xref: /sqlite-3.40.0/src/insert.c (revision 3725af73)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   assert( pParse->pVdbe!=0 );
36   v = pParse->pVdbe;
37   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
38   sqlite3TableLock(pParse, iDb, pTab->tnum,
39                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
40   if( HasRowid(pTab) ){
41     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
42     VdbeComment((v, "%s", pTab->zName));
43   }else{
44     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
45     assert( pPk!=0 );
46     assert( pPk->tnum==pTab->tnum || CORRUPT_DB );
47     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
48     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
49     VdbeComment((v, "%s", pTab->zName));
50   }
51 }
52 
53 /*
54 ** Return a pointer to the column affinity string associated with index
55 ** pIdx. A column affinity string has one character for each column in
56 ** the table, according to the affinity of the column:
57 **
58 **  Character      Column affinity
59 **  ------------------------------
60 **  'A'            BLOB
61 **  'B'            TEXT
62 **  'C'            NUMERIC
63 **  'D'            INTEGER
64 **  'F'            REAL
65 **
66 ** An extra 'D' is appended to the end of the string to cover the
67 ** rowid that appears as the last column in every index.
68 **
69 ** Memory for the buffer containing the column index affinity string
70 ** is managed along with the rest of the Index structure. It will be
71 ** released when sqlite3DeleteIndex() is called.
72 */
73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
74   if( !pIdx->zColAff ){
75     /* The first time a column affinity string for a particular index is
76     ** required, it is allocated and populated here. It is then stored as
77     ** a member of the Index structure for subsequent use.
78     **
79     ** The column affinity string will eventually be deleted by
80     ** sqliteDeleteIndex() when the Index structure itself is cleaned
81     ** up.
82     */
83     int n;
84     Table *pTab = pIdx->pTable;
85     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86     if( !pIdx->zColAff ){
87       sqlite3OomFault(db);
88       return 0;
89     }
90     for(n=0; n<pIdx->nColumn; n++){
91       i16 x = pIdx->aiColumn[n];
92       char aff;
93       if( x>=0 ){
94         aff = pTab->aCol[x].affinity;
95       }else if( x==XN_ROWID ){
96         aff = SQLITE_AFF_INTEGER;
97       }else{
98         assert( x==XN_EXPR );
99         assert( pIdx->bHasExpr );
100         assert( pIdx->aColExpr!=0 );
101         aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
102       }
103       if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
104       if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
105       pIdx->zColAff[n] = aff;
106     }
107     pIdx->zColAff[n] = 0;
108   }
109 
110   return pIdx->zColAff;
111 }
112 
113 /*
114 ** Make changes to the evolving bytecode to do affinity transformations
115 ** of values that are about to be gathered into a row for table pTab.
116 **
117 ** For ordinary (legacy, non-strict) tables:
118 ** -----------------------------------------
119 **
120 ** Compute the affinity string for table pTab, if it has not already been
121 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
122 **
123 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
124 ** which were then optimized out) then this routine becomes a no-op.
125 **
126 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
127 ** affinities for register iReg and following.  Or if iReg==0,
128 ** then just set the P4 operand of the previous opcode (which should  be
129 ** an OP_MakeRecord) to the affinity string.
130 **
131 ** A column affinity string has one character per column:
132 **
133 **    Character      Column affinity
134 **    ---------      ---------------
135 **    'A'            BLOB
136 **    'B'            TEXT
137 **    'C'            NUMERIC
138 **    'D'            INTEGER
139 **    'E'            REAL
140 **
141 ** For STRICT tables:
142 ** ------------------
143 **
144 ** Generate an appropropriate OP_TypeCheck opcode that will verify the
145 ** datatypes against the column definitions in pTab.  If iReg==0, that
146 ** means an OP_MakeRecord opcode has already been generated and should be
147 ** the last opcode generated.  The new OP_TypeCheck needs to be inserted
148 ** before the OP_MakeRecord.  The new OP_TypeCheck should use the same
149 ** register set as the OP_MakeRecord.  If iReg>0 then register iReg is
150 ** the first of a series of registers that will form the new record.
151 ** Apply the type checking to that array of registers.
152 */
153 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
154   int i, j;
155   char *zColAff;
156   if( pTab->tabFlags & TF_Strict ){
157     if( iReg==0 ){
158       /* Move the previous opcode (which should be OP_MakeRecord) forward
159       ** by one slot and insert a new OP_TypeCheck where the current
160       ** OP_MakeRecord is found */
161       VdbeOp *pPrev;
162       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
163       pPrev = sqlite3VdbeGetLastOp(v);
164       assert( pPrev!=0 );
165       assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed );
166       pPrev->opcode = OP_TypeCheck;
167       sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3);
168     }else{
169       /* Insert an isolated OP_Typecheck */
170       sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol);
171       sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
172     }
173     return;
174   }
175   zColAff = pTab->zColAff;
176   if( zColAff==0 ){
177     sqlite3 *db = sqlite3VdbeDb(v);
178     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
179     if( !zColAff ){
180       sqlite3OomFault(db);
181       return;
182     }
183 
184     for(i=j=0; i<pTab->nCol; i++){
185       assert( pTab->aCol[i].affinity!=0 || sqlite3VdbeParser(v)->nErr>0 );
186       if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
187         zColAff[j++] = pTab->aCol[i].affinity;
188       }
189     }
190     do{
191       zColAff[j--] = 0;
192     }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
193     pTab->zColAff = zColAff;
194   }
195   assert( zColAff!=0 );
196   i = sqlite3Strlen30NN(zColAff);
197   if( i ){
198     if( iReg ){
199       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
200     }else{
201       assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord
202               || sqlite3VdbeDb(v)->mallocFailed );
203       sqlite3VdbeChangeP4(v, -1, zColAff, i);
204     }
205   }
206 }
207 
208 /*
209 ** Return non-zero if the table pTab in database iDb or any of its indices
210 ** have been opened at any point in the VDBE program. This is used to see if
211 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
212 ** run without using a temporary table for the results of the SELECT.
213 */
214 static int readsTable(Parse *p, int iDb, Table *pTab){
215   Vdbe *v = sqlite3GetVdbe(p);
216   int i;
217   int iEnd = sqlite3VdbeCurrentAddr(v);
218 #ifndef SQLITE_OMIT_VIRTUALTABLE
219   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
220 #endif
221 
222   for(i=1; i<iEnd; i++){
223     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
224     assert( pOp!=0 );
225     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
226       Index *pIndex;
227       Pgno tnum = pOp->p2;
228       if( tnum==pTab->tnum ){
229         return 1;
230       }
231       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
232         if( tnum==pIndex->tnum ){
233           return 1;
234         }
235       }
236     }
237 #ifndef SQLITE_OMIT_VIRTUALTABLE
238     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
239       assert( pOp->p4.pVtab!=0 );
240       assert( pOp->p4type==P4_VTAB );
241       return 1;
242     }
243 #endif
244   }
245   return 0;
246 }
247 
248 /* This walker callback will compute the union of colFlags flags for all
249 ** referenced columns in a CHECK constraint or generated column expression.
250 */
251 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
252   if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){
253     assert( pExpr->iColumn < pWalker->u.pTab->nCol );
254     pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
255   }
256   return WRC_Continue;
257 }
258 
259 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
260 /*
261 ** All regular columns for table pTab have been puts into registers
262 ** starting with iRegStore.  The registers that correspond to STORED
263 ** or VIRTUAL columns have not yet been initialized.  This routine goes
264 ** back and computes the values for those columns based on the previously
265 ** computed normal columns.
266 */
267 void sqlite3ComputeGeneratedColumns(
268   Parse *pParse,    /* Parsing context */
269   int iRegStore,    /* Register holding the first column */
270   Table *pTab       /* The table */
271 ){
272   int i;
273   Walker w;
274   Column *pRedo;
275   int eProgress;
276   VdbeOp *pOp;
277 
278   assert( pTab->tabFlags & TF_HasGenerated );
279   testcase( pTab->tabFlags & TF_HasVirtual );
280   testcase( pTab->tabFlags & TF_HasStored );
281 
282   /* Before computing generated columns, first go through and make sure
283   ** that appropriate affinity has been applied to the regular columns
284   */
285   sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore);
286   if( (pTab->tabFlags & TF_HasStored)!=0 ){
287     pOp = sqlite3VdbeGetLastOp(pParse->pVdbe);
288     if( pOp->opcode==OP_Affinity ){
289       /* Change the OP_Affinity argument to '@' (NONE) for all stored
290       ** columns.  '@' is the no-op affinity and those columns have not
291       ** yet been computed. */
292       int ii, jj;
293       char *zP4 = pOp->p4.z;
294       assert( zP4!=0 );
295       assert( pOp->p4type==P4_DYNAMIC );
296       for(ii=jj=0; zP4[jj]; ii++){
297         if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){
298           continue;
299         }
300         if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){
301           zP4[jj] = SQLITE_AFF_NONE;
302         }
303         jj++;
304       }
305     }else if( pOp->opcode==OP_TypeCheck ){
306       /* If an OP_TypeCheck was generated because the table is STRICT,
307       ** then set the P3 operand to indicate that generated columns should
308       ** not be checked */
309       pOp->p3 = 1;
310     }
311   }
312 
313   /* Because there can be multiple generated columns that refer to one another,
314   ** this is a two-pass algorithm.  On the first pass, mark all generated
315   ** columns as "not available".
316   */
317   for(i=0; i<pTab->nCol; i++){
318     if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
319       testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
320       testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
321       pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
322     }
323   }
324 
325   w.u.pTab = pTab;
326   w.xExprCallback = exprColumnFlagUnion;
327   w.xSelectCallback = 0;
328   w.xSelectCallback2 = 0;
329 
330   /* On the second pass, compute the value of each NOT-AVAILABLE column.
331   ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
332   ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
333   ** they are needed.
334   */
335   pParse->iSelfTab = -iRegStore;
336   do{
337     eProgress = 0;
338     pRedo = 0;
339     for(i=0; i<pTab->nCol; i++){
340       Column *pCol = pTab->aCol + i;
341       if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
342         int x;
343         pCol->colFlags |= COLFLAG_BUSY;
344         w.eCode = 0;
345         sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol));
346         pCol->colFlags &= ~COLFLAG_BUSY;
347         if( w.eCode & COLFLAG_NOTAVAIL ){
348           pRedo = pCol;
349           continue;
350         }
351         eProgress = 1;
352         assert( pCol->colFlags & COLFLAG_GENERATED );
353         x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
354         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x);
355         pCol->colFlags &= ~COLFLAG_NOTAVAIL;
356       }
357     }
358   }while( pRedo && eProgress );
359   if( pRedo ){
360     sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName);
361   }
362   pParse->iSelfTab = 0;
363 }
364 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
365 
366 
367 #ifndef SQLITE_OMIT_AUTOINCREMENT
368 /*
369 ** Locate or create an AutoincInfo structure associated with table pTab
370 ** which is in database iDb.  Return the register number for the register
371 ** that holds the maximum rowid.  Return zero if pTab is not an AUTOINCREMENT
372 ** table.  (Also return zero when doing a VACUUM since we do not want to
373 ** update the AUTOINCREMENT counters during a VACUUM.)
374 **
375 ** There is at most one AutoincInfo structure per table even if the
376 ** same table is autoincremented multiple times due to inserts within
377 ** triggers.  A new AutoincInfo structure is created if this is the
378 ** first use of table pTab.  On 2nd and subsequent uses, the original
379 ** AutoincInfo structure is used.
380 **
381 ** Four consecutive registers are allocated:
382 **
383 **   (1)  The name of the pTab table.
384 **   (2)  The maximum ROWID of pTab.
385 **   (3)  The rowid in sqlite_sequence of pTab
386 **   (4)  The original value of the max ROWID in pTab, or NULL if none
387 **
388 ** The 2nd register is the one that is returned.  That is all the
389 ** insert routine needs to know about.
390 */
391 static int autoIncBegin(
392   Parse *pParse,      /* Parsing context */
393   int iDb,            /* Index of the database holding pTab */
394   Table *pTab         /* The table we are writing to */
395 ){
396   int memId = 0;      /* Register holding maximum rowid */
397   assert( pParse->db->aDb[iDb].pSchema!=0 );
398   if( (pTab->tabFlags & TF_Autoincrement)!=0
399    && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
400   ){
401     Parse *pToplevel = sqlite3ParseToplevel(pParse);
402     AutoincInfo *pInfo;
403     Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
404 
405     /* Verify that the sqlite_sequence table exists and is an ordinary
406     ** rowid table with exactly two columns.
407     ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
408     if( pSeqTab==0
409      || !HasRowid(pSeqTab)
410      || NEVER(IsVirtual(pSeqTab))
411      || pSeqTab->nCol!=2
412     ){
413       pParse->nErr++;
414       pParse->rc = SQLITE_CORRUPT_SEQUENCE;
415       return 0;
416     }
417 
418     pInfo = pToplevel->pAinc;
419     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
420     if( pInfo==0 ){
421       pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
422       sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo);
423       testcase( pParse->earlyCleanup );
424       if( pParse->db->mallocFailed ) return 0;
425       pInfo->pNext = pToplevel->pAinc;
426       pToplevel->pAinc = pInfo;
427       pInfo->pTab = pTab;
428       pInfo->iDb = iDb;
429       pToplevel->nMem++;                  /* Register to hold name of table */
430       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
431       pToplevel->nMem +=2;       /* Rowid in sqlite_sequence + orig max val */
432     }
433     memId = pInfo->regCtr;
434   }
435   return memId;
436 }
437 
438 /*
439 ** This routine generates code that will initialize all of the
440 ** register used by the autoincrement tracker.
