do not change */
1715           continue;
1716         }
1717         if( overrideError!=OE_Default ){
1718           onError = overrideError;
1719         }else if( onError==OE_Default ){
1720           onError = OE_Abort;
1721         }
1722         if( onError==OE_Replace ){
1723           if( b2ndPass        /* REPLACE becomes ABORT on the 2nd pass */
1724            || pCol->iDflt==0  /* REPLACE is ABORT if no DEFAULT value */
1725           ){
1726             testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1727             testcase( pCol->colFlags & COLFLAG_STORED );
1728             testcase( pCol->colFlags & COLFLAG_GENERATED );
1729             onError = OE_Abort;
1730           }else{
1731             assert( !isGenerated );
1732           }
1733         }else if( b2ndPass && !isGenerated ){
1734           continue;
1735         }
1736         assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1737             || onError==OE_Ignore || onError==OE_Replace );
1738         testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
1739         iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
1740         switch( onError ){
1741           case OE_Replace: {
1742             int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg);
1743             VdbeCoverage(v);
1744             assert( (pCol->colFlags & COLFLAG_GENERATED)==0 );
1745             nSeenReplace++;
1746             sqlite3ExprCodeCopy(pParse,
1747                sqlite3ColumnExpr(pTab, pCol), iReg);
1748             sqlite3VdbeJumpHere(v, addr1);
1749             break;
1750           }
1751           case OE_Abort:
1752             sqlite3MayAbort(pParse);
1753             /* no break */ deliberate_fall_through
1754           case OE_Rollback:
1755           case OE_Fail: {
1756             char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1757                                         pCol->zCnName);
1758             sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
1759                               onError, iReg);
1760             sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1761             sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1762             VdbeCoverage(v);
1763             break;
1764           }
1765           default: {
1766             assert( onError==OE_Ignore );
1767             sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
1768             VdbeCoverage(v);
1769             break;
1770           }
1771         } /* end switch(onError) */
1772       } /* end loop i over columns */
1773       if( nGenerated==0 && nSeenReplace==0 ){
1774         /* If there are no generated columns with NOT NULL constraints
1775         ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1776         ** pass is sufficient */
1777         break;
1778       }
1779       if( b2ndPass ) break;  /* Never need more than 2 passes */
1780       b2ndPass = 1;
1781 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1782       if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
1783         /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1784         ** first pass, recomputed values for all generated columns, as
1785         ** those values might depend on columns affected by the REPLACE.
1786         */
1787         sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab);
1788       }
1789 #endif
1790     } /* end of 2-pass loop */
1791   } /* end if( has-not-null-constraints ) */
1792 
1793   /* Test all CHECK constraints
1794   */
1795 #ifndef SQLITE_OMIT_CHECK
1796   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1797     ExprList *pCheck = pTab->pCheck;
1798     pParse->iSelfTab = -(regNewData+1);
1799     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1800     for(i=0; i<pCheck->nExpr; i++){
1801       int allOk;
1802       Expr *pCopy;
1803       Expr *pExpr = pCheck->a[i].pExpr;
1804       if( aiChng
1805        && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1806       ){
1807         /* The check constraints do not reference any of the columns being
1808         ** updated so there is no point it verifying the check constraint */
1809         continue;
1810       }
1811       if( bAffinityDone==0 ){
1812         sqlite3TableAffinity(v, pTab, regNewData+1);
1813         bAffinityDone = 1;
1814       }
1815       allOk = sqlite3VdbeMakeLabel(pParse);
1816       sqlite3VdbeVerifyAbortable(v, onError);
1817       pCopy = sqlite3ExprDup(db, pExpr, 0);
1818       if( !db->mallocFailed ){
1819         sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL);
1820       }
1821       sqlite3ExprDelete(db, pCopy);
1822       if( onError==OE_Ignore ){
1823         sqlite3VdbeGoto(v, ignoreDest);
1824       }else{
1825         char *zName = pCheck->a[i].zEName;
1826         assert( zName!=0 || pParse->db->mallocFailed );
1827         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1828         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1829                               onError, zName, P4_TRANSIENT,
1830                               P5_ConstraintCheck);
1831       }
1832       sqlite3VdbeResolveLabel(v, allOk);
1833     }
1834     pParse->iSelfTab = 0;
1835   }
1836 #endif /* !defined(SQLITE_OMIT_CHECK) */
1837 
1838   /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1839   ** order:
1840   **
1841   **   (1)  OE_Update
1842   **   (2)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1843   **   (3)  OE_Replace
1844   **
1845   ** OE_Fail and OE_Ignore must happen before any changes are made.
1846   ** OE_Update guarantees that only a single row will change, so it
1847   ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback
1848   ** could happen in any order, but they are grouped up front for
1849   ** convenience.
1850   **
1851   ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1852   ** The order of constraints used to have OE_Update as (2) and OE_Abort
1853   ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1854   ** constraint before any others, so it had to be moved.
1855   **
1856   ** Constraint checking code is generated in this order:
1857   **   (A)  The rowid constraint
1858   **   (B)  Unique index constraints that do not have OE_Replace as their
1859   **        default conflict resolution strategy
1860   **   (C)  Unique index that do use OE_Replace by default.
1861   **
1862   ** The ordering of (2) and (3) is accomplished by making sure the linked
1863   ** list of indexes attached to a table puts all OE_Replace indexes last
1864   ** in the list.  See sqlite3CreateIndex() for where that happens.
