xref: /sqlite-3.40.0/src/insert.c (revision 27a770e0)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 **
15 ** $Id: insert.c,v 1.190 2007/08/16 12:24:02 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 /*
20 ** Set P3 of the most recently inserted opcode to a column affinity
21 ** string for index pIdx. A column affinity string has one character
22 ** for each column in the table, according to the affinity of the column:
23 **
24 **  Character      Column affinity
25 **  ------------------------------
26 **  'a'            TEXT
27 **  'b'            NONE
28 **  'c'            NUMERIC
29 **  'd'            INTEGER
30 **  'e'            REAL
31 */
32 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
33   if( !pIdx->zColAff ){
34     /* The first time a column affinity string for a particular index is
35     ** required, it is allocated and populated here. It is then stored as
36     ** a member of the Index structure for subsequent use.
37     **
38     ** The column affinity string will eventually be deleted by
39     ** sqliteDeleteIndex() when the Index structure itself is cleaned
40     ** up.
41     */
42     int n;
43     Table *pTab = pIdx->pTable;
44     sqlite3 *db = sqlite3VdbeDb(v);
45     pIdx->zColAff = (char *)sqlite3DbMallocZero(db, pIdx->nColumn+1);
46     if( !pIdx->zColAff ){
47       return;
48     }
49     for(n=0; n<pIdx->nColumn; n++){
50       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
51     }
52     pIdx->zColAff[pIdx->nColumn] = '\0';
53   }
54 
55   sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0);
56 }
57 
58 /*
59 ** Set P3 of the most recently inserted opcode to a column affinity
60 ** string for table pTab. A column affinity string has one character
61 ** for each column indexed by the index, according to the affinity of the
62 ** column:
63 **
64 **  Character      Column affinity
65 **  ------------------------------
66 **  'a'            TEXT
67 **  'b'            NONE
68 **  'c'            NUMERIC
69 **  'd'            INTEGER
70 **  'e'            REAL
71 */
72 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
73   /* The first time a column affinity string for a particular table
74   ** is required, it is allocated and populated here. It is then
75   ** stored as a member of the Table structure for subsequent use.
76   **
77   ** The column affinity string will eventually be deleted by
78   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
79   */
80   if( !pTab->zColAff ){
81     char *zColAff;
82     int i;
83     sqlite3 *db = sqlite3VdbeDb(v);
84 
85     zColAff = (char *)sqlite3DbMallocZero(db, pTab->nCol+1);
86     if( !zColAff ){
87       return;
88     }
89 
90     for(i=0; i<pTab->nCol; i++){
91       zColAff[i] = pTab->aCol[i].affinity;
92     }
93     zColAff[pTab->nCol] = '\0';
94 
95     pTab->zColAff = zColAff;
96   }
97 
98   sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0);
99 }
100 
101 /*
102 ** Return non-zero if SELECT statement p opens the table with rootpage
103 ** iTab in database iDb.  This is used to see if a statement of the form
104 ** "INSERT INTO <iDb, iTab> SELECT ..." can run without using temporary
105 ** table for the results of the SELECT.
106 **
107 ** No checking is done for sub-selects that are part of expressions.
108 */
109 static int selectReadsTable(Select *p, Schema *pSchema, int iTab){
110   int i;
111   struct SrcList_item *pItem;
112   if( p->pSrc==0 ) return 0;
113   for(i=0, pItem=p->pSrc->a; i<p->pSrc->nSrc; i++, pItem++){
114     if( pItem->pSelect ){
115       if( selectReadsTable(pItem->pSelect, pSchema, iTab) ) return 1;
116     }else{
117       if( pItem->pTab->pSchema==pSchema && pItem->pTab->tnum==iTab ) return 1;
118     }
119   }
120   return 0;
121 }
122 
123 #ifndef SQLITE_OMIT_AUTOINCREMENT
124 /*
125 ** Write out code to initialize the autoincrement logic.  This code
126 ** looks up the current autoincrement value in the sqlite_sequence
127 ** table and stores that value in a memory cell.  Code generated by
128 ** autoIncStep() will keep that memory cell holding the largest
129 ** rowid value.  Code generated by autoIncEnd() will write the new
130 ** largest value of the counter back into the sqlite_sequence table.
131 **
132 ** This routine returns the index of the mem[] cell that contains
133 ** the maximum rowid counter.
134 **
135 ** Two memory cells are allocated.  The next memory cell after the
136 ** one returned holds the rowid in sqlite_sequence where we will
137 ** write back the revised maximum rowid.
138 */
139 static int autoIncBegin(
140   Parse *pParse,      /* Parsing context */
141   int iDb,            /* Index of the database holding pTab */
142   Table *pTab         /* The table we are writing to */
143 ){
144   int memId = 0;
145   if( pTab->autoInc ){
146     Vdbe *v = pParse->pVdbe;
147     Db *pDb = &pParse->db->aDb[iDb];
148     int iCur = pParse->nTab;
149     int addr;
150     assert( v );
151     addr = sqlite3VdbeCurrentAddr(v);
152     memId = pParse->nMem+1;
153     pParse->nMem += 2;
154     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
155     sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13);
156     sqlite3VdbeAddOp(v, OP_Column, iCur, 0);
157     sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
158     sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12);
159     sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
160     sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1);
161     sqlite3VdbeAddOp(v, OP_Column, iCur, 1);
162     sqlite3VdbeAddOp(v, OP_MemStore, memId, 1);
163     sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13);
164     sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4);
165     sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
166   }
167   return memId;
168 }
169 
170 /*
171 ** Update the maximum rowid for an autoincrement calculation.
172 **
173 ** This routine should be called when the top of the stack holds a
174 ** new rowid that is about to be inserted.  If that new rowid is
175 ** larger than the maximum rowid in the memId memory cell, then the
176 ** memory cell is updated.  The stack is unchanged.
177 */
178 static void autoIncStep(Parse *pParse, int memId){
179   if( memId>0 ){
180     sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0);
181   }
182 }
183 
184 /*
185 ** After doing one or more inserts, the maximum rowid is stored
186 ** in mem[memId].  Generate code to write this value back into the
187 ** the sqlite_sequence table.
