1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 v = sqlite3GetVdbe(pParse); 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 37 sqlite3TableLock(pParse, iDb, pTab->tnum, 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); 39 if( HasRowid(pTab) ){ 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); 41 VdbeComment((v, "%s", pTab->zName)); 42 }else{ 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 44 assert( pPk!=0 ); 45 assert( pPk->tnum==pTab->tnum ); 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 48 VdbeComment((v, "%s", pTab->zName)); 49 } 50 } 51 52 /* 53 ** Return a pointer to the column affinity string associated with index 54 ** pIdx. A column affinity string has one character for each column in 55 ** the table, according to the affinity of the column: 56 ** 57 ** Character Column affinity 58 ** ------------------------------ 59 ** 'A' BLOB 60 ** 'B' TEXT 61 ** 'C' NUMERIC 62 ** 'D' INTEGER 63 ** 'F' REAL 64 ** 65 ** An extra 'D' is appended to the end of the string to cover the 66 ** rowid that appears as the last column in every index. 67 ** 68 ** Memory for the buffer containing the column index affinity string 69 ** is managed along with the rest of the Index structure. It will be 70 ** released when sqlite3DeleteIndex() is called. 71 */ 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 73 if( !pIdx->zColAff ){ 74 /* The first time a column affinity string for a particular index is 75 ** required, it is allocated and populated here. It is then stored as 76 ** a member of the Index structure for subsequent use. 77 ** 78 ** The column affinity string will eventually be deleted by 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned 80 ** up. 81 */ 82 int n; 83 Table *pTab = pIdx->pTable; 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 85 if( !pIdx->zColAff ){ 86 sqlite3OomFault(db); 87 return 0; 88 } 89 for(n=0; n<pIdx->nColumn; n++){ 90 i16 x = pIdx->aiColumn[n]; 91 char aff; 92 if( x>=0 ){ 93 aff = pTab->aCol[x].affinity; 94 }else if( x==XN_ROWID ){ 95 aff = SQLITE_AFF_INTEGER; 96 }else{ 97 assert( x==XN_EXPR ); 98 assert( pIdx->aColExpr!=0 ); 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 100 } 101 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 102 pIdx->zColAff[n] = aff; 103 } 104 pIdx->zColAff[n] = 0; 105 } 106 107 return pIdx->zColAff; 108 } 109 110 /* 111 ** Compute the affinity string for table pTab, if it has not already been 112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 113 ** 114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 116 ** for register iReg and following. Or if affinities exists and iReg==0, 117 ** then just set the P4 operand of the previous opcode (which should be 118 ** an OP_MakeRecord) to the affinity string. 119 ** 120 ** A column affinity string has one character per column: 121 ** 122 ** Character Column affinity 123 ** ------------------------------ 124 ** 'A' BLOB 125 ** 'B' TEXT 126 ** 'C' NUMERIC 127 ** 'D' INTEGER 128 ** 'E' REAL 129 */ 130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 131 int i; 132 char *zColAff = pTab->zColAff; 133 if( zColAff==0 ){ 134 sqlite3 *db = sqlite3VdbeDb(v); 135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 136 if( !zColAff ){ 137 sqlite3OomFault(db); 138 return; 139 } 140 141 for(i=0; i<pTab->nCol; i++){ 142 assert( pTab->aCol[i].affinity!=0 ); 143 zColAff[i] = pTab->aCol[i].affinity; 144 } 145 do{ 146 zColAff[i--] = 0; 147 }while( i>=0 && zColAff[i]<=SQLITE_AFF_BLOB ); 148 pTab->zColAff = zColAff; 149 } 150 assert( zColAff!=0 ); 151 i = sqlite3Strlen30NN(zColAff); 152 if( i ){ 153 if( iReg ){ 154 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 155 }else{ 156 sqlite3VdbeChangeP4(v, -1, zColAff, i); 157 } 158 } 159 } 160 161 /* 162 ** Return non-zero if the table pTab in database iDb or any of its indices 163 ** have been opened at any point in the VDBE program. This is used to see if 164 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 165 ** run without using a temporary table for the results of the SELECT. 166 */ 167 static int readsTable(Parse *p, int iDb, Table *pTab){ 168 Vdbe *v = sqlite3GetVdbe(p); 169 int i; 170 int iEnd = sqlite3VdbeCurrentAddr(v); 171 #ifndef SQLITE_OMIT_VIRTUALTABLE 172 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 173 #endif 174 175 for(i=1; i<iEnd; i++){ 176 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 177 assert( pOp!=0 ); 178 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 179 Index *pIndex; 180 int tnum = pOp->p2; 181 if( tnum==pTab->tnum ){ 182 return 1; 183 } 184 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 185 if( tnum==pIndex->tnum ){ 186 return 1; 187 } 188 } 189 } 190 #ifndef SQLITE_OMIT_VIRTUALTABLE 191 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 192 assert( pOp->p4.pVtab!=0 ); 193 assert( pOp->p4type==P4_VTAB ); 194 return 1; 195 } 196 #endif 197 } 198 return 0; 199 } 200 201 #ifndef SQLITE_OMIT_AUTOINCREMENT 202 /* 203 ** Locate or create an AutoincInfo structure associated with table pTab 204 ** which is in database iDb. Return the register number for the register 205 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 206 ** table. (Also return zero when doing a VACUUM since we do not want to 207 ** update the AUTOINCREMENT counters during a VACUUM.) 208 ** 209 ** There is at most one AutoincInfo structure per table even if the 210 ** same table is autoincremented multiple times due to inserts within 211 ** triggers. A new AutoincInfo structure is created if this is the 212 ** first use of table pTab. On 2nd and subsequent uses, the original 213 ** AutoincInfo structure is used. 214 ** 215 ** Four consecutive registers are allocated: 216 ** 217 ** (1) The name of the pTab table. 218 ** (2) The maximum ROWID of pTab. 219 ** (3) The rowid in sqlite_sequence of pTab 220 ** (4) The original value of the max ROWID in pTab, or NULL if none 221 ** 222 ** The 2nd register is the one that is returned. That is all the 223 ** insert routine needs to know about. 224 */ 225 static int autoIncBegin( 226 Parse *pParse, /* Parsing context */ 227 int iDb, /* Index of the database holding pTab */ 228 Table *pTab /* The table we are writing to */ 229 ){ 230 int memId = 0; /* Register holding maximum rowid */ 231 assert( pParse->db->aDb[iDb].pSchema!=0 ); 232 if( (pTab->tabFlags & TF_Autoincrement)!=0 233 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 234 ){ 235 Parse *pToplevel = sqlite3ParseToplevel(pParse); 236 AutoincInfo *pInfo; 237 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 238 239 /* Verify that the sqlite_sequence table exists and is an ordinary 240 ** rowid table with exactly two columns. 241 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 242 if( pSeqTab==0 243 || !HasRowid(pSeqTab) 244 || IsVirtual(pSeqTab) 245 || pSeqTab->nCol!=2 246 ){ 247 pParse->nErr++; 248 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 249 return 0; 250 } 251 252 pInfo = pToplevel->pAinc; 253 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 254 if( pInfo==0 ){ 255 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 256 if( pInfo==0 ) return 0; 257 pInfo->pNext = pToplevel->pAinc; 258 pToplevel->pAinc = pInfo; 259 pInfo->pTab = pTab; 260 pInfo->iDb = iDb; 261 pToplevel->nMem++; /* Register to hold name of table */ 262 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 263 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 264 } 265 memId = pInfo->regCtr; 266 } 267 return memId; 268 } 269 270 /* 271 ** This routine generates code that will initialize all of the 272 ** register used by the autoincrement tracker. 273 */ 274 void sqlite3AutoincrementBegin(Parse *pParse){ 275 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 276 sqlite3 *db = pParse->db; /* The database connection */ 277 Db *pDb; /* Database only autoinc table */ 278 int memId; /* Register holding max rowid */ 279 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 280 281 /* This routine is never called during trigger-generation. It is 282 ** only called from the top-level */ 283 assert( pParse->pTriggerTab==0 ); 284 assert( sqlite3IsToplevel(pParse) ); 285 286 assert( v ); /* We failed long ago if this is not so */ 287 for(p = pParse->pAinc; p; p = p->pNext){ 288 static const int iLn = VDBE_OFFSET_LINENO(2); 289 static const VdbeOpList autoInc[] = { 290 /* 0 */ {OP_Null, 0, 0, 0}, 291 /* 1 */ {OP_Rewind, 0, 10, 0}, 292 /* 2 */ {OP_Column, 0, 0, 0}, 293 /* 3 */ {OP_Ne, 0, 9, 0}, 294 /* 4 */ {OP_Rowid, 0, 0, 0}, 295 /* 5 */ {OP_Column, 0, 1, 0}, 296 /* 6 */ {OP_AddImm, 0, 0, 0}, 297 /* 7 */ {OP_Copy, 0, 0, 0}, 298 /* 8 */ {OP_Goto, 0, 11, 0}, 299 /* 9 */ {OP_Next, 0, 2, 0}, 300 /* 10 */ {OP_Integer, 0, 0, 0}, 301 /* 11 */ {OP_Close, 0, 0, 0} 302 }; 303 VdbeOp *aOp; 304 pDb = &db->aDb[p->iDb]; 305 memId = p->regCtr; 306 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 307 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 308 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 309 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 310 if( aOp==0 ) break; 311 aOp[0].p2 = memId; 312 aOp[0].p3 = memId+2; 313 aOp[2].p3 = memId; 314 aOp[3].p1 = memId-1; 315 aOp[3].p3 = memId; 316 aOp[3].p5 = SQLITE_JUMPIFNULL; 317 aOp[4].p2 = memId+1; 318 aOp[5].p3 = memId; 319 aOp[6].p1 = memId; 320 aOp[7].p2 = memId+2; 321 aOp[7].p1 = memId; 322 aOp[10].p2 = memId; 323 if( pParse->nTab==0 ) pParse->nTab = 1; 324 } 325 } 326 327 /* 328 ** Update the maximum rowid for an autoincrement calculation. 329 ** 330 ** This routine should be called when the regRowid register holds a 331 ** new rowid that is about to be inserted. If that new rowid is 332 ** larger than the maximum rowid in the memId memory cell, then the 333 ** memory cell is updated. 334 */ 335 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 336 if( memId>0 ){ 337 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 338 } 339 } 340 341 /* 342 ** This routine generates the code needed to write autoincrement 343 ** maximum rowid values back into the sqlite_sequence register. 