xref: /sqlite-3.40.0/src/insert.c (revision 37874d7d)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   v = sqlite3GetVdbe(pParse);
36   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37   sqlite3TableLock(pParse, iDb, pTab->tnum,
38                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
39   if( HasRowid(pTab) ){
40     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41     VdbeComment((v, "%s", pTab->zName));
42   }else{
43     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44     assert( pPk!=0 );
45     assert( pPk->tnum==pTab->tnum );
46     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48     VdbeComment((v, "%s", pTab->zName));
49   }
50 }
51 
52 /*
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
56 **
57 **  Character      Column affinity
58 **  ------------------------------
59 **  'A'            BLOB
60 **  'B'            TEXT
61 **  'C'            NUMERIC
62 **  'D'            INTEGER
63 **  'F'            REAL
64 **
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
67 **
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
71 */
72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
73   if( !pIdx->zColAff ){
74     /* The first time a column affinity string for a particular index is
75     ** required, it is allocated and populated here. It is then stored as
76     ** a member of the Index structure for subsequent use.
77     **
78     ** The column affinity string will eventually be deleted by
79     ** sqliteDeleteIndex() when the Index structure itself is cleaned
80     ** up.
81     */
82     int n;
83     Table *pTab = pIdx->pTable;
84     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
85     if( !pIdx->zColAff ){
86       sqlite3OomFault(db);
87       return 0;
88     }
89     for(n=0; n<pIdx->nColumn; n++){
90       i16 x = pIdx->aiColumn[n];
91       char aff;
92       if( x>=0 ){
93         aff = pTab->aCol[x].affinity;
94       }else if( x==XN_ROWID ){
95         aff = SQLITE_AFF_INTEGER;
96       }else{
97         assert( x==XN_EXPR );
98         assert( pIdx->aColExpr!=0 );
99         aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
100       }
101       if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
102       pIdx->zColAff[n] = aff;
103     }
104     pIdx->zColAff[n] = 0;
105   }
106 
107   return pIdx->zColAff;
108 }
109 
110 /*
111 ** Compute the affinity string for table pTab, if it has not already been
112 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
113 **
114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
116 ** for register iReg and following.  Or if affinities exists and iReg==0,
117 ** then just set the P4 operand of the previous opcode (which should  be
118 ** an OP_MakeRecord) to the affinity string.
119 **
120 ** A column affinity string has one character per column:
121 **
122 **  Character      Column affinity
123 **  ------------------------------
124 **  'A'            BLOB
125 **  'B'            TEXT
126 **  'C'            NUMERIC
127 **  'D'            INTEGER
128 **  'E'            REAL
129 */
130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
131   int i;
132   char *zColAff = pTab->zColAff;
133   if( zColAff==0 ){
134     sqlite3 *db = sqlite3VdbeDb(v);
135     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
136     if( !zColAff ){
137       sqlite3OomFault(db);
138       return;
139     }
140 
141     for(i=0; i<pTab->nCol; i++){
142       assert( pTab->aCol[i].affinity!=0 );
143       zColAff[i] = pTab->aCol[i].affinity;
144     }
145     do{
146       zColAff[i--] = 0;
147     }while( i>=0 && zColAff[i]<=SQLITE_AFF_BLOB );
148     pTab->zColAff = zColAff;
149   }
150   assert( zColAff!=0 );
151   i = sqlite3Strlen30NN(zColAff);
152   if( i ){
153     if( iReg ){
154       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
155     }else{
156       sqlite3VdbeChangeP4(v, -1, zColAff, i);
157     }
158   }
159 }
160 
161 /*
162 ** Return non-zero if the table pTab in database iDb or any of its indices
163 ** have been opened at any point in the VDBE program. This is used to see if
164 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
165 ** run without using a temporary table for the results of the SELECT.
166 */
167 static int readsTable(Parse *p, int iDb, Table *pTab){
168   Vdbe *v = sqlite3GetVdbe(p);
169   int i;
170   int iEnd = sqlite3VdbeCurrentAddr(v);
171 #ifndef SQLITE_OMIT_VIRTUALTABLE
172   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
173 #endif
174 
175   for(i=1; i<iEnd; i++){
176     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
177     assert( pOp!=0 );
178     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
179       Index *pIndex;
180       int tnum = pOp->p2;
181       if( tnum==pTab->tnum ){
182         return 1;
183       }
184       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
185         if( tnum==pIndex->tnum ){
186           return 1;
187         }
188       }
189     }
190 #ifndef SQLITE_OMIT_VIRTUALTABLE
191     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
192       assert( pOp->p4.pVtab!=0 );
193       assert( pOp->p4type==P4_VTAB );
194       return 1;
195     }
196 #endif
197   }
198   return 0;
199 }
200 
201 #ifndef SQLITE_OMIT_AUTOINCREMENT
202 /*
203 ** Locate or create an AutoincInfo structure associated with table pTab
204 ** which is in database iDb.  Return the register number for the register
205 ** that holds the maximum rowid.  Return zero if pTab is not an AUTOINCREMENT
206 ** table.  (Also return zero when doing a VACUUM since we do not want to
207 ** update the AUTOINCREMENT counters during a VACUUM.)
208 **
209 ** There is at most one AutoincInfo structure per table even if the
210 ** same table is autoincremented multiple times due to inserts within
211 ** triggers.  A new AutoincInfo structure is created if this is the
212 ** first use of table pTab.  On 2nd and subsequent uses, the original
213 ** AutoincInfo structure is used.
214 **
215 ** Four consecutive registers are allocated:
216 **
217 **   (1)  The name of the pTab table.
218 **   (2)  The maximum ROWID of pTab.
219 **   (3)  The rowid in sqlite_sequence of pTab
220 **   (4)  The original value of the max ROWID in pTab, or NULL if none
221 **
222 ** The 2nd register is the one that is returned.  That is all the
223 ** insert routine needs to know about.
224 */
225 static int autoIncBegin(
226   Parse *pParse,      /* Parsing context */
227   int iDb,            /* Index of the database holding pTab */
228   Table *pTab         /* The table we are writing to */
229 ){
230   int memId = 0;      /* Register holding maximum rowid */
231   assert( pParse->db->aDb[iDb].pSchema!=0 );
232   if( (pTab->tabFlags & TF_Autoincrement)!=0
233    && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
234   ){
235     Parse *pToplevel = sqlite3ParseToplevel(pParse);
236     AutoincInfo *pInfo;
237     Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
238 
239     /* Verify that the sqlite_sequence table exists and is an ordinary
240     ** rowid table with exactly two columns.
241     ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
242     if( pSeqTab==0
243      || !HasRowid(pSeqTab)
244      || IsVirtual(pSeqTab)
245      || pSeqTab->nCol!=2
246     ){
247       pParse->nErr++;
248       pParse->rc = SQLITE_CORRUPT_SEQUENCE;
249       return 0;
250     }
251 
252     pInfo = pToplevel->pAinc;
253     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
254     if( pInfo==0 ){
255       pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
256       if( pInfo==0 ) return 0;
257       pInfo->pNext = pToplevel->pAinc;
258       pToplevel->pAinc = pInfo;
259       pInfo->pTab = pTab;
260       pInfo->iDb = iDb;
261       pToplevel->nMem++;                  /* Register to hold name of table */
262       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
263       pToplevel->nMem +=2;       /* Rowid in sqlite_sequence + orig max val */
264     }
265     memId = pInfo->regCtr;
266   }
267   return memId;
268 }
269 
270 /*
271 ** This routine generates code that will initialize all of the
272 ** register used by the autoincrement tracker.
273 */
274 void sqlite3AutoincrementBegin(Parse *pParse){
275   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
276   sqlite3 *db = pParse->db;  /* The database connection */
277   Db *pDb;                   /* Database only autoinc table */
278   int memId;                 /* Register holding max rowid */
279   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
280 
281   /* This routine is never called during trigger-generation.  It is
282   ** only called from the top-level */
283   assert( pParse->pTriggerTab==0 );
284   assert( sqlite3IsToplevel(pParse) );
285 
286   assert( v );   /* We failed long ago if this is not so */
287   for(p = pParse->pAinc; p; p = p->pNext){
288     static const int iLn = VDBE_OFFSET_LINENO(2);
289     static const VdbeOpList autoInc[] = {
290       /* 0  */ {OP_Null,    0,  0, 0},
291       /* 1  */ {OP_Rewind,  0, 10, 0},
292       /* 2  */ {OP_Column,  0,  0, 0},
293       /* 3  */ {OP_Ne,      0,  9, 0},
294       /* 4  */ {OP_Rowid,   0,  0, 0},
295       /* 5  */ {OP_Column,  0,  1, 0},
296       /* 6  */ {OP_AddImm,  0,  0, 0},
297       /* 7  */ {OP_Copy,    0,  0, 0},
298       /* 8  */ {OP_Goto,    0, 11, 0},
299       /* 9  */ {OP_Next,    0,  2, 0},
300       /* 10 */ {OP_Integer, 0,  0, 0},
301       /* 11 */ {OP_Close,   0,  0, 0}
302     };
303     VdbeOp *aOp;
304     pDb = &db->aDb[p->iDb];
305     memId = p->regCtr;
306     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
307     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
308     sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
309     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
310     if( aOp==0 ) break;
311     aOp[0].p2 = memId;
312     aOp[0].p3 = memId+2;
313     aOp[2].p3 = memId;
314     aOp[3].p1 = memId-1;
315     aOp[3].p3 = memId;
316     aOp[3].p5 = SQLITE_JUMPIFNULL;
317     aOp[4].p2 = memId+1;
318     aOp[5].p3 = memId;
319     aOp[6].p1 = memId;
320     aOp[7].p2 = memId+2;
321     aOp[7].p1 = memId;
322     aOp[10].p2 = memId;
323     if( pParse->nTab==0 ) pParse->nTab = 1;
324   }
325 }
326 
327 /*
328 ** Update the maximum rowid for an autoincrement calculation.
329 **
330 ** This routine should be called when the regRowid register holds a
331 ** new rowid that is about to be inserted.  If that new rowid is
332 ** larger than the maximum rowid in the memId memory cell, then the
333 ** memory cell is updated.
334 */
335 static void autoIncStep(Parse *pParse, int memId, int regRowid){
336   if( memId>0 ){
337     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
338   }
339 }
340 
341 /*
342 ** This routine generates the code needed to write autoincrement
343 ** maximum rowid values back into the sqlite_sequence register.