188 */
189 static void autoIncEnd(
190   Parse *pParse,     /* The parsing context */
191   int iDb,           /* Index of the database holding pTab */
192   Table *pTab,       /* Table we are inserting into */
193   int memId          /* Memory cell holding the maximum rowid */
194 ){
195   if( pTab->autoInc ){
196     int iCur = pParse->nTab;
197     Vdbe *v = pParse->pVdbe;
198     Db *pDb = &pParse->db->aDb[iDb];
199     int addr;
200     assert( v );
201     addr = sqlite3VdbeCurrentAddr(v);
202     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
203     sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0);
204     sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7);
205     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
206     sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0);
207     sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
208     sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0);
209     sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0);
210     sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND);
211     sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
212   }
213 }
214 #else
215 /*
216 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
217 ** above are all no-ops
218 */
219 # define autoIncBegin(A,B,C) (0)
220 # define autoIncStep(A,B)
221 # define autoIncEnd(A,B,C,D)
222 #endif /* SQLITE_OMIT_AUTOINCREMENT */
223 
224 
225 /* Forward declaration */
226 static int xferOptimization(
227   Parse *pParse,        /* Parser context */
228   Table *pDest,         /* The table we are inserting into */
229   Select *pSelect,      /* A SELECT statement to use as the data source */
230   int onError,          /* How to handle constraint errors */
231   int iDbDest           /* The database of pDest */
232 );
233 
234 /*
235 ** This routine is call to handle SQL of the following forms:
236 **
237 **    insert into TABLE (IDLIST) values(EXPRLIST)
238 **    insert into TABLE (IDLIST) select
239 **
240 ** The IDLIST following the table name is always optional.  If omitted,
241 ** then a list of all columns for the table is substituted.  The IDLIST
242 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
243 **
244 ** The pList parameter holds EXPRLIST in the first form of the INSERT
245 ** statement above, and pSelect is NULL.  For the second form, pList is
246 ** NULL and pSelect is a pointer to the select statement used to generate
247 ** data for the insert.
248 **
249 ** The code generated follows one of four templates.  For a simple
250 ** select with data coming from a VALUES clause, the code executes
251 ** once straight down through.  The template looks like this:
252 **
253 **         open write cursor to <table> and its indices
254 **         puts VALUES clause expressions onto the stack
255 **         write the resulting record into <table>
256 **         cleanup
257 **
258 ** The three remaining templates assume the statement is of the form
259 **
260 **   INSERT INTO <table> SELECT ...
261 **
262 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
263 ** in other words if the SELECT pulls all columns from a single table
264 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
265 ** if <table2> and <table1> are distinct tables but have identical
266 ** schemas, including all the same indices, then a special optimization
267 ** is invoked that copies raw records from <table2> over to <table1>.
268 ** See the xferOptimization() function for the implementation of this
269 ** template.  This is the second template.
270 **
271 **         open a write cursor to <table>
272 **         open read cursor on <table2>
273 **         transfer all records in <table2> over to <table>
274 **         close cursors
275 **         foreach index on <table>
276 **           open a write cursor on the <table> index
277 **           open a read cursor on the corresponding <table2> index
278 **           transfer all records from the read to the write cursors
279 **           close cursors
280 **         end foreach
281 **
282 ** The third template is for when the second template does not apply
283 ** and the SELECT clause does not read from <table> at any time.
284 ** The generated code follows this template:
285 **
286 **         goto B
287 **      A: setup for the SELECT
288 **         loop over the rows in the SELECT
289 **           gosub C
290 **         end loop
291 **         cleanup after the SELECT
292 **         goto D
293 **      B: open write cursor to <table> and its indices
294 **         goto A
295 **      C: insert the select result into <table>
296 **         return
297 **      D: cleanup
298 **
299 ** The fourth template is used if the insert statement takes its
300 ** values from a SELECT but the data is being inserted into a table
301 ** that is also read as part of the SELECT.  In the third form,
302 ** we have to use a intermediate table to store the results of
303 ** the select.  The template is like this:
304 **
305 **         goto B
306 **      A: setup for the SELECT
307 **         loop over the tables in the SELECT
308 **           gosub C
309 **         end loop
310 **         cleanup after the SELECT
311 **         goto D
312 **      C: insert the select result into the intermediate table
313 **         return
314 **      B: open a cursor to an intermediate table
315 **         goto A
316 **      D: open write cursor to <table> and its indices
317 **         loop over the intermediate table
318 **           transfer values form intermediate table into <table>
319 **         end the loop
320 **         cleanup
321 */
322 void sqlite3Insert(
323   Parse *pParse,        /* Parser context */
324   SrcList *pTabList,    /* Name of table into which we are inserting */
325   ExprList *pList,      /* List of values to be inserted */
326   Select *pSelect,      /* A SELECT statement to use as the data source */
327   IdList *pColumn,      /* Column names corresponding to IDLIST. */
328   int onError           /* How to handle constraint errors */
329 ){
330   Table *pTab;          /* The table to insert into */
331   char *zTab;           /* Name of the table into which we are inserting */
332   const char *zDb;      /* Name of the database holding this table */
333   int i, j, idx;        /* Loop counters */
334   Vdbe *v;              /* Generate code into this virtual machine */
335   Index *pIdx;          /* For looping over indices of the table */
336   int nColumn;          /* Number of columns in the data */
337   int base = 0;         /* VDBE Cursor number for pTab */
338   int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
339   sqlite3 *db;          /* The main database structure */
340   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
341   int endOfLoop;        /* Label for the end of the insertion loop */
342   int useTempTable = 0; /* Store SELECT results in intermediate table */
343   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
344   int iSelectLoop = 0;  /* Address of code that implements the SELECT */
345   int iCleanup = 0;     /* Address of the cleanup code */
346   int iInsertBlock = 0; /* Address of the subroutine used to insert data */
347   int iCntMem = 0;      /* Memory cell used for the row counter */
348   int newIdx = -1;      /* Cursor for the NEW table */
349   Db *pDb;              /* The database containing table being inserted into */
350   int counterMem = 0;   /* Memory cell holding AUTOINCREMENT counter */
351   int appendFlag = 0;   /* True if the insert is likely to be an append */
352   int iDb;
353 
354   int nHidden = 0;
355 
356 #ifndef SQLITE_OMIT_TRIGGER
357   int isView;                 /* True if attempting to insert into a view */
358   int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
359 #endif
360 
361   db = pParse->db;
362   if( pParse->nErr || db->mallocFailed ){
363     goto insert_cleanup;
364   }
365 
366   /* Locate the table into which we will be inserting new information.
367   */
368   assert( pTabList->nSrc==1 );
369   zTab = pTabList->a[0].zName;
370   if( zTab==0 ) goto insert_cleanup;
371   pTab = sqlite3SrcListLookup(pParse, pTabList);
372   if( pTab==0 ){
373     goto insert_cleanup;
374   }
375   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
376   assert( iDb<db->nDb );
377   pDb = &db->aDb[iDb];
378   zDb = pDb->zName;
379   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
380     goto insert_cleanup;
381   }
382 
383   /* Figure out if we have any triggers and if the table being
384   ** inserted into is a view
385   */
386 #ifndef SQLITE_OMIT_TRIGGER
387   triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
388   isView = pTab->pSelect!=0;
389 #else
390 # define triggers_exist 0
391 # define isView 0
392 #endif
393 #ifdef SQLITE_OMIT_VIEW
394 # undef isView
395 # define isView 0
396 #endif
397 
398   /* Ensure that:
399   *  (a) the table is not read-only,
400   *  (b) that if it is a view then ON INSERT triggers exist
401   */
402   if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
403     goto insert_cleanup;
404   }
405   assert( pTab!=0 );
406 
407   /* If pTab is really a view, make sure it has been initialized.
