1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum==pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'A' BLOB 60 ** 'B' TEXT 61 ** 'C' NUMERIC 62 ** 'D' INTEGER 63 ** 'F' REAL 64 ** 65 ** An extra 'D' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 85 if( !pIdx->zColAff ){ 86 sqlite3OomFault(db); 87 return 0; 88 } 89 for(n=0; n<pIdx->nColumn; n++){ 90 i16 x = pIdx->aiColumn[n]; 91 char aff; 92 if( x>=0 ){ 93 aff = pTab->aCol[x].affinity; 94 }else if( x==XN_ROWID ){ 95 aff = SQLITE_AFF_INTEGER; 96 }else{ 97 assert( x==XN_EXPR ); 98 assert( pIdx->aColExpr!=0 ); 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 100 } 101 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 102 pIdx->zColAff[n] = aff; 103 } 104 pIdx->zColAff[n] = 0; 105 } 106 107 return pIdx->zColAff; 108 } 109 110 /* 111 ** Compute the affinity string for table pTab, if it has not already been 112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 113 ** 114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 116 ** for register iReg and following. Or if affinities exists and iReg==0, 117 ** then just set the P4 operand of the previous opcode (which should be 118 ** an OP_MakeRecord) to the affinity string. 119 ** 120 ** A column affinity string has one character per column: 121 ** 122 ** Character Column affinity 123 ** ------------------------------ 124 ** 'A' BLOB 125 ** 'B' TEXT 126 ** 'C' NUMERIC 127 ** 'D' INTEGER 128 ** 'E' REAL 129 */ 130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 131 int i; 132 char *zColAff = pTab->zColAff; 133 if( zColAff==0 ){ 134 sqlite3 *db = sqlite3VdbeDb(v); 135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 136 if( !zColAff ){ 137 sqlite3OomFault(db); 138 return; 139 } 140 141 for(i=0; i<pTab->nCol; i++){ 142 assert( pTab->aCol[i].affinity!=0 ); 143 zColAff[i] = pTab->aCol[i].affinity; 144 } 145 do{ 146 zColAff[i--] = 0; 147 }while( i>=0 && zColAff[i]<=SQLITE_AFF_BLOB ); 148 pTab->zColAff = zColAff; 149 } 150 assert( zColAff!=0 ); 151 i = sqlite3Strlen30NN(zColAff); 152 if( i ){ 153 if( iReg ){ 154 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 155 }else{ 156 sqlite3VdbeChangeP4(v, -1, zColAff, i); 157 } 158 } 159 } 160 161 /* 162 ** Return non-zero if the table pTab in database iDb or any of its indices 163 ** have been opened at any point in the VDBE program. This is used to see if 164 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 165 ** run without using a temporary table for the results of the SELECT. 166 */ 167 static int readsTable(Parse *p, int iDb, Table *pTab){ 168 Vdbe *v = sqlite3GetVdbe(p); 169 int i; 170 int iEnd = sqlite3VdbeCurrentAddr(v); 171 #ifndef SQLITE_OMIT_VIRTUALTABLE 172 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 173 #endif 174 175 for(i=1; i<iEnd; i++){ 176 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 177 assert( pOp!=0 ); 178 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 179 Index *pIndex; 180 int tnum = pOp->p2; 181 if( tnum==pTab->tnum ){ 182 return 1; 183 } 184 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 185 if( tnum==pIndex->tnum ){ 186 return 1; 187 } 188 } 189 } 190 #ifndef SQLITE_OMIT_VIRTUALTABLE 191 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 192 assert( pOp->p4.pVtab!=0 ); 193 assert( pOp->p4type==P4_VTAB ); 194 return 1; 195 } 196 #endif 197 } 198 return 0; 199 } 200 201 #ifndef SQLITE_OMIT_AUTOINCREMENT 202 /* 203 ** Locate or create an AutoincInfo structure associated with table pTab 204 ** which is in database iDb. Return the register number for the register 205 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 206 ** table. (Also return zero when doing a VACUUM since we do not want to 207 ** update the AUTOINCREMENT counters during a VACUUM.) 208 ** 209 ** There is at most one AutoincInfo structure per table even if the 210 ** same table is autoincremented multiple times due to inserts within 211 ** triggers. A new AutoincInfo structure is created if this is the 212 ** first use of table pTab. On 2nd and subsequent uses, the original 213 ** AutoincInfo structure is used. 214 ** 215 ** Four consecutive registers are allocated: 216 ** 217 ** (1) The name of the pTab table. 218 ** (2) The maximum ROWID of pTab. 219 ** (3) The rowid in sqlite_sequence of pTab 220 ** (4) The original value of the max ROWID in pTab, or NULL if none 221 ** 222 ** The 2nd register is the one that is returned. That is all the 223 ** insert routine needs to know about. 224 */ 225 static int autoIncBegin( 226 Parse *pParse, /* Parsing context */ 227 int iDb, /* Index of the database holding pTab */ 228 Table *pTab /* The table we are writing to */ 229 ){ 230 int memId = 0; /* Register holding maximum rowid */ 231 assert( pParse->db->aDb[iDb].pSchema!=0 ); 232 if( (pTab->tabFlags & TF_Autoincrement)!=0 233 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 234 ){ 235 Parse *pToplevel = sqlite3ParseToplevel(pParse); 236 AutoincInfo *pInfo; 237 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 238 239 /* Verify that the sqlite_sequence table exists and is an ordinary 240 ** rowid table with exactly two columns. 241 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 242 if( pSeqTab==0 243 || !HasRowid(pSeqTab) 244 || IsVirtual(pSeqTab) 245 || pSeqTab->nCol!=2 246 ){ 247 pParse->nErr++; 248 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 249 return 0; 250 } 251 252 pInfo = pToplevel->pAinc; 253 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 254 if( pInfo==0 ){ 255 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 256 if( pInfo==0 ) return 0; 257 pInfo->pNext = pToplevel->pAinc; 258 pToplevel->pAinc = pInfo; 259 pInfo->pTab = pTab; 260 pInfo->iDb = iDb; 261 pToplevel->nMem++; /* Register to hold name of table */ 262 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 263 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 264 } 265 memId = pInfo->regCtr; 266 } 267 return memId; 268 } 269 270 /* 271 ** This routine generates code that will initialize all of the 272 ** register used by the autoincrement tracker. 273 */ 274 void sqlite3AutoincrementBegin(Parse *pParse){ 275 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 276 sqlite3 *db = pParse->db; /* The database connection */ 277 Db *pDb; /* Database only autoinc table */ 278 int memId; /* Register holding max rowid */ 279 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 280 281 /* This routine is never called during trigger-generation. It is 282 ** only called from the top-level */ 283 assert( pParse->pTriggerTab==0 ); 284 assert( sqlite3IsToplevel(pParse) ); 285 286 assert( v ); /* We failed long ago if this is not so */ 287 for(p = pParse->pAinc; p; p = p->pNext){ 288 static const int iLn = VDBE_OFFSET_LINENO(2); 289 static const VdbeOpList autoInc[] = { 290 /* 0 */ {OP_Null, 0, 0, 0}, 291 /* 1 */ {OP_Rewind, 0, 10, 0}, 292 /* 2 */ {OP_Column, 0, 0, 0}, 293 /* 3 */ {OP_Ne, 0, 9, 0}, 294 /* 4 */ {OP_Rowid, 0, 0, 0}, 295 /* 5 */ {OP_Column, 0, 1, 0}, 296 /* 6 */ {OP_AddImm, 0, 0, 0}, 297 /* 7 */ {OP_Copy, 0, 0, 0}, 298 /* 8 */ {OP_Goto, 0, 11, 0}, 299 /* 9 */ {OP_Next, 0, 2, 0}, 300 /* 10 */ {OP_Integer, 0, 0, 0}, 301 /* 11 */ {OP_Close, 0, 0, 0} 302 }; 303 VdbeOp *aOp; 304 pDb = &db->aDb[p->iDb]; 305 memId = p->regCtr; 306 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 307 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 308 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 309 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 310 if( aOp==0 ) break; 311 aOp[0].p2 = memId; 312 aOp[0].p3 = memId+2; 313 aOp[2].p3 = memId; 314 aOp[3].p1 = memId-1; 315 aOp[3].p3 = memId; 316 aOp[3].p5 = SQLITE_JUMPIFNULL; 317 aOp[4].p2 = memId+1; 318 aOp[5].p3 = memId; 319 aOp[6].p1 = memId; 320 aOp[7].p2 = memId+2; 321 aOp[7].p1 = memId; 322 aOp[10].p2 = memId; 323 if( pParse->nTab==0 ) pParse->nTab = 1; 324 } 325 } 326 327 /* 328 ** Update the maximum rowid for an autoincrement calculation. 329 ** 330 ** This routine should be called when the regRowid register holds a 331 ** new rowid that is about to be inserted. If that new rowid is 332 ** larger than the maximum rowid in the memId memory cell, then the 333 ** memory cell is updated. 334 */ 335 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 336 if( memId>0 ){ 337 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 338 } 339 } 340 341 /* 342 ** This routine generates the code needed to write autoincrement 343 ** maximum rowid values back into the sqlite_sequence register. 344 ** Every statement that might do an INSERT into an autoincrement 345 ** table (either directly or through triggers) needs to call this 346 ** routine just before the "exit" code. 347 */ 348 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 349 AutoincInfo *p; 350 Vdbe *v = pParse->pVdbe; 351 sqlite3 *db = pParse->db; 352 353 assert( v ); 354 for(p = pParse->pAinc; p; p = p->pNext){ 355 static const int iLn = VDBE_OFFSET_LINENO(2); 356 static const VdbeOpList autoIncEnd[] = { 357 /* 0 */ {OP_NotNull, 0, 2, 0}, 358 /* 1 */ {OP_NewRowid, 0, 0, 0}, 359 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 360 /* 3 */ {OP_Insert, 0, 0, 0}, 361 /* 4 */ {OP_Close, 0, 0, 0} 362 }; 363 VdbeOp *aOp; 364 Db *pDb = &db->aDb[p->iDb]; 365 int iRec; 366 int memId = p->regCtr; 367 368 iRec = sqlite3GetTempReg(pParse); 369 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 370 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 371 VdbeCoverage(v); 372 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 373 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 374 if( aOp==0 ) break; 375 aOp[0].p1 = memId+1; 376 aOp[1].p2 = memId+1; 377 aOp[2].p1 = memId-1; 378 aOp[2].p3 = iRec; 379 aOp[3].p2 = iRec; 380 aOp[3].p3 = memId+1; 381 aOp[3].p5 = OPFLAG_APPEND; 382 sqlite3ReleaseTempReg(pParse, iRec); 383 } 384 } 385 void sqlite3AutoincrementEnd(Parse *pParse){ 386 if( pParse->pAinc ) autoIncrementEnd(pParse); 387 } 388 #else 389 /* 390 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 391 ** above are all no-ops 392 */ 393 # define autoIncBegin(A,B,C) (0) 394 # define autoIncStep(A,B,C) 395 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 396 397 398 /* Forward declaration */ 399 static int xferOptimization( 400 Parse *pParse, /* Parser context */ 401 Table *pDest, /* The table we are inserting into */ 402 Select *pSelect, /* A SELECT statement to use as the data source */ 403 int onError, /* How to handle constraint errors */ 404 int iDbDest /* The database of pDest */ 405 ); 406 407 /* 408 ** This routine is called to handle SQL of the following forms: 409 ** 410 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 411 ** insert into TABLE (IDLIST) select 412 ** insert into TABLE (IDLIST) default values 413 ** 414 ** The IDLIST following the table name is always optional. If omitted, 415 ** then a list of all (non-hidden) columns for the table is substituted. 416 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 417 ** is omitted. 