344 ** Every statement that might do an INSERT into an autoincrement
345 ** table (either directly or through triggers) needs to call this
346 ** routine just before the "exit" code.
347 */
348 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
349   AutoincInfo *p;
350   Vdbe *v = pParse->pVdbe;
351   sqlite3 *db = pParse->db;
352 
353   assert( v );
354   for(p = pParse->pAinc; p; p = p->pNext){
355     static const int iLn = VDBE_OFFSET_LINENO(2);
356     static const VdbeOpList autoIncEnd[] = {
357       /* 0 */ {OP_NotNull,     0, 2, 0},
358       /* 1 */ {OP_NewRowid,    0, 0, 0},
359       /* 2 */ {OP_MakeRecord,  0, 2, 0},
360       /* 3 */ {OP_Insert,      0, 0, 0},
361       /* 4 */ {OP_Close,       0, 0, 0}
362     };
363     VdbeOp *aOp;
364     Db *pDb = &db->aDb[p->iDb];
365     int iRec;
366     int memId = p->regCtr;
367 
368     iRec = sqlite3GetTempReg(pParse);
369     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
370     sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
371     VdbeCoverage(v);
372     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
373     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
374     if( aOp==0 ) break;
375     aOp[0].p1 = memId+1;
376     aOp[1].p2 = memId+1;
377     aOp[2].p1 = memId-1;
378     aOp[2].p3 = iRec;
379     aOp[3].p2 = iRec;
380     aOp[3].p3 = memId+1;
381     aOp[3].p5 = OPFLAG_APPEND;
382     sqlite3ReleaseTempReg(pParse, iRec);
383   }
384 }
385 void sqlite3AutoincrementEnd(Parse *pParse){
386   if( pParse->pAinc ) autoIncrementEnd(pParse);
387 }
388 #else
389 /*
390 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
391 ** above are all no-ops
392 */
393 # define autoIncBegin(A,B,C) (0)
394 # define autoIncStep(A,B,C)
395 #endif /* SQLITE_OMIT_AUTOINCREMENT */
396 
397 
398 /* Forward declaration */
399 static int xferOptimization(
400   Parse *pParse,        /* Parser context */
401   Table *pDest,         /* The table we are inserting into */
402   Select *pSelect,      /* A SELECT statement to use as the data source */
403   int onError,          /* How to handle constraint errors */
404   int iDbDest           /* The database of pDest */
405 );
406 
407 /*
408 ** This routine is called to handle SQL of the following forms:
409 **
410 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
411 **    insert into TABLE (IDLIST) select
412 **    insert into TABLE (IDLIST) default values
413 **
414 ** The IDLIST following the table name is always optional.  If omitted,
415 ** then a list of all (non-hidden) columns for the table is substituted.
416 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
417 ** is omitted.
418 **
419 ** For the pSelect parameter holds the values to be inserted for the
420 ** first two forms shown above.  A VALUES clause is really just short-hand
421 ** for a SELECT statement that omits the FROM clause and everything else
422 ** that follows.  If the pSelect parameter is NULL, that means that the
423 ** DEFAULT VALUES form of the INSERT statement is intended.
424 **
425 ** The code generated follows one of four templates.  For a simple
426 ** insert with data coming from a single-row VALUES clause, the code executes
427 ** once straight down through.  Pseudo-code follows (we call this
428 ** the "1st template"):
429 **
430 **         open write cursor to <table> and its indices
431 **         put VALUES clause expressions into registers
432 **         write the resulting record into <table>
433 **         cleanup
434 **
435 ** The three remaining templates assume the statement is of the form
436 **
437 **   INSERT INTO <table> SELECT ...
438 **
439 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
440 ** in other words if the SELECT pulls all columns from a single table
441 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
442 ** if <table2> and <table1> are distinct tables but have identical
443 ** schemas, including all the same indices, then a special optimization
444 ** is invoked that copies raw records from <table2> over to <table1>.
445 ** See the xferOptimization() function for the implementation of this
446 ** template.  This is the 2nd template.
447 **
448 **         open a write cursor to <table>
449 **         open read cursor on <table2>
450 **         transfer all records in <table2> over to <table>
451 **         close cursors
452 **         foreach index on <table>
453 **           open a write cursor on the <table> index
454 **           open a read cursor on the corresponding <table2> index
455 **           transfer all records from the read to the write cursors
456 **           close cursors
457 **         end foreach
458 **
459 ** The 3rd template is for when the second template does not apply
460 ** and the SELECT clause does not read from <table> at any time.
461 ** The generated code follows this template:
462 **
463 **         X <- A
464 **         goto B
465 **      A: setup for the SELECT
466 **         loop over the rows in the SELECT
467 **           load values into registers R..R+n
468 **           yield X
469 **         end loop
470 **         cleanup after the SELECT
471 **         end-coroutine X
472 **      B: open write cursor to <table> and its indices
473 **      C: yield X, at EOF goto D
474 **         insert the select result into <table> from R..R+n
475 **         goto C
476 **      D: cleanup
477 **
478 ** The 4th template is used if the insert statement takes its
479 ** values from a SELECT but the data is being inserted into a table
480 ** that is also read as part of the SELECT.  In the third form,
481 ** we have to use an intermediate table to store the results of
482 ** the select.  The template is like this:
483 **
484 **         X <- A
485 **         goto B
486 **      A: setup for the SELECT
487 **         loop over the tables in the SELECT
488 **           load value into register R..R+n
489 **           yield X
490 **         end loop
491 **         cleanup after the SELECT
492 **         end co-routine R
493 **      B: open temp table
494 **      L: yield X, at EOF goto M
495 **         insert row from R..R+n into temp table
496 **         goto L
497 **      M: open write cursor to <table> and its indices
498 **         rewind temp table
499 **      C: loop over rows of intermediate table
500 **           transfer values form intermediate table into <table>
501 **         end loop
502 **      D: cleanup
503 */
504 void sqlite3Insert(
505   Parse *pParse,        /* Parser context */
506   SrcList *pTabList,    /* Name of table into which we are inserting */
507   Select *pSelect,      /* A SELECT statement to use as the data source */
508   IdList *pColumn,      /* Column names corresponding to IDLIST. */
509   int onError,          /* How to handle constraint errors */
510   Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */
511 ){
512   sqlite3 *db;          /* The main database structure */
513   Table *pTab;          /* The table to insert into.  aka TABLE */
514   int i, j;             /* Loop counters */
515   Vdbe *v;              /* Generate code into this virtual machine */
516   Index *pIdx;          /* For looping over indices of the table */
517   int nColumn;          /* Number of columns in the data */
518   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
519   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
520   int iIdxCur = 0;      /* First index cursor */
521   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
522   int endOfLoop;        /* Label for the end of the insertion loop */
523   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
524   int addrInsTop = 0;   /* Jump to label "D" */
525   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
526   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
527   int iDb;              /* Index of database holding TABLE */
528   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
529   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
530   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
531   u8 bIdListInOrder;    /* True if IDLIST is in table order */
532   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
533 
534   /* Register allocations */
535   int regFromSelect = 0;/* Base register for data coming from SELECT */
536   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
537   int regRowCount = 0;  /* Memory cell used for the row counter */
538   int regIns;           /* Block of regs holding rowid+data being inserted */
539   int regRowid;         /* registers holding insert rowid */
540   int regData;          /* register holding first column to insert */
541   int *aRegIdx = 0;     /* One register allocated to each index */
542 
543 #ifndef SQLITE_OMIT_TRIGGER
544   int isView;                 /* True if attempting to insert into a view */
545   Trigger *pTrigger;          /* List of triggers on pTab, if required */
546   int tmask;                  /* Mask of trigger times */
547 #endif
548 
549   db = pParse->db;
550   if( pParse->nErr || db->mallocFailed ){
551     goto insert_cleanup;
552   }
553   dest.iSDParm = 0;  /* Suppress a harmless compiler warning */
554 
555   /* If the Select object is really just a simple VALUES() list with a
556   ** single row (the common case) then keep that one row of values
557   ** and discard the other (unused) parts of the pSelect object
558   */
559   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
560     pList = pSelect->pEList;
561     pSelect->pEList = 0;
562     sqlite3SelectDelete(db, pSelect);
563     pSelect = 0;
564   }
565 
566   /* Locate the table into which we will be inserting new information.
567   */
568   assert( pTabList->nSrc==1 );
569   pTab = sqlite3SrcListLookup(pParse, pTabList);
570   if( pTab==0 ){
571     goto insert_cleanup;
572   }
573   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
574   assert( iDb<db->nDb );
575   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
576                        db->aDb[iDb].zDbSName) ){
577     goto insert_cleanup;
578   }
579   withoutRowid = !HasRowid(pTab);
580 
581   /* Figure out if we have any triggers and if the table being
582   ** inserted into is a view
583   */
584 #ifndef SQLITE_OMIT_TRIGGER
585   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
586   isView = pTab->pSelect!=0;
587 #else
588 # define pTrigger 0
589 # define tmask 0
590 # define isView 0
591 #endif
592 #ifdef SQLITE_OMIT_VIEW
593 # undef isView
594 # define isView 0
595 #endif
596   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
597 
598   /* If pTab is really a view, make sure it has been initialized.
599   ** ViewGetColumnNames() is a no-op if pTab is not a view.
600   */
601   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
602     goto insert_cleanup;
603   }
604 
605   /* Cannot insert into a read-only table.
606   */
607   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
608     goto insert_cleanup;
609   }
610 
611   /* Allocate a VDBE
612   */
613   v = sqlite3GetVdbe(pParse);
614   if( v==0 ) goto insert_cleanup;
615   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
616   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
617 
618 #ifndef SQLITE_OMIT_XFER_OPT
619   /* If the statement is of the form
620   **
621   **       INSERT INTO <table1> SELECT * FROM <table2>;
622   **
623   ** Then special optimizations can be applied that make the transfer
624   ** very fast and which reduce fragmentation of indices.
625   **
626   ** This is the 2nd template.
627   */
628   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
629     assert( !pTrigger );
630     assert( pList==0 );
631     goto insert_end;
632   }
633 #endif /* SQLITE_OMIT_XFER_OPT */
634 
635   /* If this is an AUTOINCREMENT table, look up the sequence number in the
636   ** sqlite_sequence table and store it in memory cell regAutoinc.
637   */
638   regAutoinc = autoIncBegin(pParse, iDb, pTab);
639 
640   /* Allocate registers for holding the rowid of the new row,
641   ** the content of the new row, and the assembled row record.
