xref: /sqlite-3.40.0/src/insert.c (revision 1c826650)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 **
15 ** $Id: insert.c,v 1.249 2008/08/20 16:35:10 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 /*
20 ** Set P4 of the most recently inserted opcode to a column affinity
21 ** string for index pIdx. A column affinity string has one character
22 ** for each column in the table, according to the affinity of the column:
23 **
24 **  Character      Column affinity
25 **  ------------------------------
26 **  'a'            TEXT
27 **  'b'            NONE
28 **  'c'            NUMERIC
29 **  'd'            INTEGER
30 **  'e'            REAL
31 **
32 ** An extra 'b' is appended to the end of the string to cover the
33 ** rowid that appears as the last column in every index.
34 */
35 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
36   if( !pIdx->zColAff ){
37     /* The first time a column affinity string for a particular index is
38     ** required, it is allocated and populated here. It is then stored as
39     ** a member of the Index structure for subsequent use.
40     **
41     ** The column affinity string will eventually be deleted by
42     ** sqliteDeleteIndex() when the Index structure itself is cleaned
43     ** up.
44     */
45     int n;
46     Table *pTab = pIdx->pTable;
47     sqlite3 *db = sqlite3VdbeDb(v);
48     pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2);
49     if( !pIdx->zColAff ){
50       db->mallocFailed = 1;
51       return;
52     }
53     for(n=0; n<pIdx->nColumn; n++){
54       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
55     }
56     pIdx->zColAff[n++] = SQLITE_AFF_NONE;
57     pIdx->zColAff[n] = 0;
58   }
59 
60   sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
61 }
62 
63 /*
64 ** Set P4 of the most recently inserted opcode to a column affinity
65 ** string for table pTab. A column affinity string has one character
66 ** for each column indexed by the index, according to the affinity of the
67 ** column:
68 **
69 **  Character      Column affinity
70 **  ------------------------------
71 **  'a'            TEXT
72 **  'b'            NONE
73 **  'c'            NUMERIC
74 **  'd'            INTEGER
75 **  'e'            REAL
76 */
77 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
78   /* The first time a column affinity string for a particular table
79   ** is required, it is allocated and populated here. It is then
80   ** stored as a member of the Table structure for subsequent use.
81   **
82   ** The column affinity string will eventually be deleted by
83   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
84   */
85   if( !pTab->zColAff ){
86     char *zColAff;
87     int i;
88     sqlite3 *db = sqlite3VdbeDb(v);
89 
90     zColAff = (char *)sqlite3Malloc(pTab->nCol+1);
91     if( !zColAff ){
92       db->mallocFailed = 1;
93       return;
94     }
95 
96     for(i=0; i<pTab->nCol; i++){
97       zColAff[i] = pTab->aCol[i].affinity;
98     }
99     zColAff[pTab->nCol] = '\0';
100 
101     pTab->zColAff = zColAff;
102   }
103 
104   sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
105 }
106 
107 /*
108 ** Return non-zero if the table pTab in database iDb or any of its indices
109 ** have been opened at any point in the VDBE program beginning at location
110 ** iStartAddr throught the end of the program.  This is used to see if
111 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
112 ** run without using temporary table for the results of the SELECT.
113 */
114 static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
115   int i;
116   int iEnd = sqlite3VdbeCurrentAddr(v);
117   for(i=iStartAddr; i<iEnd; i++){
118     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
119     assert( pOp!=0 );
120     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
121       Index *pIndex;
122       int tnum = pOp->p2;
123       if( tnum==pTab->tnum ){
124         return 1;
125       }
126       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
127         if( tnum==pIndex->tnum ){
128           return 1;
129         }
130       }
131     }
132 #ifndef SQLITE_OMIT_VIRTUALTABLE
133     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){
134       assert( pOp->p4.pVtab!=0 );
135       assert( pOp->p4type==P4_VTAB );
136       return 1;
137     }
138 #endif
139   }
140   return 0;
141 }
142 
143 #ifndef SQLITE_OMIT_AUTOINCREMENT
144 /*
145 ** Write out code to initialize the autoincrement logic.  This code
146 ** looks up the current autoincrement value in the sqlite_sequence
147 ** table and stores that value in a register.  Code generated by
148 ** autoIncStep() will keep that register holding the largest
149 ** rowid value.  Code generated by autoIncEnd() will write the new
150 ** largest value of the counter back into the sqlite_sequence table.
151 **
152 ** This routine returns the index of the mem[] cell that contains
153 ** the maximum rowid counter.
154 **
155 ** Three consecutive registers are allocated by this routine.  The
156 ** first two hold the name of the target table and the maximum rowid
157 ** inserted into the target table, respectively.
158 ** The third holds the rowid in sqlite_sequence where we will
159 ** write back the revised maximum rowid.  This routine returns the
160 ** index of the second of these three registers.
161 */
162 static int autoIncBegin(
163   Parse *pParse,      /* Parsing context */
164   int iDb,            /* Index of the database holding pTab */
165   Table *pTab         /* The table we are writing to */
166 ){
167   int memId = 0;      /* Register holding maximum rowid */
168   if( pTab->tabFlags & TF_Autoincrement ){
169     Vdbe *v = pParse->pVdbe;
170     Db *pDb = &pParse->db->aDb[iDb];
171     int iCur = pParse->nTab;
172     int addr;               /* Address of the top of the loop */
173     assert( v );
174     pParse->nMem++;         /* Holds name of table */
175     memId = ++pParse->nMem;
176     pParse->nMem++;
177     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
178     addr = sqlite3VdbeCurrentAddr(v);
179     sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
180     sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+9);
181     sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
182     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
183     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
184     sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
185     sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
186     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
187     sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
188     sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
189     sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
190   }
191   return memId;
192 }
193 
194 /*
195 ** Update the maximum rowid for an autoincrement calculation.
196 **
197 ** This routine should be called when the top of the stack holds a
198 ** new rowid that is about to be inserted.  If that new rowid is
199 ** larger than the maximum rowid in the memId memory cell, then the
200 ** memory cell is updated.  The stack is unchanged.
201 */
202 static void autoIncStep(Parse *pParse, int memId, int regRowid){
203   if( memId>0 ){
204     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
205   }
206 }
207 
208 /*
209 ** After doing one or more inserts, the maximum rowid is stored
210 ** in reg[memId].  Generate code to write this value back into the
211 ** the sqlite_sequence table.