418 ** 419 ** For the pSelect parameter holds the values to be inserted for the 420 ** first two forms shown above. A VALUES clause is really just short-hand 421 ** for a SELECT statement that omits the FROM clause and everything else 422 ** that follows. If the pSelect parameter is NULL, that means that the 423 ** DEFAULT VALUES form of the INSERT statement is intended. 424 ** 425 ** The code generated follows one of four templates. For a simple 426 ** insert with data coming from a single-row VALUES clause, the code executes 427 ** once straight down through. Pseudo-code follows (we call this 428 ** the "1st template"): 429 ** 430 ** open write cursor to <table> and its indices 431 ** put VALUES clause expressions into registers 432 ** write the resulting record into <table> 433 ** cleanup 434 ** 435 ** The three remaining templates assume the statement is of the form 436 ** 437 ** INSERT INTO <table> SELECT ... 438 ** 439 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 440 ** in other words if the SELECT pulls all columns from a single table 441 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 442 ** if <table2> and <table1> are distinct tables but have identical 443 ** schemas, including all the same indices, then a special optimization 444 ** is invoked that copies raw records from <table2> over to <table1>. 445 ** See the xferOptimization() function for the implementation of this 446 ** template. This is the 2nd template. 447 ** 448 ** open a write cursor to <table> 449 ** open read cursor on <table2> 450 ** transfer all records in <table2> over to <table> 451 ** close cursors 452 ** foreach index on <table> 453 ** open a write cursor on the <table> index 454 ** open a read cursor on the corresponding <table2> index 455 ** transfer all records from the read to the write cursors 456 ** close cursors 457 ** end foreach 458 ** 459 ** The 3rd template is for when the second template does not apply 460 ** and the SELECT clause does not read from <table> at any time. 461 ** The generated code follows this template: 462 ** 463 ** X <- A 464 ** goto B 465 ** A: setup for the SELECT 466 ** loop over the rows in the SELECT 467 ** load values into registers R..R+n 468 ** yield X 469 ** end loop 470 ** cleanup after the SELECT 471 ** end-coroutine X 472 ** B: open write cursor to <table> and its indices 473 ** C: yield X, at EOF goto D 474 ** insert the select result into <table> from R..R+n 475 ** goto C 476 ** D: cleanup 477 ** 478 ** The 4th template is used if the insert statement takes its 479 ** values from a SELECT but the data is being inserted into a table 480 ** that is also read as part of the SELECT. In the third form, 481 ** we have to use an intermediate table to store the results of 482 ** the select. The template is like this: 483 ** 484 ** X <- A 485 ** goto B 486 ** A: setup for the SELECT 487 ** loop over the tables in the SELECT 488 ** load value into register R..R+n 489 ** yield X 490 ** end loop 491 ** cleanup after the SELECT 492 ** end co-routine R 493 ** B: open temp table 494 ** L: yield X, at EOF goto M 495 ** insert row from R..R+n into temp table 496 ** goto L 497 ** M: open write cursor to <table> and its indices 498 ** rewind temp table 499 ** C: loop over rows of intermediate table 500 ** transfer values form intermediate table into <table> 501 ** end loop 502 ** D: cleanup 503 */ 504 void sqlite3Insert( 505 Parse *pParse, /* Parser context */ 506 SrcList *pTabList, /* Name of table into which we are inserting */ 507 Select *pSelect, /* A SELECT statement to use as the data source */ 508 IdList *pColumn, /* Column names corresponding to IDLIST. */ 509 int onError, /* How to handle constraint errors */ 510 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 511 ){ 512 sqlite3 *db; /* The main database structure */ 513 Table *pTab; /* The table to insert into. aka TABLE */ 514 int i, j; /* Loop counters */ 515 Vdbe *v; /* Generate code into this virtual machine */ 516 Index *pIdx; /* For looping over indices of the table */ 517 int nColumn; /* Number of columns in the data */ 518 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 519 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 520 int iIdxCur = 0; /* First index cursor */ 521 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 522 int endOfLoop; /* Label for the end of the insertion loop */ 523 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 524 int addrInsTop = 0; /* Jump to label "D" */ 525 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 526 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 527 int iDb; /* Index of database holding TABLE */ 528 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 529 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 530 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 531 u8 bIdListInOrder; /* True if IDLIST is in table order */ 532 ExprList *pList = 0; /* List of VALUES() to be inserted */ 533 534 /* Register allocations */ 535 int regFromSelect = 0;/* Base register for data coming from SELECT */ 536 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 537 int regRowCount = 0; /* Memory cell used for the row counter */ 538 int regIns; /* Block of regs holding rowid+data being inserted */ 539 int regRowid; /* registers holding insert rowid */ 540 int regData; /* register holding first column to insert */ 541 int *aRegIdx = 0; /* One register allocated to each index */ 542 543 #ifndef SQLITE_OMIT_TRIGGER 544 int isView; /* True if attempting to insert into a view */ 545 Trigger *pTrigger; /* List of triggers on pTab, if required */ 546 int tmask; /* Mask of trigger times */ 547 #endif 548 549 db = pParse->db; 550 if( pParse->nErr || db->mallocFailed ){ 551 goto insert_cleanup; 552 } 553 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 554 555 /* If the Select object is really just a simple VALUES() list with a 556 ** single row (the common case) then keep that one row of values 557 ** and discard the other (unused) parts of the pSelect object 558 */ 559 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 560 pList = pSelect->pEList; 561 pSelect->pEList = 0; 562 sqlite3SelectDelete(db, pSelect); 563 pSelect = 0; 564 } 565 566 /* Locate the table into which we will be inserting new information. 567 */ 568 assert( pTabList->nSrc==1 ); 569 pTab = sqlite3SrcListLookup(pParse, pTabList); 570 if( pTab==0 ){ 571 goto insert_cleanup; 572 } 573 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 574 assert( iDb<db->nDb ); 575 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 576 db->aDb[iDb].zDbSName) ){ 577 goto insert_cleanup; 578 } 579 withoutRowid = !HasRowid(pTab); 580 581 /* Figure out if we have any triggers and if the table being 582 ** inserted into is a view 583 */ 584 #ifndef SQLITE_OMIT_TRIGGER 585 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 586 isView = pTab->pSelect!=0; 587 #else 588 # define pTrigger 0 589 # define tmask 0 590 # define isView 0 591 #endif 592 #ifdef SQLITE_OMIT_VIEW 593 # undef isView 594 # define isView 0 595 #endif 596 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 597 598 /* If pTab is really a view, make sure it has been initialized. 599 ** ViewGetColumnNames() is a no-op if pTab is not a view. 600 */ 601 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 602 goto insert_cleanup; 603 } 604 605 /* Cannot insert into a read-only table. 606 */ 607 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 608 goto insert_cleanup; 609 } 610 611 /* Allocate a VDBE 612 */ 613 v = sqlite3GetVdbe(pParse); 614 if( v==0 ) goto insert_cleanup; 615 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 616 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 617 618 #ifndef SQLITE_OMIT_XFER_OPT 619 /* If the statement is of the form 620 ** 621 ** INSERT INTO <table1> SELECT * FROM <table2>; 622 ** 623 ** Then special optimizations can be applied that make the transfer 624 ** very fast and which reduce fragmentation of indices. 625 ** 626 ** This is the 2nd template. 627 */ 628 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 629 assert( !pTrigger ); 630 assert( pList==0 ); 631 goto insert_end; 632 } 633 #endif /* SQLITE_OMIT_XFER_OPT */ 634 635 /* If this is an AUTOINCREMENT table, look up the sequence number in the 636 ** sqlite_sequence table and store it in memory cell regAutoinc. 637 */ 638 regAutoinc = autoIncBegin(pParse, iDb, pTab); 639 640 /* Allocate registers for holding the rowid of the new row, 641 ** the content of the new row, and the assembled row record. 642 */ 643 regRowid = regIns = pParse->nMem+1; 644 pParse->nMem += pTab->nCol + 1; 645 if( IsVirtual(pTab) ){ 646 regRowid++; 647 pParse->nMem++; 648 } 649 regData = regRowid+1; 650 651 /* If the INSERT statement included an IDLIST term, then make sure 652 ** all elements of the IDLIST really are columns of the table and 653 ** remember the column indices. 654 ** 655 ** If the table has an INTEGER PRIMARY KEY column and that column 656 ** is named in the IDLIST, then record in the ipkColumn variable 657 ** the index into IDLIST of the primary key column. ipkColumn is 658 ** the index of the primary key as it appears in IDLIST, not as 659 ** is appears in the original table. (The index of the INTEGER 660 ** PRIMARY KEY in the original table is pTab->iPKey.) 661 */ 662 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; 663 if( pColumn ){ 664 for(i=0; i<pColumn->nId; i++){ 665 pColumn->a[i].idx = -1; 666 } 667 for(i=0; i<pColumn->nId; i++){ 668 for(j=0; j<pTab->nCol; j++){ 669 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 670 pColumn->a[i].idx = j; 671 if( i!=j ) bIdListInOrder = 0; 672 if( j==pTab->iPKey ){ 673 ipkColumn = i; assert( !withoutRowid ); 674 } 675 break; 676 } 677 } 678 if( j>=pTab->nCol ){ 679 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 680 ipkColumn = i; 681 bIdListInOrder = 0; 682 }else{ 683 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 684 pTabList, 0, pColumn->a[i].zName); 685 pParse->checkSchema = 1; 686 goto insert_cleanup; 687 } 688 } 689 } 690 } 691 692 /* Figure out how many columns of data are supplied. If the data 693 ** is coming from a SELECT statement, then generate a co-routine that 694 ** produces a single row of the SELECT on each invocation. The 695 ** co-routine is the common header to the 3rd and 4th templates. 696 */ 697 if( pSelect ){ 698 /* Data is coming from a SELECT or from a multi-row VALUES clause. 699 ** Generate a co-routine to run the SELECT. */ 700 int regYield; /* Register holding co-routine entry-point */ 701 int addrTop; /* Top of the co-routine */ 702 int rc; /* Result code */ 703 704 regYield = ++pParse->nMem; 705 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 706 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 707 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 708 dest.iSdst = bIdListInOrder ? regData : 0; 709 dest.nSdst = pTab->nCol; 710 rc = sqlite3Select(pParse, pSelect, &dest); 711 regFromSelect = dest.iSdst; 712 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 713 sqlite3VdbeEndCoroutine(v, regYield); 714 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 715 assert( pSelect->pEList ); 716 nColumn = pSelect->pEList->nExpr; 717 718 /* Set useTempTable to TRUE if the result of the SELECT statement 719 ** should be written into a temporary table (template 4). Set to 720 ** FALSE if each output row of the SELECT can be written directly into 721 ** the destination table (template 3). 