xref: /sqlite-3.40.0/src/insert.c (revision 3728b84c)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   v = sqlite3GetVdbe(pParse);
36   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37   sqlite3TableLock(pParse, iDb, pTab->tnum,
38                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
39   if( HasRowid(pTab) ){
40     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41     VdbeComment((v, "%s", pTab->zName));
42   }else{
43     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44     assert( pPk!=0 );
45     assert( pPk->tnum==pTab->tnum );
46     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48     VdbeComment((v, "%s", pTab->zName));
49   }
50 }
51 
52 /*
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
56 **
57 **  Character      Column affinity
58 **  ------------------------------
59 **  'A'            BLOB
60 **  'B'            TEXT
61 **  'C'            NUMERIC
62 **  'D'            INTEGER
63 **  'F'            REAL
64 **
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
67 **
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
71 */
72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
73   if( !pIdx->zColAff ){
74     /* The first time a column affinity string for a particular index is
75     ** required, it is allocated and populated here. It is then stored as
76     ** a member of the Index structure for subsequent use.
77     **
78     ** The column affinity string will eventually be deleted by
79     ** sqliteDeleteIndex() when the Index structure itself is cleaned
80     ** up.
81     */
82     int n;
83     Table *pTab = pIdx->pTable;
84     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
85     if( !pIdx->zColAff ){
86       sqlite3OomFault(db);
87       return 0;
88     }
89     for(n=0; n<pIdx->nColumn; n++){
90       i16 x = pIdx->aiColumn[n];
91       char aff;
92       if( x>=0 ){
93         aff = pTab->aCol[x].affinity;
94       }else if( x==XN_ROWID ){
95         aff = SQLITE_AFF_INTEGER;
96       }else{
97         assert( x==XN_EXPR );
98         assert( pIdx->aColExpr!=0 );
99         aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
100       }
101       if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
102       pIdx->zColAff[n] = aff;
103     }
104     pIdx->zColAff[n] = 0;
105   }
106 
107   return pIdx->zColAff;
108 }
109 
110 /*
111 ** Compute the affinity string for table pTab, if it has not already been
112 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
113 **
114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
116 ** for register iReg and following.  Or if affinities exists and iReg==0,
117 ** then just set the P4 operand of the previous opcode (which should  be
118 ** an OP_MakeRecord) to the affinity string.
119 **
120 ** A column affinity string has one character per column:
121 **
122 **  Character      Column affinity
123 **  ------------------------------
124 **  'A'            BLOB
125 **  'B'            TEXT
126 **  'C'            NUMERIC
127 **  'D'            INTEGER
128 **  'E'            REAL
129 */
130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
131   int i;
132   char *zColAff = pTab->zColAff;
133   if( zColAff==0 ){
134     sqlite3 *db = sqlite3VdbeDb(v);
135     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
136     if( !zColAff ){
137       sqlite3OomFault(db);
138       return;
139     }
140 
141     for(i=0; i<pTab->nCol; i++){
142       assert( pTab->aCol[i].affinity!=0 );
143       zColAff[i] = pTab->aCol[i].affinity;
144     }
145     do{
146       zColAff[i--] = 0;
147     }while( i>=0 && zColAff[i]<=SQLITE_AFF_BLOB );
148     pTab->zColAff = zColAff;
149   }
150   assert( zColAff!=0 );
151   i = sqlite3Strlen30NN(zColAff);
152   if( i ){
153     if( iReg ){
154       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
155     }else{
156       sqlite3VdbeChangeP4(v, -1, zColAff, i);
157     }
158   }
159 }
160 
161 /*
162 ** Return non-zero if the table pTab in database iDb or any of its indices
163 ** have been opened at any point in the VDBE program. This is used to see if
164 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
165 ** run without using a temporary table for the results of the SELECT.
166 */
167 static int readsTable(Parse *p, int iDb, Table *pTab){
168   Vdbe *v = sqlite3GetVdbe(p);
169   int i;
170   int iEnd = sqlite3VdbeCurrentAddr(v);
171 #ifndef SQLITE_OMIT_VIRTUALTABLE
172   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
173 #endif
174 
175   for(i=1; i<iEnd; i++){
176     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
177     assert( pOp!=0 );
178     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
179       Index *pIndex;
180       int tnum = pOp->p2;
181       if( tnum==pTab->tnum ){
182         return 1;
183       }
184       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
185         if( tnum==pIndex->tnum ){
186           return 1;
187         }
188       }
189     }
190 #ifndef SQLITE_OMIT_VIRTUALTABLE
191     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
192       assert( pOp->p4.pVtab!=0 );
193       assert( pOp->p4type==P4_VTAB );
194       return 1;
195     }
196 #endif
197   }
198   return 0;
199 }
200 
201 #ifndef SQLITE_OMIT_AUTOINCREMENT
202 /*
203 ** Locate or create an AutoincInfo structure associated with table pTab
204 ** which is in database iDb.  Return the register number for the register
205 ** that holds the maximum rowid.  Return zero if pTab is not an AUTOINCREMENT
206 ** table.  (Also return zero when doing a VACUUM since we do not want to
207 ** update the AUTOINCREMENT counters during a VACUUM.)
208 **
209 ** There is at most one AutoincInfo structure per table even if the
210 ** same table is autoincremented multiple times due to inserts within
211 ** triggers.  A new AutoincInfo structure is created if this is the
212 ** first use of table pTab.  On 2nd and subsequent uses, the original
213 ** AutoincInfo structure is used.
214 **
215 ** Four consecutive registers are allocated:
216 **
217 **   (1)  The name of the pTab table.
218 **   (2)  The maximum ROWID of pTab.
219 **   (3)  The rowid in sqlite_sequence of pTab
220 **   (4)  The original value of the max ROWID in pTab, or NULL if none
221 **
222 ** The 2nd register is the one that is returned.  That is all the
223 ** insert routine needs to know about.
224 */
225 static int autoIncBegin(
226   Parse *pParse,      /* Parsing context */
227   int iDb,            /* Index of the database holding pTab */
228   Table *pTab         /* The table we are writing to */
229 ){
230   int memId = 0;      /* Register holding maximum rowid */
231   assert( pParse->db->aDb[iDb].pSchema!=0 );
232   if( (pTab->tabFlags & TF_Autoincrement)!=0
233    && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
234   ){
235     Parse *pToplevel = sqlite3ParseToplevel(pParse);
236     AutoincInfo *pInfo;
237     Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
238 
239     /* Verify that the sqlite_sequence table exists and is an ordinary
240     ** rowid table with exactly two columns.
241     ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
242     if( pSeqTab==0
243      || !HasRowid(pSeqTab)
244      || IsVirtual(pSeqTab)
245      || pSeqTab->nCol!=2
246     ){
247       pParse->nErr++;
248       pParse->rc = SQLITE_CORRUPT_SEQUENCE;
249       return 0;
250     }
251 
252     pInfo = pToplevel->pAinc;
253     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
254     if( pInfo==0 ){
255       pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
256       if( pInfo==0 ) return 0;
257       pInfo->pNext = pToplevel->pAinc;
258       pToplevel->pAinc = pInfo;
259       pInfo->pTab = pTab;
260       pInfo->iDb = iDb;
261       pToplevel->nMem++;                  /* Register to hold name of table */
262       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
263       pToplevel->nMem +=2;       /* Rowid in sqlite_sequence + orig max val */
264     }
265     memId = pInfo->regCtr;
266   }
267   return memId;
268 }
269 
270 /*
271 ** This routine generates code that will initialize all of the
272 ** register used by the autoincrement tracker.
273 */
274 void sqlite3AutoincrementBegin(Parse *pParse){
275   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
276   sqlite3 *db = pParse->db;  /* The database connection */
277   Db *pDb;                   /* Database only autoinc table */
278   int memId;                 /* Register holding max rowid */
279   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
280 
281   /* This routine is never called during trigger-generation.  It is
282   ** only called from the top-level */
283   assert( pParse->pTriggerTab==0 );
284   assert( sqlite3IsToplevel(pParse) );
285 
286   assert( v );   /* We failed long ago if this is not so */
287   for(p = pParse->pAinc; p; p = p->pNext){
288     static const int iLn = VDBE_OFFSET_LINENO(2);
289     static const VdbeOpList autoInc[] = {
290       /* 0  */ {OP_Null,    0,  0, 0},
291       /* 1  */ {OP_Rewind,  0, 10, 0},
292       /* 2  */ {OP_Column,  0,  0, 0},
293       /* 3  */ {OP_Ne,      0,  9, 0},
294       /* 4  */ {OP_Rowid,   0,  0, 0},
295       /* 5  */ {OP_Column,  0,  1, 0},
296       /* 6  */ {OP_AddImm,  0,  0, 0},
297       /* 7  */ {OP_Copy,    0,  0, 0},
298       /* 8  */ {OP_Goto,    0, 11, 0},
299       /* 9  */ {OP_Next,    0,  2, 0},
300       /* 10 */ {OP_Integer, 0,  0, 0},
301       /* 11 */ {OP_Close,   0,  0, 0}
302     };
303     VdbeOp *aOp;
304     pDb = &db->aDb[p->iDb];
305     memId = p->regCtr;
306     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
307     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
308     sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
309     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
310     if( aOp==0 ) break;
311     aOp[0].p2 = memId;
312     aOp[0].p3 = memId+2;
313     aOp[2].p3 = memId;
314     aOp[3].p1 = memId-1;
315     aOp[3].p3 = memId;
316     aOp[3].p5 = SQLITE_JUMPIFNULL;
317     aOp[4].p2 = memId+1;
318     aOp[5].p3 = memId;
319     aOp[6].p1 = memId;
320     aOp[7].p2 = memId+2;
321     aOp[7].p1 = memId;
322     aOp[10].p2 = memId;
323     if( pParse->nTab==0 ) pParse->nTab = 1;
324   }
325 }
326 
327 /*
328 ** Update the maximum rowid for an autoincrement calculation.
329 **
330 ** This routine should be called when the regRowid register holds a
331 ** new rowid that is about to be inserted.  If that new rowid is
332 ** larger than the maximum rowid in the memId memory cell, then the
333 ** memory cell is updated.
334 */
335 static void autoIncStep(Parse *pParse, int memId, int regRowid){
336   if( memId>0 ){
337     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
338   }
339 }
340 
341 /*
342 ** This routine generates the code needed to write autoincrement
343 ** maximum rowid values back into the sqlite_sequence register.
