1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->bHasExpr ); 100 assert( pIdx->aColExpr!=0 ); 101 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 102 } 103 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 104 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 105 pIdx->zColAff[n] = aff; 106 } 107 pIdx->zColAff[n] = 0; 108 } 109 110 return pIdx->zColAff; 111 } 112 113 /* 114 ** Make changes to the evolving bytecode to do affinity transformations 115 ** of values that are about to be gathered into a row for table pTab. 116 ** 117 ** For ordinary (legacy, non-strict) tables: 118 ** ----------------------------------------- 119 ** 120 ** Compute the affinity string for table pTab, if it has not already been 121 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 122 ** 123 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 124 ** which were then optimized out) then this routine becomes a no-op. 125 ** 126 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 127 ** affinities for register iReg and following. Or if iReg==0, 128 ** then just set the P4 operand of the previous opcode (which should be 129 ** an OP_MakeRecord) to the affinity string. 130 ** 131 ** A column affinity string has one character per column: 132 ** 133 ** Character Column affinity 134 ** --------- --------------- 135 ** 'A' BLOB 136 ** 'B' TEXT 137 ** 'C' NUMERIC 138 ** 'D' INTEGER 139 ** 'E' REAL 140 ** 141 ** For STRICT tables: 142 ** ------------------ 143 ** 144 ** Generate an appropropriate OP_TypeCheck opcode that will verify the 145 ** datatypes against the column definitions in pTab. If iReg==0, that 146 ** means an OP_MakeRecord opcode has already been generated and should be 147 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 148 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 149 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 150 ** the first of a series of registers that will form the new record. 151 ** Apply the type checking to that array of registers. 152 */ 153 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 154 int i, j; 155 char *zColAff; 156 if( pTab->tabFlags & TF_Strict ){ 157 if( iReg==0 ){ 158 /* Move the previous opcode (which should be OP_MakeRecord) forward 159 ** by one slot and insert a new OP_TypeCheck where the current 160 ** OP_MakeRecord is found */ 161 VdbeOp *pPrev; 162 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 163 pPrev = sqlite3VdbeGetLastOp(v); 164 assert( pPrev!=0 ); 165 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 166 pPrev->opcode = OP_TypeCheck; 167 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 168 }else{ 169 /* Insert an isolated OP_Typecheck */ 170 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 171 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 172 } 173 return; 174 } 175 zColAff = pTab->zColAff; 176 if( zColAff==0 ){ 177 sqlite3 *db = sqlite3VdbeDb(v); 178 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 179 if( !zColAff ){ 180 sqlite3OomFault(db); 181 return; 182 } 183 184 for(i=j=0; i<pTab->nCol; i++){ 185 assert( pTab->aCol[i].affinity!=0 || sqlite3VdbeParser(v)->nErr>0 ); 186 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 187 zColAff[j++] = pTab->aCol[i].affinity; 188 } 189 } 190 do{ 191 zColAff[j--] = 0; 192 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 193 pTab->zColAff = zColAff; 194 } 195 assert( zColAff!=0 ); 196 i = sqlite3Strlen30NN(zColAff); 197 if( i ){ 198 if( iReg ){ 199 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 200 }else{ 201 assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord 202 || sqlite3VdbeDb(v)->mallocFailed ); 203 sqlite3VdbeChangeP4(v, -1, zColAff, i); 204 } 205 } 206 } 207 208 /* 209 ** Return non-zero if the table pTab in database iDb or any of its indices 210 ** have been opened at any point in the VDBE program. This is used to see if 211 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 212 ** run without using a temporary table for the results of the SELECT. 213 */ 214 static int readsTable(Parse *p, int iDb, Table *pTab){ 215 Vdbe *v = sqlite3GetVdbe(p); 216 int i; 217 int iEnd = sqlite3VdbeCurrentAddr(v); 218 #ifndef SQLITE_OMIT_VIRTUALTABLE 219 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 220 #endif 221 222 for(i=1; i<iEnd; i++){ 223 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 224 assert( pOp!=0 ); 225 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 226 Index *pIndex; 227 Pgno tnum = pOp->p2; 228 if( tnum==pTab->tnum ){ 229 return 1; 230 } 231 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 232 if( tnum==pIndex->tnum ){ 233 return 1; 234 } 235 } 236 } 237 #ifndef SQLITE_OMIT_VIRTUALTABLE 238 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 239 assert( pOp->p4.pVtab!=0 ); 240 assert( pOp->p4type==P4_VTAB ); 241 return 1; 242 } 243 #endif 244 } 245 return 0; 246 } 247 248 /* This walker callback will compute the union of colFlags flags for all 249 ** referenced columns in a CHECK constraint or generated column expression. 250 */ 251 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 252 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 253 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 254 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 255 } 256 return WRC_Continue; 257 } 258 259 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 260 /* 261 ** All regular columns for table pTab have been puts into registers 262 ** starting with iRegStore. The registers that correspond to STORED 263 ** or VIRTUAL columns have not yet been initialized. This routine goes 264 ** back and computes the values for those columns based on the previously 265 ** computed normal columns. 266 */ 267 void sqlite3ComputeGeneratedColumns( 268 Parse *pParse, /* Parsing context */ 269 int iRegStore, /* Register holding the first column */ 270 Table *pTab /* The table */ 271 ){ 272 int i; 273 Walker w; 274 Column *pRedo; 275 int eProgress; 276 VdbeOp *pOp; 277 278 assert( pTab->tabFlags & TF_HasGenerated ); 279 testcase( pTab->tabFlags & TF_HasVirtual ); 280 testcase( pTab->tabFlags & TF_HasStored ); 281 282 /* Before computing generated columns, first go through and make sure 283 ** that appropriate affinity has been applied to the regular columns 284 */ 285 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 286 if( (pTab->tabFlags & TF_HasStored)!=0 ){ 287 pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); 288 if( pOp->opcode==OP_Affinity ){ 289 /* Change the OP_Affinity argument to '@' (NONE) for all stored 290 ** columns. '@' is the no-op affinity and those columns have not 291 ** yet been computed. */ 292 int ii, jj; 293 char *zP4 = pOp->p4.z; 294 assert( zP4!=0 ); 295 assert( pOp->p4type==P4_DYNAMIC ); 296 for(ii=jj=0; zP4[jj]; ii++){ 297 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 298 continue; 299 } 300 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 301 zP4[jj] = SQLITE_AFF_NONE; 302 } 303 jj++; 304 } 305 }else if( pOp->opcode==OP_TypeCheck ){ 306 /* If an OP_TypeCheck was generated because the table is STRICT, 307 ** then set the P3 operand to indicate that generated columns should 308 ** not be checked */ 309 pOp->p3 = 1; 310 } 311 } 312 313 /* Because there can be multiple generated columns that refer to one another, 314 ** this is a two-pass algorithm. On the first pass, mark all generated 315 ** columns as "not available". 316 */ 317 for(i=0; i<pTab->nCol; i++){ 318 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 319 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 320 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 321 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 322 } 323 } 324 325 w.u.pTab = pTab; 326 w.xExprCallback = exprColumnFlagUnion; 327 w.xSelectCallback = 0; 328 w.xSelectCallback2 = 0; 329 330 /* On the second pass, compute the value of each NOT-AVAILABLE column. 331 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 332 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 333 ** they are needed. 334 */ 335 pParse->iSelfTab = -iRegStore; 336 do{ 337 eProgress = 0; 338 pRedo = 0; 339 for(i=0; i<pTab->nCol; i++){ 340 Column *pCol = pTab->aCol + i; 341 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 342 int x; 343 pCol->colFlags |= COLFLAG_BUSY; 344 w.eCode = 0; 345 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 346 pCol->colFlags &= ~COLFLAG_BUSY; 347 if( w.eCode & COLFLAG_NOTAVAIL ){ 348 pRedo = pCol; 349 continue; 350 } 351 eProgress = 1; 352 assert( pCol->colFlags & COLFLAG_GENERATED ); 353 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 354 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 355 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 356 } 357 } 358 }while( pRedo && eProgress ); 359 if( pRedo ){ 360 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 361 } 362 pParse->iSelfTab = 0; 363 } 364 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 365 366 367 #ifndef SQLITE_OMIT_AUTOINCREMENT 368 /* 369 ** Locate or create an AutoincInfo structure associated with table pTab 370 ** which is in database iDb. Return the register number for the register 371 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 372 ** table. (Also return zero when doing a VACUUM since we do not want to 373 ** update the AUTOINCREMENT counters during a VACUUM.) 374 ** 375 ** There is at most one AutoincInfo structure per table even if the 376 ** same table is autoincremented multiple times due to inserts within 377 ** triggers. A new AutoincInfo structure is created if this is the 378 ** first use of table pTab. On 2nd and subsequent uses, the original 379 ** AutoincInfo structure is used. 380 ** 381 ** Four consecutive registers are allocated: 382 ** 383 ** (1) The name of the pTab table. 384 ** (2) The maximum ROWID of pTab. 385 ** (3) The rowid in sqlite_sequence of pTab 386 ** (4) The original value of the max ROWID in pTab, or NULL if none 387 ** 388 ** The 2nd register is the one that is returned. That is all the 389 ** insert routine needs to know about. 390 */ 391 static int autoIncBegin( 392 Parse *pParse, /* Parsing context */ 393 int iDb, /* Index of the database holding pTab */ 394 Table *pTab /* The table we are writing to */ 395 ){ 396 int memId = 0; /* Register holding maximum rowid */ 397 assert( pParse->db->aDb[iDb].pSchema!=0 ); 398 if( (pTab->tabFlags & TF_Autoincrement)!=0 399 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 400 ){ 401 Parse *pToplevel = sqlite3ParseToplevel(pParse); 402 AutoincInfo *pInfo; 403 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 404 405 /* Verify that the sqlite_sequence table exists and is an ordinary 406 ** rowid table with exactly two columns. 407 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 408 if( pSeqTab==0 409 || !HasRowid(pSeqTab) 410 || NEVER(IsVirtual(pSeqTab)) 411 || pSeqTab->nCol!=2 412 ){ 413 pParse->nErr++; 414 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 415 return 0; 416 } 417 418 pInfo = pToplevel->pAinc; 419 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 420 if( pInfo==0 ){ 421 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 422 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 423 testcase( pParse->earlyCleanup ); 424 if( pParse->db->mallocFailed ) return 0; 425 pInfo->pNext = pToplevel->pAinc; 426 pToplevel->pAinc = pInfo; 427 pInfo->pTab = pTab; 428 pInfo->iDb = iDb; 429 pToplevel->nMem++; /* Register to hold name of table */ 430 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 431 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 432 } 433 memId = pInfo->regCtr; 434 } 435 return memId; 436 } 437 438 /* 439 ** This routine generates code that will initialize all of the 440 ** register used by the autoincrement tracker. 441 */ 442 void sqlite3AutoincrementBegin(Parse *pParse){ 443 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 444 sqlite3 *db = pParse->db; /* The database connection */ 445 Db *pDb; /* Database only autoinc table */ 446 int memId; /* Register holding max rowid */ 447 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 448 449 /* This routine is never called during trigger-generation. It is 450 ** only called from the top-level */ 451 assert( pParse->pTriggerTab==0 ); 452 assert( sqlite3IsToplevel(pParse) ); 453 454 assert( v ); /* We failed long ago if this is not so */ 455 for(p = pParse->pAinc; p; p = p->pNext){ 456 static const int iLn = VDBE_OFFSET_LINENO(2); 457 static const VdbeOpList autoInc[] = { 458 /* 0 */ {OP_Null, 0, 0, 0}, 459 /* 1 */ {OP_Rewind, 0, 10, 0}, 460 /* 2 */ {OP_Column, 0, 0, 0}, 461 /* 3 */ {OP_Ne, 0, 9, 0}, 462 /* 4 */ {OP_Rowid, 0, 0, 0}, 463 /* 5 */ {OP_Column, 0, 1, 0}, 464 /* 6 */ {OP_AddImm, 0, 0, 0}, 465 /* 7 */ {OP_Copy, 0, 0, 0}, 466 /* 8 */ {OP_Goto, 0, 11, 0}, 467 /* 9 */ {OP_Next, 0, 2, 0}, 468 /* 10 */ {OP_Integer, 0, 0, 0}, 469 /* 11 */ {OP_Close, 0, 0, 0} 470 }; 471 VdbeOp *aOp; 472 pDb = &db->aDb[p->iDb]; 473 memId = p->regCtr; 474 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 475 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 476 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 477 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 478 if( aOp==0 ) break; 479 aOp[0].p2 = memId; 480 aOp[0].p3 = memId+2; 481 aOp[2].p3 = memId; 482 aOp[3].p1 = memId-1; 483 aOp[3].p3 = memId; 484 aOp[3].p5 = SQLITE_JUMPIFNULL; 485 aOp[4].p2 = memId+1; 486 aOp[5].p3 = memId; 487 aOp[6].p1 = memId; 488 aOp[7].p2 = memId+2; 489 aOp[7].p1 = memId; 490 aOp[10].p2 = memId; 491 if( pParse->nTab==0 ) pParse->nTab = 1; 492 } 493 } 494 495 /* 496 ** Update the maximum rowid for an autoincrement calculation. 497 ** 498 ** This routine should be called when the regRowid register holds a 499 ** new rowid that is about to be inserted. If that new rowid is 500 ** larger than the maximum rowid in the memId memory cell, then the 501 ** memory cell is updated. 502 */ 503 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 504 if( memId>0 ){ 505 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 506 } 507 } 508 509 /* 510 ** This routine generates the code needed to write autoincrement 511 ** maximum rowid values back into the sqlite_sequence register. 