1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->aColExpr!=0 ); 100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 101 } 102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 104 pIdx->zColAff[n] = aff; 105 } 106 pIdx->zColAff[n] = 0; 107 } 108 109 return pIdx->zColAff; 110 } 111 112 /* 113 ** Compute the affinity string for table pTab, if it has not already been 114 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 115 ** 116 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 117 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 118 ** for register iReg and following. Or if affinities exists and iReg==0, 119 ** then just set the P4 operand of the previous opcode (which should be 120 ** an OP_MakeRecord) to the affinity string. 121 ** 122 ** A column affinity string has one character per column: 123 ** 124 ** Character Column affinity 125 ** ------------------------------ 126 ** 'A' BLOB 127 ** 'B' TEXT 128 ** 'C' NUMERIC 129 ** 'D' INTEGER 130 ** 'E' REAL 131 */ 132 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 133 int i, j; 134 char *zColAff = pTab->zColAff; 135 if( zColAff==0 ){ 136 sqlite3 *db = sqlite3VdbeDb(v); 137 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 138 if( !zColAff ){ 139 sqlite3OomFault(db); 140 return; 141 } 142 143 for(i=j=0; i<pTab->nCol; i++){ 144 assert( pTab->aCol[i].affinity!=0 ); 145 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 146 zColAff[j++] = pTab->aCol[i].affinity; 147 } 148 } 149 do{ 150 zColAff[j--] = 0; 151 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 152 pTab->zColAff = zColAff; 153 } 154 assert( zColAff!=0 ); 155 i = sqlite3Strlen30NN(zColAff); 156 if( i ){ 157 if( iReg ){ 158 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 159 }else{ 160 sqlite3VdbeChangeP4(v, -1, zColAff, i); 161 } 162 } 163 } 164 165 /* 166 ** Return non-zero if the table pTab in database iDb or any of its indices 167 ** have been opened at any point in the VDBE program. This is used to see if 168 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 169 ** run without using a temporary table for the results of the SELECT. 170 */ 171 static int readsTable(Parse *p, int iDb, Table *pTab){ 172 Vdbe *v = sqlite3GetVdbe(p); 173 int i; 174 int iEnd = sqlite3VdbeCurrentAddr(v); 175 #ifndef SQLITE_OMIT_VIRTUALTABLE 176 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 177 #endif 178 179 for(i=1; i<iEnd; i++){ 180 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 181 assert( pOp!=0 ); 182 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 183 Index *pIndex; 184 Pgno tnum = pOp->p2; 185 if( tnum==pTab->tnum ){ 186 return 1; 187 } 188 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 189 if( tnum==pIndex->tnum ){ 190 return 1; 191 } 192 } 193 } 194 #ifndef SQLITE_OMIT_VIRTUALTABLE 195 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 196 assert( pOp->p4.pVtab!=0 ); 197 assert( pOp->p4type==P4_VTAB ); 198 return 1; 199 } 200 #endif 201 } 202 return 0; 203 } 204 205 /* This walker callback will compute the union of colFlags flags for all 206 ** referenced columns in a CHECK constraint or generated column expression. 207 */ 208 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 209 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 210 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 211 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 212 } 213 return WRC_Continue; 214 } 215 216 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 217 /* 218 ** All regular columns for table pTab have been puts into registers 219 ** starting with iRegStore. The registers that correspond to STORED 220 ** or VIRTUAL columns have not yet been initialized. This routine goes 221 ** back and computes the values for those columns based on the previously 222 ** computed normal columns. 223 */ 224 void sqlite3ComputeGeneratedColumns( 225 Parse *pParse, /* Parsing context */ 226 int iRegStore, /* Register holding the first column */ 227 Table *pTab /* The table */ 228 ){ 229 int i; 230 Walker w; 231 Column *pRedo; 232 int eProgress; 233 VdbeOp *pOp; 234 235 assert( pTab->tabFlags & TF_HasGenerated ); 236 testcase( pTab->tabFlags & TF_HasVirtual ); 237 testcase( pTab->tabFlags & TF_HasStored ); 238 239 /* Before computing generated columns, first go through and make sure 240 ** that appropriate affinity has been applied to the regular columns 241 */ 242 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 243 if( (pTab->tabFlags & TF_HasStored)!=0 244 && (pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1))->opcode==OP_Affinity 245 ){ 246 /* Change the OP_Affinity argument to '@' (NONE) for all stored 247 ** columns. '@' is the no-op affinity and those columns have not 248 ** yet been computed. */ 249 int ii, jj; 250 char *zP4 = pOp->p4.z; 251 assert( zP4!=0 ); 252 assert( pOp->p4type==P4_DYNAMIC ); 253 for(ii=jj=0; zP4[jj]; ii++){ 254 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 255 continue; 256 } 257 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 258 zP4[jj] = SQLITE_AFF_NONE; 259 } 260 jj++; 261 } 262 } 263 264 /* Because there can be multiple generated columns that refer to one another, 265 ** this is a two-pass algorithm. On the first pass, mark all generated 266 ** columns as "not available". 267 */ 268 for(i=0; i<pTab->nCol; i++){ 269 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 270 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 271 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 272 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 273 } 274 } 275 276 w.u.pTab = pTab; 277 w.xExprCallback = exprColumnFlagUnion; 278 w.xSelectCallback = 0; 279 w.xSelectCallback2 = 0; 280 281 /* On the second pass, compute the value of each NOT-AVAILABLE column. 282 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 283 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 284 ** they are needed. 285 */ 286 pParse->iSelfTab = -iRegStore; 287 do{ 288 eProgress = 0; 289 pRedo = 0; 290 for(i=0; i<pTab->nCol; i++){ 291 Column *pCol = pTab->aCol + i; 292 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 293 int x; 294 pCol->colFlags |= COLFLAG_BUSY; 295 w.eCode = 0; 296 sqlite3WalkExpr(&w, pCol->pDflt); 297 pCol->colFlags &= ~COLFLAG_BUSY; 298 if( w.eCode & COLFLAG_NOTAVAIL ){ 299 pRedo = pCol; 300 continue; 301 } 302 eProgress = 1; 303 assert( pCol->colFlags & COLFLAG_GENERATED ); 304 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 305 sqlite3ExprCodeGeneratedColumn(pParse, pCol, x); 306 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 307 } 308 } 309 }while( pRedo && eProgress ); 310 if( pRedo ){ 311 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zName); 312 } 313 pParse->iSelfTab = 0; 314 } 315 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 316 317 318 #ifndef SQLITE_OMIT_AUTOINCREMENT 319 /* 320 ** Locate or create an AutoincInfo structure associated with table pTab 321 ** which is in database iDb. Return the register number for the register 322 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 323 ** table. (Also return zero when doing a VACUUM since we do not want to 324 ** update the AUTOINCREMENT counters during a VACUUM.) 325 ** 326 ** There is at most one AutoincInfo structure per table even if the 327 ** same table is autoincremented multiple times due to inserts within 328 ** triggers. A new AutoincInfo structure is created if this is the 329 ** first use of table pTab. On 2nd and subsequent uses, the original 330 ** AutoincInfo structure is used. 331 ** 332 ** Four consecutive registers are allocated: 333 ** 334 ** (1) The name of the pTab table. 335 ** (2) The maximum ROWID of pTab. 336 ** (3) The rowid in sqlite_sequence of pTab 337 ** (4) The original value of the max ROWID in pTab, or NULL if none 338 ** 339 ** The 2nd register is the one that is returned. That is all the 340 ** insert routine needs to know about. 341 */ 342 static int autoIncBegin( 343 Parse *pParse, /* Parsing context */ 344 int iDb, /* Index of the database holding pTab */ 345 Table *pTab /* The table we are writing to */ 346 ){ 347 int memId = 0; /* Register holding maximum rowid */ 348 assert( pParse->db->aDb[iDb].pSchema!=0 ); 349 if( (pTab->tabFlags & TF_Autoincrement)!=0 350 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 351 ){ 352 Parse *pToplevel = sqlite3ParseToplevel(pParse); 353 AutoincInfo *pInfo; 354 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 355 356 /* Verify that the sqlite_sequence table exists and is an ordinary 357 ** rowid table with exactly two columns. 358 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 359 if( pSeqTab==0 360 || !HasRowid(pSeqTab) 361 || IsVirtual(pSeqTab) 362 || pSeqTab->nCol!=2 363 ){ 364 pParse->nErr++; 365 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 366 return 0; 367 } 368 369 pInfo = pToplevel->pAinc; 370 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 371 if( pInfo==0 ){ 372 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 373 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 374 testcase( pParse->earlyCleanup ); 375 if( pParse->db->mallocFailed ) return 0; 376 pInfo->pNext = pToplevel->pAinc; 377 pToplevel->pAinc = pInfo; 378 pInfo->pTab = pTab; 379 pInfo->iDb = iDb; 380 pToplevel->nMem++; /* Register to hold name of table */ 381 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 382 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 383 } 384 memId = pInfo->regCtr; 385 } 386 return memId; 387 } 388 389 /* 390 ** This routine generates code that will initialize all of the 391 ** register used by the autoincrement tracker. 392 */ 393 void sqlite3AutoincrementBegin(Parse *pParse){ 394 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 395 sqlite3 *db = pParse->db; /* The database connection */ 396 Db *pDb; /* Database only autoinc table */ 397 int memId; /* Register holding max rowid */ 398 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 399 400 /* This routine is never called during trigger-generation. It is 401 ** only called from the top-level */ 402 assert( pParse->pTriggerTab==0 ); 403 assert( sqlite3IsToplevel(pParse) ); 404 405 assert( v ); /* We failed long ago if this is not so */ 406 for(p = pParse->pAinc; p; p = p->pNext){ 407 static const int iLn = VDBE_OFFSET_LINENO(2); 408 static const VdbeOpList autoInc[] = { 409 /* 0 */ {OP_Null, 0, 0, 0}, 410 /* 1 */ {OP_Rewind, 0, 10, 0}, 411 /* 2 */ {OP_Column, 0, 0, 0}, 412 /* 3 */ {OP_Ne, 0, 9, 0}, 413 /* 4 */ {OP_Rowid, 0, 0, 0}, 414 /* 5 */ {OP_Column, 0, 1, 0}, 415 /* 6 */ {OP_AddImm, 0, 0, 0}, 416 /* 7 */ {OP_Copy, 0, 0, 0}, 417 /* 8 */ {OP_Goto, 0, 11, 0}, 418 /* 9 */ {OP_Next, 0, 2, 0}, 419 /* 10 */ {OP_Integer, 0, 0, 0}, 420 /* 11 */ {OP_Close, 0, 0, 0} 421 }; 422 VdbeOp *aOp; 423 pDb = &db->aDb[p->iDb]; 424 memId = p->regCtr; 425 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 426 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 427 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 428 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 429 if( aOp==0 ) break; 430 aOp[0].p2 = memId; 431 aOp[0].p3 = memId+2; 432 aOp[2].p3 = memId; 433 aOp[3].p1 = memId-1; 434 aOp[3].p3 = memId; 435 aOp[3].p5 = SQLITE_JUMPIFNULL; 436 aOp[4].p2 = memId+1; 437 aOp[5].p3 = memId; 438 aOp[6].p1 = memId; 439 aOp[7].p2 = memId+2; 440 aOp[7].p1 = memId; 441 aOp[10].p2 = memId; 442 if( pParse->nTab==0 ) pParse->nTab = 1; 443 } 444 } 445 446 /* 447 ** Update the maximum rowid for an autoincrement calculation. 448 ** 449 ** This routine should be called when the regRowid register holds a 450 ** new rowid that is about to be inserted. If that new rowid is 451 ** larger than the maximum rowid in the memId memory cell, then the 452 ** memory cell is updated. 453 */ 454 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 455 if( memId>0 ){ 456 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 457 } 458 } 459 460 /* 461 ** This routine generates the code needed to write autoincrement 462 ** maximum rowid values back into the sqlite_sequence register. 463 ** Every statement that might do an INSERT into an autoincrement 464 ** table (either directly or through triggers) needs to call this 465 ** routine just before the "exit" code. 466 */ 467 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 468 AutoincInfo *p; 469 Vdbe *v = pParse->pVdbe; 470 sqlite3 *db = pParse->db; 471 472 assert( v ); 473 for(p = pParse->pAinc; p; p = p->pNext){ 474 static const int iLn = VDBE_OFFSET_LINENO(2); 475 static const VdbeOpList autoIncEnd[] = { 476 /* 0 */ {OP_NotNull, 0, 2, 0}, 477 /* 1 */ {OP_NewRowid, 0, 0, 0}, 478 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 479 /* 3 */ {OP_Insert, 0, 0, 0}, 480 /* 4 */ {OP_Close, 0, 0, 0} 481 }; 482 VdbeOp *aOp; 483 Db *pDb = &db->aDb[p->iDb]; 484 int iRec; 485 int memId = p->regCtr; 486 487 iRec = sqlite3GetTempReg(pParse); 488 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 489 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 490 VdbeCoverage(v); 491 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 492 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 493 if( aOp==0 ) break; 494 aOp[0].p1 = memId+1; 495 aOp[1].p2 = memId+1; 496 aOp[2].p1 = memId-1; 497 aOp[2].p3 = iRec; 498 aOp[3].p2 = iRec; 499 aOp[3].p3 = memId+1; 500 aOp[3].p5 = OPFLAG_APPEND; 501 sqlite3ReleaseTempReg(pParse, iRec); 502 } 503 } 504 void sqlite3AutoincrementEnd(Parse *pParse){ 505 if( pParse->pAinc ) autoIncrementEnd(pParse); 506 } 507 #else 508 /* 509 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 510 ** above are all no-ops 511 */ 512 # define autoIncBegin(A,B,C) (0) 513 # define autoIncStep(A,B,C) 514 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 515 516 517 /* Forward declaration */ 518 static int xferOptimization( 519 Parse *pParse, /* Parser context */ 520 Table *pDest, /* The table we are inserting into */ 521 Select *pSelect, /* A SELECT statement to use as the data source */ 522 int onError, /* How to handle constraint errors */ 523 int iDbDest /* The database of pDest */ 524 ); 525 526 /* 527 ** This routine is called to handle SQL of the following forms: 528 ** 529 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 530 ** insert into TABLE (IDLIST) select 531 ** insert into TABLE (IDLIST) default values 532 ** 533 ** The IDLIST following the table name is always optional. If omitted, 534 ** then a list of all (non-hidden) columns for the table is substituted. 