1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->aColExpr!=0 ); 100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 101 } 102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 104 pIdx->zColAff[n] = aff; 105 } 106 pIdx->zColAff[n] = 0; 107 } 108 109 return pIdx->zColAff; 110 } 111 112 /* 113 ** Compute the affinity string for table pTab, if it has not already been 114 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 115 ** 116 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and 117 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities 118 ** for register iReg and following. Or if affinities exists and iReg==0, 119 ** then just set the P4 operand of the previous opcode (which should be 120 ** an OP_MakeRecord) to the affinity string. 121 ** 122 ** A column affinity string has one character per column: 123 ** 124 ** Character Column affinity 125 ** ------------------------------ 126 ** 'A' BLOB 127 ** 'B' TEXT 128 ** 'C' NUMERIC 129 ** 'D' INTEGER 130 ** 'E' REAL 131 */ 132 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 133 int i, j; 134 char *zColAff = pTab->zColAff; 135 if( zColAff==0 ){ 136 sqlite3 *db = sqlite3VdbeDb(v); 137 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); 138 if( !zColAff ){ 139 sqlite3OomFault(db); 140 return; 141 } 142 143 for(i=j=0; i<pTab->nCol; i++){ 144 assert( pTab->aCol[i].affinity!=0 ); 145 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 146 zColAff[j++] = pTab->aCol[i].affinity; 147 } 148 } 149 do{ 150 zColAff[j--] = 0; 151 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 152 pTab->zColAff = zColAff; 153 } 154 assert( zColAff!=0 ); 155 i = sqlite3Strlen30NN(zColAff); 156 if( i ){ 157 if( iReg ){ 158 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 159 }else{ 160 sqlite3VdbeChangeP4(v, -1, zColAff, i); 161 } 162 } 163 } 164 165 /* 166 ** Return non-zero if the table pTab in database iDb or any of its indices 167 ** have been opened at any point in the VDBE program. This is used to see if 168 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 169 ** run without using a temporary table for the results of the SELECT. 170 */ 171 static int readsTable(Parse *p, int iDb, Table *pTab){ 172 Vdbe *v = sqlite3GetVdbe(p); 173 int i; 174 int iEnd = sqlite3VdbeCurrentAddr(v); 175 #ifndef SQLITE_OMIT_VIRTUALTABLE 176 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 177 #endif 178 179 for(i=1; i<iEnd; i++){ 180 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 181 assert( pOp!=0 ); 182 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 183 Index *pIndex; 184 Pgno tnum = pOp->p2; 185 if( tnum==pTab->tnum ){ 186 return 1; 187 } 188 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 189 if( tnum==pIndex->tnum ){ 190 return 1; 191 } 192 } 193 } 194 #ifndef SQLITE_OMIT_VIRTUALTABLE 195 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 196 assert( pOp->p4.pVtab!=0 ); 197 assert( pOp->p4type==P4_VTAB ); 198 return 1; 199 } 200 #endif 201 } 202 return 0; 203 } 204 205 /* This walker callback will compute the union of colFlags flags for all 206 ** referenced columns in a CHECK constraint or generated column expression. 207 */ 208 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 209 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 210 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 211 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 212 } 213 return WRC_Continue; 214 } 215 216 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 217 /* 218 ** All regular columns for table pTab have been puts into registers 219 ** starting with iRegStore. The registers that correspond to STORED 220 ** or VIRTUAL columns have not yet been initialized. This routine goes 221 ** back and computes the values for those columns based on the previously 222 ** computed normal columns. 223 */ 224 void sqlite3ComputeGeneratedColumns( 225 Parse *pParse, /* Parsing context */ 226 int iRegStore, /* Register holding the first column */ 227 Table *pTab /* The table */ 228 ){ 229 int i; 230 Walker w; 231 Column *pRedo; 232 int eProgress; 233 VdbeOp *pOp; 234 235 assert( pTab->tabFlags & TF_HasGenerated ); 236 testcase( pTab->tabFlags & TF_HasVirtual ); 237 testcase( pTab->tabFlags & TF_HasStored ); 238 239 /* Before computing generated columns, first go through and make sure 240 ** that appropriate affinity has been applied to the regular columns 241 */ 242 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 243 if( (pTab->tabFlags & TF_HasStored)!=0 244 && (pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1))->opcode==OP_Affinity 245 ){ 246 /* Change the OP_Affinity argument to '@' (NONE) for all stored 247 ** columns. '@' is the no-op affinity and those columns have not 248 ** yet been computed. */ 249 int ii, jj; 250 char *zP4 = pOp->p4.z; 251 assert( zP4!=0 ); 252 assert( pOp->p4type==P4_DYNAMIC ); 253 for(ii=jj=0; zP4[jj]; ii++){ 254 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 255 continue; 256 } 257 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 258 zP4[jj] = SQLITE_AFF_NONE; 259 } 260 jj++; 261 } 262 } 263 264 /* Because there can be multiple generated columns that refer to one another, 265 ** this is a two-pass algorithm. On the first pass, mark all generated 266 ** columns as "not available". 267 */ 268 for(i=0; i<pTab->nCol; i++){ 269 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 270 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 271 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 272 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 273 } 274 } 275 276 w.u.pTab = pTab; 277 w.xExprCallback = exprColumnFlagUnion; 278 w.xSelectCallback = 0; 279 w.xSelectCallback2 = 0; 280 281 /* On the second pass, compute the value of each NOT-AVAILABLE column. 282 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 283 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 284 ** they are needed. 285 */ 286 pParse->iSelfTab = -iRegStore; 287 do{ 288 eProgress = 0; 289 pRedo = 0; 290 for(i=0; i<pTab->nCol; i++){ 291 Column *pCol = pTab->aCol + i; 292 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 293 int x; 294 pCol->colFlags |= COLFLAG_BUSY; 295 w.eCode = 0; 296 sqlite3WalkExpr(&w, pCol->pDflt); 297 pCol->colFlags &= ~COLFLAG_BUSY; 298 if( w.eCode & COLFLAG_NOTAVAIL ){ 299 pRedo = pCol; 300 continue; 301 } 302 eProgress = 1; 303 assert( pCol->colFlags & COLFLAG_GENERATED ); 304 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 305 sqlite3ExprCodeGeneratedColumn(pParse, pCol, x); 306 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 307 } 308 } 309 }while( pRedo && eProgress ); 310 if( pRedo ){ 311 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zName); 312 } 313 pParse->iSelfTab = 0; 314 } 315 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 316 317 318 #ifndef SQLITE_OMIT_AUTOINCREMENT 319 /* 320 ** Locate or create an AutoincInfo structure associated with table pTab 321 ** which is in database iDb. Return the register number for the register 322 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 323 ** table. (Also return zero when doing a VACUUM since we do not want to 324 ** update the AUTOINCREMENT counters during a VACUUM.) 325 ** 326 ** There is at most one AutoincInfo structure per table even if the 327 ** same table is autoincremented multiple times due to inserts within 328 ** triggers. A new AutoincInfo structure is created if this is the 329 ** first use of table pTab. On 2nd and subsequent uses, the original 330 ** AutoincInfo structure is used. 331 ** 332 ** Four consecutive registers are allocated: 333 ** 334 ** (1) The name of the pTab table. 335 ** (2) The maximum ROWID of pTab. 336 ** (3) The rowid in sqlite_sequence of pTab 337 ** (4) The original value of the max ROWID in pTab, or NULL if none 338 ** 339 ** The 2nd register is the one that is returned. That is all the 340 ** insert routine needs to know about. 341 */ 342 static int autoIncBegin( 343 Parse *pParse, /* Parsing context */ 344 int iDb, /* Index of the database holding pTab */ 345 Table *pTab /* The table we are writing to */ 346 ){ 347 int memId = 0; /* Register holding maximum rowid */ 348 assert( pParse->db->aDb[iDb].pSchema!=0 ); 349 if( (pTab->tabFlags & TF_Autoincrement)!=0 350 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 351 ){ 352 Parse *pToplevel = sqlite3ParseToplevel(pParse); 353 AutoincInfo *pInfo; 354 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 355 356 /* Verify that the sqlite_sequence table exists and is an ordinary 357 ** rowid table with exactly two columns. 358 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 359 if( pSeqTab==0 360 || !HasRowid(pSeqTab) 361 || IsVirtual(pSeqTab) 362 || pSeqTab->nCol!=2 363 ){ 364 pParse->nErr++; 365 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 366 return 0; 367 } 368 369 pInfo = pToplevel->pAinc; 370 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 371 if( pInfo==0 ){ 372 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 373 if( pInfo==0 ) return 0; 374 pInfo->pNext = pToplevel->pAinc; 375 pToplevel->pAinc = pInfo; 376 pInfo->pTab = pTab; 377 pInfo->iDb = iDb; 378 pToplevel->nMem++; /* Register to hold name of table */ 379 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 380 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 381 } 382 memId = pInfo->regCtr; 383 } 384 return memId; 385 } 386 387 /* 388 ** This routine generates code that will initialize all of the 389 ** register used by the autoincrement tracker. 390 */ 391 void sqlite3AutoincrementBegin(Parse *pParse){ 392 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 393 sqlite3 *db = pParse->db; /* The database connection */ 394 Db *pDb; /* Database only autoinc table */ 395 int memId; /* Register holding max rowid */ 396 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 397 398 /* This routine is never called during trigger-generation. It is 399 ** only called from the top-level */ 400 assert( pParse->pTriggerTab==0 ); 401 assert( sqlite3IsToplevel(pParse) ); 402 403 assert( v ); /* We failed long ago if this is not so */ 404 for(p = pParse->pAinc; p; p = p->pNext){ 405 static const int iLn = VDBE_OFFSET_LINENO(2); 406 static const VdbeOpList autoInc[] = { 407 /* 0 */ {OP_Null, 0, 0, 0}, 408 /* 1 */ {OP_Rewind, 0, 10, 0}, 409 /* 2 */ {OP_Column, 0, 0, 0}, 410 /* 3 */ {OP_Ne, 0, 9, 0}, 411 /* 4 */ {OP_Rowid, 0, 0, 0}, 412 /* 5 */ {OP_Column, 0, 1, 0}, 413 /* 6 */ {OP_AddImm, 0, 0, 0}, 414 /* 7 */ {OP_Copy, 0, 0, 0}, 415 /* 8 */ {OP_Goto, 0, 11, 0}, 416 /* 9 */ {OP_Next, 0, 2, 0}, 417 /* 10 */ {OP_Integer, 0, 0, 0}, 418 /* 11 */ {OP_Close, 0, 0, 0} 419 }; 420 VdbeOp *aOp; 421 pDb = &db->aDb[p->iDb]; 422 memId = p->regCtr; 423 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 424 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 425 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 426 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 427 if( aOp==0 ) break; 428 aOp[0].p2 = memId; 429 aOp[0].p3 = memId+2; 430 aOp[2].p3 = memId; 431 aOp[3].p1 = memId-1; 432 aOp[3].p3 = memId; 433 aOp[3].p5 = SQLITE_JUMPIFNULL; 434 aOp[4].p2 = memId+1; 435 aOp[5].p3 = memId; 436 aOp[6].p1 = memId; 437 aOp[7].p2 = memId+2; 438 aOp[7].p1 = memId; 439 aOp[10].p2 = memId; 440 if( pParse->nTab==0 ) pParse->nTab = 1; 441 } 442 } 443 444 /* 445 ** Update the maximum rowid for an autoincrement calculation. 446 ** 447 ** This routine should be called when the regRowid register holds a 448 ** new rowid that is about to be inserted. If that new rowid is 449 ** larger than the maximum rowid in the memId memory cell, then the 450 ** memory cell is updated. 451 */ 452 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 453 if( memId>0 ){ 454 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 455 } 456 } 457 458 /* 459 ** This routine generates the code needed to write autoincrement 460 ** maximum rowid values back into the sqlite_sequence register. 461 ** Every statement that might do an INSERT into an autoincrement 462 ** table (either directly or through triggers) needs to call this 463 ** routine just before the "exit" code. 464 */ 465 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 466 AutoincInfo *p; 467 Vdbe *v = pParse->pVdbe; 468 sqlite3 *db = pParse->db; 469 470 assert( v ); 471 for(p = pParse->pAinc; p; p = p->pNext){ 472 static const int iLn = VDBE_OFFSET_LINENO(2); 473 static const VdbeOpList autoIncEnd[] = { 474 /* 0 */ {OP_NotNull, 0, 2, 0}, 475 /* 1 */ {OP_NewRowid, 0, 0, 0}, 476 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 477 /* 3 */ {OP_Insert, 0, 0, 0}, 478 /* 4 */ {OP_Close, 0, 0, 0} 479 }; 480 VdbeOp *aOp; 481 Db *pDb = &db->aDb[p->iDb]; 482 int iRec; 483 int memId = p->regCtr; 484 485 iRec = sqlite3GetTempReg(pParse); 486 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 487 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 488 VdbeCoverage(v); 489 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 490 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 491 if( aOp==0 ) break; 492 aOp[0].p1 = memId+1; 493 aOp[1].p2 = memId+1; 494 aOp[2].p1 = memId-1; 495 aOp[2].p3 = iRec; 496 aOp[3].p2 = iRec; 497 aOp[3].p3 = memId+1; 498 aOp[3].p5 = OPFLAG_APPEND; 499 sqlite3ReleaseTempReg(pParse, iRec); 500 } 501 } 502 void sqlite3AutoincrementEnd(Parse *pParse){ 503 if( pParse->pAinc ) autoIncrementEnd(pParse); 504 } 505 #else 506 /* 507 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 508 ** above are all no-ops 509 */ 510 # define autoIncBegin(A,B,C) (0) 511 # define autoIncStep(A,B,C) 512 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 513 514 515 /* Forward declaration */ 516 static int xferOptimization( 517 Parse *pParse, /* Parser context */ 518 Table *pDest, /* The table we are inserting into */ 519 Select *pSelect, /* A SELECT statement to use as the data source */ 520 int onError, /* How to handle constraint errors */ 521 int iDbDest /* The database of pDest */ 522 ); 523 524 /* 525 ** This routine is called to handle SQL of the following forms: 526 ** 527 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 528 ** insert into TABLE (IDLIST) select 529 ** insert into TABLE (IDLIST) default values 530 ** 531 ** The IDLIST following the table name is always optional. If omitted, 532 ** then a list of all (non-hidden) columns for the table is substituted. 