722 ** 723 ** A temp table must be used if the table being updated is also one 724 ** of the tables being read by the SELECT statement. Also use a 725 ** temp table in the case of row triggers. 726 */ 727 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 728 useTempTable = 1; 729 } 730 731 if( useTempTable ){ 732 /* Invoke the coroutine to extract information from the SELECT 733 ** and add it to a transient table srcTab. The code generated 734 ** here is from the 4th template: 735 ** 736 ** B: open temp table 737 ** L: yield X, goto M at EOF 738 ** insert row from R..R+n into temp table 739 ** goto L 740 ** M: ... 741 */ 742 int regRec; /* Register to hold packed record */ 743 int regTempRowid; /* Register to hold temp table ROWID */ 744 int addrL; /* Label "L" */ 745 746 srcTab = pParse->nTab++; 747 regRec = sqlite3GetTempReg(pParse); 748 regTempRowid = sqlite3GetTempReg(pParse); 749 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 750 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 751 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 752 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 753 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 754 sqlite3VdbeGoto(v, addrL); 755 sqlite3VdbeJumpHere(v, addrL); 756 sqlite3ReleaseTempReg(pParse, regRec); 757 sqlite3ReleaseTempReg(pParse, regTempRowid); 758 } 759 }else{ 760 /* This is the case if the data for the INSERT is coming from a 761 ** single-row VALUES clause 762 */ 763 NameContext sNC; 764 memset(&sNC, 0, sizeof(sNC)); 765 sNC.pParse = pParse; 766 srcTab = -1; 767 assert( useTempTable==0 ); 768 if( pList ){ 769 nColumn = pList->nExpr; 770 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 771 goto insert_cleanup; 772 } 773 }else{ 774 nColumn = 0; 775 } 776 } 777 778 /* If there is no IDLIST term but the table has an integer primary 779 ** key, the set the ipkColumn variable to the integer primary key 780 ** column index in the original table definition. 781 */ 782 if( pColumn==0 && nColumn>0 ){ 783 ipkColumn = pTab->iPKey; 784 } 785 786 /* Make sure the number of columns in the source data matches the number 787 ** of columns to be inserted into the table. 788 */ 789 for(i=0; i<pTab->nCol; i++){ 790 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 791 } 792 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 793 sqlite3ErrorMsg(pParse, 794 "table %S has %d columns but %d values were supplied", 795 pTabList, 0, pTab->nCol-nHidden, nColumn); 796 goto insert_cleanup; 797 } 798 if( pColumn!=0 && nColumn!=pColumn->nId ){ 799 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 800 goto insert_cleanup; 801 } 802 803 /* Initialize the count of rows to be inserted 804 */ 805 if( (db->flags & SQLITE_CountRows)!=0 806 && !pParse->nested 807 && !pParse->pTriggerTab 808 ){ 809 regRowCount = ++pParse->nMem; 810 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 811 } 812 813 /* If this is not a view, open the table and and all indices */ 814 if( !isView ){ 815 int nIdx; 816 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 817 &iDataCur, &iIdxCur); 818 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 819 if( aRegIdx==0 ){ 820 goto insert_cleanup; 821 } 822 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 823 assert( pIdx ); 824 aRegIdx[i] = ++pParse->nMem; 825 pParse->nMem += pIdx->nColumn; 826 } 827 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 828 } 829 #ifndef SQLITE_OMIT_UPSERT 830 if( pUpsert ){ 831 if( IsVirtual(pTab) ){ 832 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 833 pTab->zName); 834 goto insert_cleanup; 835 } 836 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 837 goto insert_cleanup; 838 } 839 pTabList->a[0].iCursor = iDataCur; 840 pUpsert->pUpsertSrc = pTabList; 841 pUpsert->regData = regData; 842 pUpsert->iDataCur = iDataCur; 843 pUpsert->iIdxCur = iIdxCur; 844 if( pUpsert->pUpsertTarget ){ 845 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert); 846 } 847 } 848 #endif 849 850 851 /* This is the top of the main insertion loop */ 852 if( useTempTable ){ 853 /* This block codes the top of loop only. The complete loop is the 854 ** following pseudocode (template 4): 855 ** 856 ** rewind temp table, if empty goto D 857 ** C: loop over rows of intermediate table 858 ** transfer values form intermediate table into <table> 859 ** end loop 860 ** D: ... 861 */ 862 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 863 addrCont = sqlite3VdbeCurrentAddr(v); 864 }else if( pSelect ){ 865 /* This block codes the top of loop only. The complete loop is the 866 ** following pseudocode (template 3): 867 ** 868 ** C: yield X, at EOF goto D 869 ** insert the select result into <table> from R..R+n 870 ** goto C 871 ** D: ... 872 */ 873 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 874 VdbeCoverage(v); 875 } 876 877 /* Run the BEFORE and INSTEAD OF triggers, if there are any 878 */ 879 endOfLoop = sqlite3VdbeMakeLabel(pParse); 880 if( tmask & TRIGGER_BEFORE ){ 881 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 882 883 /* build the NEW.* reference row. Note that if there is an INTEGER 884 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 885 ** translated into a unique ID for the row. But on a BEFORE trigger, 886 ** we do not know what the unique ID will be (because the insert has 887 ** not happened yet) so we substitute a rowid of -1 888 */ 889 if( ipkColumn<0 ){ 890 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 891 }else{ 892 int addr1; 893 assert( !withoutRowid ); 894 if( useTempTable ){ 895 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 896 }else{ 897 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 898 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 899 } 900 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 901 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 902 sqlite3VdbeJumpHere(v, addr1); 903 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 904 } 905 906 /* Cannot have triggers on a virtual table. If it were possible, 907 ** this block would have to account for hidden column. 908 */ 909 assert( !IsVirtual(pTab) ); 910 911 /* Create the new column data 912 */ 913 for(i=j=0; i<pTab->nCol; i++){ 914 if( pColumn ){ 915 for(j=0; j<pColumn->nId; j++){ 916 if( pColumn->a[j].idx==i ) break; 917 } 918 } 919 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) 920 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ 921 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 922 }else if( useTempTable ){ 923 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 924 }else{ 925 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 926 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 927 } 928 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; 929 } 930 931 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 932 ** do not attempt any conversions before assembling the record. 933 ** If this is a real table, attempt conversions as required by the 934 ** table column affinities. 935 */ 936 if( !isView ){ 937 sqlite3TableAffinity(v, pTab, regCols+1); 938 } 939 940 /* Fire BEFORE or INSTEAD OF triggers */ 941 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 942 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 943 944 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 945 } 946 947 /* Compute the content of the next row to insert into a range of 948 ** registers beginning at regIns. 949 */ 950 if( !isView ){ 951 if( IsVirtual(pTab) ){ 952 /* The row that the VUpdate opcode will delete: none */ 953 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 954 } 955 if( ipkColumn>=0 ){ 956 if( useTempTable ){ 957 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 958 }else if( pSelect ){ 959 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 960 }else{ 961 Expr *pIpk = pList->a[ipkColumn].pExpr; 962 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 963 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 964 appendFlag = 1; 965 }else{ 966 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 967 } 968 } 969 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 970 ** to generate a unique primary key value. 971 */ 972 if( !appendFlag ){ 973 int addr1; 974 if( !IsVirtual(pTab) ){ 975 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 976 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 977 sqlite3VdbeJumpHere(v, addr1); 978 }else{ 979 addr1 = sqlite3VdbeCurrentAddr(v); 980 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 981 } 982 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 983 } 984 }else if( IsVirtual(pTab) || withoutRowid ){ 985 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 986 }else{ 987 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 988 appendFlag = 1; 989 } 990 autoIncStep(pParse, regAutoinc, regRowid); 991 992 /* Compute data for all columns of the new entry, beginning 993 ** with the first column. 994 */ 995 nHidden = 0; 996 for(i=0; i<pTab->nCol; i++){ 997 int iRegStore = regRowid+1+i; 998 if( i==pTab->iPKey ){ 999 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 1000 ** Whenever this column is read, the rowid will be substituted 1001 ** in its place. Hence, fill this column with a NULL to avoid 1002 ** taking up data space with information that will never be used. 1003 ** As there may be shallow copies of this value, make it a soft-NULL */ 1004 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1005 continue; 1006 } 1007 if( pColumn==0 ){ 1008 if( IsHiddenColumn(&pTab->aCol[i]) ){ 1009 j = -1; 1010 nHidden++; 1011 }else{ 1012 j = i - nHidden; 1013 } 1014 }else{ 1015 for(j=0; j<pColumn->nId; j++){ 1016 if( pColumn->a[j].idx==i ) break; 1017 } 1018 } 1019 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 1020 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1021 }else if( useTempTable ){ 1022 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 1023 }else if( pSelect ){ 1024 if( regFromSelect!=regData ){ 1025 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 1026 } 1027 }else{ 1028 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 1029 } 1030 } 1031 1032 /* Generate code to check constraints and generate index keys and 1033 ** do the insertion. 