xref: /sqlite-3.40.0/src/insert.c (revision 0bf33346)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Generate code that will
19 **
20 **   (1) acquire a lock for table pTab then
21 **   (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27   Parse *pParse,  /* Generate code into this VDBE */
28   int iCur,       /* The cursor number of the table */
29   int iDb,        /* The database index in sqlite3.aDb[] */
30   Table *pTab,    /* The table to be opened */
31   int opcode      /* OP_OpenRead or OP_OpenWrite */
32 ){
33   Vdbe *v;
34   assert( !IsVirtual(pTab) );
35   assert( pParse->pVdbe!=0 );
36   v = pParse->pVdbe;
37   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
38   sqlite3TableLock(pParse, iDb, pTab->tnum,
39                    (opcode==OP_OpenWrite)?1:0, pTab->zName);
40   if( HasRowid(pTab) ){
41     sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
42     VdbeComment((v, "%s", pTab->zName));
43   }else{
44     Index *pPk = sqlite3PrimaryKeyIndex(pTab);
45     assert( pPk!=0 );
46     assert( pPk->tnum==pTab->tnum );
47     sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
48     sqlite3VdbeSetP4KeyInfo(pParse, pPk);
49     VdbeComment((v, "%s", pTab->zName));
50   }
51 }
52 
53 /*
54 ** Return a pointer to the column affinity string associated with index
55 ** pIdx. A column affinity string has one character for each column in
56 ** the table, according to the affinity of the column:
57 **
58 **  Character      Column affinity
59 **  ------------------------------
60 **  'A'            BLOB
61 **  'B'            TEXT
62 **  'C'            NUMERIC
63 **  'D'            INTEGER
64 **  'F'            REAL
65 **
66 ** An extra 'D' is appended to the end of the string to cover the
67 ** rowid that appears as the last column in every index.
68 **
69 ** Memory for the buffer containing the column index affinity string
70 ** is managed along with the rest of the Index structure. It will be
71 ** released when sqlite3DeleteIndex() is called.
72 */
73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
74   if( !pIdx->zColAff ){
75     /* The first time a column affinity string for a particular index is
76     ** required, it is allocated and populated here. It is then stored as
77     ** a member of the Index structure for subsequent use.
78     **
79     ** The column affinity string will eventually be deleted by
80     ** sqliteDeleteIndex() when the Index structure itself is cleaned
81     ** up.
82     */
83     int n;
84     Table *pTab = pIdx->pTable;
85     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86     if( !pIdx->zColAff ){
87       sqlite3OomFault(db);
88       return 0;
89     }
90     for(n=0; n<pIdx->nColumn; n++){
91       i16 x = pIdx->aiColumn[n];
92       char aff;
93       if( x>=0 ){
94         aff = pTab->aCol[x].affinity;
95       }else if( x==XN_ROWID ){
96         aff = SQLITE_AFF_INTEGER;
97       }else{
98         assert( x==XN_EXPR );
99         assert( pIdx->aColExpr!=0 );
100         aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
101       }
102       if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
103       if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
104       pIdx->zColAff[n] = aff;
105     }
106     pIdx->zColAff[n] = 0;
107   }
108 
109   return pIdx->zColAff;
110 }
111 
112 /*
113 ** Compute the affinity string for table pTab, if it has not already been
114 ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
115 **
116 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
117 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
118 ** for register iReg and following.  Or if affinities exists and iReg==0,
119 ** then just set the P4 operand of the previous opcode (which should  be
120 ** an OP_MakeRecord) to the affinity string.