512 ** Every statement that might do an INSERT into an autoincrement 513 ** table (either directly or through triggers) needs to call this 514 ** routine just before the "exit" code. 515 */ 516 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 517 AutoincInfo *p; 518 Vdbe *v = pParse->pVdbe; 519 sqlite3 *db = pParse->db; 520 521 assert( v ); 522 for(p = pParse->pAinc; p; p = p->pNext){ 523 static const int iLn = VDBE_OFFSET_LINENO(2); 524 static const VdbeOpList autoIncEnd[] = { 525 /* 0 */ {OP_NotNull, 0, 2, 0}, 526 /* 1 */ {OP_NewRowid, 0, 0, 0}, 527 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 528 /* 3 */ {OP_Insert, 0, 0, 0}, 529 /* 4 */ {OP_Close, 0, 0, 0} 530 }; 531 VdbeOp *aOp; 532 Db *pDb = &db->aDb[p->iDb]; 533 int iRec; 534 int memId = p->regCtr; 535 536 iRec = sqlite3GetTempReg(pParse); 537 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 538 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 539 VdbeCoverage(v); 540 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 541 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 542 if( aOp==0 ) break; 543 aOp[0].p1 = memId+1; 544 aOp[1].p2 = memId+1; 545 aOp[2].p1 = memId-1; 546 aOp[2].p3 = iRec; 547 aOp[3].p2 = iRec; 548 aOp[3].p3 = memId+1; 549 aOp[3].p5 = OPFLAG_APPEND; 550 sqlite3ReleaseTempReg(pParse, iRec); 551 } 552 } 553 void sqlite3AutoincrementEnd(Parse *pParse){ 554 if( pParse->pAinc ) autoIncrementEnd(pParse); 555 } 556 #else 557 /* 558 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 559 ** above are all no-ops 560 */ 561 # define autoIncBegin(A,B,C) (0) 562 # define autoIncStep(A,B,C) 563 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 564 565 566 /* Forward declaration */ 567 static int xferOptimization( 568 Parse *pParse, /* Parser context */ 569 Table *pDest, /* The table we are inserting into */ 570 Select *pSelect, /* A SELECT statement to use as the data source */ 571 int onError, /* How to handle constraint errors */ 572 int iDbDest /* The database of pDest */ 573 ); 574 575 /* 576 ** This routine is called to handle SQL of the following forms: 577 ** 578 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 579 ** insert into TABLE (IDLIST) select 580 ** insert into TABLE (IDLIST) default values 581 ** 582 ** The IDLIST following the table name is always optional. If omitted, 583 ** then a list of all (non-hidden) columns for the table is substituted. 584 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 585 ** is omitted. 586 ** 587 ** For the pSelect parameter holds the values to be inserted for the 588 ** first two forms shown above. A VALUES clause is really just short-hand 589 ** for a SELECT statement that omits the FROM clause and everything else 590 ** that follows. If the pSelect parameter is NULL, that means that the 591 ** DEFAULT VALUES form of the INSERT statement is intended. 592 ** 593 ** The code generated follows one of four templates. For a simple 594 ** insert with data coming from a single-row VALUES clause, the code executes 595 ** once straight down through. Pseudo-code follows (we call this 596 ** the "1st template"): 597 ** 598 ** open write cursor to <table> and its indices 599 ** put VALUES clause expressions into registers 600 ** write the resulting record into <table> 601 ** cleanup 602 ** 603 ** The three remaining templates assume the statement is of the form 604 ** 605 ** INSERT INTO <table> SELECT ... 606 ** 607 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 608 ** in other words if the SELECT pulls all columns from a single table 609 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 610 ** if <table2> and <table1> are distinct tables but have identical 611 ** schemas, including all the same indices, then a special optimization 612 ** is invoked that copies raw records from <table2> over to <table1>. 613 ** See the xferOptimization() function for the implementation of this 614 ** template. This is the 2nd template. 615 ** 616 ** open a write cursor to <table> 617 ** open read cursor on <table2> 618 ** transfer all records in <table2> over to <table> 619 ** close cursors 620 ** foreach index on <table> 621 ** open a write cursor on the <table> index 622 ** open a read cursor on the corresponding <table2> index 623 ** transfer all records from the read to the write cursors 624 ** close cursors 625 ** end foreach 626 ** 627 ** The 3rd template is for when the second template does not apply 628 ** and the SELECT clause does not read from <table> at any time. 629 ** The generated code follows this template: 630 ** 631 ** X <- A 632 ** goto B 633 ** A: setup for the SELECT 634 ** loop over the rows in the SELECT 635 ** load values into registers R..R+n 636 ** yield X 637 ** end loop 638 ** cleanup after the SELECT 639 ** end-coroutine X 640 ** B: open write cursor to <table> and its indices 641 ** C: yield X, at EOF goto D 642 ** insert the select result into <table> from R..R+n 643 ** goto C 644 ** D: cleanup 645 ** 646 ** The 4th template is used if the insert statement takes its 647 ** values from a SELECT but the data is being inserted into a table 648 ** that is also read as part of the SELECT. In the third form, 649 ** we have to use an intermediate table to store the results of 650 ** the select. The template is like this: 651 ** 652 ** X <- A 653 ** goto B 654 ** A: setup for the SELECT 655 ** loop over the tables in the SELECT 656 ** load value into register R..R+n 657 ** yield X 658 ** end loop 659 ** cleanup after the SELECT 660 ** end co-routine R 661 ** B: open temp table 662 ** L: yield X, at EOF goto M 663 ** insert row from R..R+n into temp table 664 ** goto L 665 ** M: open write cursor to <table> and its indices 666 ** rewind temp table 667 ** C: loop over rows of intermediate table 668 ** transfer values form intermediate table into <table> 669 ** end loop 670 ** D: cleanup 671 */ 672 void sqlite3Insert( 673 Parse *pParse, /* Parser context */ 674 SrcList *pTabList, /* Name of table into which we are inserting */ 675 Select *pSelect, /* A SELECT statement to use as the data source */ 676 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 677 int onError, /* How to handle constraint errors */ 678 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 679 ){ 680 sqlite3 *db; /* The main database structure */ 681 Table *pTab; /* The table to insert into. aka TABLE */ 682 int i, j; /* Loop counters */ 683 Vdbe *v; /* Generate code into this virtual machine */ 684 Index *pIdx; /* For looping over indices of the table */ 685 int nColumn; /* Number of columns in the data */ 686 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 687 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 688 int iIdxCur = 0; /* First index cursor */ 689 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 690 int endOfLoop; /* Label for the end of the insertion loop */ 691 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 692 int addrInsTop = 0; /* Jump to label "D" */ 693 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 694 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 695 int iDb; /* Index of database holding TABLE */ 696 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 697 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 698 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 699 u8 bIdListInOrder; /* True if IDLIST is in table order */ 700 ExprList *pList = 0; /* List of VALUES() to be inserted */ 701 int iRegStore; /* Register in which to store next column */ 702 703 /* Register allocations */ 704 int regFromSelect = 0;/* Base register for data coming from SELECT */ 705 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 706 int regRowCount = 0; /* Memory cell used for the row counter */ 707 int regIns; /* Block of regs holding rowid+data being inserted */ 708 int regRowid; /* registers holding insert rowid */ 709 int regData; /* register holding first column to insert */ 710 int *aRegIdx = 0; /* One register allocated to each index */ 711 712 #ifndef SQLITE_OMIT_TRIGGER 713 int isView; /* True if attempting to insert into a view */ 714 Trigger *pTrigger; /* List of triggers on pTab, if required */ 715 int tmask; /* Mask of trigger times */ 716 #endif 717 718 db = pParse->db; 719 assert( db->pParse==pParse ); 720 if( pParse->nErr ){ 721 goto insert_cleanup; 722 } 723 assert( db->mallocFailed==0 ); 724 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 725 726 /* If the Select object is really just a simple VALUES() list with a 727 ** single row (the common case) then keep that one row of values 728 ** and discard the other (unused) parts of the pSelect object 729 */ 730 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 731 pList = pSelect->pEList; 732 pSelect->pEList = 0; 733 sqlite3SelectDelete(db, pSelect); 734 pSelect = 0; 735 } 736 737 /* Locate the table into which we will be inserting new information. 738 */ 739 assert( pTabList->nSrc==1 ); 740 pTab = sqlite3SrcListLookup(pParse, pTabList); 741 if( pTab==0 ){ 742 goto insert_cleanup; 743 } 744 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 745 assert( iDb<db->nDb ); 746 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 747 db->aDb[iDb].zDbSName) ){ 748 goto insert_cleanup; 749 } 750 withoutRowid = !HasRowid(pTab); 751 752 /* Figure out if we have any triggers and if the table being 753 ** inserted into is a view 754 */ 755 #ifndef SQLITE_OMIT_TRIGGER 756 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 757 isView = IsView(pTab); 758 #else 759 # define pTrigger 0 760 # define tmask 0 761 # define isView 0 762 #endif 763 #ifdef SQLITE_OMIT_VIEW 764 # undef isView 765 # define isView 0 766 #endif 767 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 768 769 #if TREETRACE_ENABLED 770 if( sqlite3TreeTrace & 0x10000 ){ 771 sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__); 772 sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList, 773 onError, pUpsert, pTrigger); 774 } 775 #endif 776 777 /* If pTab is really a view, make sure it has been initialized. 778 ** ViewGetColumnNames() is a no-op if pTab is not a view. 779 */ 780 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 781 goto insert_cleanup; 782 } 783 784 /* Cannot insert into a read-only table. 785 */ 786 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 787 goto insert_cleanup; 788 } 789 790 /* Allocate a VDBE 791 */ 792 v = sqlite3GetVdbe(pParse); 793 if( v==0 ) goto insert_cleanup; 794 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 795 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 796 797 #ifndef SQLITE_OMIT_XFER_OPT 798 /* If the statement is of the form 799 ** 800 ** INSERT INTO <table1> SELECT * FROM <table2>; 801 ** 802 ** Then special optimizations can be applied that make the transfer 803 ** very fast and which reduce fragmentation of indices. 804 ** 805 ** This is the 2nd template. 806 */ 807 if( pColumn==0 808 && pSelect!=0 809 && pTrigger==0 810 && xferOptimization(pParse, pTab, pSelect, onError, iDb) 811 ){ 812 assert( !pTrigger ); 813 assert( pList==0 ); 814 goto insert_end; 815 } 816 #endif /* SQLITE_OMIT_XFER_OPT */ 817 818 /* If this is an AUTOINCREMENT table, look up the sequence number in the 819 ** sqlite_sequence table and store it in memory cell regAutoinc. 820 */ 821 regAutoinc = autoIncBegin(pParse, iDb, pTab); 822 823 /* Allocate a block registers to hold the rowid and the values 824 ** for all columns of the new row. 825 */ 826 regRowid = regIns = pParse->nMem+1; 827 pParse->nMem += pTab->nCol + 1; 828 if( IsVirtual(pTab) ){ 829 regRowid++; 830 pParse->nMem++; 831 } 832 regData = regRowid+1; 833 834 /* If the INSERT statement included an IDLIST term, then make sure 835 ** all elements of the IDLIST really are columns of the table and 836 ** remember the column indices. 837 ** 838 ** If the table has an INTEGER PRIMARY KEY column and that column 839 ** is named in the IDLIST, then record in the ipkColumn variable 840 ** the index into IDLIST of the primary key column. ipkColumn is 841 ** the index of the primary key as it appears in IDLIST, not as 842 ** is appears in the original table. (The index of the INTEGER 843 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 844 ** loop, if ipkColumn==(-1), that means that integer primary key 845 ** is unspecified, and hence the table is either WITHOUT ROWID or 846 ** it will automatically generated an integer primary key. 847 ** 848 ** bIdListInOrder is true if the columns in IDLIST are in storage 849 ** order. This enables an optimization that avoids shuffling the 850 ** columns into storage order. False negatives are harmless, 851 ** but false positives will cause database corruption. 852 */ 853 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 854 if( pColumn ){ 855 assert( pColumn->eU4!=EU4_EXPR ); 856 pColumn->eU4 = EU4_IDX; 857 for(i=0; i<pColumn->nId; i++){ 858 pColumn->a[i].u4.idx = -1; 859 } 860 for(i=0; i<pColumn->nId; i++){ 861 for(j=0; j<pTab->nCol; j++){ 862 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 863 pColumn->a[i].u4.idx = j; 864 if( i!=j ) bIdListInOrder = 0; 865 if( j==pTab->iPKey ){ 866 ipkColumn = i; assert( !withoutRowid ); 867 } 868 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 869 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 870 sqlite3ErrorMsg(pParse, 871 "cannot INSERT into generated column \"%s\"", 872 pTab->aCol[j].zCnName); 873 goto insert_cleanup; 874 } 875 #endif 876 break; 877 } 878 } 879 if( j>=pTab->nCol ){ 880 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 881 ipkColumn = i; 882 bIdListInOrder = 0; 883 }else{ 884 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 885 pTabList->a, pColumn->a[i].zName); 886 pParse->checkSchema = 1; 887 goto insert_cleanup; 888 } 889 } 890 } 891 } 892 893 /* Figure out how many columns of data are supplied. If the data 894 ** is coming from a SELECT statement, then generate a co-routine that 895 ** produces a single row of the SELECT on each invocation. The 896 ** co-routine is the common header to the 3rd and 4th templates. 897 */ 898 if( pSelect ){ 899 /* Data is coming from a SELECT or from a multi-row VALUES clause. 