1034 */ 1035 #ifndef SQLITE_OMIT_VIRTUALTABLE 1036 if( IsVirtual(pTab) ){ 1037 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1038 sqlite3VtabMakeWritable(pParse, pTab); 1039 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1040 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1041 sqlite3MayAbort(pParse); 1042 }else 1043 #endif 1044 { 1045 int isReplace; /* Set to true if constraints may cause a replace */ 1046 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1047 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1048 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1049 ); 1050 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1051 1052 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1053 ** constraints or (b) there are no triggers and this table is not a 1054 ** parent table in a foreign key constraint. It is safe to set the 1055 ** flag in the second case as if any REPLACE constraint is hit, an 1056 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1057 ** cursor that is disturbed. And these instructions both clear the 1058 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1059 ** functionality. */ 1060 bUseSeek = (isReplace==0 || (pTrigger==0 && 1061 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0) 1062 )); 1063 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1064 regIns, aRegIdx, 0, appendFlag, bUseSeek 1065 ); 1066 } 1067 } 1068 1069 /* Update the count of rows that are inserted 1070 */ 1071 if( regRowCount ){ 1072 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1073 } 1074 1075 if( pTrigger ){ 1076 /* Code AFTER triggers */ 1077 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1078 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1079 } 1080 1081 /* The bottom of the main insertion loop, if the data source 1082 ** is a SELECT statement. 1083 */ 1084 sqlite3VdbeResolveLabel(v, endOfLoop); 1085 if( useTempTable ){ 1086 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1087 sqlite3VdbeJumpHere(v, addrInsTop); 1088 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1089 }else if( pSelect ){ 1090 sqlite3VdbeGoto(v, addrCont); 1091 sqlite3VdbeJumpHere(v, addrInsTop); 1092 } 1093 1094 insert_end: 1095 /* Update the sqlite_sequence table by storing the content of the 1096 ** maximum rowid counter values recorded while inserting into 1097 ** autoincrement tables. 1098 */ 1099 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1100 sqlite3AutoincrementEnd(pParse); 1101 } 1102 1103 /* 1104 ** Return the number of rows inserted. If this routine is 1105 ** generating code because of a call to sqlite3NestedParse(), do not 1106 ** invoke the callback function. 1107 */ 1108 if( regRowCount ){ 1109 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1110 sqlite3VdbeSetNumCols(v, 1); 1111 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1112 } 1113 1114 insert_cleanup: 1115 sqlite3SrcListDelete(db, pTabList); 1116 sqlite3ExprListDelete(db, pList); 1117 sqlite3UpsertDelete(db, pUpsert); 1118 sqlite3SelectDelete(db, pSelect); 1119 sqlite3IdListDelete(db, pColumn); 1120 sqlite3DbFree(db, aRegIdx); 1121 } 1122 1123 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1124 ** they may interfere with compilation of other functions in this file 1125 ** (or in another file, if this file becomes part of the amalgamation). */ 1126 #ifdef isView 1127 #undef isView 1128 #endif 1129 #ifdef pTrigger 1130 #undef pTrigger 1131 #endif 1132 #ifdef tmask 1133 #undef tmask 1134 #endif 1135 1136 /* 1137 ** Meanings of bits in of pWalker->eCode for 1138 ** sqlite3ExprReferencesUpdatedColumn() 1139 */ 1140 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1141 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1142 1143 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1144 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1145 ** expression node references any of the 1146 ** columns that are being modifed by an UPDATE statement. 1147 */ 1148 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1149 if( pExpr->op==TK_COLUMN ){ 1150 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1151 if( pExpr->iColumn>=0 ){ 1152 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1153 pWalker->eCode |= CKCNSTRNT_COLUMN; 1154 } 1155 }else{ 1156 pWalker->eCode |= CKCNSTRNT_ROWID; 1157 } 1158 } 1159 return WRC_Continue; 1160 } 1161 1162 /* 1163 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1164 ** only columns that are modified by the UPDATE are those for which 1165 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1166 ** 1167 ** Return true if CHECK constraint pExpr uses any of the 1168 ** changing columns (or the rowid if it is changing). In other words, 1169 ** return true if this CHECK constraint must be validated for 1170 ** the new row in the UPDATE statement. 1171 ** 1172 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1173 ** The operation of this routine is the same - return true if an only if 1174 ** the expression uses one or more of columns identified by the second and 1175 ** third arguments. 1176 */ 1177 int sqlite3ExprReferencesUpdatedColumn( 1178 Expr *pExpr, /* The expression to be checked */ 1179 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1180 int chngRowid /* True if UPDATE changes the rowid */ 1181 ){ 1182 Walker w; 1183 memset(&w, 0, sizeof(w)); 1184 w.eCode = 0; 1185 w.xExprCallback = checkConstraintExprNode; 1186 w.u.aiCol = aiChng; 1187 sqlite3WalkExpr(&w, pExpr); 1188 if( !chngRowid ){ 1189 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1190 w.eCode &= ~CKCNSTRNT_ROWID; 1191 } 1192 testcase( w.eCode==0 ); 1193 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1194 testcase( w.eCode==CKCNSTRNT_ROWID ); 1195 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1196 return w.eCode!=0; 1197 } 1198 1199 /* 1200 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1201 ** on table pTab. 1202 ** 1203 ** The regNewData parameter is the first register in a range that contains 1204 ** the data to be inserted or the data after the update. There will be 1205 ** pTab->nCol+1 registers in this range. The first register (the one 1206 ** that regNewData points to) will contain the new rowid, or NULL in the 1207 ** case of a WITHOUT ROWID table. The second register in the range will 1208 ** contain the content of the first table column. The third register will 1209 ** contain the content of the second table column. And so forth. 1210 ** 1211 ** The regOldData parameter is similar to regNewData except that it contains 1212 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1213 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1214 ** checking regOldData for zero. 1215 ** 1216 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1217 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1218 ** might be modified by the UPDATE. If pkChng is false, then the key of 1219 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1220 ** 1221 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1222 ** was explicitly specified as part of the INSERT statement. If pkChng 1223 ** is zero, it means that the either rowid is computed automatically or 1224 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1225 ** pkChng will only be true if the INSERT statement provides an integer 1226 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1227 ** 1228 ** The code generated by this routine will store new index entries into 1229 ** registers identified by aRegIdx[]. No index entry is created for 1230 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1231 ** the same as the order of indices on the linked list of indices 1232 ** at pTab->pIndex. 1233 ** 1234 ** (2019-05-07) The generated code also creates a new record for the 1235 ** main table, if pTab is a rowid table, and stores that record in the 1236 ** register identified by aRegIdx[nIdx] - in other words in the first 1237 ** entry of aRegIdx[] past the last index. It is important that the 1238 ** record be generated during constraint checks to avoid affinity changes 1239 ** to the register content that occur after constraint checks but before 1240 ** the new record is inserted. 1241 ** 1242 ** The caller must have already opened writeable cursors on the main 1243 ** table and all applicable indices (that is to say, all indices for which 1244 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1245 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1246 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1247 ** for the first index in the pTab->pIndex list. Cursors for other indices 1248 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1249 ** 1250 ** This routine also generates code to check constraints. NOT NULL, 1251 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1252 ** then the appropriate action is performed. There are five possible 1253 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1254 ** 1255 ** Constraint type Action What Happens 1256 ** --------------- ---------- ---------------------------------------- 1257 ** any ROLLBACK The current transaction is rolled back and 1258 ** sqlite3_step() returns immediately with a 1259 ** return code of SQLITE_CONSTRAINT. 1260 ** 1261 ** any ABORT Back out changes from the current command 1262 ** only (do not do a complete rollback) then 1263 ** cause sqlite3_step() to return immediately 1264 ** with SQLITE_CONSTRAINT. 1265 ** 1266 ** any FAIL Sqlite3_step() returns immediately with a 1267 ** return code of SQLITE_CONSTRAINT. The 1268 ** transaction is not rolled back and any 1269 ** changes to prior rows are retained. 1270 ** 1271 ** any IGNORE The attempt in insert or update the current 1272 ** row is skipped, without throwing an error. 1273 ** Processing continues with the next row. 1274 ** (There is an immediate jump to ignoreDest.) 1275 ** 1276 ** NOT NULL REPLACE The NULL value is replace by the default 1277 ** value for that column. If the default value 1278 ** is NULL, the action is the same as ABORT. 1279 ** 1280 ** UNIQUE REPLACE The other row that conflicts with the row 1281 ** being inserted is removed. 1282 ** 1283 ** CHECK REPLACE Illegal. The results in an exception. 1284 ** 1285 ** Which action to take is determined by the overrideError parameter. 1286 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1287 ** is used. Or if pParse->onError==OE_Default then the onError value 1288 ** for the constraint is used. 1289 */ 1290 void sqlite3GenerateConstraintChecks( 1291 Parse *pParse, /* The parser context */ 1292 Table *pTab, /* The table being inserted or updated */ 1293 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1294 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1295 int iIdxCur, /* First index cursor */ 1296 int regNewData, /* First register in a range holding values to insert */ 1297 int regOldData, /* Previous content. 