408   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
409   ** module table).
410   */
411   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
412     goto insert_cleanup;
413   }
414 
415   /* Allocate a VDBE
416   */
417   v = sqlite3GetVdbe(pParse);
418   if( v==0 ) goto insert_cleanup;
419   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
420   sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
421 
422   /* if there are row triggers, allocate a temp table for new.* references. */
423   if( triggers_exist ){
424     newIdx = pParse->nTab++;
425   }
426 
427 #ifndef SQLITE_OMIT_XFER_OPT
428   /* If the statement is of the form
429   **
430   **       INSERT INTO <table1> SELECT * FROM <table2>;
431   **
432   ** Then special optimizations can be applied that make the transfer
433   ** very fast and which reduce fragmentation of indices.
434   */
435   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
436     assert( !triggers_exist );
437     assert( pList==0 );
438     goto insert_cleanup;
439   }
440 #endif /* SQLITE_OMIT_XFER_OPT */
441 
442   /* If this is an AUTOINCREMENT table, look up the sequence number in the
443   ** sqlite_sequence table and store it in memory cell counterMem.  Also
444   ** remember the rowid of the sqlite_sequence table entry in memory cell
445   ** counterRowid.
446   */
447   counterMem = autoIncBegin(pParse, iDb, pTab);
448 
449   /* Figure out how many columns of data are supplied.  If the data
450   ** is coming from a SELECT statement, then this step also generates
451   ** all the code to implement the SELECT statement and invoke a subroutine
452   ** to process each row of the result. (Template 2.) If the SELECT
453   ** statement uses the the table that is being inserted into, then the
454   ** subroutine is also coded here.  That subroutine stores the SELECT
455   ** results in a temporary table. (Template 3.)
456   */
457   if( pSelect ){
458     /* Data is coming from a SELECT.  Generate code to implement that SELECT
459     */
460     int rc, iInitCode;
461     iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
462     iSelectLoop = sqlite3VdbeCurrentAddr(v);
463     iInsertBlock = sqlite3VdbeMakeLabel(v);
464 
465     /* Resolve the expressions in the SELECT statement and execute it. */
466     rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0);
467     if( rc || pParse->nErr || db->mallocFailed ){
468       goto insert_cleanup;
469     }
470 
471     iCleanup = sqlite3VdbeMakeLabel(v);
472     sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup);
473     assert( pSelect->pEList );
474     nColumn = pSelect->pEList->nExpr;
475 
476     /* Set useTempTable to TRUE if the result of the SELECT statement
477     ** should be written into a temporary table.  Set to FALSE if each
478     ** row of the SELECT can be written directly into the result table.
479     **
480     ** A temp table must be used if the table being updated is also one
481     ** of the tables being read by the SELECT statement.  Also use a
482     ** temp table in the case of row triggers.
483     */
484     if( triggers_exist || selectReadsTable(pSelect,pTab->pSchema,pTab->tnum) ){
485       useTempTable = 1;
486     }
487 
488     if( useTempTable ){
489       /* Generate the subroutine that SELECT calls to process each row of
490       ** the result.  Store the result in a temporary table
491       */
492       srcTab = pParse->nTab++;
493       sqlite3VdbeResolveLabel(v, iInsertBlock);
494       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
495       sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0);
496       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
497       sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND);
498       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
499 
500       /* The following code runs first because the GOTO at the very top
501       ** of the program jumps to it.  Create the temporary table, then jump
502       ** back up and execute the SELECT code above.
503       */
504       sqlite3VdbeJumpHere(v, iInitCode);
505       sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0);
506       sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn);
507       sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
508       sqlite3VdbeResolveLabel(v, iCleanup);
509     }else{
510       sqlite3VdbeJumpHere(v, iInitCode);
511     }
512   }else{
513     /* This is the case if the data for the INSERT is coming from a VALUES
514     ** clause
515     */
516     NameContext sNC;
517     memset(&sNC, 0, sizeof(sNC));
518     sNC.pParse = pParse;
519     srcTab = -1;
520     useTempTable = 0;
521     nColumn = pList ? pList->nExpr : 0;
522     for(i=0; i<nColumn; i++){
523       if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
524         goto insert_cleanup;
525       }
526     }
527   }
528 
529   /* Make sure the number of columns in the source data matches the number
530   ** of columns to be inserted into the table.
531   */
532   if( IsVirtual(pTab) ){
533     for(i=0; i<pTab->nCol; i++){
534       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
535     }
536   }
537   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
538     sqlite3ErrorMsg(pParse,
539        "table %S has %d columns but %d values were supplied",
540        pTabList, 0, pTab->nCol, nColumn);
541     goto insert_cleanup;
542   }
543   if( pColumn!=0 && nColumn!=pColumn->nId ){
544     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
545     goto insert_cleanup;
546   }
547 
548   /* If the INSERT statement included an IDLIST term, then make sure
549   ** all elements of the IDLIST really are columns of the table and
550   ** remember the column indices.
551   **
552   ** If the table has an INTEGER PRIMARY KEY column and that column
553   ** is named in the IDLIST, then record in the keyColumn variable
554   ** the index into IDLIST of the primary key column.  keyColumn is
555   ** the index of the primary key as it appears in IDLIST, not as
556   ** is appears in the original table.  (The index of the primary
557   ** key in the original table is pTab->iPKey.)
558   */
559   if( pColumn ){
560     for(i=0; i<pColumn->nId; i++){
561       pColumn->a[i].idx = -1;
562     }
563     for(i=0; i<pColumn->nId; i++){
564       for(j=0; j<pTab->nCol; j++){
565         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
566           pColumn->a[i].idx = j;
567           if( j==pTab->iPKey ){
568             keyColumn = i;
569           }
570           break;
571         }
572       }
573       if( j>=pTab->nCol ){
574         if( sqlite3IsRowid(pColumn->a[i].zName) ){
575           keyColumn = i;
576         }else{
577           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
578               pTabList, 0, pColumn->a[i].zName);
579           pParse->nErr++;
580           goto insert_cleanup;
581         }
582       }
583     }
584   }
585 
586   /* If there is no IDLIST term but the table has an integer primary
587   ** key, the set the keyColumn variable to the primary key column index
588   ** in the original table definition.