642   */
643   regRowid = regIns = pParse->nMem+1;
644   pParse->nMem += pTab->nCol + 1;
645   if( IsVirtual(pTab) ){
646     regRowid++;
647     pParse->nMem++;
648   }
649   regData = regRowid+1;
650 
651   /* If the INSERT statement included an IDLIST term, then make sure
652   ** all elements of the IDLIST really are columns of the table and
653   ** remember the column indices.
654   **
655   ** If the table has an INTEGER PRIMARY KEY column and that column
656   ** is named in the IDLIST, then record in the ipkColumn variable
657   ** the index into IDLIST of the primary key column.  ipkColumn is
658   ** the index of the primary key as it appears in IDLIST, not as
659   ** is appears in the original table.  (The index of the INTEGER
660   ** PRIMARY KEY in the original table is pTab->iPKey.)
661   */
662   bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0;
663   if( pColumn ){
664     for(i=0; i<pColumn->nId; i++){
665       pColumn->a[i].idx = -1;
666     }
667     for(i=0; i<pColumn->nId; i++){
668       for(j=0; j<pTab->nCol; j++){
669         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
670           pColumn->a[i].idx = j;
671           if( i!=j ) bIdListInOrder = 0;
672           if( j==pTab->iPKey ){
673             ipkColumn = i;  assert( !withoutRowid );
674           }
675           break;
676         }
677       }
678       if( j>=pTab->nCol ){
679         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
680           ipkColumn = i;
681           bIdListInOrder = 0;
682         }else{
683           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
684               pTabList, 0, pColumn->a[i].zName);
685           pParse->checkSchema = 1;
686           goto insert_cleanup;
687         }
688       }
689     }
690   }
691 
692   /* Figure out how many columns of data are supplied.  If the data
693   ** is coming from a SELECT statement, then generate a co-routine that
694   ** produces a single row of the SELECT on each invocation.  The
695   ** co-routine is the common header to the 3rd and 4th templates.
696   */
697   if( pSelect ){
698     /* Data is coming from a SELECT or from a multi-row VALUES clause.
699     ** Generate a co-routine to run the SELECT. */
700     int regYield;       /* Register holding co-routine entry-point */
701     int addrTop;        /* Top of the co-routine */
702     int rc;             /* Result code */
703 
704     regYield = ++pParse->nMem;
705     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
706     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
707     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
708     dest.iSdst = bIdListInOrder ? regData : 0;
709     dest.nSdst = pTab->nCol;
710     rc = sqlite3Select(pParse, pSelect, &dest);
711     regFromSelect = dest.iSdst;
712     if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
713     sqlite3VdbeEndCoroutine(v, regYield);
714     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
715     assert( pSelect->pEList );
716     nColumn = pSelect->pEList->nExpr;
717 
718     /* Set useTempTable to TRUE if the result of the SELECT statement
719     ** should be written into a temporary table (template 4).  Set to
720     ** FALSE if each output row of the SELECT can be written directly into
721     ** the destination table (template 3).
722     **
723     ** A temp table must be used if the table being updated is also one
724     ** of the tables being read by the SELECT statement.  Also use a
725     ** temp table in the case of row triggers.
726     */
727     if( pTrigger || readsTable(pParse, iDb, pTab) ){
728       useTempTable = 1;
729     }
730 
731     if( useTempTable ){
732       /* Invoke the coroutine to extract information from the SELECT
733       ** and add it to a transient table srcTab.  The code generated
734       ** here is from the 4th template:
735       **
736       **      B: open temp table
737       **      L: yield X, goto M at EOF
738       **         insert row from R..R+n into temp table
739       **         goto L
740       **      M: ...
741       */
742       int regRec;          /* Register to hold packed record */
743       int regTempRowid;    /* Register to hold temp table ROWID */
744       int addrL;           /* Label "L" */
745 
746       srcTab = pParse->nTab++;
747       regRec = sqlite3GetTempReg(pParse);
748       regTempRowid = sqlite3GetTempReg(pParse);
749       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
750       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
751       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
752       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
753       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
754       sqlite3VdbeGoto(v, addrL);
755       sqlite3VdbeJumpHere(v, addrL);
756       sqlite3ReleaseTempReg(pParse, regRec);
757       sqlite3ReleaseTempReg(pParse, regTempRowid);
758     }
759   }else{
760     /* This is the case if the data for the INSERT is coming from a
761     ** single-row VALUES clause
762     */
763     NameContext sNC;
764     memset(&sNC, 0, sizeof(sNC));
765     sNC.pParse = pParse;
766     srcTab = -1;
767     assert( useTempTable==0 );
768     if( pList ){
769       nColumn = pList->nExpr;
770       if( sqlite3ResolveExprListNames(&sNC, pList) ){
771         goto insert_cleanup;
772       }
773     }else{
774       nColumn = 0;
775     }
776   }
777 
778   /* If there is no IDLIST term but the table has an integer primary
779   ** key, the set the ipkColumn variable to the integer primary key
780   ** column index in the original table definition.
781   */
782   if( pColumn==0 && nColumn>0 ){
783     ipkColumn = pTab->iPKey;
784   }
785 
786   /* Make sure the number of columns in the source data matches the number
787   ** of columns to be inserted into the table.
788   */
789   for(i=0; i<pTab->nCol; i++){
790     nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
791   }
792   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
793     sqlite3ErrorMsg(pParse,
794        "table %S has %d columns but %d values were supplied",
795        pTabList, 0, pTab->nCol-nHidden, nColumn);
796     goto insert_cleanup;
797   }
798   if( pColumn!=0 && nColumn!=pColumn->nId ){
799     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
800     goto insert_cleanup;
801   }
802 
803   /* Initialize the count of rows to be inserted
804   */
805   if( (db->flags & SQLITE_CountRows)!=0
806    && !pParse->nested
807    && !pParse->pTriggerTab
808   ){
809     regRowCount = ++pParse->nMem;
810     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
811   }
812 
813   /* If this is not a view, open the table and and all indices */
814   if( !isView ){
815     int nIdx;
816     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
817                                       &iDataCur, &iIdxCur);
818     aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
819     if( aRegIdx==0 ){
820       goto insert_cleanup;
821     }
822     for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
823       assert( pIdx );
824       aRegIdx[i] = ++pParse->nMem;
825       pParse->nMem += pIdx->nColumn;
826     }
827     aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */
828   }
829 #ifndef SQLITE_OMIT_UPSERT
830   if( pUpsert ){
831     if( IsVirtual(pTab) ){
832       sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
833               pTab->zName);
834       goto insert_cleanup;
835     }
836     if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
837       goto insert_cleanup;
838     }
839     pTabList->a[0].iCursor = iDataCur;
840     pUpsert->pUpsertSrc = pTabList;
841     pUpsert->regData = regData;
842     pUpsert->iDataCur = iDataCur;
843     pUpsert->iIdxCur = iIdxCur;
844     if( pUpsert->pUpsertTarget ){
845       sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert);
846     }
847   }
848 #endif
849 
850 
851   /* This is the top of the main insertion loop */
852   if( useTempTable ){
853     /* This block codes the top of loop only.  The complete loop is the
854     ** following pseudocode (template 4):
855     **
856     **         rewind temp table, if empty goto D
857     **      C: loop over rows of intermediate table
858     **           transfer values form intermediate table into <table>
859     **         end loop
860     **      D: ...
861     */
862     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
863     addrCont = sqlite3VdbeCurrentAddr(v);
864   }else if( pSelect ){
865     /* This block codes the top of loop only.  The complete loop is the
866     ** following pseudocode (template 3):
867     **
868     **      C: yield X, at EOF goto D
869     **         insert the select result into <table> from R..R+n
870     **         goto C
871     **      D: ...
872     */
873     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
874     VdbeCoverage(v);
875   }
876 
877   /* Run the BEFORE and INSTEAD OF triggers, if there are any
878   */
879   endOfLoop = sqlite3VdbeMakeLabel(pParse);
880   if( tmask & TRIGGER_BEFORE ){
881     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
882 
883     /* build the NEW.* reference row.  Note that if there is an INTEGER
884     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
885     ** translated into a unique ID for the row.  But on a BEFORE trigger,
886     ** we do not know what the unique ID will be (because the insert has
887     ** not happened yet) so we substitute a rowid of -1
888     */
889     if( ipkColumn<0 ){
890       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
891     }else{
892       int addr1;
893       assert( !withoutRowid );
894       if( useTempTable ){
895         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
896       }else{
897         assert( pSelect==0 );  /* Otherwise useTempTable is true */
898         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
899       }
900       addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
901       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
902       sqlite3VdbeJumpHere(v, addr1);
903       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
904     }
905 
906     /* Cannot have triggers on a virtual table. If it were possible,
907     ** this block would have to account for hidden column.
908     */
909     assert( !IsVirtual(pTab) );
910 
911     /* Create the new column data
912     */
913     for(i=j=0; i<pTab->nCol; i++){
914       if( pColumn ){
915         for(j=0; j<pColumn->nId; j++){
916           if( pColumn->a[j].idx==i ) break;
917         }
918       }
919       if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId)
920             || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){
921         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
922       }else if( useTempTable ){
923         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
924       }else{
925         assert( pSelect==0 ); /* Otherwise useTempTable is true */
926         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
927       }
928       if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++;
929     }
930 
931     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
932     ** do not attempt any conversions before assembling the record.
933     ** If this is a real table, attempt conversions as required by the
934     ** table column affinities.
935     */
936     if( !isView ){
937       sqlite3TableAffinity(v, pTab, regCols+1);
938     }
939 
940     /* Fire BEFORE or INSTEAD OF triggers */
941     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
942         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
943 
944     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
945   }
946 
947   /* Compute the content of the next row to insert into a range of
948   ** registers beginning at regIns.
949   */
950   if( !isView ){
951     if( IsVirtual(pTab) ){
952       /* The row that the VUpdate opcode will delete: none */
953       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
954     }
955     if( ipkColumn>=0 ){
956       if( useTempTable ){
957         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
958       }else if( pSelect ){
959         sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
960       }else{
961         Expr *pIpk = pList->a[ipkColumn].pExpr;
962         if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
963           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
964           appendFlag = 1;
965         }else{
966           sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
967         }
968       }
969       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
970       ** to generate a unique primary key value.