212 */
213 static void autoIncEnd(
214   Parse *pParse,     /* The parsing context */
215   int iDb,           /* Index of the database holding pTab */
216   Table *pTab,       /* Table we are inserting into */
217   int memId          /* Memory cell holding the maximum rowid */
218 ){
219   if( pTab->tabFlags & TF_Autoincrement ){
220     int iCur = pParse->nTab;
221     Vdbe *v = pParse->pVdbe;
222     Db *pDb = &pParse->db->aDb[iDb];
223     int j1;
224     int iRec = ++pParse->nMem;    /* Memory cell used for record */
225 
226     assert( v );
227     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
228     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
229     sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
230     sqlite3VdbeJumpHere(v, j1);
231     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
232     sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1);
233     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
234     sqlite3VdbeAddOp1(v, OP_Close, iCur);
235   }
236 }
237 #else
238 /*
239 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
240 ** above are all no-ops
241 */
242 # define autoIncBegin(A,B,C) (0)
243 # define autoIncStep(A,B,C)
244 # define autoIncEnd(A,B,C,D)
245 #endif /* SQLITE_OMIT_AUTOINCREMENT */
246 
247 
248 /* Forward declaration */
249 static int xferOptimization(
250   Parse *pParse,        /* Parser context */
251   Table *pDest,         /* The table we are inserting into */
252   Select *pSelect,      /* A SELECT statement to use as the data source */
253   int onError,          /* How to handle constraint errors */
254   int iDbDest           /* The database of pDest */
255 );
256 
257 /*
258 ** This routine is call to handle SQL of the following forms:
259 **
260 **    insert into TABLE (IDLIST) values(EXPRLIST)
261 **    insert into TABLE (IDLIST) select
262 **
263 ** The IDLIST following the table name is always optional.  If omitted,
264 ** then a list of all columns for the table is substituted.  The IDLIST
265 ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
266 **
267 ** The pList parameter holds EXPRLIST in the first form of the INSERT
268 ** statement above, and pSelect is NULL.  For the second form, pList is
269 ** NULL and pSelect is a pointer to the select statement used to generate
270 ** data for the insert.
271 **
272 ** The code generated follows one of four templates.  For a simple
273 ** select with data coming from a VALUES clause, the code executes
274 ** once straight down through.  Pseudo-code follows (we call this
275 ** the "1st template"):
276 **
277 **         open write cursor to <table> and its indices
278 **         puts VALUES clause expressions onto the stack
279 **         write the resulting record into <table>
280 **         cleanup
281 **
282 ** The three remaining templates assume the statement is of the form
283 **
284 **   INSERT INTO <table> SELECT ...
285 **
286 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
287 ** in other words if the SELECT pulls all columns from a single table
288 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
289 ** if <table2> and <table1> are distinct tables but have identical
290 ** schemas, including all the same indices, then a special optimization
291 ** is invoked that copies raw records from <table2> over to <table1>.
292 ** See the xferOptimization() function for the implementation of this
293 ** template.  This is the 2nd template.
294 **
295 **         open a write cursor to <table>
296 **         open read cursor on <table2>
297 **         transfer all records in <table2> over to <table>
298 **         close cursors
299 **         foreach index on <table>
300 **           open a write cursor on the <table> index
301 **           open a read cursor on the corresponding <table2> index
302 **           transfer all records from the read to the write cursors
303 **           close cursors
304 **         end foreach
305 **
306 ** The 3rd template is for when the second template does not apply
307 ** and the SELECT clause does not read from <table> at any time.
308 ** The generated code follows this template:
309 **
310 **         EOF <- 0
311 **         X <- A
312 **         goto B
313 **      A: setup for the SELECT
314 **         loop over the rows in the SELECT
315 **           load values into registers R..R+n
316 **           yield X
317 **         end loop
318 **         cleanup after the SELECT
319 **         EOF <- 1
320 **         yield X
321 **         goto A
322 **      B: open write cursor to <table> and its indices
323 **      C: yield X
324 **         if EOF goto D
325 **         insert the select result into <table> from R..R+n
326 **         goto C
327 **      D: cleanup
328 **
329 ** The 4th template is used if the insert statement takes its
330 ** values from a SELECT but the data is being inserted into a table
331 ** that is also read as part of the SELECT.  In the third form,
332 ** we have to use a intermediate table to store the results of
333 ** the select.  The template is like this:
334 **
335 **         EOF <- 0
336 **         X <- A
337 **         goto B
338 **      A: setup for the SELECT
339 **         loop over the tables in the SELECT
340 **           load value into register R..R+n
341 **           yield X
342 **         end loop
343 **         cleanup after the SELECT
344 **         EOF <- 1
345 **         yield X
346 **         halt-error
347 **      B: open temp table
348 **      L: yield X
349 **         if EOF goto M
350 **         insert row from R..R+n into temp table
351 **         goto L
352 **      M: open write cursor to <table> and its indices
353 **         rewind temp table
354 **      C: loop over rows of intermediate table
355 **           transfer values form intermediate table into <table>
356 **         end loop
357 **      D: cleanup
358 */
359 void sqlite3Insert(
360   Parse *pParse,        /* Parser context */
361   SrcList *pTabList,    /* Name of table into which we are inserting */
362   ExprList *pList,      /* List of values to be inserted */
363   Select *pSelect,      /* A SELECT statement to use as the data source */
364   IdList *pColumn,      /* Column names corresponding to IDLIST. */
365   int onError           /* How to handle constraint errors */
366 ){
367   sqlite3 *db;          /* The main database structure */
368   Table *pTab;          /* The table to insert into.  aka TABLE */
369   char *zTab;           /* Name of the table into which we are inserting */
370   const char *zDb;      /* Name of the database holding this table */
371   int i, j, idx;        /* Loop counters */
372   Vdbe *v;              /* Generate code into this virtual machine */
373   Index *pIdx;          /* For looping over indices of the table */
374   int nColumn;          /* Number of columns in the data */
375   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
376   int baseCur = 0;      /* VDBE Cursor number for pTab */
377   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
378   int endOfLoop;        /* Label for the end of the insertion loop */
379   int useTempTable = 0; /* Store SELECT results in intermediate table */
380   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
381   int addrInsTop = 0;   /* Jump to label "D" */
382   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
383   int addrSelect = 0;   /* Address of coroutine that implements the SELECT */
384   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
385   int newIdx = -1;      /* Cursor for the NEW pseudo-table */
386   int iDb;              /* Index of database holding TABLE */
387   Db *pDb;              /* The database containing table being inserted into */
388   int appendFlag = 0;   /* True if the insert is likely to be an append */
389 
390   /* Register allocations */
391   int regFromSelect;    /* Base register for data coming from SELECT */
392   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
393   int regRowCount = 0;  /* Memory cell used for the row counter */
394   int regIns;           /* Block of regs holding rowid+data being inserted */
395   int regRowid;         /* registers holding insert rowid */
396   int regData;          /* register holding first column to insert */
397   int regRecord;        /* Holds the assemblied row record */
398   int regEof;           /* Register recording end of SELECT data */
399   int *aRegIdx = 0;     /* One register allocated to each index */
400 
401 
402 #ifndef SQLITE_OMIT_TRIGGER
403   int isView;                 /* True if attempting to insert into a view */
404   int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
405 #endif
406 
407   db = pParse->db;
408   if( pParse->nErr || db->mallocFailed ){
409     goto insert_cleanup;
410   }
411 
412   /* Locate the table into which we will be inserting new information.