535 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 536 ** is omitted. 537 ** 538 ** For the pSelect parameter holds the values to be inserted for the 539 ** first two forms shown above. A VALUES clause is really just short-hand 540 ** for a SELECT statement that omits the FROM clause and everything else 541 ** that follows. If the pSelect parameter is NULL, that means that the 542 ** DEFAULT VALUES form of the INSERT statement is intended. 543 ** 544 ** The code generated follows one of four templates. For a simple 545 ** insert with data coming from a single-row VALUES clause, the code executes 546 ** once straight down through. Pseudo-code follows (we call this 547 ** the "1st template"): 548 ** 549 ** open write cursor to <table> and its indices 550 ** put VALUES clause expressions into registers 551 ** write the resulting record into <table> 552 ** cleanup 553 ** 554 ** The three remaining templates assume the statement is of the form 555 ** 556 ** INSERT INTO <table> SELECT ... 557 ** 558 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 559 ** in other words if the SELECT pulls all columns from a single table 560 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 561 ** if <table2> and <table1> are distinct tables but have identical 562 ** schemas, including all the same indices, then a special optimization 563 ** is invoked that copies raw records from <table2> over to <table1>. 564 ** See the xferOptimization() function for the implementation of this 565 ** template. This is the 2nd template. 566 ** 567 ** open a write cursor to <table> 568 ** open read cursor on <table2> 569 ** transfer all records in <table2> over to <table> 570 ** close cursors 571 ** foreach index on <table> 572 ** open a write cursor on the <table> index 573 ** open a read cursor on the corresponding <table2> index 574 ** transfer all records from the read to the write cursors 575 ** close cursors 576 ** end foreach 577 ** 578 ** The 3rd template is for when the second template does not apply 579 ** and the SELECT clause does not read from <table> at any time. 580 ** The generated code follows this template: 581 ** 582 ** X <- A 583 ** goto B 584 ** A: setup for the SELECT 585 ** loop over the rows in the SELECT 586 ** load values into registers R..R+n 587 ** yield X 588 ** end loop 589 ** cleanup after the SELECT 590 ** end-coroutine X 591 ** B: open write cursor to <table> and its indices 592 ** C: yield X, at EOF goto D 593 ** insert the select result into <table> from R..R+n 594 ** goto C 595 ** D: cleanup 596 ** 597 ** The 4th template is used if the insert statement takes its 598 ** values from a SELECT but the data is being inserted into a table 599 ** that is also read as part of the SELECT. In the third form, 600 ** we have to use an intermediate table to store the results of 601 ** the select. The template is like this: 602 ** 603 ** X <- A 604 ** goto B 605 ** A: setup for the SELECT 606 ** loop over the tables in the SELECT 607 ** load value into register R..R+n 608 ** yield X 609 ** end loop 610 ** cleanup after the SELECT 611 ** end co-routine R 612 ** B: open temp table 613 ** L: yield X, at EOF goto M 614 ** insert row from R..R+n into temp table 615 ** goto L 616 ** M: open write cursor to <table> and its indices 617 ** rewind temp table 618 ** C: loop over rows of intermediate table 619 ** transfer values form intermediate table into <table> 620 ** end loop 621 ** D: cleanup 622 */ 623 void sqlite3Insert( 624 Parse *pParse, /* Parser context */ 625 SrcList *pTabList, /* Name of table into which we are inserting */ 626 Select *pSelect, /* A SELECT statement to use as the data source */ 627 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 628 int onError, /* How to handle constraint errors */ 629 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 630 ){ 631 sqlite3 *db; /* The main database structure */ 632 Table *pTab; /* The table to insert into. aka TABLE */ 633 int i, j; /* Loop counters */ 634 Vdbe *v; /* Generate code into this virtual machine */ 635 Index *pIdx; /* For looping over indices of the table */ 636 int nColumn; /* Number of columns in the data */ 637 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 638 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 639 int iIdxCur = 0; /* First index cursor */ 640 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 641 int endOfLoop; /* Label for the end of the insertion loop */ 642 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 643 int addrInsTop = 0; /* Jump to label "D" */ 644 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 645 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 646 int iDb; /* Index of database holding TABLE */ 647 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 648 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 649 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 650 u8 bIdListInOrder; /* True if IDLIST is in table order */ 651 ExprList *pList = 0; /* List of VALUES() to be inserted */ 652 int iRegStore; /* Register in which to store next column */ 653 654 /* Register allocations */ 655 int regFromSelect = 0;/* Base register for data coming from SELECT */ 656 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 657 int regRowCount = 0; /* Memory cell used for the row counter */ 658 int regIns; /* Block of regs holding rowid+data being inserted */ 659 int regRowid; /* registers holding insert rowid */ 660 int regData; /* register holding first column to insert */ 661 int *aRegIdx = 0; /* One register allocated to each index */ 662 663 #ifndef SQLITE_OMIT_TRIGGER 664 int isView; /* True if attempting to insert into a view */ 665 Trigger *pTrigger; /* List of triggers on pTab, if required */ 666 int tmask; /* Mask of trigger times */ 667 #endif 668 669 db = pParse->db; 670 if( pParse->nErr || db->mallocFailed ){ 671 goto insert_cleanup; 672 } 673 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 674 675 /* If the Select object is really just a simple VALUES() list with a 676 ** single row (the common case) then keep that one row of values 677 ** and discard the other (unused) parts of the pSelect object 678 */ 679 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 680 pList = pSelect->pEList; 681 pSelect->pEList = 0; 682 sqlite3SelectDelete(db, pSelect); 683 pSelect = 0; 684 } 685 686 /* Locate the table into which we will be inserting new information. 687 */ 688 assert( pTabList->nSrc==1 ); 689 pTab = sqlite3SrcListLookup(pParse, pTabList); 690 if( pTab==0 ){ 691 goto insert_cleanup; 692 } 693 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 694 assert( iDb<db->nDb ); 695 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 696 db->aDb[iDb].zDbSName) ){ 697 goto insert_cleanup; 698 } 699 withoutRowid = !HasRowid(pTab); 700 701 /* Figure out if we have any triggers and if the table being 702 ** inserted into is a view 703 */ 704 #ifndef SQLITE_OMIT_TRIGGER 705 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 706 isView = pTab->pSelect!=0; 707 #else 708 # define pTrigger 0 709 # define tmask 0 710 # define isView 0 711 #endif 712 #ifdef SQLITE_OMIT_VIEW 713 # undef isView 714 # define isView 0 715 #endif 716 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 717 718 /* If pTab is really a view, make sure it has been initialized. 719 ** ViewGetColumnNames() is a no-op if pTab is not a view. 720 */ 721 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 722 goto insert_cleanup; 723 } 724 725 /* Cannot insert into a read-only table. 726 */ 727 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 728 goto insert_cleanup; 729 } 730 731 /* Allocate a VDBE 732 */ 733 v = sqlite3GetVdbe(pParse); 734 if( v==0 ) goto insert_cleanup; 735 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 736 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 737 738 #ifndef SQLITE_OMIT_XFER_OPT 739 /* If the statement is of the form 740 ** 741 ** INSERT INTO <table1> SELECT * FROM <table2>; 742 ** 743 ** Then special optimizations can be applied that make the transfer 744 ** very fast and which reduce fragmentation of indices. 745 ** 746 ** This is the 2nd template. 747 */ 748 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 749 assert( !pTrigger ); 750 assert( pList==0 ); 751 goto insert_end; 752 } 753 #endif /* SQLITE_OMIT_XFER_OPT */ 754 755 /* If this is an AUTOINCREMENT table, look up the sequence number in the 756 ** sqlite_sequence table and store it in memory cell regAutoinc. 757 */ 758 regAutoinc = autoIncBegin(pParse, iDb, pTab); 759 760 /* Allocate a block registers to hold the rowid and the values 761 ** for all columns of the new row. 762 */ 763 regRowid = regIns = pParse->nMem+1; 764 pParse->nMem += pTab->nCol + 1; 765 if( IsVirtual(pTab) ){ 766 regRowid++; 767 pParse->nMem++; 768 } 769 regData = regRowid+1; 770 771 /* If the INSERT statement included an IDLIST term, then make sure 772 ** all elements of the IDLIST really are columns of the table and 773 ** remember the column indices. 774 ** 775 ** If the table has an INTEGER PRIMARY KEY column and that column 776 ** is named in the IDLIST, then record in the ipkColumn variable 777 ** the index into IDLIST of the primary key column. ipkColumn is 778 ** the index of the primary key as it appears in IDLIST, not as 779 ** is appears in the original table. (The index of the INTEGER 780 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 781 ** loop, if ipkColumn==(-1), that means that integer primary key 782 ** is unspecified, and hence the table is either WITHOUT ROWID or 783 ** it will automatically generated an integer primary key. 784 ** 785 ** bIdListInOrder is true if the columns in IDLIST are in storage 786 ** order. This enables an optimization that avoids shuffling the 787 ** columns into storage order. False negatives are harmless, 788 ** but false positives will cause database corruption. 789 */ 790 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 791 if( pColumn ){ 792 for(i=0; i<pColumn->nId; i++){ 793 pColumn->a[i].idx = -1; 794 } 795 for(i=0; i<pColumn->nId; i++){ 796 for(j=0; j<pTab->nCol; j++){ 797 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 798 pColumn->a[i].idx = j; 799 if( i!=j ) bIdListInOrder = 0; 800 if( j==pTab->iPKey ){ 801 ipkColumn = i; assert( !withoutRowid ); 802 } 803 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 804 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 805 sqlite3ErrorMsg(pParse, 806 "cannot INSERT into generated column \"%s\"", 807 pTab->aCol[j].zName); 808 goto insert_cleanup; 809 } 810 #endif 811 break; 812 } 813 } 814 if( j>=pTab->nCol ){ 815 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 816 ipkColumn = i; 817 bIdListInOrder = 0; 818 }else{ 819 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 820 pTabList, 0, pColumn->a[i].zName); 821 pParse->checkSchema = 1; 822 goto insert_cleanup; 823 } 824 } 825 } 826 } 827 828 /* Figure out how many columns of data are supplied. If the data 829 ** is coming from a SELECT statement, then generate a co-routine that 830 ** produces a single row of the SELECT on each invocation. The 831 ** co-routine is the common header to the 3rd and 4th templates. 832 */ 833 if( pSelect ){ 834 /* Data is coming from a SELECT or from a multi-row VALUES clause. 835 ** Generate a co-routine to run the SELECT. */ 836 int regYield; /* Register holding co-routine entry-point */ 837 int addrTop; /* Top of the co-routine */ 838 int rc; /* Result code */ 839 840 regYield = ++pParse->nMem; 841 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 842 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 843 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 844 dest.iSdst = bIdListInOrder ? regData : 0; 845 dest.nSdst = pTab->nCol; 846 rc = sqlite3Select(pParse, pSelect, &dest); 847 regFromSelect = dest.iSdst; 848 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 849 sqlite3VdbeEndCoroutine(v, regYield); 850 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 851 assert( pSelect->pEList ); 852 nColumn = pSelect->pEList->nExpr; 853 854 /* Set useTempTable to TRUE if the result of the SELECT statement 855 ** should be written into a temporary table (template 4). Set to 856 ** FALSE if each output row of the SELECT can be written directly into 857 ** the destination table (template 3). 858 ** 859 ** A temp table must be used if the table being updated is also one 860 ** of the tables being read by the SELECT statement. Also use a 861 ** temp table in the case of row triggers. 862 */ 863 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 864 useTempTable = 1; 865 } 866 867 if( useTempTable ){ 868 /* Invoke the coroutine to extract information from the SELECT 869 ** and add it to a transient table srcTab. The code generated 870 ** here is from the 4th template: 871 ** 872 ** B: open temp table 873 ** L: yield X, goto M at EOF 874 ** insert row from R..R+n into temp table 875 ** goto L 876 ** M: ... 