0 for INSERTs */ 1298 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1299 u8 overrideError, /* Override onError to this if not OE_Default */ 1300 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1301 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1302 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1303 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1304 ){ 1305 Vdbe *v; /* VDBE under constrution */ 1306 Index *pIdx; /* Pointer to one of the indices */ 1307 Index *pPk = 0; /* The PRIMARY KEY index */ 1308 sqlite3 *db; /* Database connection */ 1309 int i; /* loop counter */ 1310 int ix; /* Index loop counter */ 1311 int nCol; /* Number of columns */ 1312 int onError; /* Conflict resolution strategy */ 1313 int addr1; /* Address of jump instruction */ 1314 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1315 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1316 Index *pUpIdx = 0; /* Index to which to apply the upsert */ 1317 u8 isUpdate; /* True if this is an UPDATE operation */ 1318 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1319 int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */ 1320 int upsertJump = 0; /* Address of Goto that jumps into upsert subroutine */ 1321 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1322 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1323 1324 isUpdate = regOldData!=0; 1325 db = pParse->db; 1326 v = sqlite3GetVdbe(pParse); 1327 assert( v!=0 ); 1328 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1329 nCol = pTab->nCol; 1330 1331 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1332 ** normal rowid tables. nPkField is the number of key fields in the 1333 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1334 ** number of fields in the true primary key of the table. */ 1335 if( HasRowid(pTab) ){ 1336 pPk = 0; 1337 nPkField = 1; 1338 }else{ 1339 pPk = sqlite3PrimaryKeyIndex(pTab); 1340 nPkField = pPk->nKeyCol; 1341 } 1342 1343 /* Record that this module has started */ 1344 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1345 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1346 1347 /* Test all NOT NULL constraints. 1348 */ 1349 for(i=0; i<nCol; i++){ 1350 if( i==pTab->iPKey ){ 1351 continue; /* ROWID is never NULL */ 1352 } 1353 if( aiChng && aiChng[i]<0 ){ 1354 /* Don't bother checking for NOT NULL on columns that do not change */ 1355 continue; 1356 } 1357 onError = pTab->aCol[i].notNull; 1358 if( onError==OE_None ) continue; /* This column is allowed to be NULL */ 1359 if( overrideError!=OE_Default ){ 1360 onError = overrideError; 1361 }else if( onError==OE_Default ){ 1362 onError = OE_Abort; 1363 } 1364 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1365 onError = OE_Abort; 1366 } 1367 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1368 || onError==OE_Ignore || onError==OE_Replace ); 1369 addr1 = 0; 1370 switch( onError ){ 1371 case OE_Replace: { 1372 assert( onError==OE_Replace ); 1373 addr1 = sqlite3VdbeMakeLabel(pParse); 1374 sqlite3VdbeAddOp2(v, OP_NotNull, regNewData+1+i, addr1); 1375 VdbeCoverage(v); 1376 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1377 sqlite3VdbeAddOp2(v, OP_NotNull, regNewData+1+i, addr1); 1378 VdbeCoverage(v); 1379 onError = OE_Abort; 1380 /* Fall through into the OE_Abort case to generate code that runs 1381 ** if both the input and the default value are NULL */ 1382 } 1383 case OE_Abort: 1384 sqlite3MayAbort(pParse); 1385 /* Fall through */ 1386 case OE_Rollback: 1387 case OE_Fail: { 1388 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1389 pTab->aCol[i].zName); 1390 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 1391 regNewData+1+i); 1392 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1393 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1394 VdbeCoverage(v); 1395 if( addr1 ) sqlite3VdbeResolveLabel(v, addr1); 1396 break; 1397 } 1398 default: { 1399 assert( onError==OE_Ignore ); 1400 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 1401 VdbeCoverage(v); 1402 break; 1403 } 1404 } 1405 } 1406 1407 /* Test all CHECK constraints 1408 */ 1409 #ifndef SQLITE_OMIT_CHECK 1410 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1411 ExprList *pCheck = pTab->pCheck; 1412 pParse->iSelfTab = -(regNewData+1); 1413 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1414 for(i=0; i<pCheck->nExpr; i++){ 1415 int allOk; 1416 Expr *pExpr = pCheck->a[i].pExpr; 1417 if( aiChng 1418 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1419 ){ 1420 /* The check constraints do not reference any of the columns being 1421 ** updated so there is no point it verifying the check constraint */ 1422 continue; 1423 } 1424 allOk = sqlite3VdbeMakeLabel(pParse); 1425 sqlite3VdbeVerifyAbortable(v, onError); 1426 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 1427 if( onError==OE_Ignore ){ 1428 sqlite3VdbeGoto(v, ignoreDest); 1429 }else{ 1430 char *zName = pCheck->a[i].zName; 1431 if( zName==0 ) zName = pTab->zName; 1432 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1433 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1434 onError, zName, P4_TRANSIENT, 1435 P5_ConstraintCheck); 1436 } 1437 sqlite3VdbeResolveLabel(v, allOk); 1438 } 1439 pParse->iSelfTab = 0; 1440 } 1441 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1442 1443 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1444 ** order: 1445 ** 1446 ** (1) OE_Update 1447 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1448 ** (3) OE_Replace 1449 ** 1450 ** OE_Fail and OE_Ignore must happen before any changes are made. 1451 ** OE_Update guarantees that only a single row will change, so it 1452 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1453 ** could happen in any order, but they are grouped up front for 1454 ** convenience. 1455 ** 1456 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1457 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1458 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1459 ** constraint before any others, so it had to be moved. 1460 ** 1461 ** Constraint checking code is generated in this order: 1462 ** (A) The rowid constraint 1463 ** (B) Unique index constraints that do not have OE_Replace as their 1464 ** default conflict resolution strategy 1465 ** (C) Unique index that do use OE_Replace by default. 1466 ** 1467 ** The ordering of (2) and (3) is accomplished by making sure the linked 1468 ** list of indexes attached to a table puts all OE_Replace indexes last 1469 ** in the list. See sqlite3CreateIndex() for where that happens. 1470 */ 1471 1472 if( pUpsert ){ 1473 if( pUpsert->pUpsertTarget==0 ){ 1474 /* An ON CONFLICT DO NOTHING clause, without a constraint-target. 1475 ** Make all unique constraint resolution be OE_Ignore */ 1476 assert( pUpsert->pUpsertSet==0 ); 1477 overrideError = OE_Ignore; 1478 pUpsert = 0; 1479 }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){ 1480 /* If the constraint-target uniqueness check must be run first. 1481 ** Jump to that uniqueness check now */ 1482 upsertJump = sqlite3VdbeAddOp0(v, OP_Goto); 1483 VdbeComment((v, "UPSERT constraint goes first")); 1484 } 1485 } 1486 1487 /* If rowid is changing, make sure the new rowid does not previously 1488 ** exist in the table. 1489 */ 1490 if( pkChng && pPk==0 ){ 1491 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1492 1493 /* Figure out what action to take in case of a rowid collision */ 1494 onError = pTab->keyConf; 1495 if( overrideError!=OE_Default ){ 1496 onError = overrideError; 1497 }else if( onError==OE_Default ){ 1498 onError = OE_Abort; 1499 } 1500 1501 /* figure out whether or not upsert applies in this case */ 1502 if( pUpsert && pUpsert->pUpsertIdx==0 ){ 1503 if( pUpsert->pUpsertSet==0 ){ 1504 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1505 }else{ 1506 onError = OE_Update; /* DO UPDATE */ 1507 } 1508 } 1509 1510 /* If the response to a rowid conflict is REPLACE but the response 1511 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1512 ** to defer the running of the rowid conflict checking until after 1513 ** the UNIQUE constraints have run. 1514 */ 1515 if( onError==OE_Replace /* IPK rule is REPLACE */ 1516 && onError!=overrideError /* Rules for other contraints are different */ 1517 && pTab->pIndex /* There exist other constraints */ 1518 ){ 1519 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1520 VdbeComment((v, "defer IPK REPLACE until last")); 1521 } 1522 1523 if( isUpdate ){ 1524 /* pkChng!=0 does not mean that the rowid has changed, only that 1525 ** it might have changed. Skip the conflict logic below if the rowid 1526 ** is unchanged. */ 1527 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1528 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1529 VdbeCoverage(v); 1530 } 1531 1532 /* Check to see if the new rowid already exists in the table. Skip 1533 ** the following conflict logic if it does not. */ 1534 VdbeNoopComment((v, "uniqueness check for ROWID")); 1535 sqlite3VdbeVerifyAbortable(v, onError); 1536 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1537 VdbeCoverage(v); 1538 1539 switch( onError ){ 1540 default: { 1541 onError = OE_Abort; 1542 /* Fall thru into the next case */ 1543 } 1544 case OE_Rollback: 1545 case OE_Abort: 1546 case OE_Fail: { 1547 testcase( onError==OE_Rollback ); 1548 testcase( onError==OE_Abort ); 1549 testcase( onError==OE_Fail ); 1550 sqlite3RowidConstraint(pParse, onError, pTab); 1551 break; 1552 } 1553 case OE_Replace: { 1554 /* If there are DELETE triggers on this table and the 1555 ** recursive-triggers flag is set, call GenerateRowDelete() to 1556 ** remove the conflicting row from the table. This will fire 1557 ** the triggers and remove both the table and index b-tree entries. 1558 ** 1559 ** Otherwise, if there are no triggers or the recursive-triggers 1560 ** flag is not set, but the table has one or more indexes, call 1561 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1562 ** only. The table b-tree entry will be replaced by the new entry 1563 ** when it is inserted. 1564 ** 1565 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1566 ** also invoke MultiWrite() to indicate that this VDBE may require 1567 ** statement rollback (if the statement is aborted after the delete 1568 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1569 ** but being more selective here allows statements like: 1570 ** 1571 ** REPLACE INTO t(rowid) VALUES($newrowid) 1572 ** 1573 ** to run without a statement journal if there are no indexes on the 1574 ** table. 1575 */ 1576 Trigger *pTrigger = 0; 1577 if( db->flags&SQLITE_RecTriggers ){ 1578 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1579 } 1580 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1581 sqlite3MultiWrite(pParse); 1582 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1583 regNewData, 1, 0, OE_Replace, 1, -1); 1584 }else{ 1585 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1586 assert( HasRowid(pTab) ); 1587 /* This OP_Delete opcode fires the pre-update-hook only. It does 1588 ** not modify the b-tree. It is more efficient to let the coming 1589 ** OP_Insert replace the existing entry than it is to delete the 1590 ** existing entry and then insert a new one. */ 1591 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1592 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1593 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1594 if( pTab->pIndex ){ 1595 sqlite3MultiWrite(pParse); 1596 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1597 } 1598 } 1599 seenReplace = 1; 1600 break; 1601 } 1602 #ifndef SQLITE_OMIT_UPSERT 1603 case OE_Update: { 1604 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 1605 /* Fall through */ 1606 } 1607 #endif 1608 case OE_Ignore: { 1609 testcase( onError==OE_Ignore ); 1610 sqlite3VdbeGoto(v, ignoreDest); 1611 break; 1612 } 1613 } 1614 sqlite3VdbeResolveLabel(v, addrRowidOk); 1615 if( ipkTop ){ 1616 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1617 sqlite3VdbeJumpHere(v, ipkTop-1); 1618 } 1619 } 1620 1621 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1622 ** index and making sure that duplicate entries do not already exist. 