344 ** Every statement that might do an INSERT into an autoincrement
345 ** table (either directly or through triggers) needs to call this
346 ** routine just before the "exit" code.
347 */
348 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
349   AutoincInfo *p;
350   Vdbe *v = pParse->pVdbe;
351   sqlite3 *db = pParse->db;
352 
353   assert( v );
354   for(p = pParse->pAinc; p; p = p->pNext){
355     static const int iLn = VDBE_OFFSET_LINENO(2);
356     static const VdbeOpList autoIncEnd[] = {
357       /* 0 */ {OP_NotNull,     0, 2, 0},
358       /* 1 */ {OP_NewRowid,    0, 0, 0},
359       /* 2 */ {OP_MakeRecord,  0, 2, 0},
360       /* 3 */ {OP_Insert,      0, 0, 0},
361       /* 4 */ {OP_Close,       0, 0, 0}
362     };
363     VdbeOp *aOp;
364     Db *pDb = &db->aDb[p->iDb];
365     int iRec;
366     int memId = p->regCtr;
367 
368     iRec = sqlite3GetTempReg(pParse);
369     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
370     sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
371     VdbeCoverage(v);
372     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
373     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
374     if( aOp==0 ) break;
375     aOp[0].p1 = memId+1;
376     aOp[1].p2 = memId+1;
377     aOp[2].p1 = memId-1;
378     aOp[2].p3 = iRec;
379     aOp[3].p2 = iRec;
380     aOp[3].p3 = memId+1;
381     aOp[3].p5 = OPFLAG_APPEND;
382     sqlite3ReleaseTempReg(pParse, iRec);
383   }
384 }
385 void sqlite3AutoincrementEnd(Parse *pParse){
386   if( pParse->pAinc ) autoIncrementEnd(pParse);
387 }
388 #else
389 /*
390 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
391 ** above are all no-ops
392 */
393 # define autoIncBegin(A,B,C) (0)
394 # define autoIncStep(A,B,C)
395 #endif /* SQLITE_OMIT_AUTOINCREMENT */
396 
397 
398 /* Forward declaration */
399 static int xferOptimization(
400   Parse *pParse,        /* Parser context */
401   Table *pDest,         /* The table we are inserting into */
402   Select *pSelect,      /* A SELECT statement to use as the data source */
403   int onError,          /* How to handle constraint errors */
404   int iDbDest           /* The database of pDest */
405 );
406 
407 /*
408 ** This routine is called to handle SQL of the following forms:
409 **
410 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
411 **    insert into TABLE (IDLIST) select
412 **    insert into TABLE (IDLIST) default values
413 **
414 ** The IDLIST following the table name is always optional.  If omitted,
415 ** then a list of all (non-hidden) columns for the table is substituted.
416 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
417 ** is omitted.
418 **
419 ** For the pSelect parameter holds the values to be inserted for the
420 ** first two forms shown above.  A VALUES clause is really just short-hand
421 ** for a SELECT statement that omits the FROM clause and everything else
422 ** that follows.  If the pSelect parameter is NULL, that means that the
423 ** DEFAULT VALUES form of the INSERT statement is intended.
424 **
425 ** The code generated follows one of four templates.  For a simple
426 ** insert with data coming from a single-row VALUES clause, the code executes
427 ** once straight down through.  Pseudo-code follows (we call this
428 ** the "1st template"):
429 **
430 **         open write cursor to <table> and its indices
431 **         put VALUES clause expressions into registers
432 **         write the resulting record into <table>
433 **         cleanup
434 **
435 ** The three remaining templates assume the statement is of the form
436 **
437 **   INSERT INTO <table> SELECT ...
438 **
439 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
440 ** in other words if the SELECT pulls all columns from a single table
441 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
442 ** if <table2> and <table1> are distinct tables but have identical
443 ** schemas, including all the same indices, then a special optimization
444 ** is invoked that copies raw records from <table2> over to <table1>.
445 ** See the xferOptimization() function for the implementation of this
446 ** template.  This is the 2nd template.
447 **
448 **         open a write cursor to <table>
449 **         open read cursor on <table2>
450 **         transfer all records in <table2> over to <table>
451 **         close cursors
452 **         foreach index on <table>
453 **           open a write cursor on the <table> index
454 **           open a read cursor on the corresponding <table2> index
455 **           transfer all records from the read to the write cursors
456 **           close cursors
457 **         end foreach
458 **
459 ** The 3rd template is for when the second template does not apply
460 ** and the SELECT clause does not read from <table> at any time.
461 ** The generated code follows this template:
462 **
463 **         X <- A
464 **         goto B
465 **      A: setup for the SELECT
466 **         loop over the rows in the SELECT
467 **           load values into registers R..R+n
468 **           yield X
469 **         end loop
470 **         cleanup after the SELECT
471 **         end-coroutine X
472 **      B: open write cursor to <table> and its indices
473 **      C: yield X, at EOF goto D
474 **         insert the select result into <table> from R..R+n
475 **         goto C
476 **      D: cleanup
477 **
478 ** The 4th template is used if the insert statement takes its
479 ** values from a SELECT but the data is being inserted into a table
480 ** that is also read as part of the SELECT.  In the third form,
481 ** we have to use an intermediate table to store the results of
482 ** the select.  The template is like this:
483 **
484 **         X <- A
485 **         goto B
486 **      A: setup for the SELECT
487 **         loop over the tables in the SELECT
488 **           load value into register R..R+n
489 **           yield X
490 **         end loop
491 **         cleanup after the SELECT
492 **         end co-routine R
493 **      B: open temp table
494 **      L: yield X, at EOF goto M
495 **         insert row from R..R+n into temp table
496 **         goto L
497 **      M: open write cursor to <table> and its indices
498 **         rewind temp table
499 **      C: loop over rows of intermediate table
500 **           transfer values form intermediate table into <table>
501 **         end loop
502 **      D: cleanup
503 */
504 void sqlite3Insert(
505   Parse *pParse,        /* Parser context */
506   SrcList *pTabList,    /* Name of table into which we are inserting */
507   Select *pSelect,      /* A SELECT statement to use as the data source */
508   IdList *pColumn,      /* Column names corresponding to IDLIST. */
509   int onError,          /* How to handle constraint errors */
510   Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */
511 ){
512   sqlite3 *db;          /* The main database structure */
513   Table *pTab;          /* The table to insert into.  aka TABLE */
514   int i, j;             /* Loop counters */
515   Vdbe *v;              /* Generate code into this virtual machine */
516   Index *pIdx;          /* For looping over indices of the table */
517   int nColumn;          /* Number of columns in the data */
518   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
519   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
520   int iIdxCur = 0;      /* First index cursor */
521   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
522   int endOfLoop;        /* Label for the end of the insertion loop */
523   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
524   int addrInsTop = 0;   /* Jump to label "D" */
525   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
526   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
527   int iDb;              /* Index of database holding TABLE */
528   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
529   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
530   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
531   u8 bIdListInOrder;    /* True if IDLIST is in table order */
532   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
533 
534   /* Register allocations */
535   int regFromSelect = 0;/* Base register for data coming from SELECT */
536   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
537   int regRowCount = 0;  /* Memory cell used for the row counter */
538   int regIns;           /* Block of regs holding rowid+data being inserted */
539   int regRowid;         /* registers holding insert rowid */
540   int regData;          /* register holding first column to insert */
541   int *aRegIdx = 0;     /* One register allocated to each index */
542 
543 #ifndef SQLITE_OMIT_TRIGGER
544   int isView;                 /* True if attempting to insert into a view */
545   Trigger *pTrigger;          /* List of triggers on pTab, if required */
546   int tmask;                  /* Mask of trigger times */
547 #endif
548 
549   db = pParse->db;
550   if( pParse->nErr || db->mallocFailed ){
551     goto insert_cleanup;
552   }
553   dest.iSDParm = 0;  /* Suppress a harmless compiler warning */
554 
555   /* If the Select object is really just a simple VALUES() list with a
556   ** single row (the common case) then keep that one row of values
557   ** and discard the other (unused) parts of the pSelect object
558   */
559   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
560     pList = pSelect->pEList;
561     pSelect->pEList = 0;
562     sqlite3SelectDelete(db, pSelect);
563     pSelect = 0;
564   }
565 
566   /* Locate the table into which we will be inserting new information.
567   */
568   assert( pTabList->nSrc==1 );
569   pTab = sqlite3SrcListLookup(pParse, pTabList);
570   if( pTab==0 ){
571     goto insert_cleanup;
572   }
573   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
574   assert( iDb<db->nDb );
575   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
576                        db->aDb[iDb].zDbSName) ){
577     goto insert_cleanup;
578   }
579   withoutRowid = !HasRowid(pTab);
580 
581   /* Figure out if we have any triggers and if the table being
582   ** inserted into is a view
583   */
584 #ifndef SQLITE_OMIT_TRIGGER
585   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
586   isView = pTab->pSelect!=0;
587 #else
588 # define pTrigger 0
589 # define tmask 0
590 # define isView 0
591 #endif
592 #ifdef SQLITE_OMIT_VIEW
593 # undef isView
594 # define isView 0
595 #endif
596   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
597 
598   /* If pTab is really a view, make sure it has been initialized.
599   ** ViewGetColumnNames() is a no-op if pTab is not a view.
600   */
601   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
602     goto insert_cleanup;
603   }
604 
605   /* Cannot insert into a read-only table.
606   */
607   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
608     goto insert_cleanup;
609   }
610 
611   /* Allocate a VDBE
612   */
613   v = sqlite3GetVdbe(pParse);
614   if( v==0 ) goto insert_cleanup;
615   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
616   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
617 
618 #ifndef SQLITE_OMIT_XFER_OPT
619   /* If the statement is of the form
620   **
621   **       INSERT INTO <table1> SELECT * FROM <table2>;
622   **
623   ** Then special optimizations can be applied that make the transfer
624   ** very fast and which reduce fragmentation of indices.
625   **
626   ** This is the 2nd template.
627   */
628   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
629     assert( !pTrigger );
630     assert( pList==0 );
631     goto insert_end;
632   }
633 #endif /* SQLITE_OMIT_XFER_OPT */
634 
635   /* If this is an AUTOINCREMENT table, look up the sequence number in the
636   ** sqlite_sequence table and store it in memory cell regAutoinc.
637   */
638   regAutoinc = autoIncBegin(pParse, iDb, pTab);
639 
640   /* Allocate registers for holding the rowid of the new row,
641   ** the content of the new row, and the assembled row record.