1865   */
1866   sIdxIter.eType = 0;
1867   sIdxIter.i = 0;
1868   sIdxIter.u.ax.aIdx = 0;  /* Silence harmless compiler warning */
1869   sIdxIter.u.lx.pIdx = pTab->pIndex;
1870   if( pUpsert ){
1871     if( pUpsert->pUpsertTarget==0 ){
1872       /* There is just on ON CONFLICT clause and it has no constraint-target */
1873       assert( pUpsert->pNextUpsert==0 );
1874       if( pUpsert->isDoUpdate==0 ){
1875         /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
1876         ** Make all unique constraint resolution be OE_Ignore */
1877         overrideError = OE_Ignore;
1878         pUpsert = 0;
1879       }else{
1880         /* A single ON CONFLICT DO UPDATE.  Make all resolutions OE_Update */
1881         overrideError = OE_Update;
1882       }
1883     }else if( pTab->pIndex!=0 ){
1884       /* Otherwise, we'll need to run the IndexListTerm array version of the
1885       ** iterator to ensure that all of the ON CONFLICT conditions are
1886       ** checked first and in order. */
1887       int nIdx, jj;
1888       u64 nByte;
1889       Upsert *pTerm;
1890       u8 *bUsed;
1891       for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
1892          assert( aRegIdx[nIdx]>0 );
1893       }
1894       sIdxIter.eType = 1;
1895       sIdxIter.u.ax.nIdx = nIdx;
1896       nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx;
1897       sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte);
1898       if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */
1899       bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx];
1900       pUpsert->pToFree = sIdxIter.u.ax.aIdx;
1901       for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){
1902         if( pTerm->pUpsertTarget==0 ) break;
1903         if( pTerm->pUpsertIdx==0 ) continue;  /* Skip ON CONFLICT for the IPK */
1904         jj = 0;
1905         pIdx = pTab->pIndex;
1906         while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){
1907            pIdx = pIdx->pNext;
1908            jj++;
1909         }
1910         if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */
1911         bUsed[jj] = 1;
1912         sIdxIter.u.ax.aIdx[i].p = pIdx;
1913         sIdxIter.u.ax.aIdx[i].ix = jj;
1914         i++;
1915       }
1916       for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){
1917         if( bUsed[jj] ) continue;
1918         sIdxIter.u.ax.aIdx[i].p = pIdx;
1919         sIdxIter.u.ax.aIdx[i].ix = jj;
1920         i++;
1921       }
1922       assert( i==nIdx );
1923     }
1924   }
1925 
1926   /* Determine if it is possible that triggers (either explicitly coded
1927   ** triggers or FK resolution actions) might run as a result of deletes
1928   ** that happen when OE_Replace conflict resolution occurs. (Call these
1929   ** "replace triggers".)  If any replace triggers run, we will need to
1930   ** recheck all of the uniqueness constraints after they have all run.
1931   ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1932   **
1933   ** If replace triggers are a possibility, then
1934   **
1935   **   (1) Allocate register regTrigCnt and initialize it to zero.
1936   **       That register will count the number of replace triggers that
1937   **       fire.  Constraint recheck only occurs if the number is positive.
1938   **   (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1939   **   (3) Initialize addrRecheck and lblRecheckOk
1940   **
1941   ** The uniqueness rechecking code will create a series of tests to run
1942   ** in a second pass.  The addrRecheck and lblRecheckOk variables are
1943   ** used to link together these tests which are separated from each other
1944   ** in the generate bytecode.
1945   */
1946   if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
1947     /* There are not DELETE triggers nor FK constraints.  No constraint
1948     ** rechecks are needed. */
1949     pTrigger = 0;
1950     regTrigCnt = 0;
1951   }else{
1952     if( db->flags&SQLITE_RecTriggers ){
1953       pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1954       regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
1955     }else{
1956       pTrigger = 0;
1957       regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
1958     }
1959     if( regTrigCnt ){
1960       /* Replace triggers might exist.  Allocate the counter and
1961       ** initialize it to zero. */
1962       regTrigCnt = ++pParse->nMem;
1963       sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
1964       VdbeComment((v, "trigger count"));
1965       lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
1966       addrRecheck = lblRecheckOk;
1967     }
1968   }
1969 
1970   /* If rowid is changing, make sure the new rowid does not previously
1971   ** exist in the table.
1972   */
1973   if( pkChng && pPk==0 ){
1974     int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
1975 
1976     /* Figure out what action to take in case of a rowid collision */
1977     onError = pTab->keyConf;
1978     if( overrideError!=OE_Default ){
1979       onError = overrideError;
1980     }else if( onError==OE_Default ){
1981       onError = OE_Abort;
1982     }
1983 
1984     /* figure out whether or not upsert applies in this case */
1985     if( pUpsert ){
1986       pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0);
1987       if( pUpsertClause!=0 ){
1988         if( pUpsertClause->isDoUpdate==0 ){
1989           onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
1990         }else{
1991           onError = OE_Update;  /* DO UPDATE */
1992         }
1993       }
1994       if( pUpsertClause!=pUpsert ){
1995         /* The first ON CONFLICT clause has a conflict target other than
1996         ** the IPK.  We have to jump ahead to that first ON CONFLICT clause
1997         ** and then come back here and deal with the IPK afterwards */
1998         upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto);
1999       }
2000     }
2001 
2002     /* If the response to a rowid conflict is REPLACE but the response
2003     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
2004     ** to defer the running of the rowid conflict checking until after
2005     ** the UNIQUE constraints have run.
2006     */
2007     if( onError==OE_Replace      /* IPK rule is REPLACE */
2008      && onError!=overrideError   /* Rules for other constraints are different */
2009      && pTab->pIndex             /* There exist other constraints */
2010      && !upsertIpkDelay          /* IPK check already deferred by UPSERT */
2011     ){
2012       ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
2013       VdbeComment((v, "defer IPK REPLACE until last"));
2014     }
2015 
2016     if( isUpdate ){
2017       /* pkChng!=0 does not mean that the rowid has changed, only that
2018       ** it might have changed.  Skip the conflict logic below if the rowid
2019       ** is unchanged. */
2020       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
2021       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2022       VdbeCoverage(v);
2023     }
2024 
2025     /* Check to see if the new rowid already exists in the table.  Skip
2026     ** the following conflict logic if it does not. */
2027     VdbeNoopComment((v, "uniqueness check for ROWID"));
2028     sqlite3VdbeVerifyAbortable(v, onError);
2029     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
2030     VdbeCoverage(v);
2031 
2032     switch( onError ){
2033       default: {
2034         onError = OE_Abort;
2035         /* no break */ deliberate_fall_through
2036       }
2037       case OE_Rollback:
2038       case OE_Abort:
2039       case OE_Fail: {
2040         testcase( onError==OE_Rollback );
2041         testcase( onError==OE_Abort );
2042         testcase( onError==OE_Fail );
2043         sqlite3RowidConstraint(pParse, onError, pTab);
2044         break;
2045       }
2046       case OE_Replace: {
2047         /* If there are DELETE triggers on this table and the
2048         ** recursive-triggers flag is set, call GenerateRowDelete() to
2049         ** remove the conflicting row from the table. This will fire
2050         ** the triggers and remove both the table and index b-tree entries.
2051         **
2052         ** Otherwise, if there are no triggers or the recursive-triggers
2053         ** flag is not set, but the table has one or more indexes, call
2054         ** GenerateRowIndexDelete(). This removes the index b-tree entries
2055         ** only. The table b-tree entry will be replaced by the new entry
2056         ** when it is inserted.