971       */
972       if( !appendFlag ){
973         int addr1;
974         if( !IsVirtual(pTab) ){
975           addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
976           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
977           sqlite3VdbeJumpHere(v, addr1);
978         }else{
979           addr1 = sqlite3VdbeCurrentAddr(v);
980           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
981         }
982         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
983       }
984     }else if( IsVirtual(pTab) || withoutRowid ){
985       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
986     }else{
987       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
988       appendFlag = 1;
989     }
990     autoIncStep(pParse, regAutoinc, regRowid);
991 
992     /* Compute data for all columns of the new entry, beginning
993     ** with the first column.
994     */
995     nHidden = 0;
996     for(i=0; i<pTab->nCol; i++){
997       int iRegStore = regRowid+1+i;
998       if( i==pTab->iPKey ){
999         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
1000         ** Whenever this column is read, the rowid will be substituted
1001         ** in its place.  Hence, fill this column with a NULL to avoid
1002         ** taking up data space with information that will never be used.
1003         ** As there may be shallow copies of this value, make it a soft-NULL */
1004         sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1005         continue;
1006       }
1007       if( pColumn==0 ){
1008         if( IsHiddenColumn(&pTab->aCol[i]) ){
1009           j = -1;
1010           nHidden++;
1011         }else{
1012           j = i - nHidden;
1013         }
1014       }else{
1015         for(j=0; j<pColumn->nId; j++){
1016           if( pColumn->a[j].idx==i ) break;
1017         }
1018       }
1019       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
1020         sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1021       }else if( useTempTable ){
1022         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
1023       }else if( pSelect ){
1024         if( regFromSelect!=regData ){
1025           sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
1026         }
1027       }else{
1028         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
1029       }
1030     }
1031 
1032     /* Generate code to check constraints and generate index keys and
1033     ** do the insertion.
1034     */
1035 #ifndef SQLITE_OMIT_VIRTUALTABLE
1036     if( IsVirtual(pTab) ){
1037       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1038       sqlite3VtabMakeWritable(pParse, pTab);
1039       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1040       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1041       sqlite3MayAbort(pParse);
1042     }else
1043 #endif
1044     {
1045       int isReplace;    /* Set to true if constraints may cause a replace */
1046       int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
1047       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1048           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1049       );
1050       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1051 
1052       /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1053       ** constraints or (b) there are no triggers and this table is not a
1054       ** parent table in a foreign key constraint. It is safe to set the
1055       ** flag in the second case as if any REPLACE constraint is hit, an
1056       ** OP_Delete or OP_IdxDelete instruction will be executed on each
1057       ** cursor that is disturbed. And these instructions both clear the
1058       ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1059       ** functionality.  */
1060       bUseSeek = (isReplace==0 || (pTrigger==0 &&
1061           ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0)
1062       ));
1063       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1064           regIns, aRegIdx, 0, appendFlag, bUseSeek
1065       );
1066     }
1067   }
1068 
1069   /* Update the count of rows that are inserted
1070   */
1071   if( regRowCount ){
1072     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1073   }
1074 
1075   if( pTrigger ){
1076     /* Code AFTER triggers */
1077     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1078         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1079   }
1080 
1081   /* The bottom of the main insertion loop, if the data source
1082   ** is a SELECT statement.
1083   */
1084   sqlite3VdbeResolveLabel(v, endOfLoop);
1085   if( useTempTable ){
1086     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1087     sqlite3VdbeJumpHere(v, addrInsTop);
1088     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1089   }else if( pSelect ){
1090     sqlite3VdbeGoto(v, addrCont);
1091     sqlite3VdbeJumpHere(v, addrInsTop);
1092   }
1093 
1094 insert_end:
1095   /* Update the sqlite_sequence table by storing the content of the
1096   ** maximum rowid counter values recorded while inserting into
1097   ** autoincrement tables.
1098   */
1099   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1100     sqlite3AutoincrementEnd(pParse);
1101   }
1102 
1103   /*
1104   ** Return the number of rows inserted. If this routine is
1105   ** generating code because of a call to sqlite3NestedParse(), do not
1106   ** invoke the callback function.
1107   */
1108   if( regRowCount ){
1109     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1110     sqlite3VdbeSetNumCols(v, 1);
1111     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1112   }
1113 
1114 insert_cleanup:
1115   sqlite3SrcListDelete(db, pTabList);
1116   sqlite3ExprListDelete(db, pList);
1117   sqlite3UpsertDelete(db, pUpsert);
1118   sqlite3SelectDelete(db, pSelect);
1119   sqlite3IdListDelete(db, pColumn);
1120   sqlite3DbFree(db, aRegIdx);
1121 }
1122 
1123 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1124 ** they may interfere with compilation of other functions in this file
1125 ** (or in another file, if this file becomes part of the amalgamation).  */
1126 #ifdef isView
1127  #undef isView
1128 #endif
1129 #ifdef pTrigger
1130  #undef pTrigger
1131 #endif
1132 #ifdef tmask
1133  #undef tmask
1134 #endif
1135 
1136 /*
1137 ** Meanings of bits in of pWalker->eCode for
1138 ** sqlite3ExprReferencesUpdatedColumn()
1139 */
1140 #define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
1141 #define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */
1142 
1143 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1144 *  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1145 ** expression node references any of the
1146 ** columns that are being modifed by an UPDATE statement.
1147 */
1148 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1149   if( pExpr->op==TK_COLUMN ){
1150     assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1151     if( pExpr->iColumn>=0 ){
1152       if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1153         pWalker->eCode |= CKCNSTRNT_COLUMN;
1154       }
1155     }else{
1156       pWalker->eCode |= CKCNSTRNT_ROWID;
1157     }
1158   }
1159   return WRC_Continue;
1160 }
1161 
1162 /*
1163 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
1164 ** only columns that are modified by the UPDATE are those for which
1165 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1166 **
1167 ** Return true if CHECK constraint pExpr uses any of the
1168 ** changing columns (or the rowid if it is changing).  In other words,
1169 ** return true if this CHECK constraint must be validated for
1170 ** the new row in the UPDATE statement.
1171 **
1172 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1173 ** The operation of this routine is the same - return true if an only if
1174 ** the expression uses one or more of columns identified by the second and
1175 ** third arguments.
1176 */
1177 int sqlite3ExprReferencesUpdatedColumn(
1178   Expr *pExpr,    /* The expression to be checked */
1179   int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */
1180   int chngRowid   /* True if UPDATE changes the rowid */
1181 ){
1182   Walker w;
1183   memset(&w, 0, sizeof(w));
1184   w.eCode = 0;
1185   w.xExprCallback = checkConstraintExprNode;
1186   w.u.aiCol = aiChng;
1187   sqlite3WalkExpr(&w, pExpr);
1188   if( !chngRowid ){
1189     testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1190     w.eCode &= ~CKCNSTRNT_ROWID;
1191   }
1192   testcase( w.eCode==0 );
1193   testcase( w.eCode==CKCNSTRNT_COLUMN );
1194   testcase( w.eCode==CKCNSTRNT_ROWID );
1195   testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1196   return w.eCode!=0;
1197 }
1198 
1199 /*
1200 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1201 ** on table pTab.
1202 **
1203 ** The regNewData parameter is the first register in a range that contains
1204 ** the data to be inserted or the data after the update.  There will be
1205 ** pTab->nCol+1 registers in this range.  The first register (the one
1206 ** that regNewData points to) will contain the new rowid, or NULL in the
1207 ** case of a WITHOUT ROWID table.  The second register in the range will
1208 ** contain the content of the first table column.  The third register will
1209 ** contain the content of the second table column.  And so forth.
1210 **
1211 ** The regOldData parameter is similar to regNewData except that it contains
1212 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1213 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1214 ** checking regOldData for zero.
1215 **
1216 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1217 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1218 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1219 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1220 **
1221 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1222 ** was explicitly specified as part of the INSERT statement.  If pkChng
1223 ** is zero, it means that the either rowid is computed automatically or
1224 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1225 ** pkChng will only be true if the INSERT statement provides an integer
1226 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1227 **
1228 ** The code generated by this routine will store new index entries into
1229 ** registers identified by aRegIdx[].  No index entry is created for
1230 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1231 ** the same as the order of indices on the linked list of indices
1232 ** at pTab->pIndex.
1233 **
1234 ** (2019-05-07) The generated code also creates a new record for the
1235 ** main table, if pTab is a rowid table, and stores that record in the
1236 ** register identified by aRegIdx[nIdx] - in other words in the first
1237 ** entry of aRegIdx[] past the last index.  It is important that the
1238 ** record be generated during constraint checks to avoid affinity changes
1239 ** to the register content that occur after constraint checks but before
1240 ** the new record is inserted.
1241 **
1242 ** The caller must have already opened writeable cursors on the main
1243 ** table and all applicable indices (that is to say, all indices for which
1244 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1245 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1246 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1247 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1248 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1249 **
1250 ** This routine also generates code to check constraints.  NOT NULL,
1251 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1252 ** then the appropriate action is performed.  There are five possible
1253 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1254 **
1255 **  Constraint type  Action       What Happens
1256 **  ---------------  ----------   ----------------------------------------
1257 **  any              ROLLBACK     The current transaction is rolled back and
1258 **                                sqlite3_step() returns immediately with a
1259 **                                return code of SQLITE_CONSTRAINT.
1260 **
1261 **  any              ABORT        Back out changes from the current command
1262 **                                only (do not do a complete rollback) then
1263 **                                cause sqlite3_step() to return immediately
1264 **                                with SQLITE_CONSTRAINT.
1265 **
1266 **  any              FAIL         Sqlite3_step() returns immediately with a
1267 **                                return code of SQLITE_CONSTRAINT.  The
1268 **                                transaction is not rolled back and any
1269 **                                changes to prior rows are retained.
1270 **
1271 **  any              IGNORE       The attempt in insert or update the current
1272 **                                row is skipped, without throwing an error.
1273 **                                Processing continues with the next row.
1274 **                                (There is an immediate jump to ignoreDest.)
1275 **
1276 **  NOT NULL         REPLACE      The NULL value is replace by the default
1277 **                                value for that column.  If the default value
1278 **                                is NULL, the action is the same as ABORT.
1279 **
1280 **  UNIQUE           REPLACE      The other row that conflicts with the row
1281 **                                being inserted is removed.
1282 **
1283 **  CHECK            REPLACE      Illegal.  The results in an exception.
1284 **
1285 ** Which action to take is determined by the overrideError parameter.
1286 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1287 ** is used.  Or if pParse->onError==OE_Default then the onError value
1288 ** for the constraint is used.