589   */
590   if( pColumn==0 && nColumn>0 ){
591     keyColumn = pTab->iPKey;
592   }
593 
594   /* Open the temp table for FOR EACH ROW triggers
595   */
596   if( triggers_exist ){
597     sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
598     sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);
599   }
600 
601   /* Initialize the count of rows to be inserted
602   */
603   if( db->flags & SQLITE_CountRows ){
604     iCntMem = pParse->nMem++;
605     sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem);
606   }
607 
608   /* Open tables and indices if there are no row triggers */
609   if( !triggers_exist ){
610     base = pParse->nTab;
611     sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
612   }
613 
614   /* If the data source is a temporary table, then we have to create
615   ** a loop because there might be multiple rows of data.  If the data
616   ** source is a subroutine call from the SELECT statement, then we need
617   ** to launch the SELECT statement processing.
618   */
619   if( useTempTable ){
620     iBreak = sqlite3VdbeMakeLabel(v);
621     sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak);
622     iCont = sqlite3VdbeCurrentAddr(v);
623   }else if( pSelect ){
624     sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
625     sqlite3VdbeResolveLabel(v, iInsertBlock);
626   }
627 
628   /* Run the BEFORE and INSTEAD OF triggers, if there are any
629   */
630   endOfLoop = sqlite3VdbeMakeLabel(v);
631   if( triggers_exist & TRIGGER_BEFORE ){
632 
633     /* build the NEW.* reference row.  Note that if there is an INTEGER
634     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
635     ** translated into a unique ID for the row.  But on a BEFORE trigger,
636     ** we do not know what the unique ID will be (because the insert has
637     ** not happened yet) so we substitute a rowid of -1
638     */
639     if( keyColumn<0 ){
640       sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
641     }else if( useTempTable ){
642       sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
643     }else{
644       assert( pSelect==0 );  /* Otherwise useTempTable is true */
645       sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
646       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
647       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
648       sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
649       sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
650     }
651 
652     /* Cannot have triggers on a virtual table. If it were possible,
653     ** this block would have to account for hidden column.
654     */
655     assert(!IsVirtual(pTab));
656 
657     /* Create the new column data
658     */
659     for(i=0; i<pTab->nCol; i++){
660       if( pColumn==0 ){
661         j = i;
662       }else{
663         for(j=0; j<pColumn->nId; j++){
664           if( pColumn->a[j].idx==i ) break;
665         }
666       }
667       if( pColumn && j>=pColumn->nId ){
668         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
669       }else if( useTempTable ){
670         sqlite3VdbeAddOp(v, OP_Column, srcTab, j);
671       }else{
672         assert( pSelect==0 ); /* Otherwise useTempTable is true */
673         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr);
674       }
675     }
676     sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
677 
678     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
679     ** do not attempt any conversions before assembling the record.
680     ** If this is a real table, attempt conversions as required by the
681     ** table column affinities.
682     */
683     if( !isView ){
684       sqlite3TableAffinityStr(v, pTab);
685     }
686     sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
687 
688     /* Fire BEFORE or INSTEAD OF triggers */
689     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
690         newIdx, -1, onError, endOfLoop) ){
691       goto insert_cleanup;
692     }
693   }
694 
695   /* If any triggers exists, the opening of tables and indices is deferred
696   ** until now.
697   */
698   if( triggers_exist && !isView ){
699     base = pParse->nTab;
700     sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
701   }
702 
703   /* Push the record number for the new entry onto the stack.  The
704   ** record number is a randomly generate integer created by NewRowid
705   ** except when the table has an INTEGER PRIMARY KEY column, in which
706   ** case the record number is the same as that column.
707   */
708   if( !isView ){
709     if( IsVirtual(pTab) ){
710       /* The row that the VUpdate opcode will delete:  none */
711       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
712     }
713     if( keyColumn>=0 ){
714       if( useTempTable ){
715         sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
716       }else if( pSelect ){
717         sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
718       }else{
719         VdbeOp *pOp;
720         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
721         pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
722         if( pOp && pOp->opcode==OP_Null ){
723           appendFlag = 1;
724           pOp->opcode = OP_NewRowid;
725           pOp->p1 = base;
726           pOp->p2 = counterMem;
727         }
728       }
729       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
730       ** to generate a unique primary key value.
731       */
732       if( !appendFlag ){
733         sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
734         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
735         sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
736         sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
737       }
738     }else if( IsVirtual(pTab) ){
739       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
740     }else{
741       sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
742       appendFlag = 1;
743     }
744     autoIncStep(pParse, counterMem);
745 
746     /* Push onto the stack, data for all columns of the new entry, beginning
747     ** with the first column.
748     */
749     nHidden = 0;
750     for(i=0; i<pTab->nCol; i++){
751       if( i==pTab->iPKey ){
752         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
753         ** Whenever this column is read, the record number will be substituted
754         ** in its place.  So will fill this column with a NULL to avoid
755         ** taking up data space with information that will never be used. */
756         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
757         continue;
758       }
759       if( pColumn==0 ){
760         if( IsHiddenColumn(&pTab->aCol[i]) ){
761           assert( IsVirtual(pTab) );
762           j = -1;
763           nHidden++;
764         }else{
765           j = i - nHidden;
766         }
767       }else{
768         for(j=0; j<pColumn->nId; j++){
769           if( pColumn->a[j].idx==i ) break;
770         }
771       }
772       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
773         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
774       }else if( useTempTable ){
775         sqlite3VdbeAddOp(v, OP_Column, srcTab, j);
776       }else if( pSelect ){
777         sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1);
778       }else{
779         sqlite3ExprCode(pParse, pList->a[j].pExpr);
780       }
781     }
782 
783     /* Generate code to check constraints and generate index keys and
784     ** do the insertion.