2057         **
2058         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
2059         ** also invoke MultiWrite() to indicate that this VDBE may require
2060         ** statement rollback (if the statement is aborted after the delete
2061         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
2062         ** but being more selective here allows statements like:
2063         **
2064         **   REPLACE INTO t(rowid) VALUES($newrowid)
2065         **
2066         ** to run without a statement journal if there are no indexes on the
2067         ** table.
2068         */
2069         if( regTrigCnt ){
2070           sqlite3MultiWrite(pParse);
2071           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2072                                    regNewData, 1, 0, OE_Replace, 1, -1);
2073           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2074           nReplaceTrig++;
2075         }else{
2076 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2077           assert( HasRowid(pTab) );
2078           /* This OP_Delete opcode fires the pre-update-hook only. It does
2079           ** not modify the b-tree. It is more efficient to let the coming
2080           ** OP_Insert replace the existing entry than it is to delete the
2081           ** existing entry and then insert a new one. */
2082           sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
2083           sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2084 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2085           if( pTab->pIndex ){
2086             sqlite3MultiWrite(pParse);
2087             sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
2088           }
2089         }
2090         seenReplace = 1;
2091         break;
2092       }
2093 #ifndef SQLITE_OMIT_UPSERT
2094       case OE_Update: {
2095         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
2096         /* no break */ deliberate_fall_through
2097       }
2098 #endif
2099       case OE_Ignore: {
2100         testcase( onError==OE_Ignore );
2101         sqlite3VdbeGoto(v, ignoreDest);
2102         break;
2103       }
2104     }
2105     sqlite3VdbeResolveLabel(v, addrRowidOk);
2106     if( pUpsert && pUpsertClause!=pUpsert ){
2107       upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto);
2108     }else if( ipkTop ){
2109       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
2110       sqlite3VdbeJumpHere(v, ipkTop-1);
2111     }
2112   }
2113 
2114   /* Test all UNIQUE constraints by creating entries for each UNIQUE
2115   ** index and making sure that duplicate entries do not already exist.
2116   ** Compute the revised record entries for indices as we go.
2117   **
2118   ** This loop also handles the case of the PRIMARY KEY index for a
2119   ** WITHOUT ROWID table.
2120   */
2121   for(pIdx = indexIteratorFirst(&sIdxIter, &ix);
2122       pIdx;
2123       pIdx = indexIteratorNext(&sIdxIter, &ix)
2124   ){
2125     int regIdx;          /* Range of registers hold conent for pIdx */
2126     int regR;            /* Range of registers holding conflicting PK */
2127     int iThisCur;        /* Cursor for this UNIQUE index */
2128     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
2129     int addrConflictCk;  /* First opcode in the conflict check logic */
2130 
2131     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
2132     if( pUpsert ){
2133       pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx);
2134       if( upsertIpkDelay && pUpsertClause==pUpsert ){
2135         sqlite3VdbeJumpHere(v, upsertIpkDelay);
2136       }
2137     }
2138     addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
2139     if( bAffinityDone==0 ){
2140       sqlite3TableAffinity(v, pTab, regNewData+1);
2141       bAffinityDone = 1;
2142     }
2143     VdbeNoopComment((v, "prep index %s", pIdx->zName));
2144     iThisCur = iIdxCur+ix;
2145 
2146 
2147     /* Skip partial indices for which the WHERE clause is not true */
2148     if( pIdx->pPartIdxWhere ){
2149       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
2150       pParse->iSelfTab = -(regNewData+1);
2151       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
2152                             SQLITE_JUMPIFNULL);
2153       pParse->iSelfTab = 0;
2154     }
2155 
2156     /* Create a record for this index entry as it should appear after
2157     ** the insert or update.  Store that record in the aRegIdx[ix] register
2158     */
2159     regIdx = aRegIdx[ix]+1;
2160     for(i=0; i<pIdx->nColumn; i++){
2161       int iField = pIdx->aiColumn[i];
2162       int x;
2163       if( iField==XN_EXPR ){
2164         pParse->iSelfTab = -(regNewData+1);
2165         sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
2166         pParse->iSelfTab = 0;
2167         VdbeComment((v, "%s column %d", pIdx->zName, i));
2168       }else if( iField==XN_ROWID || iField==pTab->iPKey ){
2169         x = regNewData;
2170         sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
2171         VdbeComment((v, "rowid"));
2172       }else{
2173         testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
2174         x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
2175         sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
2176         VdbeComment((v, "%s", pTab->aCol[iField].zCnName));
2177       }
2178     }
2179     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
2180     VdbeComment((v, "for %s", pIdx->zName));
2181 #ifdef SQLITE_ENABLE_NULL_TRIM
2182     if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2183       sqlite3SetMakeRecordP5(v, pIdx->pTable);
2184     }
2185 #endif
2186     sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0);
2187 
2188     /* In an UPDATE operation, if this index is the PRIMARY KEY index
2189     ** of a WITHOUT ROWID table and there has been no change the
2190     ** primary key, then no collision is possible.  The collision detection
2191     ** logic below can all be skipped. */
2192     if( isUpdate && pPk==pIdx && pkChng==0 ){
2193       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2194       continue;
2195     }
2196 
2197     /* Find out what action to take in case there is a uniqueness conflict */
2198     onError = pIdx->onError;
2199     if( onError==OE_None ){
2200       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2201       continue;  /* pIdx is not a UNIQUE index */
2202     }
2203     if( overrideError!=OE_Default ){
2204       onError = overrideError;
2205     }else if( onError==OE_Default ){
2206       onError = OE_Abort;
2207     }
2208 
2209     /* Figure out if the upsert clause applies to this index */
2210     if( pUpsertClause ){
2211       if( pUpsertClause->isDoUpdate==0 ){
2212         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
2213       }else{
2214         onError = OE_Update;  /* DO UPDATE */
2215       }
2216     }
2217 
2218     /* Collision detection may be omitted if all of the following are true:
2219     **   (1) The conflict resolution algorithm is REPLACE
2220     **   (2) The table is a WITHOUT ROWID table
2221     **   (3) There are no secondary indexes on the table
2222     **   (4) No delete triggers need to be fired if there is a conflict
2223     **   (5) No FK constraint counters need to be updated if a conflict occurs.