900 ** Generate a co-routine to run the SELECT. */ 901 int regYield; /* Register holding co-routine entry-point */ 902 int addrTop; /* Top of the co-routine */ 903 int rc; /* Result code */ 904 905 regYield = ++pParse->nMem; 906 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 907 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 908 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 909 dest.iSdst = bIdListInOrder ? regData : 0; 910 dest.nSdst = pTab->nCol; 911 rc = sqlite3Select(pParse, pSelect, &dest); 912 regFromSelect = dest.iSdst; 913 assert( db->pParse==pParse ); 914 if( rc || pParse->nErr ) goto insert_cleanup; 915 assert( db->mallocFailed==0 ); 916 sqlite3VdbeEndCoroutine(v, regYield); 917 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 918 assert( pSelect->pEList ); 919 nColumn = pSelect->pEList->nExpr; 920 921 /* Set useTempTable to TRUE if the result of the SELECT statement 922 ** should be written into a temporary table (template 4). Set to 923 ** FALSE if each output row of the SELECT can be written directly into 924 ** the destination table (template 3). 925 ** 926 ** A temp table must be used if the table being updated is also one 927 ** of the tables being read by the SELECT statement. Also use a 928 ** temp table in the case of row triggers. 929 */ 930 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 931 useTempTable = 1; 932 } 933 934 if( useTempTable ){ 935 /* Invoke the coroutine to extract information from the SELECT 936 ** and add it to a transient table srcTab. The code generated 937 ** here is from the 4th template: 938 ** 939 ** B: open temp table 940 ** L: yield X, goto M at EOF 941 ** insert row from R..R+n into temp table 942 ** goto L 943 ** M: ... 944 */ 945 int regRec; /* Register to hold packed record */ 946 int regTempRowid; /* Register to hold temp table ROWID */ 947 int addrL; /* Label "L" */ 948 949 srcTab = pParse->nTab++; 950 regRec = sqlite3GetTempReg(pParse); 951 regTempRowid = sqlite3GetTempReg(pParse); 952 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 953 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 954 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 955 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 956 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 957 sqlite3VdbeGoto(v, addrL); 958 sqlite3VdbeJumpHere(v, addrL); 959 sqlite3ReleaseTempReg(pParse, regRec); 960 sqlite3ReleaseTempReg(pParse, regTempRowid); 961 } 962 }else{ 963 /* This is the case if the data for the INSERT is coming from a 964 ** single-row VALUES clause 965 */ 966 NameContext sNC; 967 memset(&sNC, 0, sizeof(sNC)); 968 sNC.pParse = pParse; 969 srcTab = -1; 970 assert( useTempTable==0 ); 971 if( pList ){ 972 nColumn = pList->nExpr; 973 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 974 goto insert_cleanup; 975 } 976 }else{ 977 nColumn = 0; 978 } 979 } 980 981 /* If there is no IDLIST term but the table has an integer primary 982 ** key, the set the ipkColumn variable to the integer primary key 983 ** column index in the original table definition. 984 */ 985 if( pColumn==0 && nColumn>0 ){ 986 ipkColumn = pTab->iPKey; 987 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 988 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 989 testcase( pTab->tabFlags & TF_HasVirtual ); 990 testcase( pTab->tabFlags & TF_HasStored ); 991 for(i=ipkColumn-1; i>=0; i--){ 992 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 993 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 994 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 995 ipkColumn--; 996 } 997 } 998 } 999 #endif 1000 1001 /* Make sure the number of columns in the source data matches the number 1002 ** of columns to be inserted into the table. 1003 */ 1004 assert( TF_HasHidden==COLFLAG_HIDDEN ); 1005 assert( TF_HasGenerated==COLFLAG_GENERATED ); 1006 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 1007 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 1008 for(i=0; i<pTab->nCol; i++){ 1009 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 1010 } 1011 } 1012 if( nColumn!=(pTab->nCol-nHidden) ){ 1013 sqlite3ErrorMsg(pParse, 1014 "table %S has %d columns but %d values were supplied", 1015 pTabList->a, pTab->nCol-nHidden, nColumn); 1016 goto insert_cleanup; 1017 } 1018 } 1019 if( pColumn!=0 && nColumn!=pColumn->nId ){ 1020 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 1021 goto insert_cleanup; 1022 } 1023 1024 /* Initialize the count of rows to be inserted 1025 */ 1026 if( (db->flags & SQLITE_CountRows)!=0 1027 && !pParse->nested 1028 && !pParse->pTriggerTab 1029 && !pParse->bReturning 1030 ){ 1031 regRowCount = ++pParse->nMem; 1032 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 1033 } 1034 1035 /* If this is not a view, open the table and and all indices */ 1036 if( !isView ){ 1037 int nIdx; 1038 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 1039 &iDataCur, &iIdxCur); 1040 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 1041 if( aRegIdx==0 ){ 1042 goto insert_cleanup; 1043 } 1044 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 1045 assert( pIdx ); 1046 aRegIdx[i] = ++pParse->nMem; 1047 pParse->nMem += pIdx->nColumn; 1048 } 1049 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 1050 } 1051 #ifndef SQLITE_OMIT_UPSERT 1052 if( pUpsert ){ 1053 Upsert *pNx; 1054 if( IsVirtual(pTab) ){ 1055 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 1056 pTab->zName); 1057 goto insert_cleanup; 1058 } 1059 if( IsView(pTab) ){ 1060 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 1061 goto insert_cleanup; 1062 } 1063 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 1064 goto insert_cleanup; 1065 } 1066 pTabList->a[0].iCursor = iDataCur; 1067 pNx = pUpsert; 1068 do{ 1069 pNx->pUpsertSrc = pTabList; 1070 pNx->regData = regData; 1071 pNx->iDataCur = iDataCur; 1072 pNx->iIdxCur = iIdxCur; 1073 if( pNx->pUpsertTarget ){ 1074 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ 1075 goto insert_cleanup; 1076 } 1077 } 1078 pNx = pNx->pNextUpsert; 1079 }while( pNx!=0 ); 1080 } 1081 #endif 1082 1083 1084 /* This is the top of the main insertion loop */ 1085 if( useTempTable ){ 1086 /* This block codes the top of loop only. The complete loop is the 1087 ** following pseudocode (template 4): 1088 ** 1089 ** rewind temp table, if empty goto D 1090 ** C: loop over rows of intermediate table 1091 ** transfer values form intermediate table into <table> 1092 ** end loop 1093 ** D: ... 1094 */ 1095 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1096 addrCont = sqlite3VdbeCurrentAddr(v); 1097 }else if( pSelect ){ 1098 /* This block codes the top of loop only. The complete loop is the 1099 ** following pseudocode (template 3): 1100 ** 1101 ** C: yield X, at EOF goto D 1102 ** insert the select result into <table> from R..R+n 1103 ** goto C 1104 ** D: ... 1105 */ 1106 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1107 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1108 VdbeCoverage(v); 1109 if( ipkColumn>=0 ){ 1110 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1111 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1112 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1113 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1114 } 1115 } 1116 1117 /* Compute data for ordinary columns of the new entry. Values 1118 ** are written in storage order into registers starting with regData. 1119 ** Only ordinary columns are computed in this loop. The rowid 1120 ** (if there is one) is computed later and generated columns are 1121 ** computed after the rowid since they might depend on the value 1122 ** of the rowid. 1123 */ 1124 nHidden = 0; 1125 iRegStore = regData; assert( regData==regRowid+1 ); 1126 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1127 int k; 1128 u32 colFlags; 1129 assert( i>=nHidden ); 1130 if( i==pTab->iPKey ){ 1131 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1132 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1133 ** using excess space. The file format definition requires this extra 1134 ** NULL - we cannot optimize further by skipping the column completely */ 1135 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1136 continue; 1137 } 1138 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1139 nHidden++; 1140 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1141 /* Virtual columns do not participate in OP_MakeRecord. So back up 1142 ** iRegStore by one slot to compensate for the iRegStore++ in the 1143 ** outer for() loop */ 1144 iRegStore--; 1145 continue; 1146 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1147 /* Stored columns are computed later. But if there are BEFORE 1148 ** triggers, the slots used for stored columns will be OP_Copy-ed 1149 ** to a second block of registers, so the register needs to be 1150 ** initialized to NULL to avoid an uninitialized register read */ 1151 if( tmask & TRIGGER_BEFORE ){ 1152 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1153 } 1154 continue; 1155 }else if( pColumn==0 ){ 1156 /* Hidden columns that are not explicitly named in the INSERT 1157 ** get there default value */ 1158 sqlite3ExprCodeFactorable(pParse, 1159 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1160 iRegStore); 1161 continue; 1162 } 1163 } 1164 if( pColumn ){ 1165 assert( pColumn->eU4==EU4_IDX ); 1166 for(j=0; j<pColumn->nId && pColumn->a[j].u4.idx!=i; j++){} 1167 if( j>=pColumn->nId ){ 1168 /* A column not named in the insert column list gets its 1169 ** default value */ 1170 sqlite3ExprCodeFactorable(pParse, 1171 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1172 iRegStore); 1173 continue; 1174 } 1175 k = j; 1176 }else if( nColumn==0 ){ 1177 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1178 sqlite3ExprCodeFactorable(pParse, 1179 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1180 iRegStore); 1181 continue; 1182 }else{ 1183 k = i - nHidden; 1184 } 1185 1186 if( useTempTable ){ 1187 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1188 }else if( pSelect ){ 1189 if( regFromSelect!=regData ){ 1190 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1191 } 1192 }else{ 1193 Expr *pX = pList->a[k].pExpr; 1194 int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore); 1195 if( y!=iRegStore ){ 1196 sqlite3VdbeAddOp2(v, 1197 ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore); 1198 } 1199 } 1200 } 1201 1202 1203 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1204 */ 1205 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1206 if( tmask & TRIGGER_BEFORE ){ 1207 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1208 1209 /* build the NEW.* reference row. Note that if there is an INTEGER 1210 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1211 ** translated into a unique ID for the row. But on a BEFORE trigger, 1212 ** we do not know what the unique ID will be (because the insert has 1213 ** not happened yet) so we substitute a rowid of -1 1214 */ 1215 if( ipkColumn<0 ){ 1216 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1217 }else{ 1218 int addr1; 1219 assert( !withoutRowid ); 1220 if( useTempTable ){ 1221 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1222 }else{ 1223 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1224 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1225 } 1226 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1227 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1228 sqlite3VdbeJumpHere(v, addr1); 1229 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1230 } 1231 1232 /* Copy the new data already generated. */ 1233 assert( pTab->nNVCol>0 ); 1234 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1235 1236 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1237 /* Compute the new value for generated columns after all other 1238 ** columns have already been computed. This must be done after 1239 ** computing the ROWID in case one of the generated columns 1240 ** refers to the ROWID. */ 1241 if( pTab->tabFlags & TF_HasGenerated ){ 1242 testcase( pTab->tabFlags & TF_HasVirtual ); 1243 testcase( pTab->tabFlags & TF_HasStored ); 1244 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1245 } 1246 #endif 1247 1248 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1249 ** do not attempt any conversions before assembling the record. 1250 ** If this is a real table, attempt conversions as required by the 1251 ** table column affinities. 1252 */ 1253 if( !isView ){ 1254 sqlite3TableAffinity(v, pTab, regCols+1); 1255 } 1256 1257 /* Fire BEFORE or INSTEAD OF triggers */ 1258 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1259 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1260 1261 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1262 } 1263 1264 if( !isView ){ 1265 if( IsVirtual(pTab) ){ 1266 /* The row that the VUpdate opcode will delete: none */ 1267 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1268 } 1269 if( ipkColumn>=0 ){ 1270 /* Compute the new rowid */ 1271 if( useTempTable ){ 1272 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1273 }else if( pSelect ){ 1274 /* Rowid already initialized at tag-20191021-001 */ 1275 }else{ 1276 Expr *pIpk = pList->a[ipkColumn].pExpr; 1277 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1278 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1279 appendFlag = 1; 1280 }else{ 1281 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1282 } 1283 } 1284 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1285 ** to generate a unique primary key value. 1286 */ 1287 if( !appendFlag ){ 1288 int addr1; 1289 if( !IsVirtual(pTab) ){ 1290 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1291 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1292 sqlite3VdbeJumpHere(v, addr1); 1293 }else{ 1294 addr1 = sqlite3VdbeCurrentAddr(v); 1295 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1296 } 1297 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1298 } 1299 }else if( IsVirtual(pTab) || withoutRowid ){ 1300 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1301 }else{ 1302 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1303 appendFlag = 1; 1304 } 1305 autoIncStep(pParse, regAutoinc, regRowid); 1306 1307 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1308 /* Compute the new value for generated columns after all other 1309 ** columns have already been computed. This must be done after 1310 ** computing the ROWID in case one of the generated columns 1311 ** is derived from the INTEGER PRIMARY KEY. */ 1312 if( pTab->tabFlags & TF_HasGenerated ){ 1313 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1314 } 1315 #endif 1316 1317 /* Generate code to check constraints and generate index keys and 1318 ** do the insertion. 