121 **
122 ** A column affinity string has one character per column:
123 **
124 **  Character      Column affinity
125 **  ------------------------------
126 **  'A'            BLOB
127 **  'B'            TEXT
128 **  'C'            NUMERIC
129 **  'D'            INTEGER
130 **  'E'            REAL
131 */
132 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
133   int i, j;
134   char *zColAff = pTab->zColAff;
135   if( zColAff==0 ){
136     sqlite3 *db = sqlite3VdbeDb(v);
137     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
138     if( !zColAff ){
139       sqlite3OomFault(db);
140       return;
141     }
142 
143     for(i=j=0; i<pTab->nCol; i++){
144       assert( pTab->aCol[i].affinity!=0 );
145       if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
146         zColAff[j++] = pTab->aCol[i].affinity;
147       }
148     }
149     do{
150       zColAff[j--] = 0;
151     }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
152     pTab->zColAff = zColAff;
153   }
154   assert( zColAff!=0 );
155   i = sqlite3Strlen30NN(zColAff);
156   if( i ){
157     if( iReg ){
158       sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
159     }else{
160       sqlite3VdbeChangeP4(v, -1, zColAff, i);
161     }
162   }
163 }
164 
165 /*
166 ** Return non-zero if the table pTab in database iDb or any of its indices
167 ** have been opened at any point in the VDBE program. This is used to see if
168 ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can
169 ** run without using a temporary table for the results of the SELECT.
170 */
171 static int readsTable(Parse *p, int iDb, Table *pTab){
172   Vdbe *v = sqlite3GetVdbe(p);
173   int i;
174   int iEnd = sqlite3VdbeCurrentAddr(v);
175 #ifndef SQLITE_OMIT_VIRTUALTABLE
176   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
177 #endif
178 
179   for(i=1; i<iEnd; i++){
180     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
181     assert( pOp!=0 );
182     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
183       Index *pIndex;
184       Pgno tnum = pOp->p2;
185       if( tnum==pTab->tnum ){
186         return 1;
187       }
188       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
189         if( tnum==pIndex->tnum ){
190           return 1;
191         }
192       }
193     }
194 #ifndef SQLITE_OMIT_VIRTUALTABLE
195     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
196       assert( pOp->p4.pVtab!=0 );
197       assert( pOp->p4type==P4_VTAB );
198       return 1;
199     }
200 #endif
201   }
202   return 0;
203 }
204 
205 /* This walker callback will compute the union of colFlags flags for all
206 ** referenced columns in a CHECK constraint or generated column expression.
207 */
208 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
209   if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){
210     assert( pExpr->iColumn < pWalker->u.pTab->nCol );
211     pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
212   }
213   return WRC_Continue;
214 }
215 
216 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
217 /*
218 ** All regular columns for table pTab have been puts into registers
219 ** starting with iRegStore.  The registers that correspond to STORED
220 ** or VIRTUAL columns have not yet been initialized.  This routine goes
221 ** back and computes the values for those columns based on the previously
222 ** computed normal columns.
223 */
224 void sqlite3ComputeGeneratedColumns(
225   Parse *pParse,    /* Parsing context */
226   int iRegStore,    /* Register holding the first column */
227   Table *pTab       /* The table */
228 ){
229   int i;
230   Walker w;
231   Column *pRedo;
232   int eProgress;
233   VdbeOp *pOp;
234 
235   assert( pTab->tabFlags & TF_HasGenerated );
236   testcase( pTab->tabFlags & TF_HasVirtual );
237   testcase( pTab->tabFlags & TF_HasStored );
238 
239   /* Before computing generated columns, first go through and make sure
240   ** that appropriate affinity has been applied to the regular columns
241   */
242   sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore);
243   if( (pTab->tabFlags & TF_HasStored)!=0
244    && (pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1))->opcode==OP_Affinity
245   ){
246     /* Change the OP_Affinity argument to '@' (NONE) for all stored
247     ** columns.  '@' is the no-op affinity and those columns have not
248     ** yet been computed. */
249     int ii, jj;
250     char *zP4 = pOp->p4.z;
251     assert( zP4!=0 );
252     assert( pOp->p4type==P4_DYNAMIC );
253     for(ii=jj=0; zP4[jj]; ii++){
254       if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){
255         continue;
256       }
257       if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){
258         zP4[jj] = SQLITE_AFF_NONE;
259       }
260       jj++;
261     }
262   }
263 
264   /* Because there can be multiple generated columns that refer to one another,
265   ** this is a two-pass algorithm.  On the first pass, mark all generated
266   ** columns as "not available".