2224     **
2225     ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2226     ** must be explicitly deleted in order to ensure any pre-update hook
2227     ** is invoked.  */
2228     assert( IsOrdinaryTable(pTab) );
2229 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2230     if( (ix==0 && pIdx->pNext==0)                   /* Condition 3 */
2231      && pPk==pIdx                                   /* Condition 2 */
2232      && onError==OE_Replace                         /* Condition 1 */
2233      && ( 0==(db->flags&SQLITE_RecTriggers) ||      /* Condition 4 */
2234           0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
2235      && ( 0==(db->flags&SQLITE_ForeignKeys) ||      /* Condition 5 */
2236          (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab)))
2237     ){
2238       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2239       continue;
2240     }
2241 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2242 
2243     /* Check to see if the new index entry will be unique */
2244     sqlite3VdbeVerifyAbortable(v, onError);
2245     addrConflictCk =
2246       sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
2247                            regIdx, pIdx->nKeyCol); VdbeCoverage(v);
2248 
2249     /* Generate code to handle collisions */
2250     regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField);
2251     if( isUpdate || onError==OE_Replace ){
2252       if( HasRowid(pTab) ){
2253         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
2254         /* Conflict only if the rowid of the existing index entry
2255         ** is different from old-rowid */
2256         if( isUpdate ){
2257           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
2258           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2259           VdbeCoverage(v);
2260         }
2261       }else{
2262         int x;
2263         /* Extract the PRIMARY KEY from the end of the index entry and
2264         ** store it in registers regR..regR+nPk-1 */
2265         if( pIdx!=pPk ){
2266           for(i=0; i<pPk->nKeyCol; i++){
2267             assert( pPk->aiColumn[i]>=0 );
2268             x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
2269             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
2270             VdbeComment((v, "%s.%s", pTab->zName,
2271                          pTab->aCol[pPk->aiColumn[i]].zCnName));
2272           }
2273         }
2274         if( isUpdate ){
2275           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2276           ** table, only conflict if the new PRIMARY KEY values are actually
2277           ** different from the old.
2278           **
2279           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2280           ** of the matched index row are different from the original PRIMARY
2281           ** KEY values of this row before the update.  */
2282           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
2283           int op = OP_Ne;
2284           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
2285 
2286           for(i=0; i<pPk->nKeyCol; i++){
2287             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
2288             x = pPk->aiColumn[i];
2289             assert( x>=0 );
2290             if( i==(pPk->nKeyCol-1) ){
2291               addrJump = addrUniqueOk;
2292               op = OP_Eq;
2293             }
2294             x = sqlite3TableColumnToStorage(pTab, x);
2295             sqlite3VdbeAddOp4(v, op,
2296                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
2297             );
2298             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2299             VdbeCoverageIf(v, op==OP_Eq);
2300             VdbeCoverageIf(v, op==OP_Ne);
2301           }
2302         }
2303       }
2304     }
2305 
2306     /* Generate code that executes if the new index entry is not unique */
2307     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
2308         || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
2309     switch( onError ){
2310       case OE_Rollback:
2311       case OE_Abort:
2312       case OE_Fail: {
2313         testcase( onError==OE_Rollback );
2314         testcase( onError==OE_Abort );
2315         testcase( onError==OE_Fail );
2316         sqlite3UniqueConstraint(pParse, onError, pIdx);
2317         break;
2318       }
2319 #ifndef SQLITE_OMIT_UPSERT
2320       case OE_Update: {
2321         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
2322         /* no break */ deliberate_fall_through
2323       }
2324 #endif
2325       case OE_Ignore: {
2326         testcase( onError==OE_Ignore );
2327         sqlite3VdbeGoto(v, ignoreDest);
2328         break;
2329       }
2330       default: {
2331         int nConflictCk;   /* Number of opcodes in conflict check logic */
2332 
2333         assert( onError==OE_Replace );
2334         nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
2335         assert( nConflictCk>0 || db->mallocFailed );
2336         testcase( nConflictCk<=0 );
2337         testcase( nConflictCk>1 );
2338         if( regTrigCnt ){
2339           sqlite3MultiWrite(pParse);
2340           nReplaceTrig++;
2341         }
2342         if( pTrigger && isUpdate ){
2343           sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur);
2344         }
2345         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2346             regR, nPkField, 0, OE_Replace,
2347             (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
2348         if( pTrigger && isUpdate ){
2349           sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur);
2350         }
2351         if( regTrigCnt ){
2352           int addrBypass;  /* Jump destination to bypass recheck logic */
2353 
2354           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2355           addrBypass = sqlite3VdbeAddOp0(v, OP_Goto);  /* Bypass recheck */
2356           VdbeComment((v, "bypass recheck"));
2357 
2358           /* Here we insert code that will be invoked after all constraint
2359           ** checks have run, if and only if one or more replace triggers
2360           ** fired. */
2361           sqlite3VdbeResolveLabel(v, lblRecheckOk);
2362           lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
2363           if( pIdx->pPartIdxWhere ){
2364             /* Bypass the recheck if this partial index is not defined
2365             ** for the current row */
2366             sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
2367             VdbeCoverage(v);
2368           }
2369           /* Copy the constraint check code from above, except change
2370           ** the constraint-ok jump destination to be the address of
2371           ** the next retest block */
2372           while( nConflictCk>0 ){
2373             VdbeOp x;    /* Conflict check opcode to copy */
2374             /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2375             ** Hence, make a complete copy of the opcode, rather than using
2376             ** a pointer to the opcode. */
2377             x = *sqlite3VdbeGetOp(v, addrConflictCk);
2378             if( x.opcode!=OP_IdxRowid ){
2379               int p2;      /* New P2 value for copied conflict check opcode */
2380               const char *zP4;
2381               if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
2382                 p2 = lblRecheckOk;
2383               }else{
2384                 p2 = x.p2;
2385               }
2386               zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z;
2387               sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type);
2388               sqlite3VdbeChangeP5(v, x.p5);
2389               VdbeCoverageIf(v, p2!=x.p2);
2390             }
2391             nConflictCk--;
2392             addrConflictCk++;
2393           }
2394           /* If the retest fails, issue an abort */
2395           sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
2396 