1289 */
1290 void sqlite3GenerateConstraintChecks(
1291   Parse *pParse,       /* The parser context */
1292   Table *pTab,         /* The table being inserted or updated */
1293   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1294   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1295   int iIdxCur,         /* First index cursor */
1296   int regNewData,      /* First register in a range holding values to insert */
1297   int regOldData,      /* Previous content.  0 for INSERTs */
1298   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1299   u8 overrideError,    /* Override onError to this if not OE_Default */
1300   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1301   int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
1302   int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
1303   Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
1304 ){
1305   Vdbe *v;             /* VDBE under constrution */
1306   Index *pIdx;         /* Pointer to one of the indices */
1307   Index *pPk = 0;      /* The PRIMARY KEY index */
1308   sqlite3 *db;         /* Database connection */
1309   int i;               /* loop counter */
1310   int ix;              /* Index loop counter */
1311   int nCol;            /* Number of columns */
1312   int onError;         /* Conflict resolution strategy */
1313   int addr1;           /* Address of jump instruction */
1314   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1315   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1316   Index *pUpIdx = 0;   /* Index to which to apply the upsert */
1317   u8 isUpdate;         /* True if this is an UPDATE operation */
1318   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1319   int upsertBypass = 0;  /* Address of Goto to bypass upsert subroutine */
1320   int upsertJump = 0;    /* Address of Goto that jumps into upsert subroutine */
1321   int ipkTop = 0;        /* Top of the IPK uniqueness check */
1322   int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
1323 
1324   isUpdate = regOldData!=0;
1325   db = pParse->db;
1326   v = sqlite3GetVdbe(pParse);
1327   assert( v!=0 );
1328   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1329   nCol = pTab->nCol;
1330 
1331   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1332   ** normal rowid tables.  nPkField is the number of key fields in the
1333   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1334   ** number of fields in the true primary key of the table. */
1335   if( HasRowid(pTab) ){
1336     pPk = 0;
1337     nPkField = 1;
1338   }else{
1339     pPk = sqlite3PrimaryKeyIndex(pTab);
1340     nPkField = pPk->nKeyCol;
1341   }
1342 
1343   /* Record that this module has started */
1344   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1345                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1346 
1347   /* Test all NOT NULL constraints.
1348   */
1349   for(i=0; i<nCol; i++){
1350     if( i==pTab->iPKey ){
1351       continue;        /* ROWID is never NULL */
1352     }
1353     if( aiChng && aiChng[i]<0 ){
1354       /* Don't bother checking for NOT NULL on columns that do not change */
1355       continue;
1356     }
1357     onError = pTab->aCol[i].notNull;
1358     if( onError==OE_None ) continue;  /* This column is allowed to be NULL */
1359     if( overrideError!=OE_Default ){
1360       onError = overrideError;
1361     }else if( onError==OE_Default ){
1362       onError = OE_Abort;
1363     }
1364     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1365       onError = OE_Abort;
1366     }
1367     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1368         || onError==OE_Ignore || onError==OE_Replace );
1369     addr1 = 0;
1370     switch( onError ){
1371       case OE_Replace: {
1372         assert( onError==OE_Replace );
1373         addr1 = sqlite3VdbeMakeLabel(pParse);
1374         sqlite3VdbeAddOp2(v, OP_NotNull, regNewData+1+i, addr1);
1375           VdbeCoverage(v);
1376         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1377         sqlite3VdbeAddOp2(v, OP_NotNull, regNewData+1+i, addr1);
1378           VdbeCoverage(v);
1379         onError = OE_Abort;
1380         /* Fall through into the OE_Abort case to generate code that runs
1381         ** if both the input and the default value are NULL */
1382       }
1383       case OE_Abort:
1384         sqlite3MayAbort(pParse);
1385         /* Fall through */
1386       case OE_Rollback:
1387       case OE_Fail: {
1388         char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1389                                     pTab->aCol[i].zName);
1390         sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1391                           regNewData+1+i);
1392         sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1393         sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1394         VdbeCoverage(v);
1395         if( addr1 ) sqlite3VdbeResolveLabel(v, addr1);
1396         break;
1397       }
1398       default: {
1399         assert( onError==OE_Ignore );
1400         sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1401         VdbeCoverage(v);
1402         break;
1403       }
1404     }
1405   }
1406 
1407   /* Test all CHECK constraints
1408   */
1409 #ifndef SQLITE_OMIT_CHECK
1410   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1411     ExprList *pCheck = pTab->pCheck;
1412     pParse->iSelfTab = -(regNewData+1);
1413     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1414     for(i=0; i<pCheck->nExpr; i++){
1415       int allOk;
1416       Expr *pExpr = pCheck->a[i].pExpr;
1417       if( aiChng
1418        && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1419       ){
1420         /* The check constraints do not reference any of the columns being
1421         ** updated so there is no point it verifying the check constraint */
1422         continue;
1423       }
1424       allOk = sqlite3VdbeMakeLabel(pParse);
1425       sqlite3VdbeVerifyAbortable(v, onError);
1426       sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
1427       if( onError==OE_Ignore ){
1428         sqlite3VdbeGoto(v, ignoreDest);
1429       }else{
1430         char *zName = pCheck->a[i].zName;
1431         if( zName==0 ) zName = pTab->zName;
1432         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1433         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1434                               onError, zName, P4_TRANSIENT,
1435                               P5_ConstraintCheck);
1436       }
1437       sqlite3VdbeResolveLabel(v, allOk);
1438     }
1439     pParse->iSelfTab = 0;
1440   }
1441 #endif /* !defined(SQLITE_OMIT_CHECK) */
1442 
1443   /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1444   ** order:
1445   **
1446   **   (1)  OE_Update
1447   **   (2)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1448   **   (3)  OE_Replace
1449   **
1450   ** OE_Fail and OE_Ignore must happen before any changes are made.
1451   ** OE_Update guarantees that only a single row will change, so it
1452   ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback
1453   ** could happen in any order, but they are grouped up front for
1454   ** convenience.
1455   **
1456   ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1457   ** The order of constraints used to have OE_Update as (2) and OE_Abort
1458   ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1459   ** constraint before any others, so it had to be moved.
1460   **
1461   ** Constraint checking code is generated in this order:
1462   **   (A)  The rowid constraint
1463   **   (B)  Unique index constraints that do not have OE_Replace as their
1464   **        default conflict resolution strategy
1465   **   (C)  Unique index that do use OE_Replace by default.
1466   **
1467   ** The ordering of (2) and (3) is accomplished by making sure the linked
1468   ** list of indexes attached to a table puts all OE_Replace indexes last
1469   ** in the list.  See sqlite3CreateIndex() for where that happens.
1470   */
1471 
1472   if( pUpsert ){
1473     if( pUpsert->pUpsertTarget==0 ){
1474       /* An ON CONFLICT DO NOTHING clause, without a constraint-target.
1475       ** Make all unique constraint resolution be OE_Ignore */
1476       assert( pUpsert->pUpsertSet==0 );
1477       overrideError = OE_Ignore;
1478       pUpsert = 0;
1479     }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){
1480       /* If the constraint-target uniqueness check must be run first.
1481       ** Jump to that uniqueness check now */
1482       upsertJump = sqlite3VdbeAddOp0(v, OP_Goto);
1483       VdbeComment((v, "UPSERT constraint goes first"));
1484     }
1485   }
1486 
1487   /* If rowid is changing, make sure the new rowid does not previously
1488   ** exist in the table.
1489   */
1490   if( pkChng && pPk==0 ){
1491     int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
1492 
1493     /* Figure out what action to take in case of a rowid collision */
1494     onError = pTab->keyConf;
1495     if( overrideError!=OE_Default ){
1496       onError = overrideError;
1497     }else if( onError==OE_Default ){
1498       onError = OE_Abort;
1499     }
1500 
1501     /* figure out whether or not upsert applies in this case */
1502     if( pUpsert && pUpsert->pUpsertIdx==0 ){
1503       if( pUpsert->pUpsertSet==0 ){
1504         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
1505       }else{
1506         onError = OE_Update;  /* DO UPDATE */
1507       }
1508     }
1509 
1510     /* If the response to a rowid conflict is REPLACE but the response
1511     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1512     ** to defer the running of the rowid conflict checking until after
1513     ** the UNIQUE constraints have run.
1514     */
1515     if( onError==OE_Replace      /* IPK rule is REPLACE */
1516      && onError!=overrideError   /* Rules for other contraints are different */
1517      && pTab->pIndex             /* There exist other constraints */
1518     ){
1519       ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
1520       VdbeComment((v, "defer IPK REPLACE until last"));
1521     }
1522 
1523     if( isUpdate ){
1524       /* pkChng!=0 does not mean that the rowid has changed, only that
1525       ** it might have changed.  Skip the conflict logic below if the rowid
1526       ** is unchanged. */
1527       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1528       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1529       VdbeCoverage(v);
1530     }
1531 
1532     /* Check to see if the new rowid already exists in the table.  Skip
1533     ** the following conflict logic if it does not. */
1534     VdbeNoopComment((v, "uniqueness check for ROWID"));
1535     sqlite3VdbeVerifyAbortable(v, onError);
1536     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1537     VdbeCoverage(v);
1538 
1539     switch( onError ){
1540       default: {
1541         onError = OE_Abort;
1542         /* Fall thru into the next case */
1543       }
1544       case OE_Rollback:
1545       case OE_Abort:
1546       case OE_Fail: {
1547         testcase( onError==OE_Rollback );
1548         testcase( onError==OE_Abort );
1549         testcase( onError==OE_Fail );
1550         sqlite3RowidConstraint(pParse, onError, pTab);
1551         break;
1552       }
1553       case OE_Replace: {
1554         /* If there are DELETE triggers on this table and the
1555         ** recursive-triggers flag is set, call GenerateRowDelete() to
1556         ** remove the conflicting row from the table. This will fire
1557         ** the triggers and remove both the table and index b-tree entries.
1558         **
1559         ** Otherwise, if there are no triggers or the recursive-triggers
1560         ** flag is not set, but the table has one or more indexes, call
1561         ** GenerateRowIndexDelete(). This removes the index b-tree entries
1562         ** only. The table b-tree entry will be replaced by the new entry
1563         ** when it is inserted.
1564         **
1565         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1566         ** also invoke MultiWrite() to indicate that this VDBE may require
1567         ** statement rollback (if the statement is aborted after the delete
1568         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1569         ** but being more selective here allows statements like:
1570         **
1571         **   REPLACE INTO t(rowid) VALUES($newrowid)
1572         **
1573         ** to run without a statement journal if there are no indexes on the
1574         ** table.