642   */
643   regRowid = regIns = pParse->nMem+1;
644   pParse->nMem += pTab->nCol + 1;
645   if( IsVirtual(pTab) ){
646     regRowid++;
647     pParse->nMem++;
648   }
649   regData = regRowid+1;
650 
651   /* If the INSERT statement included an IDLIST term, then make sure
652   ** all elements of the IDLIST really are columns of the table and
653   ** remember the column indices.
654   **
655   ** If the table has an INTEGER PRIMARY KEY column and that column
656   ** is named in the IDLIST, then record in the ipkColumn variable
657   ** the index into IDLIST of the primary key column.  ipkColumn is
658   ** the index of the primary key as it appears in IDLIST, not as
659   ** is appears in the original table.  (The index of the INTEGER
660   ** PRIMARY KEY in the original table is pTab->iPKey.)
661   */
662   bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0;
663   if( pColumn ){
664     for(i=0; i<pColumn->nId; i++){
665       pColumn->a[i].idx = -1;
666     }
667     for(i=0; i<pColumn->nId; i++){
668       for(j=0; j<pTab->nCol; j++){
669         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
670           pColumn->a[i].idx = j;
671           if( i!=j ) bIdListInOrder = 0;
672           if( j==pTab->iPKey ){
673             ipkColumn = i;  assert( !withoutRowid );
674           }
675           break;
676         }
677       }
678       if( j>=pTab->nCol ){
679         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
680           ipkColumn = i;
681           bIdListInOrder = 0;
682         }else{
683           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
684               pTabList, 0, pColumn->a[i].zName);
685           pParse->checkSchema = 1;
686           goto insert_cleanup;
687         }
688       }
689     }
690   }
691 
692   /* Figure out how many columns of data are supplied.  If the data
693   ** is coming from a SELECT statement, then generate a co-routine that
694   ** produces a single row of the SELECT on each invocation.  The
695   ** co-routine is the common header to the 3rd and 4th templates.
696   */
697   if( pSelect ){
698     /* Data is coming from a SELECT or from a multi-row VALUES clause.
699     ** Generate a co-routine to run the SELECT. */
700     int regYield;       /* Register holding co-routine entry-point */
701     int addrTop;        /* Top of the co-routine */
702     int rc;             /* Result code */
703 
704     regYield = ++pParse->nMem;
705     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
706     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
707     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
708     dest.iSdst = bIdListInOrder ? regData : 0;
709     dest.nSdst = pTab->nCol;
710     rc = sqlite3Select(pParse, pSelect, &dest);
711     regFromSelect = dest.iSdst;
712     if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
713     sqlite3VdbeEndCoroutine(v, regYield);
714     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
715     assert( pSelect->pEList );
716     nColumn = pSelect->pEList->nExpr;
717 
718     /* Set useTempTable to TRUE if the result of the SELECT statement
719     ** should be written into a temporary table (template 4).  Set to
720     ** FALSE if each output row of the SELECT can be written directly into
721     ** the destination table (template 3).
722     **
723     ** A temp table must be used if the table being updated is also one
724     ** of the tables being read by the SELECT statement.  Also use a
725     ** temp table in the case of row triggers.
726     */
727     if( pTrigger || readsTable(pParse, iDb, pTab) ){
728       useTempTable = 1;
729     }
730 
731     if( useTempTable ){
732       /* Invoke the coroutine to extract information from the SELECT
733       ** and add it to a transient table srcTab.  The code generated
734       ** here is from the 4th template:
735       **
736       **      B: open temp table
737       **      L: yield X, goto M at EOF
738       **         insert row from R..R+n into temp table
739       **         goto L
740       **      M: ...
741       */
742       int regRec;          /* Register to hold packed record */
743       int regTempRowid;    /* Register to hold temp table ROWID */
744       int addrL;           /* Label "L" */
745 
746       srcTab = pParse->nTab++;
747       regRec = sqlite3GetTempReg(pParse);
748       regTempRowid = sqlite3GetTempReg(pParse);
749       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
750       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
751       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
752       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
753       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
754       sqlite3VdbeGoto(v, addrL);
755       sqlite3VdbeJumpHere(v, addrL);
756       sqlite3ReleaseTempReg(pParse, regRec);
757       sqlite3ReleaseTempReg(pParse, regTempRowid);
758     }
759   }else{
760     /* This is the case if the data for the INSERT is coming from a
761     ** single-row VALUES clause
762     */
763     NameContext sNC;
764     memset(&sNC, 0, sizeof(sNC));
765     sNC.pParse = pParse;
766     srcTab = -1;
767     assert( useTempTable==0 );
768     if( pList ){
769       nColumn = pList->nExpr;
770       if( sqlite3ResolveExprListNames(&sNC, pList) ){
771         goto insert_cleanup;
772       }
773     }else{
774       nColumn = 0;
775     }
776   }
777 
778   /* If there is no IDLIST term but the table has an integer primary
779   ** key, the set the ipkColumn variable to the integer primary key
780   ** column index in the original table definition.
781   */
782   if( pColumn==0 && nColumn>0 ){
783     ipkColumn = pTab->iPKey;
784   }
785 
786   /* Make sure the number of columns in the source data matches the number
787   ** of columns to be inserted into the table.
788   */
789   for(i=0; i<pTab->nCol; i++){
790     nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
791   }
792   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
793     sqlite3ErrorMsg(pParse,
794        "table %S has %d columns but %d values were supplied",
795        pTabList, 0, pTab->nCol-nHidden, nColumn);
796     goto insert_cleanup;
797   }
798   if( pColumn!=0 && nColumn!=pColumn->nId ){
799     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
800     goto insert_cleanup;
801   }
802 
803   /* Initialize the count of rows to be inserted
804   */
805   if( (db->flags & SQLITE_CountRows)!=0
806    && !pParse->nested
807    && !pParse->pTriggerTab
808   ){
809     regRowCount = ++pParse->nMem;
810     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
811   }
812 
813   /* If this is not a view, open the table and and all indices */
814   if( !isView ){
815     int nIdx;
816     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
817                                       &iDataCur, &iIdxCur);
818     aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
819     if( aRegIdx==0 ){
820       goto insert_cleanup;
821     }
822     for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
823       assert( pIdx );
824       aRegIdx[i] = ++pParse->nMem;
825       pParse->nMem += pIdx->nColumn;
826     }
827     aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */
828   }
829 #ifndef SQLITE_OMIT_UPSERT
830   if( pUpsert ){
831     if( IsVirtual(pTab) ){
832       sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
833               pTab->zName);
834       goto insert_cleanup;
835     }
836     pTabList->a[0].iCursor = iDataCur;
837     pUpsert->pUpsertSrc = pTabList;
838     pUpsert->regData = regData;
839     pUpsert->iDataCur = iDataCur;
840     pUpsert->iIdxCur = iIdxCur;
841     if( pUpsert->pUpsertTarget ){
842       sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert);
843     }
844   }
845 #endif
846 
847 
848   /* This is the top of the main insertion loop */
849   if( useTempTable ){
850     /* This block codes the top of loop only.  The complete loop is the
851     ** following pseudocode (template 4):
852     **
853     **         rewind temp table, if empty goto D
854     **      C: loop over rows of intermediate table
855     **           transfer values form intermediate table into <table>
856     **         end loop
857     **      D: ...
858     */
859     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
860     addrCont = sqlite3VdbeCurrentAddr(v);
861   }else if( pSelect ){
862     /* This block codes the top of loop only.  The complete loop is the
863     ** following pseudocode (template 3):
864     **
865     **      C: yield X, at EOF goto D
866     **         insert the select result into <table> from R..R+n
867     **         goto C
868     **      D: ...
869     */
870     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
871     VdbeCoverage(v);
872   }
873 
874   /* Run the BEFORE and INSTEAD OF triggers, if there are any
875   */
876   endOfLoop = sqlite3VdbeMakeLabel(pParse);
877   if( tmask & TRIGGER_BEFORE ){
878     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
879 
880     /* build the NEW.* reference row.  Note that if there is an INTEGER
881     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
882     ** translated into a unique ID for the row.  But on a BEFORE trigger,
883     ** we do not know what the unique ID will be (because the insert has
884     ** not happened yet) so we substitute a rowid of -1
885     */
886     if( ipkColumn<0 ){
887       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
888     }else{
889       int addr1;
890       assert( !withoutRowid );
891       if( useTempTable ){
892         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
893       }else{
894         assert( pSelect==0 );  /* Otherwise useTempTable is true */
895         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
896       }
897       addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
898       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
899       sqlite3VdbeJumpHere(v, addr1);
900       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
901     }
902 
903     /* Cannot have triggers on a virtual table. If it were possible,
904     ** this block would have to account for hidden column.
905     */
906     assert( !IsVirtual(pTab) );
907 
908     /* Create the new column data
909     */
910     for(i=j=0; i<pTab->nCol; i++){
911       if( pColumn ){
912         for(j=0; j<pColumn->nId; j++){
913           if( pColumn->a[j].idx==i ) break;
914         }
915       }
916       if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId)
917             || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){
918         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
919       }else if( useTempTable ){
920         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
921       }else{
922         assert( pSelect==0 ); /* Otherwise useTempTable is true */
923         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
924       }
925       if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++;
926     }
927 
928     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
929     ** do not attempt any conversions before assembling the record.
930     ** If this is a real table, attempt conversions as required by the
931     ** table column affinities.
932     */
933     if( !isView ){
934       sqlite3TableAffinity(v, pTab, regCols+1);
935     }
936 
937     /* Fire BEFORE or INSTEAD OF triggers */
938     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
939         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
940 
941     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
942   }
943 
944   /* Compute the content of the next row to insert into a range of
945   ** registers beginning at regIns.
946   */
947   if( !isView ){
948     if( IsVirtual(pTab) ){
949       /* The row that the VUpdate opcode will delete: none */
950       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
951     }
952     if( ipkColumn>=0 ){
953       if( useTempTable ){
954         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
955       }else if( pSelect ){
956         sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
957       }else{
958         Expr *pIpk = pList->a[ipkColumn].pExpr;
959         if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
960           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
961           appendFlag = 1;
962         }else{
963           sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
964         }
965       }
966       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
967       ** to generate a unique primary key value.