344 ** Every statement that might do an INSERT into an autoincrement 345 ** table (either directly or through triggers) needs to call this 346 ** routine just before the "exit" code. 347 */ 348 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 349 AutoincInfo *p; 350 Vdbe *v = pParse->pVdbe; 351 sqlite3 *db = pParse->db; 352 353 assert( v ); 354 for(p = pParse->pAinc; p; p = p->pNext){ 355 static const int iLn = VDBE_OFFSET_LINENO(2); 356 static const VdbeOpList autoIncEnd[] = { 357 /* 0 */ {OP_NotNull, 0, 2, 0}, 358 /* 1 */ {OP_NewRowid, 0, 0, 0}, 359 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 360 /* 3 */ {OP_Insert, 0, 0, 0}, 361 /* 4 */ {OP_Close, 0, 0, 0} 362 }; 363 VdbeOp *aOp; 364 Db *pDb = &db->aDb[p->iDb]; 365 int iRec; 366 int memId = p->regCtr; 367 368 iRec = sqlite3GetTempReg(pParse); 369 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 370 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 371 VdbeCoverage(v); 372 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 373 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 374 if( aOp==0 ) break; 375 aOp[0].p1 = memId+1; 376 aOp[1].p2 = memId+1; 377 aOp[2].p1 = memId-1; 378 aOp[2].p3 = iRec; 379 aOp[3].p2 = iRec; 380 aOp[3].p3 = memId+1; 381 aOp[3].p5 = OPFLAG_APPEND; 382 sqlite3ReleaseTempReg(pParse, iRec); 383 } 384 } 385 void sqlite3AutoincrementEnd(Parse *pParse){ 386 if( pParse->pAinc ) autoIncrementEnd(pParse); 387 } 388 #else 389 /* 390 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 391 ** above are all no-ops 392 */ 393 # define autoIncBegin(A,B,C) (0) 394 # define autoIncStep(A,B,C) 395 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 396 397 398 /* Forward declaration */ 399 static int xferOptimization( 400 Parse *pParse, /* Parser context */ 401 Table *pDest, /* The table we are inserting into */ 402 Select *pSelect, /* A SELECT statement to use as the data source */ 403 int onError, /* How to handle constraint errors */ 404 int iDbDest /* The database of pDest */ 405 ); 406 407 /* 408 ** This routine is called to handle SQL of the following forms: 409 ** 410 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 411 ** insert into TABLE (IDLIST) select 412 ** insert into TABLE (IDLIST) default values 413 ** 414 ** The IDLIST following the table name is always optional. If omitted, 415 ** then a list of all (non-hidden) columns for the table is substituted. 416 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 417 ** is omitted. 418 ** 419 ** For the pSelect parameter holds the values to be inserted for the 420 ** first two forms shown above. A VALUES clause is really just short-hand 421 ** for a SELECT statement that omits the FROM clause and everything else 422 ** that follows. If the pSelect parameter is NULL, that means that the 423 ** DEFAULT VALUES form of the INSERT statement is intended. 424 ** 425 ** The code generated follows one of four templates. For a simple 426 ** insert with data coming from a single-row VALUES clause, the code executes 427 ** once straight down through. Pseudo-code follows (we call this 428 ** the "1st template"): 429 ** 430 ** open write cursor to <table> and its indices 431 ** put VALUES clause expressions into registers 432 ** write the resulting record into <table> 433 ** cleanup 434 ** 435 ** The three remaining templates assume the statement is of the form 436 ** 437 ** INSERT INTO <table> SELECT ... 438 ** 439 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 440 ** in other words if the SELECT pulls all columns from a single table 441 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 442 ** if <table2> and <table1> are distinct tables but have identical 443 ** schemas, including all the same indices, then a special optimization 444 ** is invoked that copies raw records from <table2> over to <table1>. 445 ** See the xferOptimization() function for the implementation of this 446 ** template. This is the 2nd template. 447 ** 448 ** open a write cursor to <table> 449 ** open read cursor on <table2> 450 ** transfer all records in <table2> over to <table> 451 ** close cursors 452 ** foreach index on <table> 453 ** open a write cursor on the <table> index 454 ** open a read cursor on the corresponding <table2> index 455 ** transfer all records from the read to the write cursors 456 ** close cursors 457 ** end foreach 458 ** 459 ** The 3rd template is for when the second template does not apply 460 ** and the SELECT clause does not read from <table> at any time. 461 ** The generated code follows this template: 462 ** 463 ** X <- A 464 ** goto B 465 ** A: setup for the SELECT 466 ** loop over the rows in the SELECT 467 ** load values into registers R..R+n 468 ** yield X 469 ** end loop 470 ** cleanup after the SELECT 471 ** end-coroutine X 472 ** B: open write cursor to <table> and its indices 473 ** C: yield X, at EOF goto D 474 ** insert the select result into <table> from R..R+n 475 ** goto C 476 ** D: cleanup 477 ** 478 ** The 4th template is used if the insert statement takes its 479 ** values from a SELECT but the data is being inserted into a table 480 ** that is also read as part of the SELECT. In the third form, 481 ** we have to use an intermediate table to store the results of 482 ** the select. The template is like this: 483 ** 484 ** X <- A 485 ** goto B 486 ** A: setup for the SELECT 487 ** loop over the tables in the SELECT 488 ** load value into register R..R+n 489 ** yield X 490 ** end loop 491 ** cleanup after the SELECT 492 ** end co-routine R 493 ** B: open temp table 494 ** L: yield X, at EOF goto M 495 ** insert row from R..R+n into temp table 496 ** goto L 497 ** M: open write cursor to <table> and its indices 498 ** rewind temp table 499 ** C: loop over rows of intermediate table 500 ** transfer values form intermediate table into <table> 501 ** end loop 502 ** D: cleanup 503 */ 504 void sqlite3Insert( 505 Parse *pParse, /* Parser context */ 506 SrcList *pTabList, /* Name of table into which we are inserting */ 507 Select *pSelect, /* A SELECT statement to use as the data source */ 508 IdList *pColumn, /* Column names corresponding to IDLIST. */ 509 int onError, /* How to handle constraint errors */ 510 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 511 ){ 512 sqlite3 *db; /* The main database structure */ 513 Table *pTab; /* The table to insert into. aka TABLE */ 514 int i, j; /* Loop counters */ 515 Vdbe *v; /* Generate code into this virtual machine */ 516 Index *pIdx; /* For looping over indices of the table */ 517 int nColumn; /* Number of columns in the data */ 518 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 519 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 520 int iIdxCur = 0; /* First index cursor */ 521 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 522 int endOfLoop; /* Label for the end of the insertion loop */ 523 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 524 int addrInsTop = 0; /* Jump to label "D" */ 525 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 526 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 527 int iDb; /* Index of database holding TABLE */ 528 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 529 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 530 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 531 u8 bIdListInOrder; /* True if IDLIST is in table order */ 532 ExprList *pList = 0; /* List of VALUES() to be inserted */ 533 534 /* Register allocations */ 535 int regFromSelect = 0;/* Base register for data coming from SELECT */ 536 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 537 int regRowCount = 0; /* Memory cell used for the row counter */ 538 int regIns; /* Block of regs holding rowid+data being inserted */ 539 int regRowid; /* registers holding insert rowid */ 540 int regData; /* register holding first column to insert */ 541 int *aRegIdx = 0; /* One register allocated to each index */ 542 543 #ifndef SQLITE_OMIT_TRIGGER 544 int isView; /* True if attempting to insert into a view */ 545 Trigger *pTrigger; /* List of triggers on pTab, if required */ 546 int tmask; /* Mask of trigger times */ 547 #endif 548 549 db = pParse->db; 550 if( pParse->nErr || db->mallocFailed ){ 551 goto insert_cleanup; 552 } 553 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 554 555 /* If the Select object is really just a simple VALUES() list with a 556 ** single row (the common case) then keep that one row of values 557 ** and discard the other (unused) parts of the pSelect object 558 */ 559 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 560 pList = pSelect->pEList; 561 pSelect->pEList = 0; 562 sqlite3SelectDelete(db, pSelect); 563 pSelect = 0; 564 } 565 566 /* Locate the table into which we will be inserting new information. 567 */ 568 assert( pTabList->nSrc==1 ); 569 pTab = sqlite3SrcListLookup(pParse, pTabList); 570 if( pTab==0 ){ 571 goto insert_cleanup; 572 } 573 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 574 assert( iDb<db->nDb ); 575 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 576 db->aDb[iDb].zDbSName) ){ 577 goto insert_cleanup; 578 } 579 withoutRowid = !HasRowid(pTab); 580 581 /* Figure out if we have any triggers and if the table being 582 ** inserted into is a view 583 */ 584 #ifndef SQLITE_OMIT_TRIGGER 585 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 586 isView = pTab->pSelect!=0; 587 #else 588 # define pTrigger 0 589 # define tmask 0 590 # define isView 0 591 #endif 592 #ifdef SQLITE_OMIT_VIEW 593 # undef isView 594 # define isView 0 595 #endif 596 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 597 598 /* If pTab is really a view, make sure it has been initialized. 599 ** ViewGetColumnNames() is a no-op if pTab is not a view. 600 */ 601 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 602 goto insert_cleanup; 603 } 604 605 /* Cannot insert into a read-only table. 606 */ 607 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 608 goto insert_cleanup; 609 } 610 611 /* Allocate a VDBE 612 */ 613 v = sqlite3GetVdbe(pParse); 614 if( v==0 ) goto insert_cleanup; 615 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 616 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 617 618 #ifndef SQLITE_OMIT_XFER_OPT 619 /* If the statement is of the form 620 ** 621 ** INSERT INTO <table1> SELECT * FROM <table2>; 622 ** 623 ** Then special optimizations can be applied that make the transfer 624 ** very fast and which reduce fragmentation of indices. 625 ** 626 ** This is the 2nd template. 627 */ 628 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 629 assert( !pTrigger ); 630 assert( pList==0 ); 631 goto insert_end; 632 } 633 #endif /* SQLITE_OMIT_XFER_OPT */ 634 635 /* If this is an AUTOINCREMENT table, look up the sequence number in the 636 ** sqlite_sequence table and store it in memory cell regAutoinc. 637 */ 638 regAutoinc = autoIncBegin(pParse, iDb, pTab); 639 640 /* Allocate registers for holding the rowid of the new row, 641 ** the content of the new row, and the assembled row record. 642 */ 643 regRowid = regIns = pParse->nMem+1; 644 pParse->nMem += pTab->nCol + 1; 645 if( IsVirtual(pTab) ){ 646 regRowid++; 647 pParse->nMem++; 648 } 649 regData = regRowid+1; 650 651 /* If the INSERT statement included an IDLIST term, then make sure 652 ** all elements of the IDLIST really are columns of the table and 653 ** remember the column indices. 654 ** 655 ** If the table has an INTEGER PRIMARY KEY column and that column 656 ** is named in the IDLIST, then record in the ipkColumn variable 657 ** the index into IDLIST of the primary key column. ipkColumn is 658 ** the index of the primary key as it appears in IDLIST, not as 659 ** is appears in the original table. (The index of the INTEGER 660 ** PRIMARY KEY in the original table is pTab->iPKey.) 661 */ 662 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; 663 if( pColumn ){ 664 for(i=0; i<pColumn->nId; i++){ 665 pColumn->a[i].idx = -1; 666 } 667 for(i=0; i<pColumn->nId; i++){ 668 for(j=0; j<pTab->nCol; j++){ 669 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 670 pColumn->a[i].idx = j; 671 if( i!