441 */
442 void sqlite3AutoincrementBegin(Parse *pParse){
443   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
444   sqlite3 *db = pParse->db;  /* The database connection */
445   Db *pDb;                   /* Database only autoinc table */
446   int memId;                 /* Register holding max rowid */
447   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
448 
449   /* This routine is never called during trigger-generation.  It is
450   ** only called from the top-level */
451   assert( pParse->pTriggerTab==0 );
452   assert( sqlite3IsToplevel(pParse) );
453 
454   assert( v );   /* We failed long ago if this is not so */
455   for(p = pParse->pAinc; p; p = p->pNext){
456     static const int iLn = VDBE_OFFSET_LINENO(2);
457     static const VdbeOpList autoInc[] = {
458       /* 0  */ {OP_Null,    0,  0, 0},
459       /* 1  */ {OP_Rewind,  0, 10, 0},
460       /* 2  */ {OP_Column,  0,  0, 0},
461       /* 3  */ {OP_Ne,      0,  9, 0},
462       /* 4  */ {OP_Rowid,   0,  0, 0},
463       /* 5  */ {OP_Column,  0,  1, 0},
464       /* 6  */ {OP_AddImm,  0,  0, 0},
465       /* 7  */ {OP_Copy,    0,  0, 0},
466       /* 8  */ {OP_Goto,    0, 11, 0},
467       /* 9  */ {OP_Next,    0,  2, 0},
468       /* 10 */ {OP_Integer, 0,  0, 0},
469       /* 11 */ {OP_Close,   0,  0, 0}
470     };
471     VdbeOp *aOp;
472     pDb = &db->aDb[p->iDb];
473     memId = p->regCtr;
474     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
475     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
476     sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
477     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
478     if( aOp==0 ) break;
479     aOp[0].p2 = memId;
480     aOp[0].p3 = memId+2;
481     aOp[2].p3 = memId;
482     aOp[3].p1 = memId-1;
483     aOp[3].p3 = memId;
484     aOp[3].p5 = SQLITE_JUMPIFNULL;
485     aOp[4].p2 = memId+1;
486     aOp[5].p3 = memId;
487     aOp[6].p1 = memId;
488     aOp[7].p2 = memId+2;
489     aOp[7].p1 = memId;
490     aOp[10].p2 = memId;
491     if( pParse->nTab==0 ) pParse->nTab = 1;
492   }
493 }
494 
495 /*
496 ** Update the maximum rowid for an autoincrement calculation.
497 **
498 ** This routine should be called when the regRowid register holds a
499 ** new rowid that is about to be inserted.  If that new rowid is
500 ** larger than the maximum rowid in the memId memory cell, then the
501 ** memory cell is updated.
502 */
503 static void autoIncStep(Parse *pParse, int memId, int regRowid){
504   if( memId>0 ){
505     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
506   }
507 }
508 
509 /*
510 ** This routine generates the code needed to write autoincrement
511 ** maximum rowid values back into the sqlite_sequence register.
512 ** Every statement that might do an INSERT into an autoincrement
513 ** table (either directly or through triggers) needs to call this
514 ** routine just before the "exit" code.
515 */
516 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
517   AutoincInfo *p;
518   Vdbe *v = pParse->pVdbe;
519   sqlite3 *db = pParse->db;
520 
521   assert( v );
522   for(p = pParse->pAinc; p; p = p->pNext){
523     static const int iLn = VDBE_OFFSET_LINENO(2);
524     static const VdbeOpList autoIncEnd[] = {
525       /* 0 */ {OP_NotNull,     0, 2, 0},
526       /* 1 */ {OP_NewRowid,    0, 0, 0},
527       /* 2 */ {OP_MakeRecord,  0, 2, 0},
528       /* 3 */ {OP_Insert,      0, 0, 0},
529       /* 4 */ {OP_Close,       0, 0, 0}
530     };
531     VdbeOp *aOp;
532     Db *pDb = &db->aDb[p->iDb];
533     int iRec;
534     int memId = p->regCtr;
535 
536     iRec = sqlite3GetTempReg(pParse);
537     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
538     sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
539     VdbeCoverage(v);
540     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
541     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
542     if( aOp==0 ) break;
543     aOp[0].p1 = memId+1;
544     aOp[1].p2 = memId+1;
545     aOp[2].p1 = memId-1;
546     aOp[2].p3 = iRec;
547     aOp[3].p2 = iRec;
548     aOp[3].p3 = memId+1;
549     aOp[3].p5 = OPFLAG_APPEND;
550     sqlite3ReleaseTempReg(pParse, iRec);
551   }
552 }
553 void sqlite3AutoincrementEnd(Parse *pParse){
554   if( pParse->pAinc ) autoIncrementEnd(pParse);
555 }
556 #else
557 /*
558 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
559 ** above are all no-ops
560 */
561 # define autoIncBegin(A,B,C) (0)
562 # define autoIncStep(A,B,C)
563 #endif /* SQLITE_OMIT_AUTOINCREMENT */
564 
565 
566 /* Forward declaration */
567 static int xferOptimization(
568   Parse *pParse,        /* Parser context */
569   Table *pDest,         /* The table we are inserting into */
570   Select *pSelect,      /* A SELECT statement to use as the data source */
571   int onError,          /* How to handle constraint errors */
572   int iDbDest           /* The database of pDest */
573 );
574 
575 /*
576 ** This routine is called to handle SQL of the following forms:
577 **
578 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
579 **    insert into TABLE (IDLIST) select
580 **    insert into TABLE (IDLIST) default values
581 **
582 ** The IDLIST following the table name is always optional.  If omitted,
583 ** then a list of all (non-hidden) columns for the table is substituted.
584 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
585 ** is omitted.
586 **
587 ** For the pSelect parameter holds the values to be inserted for the
588 ** first two forms shown above.  A VALUES clause is really just short-hand
589 ** for a SELECT statement that omits the FROM clause and everything else
590 ** that follows.  If the pSelect parameter is NULL, that means that the
591 ** DEFAULT VALUES form of the INSERT statement is intended.
592 **
593 ** The code generated follows one of four templates.  For a simple
594 ** insert with data coming from a single-row VALUES clause, the code executes
595 ** once straight down through.  Pseudo-code follows (we call this
596 ** the "1st template"):
597 **
598 **         open write cursor to <table> and its indices
599 **         put VALUES clause expressions into registers
600 **         write the resulting record into <table>
601 **         cleanup
602 **
603 ** The three remaining templates assume the statement is of the form
604 **
605 **   INSERT INTO <table> SELECT ...
606 **
607 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
608 ** in other words if the SELECT pulls all columns from a single table
609 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
610 ** if <table2> and <table1> are distinct tables but have identical
611 ** schemas, including all the same indices, then a special optimization
612 ** is invoked that copies raw records from <table2> over to <table1>.
613 ** See the xferOptimization() function for the implementation of this
614 ** template.  This is the 2nd template.
615 **
616 **         open a write cursor to <table>
617 **         open read cursor on <table2>
618 **         transfer all records in <table2> over to <table>
619 **         close cursors
620 **         foreach index on <table>
621 **           open a write cursor on the <table> index
622 **           open a read cursor on the corresponding <table2> index
623 **           transfer all records from the read to the write cursors
624 **           close cursors
625 **         end foreach
626 **
627 ** The 3rd template is for when the second template does not apply
628 ** and the SELECT clause does not read from <table> at any time.
629 ** The generated code follows this template:
630 **
631 **         X <- A
632 **         goto B
633 **      A: setup for the SELECT
634 **         loop over the rows in the SELECT
635 **           load values into registers R..R+n
636 **           yield X
637 **         end loop
638 **         cleanup after the SELECT
639 **         end-coroutine X
640 **      B: open write cursor to <table> and its indices
641 **      C: yield X, at EOF goto D
642 **         insert the select result into <table> from R..R+n
643 **         goto C
644 **      D: cleanup
645 **
646 ** The 4th template is used if the insert statement takes its
647 ** values from a SELECT but the data is being inserted into a table
648 ** that is also read as part of the SELECT.  In the third form,
649 ** we have to use an intermediate table to store the results of
650 ** the select.  The template is like this:
651 **
652 **         X <- A
653 **         goto B
654 **      A: setup for the SELECT
655 **         loop over the tables in the SELECT
656 **           load value into register R..R+n
657 **           yield X
658 **         end loop
659 **         cleanup after the SELECT
660 **         end co-routine R
661 **      B: open temp table
662 **      L: yield X, at EOF goto M
663 **         insert row from R..R+n into temp table
664 **         goto L
665 **      M: open write cursor to <table> and its indices
666 **         rewind temp table
667 **      C: loop over rows of intermediate table
668 **           transfer values form intermediate table into <table>
669 **         end loop
670 **      D: cleanup
671 */
672 void sqlite3Insert(
673   Parse *pParse,        /* Parser context */
674   SrcList *pTabList,    /* Name of table into which we are inserting */
675   Select *pSelect,      /* A SELECT statement to use as the data source */
676   IdList *pColumn,      /* Column names corresponding to IDLIST, or NULL. */
677   int onError,          /* How to handle constraint errors */
678   Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */
679 ){
680   sqlite3 *db;          /* The main database structure */
681   Table *pTab;          /* The table to insert into.  aka TABLE */
682   int i, j;             /* Loop counters */
683   Vdbe *v;              /* Generate code into this virtual machine */
684   Index *pIdx;          /* For looping over indices of the table */
685   int nColumn;          /* Number of columns in the data */
686   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
687   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
688   int iIdxCur = 0;      /* First index cursor */
689   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
690   int endOfLoop;        /* Label for the end of the insertion loop */
691   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
692   int addrInsTop = 0;   /* Jump to label "D" */
693   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
694   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
695   int iDb;              /* Index of database holding TABLE */
696   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
697   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
698   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
699   u8 bIdListInOrder;    /* True if IDLIST is in table order */
700   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
701   int iRegStore;        /* Register in which to store next column */
702 
703   /* Register allocations */
704   int regFromSelect = 0;/* Base register for data coming from SELECT */
705   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
706   int regRowCount = 0;  /* Memory cell used for the row counter */
707   int regIns;           /* Block of regs holding rowid+data being inserted */
708   int regRowid;         /* registers holding insert rowid */
709   int regData;          /* register holding first column to insert */
710   int *aRegIdx = 0;     /* One register allocated to each index */
711 
712 #ifndef SQLITE_OMIT_TRIGGER
713   int isView;                 /* True if attempting to insert into a view */
714   Trigger *pTrigger;          /* List of triggers on pTab, if required */
715   int tmask;                  /* Mask of trigger times */
716 #endif
717 
718   db = pParse->db;
719   assert( db->pParse==pParse );
720   if( pParse->nErr ){
721     goto insert_cleanup;
722   }
723   assert( db->mallocFailed==0 );
724   dest.iSDParm = 0;  /* Suppress a harmless compiler warning */
725 
726   /* If the Select object is really just a simple VALUES() list with a
727   ** single row (the common case) then keep that one row of values
728   ** and discard the other (unused) parts of the pSelect object
729   */
730   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
731     pList = pSelect->pEList;
732     pSelect->pEList = 0;
733     sqlite3SelectDelete(db, pSelect);
734     pSelect = 0;
735   }
736 
737   /* Locate the table into which we will be inserting new information.
738   */
739   assert( pTabList->nSrc==1 );
740   pTab = sqlite3SrcListLookup(pParse, pTabList);
741   if( pTab==0 ){
742     goto insert_cleanup;
743   }
744   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
745   assert( iDb<db->nDb );
746   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
747                        db->aDb[iDb].zDbSName) ){
748     goto insert_cleanup;
749   }
750   withoutRowid = !HasRowid(pTab);
751 
752   /* Figure out if we have any triggers and if the table being
753   ** inserted into is a view
754   */
755 #ifndef SQLITE_OMIT_TRIGGER
756   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
757   isView = IsView(pTab);
758 #else
759 # define pTrigger 0
760 # define tmask 0
761 # define isView 0
762 #endif
763 #ifdef SQLITE_OMIT_VIEW
764 # undef isView
765 # define isView 0
766 #endif
767   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
768 
769 #if TREETRACE_ENABLED
770   if( sqlite3TreeTrace & 0x10000 ){
771     sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__);
772     sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList,
773                           onError, pUpsert, pTrigger);
774   }
775 #endif
776 
777   /* If pTab is really a view, make sure it has been initialized.
778   ** ViewGetColumnNames() is a no-op if pTab is not a view.
779   */
780   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
781     goto insert_cleanup;
782   }
783 
784   /* Cannot insert into a read-only table.
785   */
786   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
787     goto insert_cleanup;
788   }
789 
790   /* Allocate a VDBE
791   */
792   v = sqlite3GetVdbe(pParse);
793   if( v==0 ) goto insert_cleanup;
794   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
795   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
796 
797 #ifndef SQLITE_OMIT_XFER_OPT
798   /* If the statement is of the form
799   **
800   **       INSERT INTO <table1> SELECT * FROM <table2>;
801   **
802   ** Then special optimizations can be applied that make the transfer
803   ** very fast and which reduce fragmentation of indices.
804   **
805   ** This is the 2nd template.
806   */
807   if( pColumn==0
808    && pSelect!=0
809    && pTrigger==0
810    && xferOptimization(pParse, pTab, pSelect, onError, iDb)
811   ){
812     assert( !pTrigger );
813     assert( pList==0 );
814     goto insert_end;
815   }
816 #endif /* SQLITE_OMIT_XFER_OPT */
817 
818   /* If this is an AUTOINCREMENT table, look up the sequence number in the
819   ** sqlite_sequence table and store it in memory cell regAutoinc.
820   */
821   regAutoinc = autoIncBegin(pParse, iDb, pTab);
822 
823   /* Allocate a block registers to hold the rowid and the values
824   ** for all columns of the new row.