968       */
969       if( !appendFlag ){
970         int addr1;
971         if( !IsVirtual(pTab) ){
972           addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
973           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
974           sqlite3VdbeJumpHere(v, addr1);
975         }else{
976           addr1 = sqlite3VdbeCurrentAddr(v);
977           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
978         }
979         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
980       }
981     }else if( IsVirtual(pTab) || withoutRowid ){
982       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
983     }else{
984       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
985       appendFlag = 1;
986     }
987     autoIncStep(pParse, regAutoinc, regRowid);
988 
989     /* Compute data for all columns of the new entry, beginning
990     ** with the first column.
991     */
992     nHidden = 0;
993     for(i=0; i<pTab->nCol; i++){
994       int iRegStore = regRowid+1+i;
995       if( i==pTab->iPKey ){
996         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
997         ** Whenever this column is read, the rowid will be substituted
998         ** in its place.  Hence, fill this column with a NULL to avoid
999         ** taking up data space with information that will never be used.
1000         ** As there may be shallow copies of this value, make it a soft-NULL */
1001         sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1002         continue;
1003       }
1004       if( pColumn==0 ){
1005         if( IsHiddenColumn(&pTab->aCol[i]) ){
1006           j = -1;
1007           nHidden++;
1008         }else{
1009           j = i - nHidden;
1010         }
1011       }else{
1012         for(j=0; j<pColumn->nId; j++){
1013           if( pColumn->a[j].idx==i ) break;
1014         }
1015       }
1016       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
1017         sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1018       }else if( useTempTable ){
1019         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
1020       }else if( pSelect ){
1021         if( regFromSelect!=regData ){
1022           sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
1023         }
1024       }else{
1025         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
1026       }
1027     }
1028 
1029     /* Generate code to check constraints and generate index keys and
1030     ** do the insertion.
1031     */
1032 #ifndef SQLITE_OMIT_VIRTUALTABLE
1033     if( IsVirtual(pTab) ){
1034       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1035       sqlite3VtabMakeWritable(pParse, pTab);
1036       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1037       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1038       sqlite3MayAbort(pParse);
1039     }else
1040 #endif
1041     {
1042       int isReplace;    /* Set to true if constraints may cause a replace */
1043       int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
1044       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1045           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1046       );
1047       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1048 
1049       /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1050       ** constraints or (b) there are no triggers and this table is not a
1051       ** parent table in a foreign key constraint. It is safe to set the
1052       ** flag in the second case as if any REPLACE constraint is hit, an
1053       ** OP_Delete or OP_IdxDelete instruction will be executed on each
1054       ** cursor that is disturbed. And these instructions both clear the
1055       ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1056       ** functionality.  */
1057       bUseSeek = (isReplace==0 || (pTrigger==0 &&
1058           ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0)
1059       ));
1060       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1061           regIns, aRegIdx, 0, appendFlag, bUseSeek
1062       );
1063     }
1064   }
1065 
1066   /* Update the count of rows that are inserted
1067   */
1068   if( regRowCount ){
1069     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1070   }
1071 
1072   if( pTrigger ){
1073     /* Code AFTER triggers */
1074     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1075         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1076   }
1077 
1078   /* The bottom of the main insertion loop, if the data source
1079   ** is a SELECT statement.
1080   */
1081   sqlite3VdbeResolveLabel(v, endOfLoop);
1082   if( useTempTable ){
1083     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1084     sqlite3VdbeJumpHere(v, addrInsTop);
1085     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1086   }else if( pSelect ){
1087     sqlite3VdbeGoto(v, addrCont);
1088     sqlite3VdbeJumpHere(v, addrInsTop);
1089   }
1090 
1091 insert_end:
1092   /* Update the sqlite_sequence table by storing the content of the
1093   ** maximum rowid counter values recorded while inserting into
1094   ** autoincrement tables.
1095   */
1096   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1097     sqlite3AutoincrementEnd(pParse);
1098   }
1099 
1100   /*
1101   ** Return the number of rows inserted. If this routine is
1102   ** generating code because of a call to sqlite3NestedParse(), do not
1103   ** invoke the callback function.
1104   */
1105   if( regRowCount ){
1106     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1107     sqlite3VdbeSetNumCols(v, 1);
1108     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1109   }
1110 
1111 insert_cleanup:
1112   sqlite3SrcListDelete(db, pTabList);
1113   sqlite3ExprListDelete(db, pList);
1114   sqlite3UpsertDelete(db, pUpsert);
1115   sqlite3SelectDelete(db, pSelect);
1116   sqlite3IdListDelete(db, pColumn);
1117   sqlite3DbFree(db, aRegIdx);
1118 }
1119 
1120 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1121 ** they may interfere with compilation of other functions in this file
1122 ** (or in another file, if this file becomes part of the amalgamation).  */
1123 #ifdef isView
1124  #undef isView
1125 #endif
1126 #ifdef pTrigger
1127  #undef pTrigger
1128 #endif
1129 #ifdef tmask
1130  #undef tmask
1131 #endif
1132 
1133 /*
1134 ** Meanings of bits in of pWalker->eCode for
1135 ** sqlite3ExprReferencesUpdatedColumn()
1136 */
1137 #define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
1138 #define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */
1139 
1140 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1141 *  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1142 ** expression node references any of the
1143 ** columns that are being modifed by an UPDATE statement.
1144 */
1145 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1146   if( pExpr->op==TK_COLUMN ){
1147     assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1148     if( pExpr->iColumn>=0 ){
1149       if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1150         pWalker->eCode |= CKCNSTRNT_COLUMN;
1151       }
1152     }else{
1153       pWalker->eCode |= CKCNSTRNT_ROWID;
1154     }
1155   }
1156   return WRC_Continue;
1157 }
1158 
1159 /*
1160 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
1161 ** only columns that are modified by the UPDATE are those for which
1162 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1163 **
1164 ** Return true if CHECK constraint pExpr uses any of the
1165 ** changing columns (or the rowid if it is changing).  In other words,
1166 ** return true if this CHECK constraint must be validated for
1167 ** the new row in the UPDATE statement.
1168 **
1169 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1170 ** The operation of this routine is the same - return true if an only if
1171 ** the expression uses one or more of columns identified by the second and
1172 ** third arguments.
1173 */
1174 int sqlite3ExprReferencesUpdatedColumn(
1175   Expr *pExpr,    /* The expression to be checked */
1176   int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */
1177   int chngRowid   /* True if UPDATE changes the rowid */
1178 ){
1179   Walker w;
1180   memset(&w, 0, sizeof(w));
1181   w.eCode = 0;
1182   w.xExprCallback = checkConstraintExprNode;
1183   w.u.aiCol = aiChng;
1184   sqlite3WalkExpr(&w, pExpr);
1185   if( !chngRowid ){
1186     testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1187     w.eCode &= ~CKCNSTRNT_ROWID;
1188   }
1189   testcase( w.eCode==0 );
1190   testcase( w.eCode==CKCNSTRNT_COLUMN );
1191   testcase( w.eCode==CKCNSTRNT_ROWID );
1192   testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1193   return w.eCode!=0;
1194 }
1195 
1196 /*
1197 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1198 ** on table pTab.
1199 **
1200 ** The regNewData parameter is the first register in a range that contains
1201 ** the data to be inserted or the data after the update.  There will be
1202 ** pTab->nCol+1 registers in this range.  The first register (the one
1203 ** that regNewData points to) will contain the new rowid, or NULL in the
1204 ** case of a WITHOUT ROWID table.  The second register in the range will
1205 ** contain the content of the first table column.  The third register will
1206 ** contain the content of the second table column.  And so forth.
1207 **
1208 ** The regOldData parameter is similar to regNewData except that it contains
1209 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1210 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1211 ** checking regOldData for zero.
1212 **
1213 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1214 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1215 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1216 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1217 **
1218 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1219 ** was explicitly specified as part of the INSERT statement.  If pkChng
1220 ** is zero, it means that the either rowid is computed automatically or
1221 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1222 ** pkChng will only be true if the INSERT statement provides an integer
1223 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1224 **
1225 ** The code generated by this routine will store new index entries into
1226 ** registers identified by aRegIdx[].  No index entry is created for
1227 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1228 ** the same as the order of indices on the linked list of indices
1229 ** at pTab->pIndex.
1230 **
1231 ** (2019-05-07) The generated code also creates a new record for the
1232 ** main table, if pTab is a rowid table, and stores that record in the
1233 ** register identified by aRegIdx[nIdx] - in other words in the first
1234 ** entry of aRegIdx[] past the last index.  It is important that the
1235 ** record be generated during constraint checks to avoid affinity changes
1236 ** to the register content that occur after constraint checks but before
1237 ** the new record is inserted.
1238 **
1239 ** The caller must have already opened writeable cursors on the main
1240 ** table and all applicable indices (that is to say, all indices for which
1241 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1242 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1243 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1244 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1245 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1246 **
1247 ** This routine also generates code to check constraints.  NOT NULL,
1248 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1249 ** then the appropriate action is performed.  There are five possible
1250 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1251 **
1252 **  Constraint type  Action       What Happens
1253 **  ---------------  ----------   ----------------------------------------
1254 **  any              ROLLBACK     The current transaction is rolled back and
1255 **                                sqlite3_step() returns immediately with a
1256 **                                return code of SQLITE_CONSTRAINT.
1257 **
1258 **  any              ABORT        Back out changes from the current command
1259 **                                only (do not do a complete rollback) then
1260 **                                cause sqlite3_step() to return immediately
1261 **                                with SQLITE_CONSTRAINT.
1262 **
1263 **  any              FAIL         Sqlite3_step() returns immediately with a
1264 **                                return code of SQLITE_CONSTRAINT.  The
1265 **                                transaction is not rolled back and any
1266 **                                changes to prior rows are retained.
1267 **
1268 **  any              IGNORE       The attempt in insert or update the current
1269 **                                row is skipped, without throwing an error.
1270 **                                Processing continues with the next row.
1271 **                                (There is an immediate jump to ignoreDest.)
1272 **
1273 **  NOT NULL         REPLACE      The NULL value is replace by the default
1274 **                                value for that column.  If the default value
1275 **                                is NULL, the action is the same as ABORT.
1276 **
1277 **  UNIQUE           REPLACE      The other row that conflicts with the row
1278 **                                being inserted is removed.
1279 **
1280 **  CHECK            REPLACE      Illegal.  The results in an exception.
1281 **
1282 ** Which action to take is determined by the overrideError parameter.
1283 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1284 ** is used.  Or if pParse->onError==OE_Default then the onError value
1285 ** for the constraint is used.