=j ) bIdListInOrder = 0; 672 if( j==pTab->iPKey ){ 673 ipkColumn = i; assert( !withoutRowid ); 674 } 675 break; 676 } 677 } 678 if( j>=pTab->nCol ){ 679 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 680 ipkColumn = i; 681 bIdListInOrder = 0; 682 }else{ 683 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 684 pTabList, 0, pColumn->a[i].zName); 685 pParse->checkSchema = 1; 686 goto insert_cleanup; 687 } 688 } 689 } 690 } 691 692 /* Figure out how many columns of data are supplied. If the data 693 ** is coming from a SELECT statement, then generate a co-routine that 694 ** produces a single row of the SELECT on each invocation. The 695 ** co-routine is the common header to the 3rd and 4th templates. 696 */ 697 if( pSelect ){ 698 /* Data is coming from a SELECT or from a multi-row VALUES clause. 699 ** Generate a co-routine to run the SELECT. */ 700 int regYield; /* Register holding co-routine entry-point */ 701 int addrTop; /* Top of the co-routine */ 702 int rc; /* Result code */ 703 704 regYield = ++pParse->nMem; 705 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 706 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 707 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 708 dest.iSdst = bIdListInOrder ? regData : 0; 709 dest.nSdst = pTab->nCol; 710 rc = sqlite3Select(pParse, pSelect, &dest); 711 regFromSelect = dest.iSdst; 712 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 713 sqlite3VdbeEndCoroutine(v, regYield); 714 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 715 assert( pSelect->pEList ); 716 nColumn = pSelect->pEList->nExpr; 717 718 /* Set useTempTable to TRUE if the result of the SELECT statement 719 ** should be written into a temporary table (template 4). Set to 720 ** FALSE if each output row of the SELECT can be written directly into 721 ** the destination table (template 3). 722 ** 723 ** A temp table must be used if the table being updated is also one 724 ** of the tables being read by the SELECT statement. Also use a 725 ** temp table in the case of row triggers. 726 */ 727 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 728 useTempTable = 1; 729 } 730 731 if( useTempTable ){ 732 /* Invoke the coroutine to extract information from the SELECT 733 ** and add it to a transient table srcTab. The code generated 734 ** here is from the 4th template: 735 ** 736 ** B: open temp table 737 ** L: yield X, goto M at EOF 738 ** insert row from R..R+n into temp table 739 ** goto L 740 ** M: ... 741 */ 742 int regRec; /* Register to hold packed record */ 743 int regTempRowid; /* Register to hold temp table ROWID */ 744 int addrL; /* Label "L" */ 745 746 srcTab = pParse->nTab++; 747 regRec = sqlite3GetTempReg(pParse); 748 regTempRowid = sqlite3GetTempReg(pParse); 749 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 750 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 751 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 752 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 753 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 754 sqlite3VdbeGoto(v, addrL); 755 sqlite3VdbeJumpHere(v, addrL); 756 sqlite3ReleaseTempReg(pParse, regRec); 757 sqlite3ReleaseTempReg(pParse, regTempRowid); 758 } 759 }else{ 760 /* This is the case if the data for the INSERT is coming from a 761 ** single-row VALUES clause 762 */ 763 NameContext sNC; 764 memset(&sNC, 0, sizeof(sNC)); 765 sNC.pParse = pParse; 766 srcTab = -1; 767 assert( useTempTable==0 ); 768 if( pList ){ 769 nColumn = pList->nExpr; 770 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 771 goto insert_cleanup; 772 } 773 }else{ 774 nColumn = 0; 775 } 776 } 777 778 /* If there is no IDLIST term but the table has an integer primary 779 ** key, the set the ipkColumn variable to the integer primary key 780 ** column index in the original table definition. 781 */ 782 if( pColumn==0 && nColumn>0 ){ 783 ipkColumn = pTab->iPKey; 784 } 785 786 /* Make sure the number of columns in the source data matches the number 787 ** of columns to be inserted into the table. 788 */ 789 for(i=0; i<pTab->nCol; i++){ 790 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); 791 } 792 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 793 sqlite3ErrorMsg(pParse, 794 "table %S has %d columns but %d values were supplied", 795 pTabList, 0, pTab->nCol-nHidden, nColumn); 796 goto insert_cleanup; 797 } 798 if( pColumn!=0 && nColumn!=pColumn->nId ){ 799 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 800 goto insert_cleanup; 801 } 802 803 /* Initialize the count of rows to be inserted 804 */ 805 if( (db->flags & SQLITE_CountRows)!=0 806 && !pParse->nested 807 && !pParse->pTriggerTab 808 ){ 809 regRowCount = ++pParse->nMem; 810 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 811 } 812 813 /* If this is not a view, open the table and and all indices */ 814 if( !isView ){ 815 int nIdx; 816 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 817 &iDataCur, &iIdxCur); 818 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 819 if( aRegIdx==0 ){ 820 goto insert_cleanup; 821 } 822 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 823 assert( pIdx ); 824 aRegIdx[i] = ++pParse->nMem; 825 pParse->nMem += pIdx->nColumn; 826 } 827 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 828 } 829 #ifndef SQLITE_OMIT_UPSERT 830 if( pUpsert ){ 831 if( IsVirtual(pTab) ){ 832 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 833 pTab->zName); 834 goto insert_cleanup; 835 } 836 pTabList->a[0].iCursor = iDataCur; 837 pUpsert->pUpsertSrc = pTabList; 838 pUpsert->regData = regData; 839 pUpsert->iDataCur = iDataCur; 840 pUpsert->iIdxCur = iIdxCur; 841 if( pUpsert->pUpsertTarget ){ 842 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert); 843 } 844 } 845 #endif 846 847 848 /* This is the top of the main insertion loop */ 849 if( useTempTable ){ 850 /* This block codes the top of loop only. The complete loop is the 851 ** following pseudocode (template 4): 852 ** 853 ** rewind temp table, if empty goto D 854 ** C: loop over rows of intermediate table 855 ** transfer values form intermediate table into <table> 856 ** end loop 857 ** D: ... 858 */ 859 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 860 addrCont = sqlite3VdbeCurrentAddr(v); 861 }else if( pSelect ){ 862 /* This block codes the top of loop only. The complete loop is the 863 ** following pseudocode (template 3): 864 ** 865 ** C: yield X, at EOF goto D 866 ** insert the select result into <table> from R..R+n 867 ** goto C 868 ** D: ... 869 */ 870 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 871 VdbeCoverage(v); 872 } 873 874 /* Run the BEFORE and INSTEAD OF triggers, if there are any 875 */ 876 endOfLoop = sqlite3VdbeMakeLabel(pParse); 877 if( tmask & TRIGGER_BEFORE ){ 878 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 879 880 /* build the NEW.* reference row. Note that if there is an INTEGER 881 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 882 ** translated into a unique ID for the row. But on a BEFORE trigger, 883 ** we do not know what the unique ID will be (because the insert has 884 ** not happened yet) so we substitute a rowid of -1 885 */ 886 if( ipkColumn<0 ){ 887 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 888 }else{ 889 int addr1; 890 assert( !withoutRowid ); 891 if( useTempTable ){ 892 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 893 }else{ 894 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 895 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 896 } 897 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 898 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 899 sqlite3VdbeJumpHere(v, addr1); 900 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 901 } 902 903 /* Cannot have triggers on a virtual table. If it were possible, 904 ** this block would have to account for hidden column. 905 */ 906 assert( !IsVirtual(pTab) ); 907 908 /* Create the new column data 909 */ 910 for(i=j=0; i<pTab->nCol; i++){ 911 if( pColumn ){ 912 for(j=0; j<pColumn->nId; j++){ 913 if( pColumn->a[j].idx==i ) break; 914 } 915 } 916 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) 917 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ 918 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); 919 }else if( useTempTable ){ 920 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 921 }else{ 922 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 923 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); 924 } 925 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; 926 } 927 928 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 929 ** do not attempt any conversions before assembling the record. 930 ** If this is a real table, attempt conversions as required by the 931 ** table column affinities. 932 */ 933 if( !isView ){ 934 sqlite3TableAffinity(v, pTab, regCols+1); 935 } 936 937 /* Fire BEFORE or INSTEAD OF triggers */ 938 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 939 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 940 941 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 942 } 943 944 /* Compute the content of the next row to insert into a range of 945 ** registers beginning at regIns. 946 */ 947 if( !isView ){ 948 if( IsVirtual(pTab) ){ 949 /* The row that the VUpdate opcode will delete: none */ 950 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 951 } 952 if( ipkColumn>=0 ){ 953 if( useTempTable ){ 954 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 955 }else if( pSelect ){ 956 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 957 }else{ 958 Expr *pIpk = pList->a[ipkColumn].pExpr; 959 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 960 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 961 appendFlag = 1; 962 }else{ 963 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 964 } 965 } 966 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 967 ** to generate a unique primary key value. 968 */ 969 if( !appendFlag ){ 970 int addr1; 971 if( !IsVirtual(pTab) ){ 972 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 973 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 974 sqlite3VdbeJumpHere(v, addr1); 975 }else{ 976 addr1 = sqlite3VdbeCurrentAddr(v); 977 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 978 } 979 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 980 } 981 }else if( IsVirtual(pTab) || withoutRowid ){ 982 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 983 }else{ 984 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 985 appendFlag = 1; 986 } 987 autoIncStep(pParse, regAutoinc, regRowid); 988 989 /* Compute data for all columns of the new entry, beginning 990 ** with the first column. 991 */ 992 nHidden = 0; 993 for(i=0; i<pTab->nCol; i++){ 994 int iRegStore = regRowid+1+i; 995 if( i==pTab->iPKey ){ 996 /* The value of the INTEGER PRIMARY KEY column is always a NULL. 997 ** Whenever this column is read, the rowid will be substituted 998 ** in its place. Hence, fill this column with a NULL to avoid 999 ** taking up data space with information that will never be used. 1000 ** As there may be shallow copies of this value, make it a soft-NULL */ 1001 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1002 continue; 1003 } 1004 if( pColumn==0 ){ 1005 if( IsHiddenColumn(&pTab->aCol[i]) ){ 1006 j = -1; 1007 nHidden++; 1008 }else{ 1009 j = i - nHidden; 1010 } 1011 }else{ 1012 for(j=0; j<pColumn->nId; j++){ 1013 if( pColumn->a[j].idx==i ) break; 1014 } 1015 } 1016 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ 1017 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1018 }else if( useTempTable ){ 1019 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 1020 }else if( pSelect ){ 1021 if( regFromSelect!