825   */
826   regRowid = regIns = pParse->nMem+1;
827   pParse->nMem += pTab->nCol + 1;
828   if( IsVirtual(pTab) ){
829     regRowid++;
830     pParse->nMem++;
831   }
832   regData = regRowid+1;
833 
834   /* If the INSERT statement included an IDLIST term, then make sure
835   ** all elements of the IDLIST really are columns of the table and
836   ** remember the column indices.
837   **
838   ** If the table has an INTEGER PRIMARY KEY column and that column
839   ** is named in the IDLIST, then record in the ipkColumn variable
840   ** the index into IDLIST of the primary key column.  ipkColumn is
841   ** the index of the primary key as it appears in IDLIST, not as
842   ** is appears in the original table.  (The index of the INTEGER
843   ** PRIMARY KEY in the original table is pTab->iPKey.)  After this
844   ** loop, if ipkColumn==(-1), that means that integer primary key
845   ** is unspecified, and hence the table is either WITHOUT ROWID or
846   ** it will automatically generated an integer primary key.
847   **
848   ** bIdListInOrder is true if the columns in IDLIST are in storage
849   ** order.  This enables an optimization that avoids shuffling the
850   ** columns into storage order.  False negatives are harmless,
851   ** but false positives will cause database corruption.
852   */
853   bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
854   if( pColumn ){
855     assert( pColumn->eU4!=EU4_EXPR );
856     pColumn->eU4 = EU4_IDX;
857     for(i=0; i<pColumn->nId; i++){
858       pColumn->a[i].u4.idx = -1;
859     }
860     for(i=0; i<pColumn->nId; i++){
861       for(j=0; j<pTab->nCol; j++){
862         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){
863           pColumn->a[i].u4.idx = j;
864           if( i!=j ) bIdListInOrder = 0;
865           if( j==pTab->iPKey ){
866             ipkColumn = i;  assert( !withoutRowid );
867           }
868 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
869           if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
870             sqlite3ErrorMsg(pParse,
871                "cannot INSERT into generated column \"%s\"",
872                pTab->aCol[j].zCnName);
873             goto insert_cleanup;
874           }
875 #endif
876           break;
877         }
878       }
879       if( j>=pTab->nCol ){
880         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
881           ipkColumn = i;
882           bIdListInOrder = 0;
883         }else{
884           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
885               pTabList->a, pColumn->a[i].zName);
886           pParse->checkSchema = 1;
887           goto insert_cleanup;
888         }
889       }
890     }
891   }
892 
893   /* Figure out how many columns of data are supplied.  If the data
894   ** is coming from a SELECT statement, then generate a co-routine that
895   ** produces a single row of the SELECT on each invocation.  The
896   ** co-routine is the common header to the 3rd and 4th templates.
897   */
898   if( pSelect ){
899     /* Data is coming from a SELECT or from a multi-row VALUES clause.
900     ** Generate a co-routine to run the SELECT. */
901     int regYield;       /* Register holding co-routine entry-point */
902     int addrTop;        /* Top of the co-routine */
903     int rc;             /* Result code */
904 
905     regYield = ++pParse->nMem;
906     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
907     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
908     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
909     dest.iSdst = bIdListInOrder ? regData : 0;
910     dest.nSdst = pTab->nCol;
911     rc = sqlite3Select(pParse, pSelect, &dest);
912     regFromSelect = dest.iSdst;
913     assert( db->pParse==pParse );
914     if( rc || pParse->nErr ) goto insert_cleanup;
915     assert( db->mallocFailed==0 );
916     sqlite3VdbeEndCoroutine(v, regYield);
917     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
918     assert( pSelect->pEList );
919     nColumn = pSelect->pEList->nExpr;
920 
921     /* Set useTempTable to TRUE if the result of the SELECT statement
922     ** should be written into a temporary table (template 4).  Set to
923     ** FALSE if each output row of the SELECT can be written directly into
924     ** the destination table (template 3).
925     **
926     ** A temp table must be used if the table being updated is also one
927     ** of the tables being read by the SELECT statement.  Also use a
928     ** temp table in the case of row triggers.
929     */
930     if( pTrigger || readsTable(pParse, iDb, pTab) ){
931       useTempTable = 1;
932     }
933 
934     if( useTempTable ){
935       /* Invoke the coroutine to extract information from the SELECT
936       ** and add it to a transient table srcTab.  The code generated
937       ** here is from the 4th template:
938       **
939       **      B: open temp table
940       **      L: yield X, goto M at EOF
941       **         insert row from R..R+n into temp table
942       **         goto L
943       **      M: ...
944       */
945       int regRec;          /* Register to hold packed record */
946       int regTempRowid;    /* Register to hold temp table ROWID */
947       int addrL;           /* Label "L" */
948 
949       srcTab = pParse->nTab++;
950       regRec = sqlite3GetTempReg(pParse);
951       regTempRowid = sqlite3GetTempReg(pParse);
952       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
953       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
954       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
955       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
956       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
957       sqlite3VdbeGoto(v, addrL);
958       sqlite3VdbeJumpHere(v, addrL);
959       sqlite3ReleaseTempReg(pParse, regRec);
960       sqlite3ReleaseTempReg(pParse, regTempRowid);
961     }
962   }else{
963     /* This is the case if the data for the INSERT is coming from a
964     ** single-row VALUES clause
965     */
966     NameContext sNC;
967     memset(&sNC, 0, sizeof(sNC));
968     sNC.pParse = pParse;
969     srcTab = -1;
970     assert( useTempTable==0 );
971     if( pList ){
972       nColumn = pList->nExpr;
973       if( sqlite3ResolveExprListNames(&sNC, pList) ){
974         goto insert_cleanup;
975       }
976     }else{
977       nColumn = 0;
978     }
979   }
980 
981   /* If there is no IDLIST term but the table has an integer primary
982   ** key, the set the ipkColumn variable to the integer primary key
983   ** column index in the original table definition.
984   */
985   if( pColumn==0 && nColumn>0 ){
986     ipkColumn = pTab->iPKey;
987 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
988     if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
989       testcase( pTab->tabFlags & TF_HasVirtual );
990       testcase( pTab->tabFlags & TF_HasStored );
991       for(i=ipkColumn-1; i>=0; i--){
992         if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
993           testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
994           testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
995           ipkColumn--;
996         }
997       }
998     }
999 #endif
1000 
1001     /* Make sure the number of columns in the source data matches the number
1002     ** of columns to be inserted into the table.
1003     */
1004     assert( TF_HasHidden==COLFLAG_HIDDEN );
1005     assert( TF_HasGenerated==COLFLAG_GENERATED );
1006     assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) );
1007     if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){
1008       for(i=0; i<pTab->nCol; i++){
1009         if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
1010       }
1011     }
1012     if( nColumn!=(pTab->nCol-nHidden) ){
1013       sqlite3ErrorMsg(pParse,
1014          "table %S has %d columns but %d values were supplied",
1015          pTabList->a, pTab->nCol-nHidden, nColumn);
1016      goto insert_cleanup;
1017     }
1018   }
1019   if( pColumn!=0 && nColumn!=pColumn->nId ){
1020     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
1021     goto insert_cleanup;
1022   }
1023 
1024   /* Initialize the count of rows to be inserted
1025   */
1026   if( (db->flags & SQLITE_CountRows)!=0
1027    && !pParse->nested
1028    && !pParse->pTriggerTab
1029    && !pParse->bReturning
1030   ){
1031     regRowCount = ++pParse->nMem;
1032     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
1033   }
1034 
1035   /* If this is not a view, open the table and and all indices */
1036   if( !isView ){
1037     int nIdx;
1038     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
1039                                       &iDataCur, &iIdxCur);
1040     aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
1041     if( aRegIdx==0 ){
1042       goto insert_cleanup;
1043     }
1044     for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
1045       assert( pIdx );
1046       aRegIdx[i] = ++pParse->nMem;
1047       pParse->nMem += pIdx->nColumn;
1048     }
1049     aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */
1050   }
1051 #ifndef SQLITE_OMIT_UPSERT
1052   if( pUpsert ){
1053     Upsert *pNx;
1054     if( IsVirtual(pTab) ){
1055       sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
1056               pTab->zName);
1057       goto insert_cleanup;
1058     }
1059     if( IsView(pTab) ){
1060       sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
1061       goto insert_cleanup;
1062     }
1063     if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
1064       goto insert_cleanup;
1065     }
1066     pTabList->a[0].iCursor = iDataCur;
1067     pNx = pUpsert;
1068     do{
1069       pNx->pUpsertSrc = pTabList;
1070       pNx->regData = regData;
1071       pNx->iDataCur = iDataCur;
1072       pNx->iIdxCur = iIdxCur;
1073       if( pNx->pUpsertTarget ){
1074         if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){
1075           goto insert_cleanup;
1076         }
1077       }
1078       pNx = pNx->pNextUpsert;
1079     }while( pNx!=0 );
1080   }
1081 #endif
1082 
1083 
1084   /* This is the top of the main insertion loop */
1085   if( useTempTable ){
1086     /* This block codes the top of loop only.  The complete loop is the
1087     ** following pseudocode (template 4):
1088     **
1089     **         rewind temp table, if empty goto D
1090     **      C: loop over rows of intermediate table
1091     **           transfer values form intermediate table into <table>
1092     **         end loop
1093     **      D: ...
1094     */
1095     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
1096     addrCont = sqlite3VdbeCurrentAddr(v);
1097   }else if( pSelect ){
1098     /* This block codes the top of loop only.  The complete loop is the
1099     ** following pseudocode (template 3):
1100     **
1101     **      C: yield X, at EOF goto D
1102     **         insert the select result into <table> from R..R+n
1103     **         goto C
1104     **      D: ...
1105     */
1106     sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0);
1107     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1108     VdbeCoverage(v);
1109     if( ipkColumn>=0 ){
1110       /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1111       ** SELECT, go ahead and copy the value into the rowid slot now, so that
1112       ** the value does not get overwritten by a NULL at tag-20191021-002. */
1113       sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
1114     }
1115   }
1116 
1117   /* Compute data for ordinary columns of the new entry.  Values
1118   ** are written in storage order into registers starting with regData.
1119   ** Only ordinary columns are computed in this loop. The rowid
1120   ** (if there is one) is computed later and generated columns are
1121   ** computed after the rowid since they might depend on the value
1122   ** of the rowid.
1123   */
1124   nHidden = 0;
1125   iRegStore = regData;  assert( regData==regRowid+1 );
1126   for(i=0; i<pTab->nCol; i++, iRegStore++){
1127     int k;
1128     u32 colFlags;
1129     assert( i>=nHidden );
1130     if( i==pTab->iPKey ){
1131       /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1132       ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1133       ** using excess space.  The file format definition requires this extra
1134       ** NULL - we cannot optimize further by skipping the column completely */
1135       sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1136       continue;
1137     }
1138     if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
1139       nHidden++;
1140       if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
1141         /* Virtual columns do not participate in OP_MakeRecord.  So back up
1142         ** iRegStore by one slot to compensate for the iRegStore++ in the
1143         ** outer for() loop */
1144         iRegStore--;
1145         continue;
1146       }else if( (colFlags & COLFLAG_STORED)!=0 ){
1147         /* Stored columns are computed later.  But if there are BEFORE
1148         ** triggers, the slots used for stored columns will be OP_Copy-ed
1149         ** to a second block of registers, so the register needs to be
1150         ** initialized to NULL to avoid an uninitialized register read */
1151         if( tmask & TRIGGER_BEFORE ){
1152           sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1153         }
1154         continue;
1155       }else if( pColumn==0 ){
1156         /* Hidden columns that are not explicitly named in the INSERT
1157         ** get there default value */
1158         sqlite3ExprCodeFactorable(pParse,
1159             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1160             iRegStore);
1161         continue;
1162       }
1163     }
1164     if( pColumn ){
1165       assert( pColumn->eU4==EU4_IDX );
1166       for(j=0; j<pColumn->nId && pColumn->a[j].u4.idx!=i; j++){}
1167       if( j>=pColumn->nId ){
1168         /* A column not named in the insert column list gets its
1169         ** default value */
1170         sqlite3ExprCodeFactorable(pParse,
1171             sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1172             iRegStore);
1173         continue;
1174       }
1175       k = j;
1176     }else if( nColumn==0 ){
1177       /* This is INSERT INTO ... DEFAULT VALUES.  Load the default value. */
1178       sqlite3ExprCodeFactorable(pParse,
1179           sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1180           iRegStore);
1181       continue;
1182     }else{
1183       k = i - nHidden;
1184     }
1185 
1186     if( useTempTable ){
1187       sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
1188     }else if( pSelect ){
1189       if( regFromSelect!=regData ){
1190         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
1191       }
1192     }else{
1193       Expr *pX = pList->a[k].pExpr;
1194       int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore);
1195       if( y!=iRegStore ){
1196         sqlite3VdbeAddOp2(v,
1197           ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore);
1198       }
1199     }
1200   }
1201 
1202 
1203   /* Run the BEFORE and INSTEAD OF triggers, if there are any
1204   */
1205   endOfLoop = sqlite3VdbeMakeLabel(pParse);
1206   if( tmask & TRIGGER_BEFORE ){
1207     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
1208 
1209     /* build the NEW.* reference row.  Note that if there is an INTEGER
1210     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1211     ** translated into a unique ID for the row.  But on a BEFORE trigger,
1212     ** we do not know what the unique ID will be (because the insert has
1213     ** not happened yet) so we substitute a rowid of -1
1214     */
1215     if( ipkColumn<0 ){
1216       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1217     }else{
1218       int addr1;
1219       assert( !withoutRowid );
1220       if( useTempTable ){
1221         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
1222       }else{
1223         assert( pSelect==0 );  /* Otherwise useTempTable is true */
1224         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
1225       }
1226       addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
1227       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1228       sqlite3VdbeJumpHere(v, addr1);
1229       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
1230     }
1231 
1232     /* Copy the new data already generated. */
1233     assert( pTab->nNVCol>0 );
1234     sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
1235 
1236 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1237     /* Compute the new value for generated columns after all other
1238     ** columns have already been computed.  This must be done after
1239     ** computing the ROWID in case one of the generated columns
1240     ** refers to the ROWID. */
1241     if( pTab->tabFlags & TF_HasGenerated ){
1242       testcase( pTab->tabFlags & TF_HasVirtual );
1243       testcase( pTab->tabFlags & TF_HasStored );
1244       sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
1245     }
1246 #endif
1247 
1248     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1249     ** do not attempt any conversions before assembling the record.