533 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 534 ** is omitted. 535 ** 536 ** For the pSelect parameter holds the values to be inserted for the 537 ** first two forms shown above. A VALUES clause is really just short-hand 538 ** for a SELECT statement that omits the FROM clause and everything else 539 ** that follows. If the pSelect parameter is NULL, that means that the 540 ** DEFAULT VALUES form of the INSERT statement is intended. 541 ** 542 ** The code generated follows one of four templates. For a simple 543 ** insert with data coming from a single-row VALUES clause, the code executes 544 ** once straight down through. Pseudo-code follows (we call this 545 ** the "1st template"): 546 ** 547 ** open write cursor to <table> and its indices 548 ** put VALUES clause expressions into registers 549 ** write the resulting record into <table> 550 ** cleanup 551 ** 552 ** The three remaining templates assume the statement is of the form 553 ** 554 ** INSERT INTO <table> SELECT ... 555 ** 556 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 557 ** in other words if the SELECT pulls all columns from a single table 558 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 559 ** if <table2> and <table1> are distinct tables but have identical 560 ** schemas, including all the same indices, then a special optimization 561 ** is invoked that copies raw records from <table2> over to <table1>. 562 ** See the xferOptimization() function for the implementation of this 563 ** template. This is the 2nd template. 564 ** 565 ** open a write cursor to <table> 566 ** open read cursor on <table2> 567 ** transfer all records in <table2> over to <table> 568 ** close cursors 569 ** foreach index on <table> 570 ** open a write cursor on the <table> index 571 ** open a read cursor on the corresponding <table2> index 572 ** transfer all records from the read to the write cursors 573 ** close cursors 574 ** end foreach 575 ** 576 ** The 3rd template is for when the second template does not apply 577 ** and the SELECT clause does not read from <table> at any time. 578 ** The generated code follows this template: 579 ** 580 ** X <- A 581 ** goto B 582 ** A: setup for the SELECT 583 ** loop over the rows in the SELECT 584 ** load values into registers R..R+n 585 ** yield X 586 ** end loop 587 ** cleanup after the SELECT 588 ** end-coroutine X 589 ** B: open write cursor to <table> and its indices 590 ** C: yield X, at EOF goto D 591 ** insert the select result into <table> from R..R+n 592 ** goto C 593 ** D: cleanup 594 ** 595 ** The 4th template is used if the insert statement takes its 596 ** values from a SELECT but the data is being inserted into a table 597 ** that is also read as part of the SELECT. In the third form, 598 ** we have to use an intermediate table to store the results of 599 ** the select. The template is like this: 600 ** 601 ** X <- A 602 ** goto B 603 ** A: setup for the SELECT 604 ** loop over the tables in the SELECT 605 ** load value into register R..R+n 606 ** yield X 607 ** end loop 608 ** cleanup after the SELECT 609 ** end co-routine R 610 ** B: open temp table 611 ** L: yield X, at EOF goto M 612 ** insert row from R..R+n into temp table 613 ** goto L 614 ** M: open write cursor to <table> and its indices 615 ** rewind temp table 616 ** C: loop over rows of intermediate table 617 ** transfer values form intermediate table into <table> 618 ** end loop 619 ** D: cleanup 620 */ 621 void sqlite3Insert( 622 Parse *pParse, /* Parser context */ 623 SrcList *pTabList, /* Name of table into which we are inserting */ 624 Select *pSelect, /* A SELECT statement to use as the data source */ 625 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 626 int onError, /* How to handle constraint errors */ 627 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 628 ){ 629 sqlite3 *db; /* The main database structure */ 630 Table *pTab; /* The table to insert into. aka TABLE */ 631 int i, j; /* Loop counters */ 632 Vdbe *v; /* Generate code into this virtual machine */ 633 Index *pIdx; /* For looping over indices of the table */ 634 int nColumn; /* Number of columns in the data */ 635 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 636 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 637 int iIdxCur = 0; /* First index cursor */ 638 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 639 int endOfLoop; /* Label for the end of the insertion loop */ 640 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 641 int addrInsTop = 0; /* Jump to label "D" */ 642 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 643 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 644 int iDb; /* Index of database holding TABLE */ 645 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 646 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 647 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 648 u8 bIdListInOrder; /* True if IDLIST is in table order */ 649 ExprList *pList = 0; /* List of VALUES() to be inserted */ 650 int iRegStore; /* Register in which to store next column */ 651 652 /* Register allocations */ 653 int regFromSelect = 0;/* Base register for data coming from SELECT */ 654 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 655 int regRowCount = 0; /* Memory cell used for the row counter */ 656 int regIns; /* Block of regs holding rowid+data being inserted */ 657 int regRowid; /* registers holding insert rowid */ 658 int regData; /* register holding first column to insert */ 659 int *aRegIdx = 0; /* One register allocated to each index */ 660 661 #ifndef SQLITE_OMIT_TRIGGER 662 int isView; /* True if attempting to insert into a view */ 663 Trigger *pTrigger; /* List of triggers on pTab, if required */ 664 int tmask; /* Mask of trigger times */ 665 #endif 666 667 db = pParse->db; 668 if( pParse->nErr || db->mallocFailed ){ 669 goto insert_cleanup; 670 } 671 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 672 673 /* If the Select object is really just a simple VALUES() list with a 674 ** single row (the common case) then keep that one row of values 675 ** and discard the other (unused) parts of the pSelect object 676 */ 677 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 678 pList = pSelect->pEList; 679 pSelect->pEList = 0; 680 sqlite3SelectDelete(db, pSelect); 681 pSelect = 0; 682 } 683 684 /* Locate the table into which we will be inserting new information. 685 */ 686 assert( pTabList->nSrc==1 ); 687 pTab = sqlite3SrcListLookup(pParse, pTabList); 688 if( pTab==0 ){ 689 goto insert_cleanup; 690 } 691 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 692 assert( iDb<db->nDb ); 693 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 694 db->aDb[iDb].zDbSName) ){ 695 goto insert_cleanup; 696 } 697 withoutRowid = !HasRowid(pTab); 698 699 /* Figure out if we have any triggers and if the table being 700 ** inserted into is a view 701 */ 702 #ifndef SQLITE_OMIT_TRIGGER 703 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 704 isView = pTab->pSelect!=0; 705 #else 706 # define pTrigger 0 707 # define tmask 0 708 # define isView 0 709 #endif 710 #ifdef SQLITE_OMIT_VIEW 711 # undef isView 712 # define isView 0 713 #endif 714 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 715 716 /* If pTab is really a view, make sure it has been initialized. 717 ** ViewGetColumnNames() is a no-op if pTab is not a view. 718 */ 719 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 720 goto insert_cleanup; 721 } 722 723 /* Cannot insert into a read-only table. 724 */ 725 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 726 goto insert_cleanup; 727 } 728 729 /* Allocate a VDBE 730 */ 731 v = sqlite3GetVdbe(pParse); 732 if( v==0 ) goto insert_cleanup; 733 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 734 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 735 736 #ifndef SQLITE_OMIT_XFER_OPT 737 /* If the statement is of the form 738 ** 739 ** INSERT INTO <table1> SELECT * FROM <table2>; 740 ** 741 ** Then special optimizations can be applied that make the transfer 742 ** very fast and which reduce fragmentation of indices. 743 ** 744 ** This is the 2nd template. 745 */ 746 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ 747 assert( !pTrigger ); 748 assert( pList==0 ); 749 goto insert_end; 750 } 751 #endif /* SQLITE_OMIT_XFER_OPT */ 752 753 /* If this is an AUTOINCREMENT table, look up the sequence number in the 754 ** sqlite_sequence table and store it in memory cell regAutoinc. 755 */ 756 regAutoinc = autoIncBegin(pParse, iDb, pTab); 757 758 /* Allocate a block registers to hold the rowid and the values 759 ** for all columns of the new row. 760 */ 761 regRowid = regIns = pParse->nMem+1; 762 pParse->nMem += pTab->nCol + 1; 763 if( IsVirtual(pTab) ){ 764 regRowid++; 765 pParse->nMem++; 766 } 767 regData = regRowid+1; 768 769 /* If the INSERT statement included an IDLIST term, then make sure 770 ** all elements of the IDLIST really are columns of the table and 771 ** remember the column indices. 772 ** 773 ** If the table has an INTEGER PRIMARY KEY column and that column 774 ** is named in the IDLIST, then record in the ipkColumn variable 775 ** the index into IDLIST of the primary key column. ipkColumn is 776 ** the index of the primary key as it appears in IDLIST, not as 777 ** is appears in the original table. (The index of the INTEGER 778 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 779 ** loop, if ipkColumn==(-1), that means that integer primary key 780 ** is unspecified, and hence the table is either WITHOUT ROWID or 781 ** it will automatically generated an integer primary key. 782 ** 783 ** bIdListInOrder is true if the columns in IDLIST are in storage 784 ** order. This enables an optimization that avoids shuffling the 785 ** columns into storage order. False negatives are harmless, 786 ** but false positives will cause database corruption. 787 */ 788 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 789 if( pColumn ){ 790 for(i=0; i<pColumn->nId; i++){ 791 pColumn->a[i].idx = -1; 792 } 793 for(i=0; i<pColumn->nId; i++){ 794 for(j=0; j<pTab->nCol; j++){ 795 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ 796 pColumn->a[i].idx = j; 797 if( i!=j ) bIdListInOrder = 0; 798 if( j==pTab->iPKey ){ 799 ipkColumn = i; assert( !withoutRowid ); 800 } 801 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 802 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 803 sqlite3ErrorMsg(pParse, 804 "cannot INSERT into generated column \"%s\"", 805 pTab->aCol[j].zName); 806 goto insert_cleanup; 807 } 808 #endif 809 break; 810 } 811 } 812 if( j>=pTab->nCol ){ 813 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 814 ipkColumn = i; 815 bIdListInOrder = 0; 816 }else{ 817 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 818 pTabList, 0, pColumn->a[i].zName); 819 pParse->checkSchema = 1; 820 goto insert_cleanup; 821 } 822 } 823 } 824 } 825 826 /* Figure out how many columns of data are supplied. If the data 827 ** is coming from a SELECT statement, then generate a co-routine that 828 ** produces a single row of the SELECT on each invocation. The 829 ** co-routine is the common header to the 3rd and 4th templates. 830 */ 831 if( pSelect ){ 832 /* Data is coming from a SELECT or from a multi-row VALUES clause. 833 ** Generate a co-routine to run the SELECT. */ 834 int regYield; /* Register holding co-routine entry-point */ 835 int addrTop; /* Top of the co-routine */ 836 int rc; /* Result code */ 837 838 regYield = ++pParse->nMem; 839 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 840 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 841 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 842 dest.iSdst = bIdListInOrder ? regData : 0; 843 dest.nSdst = pTab->nCol; 844 rc = sqlite3Select(pParse, pSelect, &dest); 845 regFromSelect = dest.iSdst; 846 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; 847 sqlite3VdbeEndCoroutine(v, regYield); 848 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 849 assert( pSelect->pEList ); 850 nColumn = pSelect->pEList->nExpr; 851 852 /* Set useTempTable to TRUE if the result of the SELECT statement 853 ** should be written into a temporary table (template 4). Set to 854 ** FALSE if each output row of the SELECT can be written directly into 855 ** the destination table (template 3). 856 ** 857 ** A temp table must be used if the table being updated is also one 858 ** of the tables being read by the SELECT statement. Also use a 859 ** temp table in the case of row triggers. 860 */ 861 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 862 useTempTable = 1; 863 } 864 865 if( useTempTable ){ 866 /* Invoke the coroutine to extract information from the SELECT 867 ** and add it to a transient table srcTab. The code generated 868 ** here is from the 4th template: 869 ** 870 ** B: open temp table 871 ** L: yield X, goto M at EOF 872 ** insert row from R..R+n into temp table 873 ** goto L 874 ** M: ... 