413   */
414   assert( pTabList->nSrc==1 );
415   zTab = pTabList->a[0].zName;
416   if( zTab==0 ) goto insert_cleanup;
417   pTab = sqlite3SrcListLookup(pParse, pTabList);
418   if( pTab==0 ){
419     goto insert_cleanup;
420   }
421   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
422   assert( iDb<db->nDb );
423   pDb = &db->aDb[iDb];
424   zDb = pDb->zName;
425   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
426     goto insert_cleanup;
427   }
428 
429   /* Figure out if we have any triggers and if the table being
430   ** inserted into is a view
431   */
432 #ifndef SQLITE_OMIT_TRIGGER
433   triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
434   isView = pTab->pSelect!=0;
435 #else
436 # define triggers_exist 0
437 # define isView 0
438 #endif
439 #ifdef SQLITE_OMIT_VIEW
440 # undef isView
441 # define isView 0
442 #endif
443 
444   /* Ensure that:
445   *  (a) the table is not read-only,
446   *  (b) that if it is a view then ON INSERT triggers exist
447   */
448   if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
449     goto insert_cleanup;
450   }
451   assert( pTab!=0 );
452 
453   /* If pTab is really a view, make sure it has been initialized.
454   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
455   ** module table).
456   */
457   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
458     goto insert_cleanup;
459   }
460 
461   /* Allocate a VDBE
462   */
463   v = sqlite3GetVdbe(pParse);
464   if( v==0 ) goto insert_cleanup;
465   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
466   sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
467 
468   /* if there are row triggers, allocate a temp table for new.* references. */
469   if( triggers_exist ){
470     newIdx = pParse->nTab++;
471   }
472 
473 #ifndef SQLITE_OMIT_XFER_OPT
474   /* If the statement is of the form
475   **
476   **       INSERT INTO <table1> SELECT * FROM <table2>;
477   **
478   ** Then special optimizations can be applied that make the transfer
479   ** very fast and which reduce fragmentation of indices.
480   **
481   ** This is the 2nd template.
482   */
483   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
484     assert( !triggers_exist );
485     assert( pList==0 );
486     goto insert_cleanup;
487   }
488 #endif /* SQLITE_OMIT_XFER_OPT */
489 
490   /* If this is an AUTOINCREMENT table, look up the sequence number in the
491   ** sqlite_sequence table and store it in memory cell regAutoinc.
492   */
493   regAutoinc = autoIncBegin(pParse, iDb, pTab);
494 
495   /* Figure out how many columns of data are supplied.  If the data
496   ** is coming from a SELECT statement, then generate a co-routine that
497   ** produces a single row of the SELECT on each invocation.  The
498   ** co-routine is the common header to the 3rd and 4th templates.
499   */
500   if( pSelect ){
501     /* Data is coming from a SELECT.  Generate code to implement that SELECT
502     ** as a co-routine.  The code is common to both the 3rd and 4th
503     ** templates:
504     **
505     **         EOF <- 0
506     **         X <- A
507     **         goto B
508     **      A: setup for the SELECT
509     **         loop over the tables in the SELECT
510     **           load value into register R..R+n
511     **           yield X
512     **         end loop
513     **         cleanup after the SELECT
514     **         EOF <- 1
515     **         yield X
516     **         halt-error
517     **
518     ** On each invocation of the co-routine, it puts a single row of the
519     ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
520     ** (These output registers are allocated by sqlite3Select().)  When
521     ** the SELECT completes, it sets the EOF flag stored in regEof.
522     */
523     int rc, j1;
524 
525     regEof = ++pParse->nMem;
526     sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof);      /* EOF <- 0 */
527     VdbeComment((v, "SELECT eof flag"));
528     sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
529     addrSelect = sqlite3VdbeCurrentAddr(v)+2;
530     sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
531     j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
532     VdbeComment((v, "Jump over SELECT coroutine"));
533 
534     /* Resolve the expressions in the SELECT statement and execute it. */
535     rc = sqlite3Select(pParse, pSelect, &dest);
536     if( rc || pParse->nErr || db->mallocFailed ){
537       goto insert_cleanup;
538     }
539     sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof);         /* EOF <- 1 */
540     sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);   /* yield X */
541     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
542     VdbeComment((v, "End of SELECT coroutine"));
543     sqlite3VdbeJumpHere(v, j1);                          /* label B: */
544 
545     regFromSelect = dest.iMem;
546     assert( pSelect->pEList );
547     nColumn = pSelect->pEList->nExpr;
548     assert( dest.nMem==nColumn );
549 
550     /* Set useTempTable to TRUE if the result of the SELECT statement
551     ** should be written into a temporary table (template 4).  Set to
552     ** FALSE if each* row of the SELECT can be written directly into
553     ** the destination table (template 3).
554     **
555     ** A temp table must be used if the table being updated is also one
556     ** of the tables being read by the SELECT statement.  Also use a
557     ** temp table in the case of row triggers.
558     */
559     if( triggers_exist || readsTable(v, addrSelect, iDb, pTab) ){
560       useTempTable = 1;
561     }
562 
563     if( useTempTable ){
564       /* Invoke the coroutine to extract information from the SELECT
565       ** and add it to a transient table srcTab.  The code generated
566       ** here is from the 4th template:
567       **
568       **      B: open temp table
569       **      L: yield X
570       **         if EOF goto M
571       **         insert row from R..R+n into temp table
572       **         goto L
573       **      M: ...
574       */
575       int regRec;      /* Register to hold packed record */
576       int regRowid;    /* Register to hold temp table ROWID */
577       int addrTop;     /* Label "L" */
578       int addrIf;      /* Address of jump to M */
579 
580       srcTab = pParse->nTab++;
581       regRec = sqlite3GetTempReg(pParse);
582       regRowid = sqlite3GetTempReg(pParse);
583       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
584       addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
585       addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
586       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
587       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid);
588       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid);
589       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
590       sqlite3VdbeJumpHere(v, addrIf);
591       sqlite3ReleaseTempReg(pParse, regRec);
592       sqlite3ReleaseTempReg(pParse, regRowid);
593     }
594   }else{
595     /* This is the case if the data for the INSERT is coming from a VALUES
596     ** clause
597     */
598     NameContext sNC;
599     memset(&sNC, 0, sizeof(sNC));
600     sNC.pParse = pParse;
601     srcTab = -1;
602     assert( useTempTable==0 );
603     nColumn = pList ? pList->nExpr : 0;
604     for(i=0; i<nColumn; i++){
605       if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
606         goto insert_cleanup;
607       }
608     }
609   }
610 
611   /* Make sure the number of columns in the source data matches the number
612   ** of columns to be inserted into the table.
613   */
614   if( IsVirtual(pTab) ){
615     for(i=0; i<pTab->nCol; i++){
616       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
617     }
618   }
619   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
620     sqlite3ErrorMsg(pParse,
621        "table %S has %d columns but %d values were supplied",
622        pTabList, 0, pTab->nCol, nColumn);
623     goto insert_cleanup;
624   }
625   if( pColumn!=0 && nColumn!=pColumn->nId ){
626     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
627     goto insert_cleanup;
628   }
629 
630   /* If the INSERT statement included an IDLIST term, then make sure
631   ** all elements of the IDLIST really are columns of the table and
632   ** remember the column indices.
633   **
634   ** If the table has an INTEGER PRIMARY KEY column and that column
635   ** is named in the IDLIST, then record in the keyColumn variable
636   ** the index into IDLIST of the primary key column.  keyColumn is
637   ** the index of the primary key as it appears in IDLIST, not as
638   ** is appears in the original table.  (The index of the primary
639   ** key in the original table is pTab->iPKey.)