2397           sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
2398         }
2399         seenReplace = 1;
2400         break;
2401       }
2402     }
2403     sqlite3VdbeResolveLabel(v, addrUniqueOk);
2404     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
2405     if( pUpsertClause
2406      && upsertIpkReturn
2407      && sqlite3UpsertNextIsIPK(pUpsertClause)
2408     ){
2409       sqlite3VdbeGoto(v, upsertIpkDelay+1);
2410       sqlite3VdbeJumpHere(v, upsertIpkReturn);
2411       upsertIpkReturn = 0;
2412     }
2413   }
2414 
2415   /* If the IPK constraint is a REPLACE, run it last */
2416   if( ipkTop ){
2417     sqlite3VdbeGoto(v, ipkTop);
2418     VdbeComment((v, "Do IPK REPLACE"));
2419     assert( ipkBottom>0 );
2420     sqlite3VdbeJumpHere(v, ipkBottom);
2421   }
2422 
2423   /* Recheck all uniqueness constraints after replace triggers have run */
2424   testcase( regTrigCnt!=0 && nReplaceTrig==0 );
2425   assert( regTrigCnt!=0 || nReplaceTrig==0 );
2426   if( nReplaceTrig ){
2427     sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
2428     if( !pPk ){
2429       if( isUpdate ){
2430         sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
2431         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2432         VdbeCoverage(v);
2433       }
2434       sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
2435       VdbeCoverage(v);
2436       sqlite3RowidConstraint(pParse, OE_Abort, pTab);
2437     }else{
2438       sqlite3VdbeGoto(v, addrRecheck);
2439     }
2440     sqlite3VdbeResolveLabel(v, lblRecheckOk);
2441   }
2442 
2443   /* Generate the table record */
2444   if( HasRowid(pTab) ){
2445     int regRec = aRegIdx[ix];
2446     sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
2447     sqlite3SetMakeRecordP5(v, pTab);
2448     if( !bAffinityDone ){
2449       sqlite3TableAffinity(v, pTab, 0);
2450     }
2451   }
2452 
2453   *pbMayReplace = seenReplace;
2454   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
2455 }
2456 
2457 #ifdef SQLITE_ENABLE_NULL_TRIM
2458 /*
2459 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2460 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2461 **
2462 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2463 */
2464 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
2465   u16 i;
2466 
2467   /* Records with omitted columns are only allowed for schema format
2468   ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2469   if( pTab->pSchema->file_format<2 ) return;
2470 
2471   for(i=pTab->nCol-1; i>0; i--){
2472     if( pTab->aCol[i].iDflt!=0 ) break;
2473     if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
2474   }
2475   sqlite3VdbeChangeP5(v, i+1);
2476 }
2477 #endif
2478 
2479 /*
2480 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
2481 ** number is iCur, and register regData contains the new record for the
2482 ** PK index. This function adds code to invoke the pre-update hook,
2483 ** if one is registered.
2484 */
2485 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2486 static void codeWithoutRowidPreupdate(
2487   Parse *pParse,                  /* Parse context */
2488   Table *pTab,                    /* Table being updated */
2489   int iCur,                       /* Cursor number for table */
2490   int regData                     /* Data containing new record */
2491 ){
2492   Vdbe *v = pParse->pVdbe;
2493   int r = sqlite3GetTempReg(pParse);
2494   assert( !HasRowid(pTab) );
2495   assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB );
2496   sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
2497   sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE);
2498   sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
2499   sqlite3ReleaseTempReg(pParse, r);
2500 }
2501 #else
2502 # define codeWithoutRowidPreupdate(a,b,c,d)
2503 #endif
2504 
2505 /*
2506 ** This routine generates code to finish the INSERT or UPDATE operation
2507 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2508 ** A consecutive range of registers starting at regNewData contains the
2509 ** rowid and the content to be inserted.
2510 **
2511 ** The arguments to this routine should be the same as the first six
2512 ** arguments to sqlite3GenerateConstraintChecks.
2513 */
2514 void sqlite3CompleteInsertion(
2515   Parse *pParse,      /* The parser context */
2516   Table *pTab,        /* the table into which we are inserting */
2517   int iDataCur,       /* Cursor of the canonical data source */
2518   int iIdxCur,        /* First index cursor */
2519   int regNewData,     /* Range of content */
2520   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
2521   int update_flags,   /* True for UPDATE, False for INSERT */
2522   int appendBias,     /* True if this is likely to be an append */
2523   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2524 ){
2525   Vdbe *v;            /* Prepared statements under construction */
2526   Index *pIdx;        /* An index being inserted or updated */
2527   u8 pik_flags;       /* flag values passed to the btree insert */
2528   int i;              /* Loop counter */
2529 
2530   assert( update_flags==0
2531        || update_flags==OPFLAG_ISUPDATE
2532        || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
2533   );
2534 
2535   v = pParse->pVdbe;
2536   assert( v!=0 );
2537   assert( !IsView(pTab) );  /* This table is not a VIEW */
2538   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2539     /* All REPLACE indexes are at the end of the list */
2540     assert( pIdx->onError!=OE_Replace
2541          || pIdx->pNext==0
2542          || pIdx->pNext->onError==OE_Replace );
2543     if( aRegIdx[i]==0 ) continue;
2544     if( pIdx->pPartIdxWhere ){
2545       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
2546       VdbeCoverage(v);
2547     }
2548     pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
2549     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2550       pik_flags |= OPFLAG_NCHANGE;
2551       pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
2552       if( update_flags==0 ){
2553         codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]);
2554       }
2555     }
2556     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
2557                          aRegIdx[i]+1,
2558                          pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
2559     sqlite3VdbeChangeP5(v, pik_flags);
2560   }
2561   if( !HasRowid(pTab) ) return;
2562   if( pParse->nested ){
2563     pik_flags = 0;
2564   }else{
2565     pik_flags = OPFLAG_NCHANGE;
2566     pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
2567   }
2568   if( appendBias ){
2569     pik_flags |= OPFLAG_APPEND;
2570   }
2571   if( useSeekResult ){
2572     pik_flags |= OPFLAG_USESEEKRESULT;
2573   }
2574   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
2575   if( !pParse->nested ){
2576     sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2577   }
2578   sqlite3VdbeChangeP5(v, pik_flags);
2579 }
2580 
2581 /*
2582 ** Allocate cursors for the pTab table and all its indices and generate
2583 ** code to open and initialized those cursors.
2584 **
2585 ** The cursor for the object that contains the complete data (normally
2586 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2587 ** ROWID table) is returned in *piDataCur.  The first index cursor is
2588 ** returned in *piIdxCur.  The number of indices is returned.
2589 **
2590 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2591 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2592 ** If iBase is negative, then allocate the next available cursor.
2593 **
2594 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2595 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2596 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2597 ** pTab->pIndex list.
2598 **
2599 ** If pTab is a virtual table, then this routine is a no-op and the
2600 ** *piDataCur and *piIdxCur values are left uninitialized.