1319 */ 1320 #ifndef SQLITE_OMIT_VIRTUALTABLE 1321 if( IsVirtual(pTab) ){ 1322 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1323 sqlite3VtabMakeWritable(pParse, pTab); 1324 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1325 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1326 sqlite3MayAbort(pParse); 1327 }else 1328 #endif 1329 { 1330 int isReplace = 0;/* Set to true if constraints may cause a replace */ 1331 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1332 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1333 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1334 ); 1335 if( db->flags & SQLITE_ForeignKeys ){ 1336 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1337 } 1338 1339 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1340 ** constraints or (b) there are no triggers and this table is not a 1341 ** parent table in a foreign key constraint. It is safe to set the 1342 ** flag in the second case as if any REPLACE constraint is hit, an 1343 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1344 ** cursor that is disturbed. And these instructions both clear the 1345 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1346 ** functionality. */ 1347 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1348 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1349 regIns, aRegIdx, 0, appendFlag, bUseSeek 1350 ); 1351 } 1352 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1353 }else if( pParse->bReturning ){ 1354 /* If there is a RETURNING clause, populate the rowid register with 1355 ** constant value -1, in case one or more of the returned expressions 1356 ** refer to the "rowid" of the view. */ 1357 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 1358 #endif 1359 } 1360 1361 /* Update the count of rows that are inserted 1362 */ 1363 if( regRowCount ){ 1364 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1365 } 1366 1367 if( pTrigger ){ 1368 /* Code AFTER triggers */ 1369 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1370 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1371 } 1372 1373 /* The bottom of the main insertion loop, if the data source 1374 ** is a SELECT statement. 1375 */ 1376 sqlite3VdbeResolveLabel(v, endOfLoop); 1377 if( useTempTable ){ 1378 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1379 sqlite3VdbeJumpHere(v, addrInsTop); 1380 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1381 }else if( pSelect ){ 1382 sqlite3VdbeGoto(v, addrCont); 1383 #ifdef SQLITE_DEBUG 1384 /* If we are jumping back to an OP_Yield that is preceded by an 1385 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1386 ** OP_ReleaseReg will be included in the loop. */ 1387 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1388 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1389 sqlite3VdbeChangeP5(v, 1); 1390 } 1391 #endif 1392 sqlite3VdbeJumpHere(v, addrInsTop); 1393 } 1394 1395 #ifndef SQLITE_OMIT_XFER_OPT 1396 insert_end: 1397 #endif /* SQLITE_OMIT_XFER_OPT */ 1398 /* Update the sqlite_sequence table by storing the content of the 1399 ** maximum rowid counter values recorded while inserting into 1400 ** autoincrement tables. 1401 */ 1402 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1403 sqlite3AutoincrementEnd(pParse); 1404 } 1405 1406 /* 1407 ** Return the number of rows inserted. If this routine is 1408 ** generating code because of a call to sqlite3NestedParse(), do not 1409 ** invoke the callback function. 1410 */ 1411 if( regRowCount ){ 1412 sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); 1413 } 1414 1415 insert_cleanup: 1416 sqlite3SrcListDelete(db, pTabList); 1417 sqlite3ExprListDelete(db, pList); 1418 sqlite3UpsertDelete(db, pUpsert); 1419 sqlite3SelectDelete(db, pSelect); 1420 sqlite3IdListDelete(db, pColumn); 1421 if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx); 1422 } 1423 1424 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1425 ** they may interfere with compilation of other functions in this file 1426 ** (or in another file, if this file becomes part of the amalgamation). */ 1427 #ifdef isView 1428 #undef isView 1429 #endif 1430 #ifdef pTrigger 1431 #undef pTrigger 1432 #endif 1433 #ifdef tmask 1434 #undef tmask 1435 #endif 1436 1437 /* 1438 ** Meanings of bits in of pWalker->eCode for 1439 ** sqlite3ExprReferencesUpdatedColumn() 1440 */ 1441 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1442 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1443 1444 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1445 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1446 ** expression node references any of the 1447 ** columns that are being modifed by an UPDATE statement. 1448 */ 1449 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1450 if( pExpr->op==TK_COLUMN ){ 1451 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1452 if( pExpr->iColumn>=0 ){ 1453 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1454 pWalker->eCode |= CKCNSTRNT_COLUMN; 1455 } 1456 }else{ 1457 pWalker->eCode |= CKCNSTRNT_ROWID; 1458 } 1459 } 1460 return WRC_Continue; 1461 } 1462 1463 /* 1464 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1465 ** only columns that are modified by the UPDATE are those for which 1466 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1467 ** 1468 ** Return true if CHECK constraint pExpr uses any of the 1469 ** changing columns (or the rowid if it is changing). In other words, 1470 ** return true if this CHECK constraint must be validated for 1471 ** the new row in the UPDATE statement. 1472 ** 1473 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1474 ** The operation of this routine is the same - return true if an only if 1475 ** the expression uses one or more of columns identified by the second and 1476 ** third arguments. 1477 */ 1478 int sqlite3ExprReferencesUpdatedColumn( 1479 Expr *pExpr, /* The expression to be checked */ 1480 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1481 int chngRowid /* True if UPDATE changes the rowid */ 1482 ){ 1483 Walker w; 1484 memset(&w, 0, sizeof(w)); 1485 w.eCode = 0; 1486 w.xExprCallback = checkConstraintExprNode; 1487 w.u.aiCol = aiChng; 1488 sqlite3WalkExpr(&w, pExpr); 1489 if( !chngRowid ){ 1490 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1491 w.eCode &= ~CKCNSTRNT_ROWID; 1492 } 1493 testcase( w.eCode==0 ); 1494 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1495 testcase( w.eCode==CKCNSTRNT_ROWID ); 1496 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1497 return w.eCode!=0; 1498 } 1499 1500 /* 1501 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1502 ** the indexes of a table in the order provided in the Table->pIndex list. 1503 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1504 ** the indexes in a different order. The following data structures accomplish 1505 ** this. 1506 ** 1507 ** The IndexIterator object is used to walk through all of the indexes 1508 ** of a table in either Index.pNext order, or in some other order established 1509 ** by an array of IndexListTerm objects. 1510 */ 1511 typedef struct IndexListTerm IndexListTerm; 1512 typedef struct IndexIterator IndexIterator; 1513 struct IndexIterator { 1514 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1515 int i; /* Index of the current item from the list */ 1516 union { 1517 struct { /* Use this object for eType==0: A Index.pNext list */ 1518 Index *pIdx; /* The current Index */ 1519 } lx; 1520 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1521 int nIdx; /* Size of the array */ 1522 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1523 } ax; 1524 } u; 1525 }; 1526 1527 /* When IndexIterator.eType==1, then each index is an array of instances 1528 ** of the following object 1529 */ 1530 struct IndexListTerm { 1531 Index *p; /* The index */ 1532 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1533 }; 1534 1535 /* Return the first index on the list */ 1536 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1537 assert( pIter->i==0 ); 1538 if( pIter->eType ){ 1539 *pIx = pIter->u.ax.aIdx[0].ix; 1540 return pIter->u.ax.aIdx[0].p; 1541 }else{ 1542 *pIx = 0; 1543 return pIter->u.lx.pIdx; 1544 } 1545 } 1546 1547 /* Return the next index from the list. Return NULL when out of indexes */ 1548 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1549 if( pIter->eType ){ 1550 int i = ++pIter->i; 1551 if( i>=pIter->u.ax.nIdx ){ 1552 *pIx = i; 1553 return 0; 1554 } 1555 *pIx = pIter->u.ax.aIdx[i].ix; 1556 return pIter->u.ax.aIdx[i].p; 1557 }else{ 1558 ++(*pIx); 1559 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1560 return pIter->u.lx.pIdx; 1561 } 1562 } 1563 1564 /* 1565 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1566 ** on table pTab. 1567 ** 1568 ** The regNewData parameter is the first register in a range that contains 1569 ** the data to be inserted or the data after the update. There will be 1570 ** pTab->nCol+1 registers in this range. The first register (the one 1571 ** that regNewData points to) will contain the new rowid, or NULL in the 1572 ** case of a WITHOUT ROWID table. The second register in the range will 1573 ** contain the content of the first table column. The third register will 1574 ** contain the content of the second table column. And so forth. 1575 ** 1576 ** The regOldData parameter is similar to regNewData except that it contains 1577 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1578 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1579 ** checking regOldData for zero. 1580 ** 1581 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1582 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1583 ** might be modified by the UPDATE. If pkChng is false, then the key of 1584 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1585 ** 1586 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1587 ** was explicitly specified as part of the INSERT statement. If pkChng 1588 ** is zero, it means that the either rowid is computed automatically or 1589 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1590 ** pkChng will only be true if the INSERT statement provides an integer 1591 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1592 ** 1593 ** The code generated by this routine will store new index entries into 1594 ** registers identified by aRegIdx[]. No index entry is created for 1595 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1596 ** the same as the order of indices on the linked list of indices 1597 ** at pTab->pIndex. 1598 ** 1599 ** (2019-05-07) The generated code also creates a new record for the 1600 ** main table, if pTab is a rowid table, and stores that record in the 1601 ** register identified by aRegIdx[nIdx] - in other words in the first 1602 ** entry of aRegIdx[] past the last index. It is important that the 1603 ** record be generated during constraint checks to avoid affinity changes 1604 ** to the register content that occur after constraint checks but before 1605 ** the new record is inserted. 1606 ** 1607 ** The caller must have already opened writeable cursors on the main 1608 ** table and all applicable indices (that is to say, all indices for which 1609 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1610 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1611 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1612 ** for the first index in the pTab->pIndex list. Cursors for other indices 1613 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1614 ** 1615 ** This routine also generates code to check constraints. NOT NULL, 1616 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1617 ** then the appropriate action is performed. There are five possible 1618 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1619 ** 1620 ** Constraint type Action What Happens 1621 ** --------------- ---------- ---------------------------------------- 1622 ** any ROLLBACK The current transaction is rolled back and 1623 ** sqlite3_step() returns immediately with a 1624 ** return code of SQLITE_CONSTRAINT. 1625 ** 1626 ** any ABORT Back out changes from the current command 1627 ** only (do not do a complete rollback) then 1628 ** cause sqlite3_step() to return immediately 1629 ** with SQLITE_CONSTRAINT. 1630 ** 1631 ** any FAIL Sqlite3_step() returns immediately with a 1632 ** return code of SQLITE_CONSTRAINT. The 1633 ** transaction is not rolled back and any 1634 ** changes to prior rows are retained. 1635 ** 1636 ** any IGNORE The attempt in insert or update the current 1637 ** row is skipped, without throwing an error. 1638 ** Processing continues with the next row. 1639 ** (There is an immediate jump to ignoreDest.) 1640 ** 1641 ** NOT NULL REPLACE The NULL value is replace by the default 1642 ** value for that column. If the default value 1643 ** is NULL, the action is the same as ABORT. 1644 ** 1645 ** UNIQUE REPLACE The other row that conflicts with the row 1646 ** being inserted is removed. 1647 ** 1648 ** CHECK REPLACE Illegal. The results in an exception. 1649 ** 1650 ** Which action to take is determined by the overrideError parameter. 1651 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1652 ** is used. Or if pParse->onError==OE_Default then the onError value 1653 ** for the constraint is used. 1654 */ 1655 void sqlite3GenerateConstraintChecks( 1656 Parse *pParse, /* The parser context */ 1657 Table *pTab, /* The table being inserted or updated */ 1658 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1659 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1660 int iIdxCur, /* First index cursor */ 1661 int regNewData, /* First register in a range holding values to insert */ 1662 int regOldData, /* Previous content. 