785     */
786 #ifndef SQLITE_OMIT_VIRTUALTABLE
787     if( IsVirtual(pTab) ){
788       pParse->pVirtualLock = pTab;
789       sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2,
790                      (const char*)pTab->pVtab, P3_VTAB);
791     }else
792 #endif
793     {
794       sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
795                                      0, onError, endOfLoop);
796       sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0,
797                             (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
798                             appendFlag);
799     }
800   }
801 
802   /* Update the count of rows that are inserted
803   */
804   if( (db->flags & SQLITE_CountRows)!=0 ){
805     sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem);
806   }
807 
808   if( triggers_exist ){
809     /* Close all tables opened */
810     if( !isView ){
811       sqlite3VdbeAddOp(v, OP_Close, base, 0);
812       for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
813         sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
814       }
815     }
816 
817     /* Code AFTER triggers */
818     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
819           newIdx, -1, onError, endOfLoop) ){
820       goto insert_cleanup;
821     }
822   }
823 
824   /* The bottom of the loop, if the data source is a SELECT statement
825   */
826   sqlite3VdbeResolveLabel(v, endOfLoop);
827   if( useTempTable ){
828     sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont);
829     sqlite3VdbeResolveLabel(v, iBreak);
830     sqlite3VdbeAddOp(v, OP_Close, srcTab, 0);
831   }else if( pSelect ){
832     sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
833     sqlite3VdbeAddOp(v, OP_Return, 0, 0);
834     sqlite3VdbeResolveLabel(v, iCleanup);
835   }
836 
837   if( !triggers_exist && !IsVirtual(pTab) ){
838     /* Close all tables opened */
839     sqlite3VdbeAddOp(v, OP_Close, base, 0);
840     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
841       sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
842     }
843   }
844 
845   /* Update the sqlite_sequence table by storing the content of the
846   ** counter value in memory counterMem back into the sqlite_sequence
847   ** table.
848   */
849   autoIncEnd(pParse, iDb, pTab, counterMem);
850 
851   /*
852   ** Return the number of rows inserted. If this routine is
853   ** generating code because of a call to sqlite3NestedParse(), do not
854   ** invoke the callback function.
855   */
856   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
857     sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0);
858     sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
859     sqlite3VdbeSetNumCols(v, 1);
860     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC);
861   }
862 
863 insert_cleanup:
864   sqlite3SrcListDelete(pTabList);
865   sqlite3ExprListDelete(pList);
866   sqlite3SelectDelete(pSelect);
867   sqlite3IdListDelete(pColumn);
868 }
869 
870 /*
871 ** Generate code to do a constraint check prior to an INSERT or an UPDATE.
872 **
873 ** When this routine is called, the stack contains (from bottom to top)
874 ** the following values:
875 **
876 **    1.  The rowid of the row to be updated before the update.  This
877 **        value is omitted unless we are doing an UPDATE that involves a
878 **        change to the record number.
879 **
880 **    2.  The rowid of the row after the update.
881 **
882 **    3.  The data in the first column of the entry after the update.
883 **
884 **    i.  Data from middle columns...
885 **
886 **    N.  The data in the last column of the entry after the update.
887 **
888 ** The old rowid shown as entry (1) above is omitted unless both isUpdate
889 ** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
890 ** INSERTs and rowidChng is true if the record number is being changed.
891 **
892 ** The code generated by this routine pushes additional entries onto
893 ** the stack which are the keys for new index entries for the new record.
894 ** The order of index keys is the same as the order of the indices on
895 ** the pTable->pIndex list.  A key is only created for index i if
896 ** aIdxUsed!=0 and aIdxUsed[i]!=0.
897 **
898 ** This routine also generates code to check constraints.  NOT NULL,
899 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
900 ** then the appropriate action is performed.  There are five possible
901 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
902 **
903 **  Constraint type  Action       What Happens
904 **  ---------------  ----------   ----------------------------------------
905 **  any              ROLLBACK     The current transaction is rolled back and
906 **                                sqlite3_exec() returns immediately with a
907 **                                return code of SQLITE_CONSTRAINT.
908 **
909 **  any              ABORT        Back out changes from the current command
910 **                                only (do not do a complete rollback) then
911 **                                cause sqlite3_exec() to return immediately
912 **                                with SQLITE_CONSTRAINT.
913 **
914 **  any              FAIL         Sqlite_exec() returns immediately with a
915 **                                return code of SQLITE_CONSTRAINT.  The
916 **                                transaction is not rolled back and any
917 **                                prior changes are retained.
918 **
919 **  any              IGNORE       The record number and data is popped from
920 **                                the stack and there is an immediate jump
921 **                                to label ignoreDest.
922 **
923 **  NOT NULL         REPLACE      The NULL value is replace by the default
924 **                                value for that column.  If the default value
925 **                                is NULL, the action is the same as ABORT.
926 **
927 **  UNIQUE           REPLACE      The other row that conflicts with the row
928 **                                being inserted is removed.
929 **
930 **  CHECK            REPLACE      Illegal.  The results in an exception.
931 **
932 ** Which action to take is determined by the overrideError parameter.
933 ** Or if overrideError==OE_Default, then the pParse->onError parameter
934 ** is used.  Or if pParse->onError==OE_Default then the onError value
935 ** for the constraint is used.
936 **
937 ** The calling routine must open a read/write cursor for pTab with
938 ** cursor number "base".  All indices of pTab must also have open
939 ** read/write cursors with cursor number base+i for the i-th cursor.
940 ** Except, if there is no possibility of a REPLACE action then
941 ** cursors do not need to be open for indices where aIdxUsed[i]==0.
942 **
943 ** If the isUpdate flag is true, it means that the "base" cursor is
944 ** initially pointing to an entry that is being updated.  The isUpdate
945 ** flag causes extra code to be generated so that the "base" cursor
946 ** is still pointing at the same entry after the routine returns.
947 ** Without the isUpdate flag, the "base" cursor might be moved.
948 */
949 void sqlite3GenerateConstraintChecks(
950   Parse *pParse,      /* The parser context */
951   Table *pTab,        /* the table into which we are inserting */
952   int base,           /* Index of a read/write cursor pointing at pTab */
953   char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
954   int rowidChng,      /* True if the record number will change */
955   int isUpdate,       /* True for UPDATE, False for INSERT */
956   int overrideError,  /* Override onError to this if not OE_Default */
957   int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
958 ){
959   int i;
960   Vdbe *v;
961   int nCol;
962   int onError;
963   int addr;
964   int extra;
965   int iCur;
966   Index *pIdx;
967   int seenReplace = 0;
968   int jumpInst1=0, jumpInst2;
969   int hasTwoRowids = (isUpdate && rowidChng);
970 
971   v = sqlite3GetVdbe(pParse);
972   assert( v!=0 );
973   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
974   nCol = pTab->nCol;
975 
976   /* Test all NOT NULL constraints.