2601 */
2602 int sqlite3OpenTableAndIndices(
2603   Parse *pParse,   /* Parsing context */
2604   Table *pTab,     /* Table to be opened */
2605   int op,          /* OP_OpenRead or OP_OpenWrite */
2606   u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2607   int iBase,       /* Use this for the table cursor, if there is one */
2608   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
2609   int *piDataCur,  /* Write the database source cursor number here */
2610   int *piIdxCur    /* Write the first index cursor number here */
2611 ){
2612   int i;
2613   int iDb;
2614   int iDataCur;
2615   Index *pIdx;
2616   Vdbe *v;
2617 
2618   assert( op==OP_OpenRead || op==OP_OpenWrite );
2619   assert( op==OP_OpenWrite || p5==0 );
2620   if( IsVirtual(pTab) ){
2621     /* This routine is a no-op for virtual tables. Leave the output
2622     ** variables *piDataCur and *piIdxCur set to illegal cursor numbers
2623     ** for improved error detection. */
2624     *piDataCur = *piIdxCur = -999;
2625     return 0;
2626   }
2627   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2628   v = pParse->pVdbe;
2629   assert( v!=0 );
2630   if( iBase<0 ) iBase = pParse->nTab;
2631   iDataCur = iBase++;
2632   if( piDataCur ) *piDataCur = iDataCur;
2633   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2634     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2635   }else{
2636     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2637   }
2638   if( piIdxCur ) *piIdxCur = iBase;
2639   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2640     int iIdxCur = iBase++;
2641     assert( pIdx->pSchema==pTab->pSchema );
2642     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2643       if( piDataCur ) *piDataCur = iIdxCur;
2644       p5 = 0;
2645     }
2646     if( aToOpen==0 || aToOpen[i+1] ){
2647       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2648       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2649       sqlite3VdbeChangeP5(v, p5);
2650       VdbeComment((v, "%s", pIdx->zName));
2651     }
2652   }
2653   if( iBase>pParse->nTab ) pParse->nTab = iBase;
2654   return i;
2655 }
2656 
2657 
2658 #ifdef SQLITE_TEST
2659 /*
2660 ** The following global variable is incremented whenever the
2661 ** transfer optimization is used.  This is used for testing
2662 ** purposes only - to make sure the transfer optimization really
2663 ** is happening when it is supposed to.
2664 */
2665 int sqlite3_xferopt_count;
2666 #endif /* SQLITE_TEST */
2667 
2668 
2669 #ifndef SQLITE_OMIT_XFER_OPT
2670 /*
2671 ** Check to see if index pSrc is compatible as a source of data
2672 ** for index pDest in an insert transfer optimization.  The rules
2673 ** for a compatible index:
2674 **
2675 **    *   The index is over the same set of columns
2676 **    *   The same DESC and ASC markings occurs on all columns
2677 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
2678 **    *   The same collating sequence on each column
2679 **    *   The index has the exact same WHERE clause
2680 */
2681 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2682   int i;
2683   assert( pDest && pSrc );
2684   assert( pDest->pTable!=pSrc->pTable );
2685   if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
2686     return 0;   /* Different number of columns */
2687   }
2688   if( pDest->onError!=pSrc->onError ){
2689     return 0;   /* Different conflict resolution strategies */
2690   }
2691   for(i=0; i<pSrc->nKeyCol; i++){
2692     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2693       return 0;   /* Different columns indexed */
2694     }
2695     if( pSrc->aiColumn[i]==XN_EXPR ){
2696       assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2697       if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2698                              pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2699         return 0;   /* Different expressions in the index */
2700       }
2701     }
2702     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2703       return 0;   /* Different sort orders */
2704     }
2705     if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2706       return 0;   /* Different collating sequences */
2707     }
2708   }
2709   if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2710     return 0;     /* Different WHERE clauses */
2711   }
2712 
2713   /* If no test above fails then the indices must be compatible */
2714   return 1;
2715 }
2716 
2717 /*
2718 ** Attempt the transfer optimization on INSERTs of the form
2719 **
2720 **     INSERT INTO tab1 SELECT * FROM tab2;
2721 **
2722 ** The xfer optimization transfers raw records from tab2 over to tab1.
2723 ** Columns are not decoded and reassembled, which greatly improves
2724 ** performance.  Raw index records are transferred in the same way.
2725 **
2726 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2727 ** There are lots of rules for determining compatibility - see comments
2728 ** embedded in the code for details.
2729 **
2730 ** This routine returns TRUE if the optimization is guaranteed to be used.
2731 ** Sometimes the xfer optimization will only work if the destination table
2732 ** is empty - a factor that can only be determined at run-time.  In that
2733 ** case, this routine generates code for the xfer optimization but also
2734 ** does a test to see if the destination table is empty and jumps over the
2735 ** xfer optimization code if the test fails.  In that case, this routine
2736 ** returns FALSE so that the caller will know to go ahead and generate
2737 ** an unoptimized transfer.  This routine also returns FALSE if there
2738 ** is no chance that the xfer optimization can be applied.
2739 **
2740 ** This optimization is particularly useful at making VACUUM run faster.