640   */
641   if( pColumn ){
642     for(i=0; i<pColumn->nId; i++){
643       pColumn->a[i].idx = -1;
644     }
645     for(i=0; i<pColumn->nId; i++){
646       for(j=0; j<pTab->nCol; j++){
647         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
648           pColumn->a[i].idx = j;
649           if( j==pTab->iPKey ){
650             keyColumn = i;
651           }
652           break;
653         }
654       }
655       if( j>=pTab->nCol ){
656         if( sqlite3IsRowid(pColumn->a[i].zName) ){
657           keyColumn = i;
658         }else{
659           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
660               pTabList, 0, pColumn->a[i].zName);
661           pParse->nErr++;
662           goto insert_cleanup;
663         }
664       }
665     }
666   }
667 
668   /* If there is no IDLIST term but the table has an integer primary
669   ** key, the set the keyColumn variable to the primary key column index
670   ** in the original table definition.
671   */
672   if( pColumn==0 && nColumn>0 ){
673     keyColumn = pTab->iPKey;
674   }
675 
676   /* Open the temp table for FOR EACH ROW triggers
677   */
678   if( triggers_exist ){
679     sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
680     sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
681   }
682 
683   /* Initialize the count of rows to be inserted
684   */
685   if( db->flags & SQLITE_CountRows ){
686     regRowCount = ++pParse->nMem;
687     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
688   }
689 
690   /* If this is not a view, open the table and and all indices */
691   if( !isView ){
692     int nIdx;
693     int i;
694 
695     baseCur = pParse->nTab;
696     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
697     aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
698     if( aRegIdx==0 ){
699       goto insert_cleanup;
700     }
701     for(i=0; i<nIdx; i++){
702       aRegIdx[i] = ++pParse->nMem;
703     }
704   }
705 
706   /* This is the top of the main insertion loop */
707   if( useTempTable ){
708     /* This block codes the top of loop only.  The complete loop is the
709     ** following pseudocode (template 4):
710     **
711     **         rewind temp table
712     **      C: loop over rows of intermediate table
713     **           transfer values form intermediate table into <table>
714     **         end loop
715     **      D: ...
716     */
717     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
718     addrCont = sqlite3VdbeCurrentAddr(v);
719   }else if( pSelect ){
720     /* This block codes the top of loop only.  The complete loop is the
721     ** following pseudocode (template 3):
722     **
723     **      C: yield X
724     **         if EOF goto D
725     **         insert the select result into <table> from R..R+n
726     **         goto C
727     **      D: ...
728     */
729     addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
730     addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
731   }
732 
733   /* Allocate registers for holding the rowid of the new row,
734   ** the content of the new row, and the assemblied row record.
735   */
736   regRecord = ++pParse->nMem;
737   regRowid = regIns = pParse->nMem+1;
738   pParse->nMem += pTab->nCol + 1;
739   if( IsVirtual(pTab) ){
740     regRowid++;
741     pParse->nMem++;
742   }
743   regData = regRowid+1;
744 
745   /* Run the BEFORE and INSTEAD OF triggers, if there are any
746   */
747   endOfLoop = sqlite3VdbeMakeLabel(v);
748   if( triggers_exist & TRIGGER_BEFORE ){
749     int regRowid;
750     int regCols;
751     int regRec;
752 
753     /* build the NEW.* reference row.  Note that if there is an INTEGER
754     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
755     ** translated into a unique ID for the row.  But on a BEFORE trigger,
756     ** we do not know what the unique ID will be (because the insert has
757     ** not happened yet) so we substitute a rowid of -1
758     */
759     regRowid = sqlite3GetTempReg(pParse);
760     if( keyColumn<0 ){
761       sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
762     }else if( useTempTable ){
763       sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
764     }else{
765       int j1;
766       assert( pSelect==0 );  /* Otherwise useTempTable is true */
767       sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
768       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
769       sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
770       sqlite3VdbeJumpHere(v, j1);
771       sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
772     }
773 
774     /* Cannot have triggers on a virtual table. If it were possible,
775     ** this block would have to account for hidden column.
776     */
777     assert(!IsVirtual(pTab));
778 
779     /* Create the new column data
780     */
781     regCols = sqlite3GetTempRange(pParse, pTab->nCol);
782     for(i=0; i<pTab->nCol; i++){
783       if( pColumn==0 ){
784         j = i;
785       }else{
786         for(j=0; j<pColumn->nId; j++){
787           if( pColumn->a[j].idx==i ) break;
788         }
789       }
790       if( pColumn && j>=pColumn->nId ){
791         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
792       }else if( useTempTable ){
793         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i);
794       }else{
795         assert( pSelect==0 ); /* Otherwise useTempTable is true */
796         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
797       }
798     }
799     regRec = sqlite3GetTempReg(pParse);
800     sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
801 
802     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
803     ** do not attempt any conversions before assembling the record.
804     ** If this is a real table, attempt conversions as required by the
805     ** table column affinities.
806     */
807     if( !isView ){
808       sqlite3TableAffinityStr(v, pTab);
809     }
810     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
811     sqlite3ReleaseTempReg(pParse, regRec);
812     sqlite3ReleaseTempReg(pParse, regRowid);
813     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
814 
815     /* Fire BEFORE or INSTEAD OF triggers */
816     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
817         newIdx, -1, onError, endOfLoop, 0, 0) ){
818       goto insert_cleanup;
819     }
820   }
821 
822   /* Push the record number for the new entry onto the stack.  The
823   ** record number is a randomly generate integer created by NewRowid
824   ** except when the table has an INTEGER PRIMARY KEY column, in which
825   ** case the record number is the same as that column.
826   */
827   if( !isView ){
828     if( IsVirtual(pTab) ){
829       /* The row that the VUpdate opcode will delete: none */
830       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
831     }
832     if( keyColumn>=0 ){
833       if( useTempTable ){
834         sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
835       }else if( pSelect ){
836         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
837       }else{
838         VdbeOp *pOp;
839         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
840         pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
841         if( pOp && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
842           appendFlag = 1;
843           pOp->opcode = OP_NewRowid;
844           pOp->p1 = baseCur;
845           pOp->p2 = regRowid;
846           pOp->p3 = regAutoinc;
847         }
848       }
849       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
850       ** to generate a unique primary key value.
851       */
852       if( !appendFlag ){
853         int j1;
854         if( !IsVirtual(pTab) ){
855           j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
856           sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
857           sqlite3VdbeJumpHere(v, j1);
858         }else{
859           j1 = sqlite3VdbeCurrentAddr(v);
860           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
861         }
862         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
863       }
864     }else if( IsVirtual(pTab) ){
865       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
866     }else{
867       sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
868       appendFlag = 1;
869     }
870     autoIncStep(pParse, regAutoinc, regRowid);
871 
872     /* Push onto the stack, data for all columns of the new entry, beginning
873     ** with the first column.