877 */ 878 int regRec; /* Register to hold packed record */ 879 int regTempRowid; /* Register to hold temp table ROWID */ 880 int addrL; /* Label "L" */ 881 882 srcTab = pParse->nTab++; 883 regRec = sqlite3GetTempReg(pParse); 884 regTempRowid = sqlite3GetTempReg(pParse); 885 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 886 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 887 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 888 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 889 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 890 sqlite3VdbeGoto(v, addrL); 891 sqlite3VdbeJumpHere(v, addrL); 892 sqlite3ReleaseTempReg(pParse, regRec); 893 sqlite3ReleaseTempReg(pParse, regTempRowid); 894 } 895 }else{ 896 /* This is the case if the data for the INSERT is coming from a 897 ** single-row VALUES clause 898 */ 899 NameContext sNC; 900 memset(&sNC, 0, sizeof(sNC)); 901 sNC.pParse = pParse; 902 srcTab = -1; 903 assert( useTempTable==0 ); 904 if( pList ){ 905 nColumn = pList->nExpr; 906 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 907 goto insert_cleanup; 908 } 909 }else{ 910 nColumn = 0; 911 } 912 } 913 914 /* If there is no IDLIST term but the table has an integer primary 915 ** key, the set the ipkColumn variable to the integer primary key 916 ** column index in the original table definition. 917 */ 918 if( pColumn==0 && nColumn>0 ){ 919 ipkColumn = pTab->iPKey; 920 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 921 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 922 testcase( pTab->tabFlags & TF_HasVirtual ); 923 testcase( pTab->tabFlags & TF_HasStored ); 924 for(i=ipkColumn-1; i>=0; i--){ 925 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 926 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 927 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 928 ipkColumn--; 929 } 930 } 931 } 932 #endif 933 } 934 935 /* Make sure the number of columns in the source data matches the number 936 ** of columns to be inserted into the table. 937 */ 938 for(i=0; i<pTab->nCol; i++){ 939 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 940 } 941 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 942 sqlite3ErrorMsg(pParse, 943 "table %S has %d columns but %d values were supplied", 944 pTabList, 0, pTab->nCol-nHidden, nColumn); 945 goto insert_cleanup; 946 } 947 if( pColumn!=0 && nColumn!=pColumn->nId ){ 948 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 949 goto insert_cleanup; 950 } 951 952 /* Initialize the count of rows to be inserted 953 */ 954 if( (db->flags & SQLITE_CountRows)!=0 955 && !pParse->nested 956 && !pParse->pTriggerTab 957 ){ 958 regRowCount = ++pParse->nMem; 959 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 960 } 961 962 /* If this is not a view, open the table and and all indices */ 963 if( !isView ){ 964 int nIdx; 965 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 966 &iDataCur, &iIdxCur); 967 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 968 if( aRegIdx==0 ){ 969 goto insert_cleanup; 970 } 971 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 972 assert( pIdx ); 973 aRegIdx[i] = ++pParse->nMem; 974 pParse->nMem += pIdx->nColumn; 975 } 976 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 977 } 978 #ifndef SQLITE_OMIT_UPSERT 979 if( pUpsert ){ 980 Upsert *pNx; 981 if( IsVirtual(pTab) ){ 982 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 983 pTab->zName); 984 goto insert_cleanup; 985 } 986 if( pTab->pSelect ){ 987 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 988 goto insert_cleanup; 989 } 990 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 991 goto insert_cleanup; 992 } 993 pTabList->a[0].iCursor = iDataCur; 994 pNx = pUpsert; 995 do{ 996 pNx->pUpsertSrc = pTabList; 997 pNx->regData = regData; 998 pNx->iDataCur = iDataCur; 999 pNx->iIdxCur = iIdxCur; 1000 if( pNx->pUpsertTarget ){ 1001 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx); 1002 } 1003 pNx = pNx->pNextUpsert; 1004 }while( pNx!=0 ); 1005 } 1006 #endif 1007 1008 1009 /* This is the top of the main insertion loop */ 1010 if( useTempTable ){ 1011 /* This block codes the top of loop only. The complete loop is the 1012 ** following pseudocode (template 4): 1013 ** 1014 ** rewind temp table, if empty goto D 1015 ** C: loop over rows of intermediate table 1016 ** transfer values form intermediate table into <table> 1017 ** end loop 1018 ** D: ... 1019 */ 1020 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1021 addrCont = sqlite3VdbeCurrentAddr(v); 1022 }else if( pSelect ){ 1023 /* This block codes the top of loop only. The complete loop is the 1024 ** following pseudocode (template 3): 1025 ** 1026 ** C: yield X, at EOF goto D 1027 ** insert the select result into <table> from R..R+n 1028 ** goto C 1029 ** D: ... 1030 */ 1031 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1032 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1033 VdbeCoverage(v); 1034 if( ipkColumn>=0 ){ 1035 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1036 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1037 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1038 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1039 } 1040 } 1041 1042 /* Compute data for ordinary columns of the new entry. Values 1043 ** are written in storage order into registers starting with regData. 1044 ** Only ordinary columns are computed in this loop. The rowid 1045 ** (if there is one) is computed later and generated columns are 1046 ** computed after the rowid since they might depend on the value 1047 ** of the rowid. 1048 */ 1049 nHidden = 0; 1050 iRegStore = regData; assert( regData==regRowid+1 ); 1051 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1052 int k; 1053 u32 colFlags; 1054 assert( i>=nHidden ); 1055 if( i==pTab->iPKey ){ 1056 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1057 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1058 ** using excess space. The file format definition requires this extra 1059 ** NULL - we cannot optimize further by skipping the column completely */ 1060 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1061 continue; 1062 } 1063 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1064 nHidden++; 1065 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1066 /* Virtual columns do not participate in OP_MakeRecord. So back up 1067 ** iRegStore by one slot to compensate for the iRegStore++ in the 1068 ** outer for() loop */ 1069 iRegStore--; 1070 continue; 1071 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1072 /* Stored columns are computed later. But if there are BEFORE 1073 ** triggers, the slots used for stored columns will be OP_Copy-ed 1074 ** to a second block of registers, so the register needs to be 1075 ** initialized to NULL to avoid an uninitialized register read */ 1076 if( tmask & TRIGGER_BEFORE ){ 1077 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1078 } 1079 continue; 1080 }else if( pColumn==0 ){ 1081 /* Hidden columns that are not explicitly named in the INSERT 1082 ** get there default value */ 1083 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1084 continue; 1085 } 1086 } 1087 if( pColumn ){ 1088 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){} 1089 if( j>=pColumn->nId ){ 1090 /* A column not named in the insert column list gets its 1091 ** default value */ 1092 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1093 continue; 1094 } 1095 k = j; 1096 }else if( nColumn==0 ){ 1097 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1098 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1099 continue; 1100 }else{ 1101 k = i - nHidden; 1102 } 1103 1104 if( useTempTable ){ 1105 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1106 }else if( pSelect ){ 1107 if( regFromSelect!=regData ){ 1108 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1109 } 1110 }else{ 1111 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1112 } 1113 } 1114 1115 1116 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1117 */ 1118 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1119 if( tmask & TRIGGER_BEFORE ){ 1120 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1121 1122 /* build the NEW.* reference row. Note that if there is an INTEGER 1123 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1124 ** translated into a unique ID for the row. But on a BEFORE trigger, 1125 ** we do not know what the unique ID will be (because the insert has 1126 ** not happened yet) so we substitute a rowid of -1 1127 */ 1128 if( ipkColumn<0 ){ 1129 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1130 }else{ 1131 int addr1; 1132 assert( !withoutRowid ); 1133 if( useTempTable ){ 1134 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1135 }else{ 1136 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1137 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1138 } 1139 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1140 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1141 sqlite3VdbeJumpHere(v, addr1); 1142 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1143 } 1144 1145 /* Cannot have triggers on a virtual table. If it were possible, 1146 ** this block would have to account for hidden column. 1147 */ 1148 assert( !IsVirtual(pTab) ); 1149 1150 /* Copy the new data already generated. */ 1151 assert( pTab->nNVCol>0 ); 1152 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1153 1154 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1155 /* Compute the new value for generated columns after all other 1156 ** columns have already been computed. This must be done after 1157 ** computing the ROWID in case one of the generated columns 1158 ** refers to the ROWID. */ 1159 if( pTab->tabFlags & TF_HasGenerated ){ 1160 testcase( pTab->tabFlags & TF_HasVirtual ); 1161 testcase( pTab->tabFlags & TF_HasStored ); 1162 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1163 } 1164 #endif 1165 1166 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1167 ** do not attempt any conversions before assembling the record. 1168 ** If this is a real table, attempt conversions as required by the 1169 ** table column affinities. 1170 */ 1171 if( !isView ){ 1172 sqlite3TableAffinity(v, pTab, regCols+1); 1173 } 1174 1175 /* Fire BEFORE or INSTEAD OF triggers */ 1176 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1177 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1178 1179 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1180 } 1181 1182 if( !isView ){ 1183 if( IsVirtual(pTab) ){ 1184 /* The row that the VUpdate opcode will delete: none */ 1185 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1186 } 1187 if( ipkColumn>=0 ){ 1188 /* Compute the new rowid */ 1189 if( useTempTable ){ 1190 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1191 }else if( pSelect ){ 1192 /* Rowid already initialized at tag-20191021-001 */ 1193 }else{ 1194 Expr *pIpk = pList->a[ipkColumn].pExpr; 1195 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1196 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1197 appendFlag = 1; 1198 }else{ 1199 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1200 } 1201 } 1202 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1203 ** to generate a unique primary key value. 1204 */ 1205 if( !appendFlag ){ 1206 int addr1; 1207 if( !IsVirtual(pTab) ){ 1208 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1209 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1210 sqlite3VdbeJumpHere(v, addr1); 1211 }else{ 1212 addr1 = sqlite3VdbeCurrentAddr(v); 1213 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1214 } 1215 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1216 } 1217 }else if( IsVirtual(pTab) || withoutRowid ){ 1218 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1219 }else{ 1220 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1221 appendFlag = 1; 1222 } 1223 autoIncStep(pParse, regAutoinc, regRowid); 1224 1225 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1226 /* Compute the new value for generated columns after all other 1227 ** columns have already been computed. This must be done after 1228 ** computing the ROWID in case one of the generated columns 1229 ** is derived from the INTEGER PRIMARY KEY. */ 1230 if( pTab->tabFlags & TF_HasGenerated ){ 1231 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1232 } 1233 #endif 1234 1235 /* Generate code to check constraints and generate index keys and 1236 ** do the insertion. 1237 */ 1238 #ifndef SQLITE_OMIT_VIRTUALTABLE 1239 if( IsVirtual(pTab) ){ 1240 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1241 sqlite3VtabMakeWritable(pParse, pTab); 1242 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1243 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1244 sqlite3MayAbort(pParse); 1245 }else 1246 #endif 1247 { 1248 int isReplace; /* Set to true if constraints may cause a replace */ 1249 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1250 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1251 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1252 ); 1253 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1254 1255 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1256 ** constraints or (b) there are no triggers and this table is not a 1257 ** parent table in a foreign key constraint. It is safe to set the 1258 ** flag in the second case as if any REPLACE constraint is hit, an 1259 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1260 ** cursor that is disturbed. And these instructions both clear the 1261 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1262 ** functionality. */ 1263 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1264 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1265 regIns, aRegIdx, 0, appendFlag, bUseSeek 1266 ); 1267 } 1268 } 1269 1270 /* Update the count of rows that are inserted 1271 */ 1272 if( regRowCount ){ 1273 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1274 } 1275 1276 if( pTrigger ){ 1277 /* Code AFTER triggers */ 1278 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1279 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1280 } 1281 1282 /* The bottom of the main insertion loop, if the data source 1283 ** is a SELECT statement. 