1250     ** If this is a real table, attempt conversions as required by the
1251     ** table column affinities.
1252     */
1253     if( !isView ){
1254       sqlite3TableAffinity(v, pTab, regCols+1);
1255     }
1256 
1257     /* Fire BEFORE or INSTEAD OF triggers */
1258     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
1259         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
1260 
1261     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
1262   }
1263 
1264   if( !isView ){
1265     if( IsVirtual(pTab) ){
1266       /* The row that the VUpdate opcode will delete: none */
1267       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
1268     }
1269     if( ipkColumn>=0 ){
1270       /* Compute the new rowid */
1271       if( useTempTable ){
1272         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
1273       }else if( pSelect ){
1274         /* Rowid already initialized at tag-20191021-001 */
1275       }else{
1276         Expr *pIpk = pList->a[ipkColumn].pExpr;
1277         if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
1278           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1279           appendFlag = 1;
1280         }else{
1281           sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
1282         }
1283       }
1284       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1285       ** to generate a unique primary key value.
1286       */
1287       if( !appendFlag ){
1288         int addr1;
1289         if( !IsVirtual(pTab) ){
1290           addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
1291           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1292           sqlite3VdbeJumpHere(v, addr1);
1293         }else{
1294           addr1 = sqlite3VdbeCurrentAddr(v);
1295           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
1296         }
1297         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
1298       }
1299     }else if( IsVirtual(pTab) || withoutRowid ){
1300       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
1301     }else{
1302       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1303       appendFlag = 1;
1304     }
1305     autoIncStep(pParse, regAutoinc, regRowid);
1306 
1307 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1308     /* Compute the new value for generated columns after all other
1309     ** columns have already been computed.  This must be done after
1310     ** computing the ROWID in case one of the generated columns
1311     ** is derived from the INTEGER PRIMARY KEY. */
1312     if( pTab->tabFlags & TF_HasGenerated ){
1313       sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
1314     }
1315 #endif
1316 
1317     /* Generate code to check constraints and generate index keys and
1318     ** do the insertion.
1319     */
1320 #ifndef SQLITE_OMIT_VIRTUALTABLE
1321     if( IsVirtual(pTab) ){
1322       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1323       sqlite3VtabMakeWritable(pParse, pTab);
1324       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1325       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1326       sqlite3MayAbort(pParse);
1327     }else
1328 #endif
1329     {
1330       int isReplace = 0;/* Set to true if constraints may cause a replace */
1331       int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
1332       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1333           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1334       );
1335       if( db->flags & SQLITE_ForeignKeys ){
1336         sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1337       }
1338 
1339       /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1340       ** constraints or (b) there are no triggers and this table is not a
1341       ** parent table in a foreign key constraint. It is safe to set the
1342       ** flag in the second case as if any REPLACE constraint is hit, an
1343       ** OP_Delete or OP_IdxDelete instruction will be executed on each
1344       ** cursor that is disturbed. And these instructions both clear the
1345       ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1346       ** functionality.  */
1347       bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
1348       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1349           regIns, aRegIdx, 0, appendFlag, bUseSeek
1350       );
1351     }
1352 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1353   }else if( pParse->bReturning ){
1354     /* If there is a RETURNING clause, populate the rowid register with
1355     ** constant value -1, in case one or more of the returned expressions
1356     ** refer to the "rowid" of the view.  */
1357     sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
1358 #endif
1359   }
1360 
1361   /* Update the count of rows that are inserted
1362   */
1363   if( regRowCount ){
1364     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1365   }
1366 
1367   if( pTrigger ){
1368     /* Code AFTER triggers */
1369     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1370         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1371   }
1372 
1373   /* The bottom of the main insertion loop, if the data source
1374   ** is a SELECT statement.
1375   */
1376   sqlite3VdbeResolveLabel(v, endOfLoop);
1377   if( useTempTable ){
1378     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1379     sqlite3VdbeJumpHere(v, addrInsTop);
1380     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1381   }else if( pSelect ){
1382     sqlite3VdbeGoto(v, addrCont);
1383 #ifdef SQLITE_DEBUG
1384     /* If we are jumping back to an OP_Yield that is preceded by an
1385     ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1386     ** OP_ReleaseReg will be included in the loop. */
1387     if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){
1388       assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield );
1389       sqlite3VdbeChangeP5(v, 1);
1390     }
1391 #endif
1392     sqlite3VdbeJumpHere(v, addrInsTop);
1393   }
1394 
1395 #ifndef SQLITE_OMIT_XFER_OPT
1396 insert_end:
1397 #endif /* SQLITE_OMIT_XFER_OPT */
1398   /* Update the sqlite_sequence table by storing the content of the
1399   ** maximum rowid counter values recorded while inserting into
1400   ** autoincrement tables.
1401   */
1402   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1403     sqlite3AutoincrementEnd(pParse);
1404   }
1405 
1406   /*
1407   ** Return the number of rows inserted. If this routine is
1408   ** generating code because of a call to sqlite3NestedParse(), do not
1409   ** invoke the callback function.
1410   */
1411   if( regRowCount ){
1412     sqlite3CodeChangeCount(v, regRowCount, "rows inserted");
1413   }
1414 
1415 insert_cleanup:
1416   sqlite3SrcListDelete(db, pTabList);
1417   sqlite3ExprListDelete(db, pList);
1418   sqlite3UpsertDelete(db, pUpsert);
1419   sqlite3SelectDelete(db, pSelect);
1420   sqlite3IdListDelete(db, pColumn);
1421   if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx);
1422 }
1423 
1424 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1425 ** they may interfere with compilation of other functions in this file
1426 ** (or in another file, if this file becomes part of the amalgamation).  */
1427 #ifdef isView
1428  #undef isView
1429 #endif
1430 #ifdef pTrigger
1431  #undef pTrigger
1432 #endif
1433 #ifdef tmask
1434  #undef tmask
1435 #endif
1436 
1437 /*
1438 ** Meanings of bits in of pWalker->eCode for
1439 ** sqlite3ExprReferencesUpdatedColumn()
1440 */
1441 #define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
1442 #define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */
1443 
1444 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1445 *  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1446 ** expression node references any of the
1447 ** columns that are being modifed by an UPDATE statement.
1448 */
1449 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1450   if( pExpr->op==TK_COLUMN ){
1451     assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1452     if( pExpr->iColumn>=0 ){
1453       if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1454         pWalker->eCode |= CKCNSTRNT_COLUMN;
1455       }
1456     }else{
1457       pWalker->eCode |= CKCNSTRNT_ROWID;
1458     }
1459   }
1460   return WRC_Continue;
1461 }
1462 
1463 /*
1464 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
1465 ** only columns that are modified by the UPDATE are those for which
1466 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1467 **
1468 ** Return true if CHECK constraint pExpr uses any of the
1469 ** changing columns (or the rowid if it is changing).  In other words,
1470 ** return true if this CHECK constraint must be validated for
1471 ** the new row in the UPDATE statement.
1472 **
1473 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1474 ** The operation of this routine is the same - return true if an only if
1475 ** the expression uses one or more of columns identified by the second and
1476 ** third arguments.
1477 */
1478 int sqlite3ExprReferencesUpdatedColumn(
1479   Expr *pExpr,    /* The expression to be checked */
1480   int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */
1481   int chngRowid   /* True if UPDATE changes the rowid */
1482 ){
1483   Walker w;
1484   memset(&w, 0, sizeof(w));
1485   w.eCode = 0;
1486   w.xExprCallback = checkConstraintExprNode;
1487   w.u.aiCol = aiChng;
1488   sqlite3WalkExpr(&w, pExpr);
1489   if( !chngRowid ){
1490     testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1491     w.eCode &= ~CKCNSTRNT_ROWID;
1492   }
1493   testcase( w.eCode==0 );
1494   testcase( w.eCode==CKCNSTRNT_COLUMN );
1495   testcase( w.eCode==CKCNSTRNT_ROWID );
1496   testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1497   return w.eCode!=0;
1498 }
1499 
1500 /*
1501 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit
1502 ** the indexes of a table in the order provided in the Table->pIndex list.
1503 ** However, sometimes (rarely - when there is an upsert) it wants to visit
1504 ** the indexes in a different order.  The following data structures accomplish
1505 ** this.
1506 **
1507 ** The IndexIterator object is used to walk through all of the indexes
1508 ** of a table in either Index.pNext order, or in some other order established
1509 ** by an array of IndexListTerm objects.
1510 */
1511 typedef struct IndexListTerm IndexListTerm;
1512 typedef struct IndexIterator IndexIterator;
1513 struct IndexIterator {
1514   int eType;    /* 0 for Index.pNext list.  1 for an array of IndexListTerm */
1515   int i;        /* Index of the current item from the list */
1516   union {
1517     struct {    /* Use this object for eType==0: A Index.pNext list */
1518       Index *pIdx;   /* The current Index */
1519     } lx;
1520     struct {    /* Use this object for eType==1; Array of IndexListTerm */
1521       int nIdx;               /* Size of the array */
1522       IndexListTerm *aIdx;    /* Array of IndexListTerms */
1523     } ax;
1524   } u;
1525 };
1526 
1527 /* When IndexIterator.eType==1, then each index is an array of instances
1528 ** of the following object
1529 */
1530 struct IndexListTerm {
1531   Index *p;  /* The index */
1532   int ix;    /* Which entry in the original Table.pIndex list is this index*/
1533 };
1534 
1535 /* Return the first index on the list */
1536 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){
1537   assert( pIter->i==0 );
1538   if( pIter->eType ){
1539     *pIx = pIter->u.ax.aIdx[0].ix;
1540     return pIter->u.ax.aIdx[0].p;
1541   }else{
1542     *pIx = 0;
1543     return pIter->u.lx.pIdx;
1544   }
1545 }
1546 
1547 /* Return the next index from the list.  Return NULL when out of indexes */
1548 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){
1549   if( pIter->eType ){
1550     int i = ++pIter->i;
1551     if( i>=pIter->u.ax.nIdx ){
1552       *pIx = i;
1553       return 0;
1554     }
1555     *pIx = pIter->u.ax.aIdx[i].ix;
1556     return pIter->u.ax.aIdx[i].p;
1557   }else{
1558     ++(*pIx);
1559     pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext;
1560     return pIter->u.lx.pIdx;
1561   }
1562 }
1563 
1564 /*
1565 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1566 ** on table pTab.
1567 **
1568 ** The regNewData parameter is the first register in a range that contains
1569 ** the data to be inserted or the data after the update.  There will be
1570 ** pTab->nCol+1 registers in this range.  The first register (the one
1571 ** that regNewData points to) will contain the new rowid, or NULL in the
1572 ** case of a WITHOUT ROWID table.  The second register in the range will
1573 ** contain the content of the first table column.  The third register will
1574 ** contain the content of the second table column.  And so forth.
1575 **
1576 ** The regOldData parameter is similar to regNewData except that it contains
1577 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1578 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1579 ** checking regOldData for zero.
1580 **
1581 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1582 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1583 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1584 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1585 **
1586 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1587 ** was explicitly specified as part of the INSERT statement.  If pkChng
1588 ** is zero, it means that the either rowid is computed automatically or
1589 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1590 ** pkChng will only be true if the INSERT statement provides an integer
1591 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1592 **
1593 ** The code generated by this routine will store new index entries into
1594 ** registers identified by aRegIdx[].  No index entry is created for
1595 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1596 ** the same as the order of indices on the linked list of indices
1597 ** at pTab->pIndex.
1598 **
1599 ** (2019-05-07) The generated code also creates a new record for the
1600 ** main table, if pTab is a rowid table, and stores that record in the
1601 ** register identified by aRegIdx[nIdx] - in other words in the first
1602 ** entry of aRegIdx[] past the last index.  It is important that the
1603 ** record be generated during constraint checks to avoid affinity changes
1604 ** to the register content that occur after constraint checks but before
1605 ** the new record is inserted.
1606 **
1607 ** The caller must have already opened writeable cursors on the main
1608 ** table and all applicable indices (that is to say, all indices for which
1609 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1610 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1611 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1612 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1613 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1614 **
1615 ** This routine also generates code to check constraints.  NOT NULL,
1616 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1617 ** then the appropriate action is performed.  There are five possible
1618 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1619 **
1620 **  Constraint type  Action       What Happens
1621 **  ---------------  ----------   ----------------------------------------
1622 **  any              ROLLBACK     The current transaction is rolled back and
1623 **                                sqlite3_step() returns immediately with a
1624 **                                return code of SQLITE_CONSTRAINT.
1625 **
1626 **  any              ABORT        Back out changes from the current command
1627 **                                only (do not do a complete rollback) then
1628 **                                cause sqlite3_step() to return immediately
1629 **                                with SQLITE_CONSTRAINT.
1630 **
1631 **  any              FAIL         Sqlite3_step() returns immediately with a
1632 **                                return code of SQLITE_CONSTRAINT.  The
1633 **                                transaction is not rolled back and any
1634 **                                changes to prior rows are retained.
1635 **
1636 **  any              IGNORE       The attempt in insert or update the current
1637 **                                row is skipped, without throwing an error.
1638 **                                Processing continues with the next row.
1639 **                                (There is an immediate jump to ignoreDest.)