1623 ** Compute the revised record entries for indices as we go. 1624 ** 1625 ** This loop also handles the case of the PRIMARY KEY index for a 1626 ** WITHOUT ROWID table. 1627 */ 1628 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1629 int regIdx; /* Range of registers hold conent for pIdx */ 1630 int regR; /* Range of registers holding conflicting PK */ 1631 int iThisCur; /* Cursor for this UNIQUE index */ 1632 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1633 1634 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1635 if( pUpIdx==pIdx ){ 1636 addrUniqueOk = upsertJump+1; 1637 upsertBypass = sqlite3VdbeGoto(v, 0); 1638 VdbeComment((v, "Skip upsert subroutine")); 1639 sqlite3VdbeJumpHere(v, upsertJump); 1640 }else{ 1641 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 1642 } 1643 if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){ 1644 sqlite3TableAffinity(v, pTab, regNewData+1); 1645 bAffinityDone = 1; 1646 } 1647 VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName)); 1648 iThisCur = iIdxCur+ix; 1649 1650 1651 /* Skip partial indices for which the WHERE clause is not true */ 1652 if( pIdx->pPartIdxWhere ){ 1653 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1654 pParse->iSelfTab = -(regNewData+1); 1655 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1656 SQLITE_JUMPIFNULL); 1657 pParse->iSelfTab = 0; 1658 } 1659 1660 /* Create a record for this index entry as it should appear after 1661 ** the insert or update. Store that record in the aRegIdx[ix] register 1662 */ 1663 regIdx = aRegIdx[ix]+1; 1664 for(i=0; i<pIdx->nColumn; i++){ 1665 int iField = pIdx->aiColumn[i]; 1666 int x; 1667 if( iField==XN_EXPR ){ 1668 pParse->iSelfTab = -(regNewData+1); 1669 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1670 pParse->iSelfTab = 0; 1671 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1672 }else{ 1673 if( iField==XN_ROWID || iField==pTab->iPKey ){ 1674 x = regNewData; 1675 }else{ 1676 x = iField + regNewData + 1; 1677 } 1678 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); 1679 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 1680 } 1681 } 1682 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1683 VdbeComment((v, "for %s", pIdx->zName)); 1684 #ifdef SQLITE_ENABLE_NULL_TRIM 1685 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 1686 sqlite3SetMakeRecordP5(v, pIdx->pTable); 1687 } 1688 #endif 1689 1690 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1691 ** of a WITHOUT ROWID table and there has been no change the 1692 ** primary key, then no collision is possible. The collision detection 1693 ** logic below can all be skipped. */ 1694 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1695 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1696 continue; 1697 } 1698 1699 /* Find out what action to take in case there is a uniqueness conflict */ 1700 onError = pIdx->onError; 1701 if( onError==OE_None ){ 1702 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1703 continue; /* pIdx is not a UNIQUE index */ 1704 } 1705 if( overrideError!=OE_Default ){ 1706 onError = overrideError; 1707 }else if( onError==OE_Default ){ 1708 onError = OE_Abort; 1709 } 1710 1711 /* Figure out if the upsert clause applies to this index */ 1712 if( pUpIdx==pIdx ){ 1713 if( pUpsert->pUpsertSet==0 ){ 1714 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1715 }else{ 1716 onError = OE_Update; /* DO UPDATE */ 1717 } 1718 } 1719 1720 /* Collision detection may be omitted if all of the following are true: 1721 ** (1) The conflict resolution algorithm is REPLACE 1722 ** (2) The table is a WITHOUT ROWID table 1723 ** (3) There are no secondary indexes on the table 1724 ** (4) No delete triggers need to be fired if there is a conflict 1725 ** (5) No FK constraint counters need to be updated if a conflict occurs. 1726 ** 1727 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 1728 ** must be explicitly deleted in order to ensure any pre-update hook 1729 ** is invoked. */ 1730 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 1731 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 1732 && pPk==pIdx /* Condition 2 */ 1733 && onError==OE_Replace /* Condition 1 */ 1734 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 1735 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 1736 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 1737 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 1738 ){ 1739 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1740 continue; 1741 } 1742 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 1743 1744 /* Check to see if the new index entry will be unique */ 1745 sqlite3VdbeVerifyAbortable(v, onError); 1746 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1747 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 1748 1749 /* Generate code to handle collisions */ 1750 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1751 if( isUpdate || onError==OE_Replace ){ 1752 if( HasRowid(pTab) ){ 1753 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1754 /* Conflict only if the rowid of the existing index entry 1755 ** is different from old-rowid */ 1756 if( isUpdate ){ 1757 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1758 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1759 VdbeCoverage(v); 1760 } 1761 }else{ 1762 int x; 1763 /* Extract the PRIMARY KEY from the end of the index entry and 1764 ** store it in registers regR..regR+nPk-1 */ 1765 if( pIdx!=pPk ){ 1766 for(i=0; i<pPk->nKeyCol; i++){ 1767 assert( pPk->aiColumn[i]>=0 ); 1768 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 1769 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1770 VdbeComment((v, "%s.%s", pTab->zName, 1771 pTab->aCol[pPk->aiColumn[i]].zName)); 1772 } 1773 } 1774 if( isUpdate ){ 1775 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1776 ** table, only conflict if the new PRIMARY KEY values are actually 1777 ** different from the old. 1778 ** 1779 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 1780 ** of the matched index row are different from the original PRIMARY 1781 ** KEY values of this row before the update. */ 1782 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 1783 int op = OP_Ne; 1784 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 1785 1786 for(i=0; i<pPk->nKeyCol; i++){ 1787 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 1788 x = pPk->aiColumn[i]; 1789 assert( x>=0 ); 1790 if( i==(pPk->nKeyCol-1) ){ 1791 addrJump = addrUniqueOk; 1792 op = OP_Eq; 1793 } 1794 sqlite3VdbeAddOp4(v, op, 1795 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 1796 ); 1797 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1798 VdbeCoverageIf(v, op==OP_Eq); 1799 VdbeCoverageIf(v, op==OP_Ne); 1800 } 1801 } 1802 } 1803 } 1804 1805 /* Generate code that executes if the new index entry is not unique */ 1806 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1807 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 1808 switch( onError ){ 1809 case OE_Rollback: 1810 case OE_Abort: 1811 case OE_Fail: { 1812 testcase( onError==OE_Rollback ); 1813 testcase( onError==OE_Abort ); 1814 testcase( onError==OE_Fail ); 1815 sqlite3UniqueConstraint(pParse, onError, pIdx); 1816 break; 1817 } 1818 #ifndef SQLITE_OMIT_UPSERT 1819 case OE_Update: { 1820 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 1821 /* Fall through */ 1822 } 1823 #endif 1824 case OE_Ignore: { 1825 testcase( onError==OE_Ignore ); 1826 sqlite3VdbeGoto(v, ignoreDest); 1827 break; 1828 } 1829 default: { 1830 Trigger *pTrigger = 0; 1831 assert( onError==OE_Replace ); 1832 if( db->flags&SQLITE_RecTriggers ){ 1833 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1834 } 1835 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1836 sqlite3MultiWrite(pParse); 1837 } 1838 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1839 regR, nPkField, 0, OE_Replace, 1840 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 1841 seenReplace = 1; 1842 break; 1843 } 1844 } 1845 if( pUpIdx==pIdx ){ 1846 sqlite3VdbeGoto(v, upsertJump+1); 1847 sqlite3VdbeJumpHere(v, upsertBypass); 1848 }else{ 1849 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1850 } 1851 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 1852 } 1853 1854 /* If the IPK constraint is a REPLACE, run it last */ 1855 if( ipkTop ){ 1856 sqlite3VdbeGoto(v, ipkTop); 1857 VdbeComment((v, "Do IPK REPLACE")); 1858 sqlite3VdbeJumpHere(v, ipkBottom); 1859 } 1860 1861 /* Generate the table record */ 1862 if( HasRowid(pTab) ){ 1863 int regRec = aRegIdx[ix]; 1864 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nCol, regRec); 1865 sqlite3SetMakeRecordP5(v, pTab); 1866 if( !bAffinityDone ){ 1867 sqlite3TableAffinity(v, pTab, 0); 1868 } 1869 } 1870 1871 *pbMayReplace = seenReplace; 1872 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 1873 } 1874 1875 #ifdef SQLITE_ENABLE_NULL_TRIM 1876 /* 1877 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 1878 ** to be the number of columns in table pTab that must not be NULL-trimmed. 1879 ** 1880 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 1881 */ 1882 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 1883 u16 i; 1884 1885 /* Records with omitted columns are only allowed for schema format 1886 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 1887 if( pTab->pSchema->file_format<2 ) return; 1888 1889 for(i=pTab->nCol-1; i>0; i--){ 1890 if( pTab->aCol[i].pDflt!=0 ) break; 1891 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 1892 } 1893 sqlite3VdbeChangeP5(v, i+1); 1894 } 1895 #endif 1896 1897 /* 1898 ** This routine generates code to finish the INSERT or UPDATE operation 1899 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1900 ** A consecutive range of registers starting at regNewData contains the 1901 ** rowid and the content to be inserted. 1902 ** 1903 ** The arguments to this routine should be the same as the first six 1904 ** arguments to sqlite3GenerateConstraintChecks. 