1286 */
1287 void sqlite3GenerateConstraintChecks(
1288   Parse *pParse,       /* The parser context */
1289   Table *pTab,         /* The table being inserted or updated */
1290   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1291   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1292   int iIdxCur,         /* First index cursor */
1293   int regNewData,      /* First register in a range holding values to insert */
1294   int regOldData,      /* Previous content.  0 for INSERTs */
1295   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1296   u8 overrideError,    /* Override onError to this if not OE_Default */
1297   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1298   int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
1299   int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
1300   Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
1301 ){
1302   Vdbe *v;             /* VDBE under constrution */
1303   Index *pIdx;         /* Pointer to one of the indices */
1304   Index *pPk = 0;      /* The PRIMARY KEY index */
1305   sqlite3 *db;         /* Database connection */
1306   int i;               /* loop counter */
1307   int ix;              /* Index loop counter */
1308   int nCol;            /* Number of columns */
1309   int onError;         /* Conflict resolution strategy */
1310   int addr1;           /* Address of jump instruction */
1311   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1312   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1313   Index *pUpIdx = 0;   /* Index to which to apply the upsert */
1314   u8 isUpdate;         /* True if this is an UPDATE operation */
1315   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1316   int upsertBypass = 0;  /* Address of Goto to bypass upsert subroutine */
1317   int upsertJump = 0;    /* Address of Goto that jumps into upsert subroutine */
1318   int ipkTop = 0;        /* Top of the IPK uniqueness check */
1319   int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
1320 
1321   isUpdate = regOldData!=0;
1322   db = pParse->db;
1323   v = sqlite3GetVdbe(pParse);
1324   assert( v!=0 );
1325   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1326   nCol = pTab->nCol;
1327 
1328   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1329   ** normal rowid tables.  nPkField is the number of key fields in the
1330   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1331   ** number of fields in the true primary key of the table. */
1332   if( HasRowid(pTab) ){
1333     pPk = 0;
1334     nPkField = 1;
1335   }else{
1336     pPk = sqlite3PrimaryKeyIndex(pTab);
1337     nPkField = pPk->nKeyCol;
1338   }
1339 
1340   /* Record that this module has started */
1341   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1342                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1343 
1344   /* Test all NOT NULL constraints.
1345   */
1346   for(i=0; i<nCol; i++){
1347     if( i==pTab->iPKey ){
1348       continue;        /* ROWID is never NULL */
1349     }
1350     if( aiChng && aiChng[i]<0 ){
1351       /* Don't bother checking for NOT NULL on columns that do not change */
1352       continue;
1353     }
1354     onError = pTab->aCol[i].notNull;
1355     if( onError==OE_None ) continue;  /* This column is allowed to be NULL */
1356     if( overrideError!=OE_Default ){
1357       onError = overrideError;
1358     }else if( onError==OE_Default ){
1359       onError = OE_Abort;
1360     }
1361     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1362       onError = OE_Abort;
1363     }
1364     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1365         || onError==OE_Ignore || onError==OE_Replace );
1366     addr1 = 0;
1367     switch( onError ){
1368       case OE_Replace: {
1369         assert( onError==OE_Replace );
1370         addr1 = sqlite3VdbeMakeLabel(pParse);
1371         sqlite3VdbeAddOp2(v, OP_NotNull, regNewData+1+i, addr1);
1372           VdbeCoverage(v);
1373         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1374         sqlite3VdbeAddOp2(v, OP_NotNull, regNewData+1+i, addr1);
1375           VdbeCoverage(v);
1376         onError = OE_Abort;
1377         /* Fall through into the OE_Abort case to generate code that runs
1378         ** if both the input and the default value are NULL */
1379       }
1380       case OE_Abort:
1381         sqlite3MayAbort(pParse);
1382         /* Fall through */
1383       case OE_Rollback:
1384       case OE_Fail: {
1385         char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1386                                     pTab->aCol[i].zName);
1387         sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1388                           regNewData+1+i);
1389         sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1390         sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1391         VdbeCoverage(v);
1392         if( addr1 ) sqlite3VdbeResolveLabel(v, addr1);
1393         break;
1394       }
1395       default: {
1396         assert( onError==OE_Ignore );
1397         sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1398         VdbeCoverage(v);
1399         break;
1400       }
1401     }
1402   }
1403 
1404   /* Test all CHECK constraints
1405   */
1406 #ifndef SQLITE_OMIT_CHECK
1407   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1408     ExprList *pCheck = pTab->pCheck;
1409     pParse->iSelfTab = -(regNewData+1);
1410     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1411     for(i=0; i<pCheck->nExpr; i++){
1412       int allOk;
1413       Expr *pExpr = pCheck->a[i].pExpr;
1414       if( aiChng
1415        && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1416       ){
1417         /* The check constraints do not reference any of the columns being
1418         ** updated so there is no point it verifying the check constraint */
1419         continue;
1420       }
1421       allOk = sqlite3VdbeMakeLabel(pParse);
1422       sqlite3VdbeVerifyAbortable(v, onError);
1423       sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
1424       if( onError==OE_Ignore ){
1425         sqlite3VdbeGoto(v, ignoreDest);
1426       }else{
1427         char *zName = pCheck->a[i].zName;
1428         if( zName==0 ) zName = pTab->zName;
1429         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1430         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1431                               onError, zName, P4_TRANSIENT,
1432                               P5_ConstraintCheck);
1433       }
1434       sqlite3VdbeResolveLabel(v, allOk);
1435     }
1436     pParse->iSelfTab = 0;
1437   }
1438 #endif /* !defined(SQLITE_OMIT_CHECK) */
1439 
1440   /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1441   ** order:
1442   **
1443   **   (1)  OE_Update
1444   **   (2)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1445   **   (3)  OE_Replace
1446   **
1447   ** OE_Fail and OE_Ignore must happen before any changes are made.
1448   ** OE_Update guarantees that only a single row will change, so it
1449   ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback
1450   ** could happen in any order, but they are grouped up front for
1451   ** convenience.
1452   **
1453   ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1454   ** The order of constraints used to have OE_Update as (2) and OE_Abort
1455   ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1456   ** constraint before any others, so it had to be moved.
1457   **
1458   ** Constraint checking code is generated in this order:
1459   **   (A)  The rowid constraint
1460   **   (B)  Unique index constraints that do not have OE_Replace as their
1461   **        default conflict resolution strategy
1462   **   (C)  Unique index that do use OE_Replace by default.
1463   **
1464   ** The ordering of (2) and (3) is accomplished by making sure the linked
1465   ** list of indexes attached to a table puts all OE_Replace indexes last
1466   ** in the list.  See sqlite3CreateIndex() for where that happens.
1467   */
1468 
1469   if( pUpsert ){
1470     if( pUpsert->pUpsertTarget==0 ){
1471       /* An ON CONFLICT DO NOTHING clause, without a constraint-target.
1472       ** Make all unique constraint resolution be OE_Ignore */
1473       assert( pUpsert->pUpsertSet==0 );
1474       overrideError = OE_Ignore;
1475       pUpsert = 0;
1476     }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){
1477       /* If the constraint-target uniqueness check must be run first.
1478       ** Jump to that uniqueness check now */
1479       upsertJump = sqlite3VdbeAddOp0(v, OP_Goto);
1480       VdbeComment((v, "UPSERT constraint goes first"));
1481     }
1482   }
1483 
1484   /* If rowid is changing, make sure the new rowid does not previously
1485   ** exist in the table.
1486   */
1487   if( pkChng && pPk==0 ){
1488     int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
1489 
1490     /* Figure out what action to take in case of a rowid collision */
1491     onError = pTab->keyConf;
1492     if( overrideError!=OE_Default ){
1493       onError = overrideError;
1494     }else if( onError==OE_Default ){
1495       onError = OE_Abort;
1496     }
1497 
1498     /* figure out whether or not upsert applies in this case */
1499     if( pUpsert && pUpsert->pUpsertIdx==0 ){
1500       if( pUpsert->pUpsertSet==0 ){
1501         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
1502       }else{
1503         onError = OE_Update;  /* DO UPDATE */
1504       }
1505     }
1506 
1507     /* If the response to a rowid conflict is REPLACE but the response
1508     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1509     ** to defer the running of the rowid conflict checking until after
1510     ** the UNIQUE constraints have run.
1511     */
1512     if( onError==OE_Replace      /* IPK rule is REPLACE */
1513      && onError!=overrideError   /* Rules for other contraints are different */
1514      && pTab->pIndex             /* There exist other constraints */
1515     ){
1516       ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
1517       VdbeComment((v, "defer IPK REPLACE until last"));
1518     }
1519 
1520     if( isUpdate ){
1521       /* pkChng!=0 does not mean that the rowid has changed, only that
1522       ** it might have changed.  Skip the conflict logic below if the rowid
1523       ** is unchanged. */
1524       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1525       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1526       VdbeCoverage(v);
1527     }
1528 
1529     /* Check to see if the new rowid already exists in the table.  Skip
1530     ** the following conflict logic if it does not. */
1531     VdbeNoopComment((v, "uniqueness check for ROWID"));
1532     sqlite3VdbeVerifyAbortable(v, onError);
1533     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1534     VdbeCoverage(v);
1535 
1536     switch( onError ){
1537       default: {
1538         onError = OE_Abort;
1539         /* Fall thru into the next case */
1540       }
1541       case OE_Rollback:
1542       case OE_Abort:
1543       case OE_Fail: {
1544         testcase( onError==OE_Rollback );
1545         testcase( onError==OE_Abort );
1546         testcase( onError==OE_Fail );
1547         sqlite3RowidConstraint(pParse, onError, pTab);
1548         break;
1549       }
1550       case OE_Replace: {
1551         /* If there are DELETE triggers on this table and the
1552         ** recursive-triggers flag is set, call GenerateRowDelete() to
1553         ** remove the conflicting row from the table. This will fire
1554         ** the triggers and remove both the table and index b-tree entries.
1555         **
1556         ** Otherwise, if there are no triggers or the recursive-triggers
1557         ** flag is not set, but the table has one or more indexes, call
1558         ** GenerateRowIndexDelete(). This removes the index b-tree entries
1559         ** only. The table b-tree entry will be replaced by the new entry
1560         ** when it is inserted.
1561         **
1562         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1563         ** also invoke MultiWrite() to indicate that this VDBE may require
1564         ** statement rollback (if the statement is aborted after the delete
1565         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1566         ** but being more selective here allows statements like:
1567         **
1568         **   REPLACE INTO t(rowid) VALUES($newrowid)
1569         **
1570         ** to run without a statement journal if there are no indexes on the
1571         ** table.