1640 **
1641 **  NOT NULL         REPLACE      The NULL value is replace by the default
1642 **                                value for that column.  If the default value
1643 **                                is NULL, the action is the same as ABORT.
1644 **
1645 **  UNIQUE           REPLACE      The other row that conflicts with the row
1646 **                                being inserted is removed.
1647 **
1648 **  CHECK            REPLACE      Illegal.  The results in an exception.
1649 **
1650 ** Which action to take is determined by the overrideError parameter.
1651 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1652 ** is used.  Or if pParse->onError==OE_Default then the onError value
1653 ** for the constraint is used.
1654 */
1655 void sqlite3GenerateConstraintChecks(
1656   Parse *pParse,       /* The parser context */
1657   Table *pTab,         /* The table being inserted or updated */
1658   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1659   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1660   int iIdxCur,         /* First index cursor */
1661   int regNewData,      /* First register in a range holding values to insert */
1662   int regOldData,      /* Previous content.  0 for INSERTs */
1663   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1664   u8 overrideError,    /* Override onError to this if not OE_Default */
1665   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1666   int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
1667   int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
1668   Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
1669 ){
1670   Vdbe *v;             /* VDBE under constrution */
1671   Index *pIdx;         /* Pointer to one of the indices */
1672   Index *pPk = 0;      /* The PRIMARY KEY index for WITHOUT ROWID tables */
1673   sqlite3 *db;         /* Database connection */
1674   int i;               /* loop counter */
1675   int ix;              /* Index loop counter */
1676   int nCol;            /* Number of columns */
1677   int onError;         /* Conflict resolution strategy */
1678   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1679   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1680   Upsert *pUpsertClause = 0;  /* The specific ON CONFLICT clause for pIdx */
1681   u8 isUpdate;           /* True if this is an UPDATE operation */
1682   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1683   int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */
1684   int upsertIpkDelay = 0;  /* Address of Goto to bypass initial IPK check */
1685   int ipkTop = 0;        /* Top of the IPK uniqueness check */
1686   int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
1687   /* Variables associated with retesting uniqueness constraints after
1688   ** replace triggers fire have run */
1689   int regTrigCnt;       /* Register used to count replace trigger invocations */
1690   int addrRecheck = 0;  /* Jump here to recheck all uniqueness constraints */
1691   int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
1692   Trigger *pTrigger;    /* List of DELETE triggers on the table pTab */
1693   int nReplaceTrig = 0; /* Number of replace triggers coded */
1694   IndexIterator sIdxIter;  /* Index iterator */
1695 
1696   isUpdate = regOldData!=0;
1697   db = pParse->db;
1698   v = pParse->pVdbe;
1699   assert( v!=0 );
1700   assert( !IsView(pTab) );  /* This table is not a VIEW */
1701   nCol = pTab->nCol;
1702 
1703   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1704   ** normal rowid tables.  nPkField is the number of key fields in the
1705   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1706   ** number of fields in the true primary key of the table. */
1707   if( HasRowid(pTab) ){
1708     pPk = 0;
1709     nPkField = 1;
1710   }else{
1711     pPk = sqlite3PrimaryKeyIndex(pTab);
1712     nPkField = pPk->nKeyCol;
1713   }
1714 
1715   /* Record that this module has started */
1716   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1717                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1718 
1719   /* Test all NOT NULL constraints.
1720   */
1721   if( pTab->tabFlags & TF_HasNotNull ){
1722     int b2ndPass = 0;         /* True if currently running 2nd pass */
1723     int nSeenReplace = 0;     /* Number of ON CONFLICT REPLACE operations */
1724     int nGenerated = 0;       /* Number of generated columns with NOT NULL */
1725     while(1){  /* Make 2 passes over columns. Exit loop via "break" */
1726       for(i=0; i<nCol; i++){
1727         int iReg;                        /* Register holding column value */
1728         Column *pCol = &pTab->aCol[i];   /* The column to check for NOT NULL */
1729         int isGenerated;                 /* non-zero if column is generated */
1730         onError = pCol->notNull;
1731         if( onError==OE_None ) continue; /* No NOT NULL on this column */
1732         if( i==pTab->iPKey ){
1733           continue;        /* ROWID is never NULL */
1734         }
1735         isGenerated = pCol->colFlags & COLFLAG_GENERATED;
1736         if( isGenerated && !b2ndPass ){
1737           nGenerated++;
1738           continue;        /* Generated columns processed on 2nd pass */
1739         }
1740         if( aiChng && aiChng[i]<0 && !isGenerated ){
1741           /* Do not check NOT NULL on columns that do not change */
1742           continue;
1743         }
1744         if( overrideError!=OE_Default ){
1745           onError = overrideError;
1746         }else if( onError==OE_Default ){
1747           onError = OE_Abort;
1748         }
1749         if( onError==OE_Replace ){
1750           if( b2ndPass        /* REPLACE becomes ABORT on the 2nd pass */
1751            || pCol->iDflt==0  /* REPLACE is ABORT if no DEFAULT value */
1752           ){
1753             testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1754             testcase( pCol->colFlags & COLFLAG_STORED );
1755             testcase( pCol->colFlags & COLFLAG_GENERATED );
1756             onError = OE_Abort;
1757           }else{
1758             assert( !isGenerated );
1759           }
1760         }else if( b2ndPass && !isGenerated ){
1761           continue;
1762         }
1763         assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1764             || onError==OE_Ignore || onError==OE_Replace );
1765         testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
1766         iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
1767         switch( onError ){
1768           case OE_Replace: {
1769             int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg);
1770             VdbeCoverage(v);
1771             assert( (pCol->colFlags & COLFLAG_GENERATED)==0 );
1772             nSeenReplace++;
1773             sqlite3ExprCodeCopy(pParse,
1774                sqlite3ColumnExpr(pTab, pCol), iReg);
1775             sqlite3VdbeJumpHere(v, addr1);
1776             break;
1777           }
1778           case OE_Abort:
1779             sqlite3MayAbort(pParse);
1780             /* no break */ deliberate_fall_through
1781           case OE_Rollback:
1782           case OE_Fail: {
1783             char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1784                                         pCol->zCnName);
1785             sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
1786                               onError, iReg);
1787             sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1788             sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1789             VdbeCoverage(v);
1790             break;
1791           }
1792           default: {
1793             assert( onError==OE_Ignore );
1794             sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
1795             VdbeCoverage(v);
1796             break;
1797           }
1798         } /* end switch(onError) */
1799       } /* end loop i over columns */
1800       if( nGenerated==0 && nSeenReplace==0 ){
1801         /* If there are no generated columns with NOT NULL constraints
1802         ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1803         ** pass is sufficient */
1804         break;
1805       }
1806       if( b2ndPass ) break;  /* Never need more than 2 passes */
1807       b2ndPass = 1;
1808 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1809       if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
1810         /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1811         ** first pass, recomputed values for all generated columns, as
1812         ** those values might depend on columns affected by the REPLACE.
1813         */
1814         sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab);
1815       }
1816 #endif
1817     } /* end of 2-pass loop */
1818   } /* end if( has-not-null-constraints ) */
1819 
1820   /* Test all CHECK constraints
1821   */
1822 #ifndef SQLITE_OMIT_CHECK
1823   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1824     ExprList *pCheck = pTab->pCheck;
1825     pParse->iSelfTab = -(regNewData+1);
1826     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1827     for(i=0; i<pCheck->nExpr; i++){
1828       int allOk;
1829       Expr *pCopy;
1830       Expr *pExpr = pCheck->a[i].pExpr;
1831       if( aiChng
1832        && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1833       ){
1834         /* The check constraints do not reference any of the columns being
1835         ** updated so there is no point it verifying the check constraint */
1836         continue;
1837       }
1838       if( bAffinityDone==0 ){
1839         sqlite3TableAffinity(v, pTab, regNewData+1);
1840         bAffinityDone = 1;
1841       }
1842       allOk = sqlite3VdbeMakeLabel(pParse);
1843       sqlite3VdbeVerifyAbortable(v, onError);
1844       pCopy = sqlite3ExprDup(db, pExpr, 0);
1845       if( !db->mallocFailed ){
1846         sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL);
1847       }
1848       sqlite3ExprDelete(db, pCopy);
1849       if( onError==OE_Ignore ){
1850         sqlite3VdbeGoto(v, ignoreDest);
1851       }else{
1852         char *zName = pCheck->a[i].zEName;
1853         assert( zName!=0 || pParse->db->mallocFailed );
1854         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1855         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1856                               onError, zName, P4_TRANSIENT,
1857                               P5_ConstraintCheck);
1858       }
1859       sqlite3VdbeResolveLabel(v, allOk);
1860     }
1861     pParse->iSelfTab = 0;
1862   }
1863 #endif /* !defined(SQLITE_OMIT_CHECK) */
1864 
1865   /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1866   ** order:
1867   **
1868   **   (1)  OE_Update
1869   **   (2)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1870   **   (3)  OE_Replace
1871   **
1872   ** OE_Fail and OE_Ignore must happen before any changes are made.
1873   ** OE_Update guarantees that only a single row will change, so it
1874   ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback
1875   ** could happen in any order, but they are grouped up front for
1876   ** convenience.
1877   **
1878   ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1879   ** The order of constraints used to have OE_Update as (2) and OE_Abort
1880   ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1881   ** constraint before any others, so it had to be moved.
1882   **
1883   ** Constraint checking code is generated in this order:
1884   **   (A)  The rowid constraint
1885   **   (B)  Unique index constraints that do not have OE_Replace as their
1886   **        default conflict resolution strategy
1887   **   (C)  Unique index that do use OE_Replace by default.
1888   **
1889   ** The ordering of (2) and (3) is accomplished by making sure the linked
1890   ** list of indexes attached to a table puts all OE_Replace indexes last
1891   ** in the list.  See sqlite3CreateIndex() for where that happens.
1892   */
1893   sIdxIter.eType = 0;
1894   sIdxIter.i = 0;
1895   sIdxIter.u.ax.aIdx = 0;  /* Silence harmless compiler warning */
1896   sIdxIter.u.lx.pIdx = pTab->pIndex;
1897   if( pUpsert ){
1898     if( pUpsert->pUpsertTarget==0 ){
1899       /* There is just on ON CONFLICT clause and it has no constraint-target */
1900       assert( pUpsert->pNextUpsert==0 );
1901       if( pUpsert->isDoUpdate==0 ){
1902         /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
1903         ** Make all unique constraint resolution be OE_Ignore */
1904         overrideError = OE_Ignore;
1905         pUpsert = 0;
1906       }else{
1907         /* A single ON CONFLICT DO UPDATE.  Make all resolutions OE_Update */
1908         overrideError = OE_Update;
1909       }
1910     }else if( pTab->pIndex!=0 ){
1911       /* Otherwise, we'll need to run the IndexListTerm array version of the
1912       ** iterator to ensure that all of the ON CONFLICT conditions are
1913       ** checked first and in order. */
1914       int nIdx, jj;
1915       u64 nByte;
1916       Upsert *pTerm;
1917       u8 *bUsed;
1918       for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
1919          assert( aRegIdx[nIdx]>0 );
1920       }
1921       sIdxIter.eType = 1;
1922       sIdxIter.u.ax.nIdx = nIdx;
1923       nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx;
1924       sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte);
1925       if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */
1926       bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx];
1927       pUpsert->pToFree = sIdxIter.u.ax.aIdx;
1928       for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){
1929         if( pTerm->pUpsertTarget==0 ) break;
1930         if( pTerm->pUpsertIdx==0 ) continue;  /* Skip ON CONFLICT for the IPK */
1931         jj = 0;
1932         pIdx = pTab->pIndex;
1933         while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){
1934            pIdx = pIdx->pNext;
1935            jj++;
1936         }
1937         if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */
1938         bUsed[jj] = 1;
1939         sIdxIter.u.ax.aIdx[i].p = pIdx;
1940         sIdxIter.u.ax.aIdx[i].ix = jj;
1941         i++;
1942       }
1943       for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){
1944         if( bUsed[jj] ) continue;
1945         sIdxIter.u.ax.aIdx[i].p = pIdx;
1946         sIdxIter.u.ax.aIdx[i].ix = jj;
1947         i++;
1948       }
1949       assert( i==nIdx );
1950     }
1951   }
1952 
1953   /* Determine if it is possible that triggers (either explicitly coded
1954   ** triggers or FK resolution actions) might run as a result of deletes
1955   ** that happen when OE_Replace conflict resolution occurs. (Call these
1956   ** "replace triggers".)  If any replace triggers run, we will need to
1957   ** recheck all of the uniqueness constraints after they have all run.
1958   ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1959   **
1960   ** If replace triggers are a possibility, then
1961   **
1962   **   (1) Allocate register regTrigCnt and initialize it to zero.
1963   **       That register will count the number of replace triggers that
1964   **       fire.  Constraint recheck only occurs if the number is positive.
1965   **   (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1966   **   (3) Initialize addrRecheck and lblRecheckOk
1967   **
1968   ** The uniqueness rechecking code will create a series of tests to run
1969   ** in a second pass.  The addrRecheck and lblRecheckOk variables are
1970   ** used to link together these tests which are separated from each other
1971   ** in the generate bytecode.
1972   */
1973   if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
1974     /* There are not DELETE triggers nor FK constraints.  No constraint
1975     ** rechecks are needed. */
1976     pTrigger = 0;
1977     regTrigCnt = 0;
1978   }else{
1979     if( db->flags&SQLITE_RecTriggers ){
1980       pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1981       regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
1982     }else{
1983       pTrigger = 0;
1984       regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
1985     }
1986     if( regTrigCnt ){
1987       /* Replace triggers might exist.  Allocate the counter and
1988       ** initialize it to zero. */
1989       regTrigCnt = ++pParse->nMem;
1990       sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
1991       VdbeComment((v, "trigger count"));
1992       lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
1993       addrRecheck = lblRecheckOk;
1994     }
1995   }
1996 
1997   /* If rowid is changing, make sure the new rowid does not previously
1998   ** exist in the table.