267   */
268   for(i=0; i<pTab->nCol; i++){
269     if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
270       testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
271       testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
272       pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
273     }
274   }
275 
276   w.u.pTab = pTab;
277   w.xExprCallback = exprColumnFlagUnion;
278   w.xSelectCallback = 0;
279   w.xSelectCallback2 = 0;
280 
281   /* On the second pass, compute the value of each NOT-AVAILABLE column.
282   ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
283   ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
284   ** they are needed.
285   */
286   pParse->iSelfTab = -iRegStore;
287   do{
288     eProgress = 0;
289     pRedo = 0;
290     for(i=0; i<pTab->nCol; i++){
291       Column *pCol = pTab->aCol + i;
292       if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
293         int x;
294         pCol->colFlags |= COLFLAG_BUSY;
295         w.eCode = 0;
296         sqlite3WalkExpr(&w, pCol->pDflt);
297         pCol->colFlags &= ~COLFLAG_BUSY;
298         if( w.eCode & COLFLAG_NOTAVAIL ){
299           pRedo = pCol;
300           continue;
301         }
302         eProgress = 1;
303         assert( pCol->colFlags & COLFLAG_GENERATED );
304         x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
305         sqlite3ExprCodeGeneratedColumn(pParse, pCol, x);
306         pCol->colFlags &= ~COLFLAG_NOTAVAIL;
307       }
308     }
309   }while( pRedo && eProgress );
310   if( pRedo ){
311     sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zName);
312   }
313   pParse->iSelfTab = 0;
314 }
315 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
316 
317 
318 #ifndef SQLITE_OMIT_AUTOINCREMENT
319 /*
320 ** Locate or create an AutoincInfo structure associated with table pTab
321 ** which is in database iDb.  Return the register number for the register
322 ** that holds the maximum rowid.  Return zero if pTab is not an AUTOINCREMENT
323 ** table.  (Also return zero when doing a VACUUM since we do not want to
324 ** update the AUTOINCREMENT counters during a VACUUM.)
325 **
326 ** There is at most one AutoincInfo structure per table even if the
327 ** same table is autoincremented multiple times due to inserts within
328 ** triggers.  A new AutoincInfo structure is created if this is the
329 ** first use of table pTab.  On 2nd and subsequent uses, the original
330 ** AutoincInfo structure is used.
331 **
332 ** Four consecutive registers are allocated:
333 **
334 **   (1)  The name of the pTab table.
335 **   (2)  The maximum ROWID of pTab.
336 **   (3)  The rowid in sqlite_sequence of pTab
337 **   (4)  The original value of the max ROWID in pTab, or NULL if none
338 **
339 ** The 2nd register is the one that is returned.  That is all the
340 ** insert routine needs to know about.
341 */
342 static int autoIncBegin(
343   Parse *pParse,      /* Parsing context */
344   int iDb,            /* Index of the database holding pTab */
345   Table *pTab         /* The table we are writing to */
346 ){
347   int memId = 0;      /* Register holding maximum rowid */
348   assert( pParse->db->aDb[iDb].pSchema!=0 );
349   if( (pTab->tabFlags & TF_Autoincrement)!=0
350    && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
351   ){
352     Parse *pToplevel = sqlite3ParseToplevel(pParse);
353     AutoincInfo *pInfo;
354     Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
355 
356     /* Verify that the sqlite_sequence table exists and is an ordinary
357     ** rowid table with exactly two columns.