1284 */ 1285 sqlite3VdbeResolveLabel(v, endOfLoop); 1286 if( useTempTable ){ 1287 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1288 sqlite3VdbeJumpHere(v, addrInsTop); 1289 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1290 }else if( pSelect ){ 1291 sqlite3VdbeGoto(v, addrCont); 1292 #ifdef SQLITE_DEBUG 1293 /* If we are jumping back to an OP_Yield that is preceded by an 1294 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1295 ** OP_ReleaseReg will be included in the loop. */ 1296 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1297 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1298 sqlite3VdbeChangeP5(v, 1); 1299 } 1300 #endif 1301 sqlite3VdbeJumpHere(v, addrInsTop); 1302 } 1303 1304 insert_end: 1305 /* Update the sqlite_sequence table by storing the content of the 1306 ** maximum rowid counter values recorded while inserting into 1307 ** autoincrement tables. 1308 */ 1309 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1310 sqlite3AutoincrementEnd(pParse); 1311 } 1312 1313 /* 1314 ** Return the number of rows inserted. If this routine is 1315 ** generating code because of a call to sqlite3NestedParse(), do not 1316 ** invoke the callback function. 1317 */ 1318 if( regRowCount ){ 1319 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1320 sqlite3VdbeSetNumCols(v, 1); 1321 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1322 } 1323 1324 insert_cleanup: 1325 sqlite3SrcListDelete(db, pTabList); 1326 sqlite3ExprListDelete(db, pList); 1327 sqlite3UpsertDelete(db, pUpsert); 1328 sqlite3SelectDelete(db, pSelect); 1329 sqlite3IdListDelete(db, pColumn); 1330 sqlite3DbFree(db, aRegIdx); 1331 } 1332 1333 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1334 ** they may interfere with compilation of other functions in this file 1335 ** (or in another file, if this file becomes part of the amalgamation). */ 1336 #ifdef isView 1337 #undef isView 1338 #endif 1339 #ifdef pTrigger 1340 #undef pTrigger 1341 #endif 1342 #ifdef tmask 1343 #undef tmask 1344 #endif 1345 1346 /* 1347 ** Meanings of bits in of pWalker->eCode for 1348 ** sqlite3ExprReferencesUpdatedColumn() 1349 */ 1350 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1351 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1352 1353 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1354 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1355 ** expression node references any of the 1356 ** columns that are being modifed by an UPDATE statement. 1357 */ 1358 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1359 if( pExpr->op==TK_COLUMN ){ 1360 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1361 if( pExpr->iColumn>=0 ){ 1362 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1363 pWalker->eCode |= CKCNSTRNT_COLUMN; 1364 } 1365 }else{ 1366 pWalker->eCode |= CKCNSTRNT_ROWID; 1367 } 1368 } 1369 return WRC_Continue; 1370 } 1371 1372 /* 1373 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1374 ** only columns that are modified by the UPDATE are those for which 1375 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1376 ** 1377 ** Return true if CHECK constraint pExpr uses any of the 1378 ** changing columns (or the rowid if it is changing). In other words, 1379 ** return true if this CHECK constraint must be validated for 1380 ** the new row in the UPDATE statement. 1381 ** 1382 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1383 ** The operation of this routine is the same - return true if an only if 1384 ** the expression uses one or more of columns identified by the second and 1385 ** third arguments. 1386 */ 1387 int sqlite3ExprReferencesUpdatedColumn( 1388 Expr *pExpr, /* The expression to be checked */ 1389 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1390 int chngRowid /* True if UPDATE changes the rowid */ 1391 ){ 1392 Walker w; 1393 memset(&w, 0, sizeof(w)); 1394 w.eCode = 0; 1395 w.xExprCallback = checkConstraintExprNode; 1396 w.u.aiCol = aiChng; 1397 sqlite3WalkExpr(&w, pExpr); 1398 if( !chngRowid ){ 1399 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1400 w.eCode &= ~CKCNSTRNT_ROWID; 1401 } 1402 testcase( w.eCode==0 ); 1403 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1404 testcase( w.eCode==CKCNSTRNT_ROWID ); 1405 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1406 return w.eCode!=0; 1407 } 1408 1409 /* 1410 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1411 ** the indexes of a table in the order provided in the Table->pIndex list. 1412 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1413 ** the indexes in a different order. The following data structures accomplish 1414 ** this. 1415 ** 1416 ** The IndexIterator object is used to walk through all of the indexes 1417 ** of a table in either Index.pNext order, or in some other order established 1418 ** by an array of IndexListTerm objects. 1419 */ 1420 typedef struct IndexListTerm IndexListTerm; 1421 typedef struct IndexIterator IndexIterator; 1422 struct IndexIterator { 1423 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1424 int i; /* Index of the current item from the list */ 1425 union { 1426 struct { /* Use this object for eType==0: A Index.pNext list */ 1427 Index *pIdx; /* The current Index */ 1428 } lx; 1429 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1430 int nIdx; /* Size of the array */ 1431 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1432 } ax; 1433 } u; 1434 }; 1435 1436 /* When IndexIterator.eType==1, then each index is an array of instances 1437 ** of the following object 1438 */ 1439 struct IndexListTerm { 1440 Index *p; /* The index */ 1441 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1442 }; 1443 1444 /* Return the first index on the list */ 1445 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1446 assert( pIter->i==0 ); 1447 if( pIter->eType ){ 1448 *pIx = pIter->u.ax.aIdx[0].ix; 1449 return pIter->u.ax.aIdx[0].p; 1450 }else{ 1451 *pIx = 0; 1452 return pIter->u.lx.pIdx; 1453 } 1454 } 1455 1456 /* Return the next index from the list. Return NULL when out of indexes */ 1457 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1458 if( pIter->eType ){ 1459 int i = ++pIter->i; 1460 if( i>=pIter->u.ax.nIdx ){ 1461 *pIx = i; 1462 return 0; 1463 } 1464 *pIx = pIter->u.ax.aIdx[i].ix; 1465 return pIter->u.ax.aIdx[i].p; 1466 }else{ 1467 ++(*pIx); 1468 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1469 return pIter->u.lx.pIdx; 1470 } 1471 } 1472 1473 /* 1474 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1475 ** on table pTab. 1476 ** 1477 ** The regNewData parameter is the first register in a range that contains 1478 ** the data to be inserted or the data after the update. There will be 1479 ** pTab->nCol+1 registers in this range. The first register (the one 1480 ** that regNewData points to) will contain the new rowid, or NULL in the 1481 ** case of a WITHOUT ROWID table. The second register in the range will 1482 ** contain the content of the first table column. The third register will 1483 ** contain the content of the second table column. And so forth. 1484 ** 1485 ** The regOldData parameter is similar to regNewData except that it contains 1486 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1487 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1488 ** checking regOldData for zero. 1489 ** 1490 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1491 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1492 ** might be modified by the UPDATE. If pkChng is false, then the key of 1493 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1494 ** 1495 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1496 ** was explicitly specified as part of the INSERT statement. If pkChng 1497 ** is zero, it means that the either rowid is computed automatically or 1498 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1499 ** pkChng will only be true if the INSERT statement provides an integer 1500 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1501 ** 1502 ** The code generated by this routine will store new index entries into 1503 ** registers identified by aRegIdx[]. No index entry is created for 1504 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1505 ** the same as the order of indices on the linked list of indices 1506 ** at pTab->pIndex. 1507 ** 1508 ** (2019-05-07) The generated code also creates a new record for the 1509 ** main table, if pTab is a rowid table, and stores that record in the 1510 ** register identified by aRegIdx[nIdx] - in other words in the first 1511 ** entry of aRegIdx[] past the last index. It is important that the 1512 ** record be generated during constraint checks to avoid affinity changes 1513 ** to the register content that occur after constraint checks but before 1514 ** the new record is inserted. 1515 ** 1516 ** The caller must have already opened writeable cursors on the main 1517 ** table and all applicable indices (that is to say, all indices for which 1518 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1519 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1520 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1521 ** for the first index in the pTab->pIndex list. Cursors for other indices 1522 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1523 ** 1524 ** This routine also generates code to check constraints. NOT NULL, 1525 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1526 ** then the appropriate action is performed. There are five possible 1527 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1528 ** 1529 ** Constraint type Action What Happens 1530 ** --------------- ---------- ---------------------------------------- 1531 ** any ROLLBACK The current transaction is rolled back and 1532 ** sqlite3_step() returns immediately with a 1533 ** return code of SQLITE_CONSTRAINT. 1534 ** 1535 ** any ABORT Back out changes from the current command 1536 ** only (do not do a complete rollback) then 1537 ** cause sqlite3_step() to return immediately 1538 ** with SQLITE_CONSTRAINT. 1539 ** 1540 ** any FAIL Sqlite3_step() returns immediately with a 1541 ** return code of SQLITE_CONSTRAINT. The 1542 ** transaction is not rolled back and any 1543 ** changes to prior rows are retained. 1544 ** 1545 ** any IGNORE The attempt in insert or update the current 1546 ** row is skipped, without throwing an error. 1547 ** Processing continues with the next row. 1548 ** (There is an immediate jump to ignoreDest.) 1549 ** 1550 ** NOT NULL REPLACE The NULL value is replace by the default 1551 ** value for that column. If the default value 1552 ** is NULL, the action is the same as ABORT. 1553 ** 1554 ** UNIQUE REPLACE The other row that conflicts with the row 1555 ** being inserted is removed. 1556 ** 1557 ** CHECK REPLACE Illegal. The results in an exception. 1558 ** 1559 ** Which action to take is determined by the overrideError parameter. 1560 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1561 ** is used. Or if pParse->onError==OE_Default then the onError value 1562 ** for the constraint is used. 1563 */ 1564 void sqlite3GenerateConstraintChecks( 1565 Parse *pParse, /* The parser context */ 1566 Table *pTab, /* The table being inserted or updated */ 1567 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1568 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1569 int iIdxCur, /* First index cursor */ 1570 int regNewData, /* First register in a range holding values to insert */ 1571 int regOldData, /* Previous content. 0 for INSERTs */ 1572 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1573 u8 overrideError, /* Override onError to this if not OE_Default */ 1574 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1575 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1576 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1577 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1578 ){ 1579 Vdbe *v; /* VDBE under constrution */ 1580 Index *pIdx; /* Pointer to one of the indices */ 1581 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1582 sqlite3 *db; /* Database connection */ 1583 int i; /* loop counter */ 1584 int ix; /* Index loop counter */ 1585 int nCol; /* Number of columns */ 1586 int onError; /* Conflict resolution strategy */ 1587 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1588 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1589 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1590 u8 isUpdate; /* True if this is an UPDATE operation */ 1591 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1592 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1593 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1594 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1595 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1596 /* Variables associated with retesting uniqueness constraints after 1597 ** replace triggers fire have run */ 1598 int regTrigCnt; /* Register used to count replace trigger invocations */ 1599 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1600 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1601 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1602 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1603 IndexIterator sIdxIter; /* Index iterator */ 1604 1605 isUpdate = regOldData!