1905 */ 1906 void sqlite3CompleteInsertion( 1907 Parse *pParse, /* The parser context */ 1908 Table *pTab, /* the table into which we are inserting */ 1909 int iDataCur, /* Cursor of the canonical data source */ 1910 int iIdxCur, /* First index cursor */ 1911 int regNewData, /* Range of content */ 1912 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1913 int update_flags, /* True for UPDATE, False for INSERT */ 1914 int appendBias, /* True if this is likely to be an append */ 1915 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1916 ){ 1917 Vdbe *v; /* Prepared statements under construction */ 1918 Index *pIdx; /* An index being inserted or updated */ 1919 u8 pik_flags; /* flag values passed to the btree insert */ 1920 int i; /* Loop counter */ 1921 1922 assert( update_flags==0 1923 || update_flags==OPFLAG_ISUPDATE 1924 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 1925 ); 1926 1927 v = sqlite3GetVdbe(pParse); 1928 assert( v!=0 ); 1929 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1930 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1931 if( aRegIdx[i]==0 ) continue; 1932 if( pIdx->pPartIdxWhere ){ 1933 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 1934 VdbeCoverage(v); 1935 } 1936 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 1937 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1938 assert( pParse->nested==0 ); 1939 pik_flags |= OPFLAG_NCHANGE; 1940 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 1941 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1942 if( update_flags==0 ){ 1943 int r = sqlite3GetTempReg(pParse); 1944 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 1945 sqlite3VdbeAddOp4(v, OP_Insert, 1946 iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE 1947 ); 1948 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 1949 sqlite3ReleaseTempReg(pParse, r); 1950 } 1951 #endif 1952 } 1953 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 1954 aRegIdx[i]+1, 1955 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 1956 sqlite3VdbeChangeP5(v, pik_flags); 1957 } 1958 if( !HasRowid(pTab) ) return; 1959 if( pParse->nested ){ 1960 pik_flags = 0; 1961 }else{ 1962 pik_flags = OPFLAG_NCHANGE; 1963 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 1964 } 1965 if( appendBias ){ 1966 pik_flags |= OPFLAG_APPEND; 1967 } 1968 if( useSeekResult ){ 1969 pik_flags |= OPFLAG_USESEEKRESULT; 1970 } 1971 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 1972 if( !pParse->nested ){ 1973 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1974 } 1975 sqlite3VdbeChangeP5(v, pik_flags); 1976 } 1977 1978 /* 1979 ** Allocate cursors for the pTab table and all its indices and generate 1980 ** code to open and initialized those cursors. 1981 ** 1982 ** The cursor for the object that contains the complete data (normally 1983 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 1984 ** ROWID table) is returned in *piDataCur. The first index cursor is 1985 ** returned in *piIdxCur. The number of indices is returned. 1986 ** 1987 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 1988 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 1989 ** If iBase is negative, then allocate the next available cursor. 1990 ** 1991 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 1992 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 1993 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 1994 ** pTab->pIndex list. 1995 ** 1996 ** If pTab is a virtual table, then this routine is a no-op and the 1997 ** *piDataCur and *piIdxCur values are left uninitialized. 1998 */ 1999 int sqlite3OpenTableAndIndices( 2000 Parse *pParse, /* Parsing context */ 2001 Table *pTab, /* Table to be opened */ 2002 int op, /* OP_OpenRead or OP_OpenWrite */ 2003 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2004 int iBase, /* Use this for the table cursor, if there is one */ 2005 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2006 int *piDataCur, /* Write the database source cursor number here */ 2007 int *piIdxCur /* Write the first index cursor number here */ 2008 ){ 2009 int i; 2010 int iDb; 2011 int iDataCur; 2012 Index *pIdx; 2013 Vdbe *v; 2014 2015 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2016 assert( op==OP_OpenWrite || p5==0 ); 2017 if( IsVirtual(pTab) ){ 2018 /* This routine is a no-op for virtual tables. Leave the output 2019 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 2020 ** can detect if they are used by mistake in the caller. */ 2021 return 0; 2022 } 2023 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2024 v = sqlite3GetVdbe(pParse); 2025 assert( v!=0 ); 2026 if( iBase<0 ) iBase = pParse->nTab; 2027 iDataCur = iBase++; 2028 if( piDataCur ) *piDataCur = iDataCur; 2029 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2030 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2031 }else{ 2032 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2033 } 2034 if( piIdxCur ) *piIdxCur = iBase; 2035 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2036 int iIdxCur = iBase++; 2037 assert( pIdx->pSchema==pTab->pSchema ); 2038 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2039 if( piDataCur ) *piDataCur = iIdxCur; 2040 p5 = 0; 2041 } 2042 if( aToOpen==0 || aToOpen[i+1] ){ 2043 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2044 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2045 sqlite3VdbeChangeP5(v, p5); 2046 VdbeComment((v, "%s", pIdx->zName)); 2047 } 2048 } 2049 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2050 return i; 2051 } 2052 2053 2054 #ifdef SQLITE_TEST 2055 /* 2056 ** The following global variable is incremented whenever the 2057 ** transfer optimization is used. This is used for testing 2058 ** purposes only - to make sure the transfer optimization really 2059 ** is happening when it is supposed to. 2060 */ 2061 int sqlite3_xferopt_count; 2062 #endif /* SQLITE_TEST */ 2063 2064 2065 #ifndef SQLITE_OMIT_XFER_OPT 2066 /* 2067 ** Check to see if index pSrc is compatible as a source of data 2068 ** for index pDest in an insert transfer optimization. The rules 2069 ** for a compatible index: 2070 ** 2071 ** * The index is over the same set of columns 2072 ** * The same DESC and ASC markings occurs on all columns 2073 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2074 ** * The same collating sequence on each column 2075 ** * The index has the exact same WHERE clause 2076 */ 2077 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2078 int i; 2079 assert( pDest && pSrc ); 2080 assert( pDest->pTable!=pSrc->pTable ); 2081 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 2082 return 0; /* Different number of columns */ 2083 } 2084 if( pDest->onError!=pSrc->onError ){ 2085 return 0; /* Different conflict resolution strategies */ 2086 } 2087 for(i=0; i<pSrc->nKeyCol; i++){ 2088 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2089 return 0; /* Different columns indexed */ 2090 } 2091 if( pSrc->aiColumn[i]==XN_EXPR ){ 2092 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2093 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2094 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2095 return 0; /* Different expressions in the index */ 2096 } 2097 } 2098 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2099 return 0; /* Different sort orders */ 2100 } 2101 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2102 return 0; /* Different collating sequences */ 2103 } 2104 } 2105 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2106 return 0; /* Different WHERE clauses */ 2107 } 2108 2109 /* If no test above fails then the indices must be compatible */ 2110 return 1; 2111 } 2112 2113 /* 2114 ** Attempt the transfer optimization on INSERTs of the form 2115 ** 2116 ** INSERT INTO tab1 SELECT * FROM tab2; 2117 ** 2118 ** The xfer optimization transfers raw records from tab2 over to tab1. 2119 ** Columns are not decoded and reassembled, which greatly improves 2120 ** performance. Raw index records are transferred in the same way. 2121 ** 2122 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2123 ** There are lots of rules for determining compatibility - see comments 2124 ** embedded in the code for details. 2125 ** 2126 ** This routine returns TRUE if the optimization is guaranteed to be used. 2127 ** Sometimes the xfer optimization will only work if the destination table 2128 ** is empty - a factor that can only be determined at run-time. In that 2129 ** case, this routine generates code for the xfer optimization but also 2130 ** does a test to see if the destination table is empty and jumps over the 2131 ** xfer optimization code if the test fails. In that case, this routine 2132 ** returns FALSE so that the caller will know to go ahead and generate 2133 ** an unoptimized transfer. This routine also returns FALSE if there 2134 ** is no chance that the xfer optimization can be applied. 2135 ** 2136 ** This optimization is particularly useful at making VACUUM run faster. 2137 */ 2138 static int xferOptimization( 2139 Parse *pParse, /* Parser context */ 2140 Table *pDest, /* The table we are inserting into */ 2141 Select *pSelect, /* A SELECT statement to use as the data source */ 2142 int onError, /* How to handle constraint errors */ 2143 int iDbDest /* The database of pDest */ 2144 ){ 2145 sqlite3 *db = pParse->db; 2146 ExprList *pEList; /* The result set of the SELECT */ 2147 Table *pSrc; /* The table in the FROM clause of SELECT */ 2148 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2149 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 2150 int i; /* Loop counter */ 2151 int iDbSrc; /* The database of pSrc */ 2152 int iSrc, iDest; /* Cursors from source and destination */ 2153 int addr1, addr2; /* Loop addresses */ 2154 int emptyDestTest = 0; /* Address of test for empty pDest */ 2155 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2156 Vdbe *v; /* The VDBE we are building */ 2157 int regAutoinc; /* Memory register used by AUTOINC */ 2158 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2159 int regData, regRowid; /* Registers holding data and rowid */ 2160 2161 if( pSelect==0 ){ 2162 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2163 } 2164 if( pParse->pWith || pSelect->pWith ){ 2165 /* Do not attempt to process this query if there are an WITH clauses 2166 ** attached to it. Proceeding may generate a false "no such table: xxx" 2167 ** error if pSelect reads from a CTE named "xxx". */ 2168 return 0; 2169 } 2170 if( sqlite3TriggerList(pParse, pDest) ){ 2171 return 0; /* tab1 must not have triggers */ 2172 } 2173 #ifndef SQLITE_OMIT_VIRTUALTABLE 2174 if( IsVirtual(pDest) ){ 2175 return 0; /* tab1 must not be a virtual table */ 2176 } 2177 #endif 2178 if( onError==OE_Default ){ 2179 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2180 if( onError==OE_Default ) onError = OE_Abort; 2181 } 2182 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2183 if( pSelect->pSrc->nSrc!