874     */
875     nHidden = 0;
876     for(i=0; i<pTab->nCol; i++){
877       int iRegStore = regRowid+1+i;
878       if( i==pTab->iPKey ){
879         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
880         ** Whenever this column is read, the record number will be substituted
881         ** in its place.  So will fill this column with a NULL to avoid
882         ** taking up data space with information that will never be used. */
883         sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
884         continue;
885       }
886       if( pColumn==0 ){
887         if( IsHiddenColumn(&pTab->aCol[i]) ){
888           assert( IsVirtual(pTab) );
889           j = -1;
890           nHidden++;
891         }else{
892           j = i - nHidden;
893         }
894       }else{
895         for(j=0; j<pColumn->nId; j++){
896           if( pColumn->a[j].idx==i ) break;
897         }
898       }
899       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
900         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
901       }else if( useTempTable ){
902         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
903       }else if( pSelect ){
904         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
905       }else{
906         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
907       }
908     }
909 
910     /* Generate code to check constraints and generate index keys and
911     ** do the insertion.
912     */
913 #ifndef SQLITE_OMIT_VIRTUALTABLE
914     if( IsVirtual(pTab) ){
915       sqlite3VtabMakeWritable(pParse, pTab);
916       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
917                      (const char*)pTab->pVtab, P4_VTAB);
918     }else
919 #endif
920     {
921       sqlite3GenerateConstraintChecks(
922           pParse,
923           pTab,
924           baseCur,
925           regIns,
926           aRegIdx,
927           keyColumn>=0,
928           0,
929           onError,
930           endOfLoop
931       );
932       sqlite3CompleteInsertion(
933           pParse,
934           pTab,
935           baseCur,
936           regIns,
937           aRegIdx,
938           0,
939           0,
940           (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
941           appendFlag
942        );
943     }
944   }
945 
946   /* Update the count of rows that are inserted
947   */
948   if( (db->flags & SQLITE_CountRows)!=0 ){
949     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
950   }
951 
952   if( triggers_exist ){
953     /* Code AFTER triggers */
954     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
955           newIdx, -1, onError, endOfLoop, 0, 0) ){
956       goto insert_cleanup;
957     }
958   }
959 
960   /* The bottom of the main insertion loop, if the data source
961   ** is a SELECT statement.
962   */
963   sqlite3VdbeResolveLabel(v, endOfLoop);
964   if( useTempTable ){
965     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
966     sqlite3VdbeJumpHere(v, addrInsTop);
967     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
968   }else if( pSelect ){
969     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
970     sqlite3VdbeJumpHere(v, addrInsTop);
971   }
972 
973   if( !IsVirtual(pTab) && !isView ){
974     /* Close all tables opened */
975     sqlite3VdbeAddOp1(v, OP_Close, baseCur);
976     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
977       sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur);
978     }
979   }
980 
981   /* Update the sqlite_sequence table by storing the content of the
982   ** counter value in memory regAutoinc back into the sqlite_sequence
983   ** table.
984   */
985   autoIncEnd(pParse, iDb, pTab, regAutoinc);
986 
987   /*
988   ** Return the number of rows inserted. If this routine is
989   ** generating code because of a call to sqlite3NestedParse(), do not
990   ** invoke the callback function.
991   */
992   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
993     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
994     sqlite3VdbeSetNumCols(v, 1);
995     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
996   }
997 
998 insert_cleanup:
999   sqlite3SrcListDelete(db, pTabList);
1000   sqlite3ExprListDelete(db, pList);
1001   sqlite3SelectDelete(db, pSelect);
1002   sqlite3IdListDelete(db, pColumn);
1003   sqlite3DbFree(db, aRegIdx);
1004 }
1005 
1006 /*
1007 ** Generate code to do constraint checks prior to an INSERT or an UPDATE.
1008 **
1009 ** The input is a range of consecutive registers as follows:
1010 **
1011 **    1.  The rowid of the row to be updated before the update.  This
1012 **        value is omitted unless we are doing an UPDATE that involves a
1013 **        change to the record number or writing to a virtual table.
1014 **
1015 **    2.  The rowid of the row after the update.
1016 **
1017 **    3.  The data in the first column of the entry after the update.
1018 **
1019 **    i.  Data from middle columns...
1020 **
1021 **    N.  The data in the last column of the entry after the update.
1022 **
1023 ** The regRowid parameter is the index of the register containing (2).
1024 **
1025 ** The old rowid shown as entry (1) above is omitted unless both isUpdate
1026 ** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
1027 ** INSERTs.  RowidChng means that the new rowid is explicitly specified by
1028 ** the update or insert statement.  If rowidChng is false, it means that
1029 ** the rowid is computed automatically in an insert or that the rowid value
1030 ** is not modified by the update.
1031 **
1032 ** The code generated by this routine store new index entries into
1033 ** registers identified by aRegIdx[].  No index entry is created for
1034 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1035 ** the same as the order of indices on the linked list of indices
1036 ** attached to the table.
1037 **
1038 ** This routine also generates code to check constraints.  NOT NULL,
1039 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1040 ** then the appropriate action is performed.  There are five possible
1041 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1042 **
1043 **  Constraint type  Action       What Happens
1044 **  ---------------  ----------   ----------------------------------------
1045 **  any              ROLLBACK     The current transaction is rolled back and
1046 **                                sqlite3_exec() returns immediately with a
1047 **                                return code of SQLITE_CONSTRAINT.
1048 **
1049 **  any              ABORT        Back out changes from the current command
1050 **                                only (do not do a complete rollback) then
1051 **                                cause sqlite3_exec() to return immediately
1052 **                                with SQLITE_CONSTRAINT.
1053 **
1054 **  any              FAIL         Sqlite_exec() returns immediately with a
1055 **                                return code of SQLITE_CONSTRAINT.  The
1056 **                                transaction is not rolled back and any
1057 **                                prior changes are retained.
1058 **
1059 **  any              IGNORE       The record number and data is popped from
1060 **                                the stack and there is an immediate jump
1061 **                                to label ignoreDest.
1062 **
1063 **  NOT NULL         REPLACE      The NULL value is replace by the default
1064 **                                value for that column.  If the default value
1065 **                                is NULL, the action is the same as ABORT.
1066 **
1067 **  UNIQUE           REPLACE      The other row that conflicts with the row
1068 **                                being inserted is removed.
1069 **
1070 **  CHECK            REPLACE      Illegal.  The results in an exception.
1071 **
1072 ** Which action to take is determined by the overrideError parameter.
1073 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1074 ** is used.  Or if pParse->onError==OE_Default then the onError value
1075 ** for the constraint is used.
1076 **
1077 ** The calling routine must open a read/write cursor for pTab with
1078 ** cursor number "baseCur".  All indices of pTab must also have open
1079 ** read/write cursors with cursor number baseCur+i for the i-th cursor.
1080 ** Except, if there is no possibility of a REPLACE action then
1081 ** cursors do not need to be open for indices where aRegIdx[i]==0.