875 */ 876 int regRec; /* Register to hold packed record */ 877 int regTempRowid; /* Register to hold temp table ROWID */ 878 int addrL; /* Label "L" */ 879 880 srcTab = pParse->nTab++; 881 regRec = sqlite3GetTempReg(pParse); 882 regTempRowid = sqlite3GetTempReg(pParse); 883 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 884 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 885 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 886 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 887 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 888 sqlite3VdbeGoto(v, addrL); 889 sqlite3VdbeJumpHere(v, addrL); 890 sqlite3ReleaseTempReg(pParse, regRec); 891 sqlite3ReleaseTempReg(pParse, regTempRowid); 892 } 893 }else{ 894 /* This is the case if the data for the INSERT is coming from a 895 ** single-row VALUES clause 896 */ 897 NameContext sNC; 898 memset(&sNC, 0, sizeof(sNC)); 899 sNC.pParse = pParse; 900 srcTab = -1; 901 assert( useTempTable==0 ); 902 if( pList ){ 903 nColumn = pList->nExpr; 904 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 905 goto insert_cleanup; 906 } 907 }else{ 908 nColumn = 0; 909 } 910 } 911 912 /* If there is no IDLIST term but the table has an integer primary 913 ** key, the set the ipkColumn variable to the integer primary key 914 ** column index in the original table definition. 915 */ 916 if( pColumn==0 && nColumn>0 ){ 917 ipkColumn = pTab->iPKey; 918 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 919 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 920 testcase( pTab->tabFlags & TF_HasVirtual ); 921 testcase( pTab->tabFlags & TF_HasStored ); 922 for(i=ipkColumn-1; i>=0; i--){ 923 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 924 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 925 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 926 ipkColumn--; 927 } 928 } 929 } 930 #endif 931 } 932 933 /* Make sure the number of columns in the source data matches the number 934 ** of columns to be inserted into the table. 935 */ 936 for(i=0; i<pTab->nCol; i++){ 937 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 938 } 939 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ 940 sqlite3ErrorMsg(pParse, 941 "table %S has %d columns but %d values were supplied", 942 pTabList, 0, pTab->nCol-nHidden, nColumn); 943 goto insert_cleanup; 944 } 945 if( pColumn!=0 && nColumn!=pColumn->nId ){ 946 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 947 goto insert_cleanup; 948 } 949 950 /* Initialize the count of rows to be inserted 951 */ 952 if( (db->flags & SQLITE_CountRows)!=0 953 && !pParse->nested 954 && !pParse->pTriggerTab 955 ){ 956 regRowCount = ++pParse->nMem; 957 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 958 } 959 960 /* If this is not a view, open the table and and all indices */ 961 if( !isView ){ 962 int nIdx; 963 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 964 &iDataCur, &iIdxCur); 965 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 966 if( aRegIdx==0 ){ 967 goto insert_cleanup; 968 } 969 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 970 assert( pIdx ); 971 aRegIdx[i] = ++pParse->nMem; 972 pParse->nMem += pIdx->nColumn; 973 } 974 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 975 } 976 #ifndef SQLITE_OMIT_UPSERT 977 if( pUpsert ){ 978 Upsert *pNx; 979 if( IsVirtual(pTab) ){ 980 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 981 pTab->zName); 982 goto insert_cleanup; 983 } 984 if( pTab->pSelect ){ 985 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 986 goto insert_cleanup; 987 } 988 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 989 goto insert_cleanup; 990 } 991 pTabList->a[0].iCursor = iDataCur; 992 pNx = pUpsert; 993 do{ 994 pNx->pUpsertSrc = pTabList; 995 pNx->regData = regData; 996 pNx->iDataCur = iDataCur; 997 pNx->iIdxCur = iIdxCur; 998 if( pNx->pUpsertTarget ){ 999 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx); 1000 } 1001 pNx = pNx->pNextUpsert; 1002 }while( pNx!=0 ); 1003 } 1004 #endif 1005 1006 1007 /* This is the top of the main insertion loop */ 1008 if( useTempTable ){ 1009 /* This block codes the top of loop only. The complete loop is the 1010 ** following pseudocode (template 4): 1011 ** 1012 ** rewind temp table, if empty goto D 1013 ** C: loop over rows of intermediate table 1014 ** transfer values form intermediate table into <table> 1015 ** end loop 1016 ** D: ... 1017 */ 1018 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1019 addrCont = sqlite3VdbeCurrentAddr(v); 1020 }else if( pSelect ){ 1021 /* This block codes the top of loop only. The complete loop is the 1022 ** following pseudocode (template 3): 1023 ** 1024 ** C: yield X, at EOF goto D 1025 ** insert the select result into <table> from R..R+n 1026 ** goto C 1027 ** D: ... 1028 */ 1029 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1030 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1031 VdbeCoverage(v); 1032 if( ipkColumn>=0 ){ 1033 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1034 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1035 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1036 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1037 } 1038 } 1039 1040 /* Compute data for ordinary columns of the new entry. Values 1041 ** are written in storage order into registers starting with regData. 1042 ** Only ordinary columns are computed in this loop. The rowid 1043 ** (if there is one) is computed later and generated columns are 1044 ** computed after the rowid since they might depend on the value 1045 ** of the rowid. 1046 */ 1047 nHidden = 0; 1048 iRegStore = regData; assert( regData==regRowid+1 ); 1049 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1050 int k; 1051 u32 colFlags; 1052 assert( i>=nHidden ); 1053 if( i==pTab->iPKey ){ 1054 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1055 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1056 ** using excess space. The file format definition requires this extra 1057 ** NULL - we cannot optimize further by skipping the column completely */ 1058 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1059 continue; 1060 } 1061 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1062 nHidden++; 1063 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1064 /* Virtual columns do not participate in OP_MakeRecord. So back up 1065 ** iRegStore by one slot to compensate for the iRegStore++ in the 1066 ** outer for() loop */ 1067 iRegStore--; 1068 continue; 1069 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1070 /* Stored columns are computed later. But if there are BEFORE 1071 ** triggers, the slots used for stored columns will be OP_Copy-ed 1072 ** to a second block of registers, so the register needs to be 1073 ** initialized to NULL to avoid an uninitialized register read */ 1074 if( tmask & TRIGGER_BEFORE ){ 1075 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1076 } 1077 continue; 1078 }else if( pColumn==0 ){ 1079 /* Hidden columns that are not explicitly named in the INSERT 1080 ** get there default value */ 1081 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1082 continue; 1083 } 1084 } 1085 if( pColumn ){ 1086 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){} 1087 if( j>=pColumn->nId ){ 1088 /* A column not named in the insert column list gets its 1089 ** default value */ 1090 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1091 continue; 1092 } 1093 k = j; 1094 }else if( nColumn==0 ){ 1095 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1096 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); 1097 continue; 1098 }else{ 1099 k = i - nHidden; 1100 } 1101 1102 if( useTempTable ){ 1103 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1104 }else if( pSelect ){ 1105 if( regFromSelect!=regData ){ 1106 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1107 } 1108 }else{ 1109 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore); 1110 } 1111 } 1112 1113 1114 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1115 */ 1116 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1117 if( tmask & TRIGGER_BEFORE ){ 1118 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1119 1120 /* build the NEW.* reference row. Note that if there is an INTEGER 1121 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1122 ** translated into a unique ID for the row. But on a BEFORE trigger, 1123 ** we do not know what the unique ID will be (because the insert has 1124 ** not happened yet) so we substitute a rowid of -1 1125 */ 1126 if( ipkColumn<0 ){ 1127 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1128 }else{ 1129 int addr1; 1130 assert( !withoutRowid ); 1131 if( useTempTable ){ 1132 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1133 }else{ 1134 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1135 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1136 } 1137 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1138 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1139 sqlite3VdbeJumpHere(v, addr1); 1140 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1141 } 1142 1143 /* Cannot have triggers on a virtual table. If it were possible, 1144 ** this block would have to account for hidden column. 1145 */ 1146 assert( !IsVirtual(pTab) ); 1147 1148 /* Copy the new data already generated. */ 1149 assert( pTab->nNVCol>0 ); 1150 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1151 1152 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1153 /* Compute the new value for generated columns after all other 1154 ** columns have already been computed. This must be done after 1155 ** computing the ROWID in case one of the generated columns 1156 ** refers to the ROWID. */ 1157 if( pTab->tabFlags & TF_HasGenerated ){ 1158 testcase( pTab->tabFlags & TF_HasVirtual ); 1159 testcase( pTab->tabFlags & TF_HasStored ); 1160 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1161 } 1162 #endif 1163 1164 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1165 ** do not attempt any conversions before assembling the record. 1166 ** If this is a real table, attempt conversions as required by the 1167 ** table column affinities. 1168 */ 1169 if( !isView ){ 1170 sqlite3TableAffinity(v, pTab, regCols+1); 1171 } 1172 1173 /* Fire BEFORE or INSTEAD OF triggers */ 1174 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1175 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1176 1177 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1178 } 1179 1180 if( !isView ){ 1181 if( IsVirtual(pTab) ){ 1182 /* The row that the VUpdate opcode will delete: none */ 1183 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1184 } 1185 if( ipkColumn>=0 ){ 1186 /* Compute the new rowid */ 1187 if( useTempTable ){ 1188 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1189 }else if( pSelect ){ 1190 /* Rowid already initialized at tag-20191021-001 */ 1191 }else{ 1192 Expr *pIpk = pList->a[ipkColumn].pExpr; 1193 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1194 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1195 appendFlag = 1; 1196 }else{ 1197 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1198 } 1199 } 1200 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1201 ** to generate a unique primary key value. 1202 */ 1203 if( !appendFlag ){ 1204 int addr1; 1205 if( !IsVirtual(pTab) ){ 1206 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1207 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1208 sqlite3VdbeJumpHere(v, addr1); 1209 }else{ 1210 addr1 = sqlite3VdbeCurrentAddr(v); 1211 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1212 } 1213 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1214 } 1215 }else if( IsVirtual(pTab) || withoutRowid ){ 1216 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1217 }else{ 1218 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1219 appendFlag = 1; 1220 } 1221 autoIncStep(pParse, regAutoinc, regRowid); 1222 1223 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1224 /* Compute the new value for generated columns after all other 1225 ** columns have already been computed. This must be done after 1226 ** computing the ROWID in case one of the generated columns 1227 ** is derived from the INTEGER PRIMARY KEY. */ 1228 if( pTab->tabFlags & TF_HasGenerated ){ 1229 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1230 } 1231 #endif 1232 1233 /* Generate code to check constraints and generate index keys and 1234 ** do the insertion. 1235 */ 1236 #ifndef SQLITE_OMIT_VIRTUALTABLE 1237 if( IsVirtual(pTab) ){ 1238 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1239 sqlite3VtabMakeWritable(pParse, pTab); 1240 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1241 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1242 sqlite3MayAbort(pParse); 1243 }else 1244 #endif 1245 { 1246 int isReplace; /* Set to true if constraints may cause a replace */ 1247 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1248 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1249 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1250 ); 1251 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1252 1253 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1254 ** constraints or (b) there are no triggers and this table is not a 1255 ** parent table in a foreign key constraint. It is safe to set the 1256 ** flag in the second case as if any REPLACE constraint is hit, an 1257 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1258 ** cursor that is disturbed. And these instructions both clear the 1259 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1260 ** functionality. */ 1261 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1262 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1263 regIns, aRegIdx, 0, appendFlag, bUseSeek 1264 ); 1265 } 1266 } 1267 1268 /* Update the count of rows that are inserted 1269 */ 1270 if( regRowCount ){ 1271 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1272 } 1273 1274 if( pTrigger ){ 1275 /* Code AFTER triggers */ 1276 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1277 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1278 } 1279 1280 /* The bottom of the main insertion loop, if the data source 1281 ** is a SELECT statement. 