0 for INSERTs */ 1663 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1664 u8 overrideError, /* Override onError to this if not OE_Default */ 1665 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1666 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1667 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1668 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1669 ){ 1670 Vdbe *v; /* VDBE under constrution */ 1671 Index *pIdx; /* Pointer to one of the indices */ 1672 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1673 sqlite3 *db; /* Database connection */ 1674 int i; /* loop counter */ 1675 int ix; /* Index loop counter */ 1676 int nCol; /* Number of columns */ 1677 int onError; /* Conflict resolution strategy */ 1678 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1679 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1680 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1681 u8 isUpdate; /* True if this is an UPDATE operation */ 1682 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1683 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1684 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1685 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1686 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1687 /* Variables associated with retesting uniqueness constraints after 1688 ** replace triggers fire have run */ 1689 int regTrigCnt; /* Register used to count replace trigger invocations */ 1690 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1691 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1692 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1693 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1694 IndexIterator sIdxIter; /* Index iterator */ 1695 1696 isUpdate = regOldData!=0; 1697 db = pParse->db; 1698 v = pParse->pVdbe; 1699 assert( v!=0 ); 1700 assert( !IsView(pTab) ); /* This table is not a VIEW */ 1701 nCol = pTab->nCol; 1702 1703 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1704 ** normal rowid tables. nPkField is the number of key fields in the 1705 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1706 ** number of fields in the true primary key of the table. */ 1707 if( HasRowid(pTab) ){ 1708 pPk = 0; 1709 nPkField = 1; 1710 }else{ 1711 pPk = sqlite3PrimaryKeyIndex(pTab); 1712 nPkField = pPk->nKeyCol; 1713 } 1714 1715 /* Record that this module has started */ 1716 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1717 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1718 1719 /* Test all NOT NULL constraints. 1720 */ 1721 if( pTab->tabFlags & TF_HasNotNull ){ 1722 int b2ndPass = 0; /* True if currently running 2nd pass */ 1723 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1724 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1725 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1726 for(i=0; i<nCol; i++){ 1727 int iReg; /* Register holding column value */ 1728 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1729 int isGenerated; /* non-zero if column is generated */ 1730 onError = pCol->notNull; 1731 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1732 if( i==pTab->iPKey ){ 1733 continue; /* ROWID is never NULL */ 1734 } 1735 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1736 if( isGenerated && !b2ndPass ){ 1737 nGenerated++; 1738 continue; /* Generated columns processed on 2nd pass */ 1739 } 1740 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1741 /* Do not check NOT NULL on columns that do not change */ 1742 continue; 1743 } 1744 if( overrideError!=OE_Default ){ 1745 onError = overrideError; 1746 }else if( onError==OE_Default ){ 1747 onError = OE_Abort; 1748 } 1749 if( onError==OE_Replace ){ 1750 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1751 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1752 ){ 1753 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1754 testcase( pCol->colFlags & COLFLAG_STORED ); 1755 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1756 onError = OE_Abort; 1757 }else{ 1758 assert( !isGenerated ); 1759 } 1760 }else if( b2ndPass && !isGenerated ){ 1761 continue; 1762 } 1763 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1764 || onError==OE_Ignore || onError==OE_Replace ); 1765 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1766 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1767 switch( onError ){ 1768 case OE_Replace: { 1769 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1770 VdbeCoverage(v); 1771 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1772 nSeenReplace++; 1773 sqlite3ExprCodeCopy(pParse, 1774 sqlite3ColumnExpr(pTab, pCol), iReg); 1775 sqlite3VdbeJumpHere(v, addr1); 1776 break; 1777 } 1778 case OE_Abort: 1779 sqlite3MayAbort(pParse); 1780 /* no break */ deliberate_fall_through 1781 case OE_Rollback: 1782 case OE_Fail: { 1783 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1784 pCol->zCnName); 1785 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1786 onError, iReg); 1787 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1788 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1789 VdbeCoverage(v); 1790 break; 1791 } 1792 default: { 1793 assert( onError==OE_Ignore ); 1794 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1795 VdbeCoverage(v); 1796 break; 1797 } 1798 } /* end switch(onError) */ 1799 } /* end loop i over columns */ 1800 if( nGenerated==0 && nSeenReplace==0 ){ 1801 /* If there are no generated columns with NOT NULL constraints 1802 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1803 ** pass is sufficient */ 1804 break; 1805 } 1806 if( b2ndPass ) break; /* Never need more than 2 passes */ 1807 b2ndPass = 1; 1808 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1809 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1810 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1811 ** first pass, recomputed values for all generated columns, as 1812 ** those values might depend on columns affected by the REPLACE. 1813 */ 1814 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1815 } 1816 #endif 1817 } /* end of 2-pass loop */ 1818 } /* end if( has-not-null-constraints ) */ 1819 1820 /* Test all CHECK constraints 1821 */ 1822 #ifndef SQLITE_OMIT_CHECK 1823 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1824 ExprList *pCheck = pTab->pCheck; 1825 pParse->iSelfTab = -(regNewData+1); 1826 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1827 for(i=0; i<pCheck->nExpr; i++){ 1828 int allOk; 1829 Expr *pCopy; 1830 Expr *pExpr = pCheck->a[i].pExpr; 1831 if( aiChng 1832 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1833 ){ 1834 /* The check constraints do not reference any of the columns being 1835 ** updated so there is no point it verifying the check constraint */ 1836 continue; 1837 } 1838 if( bAffinityDone==0 ){ 1839 sqlite3TableAffinity(v, pTab, regNewData+1); 1840 bAffinityDone = 1; 1841 } 1842 allOk = sqlite3VdbeMakeLabel(pParse); 1843 sqlite3VdbeVerifyAbortable(v, onError); 1844 pCopy = sqlite3ExprDup(db, pExpr, 0); 1845 if( !db->mallocFailed ){ 1846 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1847 } 1848 sqlite3ExprDelete(db, pCopy); 1849 if( onError==OE_Ignore ){ 1850 sqlite3VdbeGoto(v, ignoreDest); 1851 }else{ 1852 char *zName = pCheck->a[i].zEName; 1853 assert( zName!=0 || pParse->db->mallocFailed ); 1854 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1855 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1856 onError, zName, P4_TRANSIENT, 1857 P5_ConstraintCheck); 1858 } 1859 sqlite3VdbeResolveLabel(v, allOk); 1860 } 1861 pParse->iSelfTab = 0; 1862 } 1863 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1864 1865 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1866 ** order: 1867 ** 1868 ** (1) OE_Update 1869 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1870 ** (3) OE_Replace 1871 ** 1872 ** OE_Fail and OE_Ignore must happen before any changes are made. 1873 ** OE_Update guarantees that only a single row will change, so it 1874 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1875 ** could happen in any order, but they are grouped up front for 1876 ** convenience. 1877 ** 1878 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1879 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1880 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1881 ** constraint before any others, so it had to be moved. 1882 ** 1883 ** Constraint checking code is generated in this order: 1884 ** (A) The rowid constraint 1885 ** (B) Unique index constraints that do not have OE_Replace as their 1886 ** default conflict resolution strategy 1887 ** (C) Unique index that do use OE_Replace by default. 1888 ** 1889 ** The ordering of (2) and (3) is accomplished by making sure the linked 1890 ** list of indexes attached to a table puts all OE_Replace indexes last 1891 ** in the list. See sqlite3CreateIndex() for where that happens. 1892 */ 1893 sIdxIter.eType = 0; 1894 sIdxIter.i = 0; 1895 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1896 sIdxIter.u.lx.pIdx = pTab->pIndex; 1897 if( pUpsert ){ 1898 if( pUpsert->pUpsertTarget==0 ){ 1899 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1900 assert( pUpsert->pNextUpsert==0 ); 1901 if( pUpsert->isDoUpdate==0 ){ 1902 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1903 ** Make all unique constraint resolution be OE_Ignore */ 1904 overrideError = OE_Ignore; 1905 pUpsert = 0; 1906 }else{ 1907 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1908 overrideError = OE_Update; 1909 } 1910 }else if( pTab->pIndex!=0 ){ 1911 /* Otherwise, we'll need to run the IndexListTerm array version of the 1912 ** iterator to ensure that all of the ON CONFLICT conditions are 1913 ** checked first and in order. */ 1914 int nIdx, jj; 1915 u64 nByte; 1916 Upsert *pTerm; 1917 u8 *bUsed; 1918 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1919 assert( aRegIdx[nIdx]>0 ); 1920 } 1921 sIdxIter.eType = 1; 1922 sIdxIter.u.ax.nIdx = nIdx; 1923 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1924 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1925 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1926 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1927 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1928 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1929 if( pTerm->pUpsertTarget==0 ) break; 1930 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1931 jj = 0; 1932 pIdx = pTab->pIndex; 1933 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1934 pIdx = pIdx->pNext; 1935 jj++; 1936 } 1937 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1938 bUsed[jj] = 1; 1939 sIdxIter.u.ax.aIdx[i].p = pIdx; 1940 sIdxIter.u.ax.aIdx[i].ix = jj; 1941 i++; 1942 } 1943 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1944 if( bUsed[jj] ) continue; 1945 sIdxIter.u.ax.aIdx[i].p = pIdx; 1946 sIdxIter.u.ax.aIdx[i].ix = jj; 1947 i++; 1948 } 1949 assert( i==nIdx ); 1950 } 1951 } 1952 1953 /* Determine if it is possible that triggers (either explicitly coded 1954 ** triggers or FK resolution actions) might run as a result of deletes 1955 ** that happen when OE_Replace conflict resolution occurs. (Call these 1956 ** "replace triggers".) If any replace triggers run, we will need to 1957 ** recheck all of the uniqueness constraints after they have all run. 1958 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1959 ** 1960 ** If replace triggers are a possibility, then 1961 ** 1962 ** (1) Allocate register regTrigCnt and initialize it to zero. 1963 ** That register will count the number of replace triggers that 1964 ** fire. Constraint recheck only occurs if the number is positive. 1965 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1966 ** (3) Initialize addrRecheck and lblRecheckOk 1967 ** 1968 ** The uniqueness rechecking code will create a series of tests to run 1969 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1970 ** used to link together these tests which are separated from each other 1971 ** in the generate bytecode. 1972 */ 1973 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1974 /* There are not DELETE triggers nor FK constraints. No constraint 1975 ** rechecks are needed. */ 1976 pTrigger = 0; 1977 regTrigCnt = 0; 1978 }else{ 1979 if( db->flags&SQLITE_RecTriggers ){ 1980 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1981 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1982 }else{ 1983 pTrigger = 0; 1984 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1985 } 1986 if( regTrigCnt ){ 1987 /* Replace triggers might exist. Allocate the counter and 1988 ** initialize it to zero. */ 1989 regTrigCnt = ++pParse->nMem; 1990 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1991 VdbeComment((v, "trigger count")); 1992 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1993 addrRecheck = lblRecheckOk; 1994 } 1995 } 1996 1997 /* If rowid is changing, make sure the new rowid does not previously 1998 ** exist in the table. 1999 */ 2000 if( pkChng && pPk==0 ){ 2001 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 2002 2003 /* Figure out what action to take in case of a rowid collision */ 2004 onError = pTab->keyConf; 2005 if( overrideError!=OE_Default ){ 2006 onError = overrideError; 2007 }else if( onError==OE_Default ){ 2008 onError = OE_Abort; 2009 } 2010 2011 /* figure out whether or not upsert applies in this case */ 2012 if( pUpsert ){ 2013 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 2014 if( pUpsertClause!=0 ){ 2015 if( pUpsertClause->isDoUpdate==0 ){ 2016 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2017 }else{ 2018 onError = OE_Update; /* DO UPDATE */ 2019 } 2020 } 2021 if( pUpsertClause!=pUpsert ){ 2022 /* The first ON CONFLICT clause has a conflict target other than 2023 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 2024 ** and then come back here and deal with the IPK afterwards */ 2025 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 2026 } 2027 } 2028 2029 /* If the response to a rowid conflict is REPLACE but the response 2030 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 2031 ** to defer the running of the rowid conflict checking until after 2032 ** the UNIQUE constraints have run. 2033 */ 2034 if( onError==OE_Replace /* IPK rule is REPLACE */ 2035 && onError!=overrideError /* Rules for other constraints are different */ 2036 && pTab->pIndex /* There exist other constraints */ 2037 && !upsertIpkDelay /* IPK check already deferred by UPSERT */ 2038 ){ 2039 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 2040 VdbeComment((v, "defer IPK REPLACE until last")); 2041 } 2042 2043 if( isUpdate ){ 2044 /* pkChng!