1999   */
2000   if( pkChng && pPk==0 ){
2001     int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
2002 
2003     /* Figure out what action to take in case of a rowid collision */
2004     onError = pTab->keyConf;
2005     if( overrideError!=OE_Default ){
2006       onError = overrideError;
2007     }else if( onError==OE_Default ){
2008       onError = OE_Abort;
2009     }
2010 
2011     /* figure out whether or not upsert applies in this case */
2012     if( pUpsert ){
2013       pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0);
2014       if( pUpsertClause!=0 ){
2015         if( pUpsertClause->isDoUpdate==0 ){
2016           onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
2017         }else{
2018           onError = OE_Update;  /* DO UPDATE */
2019         }
2020       }
2021       if( pUpsertClause!=pUpsert ){
2022         /* The first ON CONFLICT clause has a conflict target other than
2023         ** the IPK.  We have to jump ahead to that first ON CONFLICT clause
2024         ** and then come back here and deal with the IPK afterwards */
2025         upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto);
2026       }
2027     }
2028 
2029     /* If the response to a rowid conflict is REPLACE but the response
2030     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
2031     ** to defer the running of the rowid conflict checking until after
2032     ** the UNIQUE constraints have run.
2033     */
2034     if( onError==OE_Replace      /* IPK rule is REPLACE */
2035      && onError!=overrideError   /* Rules for other constraints are different */
2036      && pTab->pIndex             /* There exist other constraints */
2037      && !upsertIpkDelay          /* IPK check already deferred by UPSERT */
2038     ){
2039       ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
2040       VdbeComment((v, "defer IPK REPLACE until last"));
2041     }
2042 
2043     if( isUpdate ){
2044       /* pkChng!=0 does not mean that the rowid has changed, only that
2045       ** it might have changed.  Skip the conflict logic below if the rowid
2046       ** is unchanged. */
2047       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
2048       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2049       VdbeCoverage(v);
2050     }
2051 
2052     /* Check to see if the new rowid already exists in the table.  Skip
2053     ** the following conflict logic if it does not. */
2054     VdbeNoopComment((v, "uniqueness check for ROWID"));
2055     sqlite3VdbeVerifyAbortable(v, onError);
2056     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
2057     VdbeCoverage(v);
2058 
2059     switch( onError ){
2060       default: {
2061         onError = OE_Abort;
2062         /* no break */ deliberate_fall_through
2063       }
2064       case OE_Rollback:
2065       case OE_Abort:
2066       case OE_Fail: {
2067         testcase( onError==OE_Rollback );
2068         testcase( onError==OE_Abort );
2069         testcase( onError==OE_Fail );
2070         sqlite3RowidConstraint(pParse, onError, pTab);
2071         break;
2072       }
2073       case OE_Replace: {
2074         /* If there are DELETE triggers on this table and the
2075         ** recursive-triggers flag is set, call GenerateRowDelete() to
2076         ** remove the conflicting row from the table. This will fire
2077         ** the triggers and remove both the table and index b-tree entries.
2078         **
2079         ** Otherwise, if there are no triggers or the recursive-triggers
2080         ** flag is not set, but the table has one or more indexes, call
2081         ** GenerateRowIndexDelete(). This removes the index b-tree entries
2082         ** only. The table b-tree entry will be replaced by the new entry
2083         ** when it is inserted.
2084         **
2085         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
2086         ** also invoke MultiWrite() to indicate that this VDBE may require
2087         ** statement rollback (if the statement is aborted after the delete
2088         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
2089         ** but being more selective here allows statements like:
2090         **
2091         **   REPLACE INTO t(rowid) VALUES($newrowid)
2092         **
2093         ** to run without a statement journal if there are no indexes on the
2094         ** table.
2095         */
2096         if( regTrigCnt ){
2097           sqlite3MultiWrite(pParse);
2098           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2099                                    regNewData, 1, 0, OE_Replace, 1, -1);
2100           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2101           nReplaceTrig++;
2102         }else{
2103 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2104           assert( HasRowid(pTab) );
2105           /* This OP_Delete opcode fires the pre-update-hook only. It does
2106           ** not modify the b-tree. It is more efficient to let the coming
2107           ** OP_Insert replace the existing entry than it is to delete the
2108           ** existing entry and then insert a new one. */
2109           sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
2110           sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2111 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2112           if( pTab->pIndex ){
2113             sqlite3MultiWrite(pParse);
2114             sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
2115           }
2116         }
2117         seenReplace = 1;
2118         break;
2119       }
2120 #ifndef SQLITE_OMIT_UPSERT
2121       case OE_Update: {
2122         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
2123         /* no break */ deliberate_fall_through
2124       }
2125 #endif
2126       case OE_Ignore: {
2127         testcase( onError==OE_Ignore );
2128         sqlite3VdbeGoto(v, ignoreDest);
2129         break;
2130       }
2131     }
2132     sqlite3VdbeResolveLabel(v, addrRowidOk);
2133     if( pUpsert && pUpsertClause!=pUpsert ){
2134       upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto);
2135     }else if( ipkTop ){
2136       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
2137       sqlite3VdbeJumpHere(v, ipkTop-1);
2138     }
2139   }
2140 
2141   /* Test all UNIQUE constraints by creating entries for each UNIQUE
2142   ** index and making sure that duplicate entries do not already exist.
2143   ** Compute the revised record entries for indices as we go.
2144   **
2145   ** This loop also handles the case of the PRIMARY KEY index for a
2146   ** WITHOUT ROWID table.
2147   */
2148   for(pIdx = indexIteratorFirst(&sIdxIter, &ix);
2149       pIdx;
2150       pIdx = indexIteratorNext(&sIdxIter, &ix)
2151   ){
2152     int regIdx;          /* Range of registers hold conent for pIdx */
2153     int regR;            /* Range of registers holding conflicting PK */
2154     int iThisCur;        /* Cursor for this UNIQUE index */
2155     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
2156     int addrConflictCk;  /* First opcode in the conflict check logic */
2157 
2158     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
2159     if( pUpsert ){
2160       pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx);
2161       if( upsertIpkDelay && pUpsertClause==pUpsert ){
2162         sqlite3VdbeJumpHere(v, upsertIpkDelay);
2163       }
2164     }
2165     addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
2166     if( bAffinityDone==0 ){
2167       sqlite3TableAffinity(v, pTab, regNewData+1);
2168       bAffinityDone = 1;
2169     }
2170     VdbeNoopComment((v, "prep index %s", pIdx->zName));
2171     iThisCur = iIdxCur+ix;
2172 
2173 
2174     /* Skip partial indices for which the WHERE clause is not true */
2175     if( pIdx->pPartIdxWhere ){
2176       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
2177       pParse->iSelfTab = -(regNewData+1);
2178       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
2179                             SQLITE_JUMPIFNULL);
2180       pParse->iSelfTab = 0;
2181     }
2182 
2183     /* Create a record for this index entry as it should appear after
2184     ** the insert or update.  Store that record in the aRegIdx[ix] register
2185     */
2186     regIdx = aRegIdx[ix]+1;
2187     for(i=0; i<pIdx->nColumn; i++){
2188       int iField = pIdx->aiColumn[i];
2189       int x;
2190       if( iField==XN_EXPR ){
2191         pParse->iSelfTab = -(regNewData+1);
2192         sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
2193         pParse->iSelfTab = 0;
2194         VdbeComment((v, "%s column %d", pIdx->zName, i));
2195       }else if( iField==XN_ROWID || iField==pTab->iPKey ){
2196         x = regNewData;
2197         sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
2198         VdbeComment((v, "rowid"));
2199       }else{
2200         testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
2201         x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
2202         sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
2203         VdbeComment((v, "%s", pTab->aCol[iField].zCnName));
2204       }
2205     }
2206     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
2207     VdbeComment((v, "for %s", pIdx->zName));
2208 #ifdef SQLITE_ENABLE_NULL_TRIM
2209     if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2210       sqlite3SetMakeRecordP5(v, pIdx->pTable);
2211     }
2212 #endif
2213     sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0);
2214 
2215     /* In an UPDATE operation, if this index is the PRIMARY KEY index
2216     ** of a WITHOUT ROWID table and there has been no change the
2217     ** primary key, then no collision is possible.  The collision detection
2218     ** logic below can all be skipped. */
2219     if( isUpdate && pPk==pIdx && pkChng==0 ){
2220       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2221       continue;
2222     }
2223 
2224     /* Find out what action to take in case there is a uniqueness conflict */
2225     onError = pIdx->onError;
2226     if( onError==OE_None ){
2227       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2228       continue;  /* pIdx is not a UNIQUE index */
2229     }
2230     if( overrideError!=OE_Default ){
2231       onError = overrideError;
2232     }else if( onError==OE_Default ){
2233       onError = OE_Abort;
2234     }
2235 
2236     /* Figure out if the upsert clause applies to this index */
2237     if( pUpsertClause ){
2238       if( pUpsertClause->isDoUpdate==0 ){
2239         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
2240       }else{
2241         onError = OE_Update;  /* DO UPDATE */
2242       }
2243     }
2244 
2245     /* Collision detection may be omitted if all of the following are true:
2246     **   (1) The conflict resolution algorithm is REPLACE
2247     **   (2) The table is a WITHOUT ROWID table
2248     **   (3) There are no secondary indexes on the table
2249     **   (4) No delete triggers need to be fired if there is a conflict
2250     **   (5) No FK constraint counters need to be updated if a conflict occurs.
2251     **
2252     ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2253     ** must be explicitly deleted in order to ensure any pre-update hook
2254     ** is invoked.  */
2255     assert( IsOrdinaryTable(pTab) );
2256 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2257     if( (ix==0 && pIdx->pNext==0)                   /* Condition 3 */
2258      && pPk==pIdx                                   /* Condition 2 */
2259      && onError==OE_Replace                         /* Condition 1 */
2260      && ( 0==(db->flags&SQLITE_RecTriggers) ||      /* Condition 4 */
2261           0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
2262      && ( 0==(db->flags&SQLITE_ForeignKeys) ||      /* Condition 5 */
2263          (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab)))
2264     ){
2265       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2266       continue;
2267     }
2268 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2269 
2270     /* Check to see if the new index entry will be unique */
2271     sqlite3VdbeVerifyAbortable(v, onError);
2272     addrConflictCk =
2273       sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
2274                            regIdx, pIdx->nKeyCol); VdbeCoverage(v);
2275 
2276     /* Generate code to handle collisions */
2277     regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField);
2278     if( isUpdate || onError==OE_Replace ){
2279       if( HasRowid(pTab) ){
2280         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
2281         /* Conflict only if the rowid of the existing index entry
2282         ** is different from old-rowid */
2283         if( isUpdate ){
2284           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
2285           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2286           VdbeCoverage(v);
2287         }
2288       }else{
2289         int x;
2290         /* Extract the PRIMARY KEY from the end of the index entry and
2291         ** store it in registers regR..regR+nPk-1 */
2292         if( pIdx!=pPk ){
2293           for(i=0; i<pPk->nKeyCol; i++){
2294             assert( pPk->aiColumn[i]>=0 );
2295             x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
2296             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
2297             VdbeComment((v, "%s.%s", pTab->zName,
2298                          pTab->aCol[pPk->aiColumn[i]].zCnName));
2299           }
2300         }
2301         if( isUpdate ){
2302           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2303           ** table, only conflict if the new PRIMARY KEY values are actually
2304           ** different from the old.  See TH3 withoutrowid04.test.