=0; 1606 db = pParse->db; 1607 v = pParse->pVdbe; 1608 assert( v!=0 ); 1609 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1610 nCol = pTab->nCol; 1611 1612 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1613 ** normal rowid tables. nPkField is the number of key fields in the 1614 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1615 ** number of fields in the true primary key of the table. */ 1616 if( HasRowid(pTab) ){ 1617 pPk = 0; 1618 nPkField = 1; 1619 }else{ 1620 pPk = sqlite3PrimaryKeyIndex(pTab); 1621 nPkField = pPk->nKeyCol; 1622 } 1623 1624 /* Record that this module has started */ 1625 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1626 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1627 1628 /* Test all NOT NULL constraints. 1629 */ 1630 if( pTab->tabFlags & TF_HasNotNull ){ 1631 int b2ndPass = 0; /* True if currently running 2nd pass */ 1632 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1633 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1634 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1635 for(i=0; i<nCol; i++){ 1636 int iReg; /* Register holding column value */ 1637 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1638 int isGenerated; /* non-zero if column is generated */ 1639 onError = pCol->notNull; 1640 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1641 if( i==pTab->iPKey ){ 1642 continue; /* ROWID is never NULL */ 1643 } 1644 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1645 if( isGenerated && !b2ndPass ){ 1646 nGenerated++; 1647 continue; /* Generated columns processed on 2nd pass */ 1648 } 1649 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1650 /* Do not check NOT NULL on columns that do not change */ 1651 continue; 1652 } 1653 if( overrideError!=OE_Default ){ 1654 onError = overrideError; 1655 }else if( onError==OE_Default ){ 1656 onError = OE_Abort; 1657 } 1658 if( onError==OE_Replace ){ 1659 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1660 || pCol->pDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1661 ){ 1662 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1663 testcase( pCol->colFlags & COLFLAG_STORED ); 1664 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1665 onError = OE_Abort; 1666 }else{ 1667 assert( !isGenerated ); 1668 } 1669 }else if( b2ndPass && !isGenerated ){ 1670 continue; 1671 } 1672 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1673 || onError==OE_Ignore || onError==OE_Replace ); 1674 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1675 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1676 switch( onError ){ 1677 case OE_Replace: { 1678 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1679 VdbeCoverage(v); 1680 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1681 nSeenReplace++; 1682 sqlite3ExprCodeCopy(pParse, pCol->pDflt, iReg); 1683 sqlite3VdbeJumpHere(v, addr1); 1684 break; 1685 } 1686 case OE_Abort: 1687 sqlite3MayAbort(pParse); 1688 /* no break */ deliberate_fall_through 1689 case OE_Rollback: 1690 case OE_Fail: { 1691 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1692 pCol->zName); 1693 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1694 onError, iReg); 1695 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1696 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1697 VdbeCoverage(v); 1698 break; 1699 } 1700 default: { 1701 assert( onError==OE_Ignore ); 1702 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1703 VdbeCoverage(v); 1704 break; 1705 } 1706 } /* end switch(onError) */ 1707 } /* end loop i over columns */ 1708 if( nGenerated==0 && nSeenReplace==0 ){ 1709 /* If there are no generated columns with NOT NULL constraints 1710 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1711 ** pass is sufficient */ 1712 break; 1713 } 1714 if( b2ndPass ) break; /* Never need more than 2 passes */ 1715 b2ndPass = 1; 1716 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1717 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1718 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1719 ** first pass, recomputed values for all generated columns, as 1720 ** those values might depend on columns affected by the REPLACE. 1721 */ 1722 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1723 } 1724 #endif 1725 } /* end of 2-pass loop */ 1726 } /* end if( has-not-null-constraints ) */ 1727 1728 /* Test all CHECK constraints 1729 */ 1730 #ifndef SQLITE_OMIT_CHECK 1731 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1732 ExprList *pCheck = pTab->pCheck; 1733 pParse->iSelfTab = -(regNewData+1); 1734 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1735 for(i=0; i<pCheck->nExpr; i++){ 1736 int allOk; 1737 Expr *pCopy; 1738 Expr *pExpr = pCheck->a[i].pExpr; 1739 if( aiChng 1740 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1741 ){ 1742 /* The check constraints do not reference any of the columns being 1743 ** updated so there is no point it verifying the check constraint */ 1744 continue; 1745 } 1746 if( bAffinityDone==0 ){ 1747 sqlite3TableAffinity(v, pTab, regNewData+1); 1748 bAffinityDone = 1; 1749 } 1750 allOk = sqlite3VdbeMakeLabel(pParse); 1751 sqlite3VdbeVerifyAbortable(v, onError); 1752 pCopy = sqlite3ExprDup(db, pExpr, 0); 1753 if( !db->mallocFailed ){ 1754 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1755 } 1756 sqlite3ExprDelete(db, pCopy); 1757 if( onError==OE_Ignore ){ 1758 sqlite3VdbeGoto(v, ignoreDest); 1759 }else{ 1760 char *zName = pCheck->a[i].zEName; 1761 assert( zName!=0 || pParse->db->mallocFailed ); 1762 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1763 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1764 onError, zName, P4_TRANSIENT, 1765 P5_ConstraintCheck); 1766 } 1767 sqlite3VdbeResolveLabel(v, allOk); 1768 } 1769 pParse->iSelfTab = 0; 1770 } 1771 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1772 1773 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1774 ** order: 1775 ** 1776 ** (1) OE_Update 1777 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1778 ** (3) OE_Replace 1779 ** 1780 ** OE_Fail and OE_Ignore must happen before any changes are made. 1781 ** OE_Update guarantees that only a single row will change, so it 1782 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1783 ** could happen in any order, but they are grouped up front for 1784 ** convenience. 1785 ** 1786 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1787 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1788 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1789 ** constraint before any others, so it had to be moved. 1790 ** 1791 ** Constraint checking code is generated in this order: 1792 ** (A) The rowid constraint 1793 ** (B) Unique index constraints that do not have OE_Replace as their 1794 ** default conflict resolution strategy 1795 ** (C) Unique index that do use OE_Replace by default. 1796 ** 1797 ** The ordering of (2) and (3) is accomplished by making sure the linked 1798 ** list of indexes attached to a table puts all OE_Replace indexes last 1799 ** in the list. See sqlite3CreateIndex() for where that happens. 1800 */ 1801 sIdxIter.eType = 0; 1802 sIdxIter.i = 0; 1803 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1804 sIdxIter.u.lx.pIdx = pTab->pIndex; 1805 if( pUpsert ){ 1806 if( pUpsert->pUpsertTarget==0 ){ 1807 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1808 assert( pUpsert->pNextUpsert==0 ); 1809 if( pUpsert->isDoUpdate==0 ){ 1810 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1811 ** Make all unique constraint resolution be OE_Ignore */ 1812 overrideError = OE_Ignore; 1813 pUpsert = 0; 1814 }else{ 1815 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1816 overrideError = OE_Update; 1817 } 1818 }else if( pTab->pIndex!=0 ){ 1819 /* Otherwise, we'll need to run the IndexListTerm array version of the 1820 ** iterator to ensure that all of the ON CONFLICT conditions are 1821 ** checked first and in order. */ 1822 int nIdx, jj; 1823 u64 nByte; 1824 Upsert *pTerm; 1825 u8 *bUsed; 1826 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1827 assert( aRegIdx[nIdx]>0 ); 1828 } 1829 sIdxIter.eType = 1; 1830 sIdxIter.u.ax.nIdx = nIdx; 1831 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1832 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1833 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1834 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1835 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1836 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1837 if( pTerm->pUpsertTarget==0 ) break; 1838 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1839 jj = 0; 1840 pIdx = pTab->pIndex; 1841 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1842 pIdx = pIdx->pNext; 1843 jj++; 1844 } 1845 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1846 bUsed[jj] = 1; 1847 sIdxIter.u.ax.aIdx[i].p = pIdx; 1848 sIdxIter.u.ax.aIdx[i].ix = jj; 1849 i++; 1850 } 1851 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1852 if( bUsed[jj] ) continue; 1853 sIdxIter.u.ax.aIdx[i].p = pIdx; 1854 sIdxIter.u.ax.aIdx[i].ix = jj; 1855 i++; 1856 } 1857 assert( i==nIdx ); 1858 } 1859 } 1860 1861 /* Determine if it is possible that triggers (either explicitly coded 1862 ** triggers or FK resolution actions) might run as a result of deletes 1863 ** that happen when OE_Replace conflict resolution occurs. (Call these 1864 ** "replace triggers".) If any replace triggers run, we will need to 1865 ** recheck all of the uniqueness constraints after they have all run. 1866 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1867 ** 1868 ** If replace triggers are a possibility, then 1869 ** 1870 ** (1) Allocate register regTrigCnt and initialize it to zero. 1871 ** That register will count the number of replace triggers that 1872 ** fire. Constraint recheck only occurs if the number is positive. 1873 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1874 ** (3) Initialize addrRecheck and lblRecheckOk 1875 ** 1876 ** The uniqueness rechecking code will create a series of tests to run 1877 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1878 ** used to link together these tests which are separated from each other 1879 ** in the generate bytecode. 1880 */ 1881 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1882 /* There are not DELETE triggers nor FK constraints. No constraint 1883 ** rechecks are needed. */ 1884 pTrigger = 0; 1885 regTrigCnt = 0; 1886 }else{ 1887 if( db->flags&SQLITE_RecTriggers ){ 1888 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1889 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1890 }else{ 1891 pTrigger = 0; 1892 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1893 } 1894 if( regTrigCnt ){ 1895 /* Replace triggers might exist. Allocate the counter and 1896 ** initialize it to zero. */ 1897 regTrigCnt = ++pParse->nMem; 1898 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1899 VdbeComment((v, "trigger count")); 1900 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1901 addrRecheck = lblRecheckOk; 1902 } 1903 } 1904 1905 /* If rowid is changing, make sure the new rowid does not previously 1906 ** exist in the table. 1907 */ 1908 if( pkChng && pPk==0 ){ 1909 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1910 1911 /* Figure out what action to take in case of a rowid collision */ 1912 onError = pTab->keyConf; 1913 if( overrideError!=OE_Default ){ 1914 onError = overrideError; 1915 }else if( onError==OE_Default ){ 1916 onError = OE_Abort; 1917 } 1918 1919 /* figure out whether or not upsert applies in this case */ 1920 if( pUpsert ){ 1921 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 1922 if( pUpsertClause!=0 ){ 1923 if( pUpsertClause->isDoUpdate==0 ){ 1924 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1925 }else{ 1926 onError = OE_Update; /* DO UPDATE */ 1927 } 1928 } 1929 if( pUpsertClause!=pUpsert ){ 1930 /* The first ON CONFLICT clause has a conflict target other than 1931 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 1932 ** and then come back here and deal with the IPK afterwards */ 1933 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 1934 } 1935 } 1936 1937 /* If the response to a rowid conflict is REPLACE but the response 1938 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1939 ** to defer the running of the rowid conflict checking until after 1940 ** the UNIQUE constraints have run. 1941 */ 1942 if( onError==OE_Replace /* IPK rule is REPLACE */ 1943 && onError!=overrideError /* Rules for other constraints are different */ 1944 && pTab->pIndex /* There exist other constraints */ 1945 ){ 1946 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1947 VdbeComment((v, "defer IPK REPLACE until last")); 1948 } 1949 1950 if( isUpdate ){ 1951 /* pkChng!