1082 */
1083 void sqlite3GenerateConstraintChecks(
1084   Parse *pParse,      /* The parser context */
1085   Table *pTab,        /* the table into which we are inserting */
1086   int baseCur,        /* Index of a read/write cursor pointing at pTab */
1087   int regRowid,       /* Index of the range of input registers */
1088   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1089   int rowidChng,      /* True if the rowid might collide with existing entry */
1090   int isUpdate,       /* True for UPDATE, False for INSERT */
1091   int overrideError,  /* Override onError to this if not OE_Default */
1092   int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
1093 ){
1094   int i;
1095   Vdbe *v;
1096   int nCol;
1097   int onError;
1098   int j1, j2, j3;     /* Addresses of jump instructions */
1099   int regData;        /* Register containing first data column */
1100   int iCur;
1101   Index *pIdx;
1102   int seenReplace = 0;
1103   int hasTwoRowids = (isUpdate && rowidChng);
1104 
1105   v = sqlite3GetVdbe(pParse);
1106   assert( v!=0 );
1107   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1108   nCol = pTab->nCol;
1109   regData = regRowid + 1;
1110 
1111 
1112   /* Test all NOT NULL constraints.
1113   */
1114   for(i=0; i<nCol; i++){
1115     if( i==pTab->iPKey ){
1116       continue;
1117     }
1118     onError = pTab->aCol[i].notNull;
1119     if( onError==OE_None ) continue;
1120     if( overrideError!=OE_Default ){
1121       onError = overrideError;
1122     }else if( onError==OE_Default ){
1123       onError = OE_Abort;
1124     }
1125     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1126       onError = OE_Abort;
1127     }
1128     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
1129     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1130         || onError==OE_Ignore || onError==OE_Replace );
1131     switch( onError ){
1132       case OE_Rollback:
1133       case OE_Abort:
1134       case OE_Fail: {
1135         char *zMsg;
1136         sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1137         zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
1138                               pTab->zName, pTab->aCol[i].zName);
1139         sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
1140         break;
1141       }
1142       case OE_Ignore: {
1143         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1144         break;
1145       }
1146       case OE_Replace: {
1147         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
1148         break;
1149       }
1150     }
1151     sqlite3VdbeJumpHere(v, j1);
1152   }
1153 
1154   /* Test all CHECK constraints
1155   */
1156 #ifndef SQLITE_OMIT_CHECK
1157   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
1158     int allOk = sqlite3VdbeMakeLabel(v);
1159     pParse->ckBase = regData;
1160     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
1161     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1162     if( onError==OE_Ignore ){
1163       sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1164     }else{
1165       sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1166     }
1167     sqlite3VdbeResolveLabel(v, allOk);
1168   }
1169 #endif /* !defined(SQLITE_OMIT_CHECK) */
1170 
1171   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
1172   ** of the new record does not previously exist.  Except, if this
1173   ** is an UPDATE and the primary key is not changing, that is OK.
1174   */
1175   if( rowidChng ){
1176     onError = pTab->keyConf;
1177     if( overrideError!=OE_Default ){
1178       onError = overrideError;
1179     }else if( onError==OE_Default ){
1180       onError = OE_Abort;
1181     }
1182 
1183     if( onError!=OE_Replace || pTab->pIndex ){
1184       if( isUpdate ){
1185         j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
1186       }
1187       j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
1188       switch( onError ){
1189         default: {
1190           onError = OE_Abort;
1191           /* Fall thru into the next case */
1192         }
1193         case OE_Rollback:
1194         case OE_Abort:
1195         case OE_Fail: {
1196           sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
1197                            "PRIMARY KEY must be unique", P4_STATIC);
1198           break;
1199         }
1200         case OE_Replace: {
1201           sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
1202           seenReplace = 1;
1203           break;
1204         }
1205         case OE_Ignore: {
1206           assert( seenReplace==0 );
1207           sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1208           break;
1209         }
1210       }
1211       sqlite3VdbeJumpHere(v, j3);
1212       if( isUpdate ){
1213         sqlite3VdbeJumpHere(v, j2);
1214       }
1215     }
1216   }
1217 
1218   /* Test all UNIQUE constraints by creating entries for each UNIQUE
1219   ** index and making sure that duplicate entries do not already exist.
1220   ** Add the new records to the indices as we go.
1221   */
1222   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
1223     int regIdx;
1224     int regR;
1225 
1226     if( aRegIdx[iCur]==0 ) continue;  /* Skip unused indices */
1227 
1228     /* Create a key for accessing the index entry */
1229     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
1230     for(i=0; i<pIdx->nColumn; i++){
1231       int idx = pIdx->aiColumn[i];
1232       if( idx==pTab->iPKey ){
1233         sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
1234       }else{
1235         sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
1236       }
1237     }
1238     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
1239     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
1240     sqlite3IndexAffinityStr(v, pIdx);
1241     sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
1242     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
1243 
1244     /* Find out what action to take in case there is an indexing conflict */
1245     onError = pIdx->onError;
1246     if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
1247     if( overrideError!=OE_Default ){
1248       onError = overrideError;
1249     }else if( onError==OE_Default ){
1250       onError = OE_Abort;
1251     }
1252     if( seenReplace ){
1253       if( onError==OE_Ignore ) onError = OE_Replace;
1254       else if( onError==OE_Fail ) onError = OE_Abort;
1255     }
1256 
1257 
1258     /* Check to see if the new index entry will be unique */
1259     j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
1260     regR = sqlite3GetTempReg(pParse);
1261     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
1262     j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
1263                            regR, SQLITE_INT_TO_PTR(aRegIdx[iCur]),
1264                            P4_INT32);
1265 
1266     /* Generate code that executes if the new index entry is not unique */
1267     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1268         || onError==OE_Ignore || onError==OE_Replace );
1269     switch( onError ){
1270       case OE_Rollback:
1271       case OE_Abort:
1272       case OE_Fail: {
1273         int j, n1, n2;
1274         char zErrMsg[200];
1275         sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
1276                          pIdx->nColumn>1 ? "columns " : "column ");
1277         n1 = strlen(zErrMsg);
1278         for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
1279           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
1280           n2 = strlen(zCol);
1281           if( j>0 ){
1282             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
1283             n1 += 2;
1284           }
1285           if( n1+n2>sizeof(zErrMsg)-30 ){
1286             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
1287             n1 += 3;
1288             break;
1289           }else{
1290             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
1291             n1 += n2;
1292           }
1293         }
1294         sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
1295             pIdx->nColumn>1 ? " are not unique" : " is not unique");
1296         sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
1297         break;
1298       }
1299       case OE_Ignore: {
1300         assert( seenReplace==0 );
1301         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1302         break;
1303       }
1304       case OE_Replace: {
1305         sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
1306         seenReplace = 1;
1307         break;
1308       }
1309     }
1310     sqlite3VdbeJumpHere(v, j2);
1311     sqlite3VdbeJumpHere(v, j3);
1312     sqlite3ReleaseTempReg(pParse, regR);
1313   }
1314 }
1315 
1316 /*
1317 ** This routine generates code to finish the INSERT or UPDATE operation
1318 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1319 ** A consecutive range of registers starting at regRowid contains the
1320 ** rowid and the content to be inserted.
1321 **
1322 ** The arguments to this routine should be the same as the first six
1323 ** arguments to sqlite3GenerateConstraintChecks.