1282 */ 1283 sqlite3VdbeResolveLabel(v, endOfLoop); 1284 if( useTempTable ){ 1285 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1286 sqlite3VdbeJumpHere(v, addrInsTop); 1287 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1288 }else if( pSelect ){ 1289 sqlite3VdbeGoto(v, addrCont); 1290 #ifdef SQLITE_DEBUG 1291 /* If we are jumping back to an OP_Yield that is preceded by an 1292 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1293 ** OP_ReleaseReg will be included in the loop. */ 1294 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1295 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1296 sqlite3VdbeChangeP5(v, 1); 1297 } 1298 #endif 1299 sqlite3VdbeJumpHere(v, addrInsTop); 1300 } 1301 1302 insert_end: 1303 /* Update the sqlite_sequence table by storing the content of the 1304 ** maximum rowid counter values recorded while inserting into 1305 ** autoincrement tables. 1306 */ 1307 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1308 sqlite3AutoincrementEnd(pParse); 1309 } 1310 1311 /* 1312 ** Return the number of rows inserted. If this routine is 1313 ** generating code because of a call to sqlite3NestedParse(), do not 1314 ** invoke the callback function. 1315 */ 1316 if( regRowCount ){ 1317 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); 1318 sqlite3VdbeSetNumCols(v, 1); 1319 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); 1320 } 1321 1322 insert_cleanup: 1323 sqlite3SrcListDelete(db, pTabList); 1324 sqlite3ExprListDelete(db, pList); 1325 sqlite3UpsertDelete(db, pUpsert); 1326 sqlite3SelectDelete(db, pSelect); 1327 sqlite3IdListDelete(db, pColumn); 1328 sqlite3DbFree(db, aRegIdx); 1329 } 1330 1331 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1332 ** they may interfere with compilation of other functions in this file 1333 ** (or in another file, if this file becomes part of the amalgamation). */ 1334 #ifdef isView 1335 #undef isView 1336 #endif 1337 #ifdef pTrigger 1338 #undef pTrigger 1339 #endif 1340 #ifdef tmask 1341 #undef tmask 1342 #endif 1343 1344 /* 1345 ** Meanings of bits in of pWalker->eCode for 1346 ** sqlite3ExprReferencesUpdatedColumn() 1347 */ 1348 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1349 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1350 1351 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1352 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1353 ** expression node references any of the 1354 ** columns that are being modifed by an UPDATE statement. 1355 */ 1356 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1357 if( pExpr->op==TK_COLUMN ){ 1358 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1359 if( pExpr->iColumn>=0 ){ 1360 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1361 pWalker->eCode |= CKCNSTRNT_COLUMN; 1362 } 1363 }else{ 1364 pWalker->eCode |= CKCNSTRNT_ROWID; 1365 } 1366 } 1367 return WRC_Continue; 1368 } 1369 1370 /* 1371 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1372 ** only columns that are modified by the UPDATE are those for which 1373 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1374 ** 1375 ** Return true if CHECK constraint pExpr uses any of the 1376 ** changing columns (or the rowid if it is changing). In other words, 1377 ** return true if this CHECK constraint must be validated for 1378 ** the new row in the UPDATE statement. 1379 ** 1380 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1381 ** The operation of this routine is the same - return true if an only if 1382 ** the expression uses one or more of columns identified by the second and 1383 ** third arguments. 1384 */ 1385 int sqlite3ExprReferencesUpdatedColumn( 1386 Expr *pExpr, /* The expression to be checked */ 1387 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1388 int chngRowid /* True if UPDATE changes the rowid */ 1389 ){ 1390 Walker w; 1391 memset(&w, 0, sizeof(w)); 1392 w.eCode = 0; 1393 w.xExprCallback = checkConstraintExprNode; 1394 w.u.aiCol = aiChng; 1395 sqlite3WalkExpr(&w, pExpr); 1396 if( !chngRowid ){ 1397 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1398 w.eCode &= ~CKCNSTRNT_ROWID; 1399 } 1400 testcase( w.eCode==0 ); 1401 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1402 testcase( w.eCode==CKCNSTRNT_ROWID ); 1403 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1404 return w.eCode!=0; 1405 } 1406 1407 /* 1408 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1409 ** the indexes of a table in the order provided in the Table->pIndex list. 1410 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1411 ** the indexes in a different order. The following data structures accomplish 1412 ** this. 1413 ** 1414 ** The IndexIterator object is used to walk through all of the indexes 1415 ** of a table in either Index.pNext order, or in some other order established 1416 ** by an array of IndexListTerm objects. 1417 */ 1418 typedef struct IndexListTerm IndexListTerm; 1419 typedef struct IndexIterator IndexIterator; 1420 struct IndexIterator { 1421 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1422 int i; /* Index of the current item from the list */ 1423 union { 1424 struct { /* Use this object for eType==0: A Index.pNext list */ 1425 Index *pIdx; /* The current Index */ 1426 } lx; 1427 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1428 int nIdx; /* Size of the array */ 1429 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1430 } ax; 1431 } u; 1432 }; 1433 1434 /* When IndexIterator.eType==1, then each index is an array of instances 1435 ** of the following object 1436 */ 1437 struct IndexListTerm { 1438 Index *p; /* The index */ 1439 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1440 }; 1441 1442 /* Return the first index on the list */ 1443 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1444 assert( pIter->i==0 ); 1445 if( pIter->eType ){ 1446 *pIx = pIter->u.ax.aIdx[0].ix; 1447 return pIter->u.ax.aIdx[0].p; 1448 }else{ 1449 *pIx = 0; 1450 return pIter->u.lx.pIdx; 1451 } 1452 } 1453 1454 /* Return the next index from the list. Return NULL when out of indexes */ 1455 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1456 if( pIter->eType ){ 1457 int i = ++pIter->i; 1458 if( i>=pIter->u.ax.nIdx ){ 1459 *pIx = i; 1460 return 0; 1461 } 1462 *pIx = pIter->u.ax.aIdx[i].ix; 1463 return pIter->u.ax.aIdx[i].p; 1464 }else{ 1465 ++(*pIx); 1466 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1467 return pIter->u.lx.pIdx; 1468 } 1469 } 1470 1471 /* 1472 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1473 ** on table pTab. 1474 ** 1475 ** The regNewData parameter is the first register in a range that contains 1476 ** the data to be inserted or the data after the update. There will be 1477 ** pTab->nCol+1 registers in this range. The first register (the one 1478 ** that regNewData points to) will contain the new rowid, or NULL in the 1479 ** case of a WITHOUT ROWID table. The second register in the range will 1480 ** contain the content of the first table column. The third register will 1481 ** contain the content of the second table column. And so forth. 1482 ** 1483 ** The regOldData parameter is similar to regNewData except that it contains 1484 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1485 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1486 ** checking regOldData for zero. 1487 ** 1488 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1489 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1490 ** might be modified by the UPDATE. If pkChng is false, then the key of 1491 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1492 ** 1493 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1494 ** was explicitly specified as part of the INSERT statement. If pkChng 1495 ** is zero, it means that the either rowid is computed automatically or 1496 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1497 ** pkChng will only be true if the INSERT statement provides an integer 1498 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1499 ** 1500 ** The code generated by this routine will store new index entries into 1501 ** registers identified by aRegIdx[]. No index entry is created for 1502 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1503 ** the same as the order of indices on the linked list of indices 1504 ** at pTab->pIndex. 1505 ** 1506 ** (2019-05-07) The generated code also creates a new record for the 1507 ** main table, if pTab is a rowid table, and stores that record in the 1508 ** register identified by aRegIdx[nIdx] - in other words in the first 1509 ** entry of aRegIdx[] past the last index. It is important that the 1510 ** record be generated during constraint checks to avoid affinity changes 1511 ** to the register content that occur after constraint checks but before 1512 ** the new record is inserted. 1513 ** 1514 ** The caller must have already opened writeable cursors on the main 1515 ** table and all applicable indices (that is to say, all indices for which 1516 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1517 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1518 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1519 ** for the first index in the pTab->pIndex list. Cursors for other indices 1520 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1521 ** 1522 ** This routine also generates code to check constraints. NOT NULL, 1523 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1524 ** then the appropriate action is performed. There are five possible 1525 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1526 ** 1527 ** Constraint type Action What Happens 1528 ** --------------- ---------- ---------------------------------------- 1529 ** any ROLLBACK The current transaction is rolled back and 1530 ** sqlite3_step() returns immediately with a 1531 ** return code of SQLITE_CONSTRAINT. 1532 ** 1533 ** any ABORT Back out changes from the current command 1534 ** only (do not do a complete rollback) then 1535 ** cause sqlite3_step() to return immediately 1536 ** with SQLITE_CONSTRAINT. 1537 ** 1538 ** any FAIL Sqlite3_step() returns immediately with a 1539 ** return code of SQLITE_CONSTRAINT. The 1540 ** transaction is not rolled back and any 1541 ** changes to prior rows are retained. 1542 ** 1543 ** any IGNORE The attempt in insert or update the current 1544 ** row is skipped, without throwing an error. 1545 ** Processing continues with the next row. 1546 ** (There is an immediate jump to ignoreDest.) 1547 ** 1548 ** NOT NULL REPLACE The NULL value is replace by the default 1549 ** value for that column. If the default value 1550 ** is NULL, the action is the same as ABORT. 1551 ** 1552 ** UNIQUE REPLACE The other row that conflicts with the row 1553 ** being inserted is removed. 1554 ** 1555 ** CHECK REPLACE Illegal. The results in an exception. 1556 ** 1557 ** Which action to take is determined by the overrideError parameter. 1558 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1559 ** is used. Or if pParse->onError==OE_Default then the onError value 1560 ** for the constraint is used. 1561 */ 1562 void sqlite3GenerateConstraintChecks( 1563 Parse *pParse, /* The parser context */ 1564 Table *pTab, /* The table being inserted or updated */ 1565 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1566 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1567 int iIdxCur, /* First index cursor */ 1568 int regNewData, /* First register in a range holding values to insert */ 1569 int regOldData, /* Previous content. 0 for INSERTs */ 1570 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1571 u8 overrideError, /* Override onError to this if not OE_Default */ 1572 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1573 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1574 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1575 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1576 ){ 1577 Vdbe *v; /* VDBE under constrution */ 1578 Index *pIdx; /* Pointer to one of the indices */ 1579 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1580 sqlite3 *db; /* Database connection */ 1581 int i; /* loop counter */ 1582 int ix; /* Index loop counter */ 1583 int nCol; /* Number of columns */ 1584 int onError; /* Conflict resolution strategy */ 1585 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1586 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1587 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1588 u8 isUpdate; /* True if this is an UPDATE operation */ 1589 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1590 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1591 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1592 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1593 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1594 /* Variables associated with retesting uniqueness constraints after 1595 ** replace triggers fire have run */ 1596 int regTrigCnt; /* Register used to count replace trigger invocations */ 1597 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1598 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1599 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1600 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1601 IndexIterator sIdxIter; /* Index iterator */ 1602 1603 isUpdate = regOldData!