358     ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
359     if( pSeqTab==0
360      || !HasRowid(pSeqTab)
361      || IsVirtual(pSeqTab)
362      || pSeqTab->nCol!=2
363     ){
364       pParse->nErr++;
365       pParse->rc = SQLITE_CORRUPT_SEQUENCE;
366       return 0;
367     }
368 
369     pInfo = pToplevel->pAinc;
370     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
371     if( pInfo==0 ){
372       pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
373       if( pInfo==0 ) return 0;
374       pInfo->pNext = pToplevel->pAinc;
375       pToplevel->pAinc = pInfo;
376       pInfo->pTab = pTab;
377       pInfo->iDb = iDb;
378       pToplevel->nMem++;                  /* Register to hold name of table */
379       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
380       pToplevel->nMem +=2;       /* Rowid in sqlite_sequence + orig max val */
381     }
382     memId = pInfo->regCtr;
383   }
384   return memId;
385 }
386 
387 /*
388 ** This routine generates code that will initialize all of the
389 ** register used by the autoincrement tracker.
390 */
391 void sqlite3AutoincrementBegin(Parse *pParse){
392   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
393   sqlite3 *db = pParse->db;  /* The database connection */
394   Db *pDb;                   /* Database only autoinc table */
395   int memId;                 /* Register holding max rowid */
396   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
397 
398   /* This routine is never called during trigger-generation.  It is
399   ** only called from the top-level */
400   assert( pParse->pTriggerTab==0 );
401   assert( sqlite3IsToplevel(pParse) );
402 
403   assert( v );   /* We failed long ago if this is not so */
404   for(p = pParse->pAinc; p; p = p->pNext){
405     static const int iLn = VDBE_OFFSET_LINENO(2);
406     static const VdbeOpList autoInc[] = {
407       /* 0  */ {OP_Null,    0,  0, 0},
408       /* 1  */ {OP_Rewind,  0, 10, 0},
409       /* 2  */ {OP_Column,  0,  0, 0},
410       /* 3  */ {OP_Ne,      0,  9, 0},
411       /* 4  */ {OP_Rowid,   0,  0, 0},
412       /* 5  */ {OP_Column,  0,  1, 0},
413       /* 6  */ {OP_AddImm,  0,  0, 0},
414       /* 7  */ {OP_Copy,    0,  0, 0},
415       /* 8  */ {OP_Goto,    0, 11, 0},
416       /* 9  */ {OP_Next,    0,  2, 0},
417       /* 10 */ {OP_Integer, 0,  0, 0},
418       /* 11 */ {OP_Close,   0,  0, 0}
419     };
420     VdbeOp *aOp;
421     pDb = &db->aDb[p->iDb];
422     memId = p->regCtr;
423     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
424     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
425     sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
426     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
427     if( aOp==0 ) break;
428     aOp[0].p2 = memId;
429     aOp[0].p3 = memId+2;
430     aOp[2].p3 = memId;
431     aOp[3].p1 = memId-1;
432     aOp[3].p3 = memId;
433     aOp[3].p5 = SQLITE_JUMPIFNULL;
434     aOp[4].p2 = memId+1;
435     aOp[5].p3 = memId;
436     aOp[6].p1 = memId;
437     aOp[7].p2 = memId+2;
438     aOp[7].p1 = memId;
439     aOp[10].p2 = memId;
440     if( pParse->nTab==0 ) pParse->nTab = 1;
441   }
442 }
443 
444 /*
445 ** Update the maximum rowid for an autoincrement calculation.
446 **
447 ** This routine should be called when the regRowid register holds a
448 ** new rowid that is about to be inserted.  If that new rowid is
449 ** larger than the maximum rowid in the memId memory cell, then the
450 ** memory cell is updated.
451 */
452 static void autoIncStep(Parse *pParse, int memId, int regRowid){
453   if( memId>0 ){
454     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
455   }
456 }
457 
458 /*
459 ** This routine generates the code needed to write autoincrement
460 ** maximum rowid values back into the sqlite_sequence register.
461 ** Every statement that might do an INSERT into an autoincrement
462 ** table (either directly or through triggers) needs to call this
463 ** routine just before the "exit" code.