2305           **
2306           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2307           ** of the matched index row are different from the original PRIMARY
2308           ** KEY values of this row before the update.  */
2309           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
2310           int op = OP_Ne;
2311           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
2312 
2313           for(i=0; i<pPk->nKeyCol; i++){
2314             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
2315             x = pPk->aiColumn[i];
2316             assert( x>=0 );
2317             if( i==(pPk->nKeyCol-1) ){
2318               addrJump = addrUniqueOk;
2319               op = OP_Eq;
2320             }
2321             x = sqlite3TableColumnToStorage(pTab, x);
2322             sqlite3VdbeAddOp4(v, op,
2323                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
2324             );
2325             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2326             VdbeCoverageIf(v, op==OP_Eq);
2327             VdbeCoverageIf(v, op==OP_Ne);
2328           }
2329         }
2330       }
2331     }
2332 
2333     /* Generate code that executes if the new index entry is not unique */
2334     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
2335         || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
2336     switch( onError ){
2337       case OE_Rollback:
2338       case OE_Abort:
2339       case OE_Fail: {
2340         testcase( onError==OE_Rollback );
2341         testcase( onError==OE_Abort );
2342         testcase( onError==OE_Fail );
2343         sqlite3UniqueConstraint(pParse, onError, pIdx);
2344         break;
2345       }
2346 #ifndef SQLITE_OMIT_UPSERT
2347       case OE_Update: {
2348         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
2349         /* no break */ deliberate_fall_through
2350       }
2351 #endif
2352       case OE_Ignore: {
2353         testcase( onError==OE_Ignore );
2354         sqlite3VdbeGoto(v, ignoreDest);
2355         break;
2356       }
2357       default: {
2358         int nConflictCk;   /* Number of opcodes in conflict check logic */
2359 
2360         assert( onError==OE_Replace );
2361         nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
2362         assert( nConflictCk>0 || db->mallocFailed );
2363         testcase( nConflictCk<=0 );
2364         testcase( nConflictCk>1 );
2365         if( regTrigCnt ){
2366           sqlite3MultiWrite(pParse);
2367           nReplaceTrig++;
2368         }
2369         if( pTrigger && isUpdate ){
2370           sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur);
2371         }
2372         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2373             regR, nPkField, 0, OE_Replace,
2374             (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
2375         if( pTrigger && isUpdate ){
2376           sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur);
2377         }
2378         if( regTrigCnt ){
2379           int addrBypass;  /* Jump destination to bypass recheck logic */
2380 
2381           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2382           addrBypass = sqlite3VdbeAddOp0(v, OP_Goto);  /* Bypass recheck */
2383           VdbeComment((v, "bypass recheck"));
2384 
2385           /* Here we insert code that will be invoked after all constraint
2386           ** checks have run, if and only if one or more replace triggers
2387           ** fired. */
2388           sqlite3VdbeResolveLabel(v, lblRecheckOk);
2389           lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
2390           if( pIdx->pPartIdxWhere ){
2391             /* Bypass the recheck if this partial index is not defined
2392             ** for the current row */
2393             sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
2394             VdbeCoverage(v);
2395           }
2396           /* Copy the constraint check code from above, except change
2397           ** the constraint-ok jump destination to be the address of
2398           ** the next retest block */
2399           while( nConflictCk>0 ){
2400             VdbeOp x;    /* Conflict check opcode to copy */
2401             /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2402             ** Hence, make a complete copy of the opcode, rather than using
2403             ** a pointer to the opcode. */
2404             x = *sqlite3VdbeGetOp(v, addrConflictCk);
2405             if( x.opcode!=OP_IdxRowid ){
2406               int p2;      /* New P2 value for copied conflict check opcode */
2407               const char *zP4;
2408               if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
2409                 p2 = lblRecheckOk;
2410               }else{
2411                 p2 = x.p2;
2412               }
2413               zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z;
2414               sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type);
2415               sqlite3VdbeChangeP5(v, x.p5);
2416               VdbeCoverageIf(v, p2!=x.p2);
2417             }
2418             nConflictCk--;
2419             addrConflictCk++;
2420           }
2421           /* If the retest fails, issue an abort */
2422           sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
2423 
2424           sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
2425         }
2426         seenReplace = 1;
2427         break;
2428       }
2429     }
2430     sqlite3VdbeResolveLabel(v, addrUniqueOk);
2431     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
2432     if( pUpsertClause
2433      && upsertIpkReturn
2434      && sqlite3UpsertNextIsIPK(pUpsertClause)
2435     ){
2436       sqlite3VdbeGoto(v, upsertIpkDelay+1);
2437       sqlite3VdbeJumpHere(v, upsertIpkReturn);
2438       upsertIpkReturn = 0;
2439     }
2440   }
2441 
2442   /* If the IPK constraint is a REPLACE, run it last */
2443   if( ipkTop ){
2444     sqlite3VdbeGoto(v, ipkTop);
2445     VdbeComment((v, "Do IPK REPLACE"));
2446     assert( ipkBottom>0 );
2447     sqlite3VdbeJumpHere(v, ipkBottom);
2448   }
2449 
2450   /* Recheck all uniqueness constraints after replace triggers have run */
2451   testcase( regTrigCnt!=0 && nReplaceTrig==0 );
2452   assert( regTrigCnt!=0 || nReplaceTrig==0 );
2453   if( nReplaceTrig ){
2454     sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
2455     if( !pPk ){
2456       if( isUpdate ){
2457         sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
2458         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2459         VdbeCoverage(v);
2460       }
2461       sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
2462       VdbeCoverage(v);
2463       sqlite3RowidConstraint(pParse, OE_Abort, pTab);
2464     }else{
2465       sqlite3VdbeGoto(v, addrRecheck);
2466     }
2467     sqlite3VdbeResolveLabel(v, lblRecheckOk);
2468   }
2469 
2470   /* Generate the table record */
2471   if( HasRowid(pTab) ){
2472     int regRec = aRegIdx[ix];
2473     sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
2474     sqlite3SetMakeRecordP5(v, pTab);
2475     if( !bAffinityDone ){
2476       sqlite3TableAffinity(v, pTab, 0);
2477     }
2478   }
2479 
2480   *pbMayReplace = seenReplace;
2481   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
2482 }
2483 
2484 #ifdef SQLITE_ENABLE_NULL_TRIM
2485 /*
2486 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2487 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2488 **
2489 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2490 */
2491 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
2492   u16 i;
2493 
2494   /* Records with omitted columns are only allowed for schema format
2495   ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2496   if( pTab->pSchema->file_format<2 ) return;
2497 
2498   for(i=pTab->nCol-1; i>0; i--){
2499     if( pTab->aCol[i].iDflt!=0 ) break;
2500     if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
2501   }
2502   sqlite3VdbeChangeP5(v, i+1);
2503 }
2504 #endif
2505 
2506 /*
2507 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
2508 ** number is iCur, and register regData contains the new record for the
2509 ** PK index. This function adds code to invoke the pre-update hook,
2510 ** if one is registered.
2511 */
2512 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2513 static void codeWithoutRowidPreupdate(
2514   Parse *pParse,                  /* Parse context */
2515   Table *pTab,                    /* Table being updated */
2516   int iCur,                       /* Cursor number for table */
2517   int regData                     /* Data containing new record */
2518 ){
2519   Vdbe *v = pParse->pVdbe;
2520   int r = sqlite3GetTempReg(pParse);
2521   assert( !HasRowid(pTab) );
2522   assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB );
2523   sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
2524   sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE);
2525   sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
2526   sqlite3ReleaseTempReg(pParse, r);
2527 }
2528 #else
2529 # define codeWithoutRowidPreupdate(a,b,c,d)
2530 #endif
2531 
2532 /*
2533 ** This routine generates code to finish the INSERT or UPDATE operation
2534 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2535 ** A consecutive range of registers starting at regNewData contains the
2536 ** rowid and the content to be inserted.
2537 **
2538 ** The arguments to this routine should be the same as the first six
2539 ** arguments to sqlite3GenerateConstraintChecks.
2540 */
2541 void sqlite3CompleteInsertion(
2542   Parse *pParse,      /* The parser context */
2543   Table *pTab,        /* the table into which we are inserting */
2544   int iDataCur,       /* Cursor of the canonical data source */
2545   int iIdxCur,        /* First index cursor */
2546   int regNewData,     /* Range of content */
2547   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
2548   int update_flags,   /* True for UPDATE, False for INSERT */
2549   int appendBias,     /* True if this is likely to be an append */
2550   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2551 ){
2552   Vdbe *v;            /* Prepared statements under construction */
2553   Index *pIdx;        /* An index being inserted or updated */
2554   u8 pik_flags;       /* flag values passed to the btree insert */
2555   int i;              /* Loop counter */
2556 
2557   assert( update_flags==0
2558        || update_flags==OPFLAG_ISUPDATE
2559        || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
2560   );
2561 
2562   v = pParse->pVdbe;
2563   assert( v!=0 );
2564   assert( !IsView(pTab) );  /* This table is not a VIEW */
2565   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2566     /* All REPLACE indexes are at the end of the list */
2567     assert( pIdx->onError!=OE_Replace
2568          || pIdx->pNext==0
2569          || pIdx->pNext->onError==OE_Replace );
2570     if( aRegIdx[i]==0 ) continue;
2571     if( pIdx->pPartIdxWhere ){
2572       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
2573       VdbeCoverage(v);
2574     }
2575     pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
2576     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2577       pik_flags |= OPFLAG_NCHANGE;
2578       pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
2579       if( update_flags==0 ){
2580         codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]);
2581       }
2582     }
2583     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
2584                          aRegIdx[i]+1,
2585                          pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
2586     sqlite3VdbeChangeP5(v, pik_flags);
2587   }
2588   if( !HasRowid(pTab) ) return;
2589   if( pParse->nested ){
2590     pik_flags = 0;
2591   }else{
2592     pik_flags = OPFLAG_NCHANGE;
2593     pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
2594   }
2595   if( appendBias ){
2596     pik_flags |= OPFLAG_APPEND;
2597   }
2598   if( useSeekResult ){
2599     pik_flags |= OPFLAG_USESEEKRESULT;
2600   }
2601   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
2602   if( !pParse->nested ){
2603     sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2604   }
2605   sqlite3VdbeChangeP5(v, pik_flags);
2606 }
2607 
2608 /*
2609 ** Allocate cursors for the pTab table and all its indices and generate
2610 ** code to open and initialized those cursors.
2611 **
2612 ** The cursor for the object that contains the complete data (normally
2613 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2614 ** ROWID table) is returned in *piDataCur.  The first index cursor is
2615 ** returned in *piIdxCur.  The number of indices is returned.
2616 **
2617 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2618 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2619 ** If iBase is negative, then allocate the next available cursor.
2620 **
2621 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2622 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2623 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2624 ** pTab->pIndex list.
2625 **
2626 ** If pTab is a virtual table, then this routine is a no-op and the
2627 ** *piDataCur and *piIdxCur values are left uninitialized.
2628 */
2629 int sqlite3OpenTableAndIndices(
2630   Parse *pParse,   /* Parsing context */
2631   Table *pTab,     /* Table to be opened */
2632   int op,          /* OP_OpenRead or OP_OpenWrite */
2633   u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2634   int iBase,       /* Use this for the table cursor, if there is one */
2635   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
2636   int *piDataCur,  /* Write the database source cursor number here */
2637   int *piIdxCur    /* Write the first index cursor number here */
2638 ){
2639   int i;
2640   int iDb;
2641   int iDataCur;
2642   Index *pIdx;
2643   Vdbe *v;
2644 
2645   assert( op==OP_OpenRead || op==OP_OpenWrite );
2646   assert( op==OP_OpenWrite || p5==0 );
2647   if( IsVirtual(pTab) ){
2648     /* This routine is a no-op for virtual tables. Leave the output
2649     ** variables *piDataCur and *piIdxCur set to illegal cursor numbers
2650     ** for improved error detection. */
2651     *piDataCur = *piIdxCur = -999;
2652     return 0;
2653   }
2654   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2655   v = pParse->pVdbe;
2656   assert( v!=0 );
2657   if( iBase<0 ) iBase = pParse->nTab;
2658   iDataCur = iBase++;
2659   if( piDataCur ) *piDataCur = iDataCur;
2660   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2661     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2662   }else{
2663     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2664   }
2665   if( piIdxCur ) *piIdxCur = iBase;
2666   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2667     int iIdxCur = iBase++;
2668     assert( pIdx->pSchema==pTab->pSchema );
2669     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2670       if( piDataCur ) *piDataCur = iIdxCur;
2671       p5 = 0;
2672     }
2673     if( aToOpen==0 || aToOpen[i+1] ){
2674       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2675       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2676       sqlite3VdbeChangeP5(v, p5);
2677       VdbeComment((v, "%s", pIdx->zName));
2678     }
2679   }
2680   if( iBase>pParse->nTab ) pParse->nTab = iBase;
2681   return i;
2682 }
2683 
2684 
2685 #ifdef SQLITE_TEST
2686 /*
2687 ** The following global variable is incremented whenever the
2688 ** transfer optimization is used.  This is used for testing
2689 ** purposes only - to make sure the transfer optimization really
2690 ** is happening when it is supposed to.
2691 */
2692 int sqlite3_xferopt_count;
2693 #endif /* SQLITE_TEST */
2694 
2695 
2696 #ifndef SQLITE_OMIT_XFER_OPT
2697 /*
2698 ** Check to see if index pSrc is compatible as a source of data
2699 ** for index pDest in an insert transfer optimization.  The rules
2700 ** for a compatible index:
2701 **
2702 **    *   The index is over the same set of columns
2703 **    *   The same DESC and ASC markings occurs on all columns
2704 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
2705 **    *   The same collating sequence on each column
2706 **    *   The index has the exact same WHERE clause
2707 */
2708 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2709   int i;
2710   assert( pDest && pSrc );
2711   assert( pDest->pTable!=pSrc->pTable );
2712   if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
2713     return 0;   /* Different number of columns */
2714   }
2715   if( pDest->onError!=pSrc->onError ){
2716     return 0;   /* Different conflict resolution strategies */
2717   }
2718   for(i=0; i<pSrc->nKeyCol; i++){
2719     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2720       return 0;   /* Different columns indexed */
2721     }
2722     if( pSrc->aiColumn[i]==XN_EXPR ){
2723       assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2724       if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2725                              pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2726         return 0;   /* Different expressions in the index */
2727       }
2728     }
2729     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2730       return 0;   /* Different sort orders */
2731     }
2732     if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2733       return 0;   /* Different collating sequences */
2734     }
2735   }
2736   if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2737     return 0;     /* Different WHERE clauses */
2738   }
2739 
2740   /* If no test above fails then the indices must be compatible */
2741   return 1;
2742 }
2743 
2744 /*
2745 ** Attempt the transfer optimization on INSERTs of the form
2746 **
2747 **     INSERT INTO tab1 SELECT * FROM tab2;
2748 **
2749 ** The xfer optimization transfers raw records from tab2 over to tab1.
2750 ** Columns are not decoded and reassembled, which greatly improves
2751 ** performance.  Raw index records are transferred in the same way.
2752 **
2753 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2754 ** There are lots of rules for determining compatibility - see comments
2755 ** embedded in the code for details.
2756 **
2757 ** This routine returns TRUE if the optimization is guaranteed to be used.
2758 ** Sometimes the xfer optimization will only work if the destination table
2759 ** is empty - a factor that can only be determined at run-time.  In that
2760 ** case, this routine generates code for the xfer optimization but also
2761 ** does a test to see if the destination table is empty and jumps over the
2762 ** xfer optimization code if the test fails.  In that case, this routine
2763 ** returns FALSE so that the caller will know to go ahead and generate
2764 ** an unoptimized transfer.  This routine also returns FALSE if there
2765 ** is no chance that the xfer optimization can be applied.
2766 **
2767 ** This optimization is particularly useful at making VACUUM run faster.