=regData ){ 1022 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); 1023 } 1024 }else{ 1025 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); 1026 } 1027 } 1028 1029 /* Generate code to check constraints and generate index keys and 1030 ** do the insertion. 1031 */ 1032 #ifndef SQLITE_OMIT_VIRTUALTABLE 1033 if( IsVirtual(pTab) ){ 1034 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1035 sqlite3VtabMakeWritable(pParse, pTab); 1036 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1037 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1038 sqlite3MayAbort(pParse); 1039 }else 1040 #endif 1041 { 1042 int isReplace; /* Set to true if constraints may cause a replace */ 1043 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1044 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1045 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1046 ); 1047 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1048 1049 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1050 ** constraints or (b) there are no triggers and this table is not a 1051 ** parent table in a foreign key constraint. It is safe to set the 1052 ** flag in the second case as if any REPLACE constraint is hit, an 1053 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1054 ** cursor that is disturbed. And these instructions both clear the 1055 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1056 ** functionality. */ 1057 bUseSeek = (isReplace==0 || (pTrigger==0 && 1058 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0) 1059 )); 1060 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1061 regIns, aRegIdx, 0, appendFlag, bUseSeek 1062 ); 1063 } 1064 } 1065 1066 /* Update the count of rows that are inserted 1067 */ 1068 if( regRowCount ){ 1069 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1070 } 1071 1072 if( pTrigger ){ 1073 /* Code AFTER triggers */ 1074 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1075 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1076 } 1077 1078 /* The bottom of the main insertion loop, if the data source 1079 ** is a SELECT statement. 1080 */ 1081 sqlite3VdbeResolveLabel(v, endOfLoop); 1082 if( useTempTable ){ 1083 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1084 sqlite3VdbeJumpHere(v, addrInsTop); 1085 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1086 }else if( pSelect ){ 1087 sqlite3VdbeGoto(v, addrCont); 1088 sqlite3VdbeJumpHere(v, addrInsTop); 1089 } 1090 1091 insert_end: 1092 /* Update the sqlite_sequence table by storing the content of the 1093 ** maximum rowid counter values recorded while inserting into 1094 ** autoincrement tables. 1095 */ 1096 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1097 sqlite3AutoincrementEnd(pParse); 1098 } 1099 1100 /* 1101 ** Return the number of rows inserted. If this routine is 1102 ** generating code because of a call to sqlite3NestedParse(), do not 1103 ** invoke the callback function. 1104 */ 1105 if( regRowCount ){ 1106 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1107 sqlite3VdbeSetNumCols(v, 1); 1108 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1109 } 1110 1111 insert_cleanup: 1112 sqlite3SrcListDelete(db, pTabList); 1113 sqlite3ExprListDelete(db, pList); 1114 sqlite3UpsertDelete(db, pUpsert); 1115 sqlite3SelectDelete(db, pSelect); 1116 sqlite3IdListDelete(db, pColumn); 1117 sqlite3DbFree(db, aRegIdx); 1118 } 1119 1120 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1121 ** they may interfere with compilation of other functions in this file 1122 ** (or in another file, if this file becomes part of the amalgamation). */ 1123 #ifdef isView 1124 #undef isView 1125 #endif 1126 #ifdef pTrigger 1127 #undef pTrigger 1128 #endif 1129 #ifdef tmask 1130 #undef tmask 1131 #endif 1132 1133 /* 1134 ** Meanings of bits in of pWalker->eCode for 1135 ** sqlite3ExprReferencesUpdatedColumn() 1136 */ 1137 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1138 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1139 1140 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1141 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1142 ** expression node references any of the 1143 ** columns that are being modifed by an UPDATE statement. 1144 */ 1145 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1146 if( pExpr->op==TK_COLUMN ){ 1147 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1148 if( pExpr->iColumn>=0 ){ 1149 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1150 pWalker->eCode |= CKCNSTRNT_COLUMN; 1151 } 1152 }else{ 1153 pWalker->eCode |= CKCNSTRNT_ROWID; 1154 } 1155 } 1156 return WRC_Continue; 1157 } 1158 1159 /* 1160 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1161 ** only columns that are modified by the UPDATE are those for which 1162 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1163 ** 1164 ** Return true if CHECK constraint pExpr uses any of the 1165 ** changing columns (or the rowid if it is changing). In other words, 1166 ** return true if this CHECK constraint must be validated for 1167 ** the new row in the UPDATE statement. 1168 ** 1169 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1170 ** The operation of this routine is the same - return true if an only if 1171 ** the expression uses one or more of columns identified by the second and 1172 ** third arguments. 1173 */ 1174 int sqlite3ExprReferencesUpdatedColumn( 1175 Expr *pExpr, /* The expression to be checked */ 1176 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1177 int chngRowid /* True if UPDATE changes the rowid */ 1178 ){ 1179 Walker w; 1180 memset(&w, 0, sizeof(w)); 1181 w.eCode = 0; 1182 w.xExprCallback = checkConstraintExprNode; 1183 w.u.aiCol = aiChng; 1184 sqlite3WalkExpr(&w, pExpr); 1185 if( !chngRowid ){ 1186 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1187 w.eCode &= ~CKCNSTRNT_ROWID; 1188 } 1189 testcase( w.eCode==0 ); 1190 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1191 testcase( w.eCode==CKCNSTRNT_ROWID ); 1192 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1193 return w.eCode!=0; 1194 } 1195 1196 /* 1197 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1198 ** on table pTab. 1199 ** 1200 ** The regNewData parameter is the first register in a range that contains 1201 ** the data to be inserted or the data after the update. There will be 1202 ** pTab->nCol+1 registers in this range. The first register (the one 1203 ** that regNewData points to) will contain the new rowid, or NULL in the 1204 ** case of a WITHOUT ROWID table. The second register in the range will 1205 ** contain the content of the first table column. The third register will 1206 ** contain the content of the second table column. And so forth. 1207 ** 1208 ** The regOldData parameter is similar to regNewData except that it contains 1209 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1210 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1211 ** checking regOldData for zero. 1212 ** 1213 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1214 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1215 ** might be modified by the UPDATE. If pkChng is false, then the key of 1216 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1217 ** 1218 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1219 ** was explicitly specified as part of the INSERT statement. If pkChng 1220 ** is zero, it means that the either rowid is computed automatically or 1221 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1222 ** pkChng will only be true if the INSERT statement provides an integer 1223 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1224 ** 1225 ** The code generated by this routine will store new index entries into 1226 ** registers identified by aRegIdx[]. No index entry is created for 1227 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1228 ** the same as the order of indices on the linked list of indices 1229 ** at pTab->pIndex. 1230 ** 1231 ** (2019-05-07) The generated code also creates a new record for the 1232 ** main table, if pTab is a rowid table, and stores that record in the 1233 ** register identified by aRegIdx[nIdx] - in other words in the first 1234 ** entry of aRegIdx[] past the last index. It is important that the 1235 ** record be generated during constraint checks to avoid affinity changes 1236 ** to the register content that occur after constraint checks but before 1237 ** the new record is inserted. 1238 ** 1239 ** The caller must have already opened writeable cursors on the main 1240 ** table and all applicable indices (that is to say, all indices for which 1241 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1242 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1243 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1244 ** for the first index in the pTab->pIndex list. Cursors for other indices 1245 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1246 ** 1247 ** This routine also generates code to check constraints. NOT NULL, 1248 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1249 ** then the appropriate action is performed. There are five possible 1250 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1251 ** 1252 ** Constraint type Action What Happens 1253 ** --------------- ---------- ---------------------------------------- 1254 ** any ROLLBACK The current transaction is rolled back and 1255 ** sqlite3_step() returns immediately with a 1256 ** return code of SQLITE_CONSTRAINT. 1257 ** 1258 ** any ABORT Back out changes from the current command 1259 ** only (do not do a complete rollback) then 1260 ** cause sqlite3_step() to return immediately 1261 ** with SQLITE_CONSTRAINT. 1262 ** 1263 ** any FAIL Sqlite3_step() returns immediately with a 1264 ** return code of SQLITE_CONSTRAINT. The 1265 ** transaction is not rolled back and any 1266 ** changes to prior rows are retained. 1267 ** 1268 ** any IGNORE The attempt in insert or update the current 1269 ** row is skipped, without throwing an error. 1270 ** Processing continues with the next row. 1271 ** (There is an immediate jump to ignoreDest.) 1272 ** 1273 ** NOT NULL REPLACE The NULL value is replace by the default 1274 ** value for that column. If the default value 1275 ** is NULL, the action is the same as ABORT. 1276 ** 1277 ** UNIQUE REPLACE The other row that conflicts with the row 1278 ** being inserted is removed. 1279 ** 1280 ** CHECK REPLACE Illegal. The results in an exception. 1281 ** 1282 ** Which action to take is determined by the overrideError parameter. 1283 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1284 ** is used. Or if pParse->onError==OE_Default then the onError value 1285 ** for the constraint is used. 1286 */ 1287 void sqlite3GenerateConstraintChecks( 1288 Parse *pParse, /* The parser context */ 1289 Table *pTab, /* The table being inserted or updated */ 1290 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1291 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1292 int iIdxCur, /* First index cursor */ 1293 int regNewData, /* First register in a range holding values to insert */ 1294 int regOldData, /* Previous content. 