1324 */
1325 void sqlite3CompleteInsertion(
1326   Parse *pParse,      /* The parser context */
1327   Table *pTab,        /* the table into which we are inserting */
1328   int baseCur,        /* Index of a read/write cursor pointing at pTab */
1329   int regRowid,       /* Range of content */
1330   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
1331   int rowidChng,      /* True if the record number will change */
1332   int isUpdate,       /* True for UPDATE, False for INSERT */
1333   int newIdx,         /* Index of NEW table for triggers.  -1 if none */
1334   int appendBias      /* True if this is likely to be an append */
1335 ){
1336   int i;
1337   Vdbe *v;
1338   int nIdx;
1339   Index *pIdx;
1340   int pik_flags;
1341   int regData;
1342   int regRec;
1343 
1344   v = sqlite3GetVdbe(pParse);
1345   assert( v!=0 );
1346   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1347   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
1348   for(i=nIdx-1; i>=0; i--){
1349     if( aRegIdx[i]==0 ) continue;
1350     sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
1351   }
1352   regData = regRowid + 1;
1353   regRec = sqlite3GetTempReg(pParse);
1354   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1355   sqlite3TableAffinityStr(v, pTab);
1356   sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1357 #ifndef SQLITE_OMIT_TRIGGER
1358   if( newIdx>=0 ){
1359     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
1360   }
1361 #endif
1362   if( pParse->nested ){
1363     pik_flags = 0;
1364   }else{
1365     pik_flags = OPFLAG_NCHANGE;
1366     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1367   }
1368   if( appendBias ){
1369     pik_flags |= OPFLAG_APPEND;
1370   }
1371   sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
1372   if( !pParse->nested ){
1373     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
1374   }
1375   sqlite3VdbeChangeP5(v, pik_flags);
1376 }
1377 
1378 /*
1379 ** Generate code that will open cursors for a table and for all
1380 ** indices of that table.  The "baseCur" parameter is the cursor number used
1381 ** for the table.  Indices are opened on subsequent cursors.
1382 **
1383 ** Return the number of indices on the table.
1384 */
1385 int sqlite3OpenTableAndIndices(
1386   Parse *pParse,   /* Parsing context */
1387   Table *pTab,     /* Table to be opened */
1388   int baseCur,        /* Cursor number assigned to the table */
1389   int op           /* OP_OpenRead or OP_OpenWrite */
1390 ){
1391   int i;
1392   int iDb;
1393   Index *pIdx;
1394   Vdbe *v;
1395 
1396   if( IsVirtual(pTab) ) return 0;
1397   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1398   v = sqlite3GetVdbe(pParse);
1399   assert( v!=0 );
1400   sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
1401   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1402     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
1403     assert( pIdx->pSchema==pTab->pSchema );
1404     sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
1405                       (char*)pKey, P4_KEYINFO_HANDOFF);
1406     VdbeComment((v, "%s", pIdx->zName));
1407   }
1408   if( pParse->nTab<=baseCur+i ){
1409     pParse->nTab = baseCur+i;
1410   }
1411   return i-1;
1412 }
1413 
1414 
1415 #ifdef SQLITE_TEST
1416 /*
1417 ** The following global variable is incremented whenever the
1418 ** transfer optimization is used.  This is used for testing
1419 ** purposes only - to make sure the transfer optimization really
1420 ** is happening when it is suppose to.
1421 */
1422 int sqlite3_xferopt_count;
1423 #endif /* SQLITE_TEST */
1424 
1425 
1426 #ifndef SQLITE_OMIT_XFER_OPT
1427 /*
1428 ** Check to collation names to see if they are compatible.
1429 */
1430 static int xferCompatibleCollation(const char *z1, const char *z2){
1431   if( z1==0 ){
1432     return z2==0;
1433   }
1434   if( z2==0 ){
1435     return 0;
1436   }
1437   return sqlite3StrICmp(z1, z2)==0;
1438 }
1439 
1440 
1441 /*
1442 ** Check to see if index pSrc is compatible as a source of data
1443 ** for index pDest in an insert transfer optimization.  The rules
1444 ** for a compatible index:
1445 **
1446 **    *   The index is over the same set of columns
1447 **    *   The same DESC and ASC markings occurs on all columns
1448 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
1449 **    *   The same collating sequence on each column
1450 */
1451 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1452   int i;
1453   assert( pDest && pSrc );
1454   assert( pDest->pTable!=pSrc->pTable );
1455   if( pDest->nColumn!=pSrc->nColumn ){
1456     return 0;   /* Different number of columns */
1457   }
1458   if( pDest->onError!=pSrc->onError ){
1459     return 0;   /* Different conflict resolution strategies */
1460   }
1461   for(i=0; i<pSrc->nColumn; i++){
1462     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1463       return 0;   /* Different columns indexed */
1464     }
1465     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1466       return 0;   /* Different sort orders */
1467     }
1468     if( pSrc->azColl[i]!=pDest->azColl[i] ){
1469       return 0;   /* Different collating sequences */
1470     }
1471   }
1472 
1473   /* If no test above fails then the indices must be compatible */
1474   return 1;
1475 }
1476 
1477 /*
1478 ** Attempt the transfer optimization on INSERTs of the form
1479 **
1480 **     INSERT INTO tab1 SELECT * FROM tab2;
1481 **
1482 ** This optimization is only attempted if
1483 **
1484 **    (1)  tab1 and tab2 have identical schemas including all the
1485 **         same indices and constraints
1486 **
1487 **    (2)  tab1 and tab2 are different tables
1488 **
1489 **    (3)  There must be no triggers on tab1
1490 **
1491 **    (4)  The result set of the SELECT statement is "*"
1492 **
1493 **    (5)  The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
1494 **         or LIMIT clause.
1495 **
1496 **    (6)  The SELECT statement is a simple (not a compound) select that
1497 **         contains only tab2 in its FROM clause
1498 **
1499 ** This method for implementing the INSERT transfers raw records from
1500 ** tab2 over to tab1.  The columns are not decoded.  Raw records from
1501 ** the indices of tab2 are transfered to tab1 as well.  In so doing,
1502 ** the resulting tab1 has much less fragmentation.
1503 **
1504 ** This routine returns TRUE if the optimization is attempted.  If any
1505 ** of the conditions above fail so that the optimization should not
1506 ** be attempted, then this routine returns FALSE.