=1 ){ 2184 return 0; /* FROM clause must have exactly one term */ 2185 } 2186 if( pSelect->pSrc->a[0].pSelect ){ 2187 return 0; /* FROM clause cannot contain a subquery */ 2188 } 2189 if( pSelect->pWhere ){ 2190 return 0; /* SELECT may not have a WHERE clause */ 2191 } 2192 if( pSelect->pOrderBy ){ 2193 return 0; /* SELECT may not have an ORDER BY clause */ 2194 } 2195 /* Do not need to test for a HAVING clause. If HAVING is present but 2196 ** there is no ORDER BY, we will get an error. */ 2197 if( pSelect->pGroupBy ){ 2198 return 0; /* SELECT may not have a GROUP BY clause */ 2199 } 2200 if( pSelect->pLimit ){ 2201 return 0; /* SELECT may not have a LIMIT clause */ 2202 } 2203 if( pSelect->pPrior ){ 2204 return 0; /* SELECT may not be a compound query */ 2205 } 2206 if( pSelect->selFlags & SF_Distinct ){ 2207 return 0; /* SELECT may not be DISTINCT */ 2208 } 2209 pEList = pSelect->pEList; 2210 assert( pEList!=0 ); 2211 if( pEList->nExpr!=1 ){ 2212 return 0; /* The result set must have exactly one column */ 2213 } 2214 assert( pEList->a[0].pExpr ); 2215 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2216 return 0; /* The result set must be the special operator "*" */ 2217 } 2218 2219 /* At this point we have established that the statement is of the 2220 ** correct syntactic form to participate in this optimization. Now 2221 ** we have to check the semantics. 2222 */ 2223 pItem = pSelect->pSrc->a; 2224 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2225 if( pSrc==0 ){ 2226 return 0; /* FROM clause does not contain a real table */ 2227 } 2228 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2229 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_master.rootpage */ 2230 return 0; /* tab1 and tab2 may not be the same table */ 2231 } 2232 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2233 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2234 } 2235 #ifndef SQLITE_OMIT_VIRTUALTABLE 2236 if( IsVirtual(pSrc) ){ 2237 return 0; /* tab2 must not be a virtual table */ 2238 } 2239 #endif 2240 if( pSrc->pSelect ){ 2241 return 0; /* tab2 may not be a view */ 2242 } 2243 if( pDest->nCol!=pSrc->nCol ){ 2244 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2245 } 2246 if( pDest->iPKey!=pSrc->iPKey ){ 2247 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2248 } 2249 for(i=0; i<pDest->nCol; i++){ 2250 Column *pDestCol = &pDest->aCol[i]; 2251 Column *pSrcCol = &pSrc->aCol[i]; 2252 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2253 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2254 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2255 ){ 2256 return 0; /* Neither table may have __hidden__ columns */ 2257 } 2258 #endif 2259 if( pDestCol->affinity!=pSrcCol->affinity ){ 2260 return 0; /* Affinity must be the same on all columns */ 2261 } 2262 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2263 return 0; /* Collating sequence must be the same on all columns */ 2264 } 2265 if( pDestCol->notNull && !pSrcCol->notNull ){ 2266 return 0; /* tab2 must be NOT NULL if tab1 is */ 2267 } 2268 /* Default values for second and subsequent columns need to match. */ 2269 if( i>0 ){ 2270 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2271 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2272 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2273 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2274 pSrcCol->pDflt->u.zToken)!=0) 2275 ){ 2276 return 0; /* Default values must be the same for all columns */ 2277 } 2278 } 2279 } 2280 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2281 if( IsUniqueIndex(pDestIdx) ){ 2282 destHasUniqueIdx = 1; 2283 } 2284 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2285 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2286 } 2287 if( pSrcIdx==0 ){ 2288 return 0; /* pDestIdx has no corresponding index in pSrc */ 2289 } 2290 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2291 && sqlite3FaultSim(411)==SQLITE_OK ){ 2292 /* The sqlite3FaultSim() call allows this corruption test to be 2293 ** bypassed during testing, in order to exercise other corruption tests 2294 ** further downstream. */ 2295 return 0; /* Corrupt schema - two indexes on the same btree */ 2296 } 2297 } 2298 #ifndef SQLITE_OMIT_CHECK 2299 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2300 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2301 } 2302 #endif 2303 #ifndef SQLITE_OMIT_FOREIGN_KEY 2304 /* Disallow the transfer optimization if the destination table constains 2305 ** any foreign key constraints. This is more restrictive than necessary. 2306 ** But the main beneficiary of the transfer optimization is the VACUUM 2307 ** command, and the VACUUM command disables foreign key constraints. So 2308 ** the extra complication to make this rule less restrictive is probably 2309 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2310 */ 2311 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2312 return 0; 2313 } 2314 #endif 2315 if( (db->flags & SQLITE_CountRows)!=0 ){ 2316 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2317 } 2318 2319 /* If we get this far, it means that the xfer optimization is at 2320 ** least a possibility, though it might only work if the destination 2321 ** table (tab1) is initially empty. 2322 */ 2323 #ifdef SQLITE_TEST 2324 sqlite3_xferopt_count++; 2325 #endif 2326 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2327 v = sqlite3GetVdbe(pParse); 2328 sqlite3CodeVerifySchema(pParse, iDbSrc); 2329 iSrc = pParse->nTab++; 2330 iDest = pParse->nTab++; 2331 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2332 regData = sqlite3GetTempReg(pParse); 2333 regRowid = sqlite3GetTempReg(pParse); 2334 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2335 assert( HasRowid(pDest) || destHasUniqueIdx ); 2336 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2337 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2338 || destHasUniqueIdx /* (2) */ 2339 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2340 )){ 2341 /* In some circumstances, we are able to run the xfer optimization 2342 ** only if the destination table is initially empty. Unless the 2343 ** DBFLAG_Vacuum flag is set, this block generates code to make 2344 ** that determination. If DBFLAG_Vacuum is set, then the destination 2345 ** table is always empty. 2346 ** 2347 ** Conditions under which the destination must be empty: 2348 ** 2349 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2350 ** (If the destination is not initially empty, the rowid fields 2351 ** of index entries might need to change.) 2352 ** 2353 ** (2) The destination has a unique index. (The xfer optimization 2354 ** is unable to test uniqueness.) 2355 ** 2356 ** (3) onError is something other than OE_Abort and OE_Rollback. 2357 */ 2358 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2359 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2360 sqlite3VdbeJumpHere(v, addr1); 2361 } 2362 if( HasRowid(pSrc) ){ 2363 u8 insFlags; 2364 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2365 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2366 if( pDest->iPKey>=0 ){ 2367 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2368 sqlite3VdbeVerifyAbortable(v, onError); 2369 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2370 VdbeCoverage(v); 2371 sqlite3RowidConstraint(pParse, onError, pDest); 2372 sqlite3VdbeJumpHere(v, addr2); 2373 autoIncStep(pParse, regAutoinc, regRowid); 2374 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 2375 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2376 }else{ 2377 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2378 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2379 } 2380 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2381 if( db->mDbFlags & DBFLAG_Vacuum ){ 2382 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2383 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| 2384 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 2385 }else{ 2386 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 2387 } 2388 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2389 (char*)pDest, P4_TABLE); 2390 sqlite3VdbeChangeP5(v, insFlags); 2391 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2392 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2393 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2394 }else{ 2395 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2396 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2397 } 2398 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2399 u8 idxInsFlags = 0; 2400 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2401 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2402 } 2403 assert( pSrcIdx ); 2404 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2405 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2406 VdbeComment((v, "%s", pSrcIdx->zName)); 2407 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2408 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2409 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2410 VdbeComment((v, "%s", pDestIdx->zName)); 2411 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2412 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2413 if( db->mDbFlags & DBFLAG_Vacuum ){ 2414 /* This INSERT command is part of a VACUUM operation, which guarantees 2415 ** that the destination table is empty. If all indexed columns use 2416 ** collation sequence BINARY, then it can also be assumed that the 2417 ** index will be populated by inserting keys in strictly sorted 2418 ** order. In this case, instead of seeking within the b-tree as part 2419 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2420 ** OP_IdxInsert to seek to the point within the b-tree where each key 2421 ** should be inserted. This is faster. 2422 ** 2423 ** If any of the indexed columns use a collation sequence other than 2424 ** BINARY, this optimization is disabled. This is because the user 2425 ** might change the definition of a collation sequence and then run 2426 ** a VACUUM command. In that case keys may not be written in strictly 2427 ** sorted order. */ 2428 for(i=0; i<pSrcIdx->nColumn; i++){ 2429 const char *zColl = pSrcIdx->azColl[i]; 2430 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2431 } 2432 if( i==pSrcIdx->nColumn ){ 2433 idxInsFlags = OPFLAG_USESEEKRESULT; 2434 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2435 } 2436 } 2437 if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2438 idxInsFlags |= OPFLAG_NCHANGE; 2439 } 2440 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 2441 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 2442 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2443 sqlite3VdbeJumpHere(v, addr1); 2444 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2445 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2446 } 2447 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2448 sqlite3ReleaseTempReg(pParse, regRowid); 2449 sqlite3ReleaseTempReg(pParse, regData); 2450 if( emptyDestTest ){ 2451 sqlite3AutoincrementEnd(pParse); 2452 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2453 sqlite3VdbeJumpHere(v, emptyDestTest); 2454 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2455 return 0; 2456 }else{ 2457 return 1; 2458 } 2459 } 2460 #endif /* SQLITE_OMIT_XFER_OPT */ 2461