0 for INSERTs */ 1295 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1296 u8 overrideError, /* Override onError to this if not OE_Default */ 1297 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1298 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1299 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1300 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1301 ){ 1302 Vdbe *v; /* VDBE under constrution */ 1303 Index *pIdx; /* Pointer to one of the indices */ 1304 Index *pPk = 0; /* The PRIMARY KEY index */ 1305 sqlite3 *db; /* Database connection */ 1306 int i; /* loop counter */ 1307 int ix; /* Index loop counter */ 1308 int nCol; /* Number of columns */ 1309 int onError; /* Conflict resolution strategy */ 1310 int addr1; /* Address of jump instruction */ 1311 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1312 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1313 Index *pUpIdx = 0; /* Index to which to apply the upsert */ 1314 u8 isUpdate; /* True if this is an UPDATE operation */ 1315 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1316 int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */ 1317 int upsertJump = 0; /* Address of Goto that jumps into upsert subroutine */ 1318 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1319 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1320 1321 isUpdate = regOldData!=0; 1322 db = pParse->db; 1323 v = sqlite3GetVdbe(pParse); 1324 assert( v!=0 ); 1325 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1326 nCol = pTab->nCol; 1327 1328 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1329 ** normal rowid tables. nPkField is the number of key fields in the 1330 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1331 ** number of fields in the true primary key of the table. */ 1332 if( HasRowid(pTab) ){ 1333 pPk = 0; 1334 nPkField = 1; 1335 }else{ 1336 pPk = sqlite3PrimaryKeyIndex(pTab); 1337 nPkField = pPk->nKeyCol; 1338 } 1339 1340 /* Record that this module has started */ 1341 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1342 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1343 1344 /* Test all NOT NULL constraints. 1345 */ 1346 for(i=0; i<nCol; i++){ 1347 if( i==pTab->iPKey ){ 1348 continue; /* ROWID is never NULL */ 1349 } 1350 if( aiChng && aiChng[i]<0 ){ 1351 /* Don't bother checking for NOT NULL on columns that do not change */ 1352 continue; 1353 } 1354 onError = pTab->aCol[i].notNull; 1355 if( onError==OE_None ) continue; /* This column is allowed to be NULL */ 1356 if( overrideError!=OE_Default ){ 1357 onError = overrideError; 1358 }else if( onError==OE_Default ){ 1359 onError = OE_Abort; 1360 } 1361 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ 1362 onError = OE_Abort; 1363 } 1364 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1365 || onError==OE_Ignore || onError==OE_Replace ); 1366 addr1 = 0; 1367 switch( onError ){ 1368 case OE_Replace: { 1369 assert( onError==OE_Replace ); 1370 addr1 = sqlite3VdbeMakeLabel(pParse); 1371 sqlite3VdbeAddOp2(v, OP_NotNull, regNewData+1+i, addr1); 1372 VdbeCoverage(v); 1373 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); 1374 sqlite3VdbeAddOp2(v, OP_NotNull, regNewData+1+i, addr1); 1375 VdbeCoverage(v); 1376 onError = OE_Abort; 1377 /* Fall through into the OE_Abort case to generate code that runs 1378 ** if both the input and the default value are NULL */ 1379 } 1380 case OE_Abort: 1381 sqlite3MayAbort(pParse); 1382 /* Fall through */ 1383 case OE_Rollback: 1384 case OE_Fail: { 1385 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1386 pTab->aCol[i].zName); 1387 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, 1388 regNewData+1+i); 1389 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1390 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1391 VdbeCoverage(v); 1392 if( addr1 ) sqlite3VdbeResolveLabel(v, addr1); 1393 break; 1394 } 1395 default: { 1396 assert( onError==OE_Ignore ); 1397 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); 1398 VdbeCoverage(v); 1399 break; 1400 } 1401 } 1402 } 1403 1404 /* Test all CHECK constraints 1405 */ 1406 #ifndef SQLITE_OMIT_CHECK 1407 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1408 ExprList *pCheck = pTab->pCheck; 1409 pParse->iSelfTab = -(regNewData+1); 1410 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1411 for(i=0; i<pCheck->nExpr; i++){ 1412 int allOk; 1413 Expr *pExpr = pCheck->a[i].pExpr; 1414 if( aiChng 1415 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1416 ){ 1417 /* The check constraints do not reference any of the columns being 1418 ** updated so there is no point it verifying the check constraint */ 1419 continue; 1420 } 1421 allOk = sqlite3VdbeMakeLabel(pParse); 1422 sqlite3VdbeVerifyAbortable(v, onError); 1423 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); 1424 if( onError==OE_Ignore ){ 1425 sqlite3VdbeGoto(v, ignoreDest); 1426 }else{ 1427 char *zName = pCheck->a[i].zName; 1428 if( zName==0 ) zName = pTab->zName; 1429 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1430 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1431 onError, zName, P4_TRANSIENT, 1432 P5_ConstraintCheck); 1433 } 1434 sqlite3VdbeResolveLabel(v, allOk); 1435 } 1436 pParse->iSelfTab = 0; 1437 } 1438 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1439 1440 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1441 ** order: 1442 ** 1443 ** (1) OE_Update 1444 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1445 ** (3) OE_Replace 1446 ** 1447 ** OE_Fail and OE_Ignore must happen before any changes are made. 1448 ** OE_Update guarantees that only a single row will change, so it 1449 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1450 ** could happen in any order, but they are grouped up front for 1451 ** convenience. 1452 ** 1453 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1454 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1455 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1456 ** constraint before any others, so it had to be moved. 1457 ** 1458 ** Constraint checking code is generated in this order: 1459 ** (A) The rowid constraint 1460 ** (B) Unique index constraints that do not have OE_Replace as their 1461 ** default conflict resolution strategy 1462 ** (C) Unique index that do use OE_Replace by default. 1463 ** 1464 ** The ordering of (2) and (3) is accomplished by making sure the linked 1465 ** list of indexes attached to a table puts all OE_Replace indexes last 1466 ** in the list. See sqlite3CreateIndex() for where that happens. 1467 */ 1468 1469 if( pUpsert ){ 1470 if( pUpsert->pUpsertTarget==0 ){ 1471 /* An ON CONFLICT DO NOTHING clause, without a constraint-target. 1472 ** Make all unique constraint resolution be OE_Ignore */ 1473 assert( pUpsert->pUpsertSet==0 ); 1474 overrideError = OE_Ignore; 1475 pUpsert = 0; 1476 }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){ 1477 /* If the constraint-target uniqueness check must be run first. 1478 ** Jump to that uniqueness check now */ 1479 upsertJump = sqlite3VdbeAddOp0(v, OP_Goto); 1480 VdbeComment((v, "UPSERT constraint goes first")); 1481 } 1482 } 1483 1484 /* If rowid is changing, make sure the new rowid does not previously 1485 ** exist in the table. 1486 */ 1487 if( pkChng && pPk==0 ){ 1488 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1489 1490 /* Figure out what action to take in case of a rowid collision */ 1491 onError = pTab->keyConf; 1492 if( overrideError!=OE_Default ){ 1493 onError = overrideError; 1494 }else if( onError==OE_Default ){ 1495 onError = OE_Abort; 1496 } 1497 1498 /* figure out whether or not upsert applies in this case */ 1499 if( pUpsert && pUpsert->pUpsertIdx==0 ){ 1500 if( pUpsert->pUpsertSet==0 ){ 1501 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1502 }else{ 1503 onError = OE_Update; /* DO UPDATE */ 1504 } 1505 } 1506 1507 /* If the response to a rowid conflict is REPLACE but the response 1508 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1509 ** to defer the running of the rowid conflict checking until after 1510 ** the UNIQUE constraints have run. 1511 */ 1512 if( onError==OE_Replace /* IPK rule is REPLACE */ 1513 && onError!=overrideError /* Rules for other contraints are different */ 1514 && pTab->pIndex /* There exist other constraints */ 1515 ){ 1516 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1517 VdbeComment((v, "defer IPK REPLACE until last")); 1518 } 1519 1520 if( isUpdate ){ 1521 /* pkChng!=0 does not mean that the rowid has changed, only that 1522 ** it might have changed. Skip the conflict logic below if the rowid 1523 ** is unchanged. */ 1524 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1525 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1526 VdbeCoverage(v); 1527 } 1528 1529 /* Check to see if the new rowid already exists in the table. Skip 1530 ** the following conflict logic if it does not. */ 1531 VdbeNoopComment((v, "uniqueness check for ROWID")); 1532 sqlite3VdbeVerifyAbortable(v, onError); 1533 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1534 VdbeCoverage(v); 1535 1536 switch( onError ){ 1537 default: { 1538 onError = OE_Abort; 1539 /* Fall thru into the next case */ 1540 } 1541 case OE_Rollback: 1542 case OE_Abort: 1543 case OE_Fail: { 1544 testcase( onError==OE_Rollback ); 1545 testcase( onError==OE_Abort ); 1546 testcase( onError==OE_Fail ); 1547 sqlite3RowidConstraint(pParse, onError, pTab); 1548 break; 1549 } 1550 case OE_Replace: { 1551 /* If there are DELETE triggers on this table and the 1552 ** recursive-triggers flag is set, call GenerateRowDelete() to 1553 ** remove the conflicting row from the table. This will fire 1554 ** the triggers and remove both the table and index b-tree entries. 1555 ** 1556 ** Otherwise, if there are no triggers or the recursive-triggers 1557 ** flag is not set, but the table has one or more indexes, call 1558 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1559 ** only. The table b-tree entry will be replaced by the new entry 1560 ** when it is inserted. 1561 ** 1562 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1563 ** also invoke MultiWrite() to indicate that this VDBE may require 1564 ** statement rollback (if the statement is aborted after the delete 1565 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1566 ** but being more selective here allows statements like: 1567 ** 1568 ** REPLACE INTO t(rowid) VALUES($newrowid) 1569 ** 1570 ** to run without a statement journal if there are no indexes on the 1571 ** table. 