2768 */
2769 static int xferOptimization(
2770   Parse *pParse,        /* Parser context */
2771   Table *pDest,         /* The table we are inserting into */
2772   Select *pSelect,      /* A SELECT statement to use as the data source */
2773   int onError,          /* How to handle constraint errors */
2774   int iDbDest           /* The database of pDest */
2775 ){
2776   sqlite3 *db = pParse->db;
2777   ExprList *pEList;                /* The result set of the SELECT */
2778   Table *pSrc;                     /* The table in the FROM clause of SELECT */
2779   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
2780   SrcItem *pItem;                  /* An element of pSelect->pSrc */
2781   int i;                           /* Loop counter */
2782   int iDbSrc;                      /* The database of pSrc */
2783   int iSrc, iDest;                 /* Cursors from source and destination */
2784   int addr1, addr2;                /* Loop addresses */
2785   int emptyDestTest = 0;           /* Address of test for empty pDest */
2786   int emptySrcTest = 0;            /* Address of test for empty pSrc */
2787   Vdbe *v;                         /* The VDBE we are building */
2788   int regAutoinc;                  /* Memory register used by AUTOINC */
2789   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
2790   int regData, regRowid;           /* Registers holding data and rowid */
2791 
2792   assert( pSelect!=0 );
2793   if( pParse->pWith || pSelect->pWith ){
2794     /* Do not attempt to process this query if there are an WITH clauses
2795     ** attached to it. Proceeding may generate a false "no such table: xxx"
2796     ** error if pSelect reads from a CTE named "xxx".  */
2797     return 0;
2798   }
2799 #ifndef SQLITE_OMIT_VIRTUALTABLE
2800   if( IsVirtual(pDest) ){
2801     return 0;   /* tab1 must not be a virtual table */
2802   }
2803 #endif
2804   if( onError==OE_Default ){
2805     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2806     if( onError==OE_Default ) onError = OE_Abort;
2807   }
2808   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
2809   if( pSelect->pSrc->nSrc!=1 ){
2810     return 0;   /* FROM clause must have exactly one term */
2811   }
2812   if( pSelect->pSrc->a[0].pSelect ){
2813     return 0;   /* FROM clause cannot contain a subquery */
2814   }
2815   if( pSelect->pWhere ){
2816     return 0;   /* SELECT may not have a WHERE clause */
2817   }
2818   if( pSelect->pOrderBy ){
2819     return 0;   /* SELECT may not have an ORDER BY clause */
2820   }
2821   /* Do not need to test for a HAVING clause.  If HAVING is present but
2822   ** there is no ORDER BY, we will get an error. */
2823   if( pSelect->pGroupBy ){
2824     return 0;   /* SELECT may not have a GROUP BY clause */
2825   }
2826   if( pSelect->pLimit ){
2827     return 0;   /* SELECT may not have a LIMIT clause */
2828   }
2829   if( pSelect->pPrior ){
2830     return 0;   /* SELECT may not be a compound query */
2831   }
2832   if( pSelect->selFlags & SF_Distinct ){
2833     return 0;   /* SELECT may not be DISTINCT */
2834   }
2835   pEList = pSelect->pEList;
2836   assert( pEList!=0 );
2837   if( pEList->nExpr!=1 ){
2838     return 0;   /* The result set must have exactly one column */
2839   }
2840   assert( pEList->a[0].pExpr );
2841   if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2842     return 0;   /* The result set must be the special operator "*" */
2843   }
2844 
2845   /* At this point we have established that the statement is of the
2846   ** correct syntactic form to participate in this optimization.  Now
2847   ** we have to check the semantics.
2848   */
2849   pItem = pSelect->pSrc->a;
2850   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2851   if( pSrc==0 ){
2852     return 0;   /* FROM clause does not contain a real table */
2853   }
2854   if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2855     testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */
2856     return 0;   /* tab1 and tab2 may not be the same table */
2857   }
2858   if( HasRowid(pDest)!=HasRowid(pSrc) ){
2859     return 0;   /* source and destination must both be WITHOUT ROWID or not */
2860   }
2861   if( !IsOrdinaryTable(pSrc) ){
2862     return 0;   /* tab2 may not be a view or virtual table */
2863   }
2864   if( pDest->nCol!=pSrc->nCol ){
2865     return 0;   /* Number of columns must be the same in tab1 and tab2 */
2866   }
2867   if( pDest->iPKey!=pSrc->iPKey ){
2868     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
2869   }
2870   if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){
2871     return 0;   /* Cannot feed from a non-strict into a strict table */
2872   }
2873   for(i=0; i<pDest->nCol; i++){
2874     Column *pDestCol = &pDest->aCol[i];
2875     Column *pSrcCol = &pSrc->aCol[i];
2876 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2877     if( (db->mDbFlags & DBFLAG_Vacuum)==0
2878      && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2879     ){
2880       return 0;    /* Neither table may have __hidden__ columns */
2881     }
2882 #endif
2883 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2884     /* Even if tables t1 and t2 have identical schemas, if they contain
2885     ** generated columns, then this statement is semantically incorrect:
2886     **
2887     **     INSERT INTO t2 SELECT * FROM t1;
2888     **
2889     ** The reason is that generated column values are returned by the
2890     ** the SELECT statement on the right but the INSERT statement on the
2891     ** left wants them to be omitted.
2892     **
2893     ** Nevertheless, this is a useful notational shorthand to tell SQLite
2894     ** to do a bulk transfer all of the content from t1 over to t2.
2895     **
2896     ** We could, in theory, disable this (except for internal use by the
2897     ** VACUUM command where it is actually needed).  But why do that?  It
2898     ** seems harmless enough, and provides a useful service.
2899     */
2900     if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
2901         (pSrcCol->colFlags & COLFLAG_GENERATED) ){
2902       return 0;    /* Both columns have the same generated-column type */
2903     }
2904     /* But the transfer is only allowed if both the source and destination
2905     ** tables have the exact same expressions for generated columns.
2906     ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2907     */
2908     if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
2909       if( sqlite3ExprCompare(0,
2910              sqlite3ColumnExpr(pSrc, pSrcCol),
2911              sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){
2912         testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
2913         testcase( pDestCol->colFlags & COLFLAG_STORED );
2914         return 0;  /* Different generator expressions */
2915       }
2916     }
2917 #endif
2918     if( pDestCol->affinity!=pSrcCol->affinity ){
2919       return 0;    /* Affinity must be the same on all columns */
2920     }
2921     if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol),
2922                         sqlite3ColumnColl(pSrcCol))!=0 ){
2923       return 0;    /* Collating sequence must be the same on all columns */
2924     }
2925     if( pDestCol->notNull && !pSrcCol->notNull ){
2926       return 0;    /* tab2 must be NOT NULL if tab1 is */
2927     }
2928     /* Default values for second and subsequent columns need to match. */
2929     if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
2930       Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol);
2931       Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol);
2932       assert( pDestExpr==0 || pDestExpr->op==TK_SPAN );
2933       assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) );
2934       assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN );
2935       assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) );
2936       if( (pDestExpr==0)!=(pSrcExpr==0)
2937        || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken,
2938                                        pSrcExpr->u.zToken)!=0)
2939       ){
2940         return 0;    /* Default values must be the same for all columns */
2941       }
2942     }
2943   }
2944   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2945     if( IsUniqueIndex(pDestIdx) ){
2946       destHasUniqueIdx = 1;
2947     }
2948     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2949       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2950     }
2951     if( pSrcIdx==0 ){
2952       return 0;    /* pDestIdx has no corresponding index in pSrc */
2953     }
2954     if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2955          && sqlite3FaultSim(411)==SQLITE_OK ){
2956       /* The sqlite3FaultSim() call allows this corruption test to be
2957       ** bypassed during testing, in order to exercise other corruption tests
2958       ** further downstream. */
2959       return 0;   /* Corrupt schema - two indexes on the same btree */
2960     }
2961   }
2962 #ifndef SQLITE_OMIT_CHECK
2963   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2964     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
2965   }
2966 #endif
2967 #ifndef SQLITE_OMIT_FOREIGN_KEY
2968   /* Disallow the transfer optimization if the destination table constains
2969   ** any foreign key constraints.  This is more restrictive than necessary.
2970   ** But the main beneficiary of the transfer optimization is the VACUUM
2971   ** command, and the VACUUM command disables foreign key constraints.  So
2972   ** the extra complication to make this rule less restrictive is probably
2973   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2974   */
2975   assert( IsOrdinaryTable(pDest) );
2976   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){
2977     return 0;
2978   }
2979 #endif
2980   if( (db->flags & SQLITE_CountRows)!=0 ){
2981     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
2982   }
2983 
2984   /* If we get this far, it means that the xfer optimization is at
2985   ** least a possibility, though it might only work if the destination
2986   ** table (tab1) is initially empty.
2987   */
2988 #ifdef SQLITE_TEST
2989   sqlite3_xferopt_count++;
2990 #endif
2991   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2992   v = sqlite3GetVdbe(pParse);
2993   sqlite3CodeVerifySchema(pParse, iDbSrc);
2994   iSrc = pParse->nTab++;
2995   iDest = pParse->nTab++;
2996   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2997   regData = sqlite3GetTempReg(pParse);
2998   sqlite3VdbeAddOp2(v, OP_Null, 0, regData);
2999   regRowid = sqlite3GetTempReg(pParse);
3000   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
3001   assert( HasRowid(pDest) || destHasUniqueIdx );
3002   if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
3003       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
3004    || destHasUniqueIdx                              /* (2) */
3005    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
3006   )){
3007     /* In some circumstances, we are able to run the xfer optimization
3008     ** only if the destination table is initially empty. Unless the
3009     ** DBFLAG_Vacuum flag is set, this block generates code to make
3010     ** that determination. If DBFLAG_Vacuum is set, then the destination
3011     ** table is always empty.
3012     **
3013     ** Conditions under which the destination must be empty:
3014     **
3015     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
3016     **     (If the destination is not initially empty, the rowid fields
3017     **     of index entries might need to change.)
3018     **
3019     ** (2) The destination has a unique index.  (The xfer optimization
3020     **     is unable to test uniqueness.)
3021     **
3022     ** (3) onError is something other than OE_Abort and OE_Rollback.
3023     */
3024     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
3025     emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
3026     sqlite3VdbeJumpHere(v, addr1);
3027   }
3028   if( HasRowid(pSrc) ){
3029     u8 insFlags;
3030     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
3031     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3032     if( pDest->iPKey>=0 ){
3033       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3034       if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3035         sqlite3VdbeVerifyAbortable(v, onError);
3036         addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
3037         VdbeCoverage(v);
3038         sqlite3RowidConstraint(pParse, onError, pDest);
3039         sqlite3VdbeJumpHere(v, addr2);
3040       }
3041       autoIncStep(pParse, regAutoinc, regRowid);
3042     }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
3043       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
3044     }else{
3045       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3046       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
3047     }
3048 
3049     if( db->mDbFlags & DBFLAG_Vacuum ){
3050       sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3051       insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3052     }else{
3053       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT;
3054     }
3055 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
3056     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3057       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3058       insFlags &= ~OPFLAG_PREFORMAT;
3059     }else
3060 #endif
3061     {
3062       sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid);
3063     }
3064     sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
3065     if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3066       sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE);
3067     }
3068     sqlite3VdbeChangeP5(v, insFlags);
3069 
3070     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
3071     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3072     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3073   }else{
3074     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
3075     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
3076   }
3077   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
3078     u8 idxInsFlags = 0;
3079     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
3080       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
3081     }
3082     assert( pSrcIdx );
3083     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
3084     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
3085     VdbeComment((v, "%s", pSrcIdx->zName));
3086     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
3087     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
3088     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
3089     VdbeComment((v, "%s", pDestIdx->zName));
3090     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3091     if( db->mDbFlags & DBFLAG_Vacuum ){
3092       /* This INSERT command is part of a VACUUM operation, which guarantees
3093       ** that the destination table is empty. If all indexed columns use
3094       ** collation sequence BINARY, then it can also be assumed that the
3095       ** index will be populated by inserting keys in strictly sorted
3096       ** order. In this case, instead of seeking within the b-tree as part
3097       ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
3098       ** OP_IdxInsert to seek to the point within the b-tree where each key
3099       ** should be inserted. This is faster.
3100       **
3101       ** If any of the indexed columns use a collation sequence other than
3102       ** BINARY, this optimization is disabled. This is because the user
3103       ** might change the definition of a collation sequence and then run
3104       ** a VACUUM command. In that case keys may not be written in strictly
3105       ** sorted order.  */
3106       for(i=0; i<pSrcIdx->nColumn; i++){
3107         const char *zColl = pSrcIdx->azColl[i];
3108         if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
3109       }
3110       if( i==pSrcIdx->nColumn ){
3111         idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3112         sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3113         sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc);
3114       }
3115     }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
3116       idxInsFlags |= OPFLAG_NCHANGE;
3117     }
3118     if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){
3119       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3120       if( (db->mDbFlags & DBFLAG_Vacuum)==0
3121        && !HasRowid(pDest)
3122        && IsPrimaryKeyIndex(pDestIdx)
3123       ){
3124         codeWithoutRowidPreupdate(pParse, pDest, iDest, regData);
3125       }
3126     }
3127     sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
3128     sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
3129     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
3130     sqlite3VdbeJumpHere(v, addr1);
3131     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3132     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3133   }
3134   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
3135   sqlite3ReleaseTempReg(pParse, regRowid);
3136   sqlite3ReleaseTempReg(pParse, regData);
3137   if( emptyDestTest ){
3138     sqlite3AutoincrementEnd(pParse);
3139     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
3140     sqlite3VdbeJumpHere(v, emptyDestTest);
3141     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3142     return 0;
3143   }else{
3144     return 1;
3145   }
3146 }
3147 #endif /* SQLITE_OMIT_XFER_OPT */
3148