=0 does not mean that the rowid has changed, only that 2045 ** it might have changed. Skip the conflict logic below if the rowid 2046 ** is unchanged. */ 2047 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 2048 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2049 VdbeCoverage(v); 2050 } 2051 2052 /* Check to see if the new rowid already exists in the table. Skip 2053 ** the following conflict logic if it does not. */ 2054 VdbeNoopComment((v, "uniqueness check for ROWID")); 2055 sqlite3VdbeVerifyAbortable(v, onError); 2056 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 2057 VdbeCoverage(v); 2058 2059 switch( onError ){ 2060 default: { 2061 onError = OE_Abort; 2062 /* no break */ deliberate_fall_through 2063 } 2064 case OE_Rollback: 2065 case OE_Abort: 2066 case OE_Fail: { 2067 testcase( onError==OE_Rollback ); 2068 testcase( onError==OE_Abort ); 2069 testcase( onError==OE_Fail ); 2070 sqlite3RowidConstraint(pParse, onError, pTab); 2071 break; 2072 } 2073 case OE_Replace: { 2074 /* If there are DELETE triggers on this table and the 2075 ** recursive-triggers flag is set, call GenerateRowDelete() to 2076 ** remove the conflicting row from the table. This will fire 2077 ** the triggers and remove both the table and index b-tree entries. 2078 ** 2079 ** Otherwise, if there are no triggers or the recursive-triggers 2080 ** flag is not set, but the table has one or more indexes, call 2081 ** GenerateRowIndexDelete(). This removes the index b-tree entries 2082 ** only. The table b-tree entry will be replaced by the new entry 2083 ** when it is inserted. 2084 ** 2085 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 2086 ** also invoke MultiWrite() to indicate that this VDBE may require 2087 ** statement rollback (if the statement is aborted after the delete 2088 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 2089 ** but being more selective here allows statements like: 2090 ** 2091 ** REPLACE INTO t(rowid) VALUES($newrowid) 2092 ** 2093 ** to run without a statement journal if there are no indexes on the 2094 ** table. 2095 */ 2096 if( regTrigCnt ){ 2097 sqlite3MultiWrite(pParse); 2098 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2099 regNewData, 1, 0, OE_Replace, 1, -1); 2100 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2101 nReplaceTrig++; 2102 }else{ 2103 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2104 assert( HasRowid(pTab) ); 2105 /* This OP_Delete opcode fires the pre-update-hook only. It does 2106 ** not modify the b-tree. It is more efficient to let the coming 2107 ** OP_Insert replace the existing entry than it is to delete the 2108 ** existing entry and then insert a new one. */ 2109 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2110 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2111 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2112 if( pTab->pIndex ){ 2113 sqlite3MultiWrite(pParse); 2114 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2115 } 2116 } 2117 seenReplace = 1; 2118 break; 2119 } 2120 #ifndef SQLITE_OMIT_UPSERT 2121 case OE_Update: { 2122 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2123 /* no break */ deliberate_fall_through 2124 } 2125 #endif 2126 case OE_Ignore: { 2127 testcase( onError==OE_Ignore ); 2128 sqlite3VdbeGoto(v, ignoreDest); 2129 break; 2130 } 2131 } 2132 sqlite3VdbeResolveLabel(v, addrRowidOk); 2133 if( pUpsert && pUpsertClause!=pUpsert ){ 2134 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2135 }else if( ipkTop ){ 2136 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2137 sqlite3VdbeJumpHere(v, ipkTop-1); 2138 } 2139 } 2140 2141 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2142 ** index and making sure that duplicate entries do not already exist. 2143 ** Compute the revised record entries for indices as we go. 2144 ** 2145 ** This loop also handles the case of the PRIMARY KEY index for a 2146 ** WITHOUT ROWID table. 2147 */ 2148 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2149 pIdx; 2150 pIdx = indexIteratorNext(&sIdxIter, &ix) 2151 ){ 2152 int regIdx; /* Range of registers hold conent for pIdx */ 2153 int regR; /* Range of registers holding conflicting PK */ 2154 int iThisCur; /* Cursor for this UNIQUE index */ 2155 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2156 int addrConflictCk; /* First opcode in the conflict check logic */ 2157 2158 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2159 if( pUpsert ){ 2160 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2161 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2162 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2163 } 2164 } 2165 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2166 if( bAffinityDone==0 ){ 2167 sqlite3TableAffinity(v, pTab, regNewData+1); 2168 bAffinityDone = 1; 2169 } 2170 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2171 iThisCur = iIdxCur+ix; 2172 2173 2174 /* Skip partial indices for which the WHERE clause is not true */ 2175 if( pIdx->pPartIdxWhere ){ 2176 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2177 pParse->iSelfTab = -(regNewData+1); 2178 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2179 SQLITE_JUMPIFNULL); 2180 pParse->iSelfTab = 0; 2181 } 2182 2183 /* Create a record for this index entry as it should appear after 2184 ** the insert or update. Store that record in the aRegIdx[ix] register 2185 */ 2186 regIdx = aRegIdx[ix]+1; 2187 for(i=0; i<pIdx->nColumn; i++){ 2188 int iField = pIdx->aiColumn[i]; 2189 int x; 2190 if( iField==XN_EXPR ){ 2191 pParse->iSelfTab = -(regNewData+1); 2192 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2193 pParse->iSelfTab = 0; 2194 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2195 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2196 x = regNewData; 2197 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2198 VdbeComment((v, "rowid")); 2199 }else{ 2200 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2201 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2202 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2203 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 2204 } 2205 } 2206 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2207 VdbeComment((v, "for %s", pIdx->zName)); 2208 #ifdef SQLITE_ENABLE_NULL_TRIM 2209 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2210 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2211 } 2212 #endif 2213 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2214 2215 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2216 ** of a WITHOUT ROWID table and there has been no change the 2217 ** primary key, then no collision is possible. The collision detection 2218 ** logic below can all be skipped. */ 2219 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2220 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2221 continue; 2222 } 2223 2224 /* Find out what action to take in case there is a uniqueness conflict */ 2225 onError = pIdx->onError; 2226 if( onError==OE_None ){ 2227 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2228 continue; /* pIdx is not a UNIQUE index */ 2229 } 2230 if( overrideError!=OE_Default ){ 2231 onError = overrideError; 2232 }else if( onError==OE_Default ){ 2233 onError = OE_Abort; 2234 } 2235 2236 /* Figure out if the upsert clause applies to this index */ 2237 if( pUpsertClause ){ 2238 if( pUpsertClause->isDoUpdate==0 ){ 2239 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2240 }else{ 2241 onError = OE_Update; /* DO UPDATE */ 2242 } 2243 } 2244 2245 /* Collision detection may be omitted if all of the following are true: 2246 ** (1) The conflict resolution algorithm is REPLACE 2247 ** (2) The table is a WITHOUT ROWID table 2248 ** (3) There are no secondary indexes on the table 2249 ** (4) No delete triggers need to be fired if there is a conflict 2250 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2251 ** 2252 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2253 ** must be explicitly deleted in order to ensure any pre-update hook 2254 ** is invoked. */ 2255 assert( IsOrdinaryTable(pTab) ); 2256 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2257 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2258 && pPk==pIdx /* Condition 2 */ 2259 && onError==OE_Replace /* Condition 1 */ 2260 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2261 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2262 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2263 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 2264 ){ 2265 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2266 continue; 2267 } 2268 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2269 2270 /* Check to see if the new index entry will be unique */ 2271 sqlite3VdbeVerifyAbortable(v, onError); 2272 addrConflictCk = 2273 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2274 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2275 2276 /* Generate code to handle collisions */ 2277 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2278 if( isUpdate || onError==OE_Replace ){ 2279 if( HasRowid(pTab) ){ 2280 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2281 /* Conflict only if the rowid of the existing index entry 2282 ** is different from old-rowid */ 2283 if( isUpdate ){ 2284 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2285 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2286 VdbeCoverage(v); 2287 } 2288 }else{ 2289 int x; 2290 /* Extract the PRIMARY KEY from the end of the index entry and 2291 ** store it in registers regR..regR+nPk-1 */ 2292 if( pIdx!=pPk ){ 2293 for(i=0; i<pPk->nKeyCol; i++){ 2294 assert( pPk->aiColumn[i]>=0 ); 2295 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2296 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2297 VdbeComment((v, "%s.%s", pTab->zName, 2298 pTab->aCol[pPk->aiColumn[i]].zCnName)); 2299 } 2300 } 2301 if( isUpdate ){ 2302 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2303 ** table, only conflict if the new PRIMARY KEY values are actually 2304 ** different from the old. See TH3 withoutrowid04.test. 2305 ** 2306 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2307 ** of the matched index row are different from the original PRIMARY 2308 ** KEY values of this row before the update. */ 2309 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2310 int op = OP_Ne; 2311 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2312 2313 for(i=0; i<pPk->nKeyCol; i++){ 2314 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2315 x = pPk->aiColumn[i]; 2316 assert( x>=0 ); 2317 if( i==(pPk->nKeyCol-1) ){ 2318 addrJump = addrUniqueOk; 2319 op = OP_Eq; 2320 } 2321 x = sqlite3TableColumnToStorage(pTab, x); 2322 sqlite3VdbeAddOp4(v, op, 2323 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2324 ); 2325 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2326 VdbeCoverageIf(v, op==OP_Eq); 2327 VdbeCoverageIf(v, op==OP_Ne); 2328 } 2329 } 2330 } 2331 } 2332 2333 /* Generate code that executes if the new index entry is not unique */ 2334 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2335 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2336 switch( onError ){ 2337 case OE_Rollback: 2338 case OE_Abort: 2339 case OE_Fail: { 2340 testcase( onError==OE_Rollback ); 2341 testcase( onError==OE_Abort ); 2342 testcase( onError==OE_Fail ); 2343 sqlite3UniqueConstraint(pParse, onError, pIdx); 2344 break; 2345 } 2346 #ifndef SQLITE_OMIT_UPSERT 2347 case OE_Update: { 2348 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2349 /* no break */ deliberate_fall_through 2350 } 2351 #endif 2352 case OE_Ignore: { 2353 testcase( onError==OE_Ignore ); 2354 sqlite3VdbeGoto(v, ignoreDest); 2355 break; 2356 } 2357 default: { 2358 int nConflictCk; /* Number of opcodes in conflict check logic */ 2359 2360 assert( onError==OE_Replace ); 2361 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2362 assert( nConflictCk>0 || db->mallocFailed ); 2363 testcase( nConflictCk<=0 ); 2364 testcase( nConflictCk>1 ); 2365 if( regTrigCnt ){ 2366 sqlite3MultiWrite(pParse); 2367 nReplaceTrig++; 2368 } 2369 if( pTrigger && isUpdate ){ 2370 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2371 } 2372 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2373 regR, nPkField, 0, OE_Replace, 2374 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2375 if( pTrigger && isUpdate ){ 2376 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2377 } 2378 if( regTrigCnt ){ 2379 int addrBypass; /* Jump destination to bypass recheck logic */ 2380 2381 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2382 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2383 VdbeComment((v, "bypass recheck")); 2384 2385 /* Here we insert code that will be invoked after all constraint 2386 ** checks have run, if and only if one or more replace triggers 2387 ** fired. */ 2388 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2389 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2390 if( pIdx->pPartIdxWhere ){ 2391 /* Bypass the recheck if this partial index is not defined 2392 ** for the current row */ 2393 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2394 VdbeCoverage(v); 2395 } 2396 /* Copy the constraint check code from above, except change 2397 ** the constraint-ok jump destination to be the address of 2398 ** the next retest block */ 2399 while( nConflictCk>0 ){ 2400 VdbeOp x; /* Conflict check opcode to copy */ 2401 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2402 ** Hence, make a complete copy of the opcode, rather than using 2403 ** a pointer to the opcode. */ 2404 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2405 if( x.opcode!=OP_IdxRowid ){ 2406 int p2; /* New P2 value for copied conflict check opcode */ 2407 const char *zP4; 2408 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2409 p2 = lblRecheckOk; 2410 }else{ 2411 p2 = x.p2; 2412 } 2413 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2414 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2415 sqlite3VdbeChangeP5(v, x.p5); 2416 VdbeCoverageIf(v, p2!