1572 */ 1573 Trigger *pTrigger = 0; 1574 if( db->flags&SQLITE_RecTriggers ){ 1575 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1576 } 1577 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1578 sqlite3MultiWrite(pParse); 1579 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1580 regNewData, 1, 0, OE_Replace, 1, -1); 1581 }else{ 1582 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1583 assert( HasRowid(pTab) ); 1584 /* This OP_Delete opcode fires the pre-update-hook only. It does 1585 ** not modify the b-tree. It is more efficient to let the coming 1586 ** OP_Insert replace the existing entry than it is to delete the 1587 ** existing entry and then insert a new one. */ 1588 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 1589 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1590 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1591 if( pTab->pIndex ){ 1592 sqlite3MultiWrite(pParse); 1593 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 1594 } 1595 } 1596 seenReplace = 1; 1597 break; 1598 } 1599 #ifndef SQLITE_OMIT_UPSERT 1600 case OE_Update: { 1601 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 1602 /* Fall through */ 1603 } 1604 #endif 1605 case OE_Ignore: { 1606 testcase( onError==OE_Ignore ); 1607 sqlite3VdbeGoto(v, ignoreDest); 1608 break; 1609 } 1610 } 1611 sqlite3VdbeResolveLabel(v, addrRowidOk); 1612 if( ipkTop ){ 1613 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 1614 sqlite3VdbeJumpHere(v, ipkTop-1); 1615 } 1616 } 1617 1618 /* Test all UNIQUE constraints by creating entries for each UNIQUE 1619 ** index and making sure that duplicate entries do not already exist. 1620 ** Compute the revised record entries for indices as we go. 1621 ** 1622 ** This loop also handles the case of the PRIMARY KEY index for a 1623 ** WITHOUT ROWID table. 1624 */ 1625 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ 1626 int regIdx; /* Range of registers hold conent for pIdx */ 1627 int regR; /* Range of registers holding conflicting PK */ 1628 int iThisCur; /* Cursor for this UNIQUE index */ 1629 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 1630 1631 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 1632 if( pUpIdx==pIdx ){ 1633 addrUniqueOk = upsertJump+1; 1634 upsertBypass = sqlite3VdbeGoto(v, 0); 1635 VdbeComment((v, "Skip upsert subroutine")); 1636 sqlite3VdbeJumpHere(v, upsertJump); 1637 }else{ 1638 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 1639 } 1640 if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){ 1641 sqlite3TableAffinity(v, pTab, regNewData+1); 1642 bAffinityDone = 1; 1643 } 1644 VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName)); 1645 iThisCur = iIdxCur+ix; 1646 1647 1648 /* Skip partial indices for which the WHERE clause is not true */ 1649 if( pIdx->pPartIdxWhere ){ 1650 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 1651 pParse->iSelfTab = -(regNewData+1); 1652 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 1653 SQLITE_JUMPIFNULL); 1654 pParse->iSelfTab = 0; 1655 } 1656 1657 /* Create a record for this index entry as it should appear after 1658 ** the insert or update. Store that record in the aRegIdx[ix] register 1659 */ 1660 regIdx = aRegIdx[ix]+1; 1661 for(i=0; i<pIdx->nColumn; i++){ 1662 int iField = pIdx->aiColumn[i]; 1663 int x; 1664 if( iField==XN_EXPR ){ 1665 pParse->iSelfTab = -(regNewData+1); 1666 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 1667 pParse->iSelfTab = 0; 1668 VdbeComment((v, "%s column %d", pIdx->zName, i)); 1669 }else{ 1670 if( iField==XN_ROWID || iField==pTab->iPKey ){ 1671 x = regNewData; 1672 }else{ 1673 x = iField + regNewData + 1; 1674 } 1675 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); 1676 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); 1677 } 1678 } 1679 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 1680 VdbeComment((v, "for %s", pIdx->zName)); 1681 #ifdef SQLITE_ENABLE_NULL_TRIM 1682 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 1683 sqlite3SetMakeRecordP5(v, pIdx->pTable); 1684 } 1685 #endif 1686 1687 /* In an UPDATE operation, if this index is the PRIMARY KEY index 1688 ** of a WITHOUT ROWID table and there has been no change the 1689 ** primary key, then no collision is possible. The collision detection 1690 ** logic below can all be skipped. */ 1691 if( isUpdate && pPk==pIdx && pkChng==0 ){ 1692 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1693 continue; 1694 } 1695 1696 /* Find out what action to take in case there is a uniqueness conflict */ 1697 onError = pIdx->onError; 1698 if( onError==OE_None ){ 1699 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1700 continue; /* pIdx is not a UNIQUE index */ 1701 } 1702 if( overrideError!=OE_Default ){ 1703 onError = overrideError; 1704 }else if( onError==OE_Default ){ 1705 onError = OE_Abort; 1706 } 1707 1708 /* Figure out if the upsert clause applies to this index */ 1709 if( pUpIdx==pIdx ){ 1710 if( pUpsert->pUpsertSet==0 ){ 1711 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1712 }else{ 1713 onError = OE_Update; /* DO UPDATE */ 1714 } 1715 } 1716 1717 /* Collision detection may be omitted if all of the following are true: 1718 ** (1) The conflict resolution algorithm is REPLACE 1719 ** (2) The table is a WITHOUT ROWID table 1720 ** (3) There are no secondary indexes on the table 1721 ** (4) No delete triggers need to be fired if there is a conflict 1722 ** (5) No FK constraint counters need to be updated if a conflict occurs. 1723 ** 1724 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 1725 ** must be explicitly deleted in order to ensure any pre-update hook 1726 ** is invoked. */ 1727 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 1728 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 1729 && pPk==pIdx /* Condition 2 */ 1730 && onError==OE_Replace /* Condition 1 */ 1731 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 1732 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 1733 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 1734 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 1735 ){ 1736 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1737 continue; 1738 } 1739 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 1740 1741 /* Check to see if the new index entry will be unique */ 1742 sqlite3VdbeVerifyAbortable(v, onError); 1743 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 1744 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 1745 1746 /* Generate code to handle collisions */ 1747 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); 1748 if( isUpdate || onError==OE_Replace ){ 1749 if( HasRowid(pTab) ){ 1750 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 1751 /* Conflict only if the rowid of the existing index entry 1752 ** is different from old-rowid */ 1753 if( isUpdate ){ 1754 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 1755 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1756 VdbeCoverage(v); 1757 } 1758 }else{ 1759 int x; 1760 /* Extract the PRIMARY KEY from the end of the index entry and 1761 ** store it in registers regR..regR+nPk-1 */ 1762 if( pIdx!=pPk ){ 1763 for(i=0; i<pPk->nKeyCol; i++){ 1764 assert( pPk->aiColumn[i]>=0 ); 1765 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); 1766 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 1767 VdbeComment((v, "%s.%s", pTab->zName, 1768 pTab->aCol[pPk->aiColumn[i]].zName)); 1769 } 1770 } 1771 if( isUpdate ){ 1772 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 1773 ** table, only conflict if the new PRIMARY KEY values are actually 1774 ** different from the old. 1775 ** 1776 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 1777 ** of the matched index row are different from the original PRIMARY 1778 ** KEY values of this row before the update. */ 1779 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 1780 int op = OP_Ne; 1781 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 1782 1783 for(i=0; i<pPk->nKeyCol; i++){ 1784 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 1785 x = pPk->aiColumn[i]; 1786 assert( x>=0 ); 1787 if( i==(pPk->nKeyCol-1) ){ 1788 addrJump = addrUniqueOk; 1789 op = OP_Eq; 1790 } 1791 sqlite3VdbeAddOp4(v, op, 1792 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 1793 ); 1794 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1795 VdbeCoverageIf(v, op==OP_Eq); 1796 VdbeCoverageIf(v, op==OP_Ne); 1797 } 1798 } 1799 } 1800 } 1801 1802 /* Generate code that executes if the new index entry is not unique */ 1803 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1804 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 1805 switch( onError ){ 1806 case OE_Rollback: 1807 case OE_Abort: 1808 case OE_Fail: { 1809 testcase( onError==OE_Rollback ); 1810 testcase( onError==OE_Abort ); 1811 testcase( onError==OE_Fail ); 1812 sqlite3UniqueConstraint(pParse, onError, pIdx); 1813 break; 1814 } 1815 #ifndef SQLITE_OMIT_UPSERT 1816 case OE_Update: { 1817 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 1818 /* Fall through */ 1819 } 1820 #endif 1821 case OE_Ignore: { 1822 testcase( onError==OE_Ignore ); 1823 sqlite3VdbeGoto(v, ignoreDest); 1824 break; 1825 } 1826 default: { 1827 Trigger *pTrigger = 0; 1828 assert( onError==OE_Replace ); 1829 if( db->flags&SQLITE_RecTriggers ){ 1830 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1831 } 1832 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ 1833 sqlite3MultiWrite(pParse); 1834 } 1835 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 1836 regR, nPkField, 0, OE_Replace, 1837 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 1838 seenReplace = 1; 1839 break; 1840 } 1841 } 1842 if( pUpIdx==pIdx ){ 1843 sqlite3VdbeGoto(v, upsertJump+1); 1844 sqlite3VdbeJumpHere(v, upsertBypass); 1845 }else{ 1846 sqlite3VdbeResolveLabel(v, addrUniqueOk); 1847 } 1848 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 1849 } 1850 1851 /* If the IPK constraint is a REPLACE, run it last */ 1852 if( ipkTop ){ 1853 sqlite3VdbeGoto(v, ipkTop); 1854 VdbeComment((v, "Do IPK REPLACE")); 1855 sqlite3VdbeJumpHere(v, ipkBottom); 1856 } 1857 1858 /* Generate the table record */ 1859 if( HasRowid(pTab) ){ 1860 int regRec = aRegIdx[ix]; 1861 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nCol, regRec); 1862 sqlite3SetMakeRecordP5(v, pTab); 1863 if( !bAffinityDone ){ 1864 sqlite3TableAffinity(v, pTab, 0); 1865 } 1866 } 1867 1868 *pbMayReplace = seenReplace; 1869 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 1870 } 1871 1872 #ifdef SQLITE_ENABLE_NULL_TRIM 1873 /* 1874 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 1875 ** to be the number of columns in table pTab that must not be NULL-trimmed. 1876 ** 1877 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 1878 */ 1879 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 1880 u16 i; 1881 1882 /* Records with omitted columns are only allowed for schema format 1883 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 1884 if( pTab->pSchema->file_format<2 ) return; 1885 1886 for(i=pTab->nCol-1; i>0; i--){ 1887 if( pTab->aCol[i].pDflt!=0 ) break; 1888 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 1889 } 1890 sqlite3VdbeChangeP5(v, i+1); 1891 } 1892 #endif 1893 1894 /* 1895 ** This routine generates code to finish the INSERT or UPDATE operation 1896 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 1897 ** A consecutive range of registers starting at regNewData contains the 1898 ** rowid and the content to be inserted. 