=0 does not mean that the rowid has changed, only that 1952 ** it might have changed. Skip the conflict logic below if the rowid 1953 ** is unchanged. */ 1954 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1955 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1956 VdbeCoverage(v); 1957 } 1958 1959 /* Check to see if the new rowid already exists in the table. Skip 1960 ** the following conflict logic if it does not. */ 1961 VdbeNoopComment((v, "uniqueness check for ROWID")); 1962 sqlite3VdbeVerifyAbortable(v, onError); 1963 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1964 VdbeCoverage(v); 1965 1966 switch( onError ){ 1967 default: { 1968 onError = OE_Abort; 1969 /* no break */ deliberate_fall_through 1970 } 1971 case OE_Rollback: 1972 case OE_Abort: 1973 case OE_Fail: { 1974 testcase( onError==OE_Rollback ); 1975 testcase( onError==OE_Abort ); 1976 testcase( onError==OE_Fail ); 1977 sqlite3RowidConstraint(pParse, onError, pTab); 1978 break; 1979 } 1980 case OE_Replace: { 1981 /* If there are DELETE triggers on this table and the 1982 ** recursive-triggers flag is set, call GenerateRowDelete() to 1983 ** remove the conflicting row from the table. This will fire 1984 ** the triggers and remove both the table and index b-tree entries. 1985 ** 1986 ** Otherwise, if there are no triggers or the recursive-triggers 1987 ** flag is not set, but the table has one or more indexes, call 1988 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1989 ** only. The table b-tree entry will be replaced by the new entry 1990 ** when it is inserted. 1991 ** 1992 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1993 ** also invoke MultiWrite() to indicate that this VDBE may require 1994 ** statement rollback (if the statement is aborted after the delete 1995 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1996 ** but being more selective here allows statements like: 1997 ** 1998 ** REPLACE INTO t(rowid) VALUES($newrowid) 1999 ** 2000 ** to run without a statement journal if there are no indexes on the 2001 ** table. 2002 */ 2003 if( regTrigCnt ){ 2004 sqlite3MultiWrite(pParse); 2005 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2006 regNewData, 1, 0, OE_Replace, 1, -1); 2007 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2008 nReplaceTrig++; 2009 }else{ 2010 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2011 assert( HasRowid(pTab) ); 2012 /* This OP_Delete opcode fires the pre-update-hook only. It does 2013 ** not modify the b-tree. It is more efficient to let the coming 2014 ** OP_Insert replace the existing entry than it is to delete the 2015 ** existing entry and then insert a new one. */ 2016 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2017 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2018 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2019 if( pTab->pIndex ){ 2020 sqlite3MultiWrite(pParse); 2021 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2022 } 2023 } 2024 seenReplace = 1; 2025 break; 2026 } 2027 #ifndef SQLITE_OMIT_UPSERT 2028 case OE_Update: { 2029 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2030 /* no break */ deliberate_fall_through 2031 } 2032 #endif 2033 case OE_Ignore: { 2034 testcase( onError==OE_Ignore ); 2035 sqlite3VdbeGoto(v, ignoreDest); 2036 break; 2037 } 2038 } 2039 sqlite3VdbeResolveLabel(v, addrRowidOk); 2040 if( pUpsert && pUpsertClause!=pUpsert ){ 2041 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2042 }else if( ipkTop ){ 2043 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2044 sqlite3VdbeJumpHere(v, ipkTop-1); 2045 } 2046 } 2047 2048 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2049 ** index and making sure that duplicate entries do not already exist. 2050 ** Compute the revised record entries for indices as we go. 2051 ** 2052 ** This loop also handles the case of the PRIMARY KEY index for a 2053 ** WITHOUT ROWID table. 2054 */ 2055 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2056 pIdx; 2057 pIdx = indexIteratorNext(&sIdxIter, &ix) 2058 ){ 2059 int regIdx; /* Range of registers hold conent for pIdx */ 2060 int regR; /* Range of registers holding conflicting PK */ 2061 int iThisCur; /* Cursor for this UNIQUE index */ 2062 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2063 int addrConflictCk; /* First opcode in the conflict check logic */ 2064 2065 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2066 if( pUpsert ){ 2067 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2068 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2069 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2070 } 2071 } 2072 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2073 if( bAffinityDone==0 ){ 2074 sqlite3TableAffinity(v, pTab, regNewData+1); 2075 bAffinityDone = 1; 2076 } 2077 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2078 iThisCur = iIdxCur+ix; 2079 2080 2081 /* Skip partial indices for which the WHERE clause is not true */ 2082 if( pIdx->pPartIdxWhere ){ 2083 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2084 pParse->iSelfTab = -(regNewData+1); 2085 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2086 SQLITE_JUMPIFNULL); 2087 pParse->iSelfTab = 0; 2088 } 2089 2090 /* Create a record for this index entry as it should appear after 2091 ** the insert or update. Store that record in the aRegIdx[ix] register 2092 */ 2093 regIdx = aRegIdx[ix]+1; 2094 for(i=0; i<pIdx->nColumn; i++){ 2095 int iField = pIdx->aiColumn[i]; 2096 int x; 2097 if( iField==XN_EXPR ){ 2098 pParse->iSelfTab = -(regNewData+1); 2099 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2100 pParse->iSelfTab = 0; 2101 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2102 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2103 x = regNewData; 2104 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2105 VdbeComment((v, "rowid")); 2106 }else{ 2107 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2108 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2109 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2110 VdbeComment((v, "%s", pTab->aCol[iField].zName)); 2111 } 2112 } 2113 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2114 VdbeComment((v, "for %s", pIdx->zName)); 2115 #ifdef SQLITE_ENABLE_NULL_TRIM 2116 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2117 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2118 } 2119 #endif 2120 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2121 2122 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2123 ** of a WITHOUT ROWID table and there has been no change the 2124 ** primary key, then no collision is possible. The collision detection 2125 ** logic below can all be skipped. */ 2126 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2127 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2128 continue; 2129 } 2130 2131 /* Find out what action to take in case there is a uniqueness conflict */ 2132 onError = pIdx->onError; 2133 if( onError==OE_None ){ 2134 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2135 continue; /* pIdx is not a UNIQUE index */ 2136 } 2137 if( overrideError!=OE_Default ){ 2138 onError = overrideError; 2139 }else if( onError==OE_Default ){ 2140 onError = OE_Abort; 2141 } 2142 2143 /* Figure out if the upsert clause applies to this index */ 2144 if( pUpsertClause ){ 2145 if( pUpsertClause->isDoUpdate==0 ){ 2146 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2147 }else{ 2148 onError = OE_Update; /* DO UPDATE */ 2149 } 2150 } 2151 2152 /* Collision detection may be omitted if all of the following are true: 2153 ** (1) The conflict resolution algorithm is REPLACE 2154 ** (2) The table is a WITHOUT ROWID table 2155 ** (3) There are no secondary indexes on the table 2156 ** (4) No delete triggers need to be fired if there is a conflict 2157 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2158 ** 2159 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2160 ** must be explicitly deleted in order to ensure any pre-update hook 2161 ** is invoked. */ 2162 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2163 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2164 && pPk==pIdx /* Condition 2 */ 2165 && onError==OE_Replace /* Condition 1 */ 2166 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2167 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2168 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2169 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 2170 ){ 2171 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2172 continue; 2173 } 2174 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2175 2176 /* Check to see if the new index entry will be unique */ 2177 sqlite3VdbeVerifyAbortable(v, onError); 2178 addrConflictCk = 2179 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2180 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2181 2182 /* Generate code to handle collisions */ 2183 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2184 if( isUpdate || onError==OE_Replace ){ 2185 if( HasRowid(pTab) ){ 2186 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2187 /* Conflict only if the rowid of the existing index entry 2188 ** is different from old-rowid */ 2189 if( isUpdate ){ 2190 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2191 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2192 VdbeCoverage(v); 2193 } 2194 }else{ 2195 int x; 2196 /* Extract the PRIMARY KEY from the end of the index entry and 2197 ** store it in registers regR..regR+nPk-1 */ 2198 if( pIdx!=pPk ){ 2199 for(i=0; i<pPk->nKeyCol; i++){ 2200 assert( pPk->aiColumn[i]>=0 ); 2201 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2202 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2203 VdbeComment((v, "%s.%s", pTab->zName, 2204 pTab->aCol[pPk->aiColumn[i]].zName)); 2205 } 2206 } 2207 if( isUpdate ){ 2208 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2209 ** table, only conflict if the new PRIMARY KEY values are actually 2210 ** different from the old. 2211 ** 2212 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2213 ** of the matched index row are different from the original PRIMARY 2214 ** KEY values of this row before the update. */ 2215 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2216 int op = OP_Ne; 2217 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2218 2219 for(i=0; i<pPk->nKeyCol; i++){ 2220 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2221 x = pPk->aiColumn[i]; 2222 assert( x>=0 ); 2223 if( i==(pPk->nKeyCol-1) ){ 2224 addrJump = addrUniqueOk; 2225 op = OP_Eq; 2226 } 2227 x = sqlite3TableColumnToStorage(pTab, x); 2228 sqlite3VdbeAddOp4(v, op, 2229 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2230 ); 2231 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2232 VdbeCoverageIf(v, op==OP_Eq); 2233 VdbeCoverageIf(v, op==OP_Ne); 2234 } 2235 } 2236 } 2237 } 2238 2239 /* Generate code that executes if the new index entry is not unique */ 2240 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2241 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2242 switch( onError ){ 2243 case OE_Rollback: 2244 case OE_Abort: 2245 case OE_Fail: { 2246 testcase( onError==OE_Rollback ); 2247 testcase( onError==OE_Abort ); 2248 testcase( onError==OE_Fail ); 2249 sqlite3UniqueConstraint(pParse, onError, pIdx); 2250 break; 2251 } 2252 #ifndef SQLITE_OMIT_UPSERT 2253 case OE_Update: { 2254 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2255 /* no break */ deliberate_fall_through 2256 } 2257 #endif 2258 case OE_Ignore: { 2259 testcase( onError==OE_Ignore ); 2260 sqlite3VdbeGoto(v, ignoreDest); 2261 break; 2262 } 2263 default: { 2264 int nConflictCk; /* Number of opcodes in conflict check logic */ 2265 2266 assert( onError==OE_Replace ); 2267 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2268 assert( nConflictCk>0 ); 2269 testcase( nConflictCk>1 ); 2270 if( regTrigCnt ){ 2271 sqlite3MultiWrite(pParse); 2272 nReplaceTrig++; 2273 } 2274 if( pTrigger && isUpdate ){ 2275 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2276 } 2277 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2278 regR, nPkField, 0, OE_Replace, 2279 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2280 if( pTrigger && isUpdate ){ 2281 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2282 } 2283 if( regTrigCnt ){ 2284 int addrBypass; /* Jump destination to bypass recheck logic */ 2285 2286 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2287 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2288 VdbeComment((v, "bypass recheck")); 2289 2290 /* Here we insert code that will be invoked after all constraint 2291 ** checks have run, if and only if one or more replace triggers 2292 ** fired. */ 2293 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2294 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2295 if( pIdx->pPartIdxWhere ){ 2296 /* Bypass the recheck if this partial index is not defined 2297 ** for the current row */ 2298 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2299 VdbeCoverage(v); 2300 } 2301 /* Copy the constraint check code from above, except change 2302 ** the constraint-ok jump destination to be the address of 2303 ** the next retest block */ 2304 while( nConflictCk>0 ){ 2305 VdbeOp x; /* Conflict check opcode to copy */ 2306 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2307 ** Hence, make a complete copy of the opcode, rather than using 2308 ** a pointer to the opcode. */ 2309 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2310 if( x.opcode!=OP_IdxRowid ){ 2311 int p2; /* New P2 value for copied conflict check opcode */ 2312 const char *zP4; 2313 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2314 p2 = lblRecheckOk; 2315 }else{ 2316 p2 = x.p2; 2317 } 2318 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2319 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2320 sqlite3VdbeChangeP5(v, x.p5); 2321 VdbeCoverageIf(v, p2!