1575         */
1576         Trigger *pTrigger = 0;
1577         if( db->flags&SQLITE_RecTriggers ){
1578           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1579         }
1580         if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1581           sqlite3MultiWrite(pParse);
1582           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1583                                    regNewData, 1, 0, OE_Replace, 1, -1);
1584         }else{
1585 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1586           assert( HasRowid(pTab) );
1587           /* This OP_Delete opcode fires the pre-update-hook only. It does
1588           ** not modify the b-tree. It is more efficient to let the coming
1589           ** OP_Insert replace the existing entry than it is to delete the
1590           ** existing entry and then insert a new one. */
1591           sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
1592           sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1593 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1594           if( pTab->pIndex ){
1595             sqlite3MultiWrite(pParse);
1596             sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
1597           }
1598         }
1599         seenReplace = 1;
1600         break;
1601       }
1602 #ifndef SQLITE_OMIT_UPSERT
1603       case OE_Update: {
1604         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
1605         /* Fall through */
1606       }
1607 #endif
1608       case OE_Ignore: {
1609         testcase( onError==OE_Ignore );
1610         sqlite3VdbeGoto(v, ignoreDest);
1611         break;
1612       }
1613     }
1614     sqlite3VdbeResolveLabel(v, addrRowidOk);
1615     if( ipkTop ){
1616       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1617       sqlite3VdbeJumpHere(v, ipkTop-1);
1618     }
1619   }
1620 
1621   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1622   ** index and making sure that duplicate entries do not already exist.
1623   ** Compute the revised record entries for indices as we go.
1624   **
1625   ** This loop also handles the case of the PRIMARY KEY index for a
1626   ** WITHOUT ROWID table.
1627   */
1628   for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1629     int regIdx;          /* Range of registers hold conent for pIdx */
1630     int regR;            /* Range of registers holding conflicting PK */
1631     int iThisCur;        /* Cursor for this UNIQUE index */
1632     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
1633 
1634     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
1635     if( pUpIdx==pIdx ){
1636       addrUniqueOk = upsertJump+1;
1637       upsertBypass = sqlite3VdbeGoto(v, 0);
1638       VdbeComment((v, "Skip upsert subroutine"));
1639       sqlite3VdbeJumpHere(v, upsertJump);
1640     }else{
1641       addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
1642     }
1643     if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){
1644       sqlite3TableAffinity(v, pTab, regNewData+1);
1645       bAffinityDone = 1;
1646     }
1647     VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName));
1648     iThisCur = iIdxCur+ix;
1649 
1650 
1651     /* Skip partial indices for which the WHERE clause is not true */
1652     if( pIdx->pPartIdxWhere ){
1653       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1654       pParse->iSelfTab = -(regNewData+1);
1655       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1656                             SQLITE_JUMPIFNULL);
1657       pParse->iSelfTab = 0;
1658     }
1659 
1660     /* Create a record for this index entry as it should appear after
1661     ** the insert or update.  Store that record in the aRegIdx[ix] register
1662     */
1663     regIdx = aRegIdx[ix]+1;
1664     for(i=0; i<pIdx->nColumn; i++){
1665       int iField = pIdx->aiColumn[i];
1666       int x;
1667       if( iField==XN_EXPR ){
1668         pParse->iSelfTab = -(regNewData+1);
1669         sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
1670         pParse->iSelfTab = 0;
1671         VdbeComment((v, "%s column %d", pIdx->zName, i));
1672       }else{
1673         if( iField==XN_ROWID || iField==pTab->iPKey ){
1674           x = regNewData;
1675         }else{
1676           x = iField + regNewData + 1;
1677         }
1678         sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i);
1679         VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1680       }
1681     }
1682     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1683     VdbeComment((v, "for %s", pIdx->zName));
1684 #ifdef SQLITE_ENABLE_NULL_TRIM
1685     if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
1686       sqlite3SetMakeRecordP5(v, pIdx->pTable);
1687     }
1688 #endif
1689 
1690     /* In an UPDATE operation, if this index is the PRIMARY KEY index
1691     ** of a WITHOUT ROWID table and there has been no change the
1692     ** primary key, then no collision is possible.  The collision detection
1693     ** logic below can all be skipped. */
1694     if( isUpdate && pPk==pIdx && pkChng==0 ){
1695       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1696       continue;
1697     }
1698 
1699     /* Find out what action to take in case there is a uniqueness conflict */
1700     onError = pIdx->onError;
1701     if( onError==OE_None ){
1702       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1703       continue;  /* pIdx is not a UNIQUE index */
1704     }
1705     if( overrideError!=OE_Default ){
1706       onError = overrideError;
1707     }else if( onError==OE_Default ){
1708       onError = OE_Abort;
1709     }
1710 
1711     /* Figure out if the upsert clause applies to this index */
1712     if( pUpIdx==pIdx ){
1713       if( pUpsert->pUpsertSet==0 ){
1714         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
1715       }else{
1716         onError = OE_Update;  /* DO UPDATE */
1717       }
1718     }
1719 
1720     /* Collision detection may be omitted if all of the following are true:
1721     **   (1) The conflict resolution algorithm is REPLACE
1722     **   (2) The table is a WITHOUT ROWID table
1723     **   (3) There are no secondary indexes on the table
1724     **   (4) No delete triggers need to be fired if there is a conflict
1725     **   (5) No FK constraint counters need to be updated if a conflict occurs.
1726     **
1727     ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
1728     ** must be explicitly deleted in order to ensure any pre-update hook
1729     ** is invoked.  */
1730 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
1731     if( (ix==0 && pIdx->pNext==0)                   /* Condition 3 */
1732      && pPk==pIdx                                   /* Condition 2 */
1733      && onError==OE_Replace                         /* Condition 1 */
1734      && ( 0==(db->flags&SQLITE_RecTriggers) ||      /* Condition 4 */
1735           0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
1736      && ( 0==(db->flags&SQLITE_ForeignKeys) ||      /* Condition 5 */
1737          (0==pTab->pFKey && 0==sqlite3FkReferences(pTab)))
1738     ){
1739       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1740       continue;
1741     }
1742 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
1743 
1744     /* Check to see if the new index entry will be unique */
1745     sqlite3VdbeVerifyAbortable(v, onError);
1746     sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1747                          regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1748 
1749     /* Generate code to handle collisions */
1750     regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1751     if( isUpdate || onError==OE_Replace ){
1752       if( HasRowid(pTab) ){
1753         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1754         /* Conflict only if the rowid of the existing index entry
1755         ** is different from old-rowid */
1756         if( isUpdate ){
1757           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1758           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1759           VdbeCoverage(v);
1760         }
1761       }else{
1762         int x;
1763         /* Extract the PRIMARY KEY from the end of the index entry and
1764         ** store it in registers regR..regR+nPk-1 */
1765         if( pIdx!=pPk ){
1766           for(i=0; i<pPk->nKeyCol; i++){
1767             assert( pPk->aiColumn[i]>=0 );
1768             x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1769             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1770             VdbeComment((v, "%s.%s", pTab->zName,
1771                          pTab->aCol[pPk->aiColumn[i]].zName));
1772           }
1773         }
1774         if( isUpdate ){
1775           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1776           ** table, only conflict if the new PRIMARY KEY values are actually
1777           ** different from the old.
1778           **
1779           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1780           ** of the matched index row are different from the original PRIMARY
1781           ** KEY values of this row before the update.  */
1782           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1783           int op = OP_Ne;
1784           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
1785 
1786           for(i=0; i<pPk->nKeyCol; i++){
1787             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1788             x = pPk->aiColumn[i];
1789             assert( x>=0 );
1790             if( i==(pPk->nKeyCol-1) ){
1791               addrJump = addrUniqueOk;
1792               op = OP_Eq;
1793             }
1794             sqlite3VdbeAddOp4(v, op,
1795                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1796             );
1797             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1798             VdbeCoverageIf(v, op==OP_Eq);
1799             VdbeCoverageIf(v, op==OP_Ne);
1800           }
1801         }
1802       }
1803     }
1804 
1805     /* Generate code that executes if the new index entry is not unique */
1806     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1807         || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
1808     switch( onError ){
1809       case OE_Rollback:
1810       case OE_Abort:
1811       case OE_Fail: {
1812         testcase( onError==OE_Rollback );
1813         testcase( onError==OE_Abort );
1814         testcase( onError==OE_Fail );
1815         sqlite3UniqueConstraint(pParse, onError, pIdx);
1816         break;
1817       }
1818 #ifndef SQLITE_OMIT_UPSERT
1819       case OE_Update: {
1820         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
1821         /* Fall through */
1822       }
1823 #endif
1824       case OE_Ignore: {
1825         testcase( onError==OE_Ignore );
1826         sqlite3VdbeGoto(v, ignoreDest);
1827         break;
1828       }
1829       default: {
1830         Trigger *pTrigger = 0;
1831         assert( onError==OE_Replace );
1832         if( db->flags&SQLITE_RecTriggers ){
1833           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1834         }
1835         if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1836           sqlite3MultiWrite(pParse);
1837         }
1838         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1839             regR, nPkField, 0, OE_Replace,
1840             (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
1841         seenReplace = 1;
1842         break;
1843       }
1844     }
1845     if( pUpIdx==pIdx ){
1846       sqlite3VdbeGoto(v, upsertJump+1);
1847       sqlite3VdbeJumpHere(v, upsertBypass);
1848     }else{
1849       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1850     }
1851     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1852   }
1853 
1854   /* If the IPK constraint is a REPLACE, run it last */
1855   if( ipkTop ){
1856     sqlite3VdbeGoto(v, ipkTop);
1857     VdbeComment((v, "Do IPK REPLACE"));
1858     sqlite3VdbeJumpHere(v, ipkBottom);
1859   }
1860 
1861   /* Generate the table record */
1862   if( HasRowid(pTab) ){
1863     int regRec = aRegIdx[ix];
1864     sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nCol, regRec);
1865     sqlite3SetMakeRecordP5(v, pTab);
1866     if( !bAffinityDone ){
1867       sqlite3TableAffinity(v, pTab, 0);
1868     }
1869   }
1870 
1871   *pbMayReplace = seenReplace;
1872   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1873 }
1874 
1875 #ifdef SQLITE_ENABLE_NULL_TRIM
1876 /*
1877 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
1878 ** to be the number of columns in table pTab that must not be NULL-trimmed.