=0; 1604 db = pParse->db; 1605 v = pParse->pVdbe; 1606 assert( v!=0 ); 1607 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 1608 nCol = pTab->nCol; 1609 1610 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1611 ** normal rowid tables. nPkField is the number of key fields in the 1612 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1613 ** number of fields in the true primary key of the table. */ 1614 if( HasRowid(pTab) ){ 1615 pPk = 0; 1616 nPkField = 1; 1617 }else{ 1618 pPk = sqlite3PrimaryKeyIndex(pTab); 1619 nPkField = pPk->nKeyCol; 1620 } 1621 1622 /* Record that this module has started */ 1623 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1624 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1625 1626 /* Test all NOT NULL constraints. 1627 */ 1628 if( pTab->tabFlags & TF_HasNotNull ){ 1629 int b2ndPass = 0; /* True if currently running 2nd pass */ 1630 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1631 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1632 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1633 for(i=0; i<nCol; i++){ 1634 int iReg; /* Register holding column value */ 1635 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1636 int isGenerated; /* non-zero if column is generated */ 1637 onError = pCol->notNull; 1638 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1639 if( i==pTab->iPKey ){ 1640 continue; /* ROWID is never NULL */ 1641 } 1642 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1643 if( isGenerated && !b2ndPass ){ 1644 nGenerated++; 1645 continue; /* Generated columns processed on 2nd pass */ 1646 } 1647 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1648 /* Do not check NOT NULL on columns that do not change */ 1649 continue; 1650 } 1651 if( overrideError!=OE_Default ){ 1652 onError = overrideError; 1653 }else if( onError==OE_Default ){ 1654 onError = OE_Abort; 1655 } 1656 if( onError==OE_Replace ){ 1657 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1658 || pCol->pDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1659 ){ 1660 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1661 testcase( pCol->colFlags & COLFLAG_STORED ); 1662 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1663 onError = OE_Abort; 1664 }else{ 1665 assert( !isGenerated ); 1666 } 1667 }else if( b2ndPass && !isGenerated ){ 1668 continue; 1669 } 1670 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1671 || onError==OE_Ignore || onError==OE_Replace ); 1672 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1673 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1674 switch( onError ){ 1675 case OE_Replace: { 1676 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1677 VdbeCoverage(v); 1678 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1679 nSeenReplace++; 1680 sqlite3ExprCodeCopy(pParse, pCol->pDflt, iReg); 1681 sqlite3VdbeJumpHere(v, addr1); 1682 break; 1683 } 1684 case OE_Abort: 1685 sqlite3MayAbort(pParse); 1686 /* no break */ deliberate_fall_through 1687 case OE_Rollback: 1688 case OE_Fail: { 1689 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1690 pCol->zName); 1691 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1692 onError, iReg); 1693 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1694 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1695 VdbeCoverage(v); 1696 break; 1697 } 1698 default: { 1699 assert( onError==OE_Ignore ); 1700 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1701 VdbeCoverage(v); 1702 break; 1703 } 1704 } /* end switch(onError) */ 1705 } /* end loop i over columns */ 1706 if( nGenerated==0 && nSeenReplace==0 ){ 1707 /* If there are no generated columns with NOT NULL constraints 1708 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1709 ** pass is sufficient */ 1710 break; 1711 } 1712 if( b2ndPass ) break; /* Never need more than 2 passes */ 1713 b2ndPass = 1; 1714 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1715 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1716 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1717 ** first pass, recomputed values for all generated columns, as 1718 ** those values might depend on columns affected by the REPLACE. 1719 */ 1720 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1721 } 1722 #endif 1723 } /* end of 2-pass loop */ 1724 } /* end if( has-not-null-constraints ) */ 1725 1726 /* Test all CHECK constraints 1727 */ 1728 #ifndef SQLITE_OMIT_CHECK 1729 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1730 ExprList *pCheck = pTab->pCheck; 1731 pParse->iSelfTab = -(regNewData+1); 1732 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1733 for(i=0; i<pCheck->nExpr; i++){ 1734 int allOk; 1735 Expr *pCopy; 1736 Expr *pExpr = pCheck->a[i].pExpr; 1737 if( aiChng 1738 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1739 ){ 1740 /* The check constraints do not reference any of the columns being 1741 ** updated so there is no point it verifying the check constraint */ 1742 continue; 1743 } 1744 if( bAffinityDone==0 ){ 1745 sqlite3TableAffinity(v, pTab, regNewData+1); 1746 bAffinityDone = 1; 1747 } 1748 allOk = sqlite3VdbeMakeLabel(pParse); 1749 sqlite3VdbeVerifyAbortable(v, onError); 1750 pCopy = sqlite3ExprDup(db, pExpr, 0); 1751 if( !db->mallocFailed ){ 1752 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1753 } 1754 sqlite3ExprDelete(db, pCopy); 1755 if( onError==OE_Ignore ){ 1756 sqlite3VdbeGoto(v, ignoreDest); 1757 }else{ 1758 char *zName = pCheck->a[i].zEName; 1759 assert( zName!=0 || pParse->db->mallocFailed ); 1760 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1761 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1762 onError, zName, P4_TRANSIENT, 1763 P5_ConstraintCheck); 1764 } 1765 sqlite3VdbeResolveLabel(v, allOk); 1766 } 1767 pParse->iSelfTab = 0; 1768 } 1769 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1770 1771 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1772 ** order: 1773 ** 1774 ** (1) OE_Update 1775 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1776 ** (3) OE_Replace 1777 ** 1778 ** OE_Fail and OE_Ignore must happen before any changes are made. 1779 ** OE_Update guarantees that only a single row will change, so it 1780 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1781 ** could happen in any order, but they are grouped up front for 1782 ** convenience. 1783 ** 1784 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1785 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1786 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1787 ** constraint before any others, so it had to be moved. 1788 ** 1789 ** Constraint checking code is generated in this order: 1790 ** (A) The rowid constraint 1791 ** (B) Unique index constraints that do not have OE_Replace as their 1792 ** default conflict resolution strategy 1793 ** (C) Unique index that do use OE_Replace by default. 1794 ** 1795 ** The ordering of (2) and (3) is accomplished by making sure the linked 1796 ** list of indexes attached to a table puts all OE_Replace indexes last 1797 ** in the list. See sqlite3CreateIndex() for where that happens. 1798 */ 1799 sIdxIter.eType = 0; 1800 sIdxIter.i = 0; 1801 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1802 sIdxIter.u.lx.pIdx = pTab->pIndex; 1803 if( pUpsert ){ 1804 if( pUpsert->pUpsertTarget==0 ){ 1805 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1806 assert( pUpsert->pNextUpsert==0 ); 1807 if( pUpsert->isDoUpdate==0 ){ 1808 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1809 ** Make all unique constraint resolution be OE_Ignore */ 1810 overrideError = OE_Ignore; 1811 pUpsert = 0; 1812 }else{ 1813 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1814 overrideError = OE_Update; 1815 } 1816 }else if( pTab->pIndex!=0 ){ 1817 /* Otherwise, we'll need to run the IndexListTerm array version of the 1818 ** iterator to ensure that all of the ON CONFLICT conditions are 1819 ** checked first and in order. */ 1820 int nIdx, jj; 1821 u64 nByte; 1822 Upsert *pTerm; 1823 u8 *bUsed; 1824 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1825 assert( aRegIdx[nIdx]>0 ); 1826 } 1827 sIdxIter.eType = 1; 1828 sIdxIter.u.ax.nIdx = nIdx; 1829 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1830 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1831 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1832 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1833 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1834 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1835 if( pTerm->pUpsertTarget==0 ) break; 1836 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1837 jj = 0; 1838 pIdx = pTab->pIndex; 1839 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1840 pIdx = pIdx->pNext; 1841 jj++; 1842 } 1843 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1844 bUsed[jj] = 1; 1845 sIdxIter.u.ax.aIdx[i].p = pIdx; 1846 sIdxIter.u.ax.aIdx[i].ix = jj; 1847 i++; 1848 } 1849 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1850 if( bUsed[jj] ) continue; 1851 sIdxIter.u.ax.aIdx[i].p = pIdx; 1852 sIdxIter.u.ax.aIdx[i].ix = jj; 1853 i++; 1854 } 1855 assert( i==nIdx ); 1856 } 1857 } 1858 1859 /* Determine if it is possible that triggers (either explicitly coded 1860 ** triggers or FK resolution actions) might run as a result of deletes 1861 ** that happen when OE_Replace conflict resolution occurs. (Call these 1862 ** "replace triggers".) If any replace triggers run, we will need to 1863 ** recheck all of the uniqueness constraints after they have all run. 1864 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1865 ** 1866 ** If replace triggers are a possibility, then 1867 ** 1868 ** (1) Allocate register regTrigCnt and initialize it to zero. 1869 ** That register will count the number of replace triggers that 1870 ** fire. Constraint recheck only occurs if the number is positive. 1871 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1872 ** (3) Initialize addrRecheck and lblRecheckOk 1873 ** 1874 ** The uniqueness rechecking code will create a series of tests to run 1875 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1876 ** used to link together these tests which are separated from each other 1877 ** in the generate bytecode. 1878 */ 1879 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1880 /* There are not DELETE triggers nor FK constraints. No constraint 1881 ** rechecks are needed. */ 1882 pTrigger = 0; 1883 regTrigCnt = 0; 1884 }else{ 1885 if( db->flags&SQLITE_RecTriggers ){ 1886 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1887 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1888 }else{ 1889 pTrigger = 0; 1890 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1891 } 1892 if( regTrigCnt ){ 1893 /* Replace triggers might exist. Allocate the counter and 1894 ** initialize it to zero. */ 1895 regTrigCnt = ++pParse->nMem; 1896 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 1897 VdbeComment((v, "trigger count")); 1898 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 1899 addrRecheck = lblRecheckOk; 1900 } 1901 } 1902 1903 /* If rowid is changing, make sure the new rowid does not previously 1904 ** exist in the table. 1905 */ 1906 if( pkChng && pPk==0 ){ 1907 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 1908 1909 /* Figure out what action to take in case of a rowid collision */ 1910 onError = pTab->keyConf; 1911 if( overrideError!=OE_Default ){ 1912 onError = overrideError; 1913 }else if( onError==OE_Default ){ 1914 onError = OE_Abort; 1915 } 1916 1917 /* figure out whether or not upsert applies in this case */ 1918 if( pUpsert ){ 1919 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 1920 if( pUpsertClause!=0 ){ 1921 if( pUpsertClause->isDoUpdate==0 ){ 1922 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 1923 }else{ 1924 onError = OE_Update; /* DO UPDATE */ 1925 } 1926 } 1927 if( pUpsertClause!=pUpsert ){ 1928 /* The first ON CONFLICT clause has a conflict target other than 1929 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 1930 ** and then come back here and deal with the IPK afterwards */ 1931 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 1932 } 1933 } 1934 1935 /* If the response to a rowid conflict is REPLACE but the response 1936 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 1937 ** to defer the running of the rowid conflict checking until after 1938 ** the UNIQUE constraints have run. 1939 */ 1940 if( onError==OE_Replace /* IPK rule is REPLACE */ 1941 && onError!=overrideError /* Rules for other contraints are different */ 1942 && pTab->pIndex /* There exist other constraints */ 1943 ){ 1944 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 1945 VdbeComment((v, "defer IPK REPLACE until last")); 1946 } 1947 1948 if( isUpdate ){ 1949 /* pkChng!