=x.p2); 2322 } 2323 nConflictCk--; 2324 addrConflictCk++; 2325 } 2326 /* If the retest fails, issue an abort */ 2327 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2328 2329 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2330 } 2331 seenReplace = 1; 2332 break; 2333 } 2334 } 2335 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2336 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2337 if( pUpsertClause 2338 && upsertIpkReturn 2339 && sqlite3UpsertNextIsIPK(pUpsertClause) 2340 ){ 2341 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2342 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2343 upsertIpkReturn = 0; 2344 } 2345 } 2346 2347 /* If the IPK constraint is a REPLACE, run it last */ 2348 if( ipkTop ){ 2349 sqlite3VdbeGoto(v, ipkTop); 2350 VdbeComment((v, "Do IPK REPLACE")); 2351 sqlite3VdbeJumpHere(v, ipkBottom); 2352 } 2353 2354 /* Recheck all uniqueness constraints after replace triggers have run */ 2355 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2356 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2357 if( nReplaceTrig ){ 2358 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2359 if( !pPk ){ 2360 if( isUpdate ){ 2361 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2362 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2363 VdbeCoverage(v); 2364 } 2365 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2366 VdbeCoverage(v); 2367 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2368 }else{ 2369 sqlite3VdbeGoto(v, addrRecheck); 2370 } 2371 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2372 } 2373 2374 /* Generate the table record */ 2375 if( HasRowid(pTab) ){ 2376 int regRec = aRegIdx[ix]; 2377 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2378 sqlite3SetMakeRecordP5(v, pTab); 2379 if( !bAffinityDone ){ 2380 sqlite3TableAffinity(v, pTab, 0); 2381 } 2382 } 2383 2384 *pbMayReplace = seenReplace; 2385 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2386 } 2387 2388 #ifdef SQLITE_ENABLE_NULL_TRIM 2389 /* 2390 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2391 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2392 ** 2393 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2394 */ 2395 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2396 u16 i; 2397 2398 /* Records with omitted columns are only allowed for schema format 2399 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2400 if( pTab->pSchema->file_format<2 ) return; 2401 2402 for(i=pTab->nCol-1; i>0; i--){ 2403 if( pTab->aCol[i].pDflt!=0 ) break; 2404 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2405 } 2406 sqlite3VdbeChangeP5(v, i+1); 2407 } 2408 #endif 2409 2410 /* 2411 ** This routine generates code to finish the INSERT or UPDATE operation 2412 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2413 ** A consecutive range of registers starting at regNewData contains the 2414 ** rowid and the content to be inserted. 2415 ** 2416 ** The arguments to this routine should be the same as the first six 2417 ** arguments to sqlite3GenerateConstraintChecks. 2418 */ 2419 void sqlite3CompleteInsertion( 2420 Parse *pParse, /* The parser context */ 2421 Table *pTab, /* the table into which we are inserting */ 2422 int iDataCur, /* Cursor of the canonical data source */ 2423 int iIdxCur, /* First index cursor */ 2424 int regNewData, /* Range of content */ 2425 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2426 int update_flags, /* True for UPDATE, False for INSERT */ 2427 int appendBias, /* True if this is likely to be an append */ 2428 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2429 ){ 2430 Vdbe *v; /* Prepared statements under construction */ 2431 Index *pIdx; /* An index being inserted or updated */ 2432 u8 pik_flags; /* flag values passed to the btree insert */ 2433 int i; /* Loop counter */ 2434 2435 assert( update_flags==0 2436 || update_flags==OPFLAG_ISUPDATE 2437 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2438 ); 2439 2440 v = pParse->pVdbe; 2441 assert( v!=0 ); 2442 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 2443 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2444 /* All REPLACE indexes are at the end of the list */ 2445 assert( pIdx->onError!=OE_Replace 2446 || pIdx->pNext==0 2447 || pIdx->pNext->onError==OE_Replace ); 2448 if( aRegIdx[i]==0 ) continue; 2449 if( pIdx->pPartIdxWhere ){ 2450 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2451 VdbeCoverage(v); 2452 } 2453 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2454 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2455 assert( pParse->nested==0 ); 2456 pik_flags |= OPFLAG_NCHANGE; 2457 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2458 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2459 if( update_flags==0 ){ 2460 int r = sqlite3GetTempReg(pParse); 2461 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2462 sqlite3VdbeAddOp4(v, OP_Insert, 2463 iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE 2464 ); 2465 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2466 sqlite3ReleaseTempReg(pParse, r); 2467 } 2468 #endif 2469 } 2470 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2471 aRegIdx[i]+1, 2472 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2473 sqlite3VdbeChangeP5(v, pik_flags); 2474 } 2475 if( !HasRowid(pTab) ) return; 2476 if( pParse->nested ){ 2477 pik_flags = 0; 2478 }else{ 2479 pik_flags = OPFLAG_NCHANGE; 2480 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2481 } 2482 if( appendBias ){ 2483 pik_flags |= OPFLAG_APPEND; 2484 } 2485 if( useSeekResult ){ 2486 pik_flags |= OPFLAG_USESEEKRESULT; 2487 } 2488 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2489 if( !pParse->nested ){ 2490 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2491 } 2492 sqlite3VdbeChangeP5(v, pik_flags); 2493 } 2494 2495 /* 2496 ** Allocate cursors for the pTab table and all its indices and generate 2497 ** code to open and initialized those cursors. 2498 ** 2499 ** The cursor for the object that contains the complete data (normally 2500 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2501 ** ROWID table) is returned in *piDataCur. The first index cursor is 2502 ** returned in *piIdxCur. The number of indices is returned. 2503 ** 2504 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2505 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2506 ** If iBase is negative, then allocate the next available cursor. 2507 ** 2508 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2509 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2510 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2511 ** pTab->pIndex list. 2512 ** 2513 ** If pTab is a virtual table, then this routine is a no-op and the 2514 ** *piDataCur and *piIdxCur values are left uninitialized. 2515 */ 2516 int sqlite3OpenTableAndIndices( 2517 Parse *pParse, /* Parsing context */ 2518 Table *pTab, /* Table to be opened */ 2519 int op, /* OP_OpenRead or OP_OpenWrite */ 2520 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2521 int iBase, /* Use this for the table cursor, if there is one */ 2522 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2523 int *piDataCur, /* Write the database source cursor number here */ 2524 int *piIdxCur /* Write the first index cursor number here */ 2525 ){ 2526 int i; 2527 int iDb; 2528 int iDataCur; 2529 Index *pIdx; 2530 Vdbe *v; 2531 2532 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2533 assert( op==OP_OpenWrite || p5==0 ); 2534 if( IsVirtual(pTab) ){ 2535 /* This routine is a no-op for virtual tables. Leave the output 2536 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 2537 ** can detect if they are used by mistake in the caller. */ 2538 return 0; 2539 } 2540 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2541 v = pParse->pVdbe; 2542 assert( v!=0 ); 2543 if( iBase<0 ) iBase = pParse->nTab; 2544 iDataCur = iBase++; 2545 if( piDataCur ) *piDataCur = iDataCur; 2546 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2547 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2548 }else{ 2549 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2550 } 2551 if( piIdxCur ) *piIdxCur = iBase; 2552 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2553 int iIdxCur = iBase++; 2554 assert( pIdx->pSchema==pTab->pSchema ); 2555 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2556 if( piDataCur ) *piDataCur = iIdxCur; 2557 p5 = 0; 2558 } 2559 if( aToOpen==0 || aToOpen[i+1] ){ 2560 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2561 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2562 sqlite3VdbeChangeP5(v, p5); 2563 VdbeComment((v, "%s", pIdx->zName)); 2564 } 2565 } 2566 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2567 return i; 2568 } 2569 2570 2571 #ifdef SQLITE_TEST 2572 /* 2573 ** The following global variable is incremented whenever the 2574 ** transfer optimization is used. This is used for testing 2575 ** purposes only - to make sure the transfer optimization really 2576 ** is happening when it is supposed to. 2577 */ 2578 int sqlite3_xferopt_count; 2579 #endif /* SQLITE_TEST */ 2580 2581 2582 #ifndef SQLITE_OMIT_XFER_OPT 2583 /* 2584 ** Check to see if index pSrc is compatible as a source of data 2585 ** for index pDest in an insert transfer optimization. The rules 2586 ** for a compatible index: 2587 ** 2588 ** * The index is over the same set of columns 2589 ** * The same DESC and ASC markings occurs on all columns 2590 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2591 ** * The same collating sequence on each column 2592 ** * The index has the exact same WHERE clause 2593 */ 2594 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2595 int i; 2596 assert( pDest && pSrc ); 2597 assert( pDest->pTable!=pSrc->pTable ); 2598 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2599 return 0; /* Different number of columns */ 2600 } 2601 if( pDest->onError!=pSrc->onError ){ 2602 return 0; /* Different conflict resolution strategies */ 2603 } 2604 for(i=0; i<pSrc->nKeyCol; i++){ 2605 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2606 return 0; /* Different columns indexed */ 2607 } 2608 if( pSrc->aiColumn[i]==XN_EXPR ){ 2609 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2610 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2611 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2612 return 0; /* Different expressions in the index */ 2613 } 2614 } 2615 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2616 return 0; /* Different sort orders */ 2617 } 2618 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2619 return 0; /* Different collating sequences */ 2620 } 2621 } 2622 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2623 return 0; /* Different WHERE clauses */ 2624 } 2625 2626 /* If no test above fails then the indices must be compatible */ 2627 return 1; 2628 } 2629 2630 /* 2631 ** Attempt the transfer optimization on INSERTs of the form 2632 ** 2633 ** INSERT INTO tab1 SELECT * FROM tab2; 2634 ** 2635 ** The xfer optimization transfers raw records from tab2 over to tab1. 2636 ** Columns are not decoded and reassembled, which greatly improves 2637 ** performance. Raw index records are transferred in the same way. 2638 ** 2639 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2640 ** There are lots of rules for determining compatibility - see comments 2641 ** embedded in the code for details. 2642 ** 2643 ** This routine returns TRUE if the optimization is guaranteed to be used. 2644 ** Sometimes the xfer optimization will only work if the destination table 2645 ** is empty - a factor that can only be determined at run-time. In that 2646 ** case, this routine generates code for the xfer optimization but also 2647 ** does a test to see if the destination table is empty and jumps over the 2648 ** xfer optimization code if the test fails. In that case, this routine 2649 ** returns FALSE so that the caller will know to go ahead and generate 2650 ** an unoptimized transfer. This routine also returns FALSE if there 2651 ** is no chance that the xfer optimization can be applied. 2652 ** 2653 ** This optimization is particularly useful at making VACUUM run faster. 2654 */ 2655 static int xferOptimization( 2656 Parse *pParse, /* Parser context */ 2657 Table *pDest, /* The table we are inserting into */ 2658 Select *pSelect, /* A SELECT statement to use as the data source */ 2659 int onError, /* How to handle constraint errors */ 2660 int iDbDest /* The database of pDest */ 2661 ){ 2662 sqlite3 *db = pParse->db; 2663 ExprList *pEList; /* The result set of the SELECT */ 2664 Table *pSrc; /* The table in the FROM clause of SELECT */ 2665 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2666 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 2667 int i; /* Loop counter */ 2668 int iDbSrc; /* The database of pSrc */ 2669 int iSrc, iDest; /* Cursors from source and destination */ 2670 int addr1, addr2; /* Loop addresses */ 2671 int emptyDestTest = 0; /* Address of test for empty pDest */ 2672 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2673 Vdbe *v; /* The VDBE we are building */ 2674 int regAutoinc; /* Memory register used by AUTOINC */ 2675 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2676 int regData, regRowid; /* Registers holding data and rowid */ 2677 2678 if( pSelect==0 ){ 2679 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2680 } 2681 if( pParse->pWith || pSelect->pWith ){ 2682 /* Do not attempt to process this query if there are an WITH clauses 2683 ** attached to it. Proceeding may generate a false "no such table: xxx" 2684 ** error if pSelect reads from a CTE named "xxx". */ 2685 return 0; 2686 } 2687 if( sqlite3TriggerList(pParse, pDest) ){ 2688 return 0; /* tab1 must not have triggers */ 2689 } 2690 #ifndef SQLITE_OMIT_VIRTUALTABLE 2691 if( IsVirtual(pDest) ){ 2692 return 0; /* tab1 must not be a virtual table */ 2693 } 2694 #endif 2695 if( onError==OE_Default ){ 2696 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2697 if( onError==OE_Default ) onError = OE_Abort; 2698 } 2699 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2700 if( pSelect->pSrc->nSrc!