1879 **
1880 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
1881 */
1882 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
1883   u16 i;
1884 
1885   /* Records with omitted columns are only allowed for schema format
1886   ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
1887   if( pTab->pSchema->file_format<2 ) return;
1888 
1889   for(i=pTab->nCol-1; i>0; i--){
1890     if( pTab->aCol[i].pDflt!=0 ) break;
1891     if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
1892   }
1893   sqlite3VdbeChangeP5(v, i+1);
1894 }
1895 #endif
1896 
1897 /*
1898 ** This routine generates code to finish the INSERT or UPDATE operation
1899 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1900 ** A consecutive range of registers starting at regNewData contains the
1901 ** rowid and the content to be inserted.
1902 **
1903 ** The arguments to this routine should be the same as the first six
1904 ** arguments to sqlite3GenerateConstraintChecks.
1905 */
1906 void sqlite3CompleteInsertion(
1907   Parse *pParse,      /* The parser context */
1908   Table *pTab,        /* the table into which we are inserting */
1909   int iDataCur,       /* Cursor of the canonical data source */
1910   int iIdxCur,        /* First index cursor */
1911   int regNewData,     /* Range of content */
1912   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1913   int update_flags,   /* True for UPDATE, False for INSERT */
1914   int appendBias,     /* True if this is likely to be an append */
1915   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1916 ){
1917   Vdbe *v;            /* Prepared statements under construction */
1918   Index *pIdx;        /* An index being inserted or updated */
1919   u8 pik_flags;       /* flag values passed to the btree insert */
1920   int i;              /* Loop counter */
1921 
1922   assert( update_flags==0
1923        || update_flags==OPFLAG_ISUPDATE
1924        || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
1925   );
1926 
1927   v = sqlite3GetVdbe(pParse);
1928   assert( v!=0 );
1929   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1930   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1931     if( aRegIdx[i]==0 ) continue;
1932     if( pIdx->pPartIdxWhere ){
1933       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1934       VdbeCoverage(v);
1935     }
1936     pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
1937     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1938       assert( pParse->nested==0 );
1939       pik_flags |= OPFLAG_NCHANGE;
1940       pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
1941 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1942       if( update_flags==0 ){
1943         int r = sqlite3GetTempReg(pParse);
1944         sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
1945         sqlite3VdbeAddOp4(v, OP_Insert,
1946             iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE
1947         );
1948         sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
1949         sqlite3ReleaseTempReg(pParse, r);
1950       }
1951 #endif
1952     }
1953     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
1954                          aRegIdx[i]+1,
1955                          pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
1956     sqlite3VdbeChangeP5(v, pik_flags);
1957   }
1958   if( !HasRowid(pTab) ) return;
1959   if( pParse->nested ){
1960     pik_flags = 0;
1961   }else{
1962     pik_flags = OPFLAG_NCHANGE;
1963     pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
1964   }
1965   if( appendBias ){
1966     pik_flags |= OPFLAG_APPEND;
1967   }
1968   if( useSeekResult ){
1969     pik_flags |= OPFLAG_USESEEKRESULT;
1970   }
1971   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
1972   if( !pParse->nested ){
1973     sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1974   }
1975   sqlite3VdbeChangeP5(v, pik_flags);
1976 }
1977 
1978 /*
1979 ** Allocate cursors for the pTab table and all its indices and generate
1980 ** code to open and initialized those cursors.
1981 **
1982 ** The cursor for the object that contains the complete data (normally
1983 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1984 ** ROWID table) is returned in *piDataCur.  The first index cursor is
1985 ** returned in *piIdxCur.  The number of indices is returned.
1986 **
1987 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1988 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1989 ** If iBase is negative, then allocate the next available cursor.
1990 **
1991 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1992 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1993 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1994 ** pTab->pIndex list.
1995 **
1996 ** If pTab is a virtual table, then this routine is a no-op and the
1997 ** *piDataCur and *piIdxCur values are left uninitialized.
1998 */
1999 int sqlite3OpenTableAndIndices(
2000   Parse *pParse,   /* Parsing context */
2001   Table *pTab,     /* Table to be opened */
2002   int op,          /* OP_OpenRead or OP_OpenWrite */
2003   u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2004   int iBase,       /* Use this for the table cursor, if there is one */
2005   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
2006   int *piDataCur,  /* Write the database source cursor number here */
2007   int *piIdxCur    /* Write the first index cursor number here */
2008 ){
2009   int i;
2010   int iDb;
2011   int iDataCur;
2012   Index *pIdx;
2013   Vdbe *v;
2014 
2015   assert( op==OP_OpenRead || op==OP_OpenWrite );
2016   assert( op==OP_OpenWrite || p5==0 );
2017   if( IsVirtual(pTab) ){
2018     /* This routine is a no-op for virtual tables. Leave the output
2019     ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
2020     ** can detect if they are used by mistake in the caller. */
2021     return 0;
2022   }
2023   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2024   v = sqlite3GetVdbe(pParse);
2025   assert( v!=0 );
2026   if( iBase<0 ) iBase = pParse->nTab;
2027   iDataCur = iBase++;
2028   if( piDataCur ) *piDataCur = iDataCur;
2029   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2030     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2031   }else{
2032     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2033   }
2034   if( piIdxCur ) *piIdxCur = iBase;
2035   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2036     int iIdxCur = iBase++;
2037     assert( pIdx->pSchema==pTab->pSchema );
2038     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2039       if( piDataCur ) *piDataCur = iIdxCur;
2040       p5 = 0;
2041     }
2042     if( aToOpen==0 || aToOpen[i+1] ){
2043       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2044       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2045       sqlite3VdbeChangeP5(v, p5);
2046       VdbeComment((v, "%s", pIdx->zName));
2047     }
2048   }
2049   if( iBase>pParse->nTab ) pParse->nTab = iBase;
2050   return i;
2051 }
2052 
2053 
2054 #ifdef SQLITE_TEST
2055 /*
2056 ** The following global variable is incremented whenever the
2057 ** transfer optimization is used.  This is used for testing
2058 ** purposes only - to make sure the transfer optimization really
2059 ** is happening when it is supposed to.
2060 */
2061 int sqlite3_xferopt_count;
2062 #endif /* SQLITE_TEST */
2063 
2064 
2065 #ifndef SQLITE_OMIT_XFER_OPT
2066 /*
2067 ** Check to see if index pSrc is compatible as a source of data
2068 ** for index pDest in an insert transfer optimization.  The rules
2069 ** for a compatible index:
2070 **
2071 **    *   The index is over the same set of columns
2072 **    *   The same DESC and ASC markings occurs on all columns
2073 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
2074 **    *   The same collating sequence on each column
2075 **    *   The index has the exact same WHERE clause
2076 */
2077 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2078   int i;
2079   assert( pDest && pSrc );
2080   assert( pDest->pTable!=pSrc->pTable );
2081   if( pDest->nKeyCol!=pSrc->nKeyCol ){
2082     return 0;   /* Different number of columns */
2083   }
2084   if( pDest->onError!=pSrc->onError ){
2085     return 0;   /* Different conflict resolution strategies */
2086   }
2087   for(i=0; i<pSrc->nKeyCol; i++){
2088     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2089       return 0;   /* Different columns indexed */
2090     }
2091     if( pSrc->aiColumn[i]==XN_EXPR ){
2092       assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2093       if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2094                              pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2095         return 0;   /* Different expressions in the index */
2096       }
2097     }
2098     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2099       return 0;   /* Different sort orders */
2100     }
2101     if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2102       return 0;   /* Different collating sequences */
2103     }
2104   }
2105   if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2106     return 0;     /* Different WHERE clauses */
2107   }
2108 
2109   /* If no test above fails then the indices must be compatible */
2110   return 1;
2111 }
2112 
2113 /*
2114 ** Attempt the transfer optimization on INSERTs of the form
2115 **
2116 **     INSERT INTO tab1 SELECT * FROM tab2;
2117 **
2118 ** The xfer optimization transfers raw records from tab2 over to tab1.
2119 ** Columns are not decoded and reassembled, which greatly improves
2120 ** performance.  Raw index records are transferred in the same way.
2121 **
2122 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2123 ** There are lots of rules for determining compatibility - see comments
2124 ** embedded in the code for details.
2125 **
2126 ** This routine returns TRUE if the optimization is guaranteed to be used.
2127 ** Sometimes the xfer optimization will only work if the destination table
2128 ** is empty - a factor that can only be determined at run-time.  In that
2129 ** case, this routine generates code for the xfer optimization but also
2130 ** does a test to see if the destination table is empty and jumps over the
2131 ** xfer optimization code if the test fails.  In that case, this routine
2132 ** returns FALSE so that the caller will know to go ahead and generate
2133 ** an unoptimized transfer.  This routine also returns FALSE if there
2134 ** is no chance that the xfer optimization can be applied.
2135 **
2136 ** This optimization is particularly useful at making VACUUM run faster.