2741 */
2742 static int xferOptimization(
2743   Parse *pParse,        /* Parser context */
2744   Table *pDest,         /* The table we are inserting into */
2745   Select *pSelect,      /* A SELECT statement to use as the data source */
2746   int onError,          /* How to handle constraint errors */
2747   int iDbDest           /* The database of pDest */
2748 ){
2749   sqlite3 *db = pParse->db;
2750   ExprList *pEList;                /* The result set of the SELECT */
2751   Table *pSrc;                     /* The table in the FROM clause of SELECT */
2752   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
2753   SrcItem *pItem;                  /* An element of pSelect->pSrc */
2754   int i;                           /* Loop counter */
2755   int iDbSrc;                      /* The database of pSrc */
2756   int iSrc, iDest;                 /* Cursors from source and destination */
2757   int addr1, addr2;                /* Loop addresses */
2758   int emptyDestTest = 0;           /* Address of test for empty pDest */
2759   int emptySrcTest = 0;            /* Address of test for empty pSrc */
2760   Vdbe *v;                         /* The VDBE we are building */
2761   int regAutoinc;                  /* Memory register used by AUTOINC */
2762   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
2763   int regData, regRowid;           /* Registers holding data and rowid */
2764 
2765   if( pSelect==0 ){
2766     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
2767   }
2768   if( pParse->pWith || pSelect->pWith ){
2769     /* Do not attempt to process this query if there are an WITH clauses
2770     ** attached to it. Proceeding may generate a false "no such table: xxx"
2771     ** error if pSelect reads from a CTE named "xxx".  */
2772     return 0;
2773   }
2774   if( sqlite3TriggerList(pParse, pDest) ){
2775     return 0;   /* tab1 must not have triggers */
2776   }
2777 #ifndef SQLITE_OMIT_VIRTUALTABLE
2778   if( IsVirtual(pDest) ){
2779     return 0;   /* tab1 must not be a virtual table */
2780   }
2781 #endif
2782   if( onError==OE_Default ){
2783     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2784     if( onError==OE_Default ) onError = OE_Abort;
2785   }
2786   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
2787   if( pSelect->pSrc->nSrc!=1 ){
2788     return 0;   /* FROM clause must have exactly one term */
2789   }
2790   if( pSelect->pSrc->a[0].pSelect ){
2791     return 0;   /* FROM clause cannot contain a subquery */
2792   }
2793   if( pSelect->pWhere ){
2794     return 0;   /* SELECT may not have a WHERE clause */
2795   }
2796   if( pSelect->pOrderBy ){
2797     return 0;   /* SELECT may not have an ORDER BY clause */
2798   }
2799   /* Do not need to test for a HAVING clause.  If HAVING is present but
2800   ** there is no ORDER BY, we will get an error. */
2801   if( pSelect->pGroupBy ){
2802     return 0;   /* SELECT may not have a GROUP BY clause */
2803   }
2804   if( pSelect->pLimit ){
2805     return 0;   /* SELECT may not have a LIMIT clause */
2806   }
2807   if( pSelect->pPrior ){
2808     return 0;   /* SELECT may not be a compound query */
2809   }
2810   if( pSelect->selFlags & SF_Distinct ){
2811     return 0;   /* SELECT may not be DISTINCT */
2812   }
2813   pEList = pSelect->pEList;
2814   assert( pEList!=0 );
2815   if( pEList->nExpr!=1 ){
2816     return 0;   /* The result set must have exactly one column */
2817   }
2818   assert( pEList->a[0].pExpr );
2819   if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2820     return 0;   /* The result set must be the special operator "*" */
2821   }
2822 
2823   /* At this point we have established that the statement is of the
2824   ** correct syntactic form to participate in this optimization.  Now
2825   ** we have to check the semantics.
2826   */
2827   pItem = pSelect->pSrc->a;
2828   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2829   if( pSrc==0 ){
2830     return 0;   /* FROM clause does not contain a real table */
2831   }
2832   if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2833     testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */
2834     return 0;   /* tab1 and tab2 may not be the same table */
2835   }
2836   if( HasRowid(pDest)!=HasRowid(pSrc) ){
2837     return 0;   /* source and destination must both be WITHOUT ROWID or not */
2838   }
2839   if( !IsOrdinaryTable(pSrc) ){
2840     return 0;   /* tab2 may not be a view or virtual table */
2841   }
2842   if( pDest->nCol!=pSrc->nCol ){
2843     return 0;   /* Number of columns must be the same in tab1 and tab2 */
2844   }
2845   if( pDest->iPKey!=pSrc->iPKey ){
2846     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
2847   }
2848   if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){
2849     return 0;   /* Cannot feed from a non-strict into a strict table */
2850   }
2851   for(i=0; i<pDest->nCol; i++){
2852     Column *pDestCol = &pDest->aCol[i];
2853     Column *pSrcCol = &pSrc->aCol[i];
2854 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2855     if( (db->mDbFlags & DBFLAG_Vacuum)==0
2856      && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2857     ){
2858       return 0;    /* Neither table may have __hidden__ columns */
2859     }
2860 #endif
2861 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2862     /* Even if tables t1 and t2 have identical schemas, if they contain
2863     ** generated columns, then this statement is semantically incorrect:
2864     **
2865     **     INSERT INTO t2 SELECT * FROM t1;
2866     **
2867     ** The reason is that generated column values are returned by the
2868     ** the SELECT statement on the right but the INSERT statement on the
2869     ** left wants them to be omitted.
2870     **
2871     ** Nevertheless, this is a useful notational shorthand to tell SQLite
2872     ** to do a bulk transfer all of the content from t1 over to t2.
2873     **
2874     ** We could, in theory, disable this (except for internal use by the
2875     ** VACUUM command where it is actually needed).  But why do that?  It
2876     ** seems harmless enough, and provides a useful service.
2877     */
2878     if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
2879         (pSrcCol->colFlags & COLFLAG_GENERATED) ){
2880       return 0;    /* Both columns have the same generated-column type */
2881     }
2882     /* But the transfer is only allowed if both the source and destination
2883     ** tables have the exact same expressions for generated columns.
2884     ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2885     */
2886     if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
2887       if( sqlite3ExprCompare(0,
2888              sqlite3ColumnExpr(pSrc, pSrcCol),
2889              sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){
2890         testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
2891         testcase( pDestCol->colFlags & COLFLAG_STORED );
2892         return 0;  /* Different generator expressions */
2893       }
2894     }
2895 #endif
2896     if( pDestCol->affinity!=pSrcCol->affinity ){
2897       return 0;    /* Affinity must be the same on all columns */
2898     }
2899     if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol),
2900                         sqlite3ColumnColl(pSrcCol))!=0 ){
2901       return 0;    /* Collating sequence must be the same on all columns */
2902     }
2903     if( pDestCol->notNull && !pSrcCol->notNull ){
2904       return 0;    /* tab2 must be NOT NULL if tab1 is */
2905     }
2906     /* Default values for second and subsequent columns need to match. */
2907     if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
2908       Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol);
2909       Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol);
2910       assert( pDestExpr==0 || pDestExpr->op==TK_SPAN );
2911       assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) );
2912       assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN );
2913       assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) );
2914       if( (pDestExpr==0)!=(pSrcExpr==0)
2915        || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken,
2916                                        pSrcExpr->u.zToken)!=0)
2917       ){
2918         return 0;    /* Default values must be the same for all columns */
2919       }
2920     }
2921   }
2922   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2923     if( IsUniqueIndex(pDestIdx) ){
2924       destHasUniqueIdx = 1;
2925     }
2926     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2927       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2928     }
2929     if( pSrcIdx==0 ){
2930       return 0;    /* pDestIdx has no corresponding index in pSrc */
2931     }
2932     if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2933          && sqlite3FaultSim(411)==SQLITE_OK ){
2934       /* The sqlite3FaultSim() call allows this corruption test to be
2935       ** bypassed during testing, in order to exercise other corruption tests
2936       ** further downstream. */
2937       return 0;   /* Corrupt schema - two indexes on the same btree */
2938     }
2939   }
2940 #ifndef SQLITE_OMIT_CHECK
2941   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2942     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
2943   }
2944 #endif
2945 #ifndef SQLITE_OMIT_FOREIGN_KEY
2946   /* Disallow the transfer optimization if the destination table constains
2947   ** any foreign key constraints.  This is more restrictive than necessary.