=1 ){ 2701 return 0; /* FROM clause must have exactly one term */ 2702 } 2703 if( pSelect->pSrc->a[0].pSelect ){ 2704 return 0; /* FROM clause cannot contain a subquery */ 2705 } 2706 if( pSelect->pWhere ){ 2707 return 0; /* SELECT may not have a WHERE clause */ 2708 } 2709 if( pSelect->pOrderBy ){ 2710 return 0; /* SELECT may not have an ORDER BY clause */ 2711 } 2712 /* Do not need to test for a HAVING clause. If HAVING is present but 2713 ** there is no ORDER BY, we will get an error. */ 2714 if( pSelect->pGroupBy ){ 2715 return 0; /* SELECT may not have a GROUP BY clause */ 2716 } 2717 if( pSelect->pLimit ){ 2718 return 0; /* SELECT may not have a LIMIT clause */ 2719 } 2720 if( pSelect->pPrior ){ 2721 return 0; /* SELECT may not be a compound query */ 2722 } 2723 if( pSelect->selFlags & SF_Distinct ){ 2724 return 0; /* SELECT may not be DISTINCT */ 2725 } 2726 pEList = pSelect->pEList; 2727 assert( pEList!=0 ); 2728 if( pEList->nExpr!=1 ){ 2729 return 0; /* The result set must have exactly one column */ 2730 } 2731 assert( pEList->a[0].pExpr ); 2732 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2733 return 0; /* The result set must be the special operator "*" */ 2734 } 2735 2736 /* At this point we have established that the statement is of the 2737 ** correct syntactic form to participate in this optimization. Now 2738 ** we have to check the semantics. 2739 */ 2740 pItem = pSelect->pSrc->a; 2741 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2742 if( pSrc==0 ){ 2743 return 0; /* FROM clause does not contain a real table */ 2744 } 2745 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2746 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2747 return 0; /* tab1 and tab2 may not be the same table */ 2748 } 2749 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2750 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2751 } 2752 #ifndef SQLITE_OMIT_VIRTUALTABLE 2753 if( IsVirtual(pSrc) ){ 2754 return 0; /* tab2 must not be a virtual table */ 2755 } 2756 #endif 2757 if( pSrc->pSelect ){ 2758 return 0; /* tab2 may not be a view */ 2759 } 2760 if( pDest->nCol!=pSrc->nCol ){ 2761 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2762 } 2763 if( pDest->iPKey!=pSrc->iPKey ){ 2764 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2765 } 2766 for(i=0; i<pDest->nCol; i++){ 2767 Column *pDestCol = &pDest->aCol[i]; 2768 Column *pSrcCol = &pSrc->aCol[i]; 2769 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2770 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2771 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2772 ){ 2773 return 0; /* Neither table may have __hidden__ columns */ 2774 } 2775 #endif 2776 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2777 /* Even if tables t1 and t2 have identical schemas, if they contain 2778 ** generated columns, then this statement is semantically incorrect: 2779 ** 2780 ** INSERT INTO t2 SELECT * FROM t1; 2781 ** 2782 ** The reason is that generated column values are returned by the 2783 ** the SELECT statement on the right but the INSERT statement on the 2784 ** left wants them to be omitted. 2785 ** 2786 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2787 ** to do a bulk transfer all of the content from t1 over to t2. 2788 ** 2789 ** We could, in theory, disable this (except for internal use by the 2790 ** VACUUM command where it is actually needed). But why do that? It 2791 ** seems harmless enough, and provides a useful service. 2792 */ 2793 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2794 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2795 return 0; /* Both columns have the same generated-column type */ 2796 } 2797 /* But the transfer is only allowed if both the source and destination 2798 ** tables have the exact same expressions for generated columns. 2799 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2800 */ 2801 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2802 if( sqlite3ExprCompare(0, pSrcCol->pDflt, pDestCol->pDflt, -1)!=0 ){ 2803 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2804 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2805 return 0; /* Different generator expressions */ 2806 } 2807 } 2808 #endif 2809 if( pDestCol->affinity!=pSrcCol->affinity ){ 2810 return 0; /* Affinity must be the same on all columns */ 2811 } 2812 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2813 return 0; /* Collating sequence must be the same on all columns */ 2814 } 2815 if( pDestCol->notNull && !pSrcCol->notNull ){ 2816 return 0; /* tab2 must be NOT NULL if tab1 is */ 2817 } 2818 /* Default values for second and subsequent columns need to match. */ 2819 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2820 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2821 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2822 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2823 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2824 pSrcCol->pDflt->u.zToken)!=0) 2825 ){ 2826 return 0; /* Default values must be the same for all columns */ 2827 } 2828 } 2829 } 2830 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2831 if( IsUniqueIndex(pDestIdx) ){ 2832 destHasUniqueIdx = 1; 2833 } 2834 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2835 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2836 } 2837 if( pSrcIdx==0 ){ 2838 return 0; /* pDestIdx has no corresponding index in pSrc */ 2839 } 2840 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2841 && sqlite3FaultSim(411)==SQLITE_OK ){ 2842 /* The sqlite3FaultSim() call allows this corruption test to be 2843 ** bypassed during testing, in order to exercise other corruption tests 2844 ** further downstream. */ 2845 return 0; /* Corrupt schema - two indexes on the same btree */ 2846 } 2847 } 2848 #ifndef SQLITE_OMIT_CHECK 2849 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2850 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2851 } 2852 #endif 2853 #ifndef SQLITE_OMIT_FOREIGN_KEY 2854 /* Disallow the transfer optimization if the destination table constains 2855 ** any foreign key constraints. This is more restrictive than necessary. 2856 ** But the main beneficiary of the transfer optimization is the VACUUM 2857 ** command, and the VACUUM command disables foreign key constraints. So 2858 ** the extra complication to make this rule less restrictive is probably 2859 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2860 */ 2861 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2862 return 0; 2863 } 2864 #endif 2865 if( (db->flags & SQLITE_CountRows)!=0 ){ 2866 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2867 } 2868 2869 /* If we get this far, it means that the xfer optimization is at 2870 ** least a possibility, though it might only work if the destination 2871 ** table (tab1) is initially empty. 2872 */ 2873 #ifdef SQLITE_TEST 2874 sqlite3_xferopt_count++; 2875 #endif 2876 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2877 v = sqlite3GetVdbe(pParse); 2878 sqlite3CodeVerifySchema(pParse, iDbSrc); 2879 iSrc = pParse->nTab++; 2880 iDest = pParse->nTab++; 2881 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2882 regData = sqlite3GetTempReg(pParse); 2883 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 2884 regRowid = sqlite3GetTempReg(pParse); 2885 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2886 assert( HasRowid(pDest) || destHasUniqueIdx ); 2887 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2888 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2889 || destHasUniqueIdx /* (2) */ 2890 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2891 )){ 2892 /* In some circumstances, we are able to run the xfer optimization 2893 ** only if the destination table is initially empty. Unless the 2894 ** DBFLAG_Vacuum flag is set, this block generates code to make 2895 ** that determination. If DBFLAG_Vacuum is set, then the destination 2896 ** table is always empty. 2897 ** 2898 ** Conditions under which the destination must be empty: 2899 ** 2900 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2901 ** (If the destination is not initially empty, the rowid fields 2902 ** of index entries might need to change.) 2903 ** 2904 ** (2) The destination has a unique index. (The xfer optimization 2905 ** is unable to test uniqueness.) 2906 ** 2907 ** (3) onError is something other than OE_Abort and OE_Rollback. 2908 */ 2909 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2910 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2911 sqlite3VdbeJumpHere(v, addr1); 2912 } 2913 if( HasRowid(pSrc) ){ 2914 u8 insFlags; 2915 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2916 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2917 if( pDest->iPKey>=0 ){ 2918 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2919 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 2920 sqlite3VdbeVerifyAbortable(v, onError); 2921 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2922 VdbeCoverage(v); 2923 sqlite3RowidConstraint(pParse, onError, pDest); 2924 sqlite3VdbeJumpHere(v, addr2); 2925 } 2926 autoIncStep(pParse, regAutoinc, regRowid); 2927 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 2928 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2929 }else{ 2930 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2931 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2932 } 2933 2934 if( db->mDbFlags & DBFLAG_Vacuum ){ 2935 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2936 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 2937 }else{ 2938 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 2939 } 2940 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2941 if( db->xPreUpdateCallback ){ 2942 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2943 insFlags &= ~OPFLAG_PREFORMAT; 2944 }else 2945 #endif 2946 { 2947 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 2948 } 2949 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2950 (char*)pDest, P4_TABLE); 2951 sqlite3VdbeChangeP5(v, insFlags); 2952 2953 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2954 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2955 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2956 }else{ 2957 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2958 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2959 } 2960 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2961 u8 idxInsFlags = 0; 2962 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2963 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2964 } 2965 assert( pSrcIdx ); 2966 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2967 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2968 VdbeComment((v, "%s", pSrcIdx->zName)); 2969 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2970 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2971 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2972 VdbeComment((v, "%s", pDestIdx->zName)); 2973 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2974 if( db->mDbFlags & DBFLAG_Vacuum ){ 2975 /* This INSERT command is part of a VACUUM operation, which guarantees 2976 ** that the destination table is empty. If all indexed columns use 2977 ** collation sequence BINARY, then it can also be assumed that the 2978 ** index will be populated by inserting keys in strictly sorted 2979 ** order. In this case, instead of seeking within the b-tree as part 2980 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2981 ** OP_IdxInsert to seek to the point within the b-tree where each key 2982 ** should be inserted. This is faster. 2983 ** 2984 ** If any of the indexed columns use a collation sequence other than 2985 ** BINARY, this optimization is disabled. This is because the user 2986 ** might change the definition of a collation sequence and then run 2987 ** a VACUUM command. In that case keys may not be written in strictly 2988 ** sorted order. */ 2989 for(i=0; i<pSrcIdx->nColumn; i++){ 2990 const char *zColl = pSrcIdx->azColl[i]; 2991 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2992 } 2993 if( i==pSrcIdx->nColumn ){ 2994 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 2995 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2996 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 2997 } 2998 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2999 idxInsFlags |= OPFLAG_NCHANGE; 3000 } 3001 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3002 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3003 } 3004 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3005 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3006 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3007 sqlite3VdbeJumpHere(v, addr1); 3008 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3009 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3010 } 3011 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3012 sqlite3ReleaseTempReg(pParse, regRowid); 3013 sqlite3ReleaseTempReg(pParse, regData); 3014 if( emptyDestTest ){ 3015 sqlite3AutoincrementEnd(pParse); 3016 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3017 sqlite3VdbeJumpHere(v, emptyDestTest); 3018 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3019 return 0; 3020 }else{ 3021 return 1; 3022 } 3023 } 3024 #endif /* SQLITE_OMIT_XFER_OPT */ 3025