464 */
465 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
466   AutoincInfo *p;
467   Vdbe *v = pParse->pVdbe;
468   sqlite3 *db = pParse->db;
469 
470   assert( v );
471   for(p = pParse->pAinc; p; p = p->pNext){
472     static const int iLn = VDBE_OFFSET_LINENO(2);
473     static const VdbeOpList autoIncEnd[] = {
474       /* 0 */ {OP_NotNull,     0, 2, 0},
475       /* 1 */ {OP_NewRowid,    0, 0, 0},
476       /* 2 */ {OP_MakeRecord,  0, 2, 0},
477       /* 3 */ {OP_Insert,      0, 0, 0},
478       /* 4 */ {OP_Close,       0, 0, 0}
479     };
480     VdbeOp *aOp;
481     Db *pDb = &db->aDb[p->iDb];
482     int iRec;
483     int memId = p->regCtr;
484 
485     iRec = sqlite3GetTempReg(pParse);
486     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
487     sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
488     VdbeCoverage(v);
489     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
490     aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
491     if( aOp==0 ) break;
492     aOp[0].p1 = memId+1;
493     aOp[1].p2 = memId+1;
494     aOp[2].p1 = memId-1;
495     aOp[2].p3 = iRec;
496     aOp[3].p2 = iRec;
497     aOp[3].p3 = memId+1;
498     aOp[3].p5 = OPFLAG_APPEND;
499     sqlite3ReleaseTempReg(pParse, iRec);
500   }
501 }
502 void sqlite3AutoincrementEnd(Parse *pParse){
503   if( pParse->pAinc ) autoIncrementEnd(pParse);
504 }
505 #else
506 /*
507 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
508 ** above are all no-ops
509 */
510 # define autoIncBegin(A,B,C) (0)
511 # define autoIncStep(A,B,C)
512 #endif /* SQLITE_OMIT_AUTOINCREMENT */
513 
514 
515 /* Forward declaration */
516 static int xferOptimization(
517   Parse *pParse,        /* Parser context */
518   Table *pDest,         /* The table we are inserting into */
519   Select *pSelect,      /* A SELECT statement to use as the data source */
520   int onError,          /* How to handle constraint errors */
521   int iDbDest           /* The database of pDest */
522 );
523 
524 /*
525 ** This routine is called to handle SQL of the following forms:
526 **
527 **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
528 **    insert into TABLE (IDLIST) select
529 **    insert into TABLE (IDLIST) default values
530 **
531 ** The IDLIST following the table name is always optional.  If omitted,
532 ** then a list of all (non-hidden) columns for the table is substituted.
533 ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST
534 ** is omitted.
535 **
536 ** For the pSelect parameter holds the values to be inserted for the
537 ** first two forms shown above.  A VALUES clause is really just short-hand
538 ** for a SELECT statement that omits the FROM clause and everything else
539 ** that follows.  If the pSelect parameter is NULL, that means that the
540 ** DEFAULT VALUES form of the INSERT statement is intended.
541 **
542 ** The code generated follows one of four templates.  For a simple
543 ** insert with data coming from a single-row VALUES clause, the code executes
544 ** once straight down through.  Pseudo-code follows (we call this
545 ** the "1st template"):
546 **
547 **         open write cursor to <table> and its indices
548 **         put VALUES clause expressions into registers
549 **         write the resulting record into <table>
550 **         cleanup
551 **
552 ** The three remaining templates assume the statement is of the form
553 **
554 **   INSERT INTO <table> SELECT ...
555 **
556 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
557 ** in other words if the SELECT pulls all columns from a single table
558 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
559 ** if <table2> and <table1> are distinct tables but have identical
560 ** schemas, including all the same indices, then a special optimization
561 ** is invoked that copies raw records from <table2> over to <table1>.
562 ** See the xferOptimization() function for the implementation of this
563 ** template.  This is the 2nd template.
564 **
565 **         open a write cursor to <table>
566 **         open read cursor on <table2>
567 **         transfer all records in <table2> over to <table>
568 **         close cursors
569 **         foreach index on <table>
570 **           open a write cursor on the <table> index
571 **           open a read cursor on the corresponding <table2> index
572 **           transfer all records from the read to the write cursors
573 **           close cursors
574 **         end foreach
575 **
576 ** The 3rd template is for when the second template does not apply
577 ** and the SELECT clause does not read from <table> at any time.