977   */
978   for(i=0; i<nCol; i++){
979     if( i==pTab->iPKey ){
980       continue;
981     }
982     onError = pTab->aCol[i].notNull;
983     if( onError==OE_None ) continue;
984     if( overrideError!=OE_Default ){
985       onError = overrideError;
986     }else if( onError==OE_Default ){
987       onError = OE_Abort;
988     }
989     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
990       onError = OE_Abort;
991     }
992     sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1);
993     addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0);
994     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
995         || onError==OE_Ignore || onError==OE_Replace );
996     switch( onError ){
997       case OE_Rollback:
998       case OE_Abort:
999       case OE_Fail: {
1000         char *zMsg = 0;
1001         sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1002         sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
1003                         " may not be NULL", (char*)0);
1004         sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
1005         break;
1006       }
1007       case OE_Ignore: {
1008         sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
1009         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
1010         break;
1011       }
1012       case OE_Replace: {
1013         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
1014         sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0);
1015         break;
1016       }
1017     }
1018     sqlite3VdbeJumpHere(v, addr);
1019   }
1020 
1021   /* Test all CHECK constraints
1022   */
1023 #ifndef SQLITE_OMIT_CHECK
1024   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
1025     int allOk = sqlite3VdbeMakeLabel(v);
1026     assert( pParse->ckOffset==0 );
1027     pParse->ckOffset = nCol;
1028     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1);
1029     assert( pParse->ckOffset==nCol );
1030     pParse->ckOffset = 0;
1031     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1032     if( onError==OE_Ignore ){
1033       sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
1034       sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
1035     }else{
1036       sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1037     }
1038     sqlite3VdbeResolveLabel(v, allOk);
1039   }
1040 #endif /* !defined(SQLITE_OMIT_CHECK) */
1041 
1042   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
1043   ** of the new record does not previously exist.  Except, if this
1044   ** is an UPDATE and the primary key is not changing, that is OK.
1045   */
1046   if( rowidChng ){
1047     onError = pTab->keyConf;
1048     if( overrideError!=OE_Default ){
1049       onError = overrideError;
1050     }else if( onError==OE_Default ){
1051       onError = OE_Abort;
1052     }
1053 
1054     if( isUpdate ){
1055       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
1056       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
1057       jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0);
1058     }
1059     sqlite3VdbeAddOp(v, OP_Dup, nCol, 1);
1060     jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0);
1061     switch( onError ){
1062       default: {
1063         onError = OE_Abort;
1064         /* Fall thru into the next case */
1065       }
1066       case OE_Rollback:
1067       case OE_Abort:
1068       case OE_Fail: {
1069         sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
1070                          "PRIMARY KEY must be unique", P3_STATIC);
1071         break;
1072       }
1073       case OE_Replace: {
1074         sqlite3GenerateRowIndexDelete(v, pTab, base, 0);
1075         if( isUpdate ){
1076           sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1);
1077           sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
1078         }
1079         seenReplace = 1;
1080         break;
1081       }
1082       case OE_Ignore: {
1083         assert( seenReplace==0 );
1084         sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
1085         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
1086         break;
1087       }
1088     }
1089     sqlite3VdbeJumpHere(v, jumpInst2);
1090     if( isUpdate ){
1091       sqlite3VdbeJumpHere(v, jumpInst1);
1092       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
1093       sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
1094     }
1095   }
1096 
1097   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1098   ** index and making sure that duplicate entries do not already exist.
1099   ** Add the new records to the indices as we go.
1100   */
1101   extra = -1;
1102   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
1103     if( aIdxUsed && aIdxUsed[iCur]==0 ) continue;  /* Skip unused indices */
1104     extra++;
1105 
1106     /* Create a key for accessing the index entry */
1107     sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1);
1108     for(i=0; i<pIdx->nColumn; i++){
1109       int idx = pIdx->aiColumn[i];
1110       if( idx==pTab->iPKey ){
1111         sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
1112       }else{
1113         sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
1114       }
1115     }
1116     jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
1117     sqlite3IndexAffinityStr(v, pIdx);
1118 
1119     /* Find out what action to take in case there is an indexing conflict */
1120     onError = pIdx->onError;
1121     if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
1122     if( overrideError!=OE_Default ){
1123       onError = overrideError;
1124     }else if( onError==OE_Default ){
1125       onError = OE_Abort;
1126     }
1127     if( seenReplace ){
1128       if( onError==OE_Ignore ) onError = OE_Replace;
1129       else if( onError==OE_Fail ) onError = OE_Abort;
1130     }
1131 
1132 
1133     /* Check to see if the new index entry will be unique */
1134     sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1);
1135     jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
1136 
1137     /* Generate code that executes if the new index entry is not unique */
1138     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1139         || onError==OE_Ignore || onError==OE_Replace );
1140     switch( onError ){
1141       case OE_Rollback:
1142       case OE_Abort:
1143       case OE_Fail: {
1144         int j, n1, n2;
1145         char zErrMsg[200];
1146         sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
1147                          pIdx->nColumn>1 ? "columns " : "column ");
1148         n1 = strlen(zErrMsg);
1149         for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
1150           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
1151           n2 = strlen(zCol);
1152           if( j>0 ){
1153             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
1154             n1 += 2;
1155           }
1156           if( n1+n2>sizeof(zErrMsg)-30 ){
1157             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
1158             n1 += 3;
1159             break;
1160           }else{
1161             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
1162             n1 += n2;
1163           }
1164         }
1165         sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
1166             pIdx->nColumn>1 ? " are not unique" : " is not unique");
1167         sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
1168         break;
1169       }
1170       case OE_Ignore: {
1171         assert( seenReplace==0 );
1172         sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0);
1173         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
1174         break;
1175       }
1176       case OE_Replace: {
1177         sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0);
1178         if( isUpdate ){
1179           sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1);
1180           sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
1181         }
1182         seenReplace = 1;
1183         break;
1184       }
1185     }
1186 #if NULL_DISTINCT_FOR_UNIQUE
1187     sqlite3VdbeJumpHere(v, jumpInst1);
1188 #endif
1189     sqlite3VdbeJumpHere(v, jumpInst2);
1190   }
1191 }
1192 
1193 /*
1194 ** This routine generates code to finish the INSERT or UPDATE operation
1195 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1196 ** The stack must contain keys for all active indices followed by data
1197 ** and the rowid for the new entry.  This routine creates the new
1198 ** entries in all indices and in the main table.
1199 **
1200 ** The arguments to this routine should be the same as the first six
1201 ** arguments to sqlite3GenerateConstraintChecks.