1572         */
1573         Trigger *pTrigger = 0;
1574         if( db->flags&SQLITE_RecTriggers ){
1575           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1576         }
1577         if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1578           sqlite3MultiWrite(pParse);
1579           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1580                                    regNewData, 1, 0, OE_Replace, 1, -1);
1581         }else{
1582 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1583           assert( HasRowid(pTab) );
1584           /* This OP_Delete opcode fires the pre-update-hook only. It does
1585           ** not modify the b-tree. It is more efficient to let the coming
1586           ** OP_Insert replace the existing entry than it is to delete the
1587           ** existing entry and then insert a new one. */
1588           sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
1589           sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1590 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1591           if( pTab->pIndex ){
1592             sqlite3MultiWrite(pParse);
1593             sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
1594           }
1595         }
1596         seenReplace = 1;
1597         break;
1598       }
1599 #ifndef SQLITE_OMIT_UPSERT
1600       case OE_Update: {
1601         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
1602         /* Fall through */
1603       }
1604 #endif
1605       case OE_Ignore: {
1606         testcase( onError==OE_Ignore );
1607         sqlite3VdbeGoto(v, ignoreDest);
1608         break;
1609       }
1610     }
1611     sqlite3VdbeResolveLabel(v, addrRowidOk);
1612     if( ipkTop ){
1613       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1614       sqlite3VdbeJumpHere(v, ipkTop-1);
1615     }
1616   }
1617 
1618   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1619   ** index and making sure that duplicate entries do not already exist.
1620   ** Compute the revised record entries for indices as we go.
1621   **
1622   ** This loop also handles the case of the PRIMARY KEY index for a
1623   ** WITHOUT ROWID table.
1624   */
1625   for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1626     int regIdx;          /* Range of registers hold conent for pIdx */
1627     int regR;            /* Range of registers holding conflicting PK */
1628     int iThisCur;        /* Cursor for this UNIQUE index */
1629     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
1630 
1631     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
1632     if( pUpIdx==pIdx ){
1633       addrUniqueOk = upsertJump+1;
1634       upsertBypass = sqlite3VdbeGoto(v, 0);
1635       VdbeComment((v, "Skip upsert subroutine"));
1636       sqlite3VdbeJumpHere(v, upsertJump);
1637     }else{
1638       addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
1639     }
1640     if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){
1641       sqlite3TableAffinity(v, pTab, regNewData+1);
1642       bAffinityDone = 1;
1643     }
1644     VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName));
1645     iThisCur = iIdxCur+ix;
1646 
1647 
1648     /* Skip partial indices for which the WHERE clause is not true */
1649     if( pIdx->pPartIdxWhere ){
1650       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1651       pParse->iSelfTab = -(regNewData+1);
1652       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1653                             SQLITE_JUMPIFNULL);
1654       pParse->iSelfTab = 0;
1655     }
1656 
1657     /* Create a record for this index entry as it should appear after
1658     ** the insert or update.  Store that record in the aRegIdx[ix] register
1659     */
1660     regIdx = aRegIdx[ix]+1;
1661     for(i=0; i<pIdx->nColumn; i++){
1662       int iField = pIdx->aiColumn[i];
1663       int x;
1664       if( iField==XN_EXPR ){
1665         pParse->iSelfTab = -(regNewData+1);
1666         sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
1667         pParse->iSelfTab = 0;
1668         VdbeComment((v, "%s column %d", pIdx->zName, i));
1669       }else{
1670         if( iField==XN_ROWID || iField==pTab->iPKey ){
1671           x = regNewData;
1672         }else{
1673           x = iField + regNewData + 1;
1674         }
1675         sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i);
1676         VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1677       }
1678     }
1679     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1680     VdbeComment((v, "for %s", pIdx->zName));
1681 #ifdef SQLITE_ENABLE_NULL_TRIM
1682     if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
1683       sqlite3SetMakeRecordP5(v, pIdx->pTable);
1684     }
1685 #endif
1686 
1687     /* In an UPDATE operation, if this index is the PRIMARY KEY index
1688     ** of a WITHOUT ROWID table and there has been no change the
1689     ** primary key, then no collision is possible.  The collision detection
1690     ** logic below can all be skipped. */
1691     if( isUpdate && pPk==pIdx && pkChng==0 ){
1692       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1693       continue;
1694     }
1695 
1696     /* Find out what action to take in case there is a uniqueness conflict */
1697     onError = pIdx->onError;
1698     if( onError==OE_None ){
1699       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1700       continue;  /* pIdx is not a UNIQUE index */
1701     }
1702     if( overrideError!=OE_Default ){
1703       onError = overrideError;
1704     }else if( onError==OE_Default ){
1705       onError = OE_Abort;
1706     }
1707 
1708     /* Figure out if the upsert clause applies to this index */
1709     if( pUpIdx==pIdx ){
1710       if( pUpsert->pUpsertSet==0 ){
1711         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
1712       }else{
1713         onError = OE_Update;  /* DO UPDATE */
1714       }
1715     }
1716 
1717     /* Collision detection may be omitted if all of the following are true:
1718     **   (1) The conflict resolution algorithm is REPLACE
1719     **   (2) The table is a WITHOUT ROWID table
1720     **   (3) There are no secondary indexes on the table
1721     **   (4) No delete triggers need to be fired if there is a conflict
1722     **   (5) No FK constraint counters need to be updated if a conflict occurs.
1723     **
1724     ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
1725     ** must be explicitly deleted in order to ensure any pre-update hook
1726     ** is invoked.  */
1727 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
1728     if( (ix==0 && pIdx->pNext==0)                   /* Condition 3 */
1729      && pPk==pIdx                                   /* Condition 2 */
1730      && onError==OE_Replace                         /* Condition 1 */
1731      && ( 0==(db->flags&SQLITE_RecTriggers) ||      /* Condition 4 */
1732           0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
1733      && ( 0==(db->flags&SQLITE_ForeignKeys) ||      /* Condition 5 */
1734          (0==pTab->pFKey && 0==sqlite3FkReferences(pTab)))
1735     ){
1736       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1737       continue;
1738     }
1739 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
1740 
1741     /* Check to see if the new index entry will be unique */
1742     sqlite3VdbeVerifyAbortable(v, onError);
1743     sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1744                          regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1745 
1746     /* Generate code to handle collisions */
1747     regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1748     if( isUpdate || onError==OE_Replace ){
1749       if( HasRowid(pTab) ){
1750         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1751         /* Conflict only if the rowid of the existing index entry
1752         ** is different from old-rowid */
1753         if( isUpdate ){
1754           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1755           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1756           VdbeCoverage(v);
1757         }
1758       }else{
1759         int x;
1760         /* Extract the PRIMARY KEY from the end of the index entry and
1761         ** store it in registers regR..regR+nPk-1 */
1762         if( pIdx!=pPk ){
1763           for(i=0; i<pPk->nKeyCol; i++){
1764             assert( pPk->aiColumn[i]>=0 );
1765             x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1766             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1767             VdbeComment((v, "%s.%s", pTab->zName,
1768                          pTab->aCol[pPk->aiColumn[i]].zName));
1769           }
1770         }
1771         if( isUpdate ){
1772           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1773           ** table, only conflict if the new PRIMARY KEY values are actually
1774           ** different from the old.
1775           **
1776           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1777           ** of the matched index row are different from the original PRIMARY
1778           ** KEY values of this row before the update.  */
1779           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1780           int op = OP_Ne;
1781           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
1782 
1783           for(i=0; i<pPk->nKeyCol; i++){
1784             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1785             x = pPk->aiColumn[i];
1786             assert( x>=0 );
1787             if( i==(pPk->nKeyCol-1) ){
1788               addrJump = addrUniqueOk;
1789               op = OP_Eq;
1790             }
1791             sqlite3VdbeAddOp4(v, op,
1792                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1793             );
1794             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1795             VdbeCoverageIf(v, op==OP_Eq);
1796             VdbeCoverageIf(v, op==OP_Ne);
1797           }
1798         }
1799       }
1800     }
1801 
1802     /* Generate code that executes if the new index entry is not unique */
1803     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1804         || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
1805     switch( onError ){
1806       case OE_Rollback:
1807       case OE_Abort:
1808       case OE_Fail: {
1809         testcase( onError==OE_Rollback );
1810         testcase( onError==OE_Abort );
1811         testcase( onError==OE_Fail );
1812         sqlite3UniqueConstraint(pParse, onError, pIdx);
1813         break;
1814       }
1815 #ifndef SQLITE_OMIT_UPSERT
1816       case OE_Update: {
1817         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
1818         /* Fall through */
1819       }
1820 #endif
1821       case OE_Ignore: {
1822         testcase( onError==OE_Ignore );
1823         sqlite3VdbeGoto(v, ignoreDest);
1824         break;
1825       }
1826       default: {
1827         Trigger *pTrigger = 0;
1828         assert( onError==OE_Replace );
1829         if( db->flags&SQLITE_RecTriggers ){
1830           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1831         }
1832         if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1833           sqlite3MultiWrite(pParse);
1834         }
1835         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1836             regR, nPkField, 0, OE_Replace,
1837             (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
1838         seenReplace = 1;
1839         break;
1840       }
1841     }
1842     if( pUpIdx==pIdx ){
1843       sqlite3VdbeGoto(v, upsertJump+1);
1844       sqlite3VdbeJumpHere(v, upsertBypass);
1845     }else{
1846       sqlite3VdbeResolveLabel(v, addrUniqueOk);
1847     }
1848     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1849   }
1850 
1851   /* If the IPK constraint is a REPLACE, run it last */
1852   if( ipkTop ){
1853     sqlite3VdbeGoto(v, ipkTop);
1854     VdbeComment((v, "Do IPK REPLACE"));
1855     sqlite3VdbeJumpHere(v, ipkBottom);
1856   }
1857 
1858   /* Generate the table record */
1859   if( HasRowid(pTab) ){
1860     int regRec = aRegIdx[ix];
1861     sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nCol, regRec);
1862     sqlite3SetMakeRecordP5(v, pTab);
1863     if( !bAffinityDone ){
1864       sqlite3TableAffinity(v, pTab, 0);
1865     }
1866   }
1867 
1868   *pbMayReplace = seenReplace;
1869   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1870 }
1871 
1872 #ifdef SQLITE_ENABLE_NULL_TRIM
1873 /*
1874 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
1875 ** to be the number of columns in table pTab that must not be NULL-trimmed.