578 ** The generated code follows this template:
579 **
580 **         X <- A
581 **         goto B
582 **      A: setup for the SELECT
583 **         loop over the rows in the SELECT
584 **           load values into registers R..R+n
585 **           yield X
586 **         end loop
587 **         cleanup after the SELECT
588 **         end-coroutine X
589 **      B: open write cursor to <table> and its indices
590 **      C: yield X, at EOF goto D
591 **         insert the select result into <table> from R..R+n
592 **         goto C
593 **      D: cleanup
594 **
595 ** The 4th template is used if the insert statement takes its
596 ** values from a SELECT but the data is being inserted into a table
597 ** that is also read as part of the SELECT.  In the third form,
598 ** we have to use an intermediate table to store the results of
599 ** the select.  The template is like this:
600 **
601 **         X <- A
602 **         goto B
603 **      A: setup for the SELECT
604 **         loop over the tables in the SELECT
605 **           load value into register R..R+n
606 **           yield X
607 **         end loop
608 **         cleanup after the SELECT
609 **         end co-routine R
610 **      B: open temp table
611 **      L: yield X, at EOF goto M
612 **         insert row from R..R+n into temp table
613 **         goto L
614 **      M: open write cursor to <table> and its indices
615 **         rewind temp table
616 **      C: loop over rows of intermediate table
617 **           transfer values form intermediate table into <table>
618 **         end loop
619 **      D: cleanup
620 */
621 void sqlite3Insert(
622   Parse *pParse,        /* Parser context */
623   SrcList *pTabList,    /* Name of table into which we are inserting */
624   Select *pSelect,      /* A SELECT statement to use as the data source */
625   IdList *pColumn,      /* Column names corresponding to IDLIST, or NULL. */
626   int onError,          /* How to handle constraint errors */
627   Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */
628 ){
629   sqlite3 *db;          /* The main database structure */
630   Table *pTab;          /* The table to insert into.  aka TABLE */
631   int i, j;             /* Loop counters */
632   Vdbe *v;              /* Generate code into this virtual machine */
633   Index *pIdx;          /* For looping over indices of the table */
634   int nColumn;          /* Number of columns in the data */
635   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
636   int iDataCur = 0;     /* VDBE cursor that is the main data repository */
637   int iIdxCur = 0;      /* First index cursor */
638   int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
639   int endOfLoop;        /* Label for the end of the insertion loop */
640   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
641   int addrInsTop = 0;   /* Jump to label "D" */
642   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
643   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
644   int iDb;              /* Index of database holding TABLE */
645   u8 useTempTable = 0;  /* Store SELECT results in intermediate table */
646   u8 appendFlag = 0;    /* True if the insert is likely to be an append */
647   u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */
648   u8 bIdListInOrder;    /* True if IDLIST is in table order */
649   ExprList *pList = 0;  /* List of VALUES() to be inserted  */
650   int iRegStore;        /* Register in which to store next column */
651 
652   /* Register allocations */
653   int regFromSelect = 0;/* Base register for data coming from SELECT */
654   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
655   int regRowCount = 0;  /* Memory cell used for the row counter */
656   int regIns;           /* Block of regs holding rowid+data being inserted */
657   int regRowid;         /* registers holding insert rowid */
658   int regData;          /* register holding first column to insert */
659   int *aRegIdx = 0;     /* One register allocated to each index */
660 
661 #ifndef SQLITE_OMIT_TRIGGER
662   int isView;                 /* True if attempting to insert into a view */
663   Trigger *pTrigger;          /* List of triggers on pTab, if required */
664   int tmask;                  /* Mask of trigger times */
665 #endif
666 
667   db = pParse->db;
668   if( pParse->nErr || db->mallocFailed ){
669     goto insert_cleanup;
670   }
671   dest.iSDParm = 0;  /* Suppress a harmless compiler warning */
672 
673   /* If the Select object is really just a simple VALUES() list with a
674   ** single row (the common case) then keep that one row of values
675   ** and discard the other (unused) parts of the pSelect object
676   */
677   if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
678     pList = pSelect->pEList;
679     pSelect->pEList = 0;
680     sqlite3SelectDelete(db, pSelect);
681     pSelect = 0;
682   }
683 
684   /* Locate the table into which we will be inserting new information.