1202 */
1203 void sqlite3CompleteInsertion(
1204   Parse *pParse,      /* The parser context */
1205   Table *pTab,        /* the table into which we are inserting */
1206   int base,           /* Index of a read/write cursor pointing at pTab */
1207   char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
1208   int rowidChng,      /* True if the record number will change */
1209   int isUpdate,       /* True for UPDATE, False for INSERT */
1210   int newIdx,         /* Index of NEW table for triggers.  -1 if none */
1211   int appendBias      /* True if this is likely to be an append */
1212 ){
1213   int i;
1214   Vdbe *v;
1215   int nIdx;
1216   Index *pIdx;
1217   int pik_flags;
1218 
1219   v = sqlite3GetVdbe(pParse);
1220   assert( v!=0 );
1221   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1222   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
1223   for(i=nIdx-1; i>=0; i--){
1224     if( aIdxUsed && aIdxUsed[i]==0 ) continue;
1225     sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0);
1226   }
1227   sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
1228   sqlite3TableAffinityStr(v, pTab);
1229 #ifndef SQLITE_OMIT_TRIGGER
1230   if( newIdx>=0 ){
1231     sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
1232     sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
1233     sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
1234   }
1235 #endif
1236   if( pParse->nested ){
1237     pik_flags = 0;
1238   }else{
1239     pik_flags = OPFLAG_NCHANGE;
1240     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1241   }
1242   if( appendBias ){
1243     pik_flags |= OPFLAG_APPEND;
1244   }
1245   sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags);
1246   if( !pParse->nested ){
1247     sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
1248   }
1249 
1250   if( isUpdate && rowidChng ){
1251     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1252   }
1253 }
1254 
1255 /*
1256 ** Generate code that will open cursors for a table and for all
1257 ** indices of that table.  The "base" parameter is the cursor number used
1258 ** for the table.  Indices are opened on subsequent cursors.
1259 */
1260 void sqlite3OpenTableAndIndices(
1261   Parse *pParse,   /* Parsing context */
1262   Table *pTab,     /* Table to be opened */
1263   int base,        /* Cursor number assigned to the table */
1264   int op           /* OP_OpenRead or OP_OpenWrite */
1265 ){
1266   int i;
1267   int iDb;
1268   Index *pIdx;
1269   Vdbe *v;
1270 
1271   if( IsVirtual(pTab) ) return;
1272   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1273   v = sqlite3GetVdbe(pParse);
1274   assert( v!=0 );
1275   sqlite3OpenTable(pParse, base, iDb, pTab, op);
1276   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1277     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
1278     assert( pIdx->pSchema==pTab->pSchema );
1279     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
1280     VdbeComment((v, "# %s", pIdx->zName));
1281     sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF);
1282   }
1283   if( pParse->nTab<=base+i ){
1284     pParse->nTab = base+i;
1285   }
1286 }
1287 
1288 
1289 #ifdef SQLITE_TEST
1290 /*
1291 ** The following global variable is incremented whenever the
1292 ** transfer optimization is used.  This is used for testing
1293 ** purposes only - to make sure the transfer optimization really
1294 ** is happening when it is suppose to.
1295 */
1296 int sqlite3_xferopt_count;
1297 #endif /* SQLITE_TEST */
1298 
1299 
1300 #ifndef SQLITE_OMIT_XFER_OPT
1301 /*
1302 ** Check to collation names to see if they are compatible.
1303 */
1304 static int xferCompatibleCollation(const char *z1, const char *z2){
1305   if( z1==0 ){
1306     return z2==0;
1307   }
1308   if( z2==0 ){
1309     return 0;
1310   }
1311   return sqlite3StrICmp(z1, z2)==0;
1312 }
1313 
1314 
1315 /*
1316 ** Check to see if index pSrc is compatible as a source of data
1317 ** for index pDest in an insert transfer optimization.  The rules
1318 ** for a compatible index:
1319 **
1320 **    *   The index is over the same set of columns
1321 **    *   The same DESC and ASC markings occurs on all columns
1322 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
1323 **    *   The same collating sequence on each column
1324 */
1325 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1326   int i;
1327   assert( pDest && pSrc );
1328   assert( pDest->pTable!=pSrc->pTable );
1329   if( pDest->nColumn!=pSrc->nColumn ){
1330     return 0;   /* Different number of columns */
1331   }
1332   if( pDest->onError!=pSrc->onError ){
1333     return 0;   /* Different conflict resolution strategies */
1334   }
1335   for(i=0; i<pSrc->nColumn; i++){
1336     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1337       return 0;   /* Different columns indexed */
1338     }
1339     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1340       return 0;   /* Different sort orders */
1341     }
1342     if( pSrc->azColl[i]!=pDest->azColl[i] ){
1343       return 0;   /* Different sort orders */
1344     }
1345   }
1346 
1347   /* If no test above fails then the indices must be compatible */
1348   return 1;
1349 }
1350 
1351 /*
1352 ** Attempt the transfer optimization on INSERTs of the form
1353 **
1354 **     INSERT INTO tab1 SELECT * FROM tab2;
1355 **
1356 ** This optimization is only attempted if
1357 **
1358 **    (1)  tab1 and tab2 have identical schemas including all the
1359 **         same indices and constraints
1360 **
1361 **    (2)  tab1 and tab2 are different tables
1362 **
1363 **    (3)  There must be no triggers on tab1
1364 **
1365 **    (4)  The result set of the SELECT statement is "*"
1366 **
1367 **    (5)  The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
1368 **         or LIMIT clause.
1369 **
1370 **    (6)  The SELECT statement is a simple (not a compound) select that
1371 **         contains only tab2 in its FROM clause
1372 **
1373 ** This method for implementing the INSERT transfers raw records from
1374 ** tab2 over to tab1.  The columns are not decoded.  Raw records from
1375 ** the indices of tab2 are transfered to tab1 as well.  In so doing,
1376 ** the resulting tab1 has much less fragmentation.
1377 **
1378 ** This routine returns TRUE if the optimization is attempted.  If any
1379 ** of the conditions above fail so that the optimization should not
1380 ** be attempted, then this routine returns FALSE.