2948   ** But the main beneficiary of the transfer optimization is the VACUUM
2949   ** command, and the VACUUM command disables foreign key constraints.  So
2950   ** the extra complication to make this rule less restrictive is probably
2951   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2952   */
2953   assert( IsOrdinaryTable(pDest) );
2954   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){
2955     return 0;
2956   }
2957 #endif
2958   if( (db->flags & SQLITE_CountRows)!=0 ){
2959     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
2960   }
2961 
2962   /* If we get this far, it means that the xfer optimization is at
2963   ** least a possibility, though it might only work if the destination
2964   ** table (tab1) is initially empty.
2965   */
2966 #ifdef SQLITE_TEST
2967   sqlite3_xferopt_count++;
2968 #endif
2969   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2970   v = sqlite3GetVdbe(pParse);
2971   sqlite3CodeVerifySchema(pParse, iDbSrc);
2972   iSrc = pParse->nTab++;
2973   iDest = pParse->nTab++;
2974   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2975   regData = sqlite3GetTempReg(pParse);
2976   sqlite3VdbeAddOp2(v, OP_Null, 0, regData);
2977   regRowid = sqlite3GetTempReg(pParse);
2978   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2979   assert( HasRowid(pDest) || destHasUniqueIdx );
2980   if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2981       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
2982    || destHasUniqueIdx                              /* (2) */
2983    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
2984   )){
2985     /* In some circumstances, we are able to run the xfer optimization
2986     ** only if the destination table is initially empty. Unless the
2987     ** DBFLAG_Vacuum flag is set, this block generates code to make
2988     ** that determination. If DBFLAG_Vacuum is set, then the destination
2989     ** table is always empty.
2990     **
2991     ** Conditions under which the destination must be empty:
2992     **
2993     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2994     **     (If the destination is not initially empty, the rowid fields
2995     **     of index entries might need to change.)
2996     **
2997     ** (2) The destination has a unique index.  (The xfer optimization
2998     **     is unable to test uniqueness.)
2999     **
3000     ** (3) onError is something other than OE_Abort and OE_Rollback.
3001     */
3002     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
3003     emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
3004     sqlite3VdbeJumpHere(v, addr1);
3005   }
3006   if( HasRowid(pSrc) ){
3007     u8 insFlags;
3008     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
3009     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3010     if( pDest->iPKey>=0 ){
3011       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3012       if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3013         sqlite3VdbeVerifyAbortable(v, onError);
3014         addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
3015         VdbeCoverage(v);
3016         sqlite3RowidConstraint(pParse, onError, pDest);
3017         sqlite3VdbeJumpHere(v, addr2);
3018       }
3019       autoIncStep(pParse, regAutoinc, regRowid);
3020     }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
3021       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
3022     }else{
3023       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3024       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
3025     }
3026 
3027     if( db->mDbFlags & DBFLAG_Vacuum ){
3028       sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3029       insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3030     }else{
3031       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT;
3032     }
3033 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
3034     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3035       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3036       insFlags &= ~OPFLAG_PREFORMAT;
3037     }else
3038 #endif
3039     {
3040       sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid);
3041     }
3042     sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
3043     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3044       sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE);
3045     }
3046     sqlite3VdbeChangeP5(v, insFlags);
3047 
3048     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
3049     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3050     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3051   }else{
3052     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
3053     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
3054   }
3055   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
3056     u8 idxInsFlags = 0;
3057     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
3058       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
3059     }
3060     assert( pSrcIdx );
3061     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
3062     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
3063     VdbeComment((v, "%s", pSrcIdx->zName));
3064     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
3065     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
3066     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
3067     VdbeComment((v, "%s", pDestIdx->zName));
3068     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3069     if( db->mDbFlags & DBFLAG_Vacuum ){
3070       /* This INSERT command is part of a VACUUM operation, which guarantees
3071       ** that the destination table is empty. If all indexed columns use
3072       ** collation sequence BINARY, then it can also be assumed that the
3073       ** index will be populated by inserting keys in strictly sorted
3074       ** order. In this case, instead of seeking within the b-tree as part
3075       ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
3076       ** OP_IdxInsert to seek to the point within the b-tree where each key
3077       ** should be inserted. This is faster.
3078       **
3079       ** If any of the indexed columns use a collation sequence other than
3080       ** BINARY, this optimization is disabled. This is because the user
3081       ** might change the definition of a collation sequence and then run
3082       ** a VACUUM command. In that case keys may not be written in strictly
3083       ** sorted order.  */
3084       for(i=0; i<pSrcIdx->nColumn; i++){
3085         const char *zColl = pSrcIdx->azColl[i];
3086         if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
3087       }
3088       if( i==pSrcIdx->nColumn ){
3089         idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3090         sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3091         sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc);
3092       }
3093     }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
3094       idxInsFlags |= OPFLAG_NCHANGE;
3095     }
3096     if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){
3097       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3098       if( (db->mDbFlags & DBFLAG_Vacuum)==0
3099        && !HasRowid(pDest)
3100        && IsPrimaryKeyIndex(pDestIdx)
3101       ){
3102         codeWithoutRowidPreupdate(pParse, pDest, iDest, regData);
3103       }
3104     }
3105     sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
3106     sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
3107     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
3108     sqlite3VdbeJumpHere(v, addr1);
3109     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3110     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3111   }
3112   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
3113   sqlite3ReleaseTempReg(pParse, regRowid);
3114   sqlite3ReleaseTempReg(pParse, regData);
3115   if( emptyDestTest ){
3116     sqlite3AutoincrementEnd(pParse);
3117     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
3118     sqlite3VdbeJumpHere(v, emptyDestTest);
3119     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3120     return 0;
3121   }else{
3122     return 1;
3123   }
3124 }
3125 #endif /* SQLITE_OMIT_XFER_OPT */
3126