1899 ** 1900 ** The arguments to this routine should be the same as the first six 1901 ** arguments to sqlite3GenerateConstraintChecks. 1902 */ 1903 void sqlite3CompleteInsertion( 1904 Parse *pParse, /* The parser context */ 1905 Table *pTab, /* the table into which we are inserting */ 1906 int iDataCur, /* Cursor of the canonical data source */ 1907 int iIdxCur, /* First index cursor */ 1908 int regNewData, /* Range of content */ 1909 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 1910 int update_flags, /* True for UPDATE, False for INSERT */ 1911 int appendBias, /* True if this is likely to be an append */ 1912 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 1913 ){ 1914 Vdbe *v; /* Prepared statements under construction */ 1915 Index *pIdx; /* An index being inserted or updated */ 1916 u8 pik_flags; /* flag values passed to the btree insert */ 1917 int i; /* Loop counter */ 1918 1919 assert( update_flags==0 1920 || update_flags==OPFLAG_ISUPDATE 1921 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 1922 ); 1923 1924 v = sqlite3GetVdbe(pParse); 1925 assert( v!=0 ); 1926 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1927 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 1928 if( aRegIdx[i]==0 ) continue; 1929 if( pIdx->pPartIdxWhere ){ 1930 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 1931 VdbeCoverage(v); 1932 } 1933 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 1934 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 1935 assert( pParse->nested==0 ); 1936 pik_flags |= OPFLAG_NCHANGE; 1937 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 1938 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1939 if( update_flags==0 ){ 1940 int r = sqlite3GetTempReg(pParse); 1941 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 1942 sqlite3VdbeAddOp4(v, OP_Insert, 1943 iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE 1944 ); 1945 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 1946 sqlite3ReleaseTempReg(pParse, r); 1947 } 1948 #endif 1949 } 1950 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 1951 aRegIdx[i]+1, 1952 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 1953 sqlite3VdbeChangeP5(v, pik_flags); 1954 } 1955 if( !HasRowid(pTab) ) return; 1956 if( pParse->nested ){ 1957 pik_flags = 0; 1958 }else{ 1959 pik_flags = OPFLAG_NCHANGE; 1960 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 1961 } 1962 if( appendBias ){ 1963 pik_flags |= OPFLAG_APPEND; 1964 } 1965 if( useSeekResult ){ 1966 pik_flags |= OPFLAG_USESEEKRESULT; 1967 } 1968 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 1969 if( !pParse->nested ){ 1970 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 1971 } 1972 sqlite3VdbeChangeP5(v, pik_flags); 1973 } 1974 1975 /* 1976 ** Allocate cursors for the pTab table and all its indices and generate 1977 ** code to open and initialized those cursors. 1978 ** 1979 ** The cursor for the object that contains the complete data (normally 1980 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 1981 ** ROWID table) is returned in *piDataCur. The first index cursor is 1982 ** returned in *piIdxCur. The number of indices is returned. 1983 ** 1984 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 1985 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 1986 ** If iBase is negative, then allocate the next available cursor. 1987 ** 1988 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 1989 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 1990 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 1991 ** pTab->pIndex list. 1992 ** 1993 ** If pTab is a virtual table, then this routine is a no-op and the 1994 ** *piDataCur and *piIdxCur values are left uninitialized. 1995 */ 1996 int sqlite3OpenTableAndIndices( 1997 Parse *pParse, /* Parsing context */ 1998 Table *pTab, /* Table to be opened */ 1999 int op, /* OP_OpenRead or OP_OpenWrite */ 2000 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2001 int iBase, /* Use this for the table cursor, if there is one */ 2002 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2003 int *piDataCur, /* Write the database source cursor number here */ 2004 int *piIdxCur /* Write the first index cursor number here */ 2005 ){ 2006 int i; 2007 int iDb; 2008 int iDataCur; 2009 Index *pIdx; 2010 Vdbe *v; 2011 2012 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2013 assert( op==OP_OpenWrite || p5==0 ); 2014 if( IsVirtual(pTab) ){ 2015 /* This routine is a no-op for virtual tables. Leave the output 2016 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 2017 ** can detect if they are used by mistake in the caller. */ 2018 return 0; 2019 } 2020 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2021 v = sqlite3GetVdbe(pParse); 2022 assert( v!=0 ); 2023 if( iBase<0 ) iBase = pParse->nTab; 2024 iDataCur = iBase++; 2025 if( piDataCur ) *piDataCur = iDataCur; 2026 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2027 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2028 }else{ 2029 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2030 } 2031 if( piIdxCur ) *piIdxCur = iBase; 2032 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2033 int iIdxCur = iBase++; 2034 assert( pIdx->pSchema==pTab->pSchema ); 2035 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2036 if( piDataCur ) *piDataCur = iIdxCur; 2037 p5 = 0; 2038 } 2039 if( aToOpen==0 || aToOpen[i+1] ){ 2040 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2041 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2042 sqlite3VdbeChangeP5(v, p5); 2043 VdbeComment((v, "%s", pIdx->zName)); 2044 } 2045 } 2046 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2047 return i; 2048 } 2049 2050 2051 #ifdef SQLITE_TEST 2052 /* 2053 ** The following global variable is incremented whenever the 2054 ** transfer optimization is used. This is used for testing 2055 ** purposes only - to make sure the transfer optimization really 2056 ** is happening when it is supposed to. 2057 */ 2058 int sqlite3_xferopt_count; 2059 #endif /* SQLITE_TEST */ 2060 2061 2062 #ifndef SQLITE_OMIT_XFER_OPT 2063 /* 2064 ** Check to see if index pSrc is compatible as a source of data 2065 ** for index pDest in an insert transfer optimization. The rules 2066 ** for a compatible index: 2067 ** 2068 ** * The index is over the same set of columns 2069 ** * The same DESC and ASC markings occurs on all columns 2070 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2071 ** * The same collating sequence on each column 2072 ** * The index has the exact same WHERE clause 2073 */ 2074 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2075 int i; 2076 assert( pDest && pSrc ); 2077 assert( pDest->pTable!=pSrc->pTable ); 2078 if( pDest->nKeyCol!=pSrc->nKeyCol ){ 2079 return 0; /* Different number of columns */ 2080 } 2081 if( pDest->onError!=pSrc->onError ){ 2082 return 0; /* Different conflict resolution strategies */ 2083 } 2084 for(i=0; i<pSrc->nKeyCol; i++){ 2085 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2086 return 0; /* Different columns indexed */ 2087 } 2088 if( pSrc->aiColumn[i]==XN_EXPR ){ 2089 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2090 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2091 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2092 return 0; /* Different expressions in the index */ 2093 } 2094 } 2095 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2096 return 0; /* Different sort orders */ 2097 } 2098 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2099 return 0; /* Different collating sequences */ 2100 } 2101 } 2102 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2103 return 0; /* Different WHERE clauses */ 2104 } 2105 2106 /* If no test above fails then the indices must be compatible */ 2107 return 1; 2108 } 2109 2110 /* 2111 ** Attempt the transfer optimization on INSERTs of the form 2112 ** 2113 ** INSERT INTO tab1 SELECT * FROM tab2; 2114 ** 2115 ** The xfer optimization transfers raw records from tab2 over to tab1. 2116 ** Columns are not decoded and reassembled, which greatly improves 2117 ** performance. Raw index records are transferred in the same way. 2118 ** 2119 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2120 ** There are lots of rules for determining compatibility - see comments 2121 ** embedded in the code for details. 2122 ** 2123 ** This routine returns TRUE if the optimization is guaranteed to be used. 2124 ** Sometimes the xfer optimization will only work if the destination table 2125 ** is empty - a factor that can only be determined at run-time. In that 2126 ** case, this routine generates code for the xfer optimization but also 2127 ** does a test to see if the destination table is empty and jumps over the 2128 ** xfer optimization code if the test fails. In that case, this routine 2129 ** returns FALSE so that the caller will know to go ahead and generate 2130 ** an unoptimized transfer. This routine also returns FALSE if there 2131 ** is no chance that the xfer optimization can be applied. 2132 ** 2133 ** This optimization is particularly useful at making VACUUM run faster. 2134 */ 2135 static int xferOptimization( 2136 Parse *pParse, /* Parser context */ 2137 Table *pDest, /* The table we are inserting into */ 2138 Select *pSelect, /* A SELECT statement to use as the data source */ 2139 int onError, /* How to handle constraint errors */ 2140 int iDbDest /* The database of pDest */ 2141 ){ 2142 sqlite3 *db = pParse->db; 2143 ExprList *pEList; /* The result set of the SELECT */ 2144 Table *pSrc; /* The table in the FROM clause of SELECT */ 2145 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2146 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 2147 int i; /* Loop counter */ 2148 int iDbSrc; /* The database of pSrc */ 2149 int iSrc, iDest; /* Cursors from source and destination */ 2150 int addr1, addr2; /* Loop addresses */ 2151 int emptyDestTest = 0; /* Address of test for empty pDest */ 2152 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2153 Vdbe *v; /* The VDBE we are building */ 2154 int regAutoinc; /* Memory register used by AUTOINC */ 2155 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2156 int regData, regRowid; /* Registers holding data and rowid */ 2157 2158 if( pSelect==0 ){ 2159 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2160 } 2161 if( pParse->pWith || pSelect->pWith ){ 2162 /* Do not attempt to process this query if there are an WITH clauses 2163 ** attached to it. Proceeding may generate a false "no such table: xxx" 2164 ** error if pSelect reads from a CTE named "xxx". */ 2165 return 0; 2166 } 2167 if( sqlite3TriggerList(pParse, pDest) ){ 2168 return 0; /* tab1 must not have triggers */ 2169 } 2170 #ifndef SQLITE_OMIT_VIRTUALTABLE 2171 if( IsVirtual(pDest) ){ 2172 return 0; /* tab1 must not be a virtual table */ 2173 } 2174 #endif 2175 if( onError==OE_Default ){ 2176 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2177 if( onError==OE_Default ) onError = OE_Abort; 2178 } 2179 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2180 if( pSelect->pSrc->nSrc!