=0 does not mean that the rowid has changed, only that 1950 ** it might have changed. Skip the conflict logic below if the rowid 1951 ** is unchanged. */ 1952 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 1953 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 1954 VdbeCoverage(v); 1955 } 1956 1957 /* Check to see if the new rowid already exists in the table. Skip 1958 ** the following conflict logic if it does not. */ 1959 VdbeNoopComment((v, "uniqueness check for ROWID")); 1960 sqlite3VdbeVerifyAbortable(v, onError); 1961 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 1962 VdbeCoverage(v); 1963 1964 switch( onError ){ 1965 default: { 1966 onError = OE_Abort; 1967 /* no break */ deliberate_fall_through 1968 } 1969 case OE_Rollback: 1970 case OE_Abort: 1971 case OE_Fail: { 1972 testcase( onError==OE_Rollback ); 1973 testcase( onError==OE_Abort ); 1974 testcase( onError==OE_Fail ); 1975 sqlite3RowidConstraint(pParse, onError, pTab); 1976 break; 1977 } 1978 case OE_Replace: { 1979 /* If there are DELETE triggers on this table and the 1980 ** recursive-triggers flag is set, call GenerateRowDelete() to 1981 ** remove the conflicting row from the table. This will fire 1982 ** the triggers and remove both the table and index b-tree entries. 1983 ** 1984 ** Otherwise, if there are no triggers or the recursive-triggers 1985 ** flag is not set, but the table has one or more indexes, call 1986 ** GenerateRowIndexDelete(). This removes the index b-tree entries 1987 ** only. The table b-tree entry will be replaced by the new entry 1988 ** when it is inserted. 1989 ** 1990 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 1991 ** also invoke MultiWrite() to indicate that this VDBE may require 1992 ** statement rollback (if the statement is aborted after the delete 1993 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 1994 ** but being more selective here allows statements like: 1995 ** 1996 ** REPLACE INTO t(rowid) VALUES($newrowid) 1997 ** 1998 ** to run without a statement journal if there are no indexes on the 1999 ** table. 2000 */ 2001 if( regTrigCnt ){ 2002 sqlite3MultiWrite(pParse); 2003 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2004 regNewData, 1, 0, OE_Replace, 1, -1); 2005 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2006 nReplaceTrig++; 2007 }else{ 2008 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2009 assert( HasRowid(pTab) ); 2010 /* This OP_Delete opcode fires the pre-update-hook only. It does 2011 ** not modify the b-tree. It is more efficient to let the coming 2012 ** OP_Insert replace the existing entry than it is to delete the 2013 ** existing entry and then insert a new one. */ 2014 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2015 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2016 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2017 if( pTab->pIndex ){ 2018 sqlite3MultiWrite(pParse); 2019 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2020 } 2021 } 2022 seenReplace = 1; 2023 break; 2024 } 2025 #ifndef SQLITE_OMIT_UPSERT 2026 case OE_Update: { 2027 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2028 /* no break */ deliberate_fall_through 2029 } 2030 #endif 2031 case OE_Ignore: { 2032 testcase( onError==OE_Ignore ); 2033 sqlite3VdbeGoto(v, ignoreDest); 2034 break; 2035 } 2036 } 2037 sqlite3VdbeResolveLabel(v, addrRowidOk); 2038 if( pUpsert && pUpsertClause!=pUpsert ){ 2039 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2040 }else if( ipkTop ){ 2041 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2042 sqlite3VdbeJumpHere(v, ipkTop-1); 2043 } 2044 } 2045 2046 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2047 ** index and making sure that duplicate entries do not already exist. 2048 ** Compute the revised record entries for indices as we go. 2049 ** 2050 ** This loop also handles the case of the PRIMARY KEY index for a 2051 ** WITHOUT ROWID table. 2052 */ 2053 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2054 pIdx; 2055 pIdx = indexIteratorNext(&sIdxIter, &ix) 2056 ){ 2057 int regIdx; /* Range of registers hold conent for pIdx */ 2058 int regR; /* Range of registers holding conflicting PK */ 2059 int iThisCur; /* Cursor for this UNIQUE index */ 2060 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2061 int addrConflictCk; /* First opcode in the conflict check logic */ 2062 2063 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2064 if( pUpsert ){ 2065 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2066 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2067 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2068 } 2069 } 2070 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2071 if( bAffinityDone==0 ){ 2072 sqlite3TableAffinity(v, pTab, regNewData+1); 2073 bAffinityDone = 1; 2074 } 2075 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2076 iThisCur = iIdxCur+ix; 2077 2078 2079 /* Skip partial indices for which the WHERE clause is not true */ 2080 if( pIdx->pPartIdxWhere ){ 2081 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2082 pParse->iSelfTab = -(regNewData+1); 2083 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2084 SQLITE_JUMPIFNULL); 2085 pParse->iSelfTab = 0; 2086 } 2087 2088 /* Create a record for this index entry as it should appear after 2089 ** the insert or update. Store that record in the aRegIdx[ix] register 2090 */ 2091 regIdx = aRegIdx[ix]+1; 2092 for(i=0; i<pIdx->nColumn; i++){ 2093 int iField = pIdx->aiColumn[i]; 2094 int x; 2095 if( iField==XN_EXPR ){ 2096 pParse->iSelfTab = -(regNewData+1); 2097 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2098 pParse->iSelfTab = 0; 2099 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2100 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2101 x = regNewData; 2102 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2103 VdbeComment((v, "rowid")); 2104 }else{ 2105 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2106 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2107 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2108 VdbeComment((v, "%s", pTab->aCol[iField].zName)); 2109 } 2110 } 2111 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2112 VdbeComment((v, "for %s", pIdx->zName)); 2113 #ifdef SQLITE_ENABLE_NULL_TRIM 2114 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2115 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2116 } 2117 #endif 2118 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2119 2120 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2121 ** of a WITHOUT ROWID table and there has been no change the 2122 ** primary key, then no collision is possible. The collision detection 2123 ** logic below can all be skipped. */ 2124 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2125 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2126 continue; 2127 } 2128 2129 /* Find out what action to take in case there is a uniqueness conflict */ 2130 onError = pIdx->onError; 2131 if( onError==OE_None ){ 2132 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2133 continue; /* pIdx is not a UNIQUE index */ 2134 } 2135 if( overrideError!=OE_Default ){ 2136 onError = overrideError; 2137 }else if( onError==OE_Default ){ 2138 onError = OE_Abort; 2139 } 2140 2141 /* Figure out if the upsert clause applies to this index */ 2142 if( pUpsertClause ){ 2143 if( pUpsertClause->isDoUpdate==0 ){ 2144 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2145 }else{ 2146 onError = OE_Update; /* DO UPDATE */ 2147 } 2148 } 2149 2150 /* Collision detection may be omitted if all of the following are true: 2151 ** (1) The conflict resolution algorithm is REPLACE 2152 ** (2) The table is a WITHOUT ROWID table 2153 ** (3) There are no secondary indexes on the table 2154 ** (4) No delete triggers need to be fired if there is a conflict 2155 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2156 ** 2157 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2158 ** must be explicitly deleted in order to ensure any pre-update hook 2159 ** is invoked. */ 2160 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2161 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2162 && pPk==pIdx /* Condition 2 */ 2163 && onError==OE_Replace /* Condition 1 */ 2164 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2165 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2166 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2167 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) 2168 ){ 2169 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2170 continue; 2171 } 2172 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2173 2174 /* Check to see if the new index entry will be unique */ 2175 sqlite3VdbeVerifyAbortable(v, onError); 2176 addrConflictCk = 2177 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2178 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2179 2180 /* Generate code to handle collisions */ 2181 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2182 if( isUpdate || onError==OE_Replace ){ 2183 if( HasRowid(pTab) ){ 2184 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2185 /* Conflict only if the rowid of the existing index entry 2186 ** is different from old-rowid */ 2187 if( isUpdate ){ 2188 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2189 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2190 VdbeCoverage(v); 2191 } 2192 }else{ 2193 int x; 2194 /* Extract the PRIMARY KEY from the end of the index entry and 2195 ** store it in registers regR..regR+nPk-1 */ 2196 if( pIdx!=pPk ){ 2197 for(i=0; i<pPk->nKeyCol; i++){ 2198 assert( pPk->aiColumn[i]>=0 ); 2199 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2200 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2201 VdbeComment((v, "%s.%s", pTab->zName, 2202 pTab->aCol[pPk->aiColumn[i]].zName)); 2203 } 2204 } 2205 if( isUpdate ){ 2206 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2207 ** table, only conflict if the new PRIMARY KEY values are actually 2208 ** different from the old. 2209 ** 2210 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2211 ** of the matched index row are different from the original PRIMARY 2212 ** KEY values of this row before the update. */ 2213 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2214 int op = OP_Ne; 2215 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2216 2217 for(i=0; i<pPk->nKeyCol; i++){ 2218 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2219 x = pPk->aiColumn[i]; 2220 assert( x>=0 ); 2221 if( i==(pPk->nKeyCol-1) ){ 2222 addrJump = addrUniqueOk; 2223 op = OP_Eq; 2224 } 2225 x = sqlite3TableColumnToStorage(pTab, x); 2226 sqlite3VdbeAddOp4(v, op, 2227 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2228 ); 2229 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2230 VdbeCoverageIf(v, op==OP_Eq); 2231 VdbeCoverageIf(v, op==OP_Ne); 2232 } 2233 } 2234 } 2235 } 2236 2237 /* Generate code that executes if the new index entry is not unique */ 2238 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2239 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2240 switch( onError ){ 2241 case OE_Rollback: 2242 case OE_Abort: 2243 case OE_Fail: { 2244 testcase( onError==OE_Rollback ); 2245 testcase( onError==OE_Abort ); 2246 testcase( onError==OE_Fail ); 2247 sqlite3UniqueConstraint(pParse, onError, pIdx); 2248 break; 2249 } 2250 #ifndef SQLITE_OMIT_UPSERT 2251 case OE_Update: { 2252 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2253 /* no break */ deliberate_fall_through 2254 } 2255 #endif 2256 case OE_Ignore: { 2257 testcase( onError==OE_Ignore ); 2258 sqlite3VdbeGoto(v, ignoreDest); 2259 break; 2260 } 2261 default: { 2262 int nConflictCk; /* Number of opcodes in conflict check logic */ 2263 2264 assert( onError==OE_Replace ); 2265 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2266 assert( nConflictCk>0 ); 2267 testcase( nConflictCk>1 ); 2268 if( regTrigCnt ){ 2269 sqlite3MultiWrite(pParse); 2270 nReplaceTrig++; 2271 } 2272 if( pTrigger && isUpdate ){ 2273 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2274 } 2275 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2276 regR, nPkField, 0, OE_Replace, 2277 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2278 if( pTrigger && isUpdate ){ 2279 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2280 } 2281 if( regTrigCnt ){ 2282 int addrBypass; /* Jump destination to bypass recheck logic */ 2283 2284 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2285 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2286 VdbeComment((v, "bypass recheck")); 2287 2288 /* Here we insert code that will be invoked after all constraint 2289 ** checks have run, if and only if one or more replace triggers 2290 ** fired. */ 2291 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2292 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2293 if( pIdx->pPartIdxWhere ){ 2294 /* Bypass the recheck if this partial index is not defined 2295 ** for the current row */ 2296 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2297 VdbeCoverage(v); 2298 } 2299 /* Copy the constraint check code from above, except change 2300 ** the constraint-ok jump destination to be the address of 2301 ** the next retest block */ 2302 while( nConflictCk>0 ){ 2303 VdbeOp x; /* Conflict check opcode to copy */ 2304 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2305 ** Hence, make a complete copy of the opcode, rather than using 2306 ** a pointer to the opcode. */ 2307 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2308 if( x.opcode!=OP_IdxRowid ){ 2309 int p2; /* New P2 value for copied conflict check opcode */ 2310 const char *zP4; 2311 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2312 p2 = lblRecheckOk; 2313 }else{ 2314 p2 = x.p2; 2315 } 2316 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2317 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2318 sqlite3VdbeChangeP5(v, x.p5); 2319 VdbeCoverageIf(v, p2!