685   */
686   assert( pTabList->nSrc==1 );
687   pTab = sqlite3SrcListLookup(pParse, pTabList);
688   if( pTab==0 ){
689     goto insert_cleanup;
690   }
691   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
692   assert( iDb<db->nDb );
693   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
694                        db->aDb[iDb].zDbSName) ){
695     goto insert_cleanup;
696   }
697   withoutRowid = !HasRowid(pTab);
698 
699   /* Figure out if we have any triggers and if the table being
700   ** inserted into is a view
701   */
702 #ifndef SQLITE_OMIT_TRIGGER
703   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
704   isView = pTab->pSelect!=0;
705 #else
706 # define pTrigger 0
707 # define tmask 0
708 # define isView 0
709 #endif
710 #ifdef SQLITE_OMIT_VIEW
711 # undef isView
712 # define isView 0
713 #endif
714   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
715 
716   /* If pTab is really a view, make sure it has been initialized.
717   ** ViewGetColumnNames() is a no-op if pTab is not a view.
718   */
719   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
720     goto insert_cleanup;
721   }
722 
723   /* Cannot insert into a read-only table.
724   */
725   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
726     goto insert_cleanup;
727   }
728 
729   /* Allocate a VDBE
730   */
731   v = sqlite3GetVdbe(pParse);
732   if( v==0 ) goto insert_cleanup;
733   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
734   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
735 
736 #ifndef SQLITE_OMIT_XFER_OPT
737   /* If the statement is of the form
738   **
739   **       INSERT INTO <table1> SELECT * FROM <table2>;
740   **
741   ** Then special optimizations can be applied that make the transfer
742   ** very fast and which reduce fragmentation of indices.
743   **
744   ** This is the 2nd template.
745   */
746   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
747     assert( !pTrigger );
748     assert( pList==0 );
749     goto insert_end;
750   }
751 #endif /* SQLITE_OMIT_XFER_OPT */
752 
753   /* If this is an AUTOINCREMENT table, look up the sequence number in the
754   ** sqlite_sequence table and store it in memory cell regAutoinc.
755   */
756   regAutoinc = autoIncBegin(pParse, iDb, pTab);
757 
758   /* Allocate a block registers to hold the rowid and the values
759   ** for all columns of the new row.
760   */
761   regRowid = regIns = pParse->nMem+1;
762   pParse->nMem += pTab->nCol + 1;
763   if( IsVirtual(pTab) ){
764     regRowid++;
765     pParse->nMem++;
766   }
767   regData = regRowid+1;
768 
769   /* If the INSERT statement included an IDLIST term, then make sure
770   ** all elements of the IDLIST really are columns of the table and
771   ** remember the column indices.
772   **
773   ** If the table has an INTEGER PRIMARY KEY column and that column
774   ** is named in the IDLIST, then record in the ipkColumn variable
775   ** the index into IDLIST of the primary key column.  ipkColumn is
776   ** the index of the primary key as it appears in IDLIST, not as
777   ** is appears in the original table.  (The index of the INTEGER
778   ** PRIMARY KEY in the original table is pTab->iPKey.)  After this
779   ** loop, if ipkColumn==(-1), that means that integer primary key
780   ** is unspecified, and hence the table is either WITHOUT ROWID or
781   ** it will automatically generated an integer primary key.
782   **
783   ** bIdListInOrder is true if the columns in IDLIST are in storage
784   ** order.  This enables an optimization that avoids shuffling the
785   ** columns into storage order.  False negatives are harmless,
786   ** but false positives will cause database corruption.