1876 **
1877 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
1878 */
1879 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
1880   u16 i;
1881 
1882   /* Records with omitted columns are only allowed for schema format
1883   ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
1884   if( pTab->pSchema->file_format<2 ) return;
1885 
1886   for(i=pTab->nCol-1; i>0; i--){
1887     if( pTab->aCol[i].pDflt!=0 ) break;
1888     if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
1889   }
1890   sqlite3VdbeChangeP5(v, i+1);
1891 }
1892 #endif
1893 
1894 /*
1895 ** This routine generates code to finish the INSERT or UPDATE operation
1896 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1897 ** A consecutive range of registers starting at regNewData contains the
1898 ** rowid and the content to be inserted.
1899 **
1900 ** The arguments to this routine should be the same as the first six
1901 ** arguments to sqlite3GenerateConstraintChecks.
1902 */
1903 void sqlite3CompleteInsertion(
1904   Parse *pParse,      /* The parser context */
1905   Table *pTab,        /* the table into which we are inserting */
1906   int iDataCur,       /* Cursor of the canonical data source */
1907   int iIdxCur,        /* First index cursor */
1908   int regNewData,     /* Range of content */
1909   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1910   int update_flags,   /* True for UPDATE, False for INSERT */
1911   int appendBias,     /* True if this is likely to be an append */
1912   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1913 ){
1914   Vdbe *v;            /* Prepared statements under construction */
1915   Index *pIdx;        /* An index being inserted or updated */
1916   u8 pik_flags;       /* flag values passed to the btree insert */
1917   int i;              /* Loop counter */
1918 
1919   assert( update_flags==0
1920        || update_flags==OPFLAG_ISUPDATE
1921        || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
1922   );
1923 
1924   v = sqlite3GetVdbe(pParse);
1925   assert( v!=0 );
1926   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1927   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1928     if( aRegIdx[i]==0 ) continue;
1929     if( pIdx->pPartIdxWhere ){
1930       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1931       VdbeCoverage(v);
1932     }
1933     pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
1934     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1935       assert( pParse->nested==0 );
1936       pik_flags |= OPFLAG_NCHANGE;
1937       pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
1938 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1939       if( update_flags==0 ){
1940         int r = sqlite3GetTempReg(pParse);
1941         sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
1942         sqlite3VdbeAddOp4(v, OP_Insert,
1943             iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE
1944         );
1945         sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
1946         sqlite3ReleaseTempReg(pParse, r);
1947       }
1948 #endif
1949     }
1950     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
1951                          aRegIdx[i]+1,
1952                          pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
1953     sqlite3VdbeChangeP5(v, pik_flags);
1954   }
1955   if( !HasRowid(pTab) ) return;
1956   if( pParse->nested ){
1957     pik_flags = 0;
1958   }else{
1959     pik_flags = OPFLAG_NCHANGE;
1960     pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
1961   }
1962   if( appendBias ){
1963     pik_flags |= OPFLAG_APPEND;
1964   }
1965   if( useSeekResult ){
1966     pik_flags |= OPFLAG_USESEEKRESULT;
1967   }
1968   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
1969   if( !pParse->nested ){
1970     sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1971   }
1972   sqlite3VdbeChangeP5(v, pik_flags);
1973 }
1974 
1975 /*
1976 ** Allocate cursors for the pTab table and all its indices and generate
1977 ** code to open and initialized those cursors.
1978 **
1979 ** The cursor for the object that contains the complete data (normally
1980 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1981 ** ROWID table) is returned in *piDataCur.  The first index cursor is
1982 ** returned in *piIdxCur.  The number of indices is returned.
1983 **
1984 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1985 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1986 ** If iBase is negative, then allocate the next available cursor.
1987 **
1988 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1989 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1990 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1991 ** pTab->pIndex list.
1992 **
1993 ** If pTab is a virtual table, then this routine is a no-op and the
1994 ** *piDataCur and *piIdxCur values are left uninitialized.
1995 */
1996 int sqlite3OpenTableAndIndices(
1997   Parse *pParse,   /* Parsing context */
1998   Table *pTab,     /* Table to be opened */
1999   int op,          /* OP_OpenRead or OP_OpenWrite */
2000   u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2001   int iBase,       /* Use this for the table cursor, if there is one */
2002   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
2003   int *piDataCur,  /* Write the database source cursor number here */
2004   int *piIdxCur    /* Write the first index cursor number here */
2005 ){
2006   int i;
2007   int iDb;
2008   int iDataCur;
2009   Index *pIdx;
2010   Vdbe *v;
2011 
2012   assert( op==OP_OpenRead || op==OP_OpenWrite );
2013   assert( op==OP_OpenWrite || p5==0 );
2014   if( IsVirtual(pTab) ){
2015     /* This routine is a no-op for virtual tables. Leave the output
2016     ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
2017     ** can detect if they are used by mistake in the caller. */
2018     return 0;
2019   }
2020   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2021   v = sqlite3GetVdbe(pParse);
2022   assert( v!=0 );
2023   if( iBase<0 ) iBase = pParse->nTab;
2024   iDataCur = iBase++;
2025   if( piDataCur ) *piDataCur = iDataCur;
2026   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2027     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2028   }else{
2029     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2030   }
2031   if( piIdxCur ) *piIdxCur = iBase;
2032   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2033     int iIdxCur = iBase++;
2034     assert( pIdx->pSchema==pTab->pSchema );
2035     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2036       if( piDataCur ) *piDataCur = iIdxCur;
2037       p5 = 0;
2038     }
2039     if( aToOpen==0 || aToOpen[i+1] ){
2040       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2041       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2042       sqlite3VdbeChangeP5(v, p5);
2043       VdbeComment((v, "%s", pIdx->zName));
2044     }
2045   }
2046   if( iBase>pParse->nTab ) pParse->nTab = iBase;
2047   return i;
2048 }
2049 
2050 
2051 #ifdef SQLITE_TEST
2052 /*
2053 ** The following global variable is incremented whenever the
2054 ** transfer optimization is used.  This is used for testing
2055 ** purposes only - to make sure the transfer optimization really
2056 ** is happening when it is supposed to.
2057 */
2058 int sqlite3_xferopt_count;
2059 #endif /* SQLITE_TEST */
2060 
2061 
2062 #ifndef SQLITE_OMIT_XFER_OPT
2063 /*
2064 ** Check to see if index pSrc is compatible as a source of data
2065 ** for index pDest in an insert transfer optimization.  The rules
2066 ** for a compatible index:
2067 **
2068 **    *   The index is over the same set of columns
2069 **    *   The same DESC and ASC markings occurs on all columns
2070 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
2071 **    *   The same collating sequence on each column
2072 **    *   The index has the exact same WHERE clause
2073 */
2074 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2075   int i;
2076   assert( pDest && pSrc );
2077   assert( pDest->pTable!=pSrc->pTable );
2078   if( pDest->nKeyCol!=pSrc->nKeyCol ){
2079     return 0;   /* Different number of columns */
2080   }
2081   if( pDest->onError!=pSrc->onError ){
2082     return 0;   /* Different conflict resolution strategies */
2083   }
2084   for(i=0; i<pSrc->nKeyCol; i++){
2085     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2086       return 0;   /* Different columns indexed */
2087     }
2088     if( pSrc->aiColumn[i]==XN_EXPR ){
2089       assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2090       if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2091                              pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2092         return 0;   /* Different expressions in the index */
2093       }
2094     }
2095     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2096       return 0;   /* Different sort orders */
2097     }
2098     if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2099       return 0;   /* Different collating sequences */
2100     }
2101   }
2102   if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2103     return 0;     /* Different WHERE clauses */
2104   }
2105 
2106   /* If no test above fails then the indices must be compatible */
2107   return 1;
2108 }
2109 
2110 /*
2111 ** Attempt the transfer optimization on INSERTs of the form
2112 **
2113 **     INSERT INTO tab1 SELECT * FROM tab2;
2114 **
2115 ** The xfer optimization transfers raw records from tab2 over to tab1.
2116 ** Columns are not decoded and reassembled, which greatly improves
2117 ** performance.  Raw index records are transferred in the same way.
2118 **
2119 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2120 ** There are lots of rules for determining compatibility - see comments
2121 ** embedded in the code for details.
2122 **
2123 ** This routine returns TRUE if the optimization is guaranteed to be used.
2124 ** Sometimes the xfer optimization will only work if the destination table
2125 ** is empty - a factor that can only be determined at run-time.  In that
2126 ** case, this routine generates code for the xfer optimization but also
2127 ** does a test to see if the destination table is empty and jumps over the
2128 ** xfer optimization code if the test fails.  In that case, this routine
2129 ** returns FALSE so that the caller will know to go ahead and generate
2130 ** an unoptimized transfer.  This routine also returns FALSE if there
2131 ** is no chance that the xfer optimization can be applied.
2132 **
2133 ** This optimization is particularly useful at making VACUUM run faster.