1381 */
1382 static int xferOptimization(
1383   Parse *pParse,        /* Parser context */
1384   Table *pDest,         /* The table we are inserting into */
1385   Select *pSelect,      /* A SELECT statement to use as the data source */
1386   int onError,          /* How to handle constraint errors */
1387   int iDbDest           /* The database of pDest */
1388 ){
1389   ExprList *pEList;                /* The result set of the SELECT */
1390   Table *pSrc;                     /* The table in the FROM clause of SELECT */
1391   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
1392   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
1393   int i;                           /* Loop counter */
1394   int iDbSrc;                      /* The database of pSrc */
1395   int iSrc, iDest;                 /* Cursors from source and destination */
1396   int addr1, addr2;                /* Loop addresses */
1397   int emptyDestTest;               /* Address of test for empty pDest */
1398   int emptySrcTest;                /* Address of test for empty pSrc */
1399   Vdbe *v;                         /* The VDBE we are building */
1400   KeyInfo *pKey;                   /* Key information for an index */
1401   int counterMem;                  /* Memory register used by AUTOINC */
1402   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
1403 
1404   if( pSelect==0 ){
1405     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
1406   }
1407   if( pDest->pTrigger ){
1408     return 0;   /* tab1 must not have triggers */
1409   }
1410 #ifndef SQLITE_OMIT_VIRTUALTABLE
1411   if( pDest->isVirtual ){
1412     return 0;   /* tab1 must not be a virtual table */
1413   }
1414 #endif
1415   if( onError==OE_Default ){
1416     onError = OE_Abort;
1417   }
1418   if( onError!=OE_Abort && onError!=OE_Rollback ){
1419     return 0;   /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
1420   }
1421   if( pSelect->pSrc==0 ){
1422     return 0;   /* SELECT must have a FROM clause */
1423   }
1424   if( pSelect->pSrc->nSrc!=1 ){
1425     return 0;   /* FROM clause must have exactly one term */
1426   }
1427   if( pSelect->pSrc->a[0].pSelect ){
1428     return 0;   /* FROM clause cannot contain a subquery */
1429   }
1430   if( pSelect->pWhere ){
1431     return 0;   /* SELECT may not have a WHERE clause */
1432   }
1433   if( pSelect->pOrderBy ){
1434     return 0;   /* SELECT may not have an ORDER BY clause */
1435   }
1436   /* Do not need to test for a HAVING clause.  If HAVING is present but
1437   ** there is no ORDER BY, we will get an error. */
1438   if( pSelect->pGroupBy ){
1439     return 0;   /* SELECT may not have a GROUP BY clause */
1440   }
1441   if( pSelect->pLimit ){
1442     return 0;   /* SELECT may not have a LIMIT clause */
1443   }
1444   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
1445   if( pSelect->pPrior ){
1446     return 0;   /* SELECT may not be a compound query */
1447   }
1448   if( pSelect->isDistinct ){
1449     return 0;   /* SELECT may not be DISTINCT */
1450   }
1451   pEList = pSelect->pEList;
1452   assert( pEList!=0 );
1453   if( pEList->nExpr!=1 ){
1454     return 0;   /* The result set must have exactly one column */
1455   }
1456   assert( pEList->a[0].pExpr );
1457   if( pEList->a[0].pExpr->op!=TK_ALL ){
1458     return 0;   /* The result set must be the special operator "*" */
1459   }
1460 
1461   /* At this point we have established that the statement is of the
1462   ** correct syntactic form to participate in this optimization.  Now
1463   ** we have to check the semantics.
1464   */
1465   pItem = pSelect->pSrc->a;
1466   pSrc = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase);
1467   if( pSrc==0 ){
1468     return 0;   /* FROM clause does not contain a real table */
1469   }
1470   if( pSrc==pDest ){
1471     return 0;   /* tab1 and tab2 may not be the same table */
1472   }
1473 #ifndef SQLITE_OMIT_VIRTUALTABLE
1474   if( pSrc->isVirtual ){
1475     return 0;   /* tab2 must not be a virtual table */
1476   }
1477 #endif
1478   if( pSrc->pSelect ){
1479     return 0;   /* tab2 may not be a view */
1480   }
1481   if( pDest->nCol!=pSrc->nCol ){
1482     return 0;   /* Number of columns must be the same in tab1 and tab2 */
1483   }
1484   if( pDest->iPKey!=pSrc->iPKey ){
1485     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
1486   }
1487   for(i=0; i<pDest->nCol; i++){
1488     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
1489       return 0;    /* Affinity must be the same on all columns */
1490     }
1491     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
1492       return 0;    /* Collating sequence must be the same on all columns */
1493     }
1494     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
1495       return 0;    /* tab2 must be NOT NULL if tab1 is */
1496     }
1497   }
1498   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1499     if( pDestIdx->onError!=OE_None ){
1500       destHasUniqueIdx = 1;
1501     }
1502     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1503       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1504     }
1505     if( pSrcIdx==0 ){
1506       return 0;    /* pDestIdx has no corresponding index in pSrc */
1507     }
1508   }
1509 #ifndef SQLITE_OMIT_CHECK
1510   if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
1511     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
1512   }
1513 #endif
1514 
1515   /* If we get this far, it means either:
1516   **
1517   **    *   We can always do the transfer if the table contains an
1518   **        an integer primary key
1519   **
1520   **    *   We can conditionally do the transfer if the destination
1521   **        table is empty.
1522   */
1523 #ifdef SQLITE_TEST
1524   sqlite3_xferopt_count++;
1525 #endif
1526   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1527   v = sqlite3GetVdbe(pParse);
1528   iSrc = pParse->nTab++;
1529   iDest = pParse->nTab++;
1530   counterMem = autoIncBegin(pParse, iDbDest, pDest);
1531   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1532   if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
1533     /* If tables do not have an INTEGER PRIMARY KEY and there
1534     ** are indices to be copied and the destination is not empty,
1535     ** we have to disallow the transfer optimization because the
1536     ** the rowids might change which will mess up indexing.
1537     **
1538     ** Or if the destination has a UNIQUE index and is not empty,
1539     ** we also disallow the transfer optimization because we cannot
1540     ** insure that all entries in the union of DEST and SRC will be
1541     ** unique.
1542     */
1543     addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0);
1544     emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
1545     sqlite3VdbeJumpHere(v, addr1);
1546   }else{
1547     emptyDestTest = 0;
1548   }
1549   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1550   emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
1551   if( pDest->iPKey>=0 ){
1552     addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
1553     sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
1554     addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0);
1555     sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
1556                       "PRIMARY KEY must be unique", P3_STATIC);
1557     sqlite3VdbeJumpHere(v, addr2);
1558     autoIncStep(pParse, counterMem);
1559   }else if( pDest->pIndex==0 ){
1560     addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0);
1561   }else{
1562     addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
1563     assert( pDest->autoInc==0 );
1564   }
1565   sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0);
1566   sqlite3VdbeOp3(v, OP_Insert, iDest,
1567                     OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND,
1568                     pDest->zName, 0);
1569   sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1);
1570   autoIncEnd(pParse, iDbDest, pDest, counterMem);
1571   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1572     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1573       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1574     }
1575     assert( pSrcIdx );
1576     sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
1577     sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
1578     sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0);
1579     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
1580     VdbeComment((v, "# %s", pSrcIdx->zName));
1581     sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum,
1582                    (char*)pKey, P3_KEYINFO_HANDOFF);
1583     sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0);
1584     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
1585     VdbeComment((v, "# %s", pDestIdx->zName));
1586     sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum,
1587                    (char*)pKey, P3_KEYINFO_HANDOFF);
1588     addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
1589     sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0);
1590     sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1);
1591     sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1);
1592     sqlite3VdbeJumpHere(v, addr1);
1593   }
1594   sqlite3VdbeJumpHere(v, emptySrcTest);
1595   sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
1596   sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
1597   if( emptyDestTest ){
1598     sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0);
1599     sqlite3VdbeJumpHere(v, emptyDestTest);
1600     sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
1601     return 0;
1602   }else{
1603     return 1;
1604   }
1605 }
1606 #endif /* SQLITE_OMIT_XFER_OPT */
1607