2137 */
2138 static int xferOptimization(
2139   Parse *pParse,        /* Parser context */
2140   Table *pDest,         /* The table we are inserting into */
2141   Select *pSelect,      /* A SELECT statement to use as the data source */
2142   int onError,          /* How to handle constraint errors */
2143   int iDbDest           /* The database of pDest */
2144 ){
2145   sqlite3 *db = pParse->db;
2146   ExprList *pEList;                /* The result set of the SELECT */
2147   Table *pSrc;                     /* The table in the FROM clause of SELECT */
2148   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
2149   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
2150   int i;                           /* Loop counter */
2151   int iDbSrc;                      /* The database of pSrc */
2152   int iSrc, iDest;                 /* Cursors from source and destination */
2153   int addr1, addr2;                /* Loop addresses */
2154   int emptyDestTest = 0;           /* Address of test for empty pDest */
2155   int emptySrcTest = 0;            /* Address of test for empty pSrc */
2156   Vdbe *v;                         /* The VDBE we are building */
2157   int regAutoinc;                  /* Memory register used by AUTOINC */
2158   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
2159   int regData, regRowid;           /* Registers holding data and rowid */
2160 
2161   if( pSelect==0 ){
2162     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
2163   }
2164   if( pParse->pWith || pSelect->pWith ){
2165     /* Do not attempt to process this query if there are an WITH clauses
2166     ** attached to it. Proceeding may generate a false "no such table: xxx"
2167     ** error if pSelect reads from a CTE named "xxx".  */
2168     return 0;
2169   }
2170   if( sqlite3TriggerList(pParse, pDest) ){
2171     return 0;   /* tab1 must not have triggers */
2172   }
2173 #ifndef SQLITE_OMIT_VIRTUALTABLE
2174   if( IsVirtual(pDest) ){
2175     return 0;   /* tab1 must not be a virtual table */
2176   }
2177 #endif
2178   if( onError==OE_Default ){
2179     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2180     if( onError==OE_Default ) onError = OE_Abort;
2181   }
2182   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
2183   if( pSelect->pSrc->nSrc!=1 ){
2184     return 0;   /* FROM clause must have exactly one term */
2185   }
2186   if( pSelect->pSrc->a[0].pSelect ){
2187     return 0;   /* FROM clause cannot contain a subquery */
2188   }
2189   if( pSelect->pWhere ){
2190     return 0;   /* SELECT may not have a WHERE clause */
2191   }
2192   if( pSelect->pOrderBy ){
2193     return 0;   /* SELECT may not have an ORDER BY clause */
2194   }
2195   /* Do not need to test for a HAVING clause.  If HAVING is present but
2196   ** there is no ORDER BY, we will get an error. */
2197   if( pSelect->pGroupBy ){
2198     return 0;   /* SELECT may not have a GROUP BY clause */
2199   }
2200   if( pSelect->pLimit ){
2201     return 0;   /* SELECT may not have a LIMIT clause */
2202   }
2203   if( pSelect->pPrior ){
2204     return 0;   /* SELECT may not be a compound query */
2205   }
2206   if( pSelect->selFlags & SF_Distinct ){
2207     return 0;   /* SELECT may not be DISTINCT */
2208   }
2209   pEList = pSelect->pEList;
2210   assert( pEList!=0 );
2211   if( pEList->nExpr!=1 ){
2212     return 0;   /* The result set must have exactly one column */
2213   }
2214   assert( pEList->a[0].pExpr );
2215   if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2216     return 0;   /* The result set must be the special operator "*" */
2217   }
2218 
2219   /* At this point we have established that the statement is of the
2220   ** correct syntactic form to participate in this optimization.  Now
2221   ** we have to check the semantics.
2222   */
2223   pItem = pSelect->pSrc->a;
2224   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2225   if( pSrc==0 ){
2226     return 0;   /* FROM clause does not contain a real table */
2227   }
2228   if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2229     testcase( pSrc!=pDest ); /* Possible due to bad sqlite_master.rootpage */
2230     return 0;   /* tab1 and tab2 may not be the same table */
2231   }
2232   if( HasRowid(pDest)!=HasRowid(pSrc) ){
2233     return 0;   /* source and destination must both be WITHOUT ROWID or not */
2234   }
2235 #ifndef SQLITE_OMIT_VIRTUALTABLE
2236   if( IsVirtual(pSrc) ){
2237     return 0;   /* tab2 must not be a virtual table */
2238   }
2239 #endif
2240   if( pSrc->pSelect ){
2241     return 0;   /* tab2 may not be a view */
2242   }
2243   if( pDest->nCol!=pSrc->nCol ){
2244     return 0;   /* Number of columns must be the same in tab1 and tab2 */
2245   }
2246   if( pDest->iPKey!=pSrc->iPKey ){
2247     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
2248   }
2249   for(i=0; i<pDest->nCol; i++){
2250     Column *pDestCol = &pDest->aCol[i];
2251     Column *pSrcCol = &pSrc->aCol[i];
2252 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2253     if( (db->mDbFlags & DBFLAG_Vacuum)==0
2254      && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2255     ){
2256       return 0;    /* Neither table may have __hidden__ columns */
2257     }
2258 #endif
2259     if( pDestCol->affinity!=pSrcCol->affinity ){
2260       return 0;    /* Affinity must be the same on all columns */
2261     }
2262     if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
2263       return 0;    /* Collating sequence must be the same on all columns */
2264     }
2265     if( pDestCol->notNull && !pSrcCol->notNull ){
2266       return 0;    /* tab2 must be NOT NULL if tab1 is */
2267     }
2268     /* Default values for second and subsequent columns need to match. */
2269     if( i>0 ){
2270       assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN );
2271       assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN );
2272       if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0)
2273        || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken,
2274                                        pSrcCol->pDflt->u.zToken)!=0)
2275       ){
2276         return 0;    /* Default values must be the same for all columns */
2277       }
2278     }
2279   }
2280   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2281     if( IsUniqueIndex(pDestIdx) ){
2282       destHasUniqueIdx = 1;
2283     }
2284     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2285       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2286     }
2287     if( pSrcIdx==0 ){
2288       return 0;    /* pDestIdx has no corresponding index in pSrc */
2289     }
2290     if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2291          && sqlite3FaultSim(411)==SQLITE_OK ){
2292       /* The sqlite3FaultSim() call allows this corruption test to be
2293       ** bypassed during testing, in order to exercise other corruption tests
2294       ** further downstream. */
2295       return 0;   /* Corrupt schema - two indexes on the same btree */
2296     }
2297   }
2298 #ifndef SQLITE_OMIT_CHECK
2299   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2300     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
2301   }
2302 #endif
2303 #ifndef SQLITE_OMIT_FOREIGN_KEY
2304   /* Disallow the transfer optimization if the destination table constains
2305   ** any foreign key constraints.  This is more restrictive than necessary.
2306   ** But the main beneficiary of the transfer optimization is the VACUUM
2307   ** command, and the VACUUM command disables foreign key constraints.  So
2308   ** the extra complication to make this rule less restrictive is probably
2309   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2310   */
2311   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
2312     return 0;
2313   }
2314 #endif
2315   if( (db->flags & SQLITE_CountRows)!=0 ){
2316     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
2317   }
2318 
2319   /* If we get this far, it means that the xfer optimization is at
2320   ** least a possibility, though it might only work if the destination
2321   ** table (tab1) is initially empty.
2322   */
2323 #ifdef SQLITE_TEST
2324   sqlite3_xferopt_count++;
2325 #endif
2326   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2327   v = sqlite3GetVdbe(pParse);
2328   sqlite3CodeVerifySchema(pParse, iDbSrc);
2329   iSrc = pParse->nTab++;
2330   iDest = pParse->nTab++;
2331   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2332   regData = sqlite3GetTempReg(pParse);
2333   regRowid = sqlite3GetTempReg(pParse);
2334   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2335   assert( HasRowid(pDest) || destHasUniqueIdx );
2336   if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2337       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
2338    || destHasUniqueIdx                              /* (2) */
2339    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
2340   )){
2341     /* In some circumstances, we are able to run the xfer optimization
2342     ** only if the destination table is initially empty. Unless the
2343     ** DBFLAG_Vacuum flag is set, this block generates code to make
2344     ** that determination. If DBFLAG_Vacuum is set, then the destination
2345     ** table is always empty.
2346     **
2347     ** Conditions under which the destination must be empty:
2348     **
2349     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2350     **     (If the destination is not initially empty, the rowid fields
2351     **     of index entries might need to change.)
2352     **
2353     ** (2) The destination has a unique index.  (The xfer optimization
2354     **     is unable to test uniqueness.)
2355     **
2356     ** (3) onError is something other than OE_Abort and OE_Rollback.
2357     */
2358     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
2359     emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
2360     sqlite3VdbeJumpHere(v, addr1);
2361   }
2362   if( HasRowid(pSrc) ){
2363     u8 insFlags;
2364     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2365     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2366     if( pDest->iPKey>=0 ){
2367       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2368       sqlite3VdbeVerifyAbortable(v, onError);
2369       addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2370       VdbeCoverage(v);
2371       sqlite3RowidConstraint(pParse, onError, pDest);
2372       sqlite3VdbeJumpHere(v, addr2);
2373       autoIncStep(pParse, regAutoinc, regRowid);
2374     }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
2375       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2376     }else{
2377       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2378       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2379     }
2380     sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2381     if( db->mDbFlags & DBFLAG_Vacuum ){
2382       sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2383       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|
2384                            OPFLAG_APPEND|OPFLAG_USESEEKRESULT;
2385     }else{
2386       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND;
2387     }
2388     sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
2389                       (char*)pDest, P4_TABLE);
2390     sqlite3VdbeChangeP5(v, insFlags);
2391     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
2392     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2393     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2394   }else{
2395     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2396     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2397   }
2398   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2399     u8 idxInsFlags = 0;
2400     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2401       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2402     }
2403     assert( pSrcIdx );
2404     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2405     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2406     VdbeComment((v, "%s", pSrcIdx->zName));
2407     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2408     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2409     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2410     VdbeComment((v, "%s", pDestIdx->zName));
2411     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2412     sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2413     if( db->mDbFlags & DBFLAG_Vacuum ){
2414       /* This INSERT command is part of a VACUUM operation, which guarantees
2415       ** that the destination table is empty. If all indexed columns use
2416       ** collation sequence BINARY, then it can also be assumed that the
2417       ** index will be populated by inserting keys in strictly sorted
2418       ** order. In this case, instead of seeking within the b-tree as part
2419       ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
2420       ** OP_IdxInsert to seek to the point within the b-tree where each key
2421       ** should be inserted. This is faster.
2422       **
2423       ** If any of the indexed columns use a collation sequence other than
2424       ** BINARY, this optimization is disabled. This is because the user
2425       ** might change the definition of a collation sequence and then run
2426       ** a VACUUM command. In that case keys may not be written in strictly
2427       ** sorted order.  */
2428       for(i=0; i<pSrcIdx->nColumn; i++){
2429         const char *zColl = pSrcIdx->azColl[i];
2430         if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
2431       }
2432       if( i==pSrcIdx->nColumn ){
2433         idxInsFlags = OPFLAG_USESEEKRESULT;
2434         sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2435       }
2436     }
2437     if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2438       idxInsFlags |= OPFLAG_NCHANGE;
2439     }
2440     sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
2441     sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
2442     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2443     sqlite3VdbeJumpHere(v, addr1);
2444     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2445     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2446   }
2447   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2448   sqlite3ReleaseTempReg(pParse, regRowid);
2449   sqlite3ReleaseTempReg(pParse, regData);
2450   if( emptyDestTest ){
2451     sqlite3AutoincrementEnd(pParse);
2452     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2453     sqlite3VdbeJumpHere(v, emptyDestTest);
2454     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2455     return 0;
2456   }else{
2457     return 1;
2458   }
2459 }
2460 #endif /* SQLITE_OMIT_XFER_OPT */
2461