=x.p2); 2417 } 2418 nConflictCk--; 2419 addrConflictCk++; 2420 } 2421 /* If the retest fails, issue an abort */ 2422 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2423 2424 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2425 } 2426 seenReplace = 1; 2427 break; 2428 } 2429 } 2430 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2431 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2432 if( pUpsertClause 2433 && upsertIpkReturn 2434 && sqlite3UpsertNextIsIPK(pUpsertClause) 2435 ){ 2436 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2437 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2438 upsertIpkReturn = 0; 2439 } 2440 } 2441 2442 /* If the IPK constraint is a REPLACE, run it last */ 2443 if( ipkTop ){ 2444 sqlite3VdbeGoto(v, ipkTop); 2445 VdbeComment((v, "Do IPK REPLACE")); 2446 assert( ipkBottom>0 ); 2447 sqlite3VdbeJumpHere(v, ipkBottom); 2448 } 2449 2450 /* Recheck all uniqueness constraints after replace triggers have run */ 2451 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2452 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2453 if( nReplaceTrig ){ 2454 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2455 if( !pPk ){ 2456 if( isUpdate ){ 2457 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2458 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2459 VdbeCoverage(v); 2460 } 2461 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2462 VdbeCoverage(v); 2463 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2464 }else{ 2465 sqlite3VdbeGoto(v, addrRecheck); 2466 } 2467 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2468 } 2469 2470 /* Generate the table record */ 2471 if( HasRowid(pTab) ){ 2472 int regRec = aRegIdx[ix]; 2473 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2474 sqlite3SetMakeRecordP5(v, pTab); 2475 if( !bAffinityDone ){ 2476 sqlite3TableAffinity(v, pTab, 0); 2477 } 2478 } 2479 2480 *pbMayReplace = seenReplace; 2481 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2482 } 2483 2484 #ifdef SQLITE_ENABLE_NULL_TRIM 2485 /* 2486 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2487 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2488 ** 2489 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2490 */ 2491 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2492 u16 i; 2493 2494 /* Records with omitted columns are only allowed for schema format 2495 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2496 if( pTab->pSchema->file_format<2 ) return; 2497 2498 for(i=pTab->nCol-1; i>0; i--){ 2499 if( pTab->aCol[i].iDflt!=0 ) break; 2500 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2501 } 2502 sqlite3VdbeChangeP5(v, i+1); 2503 } 2504 #endif 2505 2506 /* 2507 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 2508 ** number is iCur, and register regData contains the new record for the 2509 ** PK index. This function adds code to invoke the pre-update hook, 2510 ** if one is registered. 2511 */ 2512 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2513 static void codeWithoutRowidPreupdate( 2514 Parse *pParse, /* Parse context */ 2515 Table *pTab, /* Table being updated */ 2516 int iCur, /* Cursor number for table */ 2517 int regData /* Data containing new record */ 2518 ){ 2519 Vdbe *v = pParse->pVdbe; 2520 int r = sqlite3GetTempReg(pParse); 2521 assert( !HasRowid(pTab) ); 2522 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 2523 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2524 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 2525 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2526 sqlite3ReleaseTempReg(pParse, r); 2527 } 2528 #else 2529 # define codeWithoutRowidPreupdate(a,b,c,d) 2530 #endif 2531 2532 /* 2533 ** This routine generates code to finish the INSERT or UPDATE operation 2534 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2535 ** A consecutive range of registers starting at regNewData contains the 2536 ** rowid and the content to be inserted. 2537 ** 2538 ** The arguments to this routine should be the same as the first six 2539 ** arguments to sqlite3GenerateConstraintChecks. 2540 */ 2541 void sqlite3CompleteInsertion( 2542 Parse *pParse, /* The parser context */ 2543 Table *pTab, /* the table into which we are inserting */ 2544 int iDataCur, /* Cursor of the canonical data source */ 2545 int iIdxCur, /* First index cursor */ 2546 int regNewData, /* Range of content */ 2547 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2548 int update_flags, /* True for UPDATE, False for INSERT */ 2549 int appendBias, /* True if this is likely to be an append */ 2550 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2551 ){ 2552 Vdbe *v; /* Prepared statements under construction */ 2553 Index *pIdx; /* An index being inserted or updated */ 2554 u8 pik_flags; /* flag values passed to the btree insert */ 2555 int i; /* Loop counter */ 2556 2557 assert( update_flags==0 2558 || update_flags==OPFLAG_ISUPDATE 2559 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2560 ); 2561 2562 v = pParse->pVdbe; 2563 assert( v!=0 ); 2564 assert( !IsView(pTab) ); /* This table is not a VIEW */ 2565 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2566 /* All REPLACE indexes are at the end of the list */ 2567 assert( pIdx->onError!=OE_Replace 2568 || pIdx->pNext==0 2569 || pIdx->pNext->onError==OE_Replace ); 2570 if( aRegIdx[i]==0 ) continue; 2571 if( pIdx->pPartIdxWhere ){ 2572 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2573 VdbeCoverage(v); 2574 } 2575 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2576 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2577 pik_flags |= OPFLAG_NCHANGE; 2578 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2579 if( update_flags==0 ){ 2580 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 2581 } 2582 } 2583 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2584 aRegIdx[i]+1, 2585 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2586 sqlite3VdbeChangeP5(v, pik_flags); 2587 } 2588 if( !HasRowid(pTab) ) return; 2589 if( pParse->nested ){ 2590 pik_flags = 0; 2591 }else{ 2592 pik_flags = OPFLAG_NCHANGE; 2593 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2594 } 2595 if( appendBias ){ 2596 pik_flags |= OPFLAG_APPEND; 2597 } 2598 if( useSeekResult ){ 2599 pik_flags |= OPFLAG_USESEEKRESULT; 2600 } 2601 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2602 if( !pParse->nested ){ 2603 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2604 } 2605 sqlite3VdbeChangeP5(v, pik_flags); 2606 } 2607 2608 /* 2609 ** Allocate cursors for the pTab table and all its indices and generate 2610 ** code to open and initialized those cursors. 2611 ** 2612 ** The cursor for the object that contains the complete data (normally 2613 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2614 ** ROWID table) is returned in *piDataCur. The first index cursor is 2615 ** returned in *piIdxCur. The number of indices is returned. 2616 ** 2617 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2618 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2619 ** If iBase is negative, then allocate the next available cursor. 2620 ** 2621 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2622 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2623 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2624 ** pTab->pIndex list. 2625 ** 2626 ** If pTab is a virtual table, then this routine is a no-op and the 2627 ** *piDataCur and *piIdxCur values are left uninitialized. 2628 */ 2629 int sqlite3OpenTableAndIndices( 2630 Parse *pParse, /* Parsing context */ 2631 Table *pTab, /* Table to be opened */ 2632 int op, /* OP_OpenRead or OP_OpenWrite */ 2633 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2634 int iBase, /* Use this for the table cursor, if there is one */ 2635 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2636 int *piDataCur, /* Write the database source cursor number here */ 2637 int *piIdxCur /* Write the first index cursor number here */ 2638 ){ 2639 int i; 2640 int iDb; 2641 int iDataCur; 2642 Index *pIdx; 2643 Vdbe *v; 2644 2645 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2646 assert( op==OP_OpenWrite || p5==0 ); 2647 if( IsVirtual(pTab) ){ 2648 /* This routine is a no-op for virtual tables. Leave the output 2649 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers 2650 ** for improved error detection. */ 2651 *piDataCur = *piIdxCur = -999; 2652 return 0; 2653 } 2654 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2655 v = pParse->pVdbe; 2656 assert( v!=0 ); 2657 if( iBase<0 ) iBase = pParse->nTab; 2658 iDataCur = iBase++; 2659 if( piDataCur ) *piDataCur = iDataCur; 2660 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2661 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2662 }else{ 2663 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2664 } 2665 if( piIdxCur ) *piIdxCur = iBase; 2666 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2667 int iIdxCur = iBase++; 2668 assert( pIdx->pSchema==pTab->pSchema ); 2669 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2670 if( piDataCur ) *piDataCur = iIdxCur; 2671 p5 = 0; 2672 } 2673 if( aToOpen==0 || aToOpen[i+1] ){ 2674 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2675 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2676 sqlite3VdbeChangeP5(v, p5); 2677 VdbeComment((v, "%s", pIdx->zName)); 2678 } 2679 } 2680 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2681 return i; 2682 } 2683 2684 2685 #ifdef SQLITE_TEST 2686 /* 2687 ** The following global variable is incremented whenever the 2688 ** transfer optimization is used. This is used for testing 2689 ** purposes only - to make sure the transfer optimization really 2690 ** is happening when it is supposed to. 2691 */ 2692 int sqlite3_xferopt_count; 2693 #endif /* SQLITE_TEST */ 2694 2695 2696 #ifndef SQLITE_OMIT_XFER_OPT 2697 /* 2698 ** Check to see if index pSrc is compatible as a source of data 2699 ** for index pDest in an insert transfer optimization. The rules 2700 ** for a compatible index: 2701 ** 2702 ** * The index is over the same set of columns 2703 ** * The same DESC and ASC markings occurs on all columns 2704 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2705 ** * The same collating sequence on each column 2706 ** * The index has the exact same WHERE clause 2707 */ 2708 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2709 int i; 2710 assert( pDest && pSrc ); 2711 assert( pDest->pTable!=pSrc->pTable ); 2712 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2713 return 0; /* Different number of columns */ 2714 } 2715 if( pDest->onError!=pSrc->onError ){ 2716 return 0; /* Different conflict resolution strategies */ 2717 } 2718 for(i=0; i<pSrc->nKeyCol; i++){ 2719 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2720 return 0; /* Different columns indexed */ 2721 } 2722 if( pSrc->aiColumn[i]==XN_EXPR ){ 2723 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2724 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2725 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2726 return 0; /* Different expressions in the index */ 2727 } 2728 } 2729 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2730 return 0; /* Different sort orders */ 2731 } 2732 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2733 return 0; /* Different collating sequences */ 2734 } 2735 } 2736 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2737 return 0; /* Different WHERE clauses */ 2738 } 2739 2740 /* If no test above fails then the indices must be compatible */ 2741 return 1; 2742 } 2743 2744 /* 2745 ** Attempt the transfer optimization on INSERTs of the form 2746 ** 2747 ** INSERT INTO tab1 SELECT * FROM tab2; 2748 ** 2749 ** The xfer optimization transfers raw records from tab2 over to tab1. 2750 ** Columns are not decoded and reassembled, which greatly improves 2751 ** performance. Raw index records are transferred in the same way. 2752 ** 2753 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2754 ** There are lots of rules for determining compatibility - see comments 2755 ** embedded in the code for details. 2756 ** 2757 ** This routine returns TRUE if the optimization is guaranteed to be used. 2758 ** Sometimes the xfer optimization will only work if the destination table 2759 ** is empty - a factor that can only be determined at run-time. In that 2760 ** case, this routine generates code for the xfer optimization but also 2761 ** does a test to see if the destination table is empty and jumps over the 2762 ** xfer optimization code if the test fails. In that case, this routine 2763 ** returns FALSE so that the caller will know to go ahead and generate 2764 ** an unoptimized transfer. This routine also returns FALSE if there 2765 ** is no chance that the xfer optimization can be applied. 2766 ** 2767 ** This optimization is particularly useful at making VACUUM run faster. 2768 */ 2769 static int xferOptimization( 2770 Parse *pParse, /* Parser context */ 2771 Table *pDest, /* The table we are inserting into */ 2772 Select *pSelect, /* A SELECT statement to use as the data source */ 2773 int onError, /* How to handle constraint errors */ 2774 int iDbDest /* The database of pDest */ 2775 ){ 2776 sqlite3 *db = pParse->db; 2777 ExprList *pEList; /* The result set of the SELECT */ 2778 Table *pSrc; /* The table in the FROM clause of SELECT */ 2779 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2780 SrcItem *pItem; /* An element of pSelect->pSrc */ 2781 int i; /* Loop counter */ 2782 int iDbSrc; /* The database of pSrc */ 2783 int iSrc, iDest; /* Cursors from source and destination */ 2784 int addr1, addr2; /* Loop addresses */ 2785 int emptyDestTest = 0; /* Address of test for empty pDest */ 2786 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2787 Vdbe *v; /* The VDBE we are building */ 2788 int regAutoinc; /* Memory register used by AUTOINC */ 2789 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2790 int regData, regRowid; /* Registers holding data and rowid */ 2791 2792 assert( pSelect!=0 ); 2793 if( pParse->pWith || pSelect->pWith ){ 2794 /* Do not attempt to process this query if there are an WITH clauses 2795 ** attached to it. Proceeding may generate a false "no such table: xxx" 2796 ** error if pSelect reads from a CTE named "xxx". */ 2797 return 0; 2798 } 2799 #ifndef SQLITE_OMIT_VIRTUALTABLE 2800 if( IsVirtual(pDest) ){ 2801 return 0; /* tab1 must not be a virtual table */ 2802 } 2803 #endif 2804 if( onError==OE_Default ){ 2805 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2806 if( onError==OE_Default ) onError = OE_Abort; 2807 } 2808 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2809 if( pSelect->pSrc->nSrc!