1507 */
1508 static int xferOptimization(
1509   Parse *pParse,        /* Parser context */
1510   Table *pDest,         /* The table we are inserting into */
1511   Select *pSelect,      /* A SELECT statement to use as the data source */
1512   int onError,          /* How to handle constraint errors */
1513   int iDbDest           /* The database of pDest */
1514 ){
1515   ExprList *pEList;                /* The result set of the SELECT */
1516   Table *pSrc;                     /* The table in the FROM clause of SELECT */
1517   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
1518   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
1519   int i;                           /* Loop counter */
1520   int iDbSrc;                      /* The database of pSrc */
1521   int iSrc, iDest;                 /* Cursors from source and destination */
1522   int addr1, addr2;                /* Loop addresses */
1523   int emptyDestTest;               /* Address of test for empty pDest */
1524   int emptySrcTest;                /* Address of test for empty pSrc */
1525   Vdbe *v;                         /* The VDBE we are building */
1526   KeyInfo *pKey;                   /* Key information for an index */
1527   int regAutoinc;                  /* Memory register used by AUTOINC */
1528   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
1529   int regData, regRowid;           /* Registers holding data and rowid */
1530 
1531   if( pSelect==0 ){
1532     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
1533   }
1534   if( pDest->pTrigger ){
1535     return 0;   /* tab1 must not have triggers */
1536   }
1537 #ifndef SQLITE_OMIT_VIRTUALTABLE
1538   if( pDest->tabFlags & TF_Virtual ){
1539     return 0;   /* tab1 must not be a virtual table */
1540   }
1541 #endif
1542   if( onError==OE_Default ){
1543     onError = OE_Abort;
1544   }
1545   if( onError!=OE_Abort && onError!=OE_Rollback ){
1546     return 0;   /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
1547   }
1548   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
1549   if( pSelect->pSrc->nSrc!=1 ){
1550     return 0;   /* FROM clause must have exactly one term */
1551   }
1552   if( pSelect->pSrc->a[0].pSelect ){
1553     return 0;   /* FROM clause cannot contain a subquery */
1554   }
1555   if( pSelect->pWhere ){
1556     return 0;   /* SELECT may not have a WHERE clause */
1557   }
1558   if( pSelect->pOrderBy ){
1559     return 0;   /* SELECT may not have an ORDER BY clause */
1560   }
1561   /* Do not need to test for a HAVING clause.  If HAVING is present but
1562   ** there is no ORDER BY, we will get an error. */
1563   if( pSelect->pGroupBy ){
1564     return 0;   /* SELECT may not have a GROUP BY clause */
1565   }
1566   if( pSelect->pLimit ){
1567     return 0;   /* SELECT may not have a LIMIT clause */
1568   }
1569   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
1570   if( pSelect->pPrior ){
1571     return 0;   /* SELECT may not be a compound query */
1572   }
1573   if( pSelect->selFlags & SF_Distinct ){
1574     return 0;   /* SELECT may not be DISTINCT */
1575   }
1576   pEList = pSelect->pEList;
1577   assert( pEList!=0 );
1578   if( pEList->nExpr!=1 ){
1579     return 0;   /* The result set must have exactly one column */
1580   }
1581   assert( pEList->a[0].pExpr );
1582   if( pEList->a[0].pExpr->op!=TK_ALL ){
1583     return 0;   /* The result set must be the special operator "*" */
1584   }
1585 
1586   /* At this point we have established that the statement is of the
1587   ** correct syntactic form to participate in this optimization.  Now
1588   ** we have to check the semantics.
1589   */
1590   pItem = pSelect->pSrc->a;
1591   pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
1592   if( pSrc==0 ){
1593     return 0;   /* FROM clause does not contain a real table */
1594   }
1595   if( pSrc==pDest ){
1596     return 0;   /* tab1 and tab2 may not be the same table */
1597   }
1598 #ifndef SQLITE_OMIT_VIRTUALTABLE
1599   if( pSrc->tabFlags & TF_Virtual ){
1600     return 0;   /* tab2 must not be a virtual table */
1601   }
1602 #endif
1603   if( pSrc->pSelect ){
1604     return 0;   /* tab2 may not be a view */
1605   }
1606   if( pDest->nCol!=pSrc->nCol ){
1607     return 0;   /* Number of columns must be the same in tab1 and tab2 */
1608   }
1609   if( pDest->iPKey!=pSrc->iPKey ){
1610     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
1611   }
1612   for(i=0; i<pDest->nCol; i++){
1613     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
1614       return 0;    /* Affinity must be the same on all columns */
1615     }
1616     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
1617       return 0;    /* Collating sequence must be the same on all columns */
1618     }
1619     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
1620       return 0;    /* tab2 must be NOT NULL if tab1 is */
1621     }
1622   }
1623   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1624     if( pDestIdx->onError!=OE_None ){
1625       destHasUniqueIdx = 1;
1626     }
1627     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1628       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1629     }
1630     if( pSrcIdx==0 ){
1631       return 0;    /* pDestIdx has no corresponding index in pSrc */
1632     }
1633   }
1634 #ifndef SQLITE_OMIT_CHECK
1635   if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
1636     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
1637   }
1638 #endif
1639 
1640   /* If we get this far, it means either:
1641   **
1642   **    *   We can always do the transfer if the table contains an
1643   **        an integer primary key
1644   **
1645   **    *   We can conditionally do the transfer if the destination
1646   **        table is empty.
1647   */
1648 #ifdef SQLITE_TEST
1649   sqlite3_xferopt_count++;
1650 #endif
1651   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1652   v = sqlite3GetVdbe(pParse);
1653   sqlite3CodeVerifySchema(pParse, iDbSrc);
1654   iSrc = pParse->nTab++;
1655   iDest = pParse->nTab++;
1656   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
1657   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1658   if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
1659     /* If tables do not have an INTEGER PRIMARY KEY and there
1660     ** are indices to be copied and the destination is not empty,
1661     ** we have to disallow the transfer optimization because the
1662     ** the rowids might change which will mess up indexing.
1663     **
1664     ** Or if the destination has a UNIQUE index and is not empty,
1665     ** we also disallow the transfer optimization because we cannot
1666     ** insure that all entries in the union of DEST and SRC will be
1667     ** unique.
1668     */
1669     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
1670     emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
1671     sqlite3VdbeJumpHere(v, addr1);
1672   }else{
1673     emptyDestTest = 0;
1674   }
1675   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1676   emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1677   regData = sqlite3GetTempReg(pParse);
1678   regRowid = sqlite3GetTempReg(pParse);
1679   if( pDest->iPKey>=0 ){
1680     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1681     addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
1682     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
1683                       "PRIMARY KEY must be unique", P4_STATIC);
1684     sqlite3VdbeJumpHere(v, addr2);
1685     autoIncStep(pParse, regAutoinc, regRowid);
1686   }else if( pDest->pIndex==0 ){
1687     addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
1688   }else{
1689     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1690     assert( (pDest->tabFlags & TF_Autoincrement)==0 );
1691   }
1692   sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
1693   sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
1694   sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
1695   sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
1696   sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
1697   autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
1698   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1699     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1700       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1701     }
1702     assert( pSrcIdx );
1703     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1704     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1705     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
1706     sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
1707                       (char*)pKey, P4_KEYINFO_HANDOFF);
1708     VdbeComment((v, "%s", pSrcIdx->zName));
1709     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
1710     sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
1711                       (char*)pKey, P4_KEYINFO_HANDOFF);
1712     VdbeComment((v, "%s", pDestIdx->zName));
1713     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1714     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
1715     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
1716     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
1717     sqlite3VdbeJumpHere(v, addr1);
1718   }
1719   sqlite3VdbeJumpHere(v, emptySrcTest);
1720   sqlite3ReleaseTempReg(pParse, regRowid);
1721   sqlite3ReleaseTempReg(pParse, regData);
1722   sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1723   sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1724   if( emptyDestTest ){
1725     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
1726     sqlite3VdbeJumpHere(v, emptyDestTest);
1727     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1728     return 0;
1729   }else{
1730     return 1;
1731   }
1732 }
1733 #endif /* SQLITE_OMIT_XFER_OPT */
1734 
1735 /* Make sure "isView" gets undefined in case this file becomes part of
1736 ** the amalgamation - so that subsequent files do not see isView as a
1737 ** macro. */
1738 #undef isView
1739