=1 ){ 2181 return 0; /* FROM clause must have exactly one term */ 2182 } 2183 if( pSelect->pSrc->a[0].pSelect ){ 2184 return 0; /* FROM clause cannot contain a subquery */ 2185 } 2186 if( pSelect->pWhere ){ 2187 return 0; /* SELECT may not have a WHERE clause */ 2188 } 2189 if( pSelect->pOrderBy ){ 2190 return 0; /* SELECT may not have an ORDER BY clause */ 2191 } 2192 /* Do not need to test for a HAVING clause. If HAVING is present but 2193 ** there is no ORDER BY, we will get an error. */ 2194 if( pSelect->pGroupBy ){ 2195 return 0; /* SELECT may not have a GROUP BY clause */ 2196 } 2197 if( pSelect->pLimit ){ 2198 return 0; /* SELECT may not have a LIMIT clause */ 2199 } 2200 if( pSelect->pPrior ){ 2201 return 0; /* SELECT may not be a compound query */ 2202 } 2203 if( pSelect->selFlags & SF_Distinct ){ 2204 return 0; /* SELECT may not be DISTINCT */ 2205 } 2206 pEList = pSelect->pEList; 2207 assert( pEList!=0 ); 2208 if( pEList->nExpr!=1 ){ 2209 return 0; /* The result set must have exactly one column */ 2210 } 2211 assert( pEList->a[0].pExpr ); 2212 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2213 return 0; /* The result set must be the special operator "*" */ 2214 } 2215 2216 /* At this point we have established that the statement is of the 2217 ** correct syntactic form to participate in this optimization. Now 2218 ** we have to check the semantics. 2219 */ 2220 pItem = pSelect->pSrc->a; 2221 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2222 if( pSrc==0 ){ 2223 return 0; /* FROM clause does not contain a real table */ 2224 } 2225 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2226 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_master.rootpage */ 2227 return 0; /* tab1 and tab2 may not be the same table */ 2228 } 2229 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2230 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2231 } 2232 #ifndef SQLITE_OMIT_VIRTUALTABLE 2233 if( IsVirtual(pSrc) ){ 2234 return 0; /* tab2 must not be a virtual table */ 2235 } 2236 #endif 2237 if( pSrc->pSelect ){ 2238 return 0; /* tab2 may not be a view */ 2239 } 2240 if( pDest->nCol!=pSrc->nCol ){ 2241 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2242 } 2243 if( pDest->iPKey!=pSrc->iPKey ){ 2244 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2245 } 2246 for(i=0; i<pDest->nCol; i++){ 2247 Column *pDestCol = &pDest->aCol[i]; 2248 Column *pSrcCol = &pSrc->aCol[i]; 2249 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2250 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2251 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2252 ){ 2253 return 0; /* Neither table may have __hidden__ columns */ 2254 } 2255 #endif 2256 if( pDestCol->affinity!=pSrcCol->affinity ){ 2257 return 0; /* Affinity must be the same on all columns */ 2258 } 2259 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2260 return 0; /* Collating sequence must be the same on all columns */ 2261 } 2262 if( pDestCol->notNull && !pSrcCol->notNull ){ 2263 return 0; /* tab2 must be NOT NULL if tab1 is */ 2264 } 2265 /* Default values for second and subsequent columns need to match. */ 2266 if( i>0 ){ 2267 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2268 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2269 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2270 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2271 pSrcCol->pDflt->u.zToken)!=0) 2272 ){ 2273 return 0; /* Default values must be the same for all columns */ 2274 } 2275 } 2276 } 2277 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2278 if( IsUniqueIndex(pDestIdx) ){ 2279 destHasUniqueIdx = 1; 2280 } 2281 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2282 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2283 } 2284 if( pSrcIdx==0 ){ 2285 return 0; /* pDestIdx has no corresponding index in pSrc */ 2286 } 2287 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2288 && sqlite3FaultSim(411)==SQLITE_OK ){ 2289 /* The sqlite3FaultSim() call allows this corruption test to be 2290 ** bypassed during testing, in order to exercise other corruption tests 2291 ** further downstream. */ 2292 return 0; /* Corrupt schema - two indexes on the same btree */ 2293 } 2294 } 2295 #ifndef SQLITE_OMIT_CHECK 2296 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2297 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2298 } 2299 #endif 2300 #ifndef SQLITE_OMIT_FOREIGN_KEY 2301 /* Disallow the transfer optimization if the destination table constains 2302 ** any foreign key constraints. This is more restrictive than necessary. 2303 ** But the main beneficiary of the transfer optimization is the VACUUM 2304 ** command, and the VACUUM command disables foreign key constraints. So 2305 ** the extra complication to make this rule less restrictive is probably 2306 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2307 */ 2308 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2309 return 0; 2310 } 2311 #endif 2312 if( (db->flags & SQLITE_CountRows)!=0 ){ 2313 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2314 } 2315 2316 /* If we get this far, it means that the xfer optimization is at 2317 ** least a possibility, though it might only work if the destination 2318 ** table (tab1) is initially empty. 2319 */ 2320 #ifdef SQLITE_TEST 2321 sqlite3_xferopt_count++; 2322 #endif 2323 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2324 v = sqlite3GetVdbe(pParse); 2325 sqlite3CodeVerifySchema(pParse, iDbSrc); 2326 iSrc = pParse->nTab++; 2327 iDest = pParse->nTab++; 2328 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2329 regData = sqlite3GetTempReg(pParse); 2330 regRowid = sqlite3GetTempReg(pParse); 2331 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2332 assert( HasRowid(pDest) || destHasUniqueIdx ); 2333 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2334 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2335 || destHasUniqueIdx /* (2) */ 2336 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2337 )){ 2338 /* In some circumstances, we are able to run the xfer optimization 2339 ** only if the destination table is initially empty. Unless the 2340 ** DBFLAG_Vacuum flag is set, this block generates code to make 2341 ** that determination. If DBFLAG_Vacuum is set, then the destination 2342 ** table is always empty. 2343 ** 2344 ** Conditions under which the destination must be empty: 2345 ** 2346 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2347 ** (If the destination is not initially empty, the rowid fields 2348 ** of index entries might need to change.) 2349 ** 2350 ** (2) The destination has a unique index. (The xfer optimization 2351 ** is unable to test uniqueness.) 2352 ** 2353 ** (3) onError is something other than OE_Abort and OE_Rollback. 2354 */ 2355 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2356 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2357 sqlite3VdbeJumpHere(v, addr1); 2358 } 2359 if( HasRowid(pSrc) ){ 2360 u8 insFlags; 2361 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2362 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2363 if( pDest->iPKey>=0 ){ 2364 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2365 sqlite3VdbeVerifyAbortable(v, onError); 2366 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2367 VdbeCoverage(v); 2368 sqlite3RowidConstraint(pParse, onError, pDest); 2369 sqlite3VdbeJumpHere(v, addr2); 2370 autoIncStep(pParse, regAutoinc, regRowid); 2371 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 2372 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2373 }else{ 2374 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2375 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2376 } 2377 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2378 if( db->mDbFlags & DBFLAG_Vacuum ){ 2379 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2380 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| 2381 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; 2382 }else{ 2383 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; 2384 } 2385 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2386 (char*)pDest, P4_TABLE); 2387 sqlite3VdbeChangeP5(v, insFlags); 2388 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2389 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2390 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2391 }else{ 2392 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2393 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2394 } 2395 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2396 u8 idxInsFlags = 0; 2397 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2398 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2399 } 2400 assert( pSrcIdx ); 2401 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2402 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2403 VdbeComment((v, "%s", pSrcIdx->zName)); 2404 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2405 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2406 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2407 VdbeComment((v, "%s", pDestIdx->zName)); 2408 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2409 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2410 if( db->mDbFlags & DBFLAG_Vacuum ){ 2411 /* This INSERT command is part of a VACUUM operation, which guarantees 2412 ** that the destination table is empty. If all indexed columns use 2413 ** collation sequence BINARY, then it can also be assumed that the 2414 ** index will be populated by inserting keys in strictly sorted 2415 ** order. In this case, instead of seeking within the b-tree as part 2416 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2417 ** OP_IdxInsert to seek to the point within the b-tree where each key 2418 ** should be inserted. This is faster. 2419 ** 2420 ** If any of the indexed columns use a collation sequence other than 2421 ** BINARY, this optimization is disabled. This is because the user 2422 ** might change the definition of a collation sequence and then run 2423 ** a VACUUM command. In that case keys may not be written in strictly 2424 ** sorted order. */ 2425 for(i=0; i<pSrcIdx->nColumn; i++){ 2426 const char *zColl = pSrcIdx->azColl[i]; 2427 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2428 } 2429 if( i==pSrcIdx->nColumn ){ 2430 idxInsFlags = OPFLAG_USESEEKRESULT; 2431 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2432 } 2433 } 2434 if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2435 idxInsFlags |= OPFLAG_NCHANGE; 2436 } 2437 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 2438 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 2439 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 2440 sqlite3VdbeJumpHere(v, addr1); 2441 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2442 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2443 } 2444 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 2445 sqlite3ReleaseTempReg(pParse, regRowid); 2446 sqlite3ReleaseTempReg(pParse, regData); 2447 if( emptyDestTest ){ 2448 sqlite3AutoincrementEnd(pParse); 2449 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 2450 sqlite3VdbeJumpHere(v, emptyDestTest); 2451 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2452 return 0; 2453 }else{ 2454 return 1; 2455 } 2456 } 2457 #endif /* SQLITE_OMIT_XFER_OPT */ 2458