=x.p2); 2320 } 2321 nConflictCk--; 2322 addrConflictCk++; 2323 } 2324 /* If the retest fails, issue an abort */ 2325 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2326 2327 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2328 } 2329 seenReplace = 1; 2330 break; 2331 } 2332 } 2333 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2334 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2335 if( pUpsertClause 2336 && upsertIpkReturn 2337 && sqlite3UpsertNextIsIPK(pUpsertClause) 2338 ){ 2339 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2340 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2341 upsertIpkReturn = 0; 2342 } 2343 } 2344 2345 /* If the IPK constraint is a REPLACE, run it last */ 2346 if( ipkTop ){ 2347 sqlite3VdbeGoto(v, ipkTop); 2348 VdbeComment((v, "Do IPK REPLACE")); 2349 sqlite3VdbeJumpHere(v, ipkBottom); 2350 } 2351 2352 /* Recheck all uniqueness constraints after replace triggers have run */ 2353 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2354 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2355 if( nReplaceTrig ){ 2356 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2357 if( !pPk ){ 2358 if( isUpdate ){ 2359 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2360 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2361 VdbeCoverage(v); 2362 } 2363 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2364 VdbeCoverage(v); 2365 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2366 }else{ 2367 sqlite3VdbeGoto(v, addrRecheck); 2368 } 2369 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2370 } 2371 2372 /* Generate the table record */ 2373 if( HasRowid(pTab) ){ 2374 int regRec = aRegIdx[ix]; 2375 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2376 sqlite3SetMakeRecordP5(v, pTab); 2377 if( !bAffinityDone ){ 2378 sqlite3TableAffinity(v, pTab, 0); 2379 } 2380 } 2381 2382 *pbMayReplace = seenReplace; 2383 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2384 } 2385 2386 #ifdef SQLITE_ENABLE_NULL_TRIM 2387 /* 2388 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2389 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2390 ** 2391 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2392 */ 2393 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2394 u16 i; 2395 2396 /* Records with omitted columns are only allowed for schema format 2397 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2398 if( pTab->pSchema->file_format<2 ) return; 2399 2400 for(i=pTab->nCol-1; i>0; i--){ 2401 if( pTab->aCol[i].pDflt!=0 ) break; 2402 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2403 } 2404 sqlite3VdbeChangeP5(v, i+1); 2405 } 2406 #endif 2407 2408 /* 2409 ** This routine generates code to finish the INSERT or UPDATE operation 2410 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2411 ** A consecutive range of registers starting at regNewData contains the 2412 ** rowid and the content to be inserted. 2413 ** 2414 ** The arguments to this routine should be the same as the first six 2415 ** arguments to sqlite3GenerateConstraintChecks. 2416 */ 2417 void sqlite3CompleteInsertion( 2418 Parse *pParse, /* The parser context */ 2419 Table *pTab, /* the table into which we are inserting */ 2420 int iDataCur, /* Cursor of the canonical data source */ 2421 int iIdxCur, /* First index cursor */ 2422 int regNewData, /* Range of content */ 2423 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2424 int update_flags, /* True for UPDATE, False for INSERT */ 2425 int appendBias, /* True if this is likely to be an append */ 2426 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2427 ){ 2428 Vdbe *v; /* Prepared statements under construction */ 2429 Index *pIdx; /* An index being inserted or updated */ 2430 u8 pik_flags; /* flag values passed to the btree insert */ 2431 int i; /* Loop counter */ 2432 2433 assert( update_flags==0 2434 || update_flags==OPFLAG_ISUPDATE 2435 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2436 ); 2437 2438 v = pParse->pVdbe; 2439 assert( v!=0 ); 2440 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ 2441 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2442 /* All REPLACE indexes are at the end of the list */ 2443 assert( pIdx->onError!=OE_Replace 2444 || pIdx->pNext==0 2445 || pIdx->pNext->onError==OE_Replace ); 2446 if( aRegIdx[i]==0 ) continue; 2447 if( pIdx->pPartIdxWhere ){ 2448 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2449 VdbeCoverage(v); 2450 } 2451 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2452 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2453 assert( pParse->nested==0 ); 2454 pik_flags |= OPFLAG_NCHANGE; 2455 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2456 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2457 if( update_flags==0 ){ 2458 int r = sqlite3GetTempReg(pParse); 2459 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2460 sqlite3VdbeAddOp4(v, OP_Insert, 2461 iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE 2462 ); 2463 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2464 sqlite3ReleaseTempReg(pParse, r); 2465 } 2466 #endif 2467 } 2468 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2469 aRegIdx[i]+1, 2470 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2471 sqlite3VdbeChangeP5(v, pik_flags); 2472 } 2473 if( !HasRowid(pTab) ) return; 2474 if( pParse->nested ){ 2475 pik_flags = 0; 2476 }else{ 2477 pik_flags = OPFLAG_NCHANGE; 2478 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2479 } 2480 if( appendBias ){ 2481 pik_flags |= OPFLAG_APPEND; 2482 } 2483 if( useSeekResult ){ 2484 pik_flags |= OPFLAG_USESEEKRESULT; 2485 } 2486 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2487 if( !pParse->nested ){ 2488 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2489 } 2490 sqlite3VdbeChangeP5(v, pik_flags); 2491 } 2492 2493 /* 2494 ** Allocate cursors for the pTab table and all its indices and generate 2495 ** code to open and initialized those cursors. 2496 ** 2497 ** The cursor for the object that contains the complete data (normally 2498 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2499 ** ROWID table) is returned in *piDataCur. The first index cursor is 2500 ** returned in *piIdxCur. The number of indices is returned. 2501 ** 2502 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2503 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2504 ** If iBase is negative, then allocate the next available cursor. 2505 ** 2506 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2507 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2508 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2509 ** pTab->pIndex list. 2510 ** 2511 ** If pTab is a virtual table, then this routine is a no-op and the 2512 ** *piDataCur and *piIdxCur values are left uninitialized. 2513 */ 2514 int sqlite3OpenTableAndIndices( 2515 Parse *pParse, /* Parsing context */ 2516 Table *pTab, /* Table to be opened */ 2517 int op, /* OP_OpenRead or OP_OpenWrite */ 2518 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2519 int iBase, /* Use this for the table cursor, if there is one */ 2520 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2521 int *piDataCur, /* Write the database source cursor number here */ 2522 int *piIdxCur /* Write the first index cursor number here */ 2523 ){ 2524 int i; 2525 int iDb; 2526 int iDataCur; 2527 Index *pIdx; 2528 Vdbe *v; 2529 2530 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2531 assert( op==OP_OpenWrite || p5==0 ); 2532 if( IsVirtual(pTab) ){ 2533 /* This routine is a no-op for virtual tables. Leave the output 2534 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind 2535 ** can detect if they are used by mistake in the caller. */ 2536 return 0; 2537 } 2538 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2539 v = pParse->pVdbe; 2540 assert( v!=0 ); 2541 if( iBase<0 ) iBase = pParse->nTab; 2542 iDataCur = iBase++; 2543 if( piDataCur ) *piDataCur = iDataCur; 2544 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2545 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2546 }else{ 2547 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2548 } 2549 if( piIdxCur ) *piIdxCur = iBase; 2550 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2551 int iIdxCur = iBase++; 2552 assert( pIdx->pSchema==pTab->pSchema ); 2553 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2554 if( piDataCur ) *piDataCur = iIdxCur; 2555 p5 = 0; 2556 } 2557 if( aToOpen==0 || aToOpen[i+1] ){ 2558 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2559 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2560 sqlite3VdbeChangeP5(v, p5); 2561 VdbeComment((v, "%s", pIdx->zName)); 2562 } 2563 } 2564 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2565 return i; 2566 } 2567 2568 2569 #ifdef SQLITE_TEST 2570 /* 2571 ** The following global variable is incremented whenever the 2572 ** transfer optimization is used. This is used for testing 2573 ** purposes only - to make sure the transfer optimization really 2574 ** is happening when it is supposed to. 2575 */ 2576 int sqlite3_xferopt_count; 2577 #endif /* SQLITE_TEST */ 2578 2579 2580 #ifndef SQLITE_OMIT_XFER_OPT 2581 /* 2582 ** Check to see if index pSrc is compatible as a source of data 2583 ** for index pDest in an insert transfer optimization. The rules 2584 ** for a compatible index: 2585 ** 2586 ** * The index is over the same set of columns 2587 ** * The same DESC and ASC markings occurs on all columns 2588 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2589 ** * The same collating sequence on each column 2590 ** * The index has the exact same WHERE clause 2591 */ 2592 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2593 int i; 2594 assert( pDest && pSrc ); 2595 assert( pDest->pTable!=pSrc->pTable ); 2596 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2597 return 0; /* Different number of columns */ 2598 } 2599 if( pDest->onError!=pSrc->onError ){ 2600 return 0; /* Different conflict resolution strategies */ 2601 } 2602 for(i=0; i<pSrc->nKeyCol; i++){ 2603 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2604 return 0; /* Different columns indexed */ 2605 } 2606 if( pSrc->aiColumn[i]==XN_EXPR ){ 2607 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2608 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2609 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2610 return 0; /* Different expressions in the index */ 2611 } 2612 } 2613 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2614 return 0; /* Different sort orders */ 2615 } 2616 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2617 return 0; /* Different collating sequences */ 2618 } 2619 } 2620 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2621 return 0; /* Different WHERE clauses */ 2622 } 2623 2624 /* If no test above fails then the indices must be compatible */ 2625 return 1; 2626 } 2627 2628 /* 2629 ** Attempt the transfer optimization on INSERTs of the form 2630 ** 2631 ** INSERT INTO tab1 SELECT * FROM tab2; 2632 ** 2633 ** The xfer optimization transfers raw records from tab2 over to tab1. 2634 ** Columns are not decoded and reassembled, which greatly improves 2635 ** performance. Raw index records are transferred in the same way. 2636 ** 2637 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2638 ** There are lots of rules for determining compatibility - see comments 2639 ** embedded in the code for details. 2640 ** 2641 ** This routine returns TRUE if the optimization is guaranteed to be used. 2642 ** Sometimes the xfer optimization will only work if the destination table 2643 ** is empty - a factor that can only be determined at run-time. In that 2644 ** case, this routine generates code for the xfer optimization but also 2645 ** does a test to see if the destination table is empty and jumps over the 2646 ** xfer optimization code if the test fails. In that case, this routine 2647 ** returns FALSE so that the caller will know to go ahead and generate 2648 ** an unoptimized transfer. This routine also returns FALSE if there 2649 ** is no chance that the xfer optimization can be applied. 2650 ** 2651 ** This optimization is particularly useful at making VACUUM run faster. 2652 */ 2653 static int xferOptimization( 2654 Parse *pParse, /* Parser context */ 2655 Table *pDest, /* The table we are inserting into */ 2656 Select *pSelect, /* A SELECT statement to use as the data source */ 2657 int onError, /* How to handle constraint errors */ 2658 int iDbDest /* The database of pDest */ 2659 ){ 2660 sqlite3 *db = pParse->db; 2661 ExprList *pEList; /* The result set of the SELECT */ 2662 Table *pSrc; /* The table in the FROM clause of SELECT */ 2663 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2664 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ 2665 int i; /* Loop counter */ 2666 int iDbSrc; /* The database of pSrc */ 2667 int iSrc, iDest; /* Cursors from source and destination */ 2668 int addr1, addr2; /* Loop addresses */ 2669 int emptyDestTest = 0; /* Address of test for empty pDest */ 2670 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2671 Vdbe *v; /* The VDBE we are building */ 2672 int regAutoinc; /* Memory register used by AUTOINC */ 2673 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2674 int regData, regRowid; /* Registers holding data and rowid */ 2675 2676 if( pSelect==0 ){ 2677 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ 2678 } 2679 if( pParse->pWith || pSelect->pWith ){ 2680 /* Do not attempt to process this query if there are an WITH clauses 2681 ** attached to it. Proceeding may generate a false "no such table: xxx" 2682 ** error if pSelect reads from a CTE named "xxx". */ 2683 return 0; 2684 } 2685 if( sqlite3TriggerList(pParse, pDest) ){ 2686 return 0; /* tab1 must not have triggers */ 2687 } 2688 #ifndef SQLITE_OMIT_VIRTUALTABLE 2689 if( IsVirtual(pDest) ){ 2690 return 0; /* tab1 must not be a virtual table */ 2691 } 2692 #endif 2693 if( onError==OE_Default ){ 2694 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2695 if( onError==OE_Default ) onError = OE_Abort; 2696 } 2697 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2698 if( pSelect->pSrc->nSrc!