=1 ){ 2810 return 0; /* FROM clause must have exactly one term */ 2811 } 2812 if( pSelect->pSrc->a[0].pSelect ){ 2813 return 0; /* FROM clause cannot contain a subquery */ 2814 } 2815 if( pSelect->pWhere ){ 2816 return 0; /* SELECT may not have a WHERE clause */ 2817 } 2818 if( pSelect->pOrderBy ){ 2819 return 0; /* SELECT may not have an ORDER BY clause */ 2820 } 2821 /* Do not need to test for a HAVING clause. If HAVING is present but 2822 ** there is no ORDER BY, we will get an error. */ 2823 if( pSelect->pGroupBy ){ 2824 return 0; /* SELECT may not have a GROUP BY clause */ 2825 } 2826 if( pSelect->pLimit ){ 2827 return 0; /* SELECT may not have a LIMIT clause */ 2828 } 2829 if( pSelect->pPrior ){ 2830 return 0; /* SELECT may not be a compound query */ 2831 } 2832 if( pSelect->selFlags & SF_Distinct ){ 2833 return 0; /* SELECT may not be DISTINCT */ 2834 } 2835 pEList = pSelect->pEList; 2836 assert( pEList!=0 ); 2837 if( pEList->nExpr!=1 ){ 2838 return 0; /* The result set must have exactly one column */ 2839 } 2840 assert( pEList->a[0].pExpr ); 2841 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2842 return 0; /* The result set must be the special operator "*" */ 2843 } 2844 2845 /* At this point we have established that the statement is of the 2846 ** correct syntactic form to participate in this optimization. Now 2847 ** we have to check the semantics. 2848 */ 2849 pItem = pSelect->pSrc->a; 2850 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2851 if( pSrc==0 ){ 2852 return 0; /* FROM clause does not contain a real table */ 2853 } 2854 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2855 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2856 return 0; /* tab1 and tab2 may not be the same table */ 2857 } 2858 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2859 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2860 } 2861 if( !IsOrdinaryTable(pSrc) ){ 2862 return 0; /* tab2 may not be a view or virtual table */ 2863 } 2864 if( pDest->nCol!=pSrc->nCol ){ 2865 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2866 } 2867 if( pDest->iPKey!=pSrc->iPKey ){ 2868 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2869 } 2870 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 2871 return 0; /* Cannot feed from a non-strict into a strict table */ 2872 } 2873 for(i=0; i<pDest->nCol; i++){ 2874 Column *pDestCol = &pDest->aCol[i]; 2875 Column *pSrcCol = &pSrc->aCol[i]; 2876 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2877 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2878 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2879 ){ 2880 return 0; /* Neither table may have __hidden__ columns */ 2881 } 2882 #endif 2883 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2884 /* Even if tables t1 and t2 have identical schemas, if they contain 2885 ** generated columns, then this statement is semantically incorrect: 2886 ** 2887 ** INSERT INTO t2 SELECT * FROM t1; 2888 ** 2889 ** The reason is that generated column values are returned by the 2890 ** the SELECT statement on the right but the INSERT statement on the 2891 ** left wants them to be omitted. 2892 ** 2893 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2894 ** to do a bulk transfer all of the content from t1 over to t2. 2895 ** 2896 ** We could, in theory, disable this (except for internal use by the 2897 ** VACUUM command where it is actually needed). But why do that? It 2898 ** seems harmless enough, and provides a useful service. 2899 */ 2900 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2901 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2902 return 0; /* Both columns have the same generated-column type */ 2903 } 2904 /* But the transfer is only allowed if both the source and destination 2905 ** tables have the exact same expressions for generated columns. 2906 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2907 */ 2908 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2909 if( sqlite3ExprCompare(0, 2910 sqlite3ColumnExpr(pSrc, pSrcCol), 2911 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 2912 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2913 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2914 return 0; /* Different generator expressions */ 2915 } 2916 } 2917 #endif 2918 if( pDestCol->affinity!=pSrcCol->affinity ){ 2919 return 0; /* Affinity must be the same on all columns */ 2920 } 2921 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 2922 sqlite3ColumnColl(pSrcCol))!=0 ){ 2923 return 0; /* Collating sequence must be the same on all columns */ 2924 } 2925 if( pDestCol->notNull && !pSrcCol->notNull ){ 2926 return 0; /* tab2 must be NOT NULL if tab1 is */ 2927 } 2928 /* Default values for second and subsequent columns need to match. */ 2929 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2930 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 2931 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 2932 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 2933 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); 2934 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 2935 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); 2936 if( (pDestExpr==0)!=(pSrcExpr==0) 2937 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 2938 pSrcExpr->u.zToken)!=0) 2939 ){ 2940 return 0; /* Default values must be the same for all columns */ 2941 } 2942 } 2943 } 2944 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2945 if( IsUniqueIndex(pDestIdx) ){ 2946 destHasUniqueIdx = 1; 2947 } 2948 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2949 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2950 } 2951 if( pSrcIdx==0 ){ 2952 return 0; /* pDestIdx has no corresponding index in pSrc */ 2953 } 2954 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2955 && sqlite3FaultSim(411)==SQLITE_OK ){ 2956 /* The sqlite3FaultSim() call allows this corruption test to be 2957 ** bypassed during testing, in order to exercise other corruption tests 2958 ** further downstream. */ 2959 return 0; /* Corrupt schema - two indexes on the same btree */ 2960 } 2961 } 2962 #ifndef SQLITE_OMIT_CHECK 2963 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2964 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2965 } 2966 #endif 2967 #ifndef SQLITE_OMIT_FOREIGN_KEY 2968 /* Disallow the transfer optimization if the destination table constains 2969 ** any foreign key constraints. This is more restrictive than necessary. 2970 ** But the main beneficiary of the transfer optimization is the VACUUM 2971 ** command, and the VACUUM command disables foreign key constraints. So 2972 ** the extra complication to make this rule less restrictive is probably 2973 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2974 */ 2975 assert( IsOrdinaryTable(pDest) ); 2976 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 2977 return 0; 2978 } 2979 #endif 2980 if( (db->flags & SQLITE_CountRows)!=0 ){ 2981 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2982 } 2983 2984 /* If we get this far, it means that the xfer optimization is at 2985 ** least a possibility, though it might only work if the destination 2986 ** table (tab1) is initially empty. 2987 */ 2988 #ifdef SQLITE_TEST 2989 sqlite3_xferopt_count++; 2990 #endif 2991 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2992 v = sqlite3GetVdbe(pParse); 2993 sqlite3CodeVerifySchema(pParse, iDbSrc); 2994 iSrc = pParse->nTab++; 2995 iDest = pParse->nTab++; 2996 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2997 regData = sqlite3GetTempReg(pParse); 2998 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 2999 regRowid = sqlite3GetTempReg(pParse); 3000 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 3001 assert( HasRowid(pDest) || destHasUniqueIdx ); 3002 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 3003 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 3004 || destHasUniqueIdx /* (2) */ 3005 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 3006 )){ 3007 /* In some circumstances, we are able to run the xfer optimization 3008 ** only if the destination table is initially empty. Unless the 3009 ** DBFLAG_Vacuum flag is set, this block generates code to make 3010 ** that determination. If DBFLAG_Vacuum is set, then the destination 3011 ** table is always empty. 3012 ** 3013 ** Conditions under which the destination must be empty: 3014 ** 3015 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 3016 ** (If the destination is not initially empty, the rowid fields 3017 ** of index entries might need to change.) 3018 ** 3019 ** (2) The destination has a unique index. (The xfer optimization 3020 ** is unable to test uniqueness.) 3021 ** 3022 ** (3) onError is something other than OE_Abort and OE_Rollback. 3023 */ 3024 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 3025 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 3026 sqlite3VdbeJumpHere(v, addr1); 3027 } 3028 if( HasRowid(pSrc) ){ 3029 u8 insFlags; 3030 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 3031 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3032 if( pDest->iPKey>=0 ){ 3033 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3034 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3035 sqlite3VdbeVerifyAbortable(v, onError); 3036 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 3037 VdbeCoverage(v); 3038 sqlite3RowidConstraint(pParse, onError, pDest); 3039 sqlite3VdbeJumpHere(v, addr2); 3040 } 3041 autoIncStep(pParse, regAutoinc, regRowid); 3042 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 3043 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 3044 }else{ 3045 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3046 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 3047 } 3048 3049 if( db->mDbFlags & DBFLAG_Vacuum ){ 3050 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3051 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3052 }else{ 3053 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 3054 } 3055 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 3056 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3057 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3058 insFlags &= ~OPFLAG_PREFORMAT; 3059 }else 3060 #endif 3061 { 3062 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 3063 } 3064 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 3065 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3066 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 3067 } 3068 sqlite3VdbeChangeP5(v, insFlags); 3069 3070 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 3071 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3072 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3073 }else{ 3074 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 3075 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 3076 } 3077 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 3078 u8 idxInsFlags = 0; 3079 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 3080 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 3081 } 3082 assert( pSrcIdx ); 3083 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 3084 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 3085 VdbeComment((v, "%s", pSrcIdx->zName)); 3086 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 3087 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 3088 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 3089 VdbeComment((v, "%s", pDestIdx->zName)); 3090 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3091 if( db->mDbFlags & DBFLAG_Vacuum ){ 3092 /* This INSERT command is part of a VACUUM operation, which guarantees 3093 ** that the destination table is empty. If all indexed columns use 3094 ** collation sequence BINARY, then it can also be assumed that the 3095 ** index will be populated by inserting keys in strictly sorted 3096 ** order. In this case, instead of seeking within the b-tree as part 3097 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 3098 ** OP_IdxInsert to seek to the point within the b-tree where each key 3099 ** should be inserted. This is faster. 3100 ** 3101 ** If any of the indexed columns use a collation sequence other than 3102 ** BINARY, this optimization is disabled. This is because the user 3103 ** might change the definition of a collation sequence and then run 3104 ** a VACUUM command. In that case keys may not be written in strictly 3105 ** sorted order. */ 3106 for(i=0; i<pSrcIdx->nColumn; i++){ 3107 const char *zColl = pSrcIdx->azColl[i]; 3108 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 3109 } 3110 if( i==pSrcIdx->nColumn ){ 3111 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3112 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3113 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 3114 } 3115 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 3116 idxInsFlags |= OPFLAG_NCHANGE; 3117 } 3118 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3119 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3120 if( (db->mDbFlags & DBFLAG_Vacuum)==0 3121 && !HasRowid(pDest) 3122 && IsPrimaryKeyIndex(pDestIdx) 3123 ){ 3124 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 3125 } 3126 } 3127 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3128 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3129 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3130 sqlite3VdbeJumpHere(v, addr1); 3131 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3132 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3133 } 3134 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3135 sqlite3ReleaseTempReg(pParse, regRowid); 3136 sqlite3ReleaseTempReg(pParse, regData); 3137 if( emptyDestTest ){ 3138 sqlite3AutoincrementEnd(pParse); 3139 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3140 sqlite3VdbeJumpHere(v, emptyDestTest); 3141 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3142 return 0; 3143 }else{ 3144 return 1; 3145 } 3146 } 3147 #endif /* SQLITE_OMIT_XFER_OPT */ 3148