2134 */
2135 static int xferOptimization(
2136   Parse *pParse,        /* Parser context */
2137   Table *pDest,         /* The table we are inserting into */
2138   Select *pSelect,      /* A SELECT statement to use as the data source */
2139   int onError,          /* How to handle constraint errors */
2140   int iDbDest           /* The database of pDest */
2141 ){
2142   sqlite3 *db = pParse->db;
2143   ExprList *pEList;                /* The result set of the SELECT */
2144   Table *pSrc;                     /* The table in the FROM clause of SELECT */
2145   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
2146   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
2147   int i;                           /* Loop counter */
2148   int iDbSrc;                      /* The database of pSrc */
2149   int iSrc, iDest;                 /* Cursors from source and destination */
2150   int addr1, addr2;                /* Loop addresses */
2151   int emptyDestTest = 0;           /* Address of test for empty pDest */
2152   int emptySrcTest = 0;            /* Address of test for empty pSrc */
2153   Vdbe *v;                         /* The VDBE we are building */
2154   int regAutoinc;                  /* Memory register used by AUTOINC */
2155   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
2156   int regData, regRowid;           /* Registers holding data and rowid */
2157 
2158   if( pSelect==0 ){
2159     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
2160   }
2161   if( pParse->pWith || pSelect->pWith ){
2162     /* Do not attempt to process this query if there are an WITH clauses
2163     ** attached to it. Proceeding may generate a false "no such table: xxx"
2164     ** error if pSelect reads from a CTE named "xxx".  */
2165     return 0;
2166   }
2167   if( sqlite3TriggerList(pParse, pDest) ){
2168     return 0;   /* tab1 must not have triggers */
2169   }
2170 #ifndef SQLITE_OMIT_VIRTUALTABLE
2171   if( IsVirtual(pDest) ){
2172     return 0;   /* tab1 must not be a virtual table */
2173   }
2174 #endif
2175   if( onError==OE_Default ){
2176     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2177     if( onError==OE_Default ) onError = OE_Abort;
2178   }
2179   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
2180   if( pSelect->pSrc->nSrc!=1 ){
2181     return 0;   /* FROM clause must have exactly one term */
2182   }
2183   if( pSelect->pSrc->a[0].pSelect ){
2184     return 0;   /* FROM clause cannot contain a subquery */
2185   }
2186   if( pSelect->pWhere ){
2187     return 0;   /* SELECT may not have a WHERE clause */
2188   }
2189   if( pSelect->pOrderBy ){
2190     return 0;   /* SELECT may not have an ORDER BY clause */
2191   }
2192   /* Do not need to test for a HAVING clause.  If HAVING is present but
2193   ** there is no ORDER BY, we will get an error. */
2194   if( pSelect->pGroupBy ){
2195     return 0;   /* SELECT may not have a GROUP BY clause */
2196   }
2197   if( pSelect->pLimit ){
2198     return 0;   /* SELECT may not have a LIMIT clause */
2199   }
2200   if( pSelect->pPrior ){
2201     return 0;   /* SELECT may not be a compound query */
2202   }
2203   if( pSelect->selFlags & SF_Distinct ){
2204     return 0;   /* SELECT may not be DISTINCT */
2205   }
2206   pEList = pSelect->pEList;
2207   assert( pEList!=0 );
2208   if( pEList->nExpr!=1 ){
2209     return 0;   /* The result set must have exactly one column */
2210   }
2211   assert( pEList->a[0].pExpr );
2212   if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2213     return 0;   /* The result set must be the special operator "*" */
2214   }
2215 
2216   /* At this point we have established that the statement is of the
2217   ** correct syntactic form to participate in this optimization.  Now
2218   ** we have to check the semantics.
2219   */
2220   pItem = pSelect->pSrc->a;
2221   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2222   if( pSrc==0 ){
2223     return 0;   /* FROM clause does not contain a real table */
2224   }
2225   if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2226     testcase( pSrc!=pDest ); /* Possible due to bad sqlite_master.rootpage */
2227     return 0;   /* tab1 and tab2 may not be the same table */
2228   }
2229   if( HasRowid(pDest)!=HasRowid(pSrc) ){
2230     return 0;   /* source and destination must both be WITHOUT ROWID or not */
2231   }
2232 #ifndef SQLITE_OMIT_VIRTUALTABLE
2233   if( IsVirtual(pSrc) ){
2234     return 0;   /* tab2 must not be a virtual table */
2235   }
2236 #endif
2237   if( pSrc->pSelect ){
2238     return 0;   /* tab2 may not be a view */
2239   }
2240   if( pDest->nCol!=pSrc->nCol ){
2241     return 0;   /* Number of columns must be the same in tab1 and tab2 */
2242   }
2243   if( pDest->iPKey!=pSrc->iPKey ){
2244     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
2245   }
2246   for(i=0; i<pDest->nCol; i++){
2247     Column *pDestCol = &pDest->aCol[i];
2248     Column *pSrcCol = &pSrc->aCol[i];
2249 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2250     if( (db->mDbFlags & DBFLAG_Vacuum)==0
2251      && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2252     ){
2253       return 0;    /* Neither table may have __hidden__ columns */
2254     }
2255 #endif
2256     if( pDestCol->affinity!=pSrcCol->affinity ){
2257       return 0;    /* Affinity must be the same on all columns */
2258     }
2259     if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
2260       return 0;    /* Collating sequence must be the same on all columns */
2261     }
2262     if( pDestCol->notNull && !pSrcCol->notNull ){
2263       return 0;    /* tab2 must be NOT NULL if tab1 is */
2264     }
2265     /* Default values for second and subsequent columns need to match. */
2266     if( i>0 ){
2267       assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN );
2268       assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN );
2269       if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0)
2270        || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken,
2271                                        pSrcCol->pDflt->u.zToken)!=0)
2272       ){
2273         return 0;    /* Default values must be the same for all columns */
2274       }
2275     }
2276   }
2277   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2278     if( IsUniqueIndex(pDestIdx) ){
2279       destHasUniqueIdx = 1;
2280     }
2281     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2282       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2283     }
2284     if( pSrcIdx==0 ){
2285       return 0;    /* pDestIdx has no corresponding index in pSrc */
2286     }
2287     if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2288          && sqlite3FaultSim(411)==SQLITE_OK ){
2289       /* The sqlite3FaultSim() call allows this corruption test to be
2290       ** bypassed during testing, in order to exercise other corruption tests
2291       ** further downstream. */
2292       return 0;   /* Corrupt schema - two indexes on the same btree */
2293     }
2294   }
2295 #ifndef SQLITE_OMIT_CHECK
2296   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2297     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
2298   }
2299 #endif
2300 #ifndef SQLITE_OMIT_FOREIGN_KEY
2301   /* Disallow the transfer optimization if the destination table constains
2302   ** any foreign key constraints.  This is more restrictive than necessary.
2303   ** But the main beneficiary of the transfer optimization is the VACUUM
2304   ** command, and the VACUUM command disables foreign key constraints.  So
2305   ** the extra complication to make this rule less restrictive is probably
2306   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2307   */
2308   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
2309     return 0;
2310   }
2311 #endif
2312   if( (db->flags & SQLITE_CountRows)!=0 ){
2313     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
2314   }
2315 
2316   /* If we get this far, it means that the xfer optimization is at
2317   ** least a possibility, though it might only work if the destination
2318   ** table (tab1) is initially empty.
2319   */
2320 #ifdef SQLITE_TEST
2321   sqlite3_xferopt_count++;
2322 #endif
2323   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2324   v = sqlite3GetVdbe(pParse);
2325   sqlite3CodeVerifySchema(pParse, iDbSrc);
2326   iSrc = pParse->nTab++;
2327   iDest = pParse->nTab++;
2328   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2329   regData = sqlite3GetTempReg(pParse);
2330   regRowid = sqlite3GetTempReg(pParse);
2331   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2332   assert( HasRowid(pDest) || destHasUniqueIdx );
2333   if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2334       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
2335    || destHasUniqueIdx                              /* (2) */
2336    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
2337   )){
2338     /* In some circumstances, we are able to run the xfer optimization
2339     ** only if the destination table is initially empty. Unless the
2340     ** DBFLAG_Vacuum flag is set, this block generates code to make
2341     ** that determination. If DBFLAG_Vacuum is set, then the destination
2342     ** table is always empty.
2343     **
2344     ** Conditions under which the destination must be empty:
2345     **
2346     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2347     **     (If the destination is not initially empty, the rowid fields
2348     **     of index entries might need to change.)
2349     **
2350     ** (2) The destination has a unique index.  (The xfer optimization
2351     **     is unable to test uniqueness.)
2352     **
2353     ** (3) onError is something other than OE_Abort and OE_Rollback.
2354     */
2355     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
2356     emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
2357     sqlite3VdbeJumpHere(v, addr1);
2358   }
2359   if( HasRowid(pSrc) ){
2360     u8 insFlags;
2361     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2362     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2363     if( pDest->iPKey>=0 ){
2364       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2365       sqlite3VdbeVerifyAbortable(v, onError);
2366       addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2367       VdbeCoverage(v);
2368       sqlite3RowidConstraint(pParse, onError, pDest);
2369       sqlite3VdbeJumpHere(v, addr2);
2370       autoIncStep(pParse, regAutoinc, regRowid);
2371     }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
2372       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2373     }else{
2374       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2375       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2376     }
2377     sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2378     if( db->mDbFlags & DBFLAG_Vacuum ){
2379       sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2380       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|
2381                            OPFLAG_APPEND|OPFLAG_USESEEKRESULT;
2382     }else{
2383       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND;
2384     }
2385     sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
2386                       (char*)pDest, P4_TABLE);
2387     sqlite3VdbeChangeP5(v, insFlags);
2388     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
2389     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2390     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2391   }else{
2392     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2393     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2394   }
2395   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2396     u8 idxInsFlags = 0;
2397     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2398       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2399     }
2400     assert( pSrcIdx );
2401     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2402     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2403     VdbeComment((v, "%s", pSrcIdx->zName));
2404     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2405     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2406     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2407     VdbeComment((v, "%s", pDestIdx->zName));
2408     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2409     sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2410     if( db->mDbFlags & DBFLAG_Vacuum ){
2411       /* This INSERT command is part of a VACUUM operation, which guarantees
2412       ** that the destination table is empty. If all indexed columns use
2413       ** collation sequence BINARY, then it can also be assumed that the
2414       ** index will be populated by inserting keys in strictly sorted
2415       ** order. In this case, instead of seeking within the b-tree as part
2416       ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
2417       ** OP_IdxInsert to seek to the point within the b-tree where each key
2418       ** should be inserted. This is faster.
2419       **
2420       ** If any of the indexed columns use a collation sequence other than
2421       ** BINARY, this optimization is disabled. This is because the user
2422       ** might change the definition of a collation sequence and then run
2423       ** a VACUUM command. In that case keys may not be written in strictly
2424       ** sorted order.  */
2425       for(i=0; i<pSrcIdx->nColumn; i++){
2426         const char *zColl = pSrcIdx->azColl[i];
2427         if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
2428       }
2429       if( i==pSrcIdx->nColumn ){
2430         idxInsFlags = OPFLAG_USESEEKRESULT;
2431         sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2432       }
2433     }
2434     if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2435       idxInsFlags |= OPFLAG_NCHANGE;
2436     }
2437     sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
2438     sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
2439     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2440     sqlite3VdbeJumpHere(v, addr1);
2441     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2442     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2443   }
2444   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2445   sqlite3ReleaseTempReg(pParse, regRowid);
2446   sqlite3ReleaseTempReg(pParse, regData);
2447   if( emptyDestTest ){
2448     sqlite3AutoincrementEnd(pParse);
2449     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2450     sqlite3VdbeJumpHere(v, emptyDestTest);
2451     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2452     return 0;
2453   }else{
2454     return 1;
2455   }
2456 }
2457 #endif /* SQLITE_OMIT_XFER_OPT */
2458