=1 ){ 2699 return 0; /* FROM clause must have exactly one term */ 2700 } 2701 if( pSelect->pSrc->a[0].pSelect ){ 2702 return 0; /* FROM clause cannot contain a subquery */ 2703 } 2704 if( pSelect->pWhere ){ 2705 return 0; /* SELECT may not have a WHERE clause */ 2706 } 2707 if( pSelect->pOrderBy ){ 2708 return 0; /* SELECT may not have an ORDER BY clause */ 2709 } 2710 /* Do not need to test for a HAVING clause. If HAVING is present but 2711 ** there is no ORDER BY, we will get an error. */ 2712 if( pSelect->pGroupBy ){ 2713 return 0; /* SELECT may not have a GROUP BY clause */ 2714 } 2715 if( pSelect->pLimit ){ 2716 return 0; /* SELECT may not have a LIMIT clause */ 2717 } 2718 if( pSelect->pPrior ){ 2719 return 0; /* SELECT may not be a compound query */ 2720 } 2721 if( pSelect->selFlags & SF_Distinct ){ 2722 return 0; /* SELECT may not be DISTINCT */ 2723 } 2724 pEList = pSelect->pEList; 2725 assert( pEList!=0 ); 2726 if( pEList->nExpr!=1 ){ 2727 return 0; /* The result set must have exactly one column */ 2728 } 2729 assert( pEList->a[0].pExpr ); 2730 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2731 return 0; /* The result set must be the special operator "*" */ 2732 } 2733 2734 /* At this point we have established that the statement is of the 2735 ** correct syntactic form to participate in this optimization. Now 2736 ** we have to check the semantics. 2737 */ 2738 pItem = pSelect->pSrc->a; 2739 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2740 if( pSrc==0 ){ 2741 return 0; /* FROM clause does not contain a real table */ 2742 } 2743 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2744 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2745 return 0; /* tab1 and tab2 may not be the same table */ 2746 } 2747 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2748 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2749 } 2750 #ifndef SQLITE_OMIT_VIRTUALTABLE 2751 if( IsVirtual(pSrc) ){ 2752 return 0; /* tab2 must not be a virtual table */ 2753 } 2754 #endif 2755 if( pSrc->pSelect ){ 2756 return 0; /* tab2 may not be a view */ 2757 } 2758 if( pDest->nCol!=pSrc->nCol ){ 2759 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2760 } 2761 if( pDest->iPKey!=pSrc->iPKey ){ 2762 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2763 } 2764 for(i=0; i<pDest->nCol; i++){ 2765 Column *pDestCol = &pDest->aCol[i]; 2766 Column *pSrcCol = &pSrc->aCol[i]; 2767 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2768 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2769 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2770 ){ 2771 return 0; /* Neither table may have __hidden__ columns */ 2772 } 2773 #endif 2774 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2775 /* Even if tables t1 and t2 have identical schemas, if they contain 2776 ** generated columns, then this statement is semantically incorrect: 2777 ** 2778 ** INSERT INTO t2 SELECT * FROM t1; 2779 ** 2780 ** The reason is that generated column values are returned by the 2781 ** the SELECT statement on the right but the INSERT statement on the 2782 ** left wants them to be omitted. 2783 ** 2784 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2785 ** to do a bulk transfer all of the content from t1 over to t2. 2786 ** 2787 ** We could, in theory, disable this (except for internal use by the 2788 ** VACUUM command where it is actually needed). But why do that? It 2789 ** seems harmless enough, and provides a useful service. 2790 */ 2791 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2792 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2793 return 0; /* Both columns have the same generated-column type */ 2794 } 2795 /* But the transfer is only allowed if both the source and destination 2796 ** tables have the exact same expressions for generated columns. 2797 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2798 */ 2799 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2800 if( sqlite3ExprCompare(0, pSrcCol->pDflt, pDestCol->pDflt, -1)!=0 ){ 2801 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2802 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2803 return 0; /* Different generator expressions */ 2804 } 2805 } 2806 #endif 2807 if( pDestCol->affinity!=pSrcCol->affinity ){ 2808 return 0; /* Affinity must be the same on all columns */ 2809 } 2810 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ 2811 return 0; /* Collating sequence must be the same on all columns */ 2812 } 2813 if( pDestCol->notNull && !pSrcCol->notNull ){ 2814 return 0; /* tab2 must be NOT NULL if tab1 is */ 2815 } 2816 /* Default values for second and subsequent columns need to match. */ 2817 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2818 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); 2819 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); 2820 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) 2821 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, 2822 pSrcCol->pDflt->u.zToken)!=0) 2823 ){ 2824 return 0; /* Default values must be the same for all columns */ 2825 } 2826 } 2827 } 2828 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2829 if( IsUniqueIndex(pDestIdx) ){ 2830 destHasUniqueIdx = 1; 2831 } 2832 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2833 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2834 } 2835 if( pSrcIdx==0 ){ 2836 return 0; /* pDestIdx has no corresponding index in pSrc */ 2837 } 2838 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2839 && sqlite3FaultSim(411)==SQLITE_OK ){ 2840 /* The sqlite3FaultSim() call allows this corruption test to be 2841 ** bypassed during testing, in order to exercise other corruption tests 2842 ** further downstream. */ 2843 return 0; /* Corrupt schema - two indexes on the same btree */ 2844 } 2845 } 2846 #ifndef SQLITE_OMIT_CHECK 2847 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2848 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2849 } 2850 #endif 2851 #ifndef SQLITE_OMIT_FOREIGN_KEY 2852 /* Disallow the transfer optimization if the destination table constains 2853 ** any foreign key constraints. This is more restrictive than necessary. 2854 ** But the main beneficiary of the transfer optimization is the VACUUM 2855 ** command, and the VACUUM command disables foreign key constraints. So 2856 ** the extra complication to make this rule less restrictive is probably 2857 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2858 */ 2859 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ 2860 return 0; 2861 } 2862 #endif 2863 if( (db->flags & SQLITE_CountRows)!=0 ){ 2864 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2865 } 2866 2867 /* If we get this far, it means that the xfer optimization is at 2868 ** least a possibility, though it might only work if the destination 2869 ** table (tab1) is initially empty. 2870 */ 2871 #ifdef SQLITE_TEST 2872 sqlite3_xferopt_count++; 2873 #endif 2874 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 2875 v = sqlite3GetVdbe(pParse); 2876 sqlite3CodeVerifySchema(pParse, iDbSrc); 2877 iSrc = pParse->nTab++; 2878 iDest = pParse->nTab++; 2879 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 2880 regData = sqlite3GetTempReg(pParse); 2881 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 2882 regRowid = sqlite3GetTempReg(pParse); 2883 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 2884 assert( HasRowid(pDest) || destHasUniqueIdx ); 2885 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 2886 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 2887 || destHasUniqueIdx /* (2) */ 2888 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 2889 )){ 2890 /* In some circumstances, we are able to run the xfer optimization 2891 ** only if the destination table is initially empty. Unless the 2892 ** DBFLAG_Vacuum flag is set, this block generates code to make 2893 ** that determination. If DBFLAG_Vacuum is set, then the destination 2894 ** table is always empty. 2895 ** 2896 ** Conditions under which the destination must be empty: 2897 ** 2898 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 2899 ** (If the destination is not initially empty, the rowid fields 2900 ** of index entries might need to change.) 2901 ** 2902 ** (2) The destination has a unique index. (The xfer optimization 2903 ** is unable to test uniqueness.) 2904 ** 2905 ** (3) onError is something other than OE_Abort and OE_Rollback. 2906 */ 2907 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 2908 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 2909 sqlite3VdbeJumpHere(v, addr1); 2910 } 2911 if( HasRowid(pSrc) ){ 2912 u8 insFlags; 2913 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 2914 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2915 if( pDest->iPKey>=0 ){ 2916 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2917 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 2918 sqlite3VdbeVerifyAbortable(v, onError); 2919 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 2920 VdbeCoverage(v); 2921 sqlite3RowidConstraint(pParse, onError, pDest); 2922 sqlite3VdbeJumpHere(v, addr2); 2923 } 2924 autoIncStep(pParse, regAutoinc, regRowid); 2925 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 2926 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 2927 }else{ 2928 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 2929 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 2930 } 2931 2932 if( db->mDbFlags & DBFLAG_Vacuum ){ 2933 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2934 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 2935 }else{ 2936 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 2937 } 2938 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2939 if( db->xPreUpdateCallback ){ 2940 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 2941 insFlags &= ~OPFLAG_PREFORMAT; 2942 }else 2943 #endif 2944 { 2945 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 2946 } 2947 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, 2948 (char*)pDest, P4_TABLE); 2949 sqlite3VdbeChangeP5(v, insFlags); 2950 2951 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 2952 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 2953 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 2954 }else{ 2955 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 2956 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 2957 } 2958 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2959 u8 idxInsFlags = 0; 2960 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 2961 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2962 } 2963 assert( pSrcIdx ); 2964 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 2965 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 2966 VdbeComment((v, "%s", pSrcIdx->zName)); 2967 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 2968 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 2969 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 2970 VdbeComment((v, "%s", pDestIdx->zName)); 2971 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 2972 if( db->mDbFlags & DBFLAG_Vacuum ){ 2973 /* This INSERT command is part of a VACUUM operation, which guarantees 2974 ** that the destination table is empty. If all indexed columns use 2975 ** collation sequence BINARY, then it can also be assumed that the 2976 ** index will be populated by inserting keys in strictly sorted 2977 ** order. In this case, instead of seeking within the b-tree as part 2978 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 2979 ** OP_IdxInsert to seek to the point within the b-tree where each key 2980 ** should be inserted. This is faster. 2981 ** 2982 ** If any of the indexed columns use a collation sequence other than 2983 ** BINARY, this optimization is disabled. This is because the user 2984 ** might change the definition of a collation sequence and then run 2985 ** a VACUUM command. In that case keys may not be written in strictly 2986 ** sorted order. */ 2987 for(i=0; i<pSrcIdx->nColumn; i++){ 2988 const char *zColl = pSrcIdx->azColl[i]; 2989 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 2990 } 2991 if( i==pSrcIdx->nColumn ){ 2992 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 2993 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 2994 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regData); 2995 } 2996 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2997 idxInsFlags |= OPFLAG_NCHANGE; 2998 } 2999 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3000 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3001 } 3002 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3003 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3004 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3005 sqlite3VdbeJumpHere(v, addr1); 3006 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3007 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3008 } 3009 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3010 sqlite3ReleaseTempReg(pParse, regRowid); 3011 sqlite3ReleaseTempReg(pParse, regData); 3012 if( emptyDestTest ){ 3013 sqlite3AutoincrementEnd(pParse); 3014 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3015 sqlite3VdbeJumpHere(v, emptyDestTest); 3016 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3017 return 0; 3018 }else{ 3019 return 1; 3020 } 3021 } 3022 #endif /* SQLITE_OMIT_XFER_OPT */ 3023