787   */
788   bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
789   if( pColumn ){
790     for(i=0; i<pColumn->nId; i++){
791       pColumn->a[i].idx = -1;
792     }
793     for(i=0; i<pColumn->nId; i++){
794       for(j=0; j<pTab->nCol; j++){
795         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
796           pColumn->a[i].idx = j;
797           if( i!=j ) bIdListInOrder = 0;
798           if( j==pTab->iPKey ){
799             ipkColumn = i;  assert( !withoutRowid );
800           }
801 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
802           if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
803             sqlite3ErrorMsg(pParse,
804                "cannot INSERT into generated column \"%s\"",
805                pTab->aCol[j].zName);
806             goto insert_cleanup;
807           }
808 #endif
809           break;
810         }
811       }
812       if( j>=pTab->nCol ){
813         if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
814           ipkColumn = i;
815           bIdListInOrder = 0;
816         }else{
817           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
818               pTabList, 0, pColumn->a[i].zName);
819           pParse->checkSchema = 1;
820           goto insert_cleanup;
821         }
822       }
823     }
824   }
825 
826   /* Figure out how many columns of data are supplied.  If the data
827   ** is coming from a SELECT statement, then generate a co-routine that
828   ** produces a single row of the SELECT on each invocation.  The
829   ** co-routine is the common header to the 3rd and 4th templates.
830   */
831   if( pSelect ){
832     /* Data is coming from a SELECT or from a multi-row VALUES clause.
833     ** Generate a co-routine to run the SELECT. */
834     int regYield;       /* Register holding co-routine entry-point */
835     int addrTop;        /* Top of the co-routine */
836     int rc;             /* Result code */
837 
838     regYield = ++pParse->nMem;
839     addrTop = sqlite3VdbeCurrentAddr(v) + 1;
840     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
841     sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
842     dest.iSdst = bIdListInOrder ? regData : 0;
843     dest.nSdst = pTab->nCol;
844     rc = sqlite3Select(pParse, pSelect, &dest);
845     regFromSelect = dest.iSdst;
846     if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
847     sqlite3VdbeEndCoroutine(v, regYield);
848     sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */
849     assert( pSelect->pEList );
850     nColumn = pSelect->pEList->nExpr;
851 
852     /* Set useTempTable to TRUE if the result of the SELECT statement
853     ** should be written into a temporary table (template 4).  Set to
854     ** FALSE if each output row of the SELECT can be written directly into
855     ** the destination table (template 3).
856     **
857     ** A temp table must be used if the table being updated is also one
858     ** of the tables being read by the SELECT statement.  Also use a
859     ** temp table in the case of row triggers.
860     */
861     if( pTrigger || readsTable(pParse, iDb, pTab) ){
862       useTempTable = 1;
863     }
864 
865     if( useTempTable ){
866       /* Invoke the coroutine to extract information from the SELECT
867       ** and add it to a transient table srcTab.  The code generated
868       ** here is from the 4th template:
869       **
870       **      B: open temp table
871       **      L: yield X, goto M at EOF
872       **         insert row from R..R+n into temp table
873       **         goto L
874       **      M: ...
875       */
876       int regRec;          /* Register to hold packed record */
877       int regTempRowid;    /* Register to hold temp table ROWID */
878       int addrL;           /* Label "L" */
879 
880       srcTab = pParse->nTab++;
881       regRec = sqlite3GetTempReg(pParse);
882       regTempRowid = sqlite3GetTempReg(pParse);
883       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
884       addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
885       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
886       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
887       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
888       sqlite3VdbeGoto(v, addrL);
889       sqlite3VdbeJumpHere(v, addrL);
890       sqlite3ReleaseTempReg(pParse, regRec);
891       sqlite3ReleaseTempReg(pParse, regTempRowid);
892     }
893   }else{
894     /* This is the case if the data for the INSERT is coming from a
895     ** single-row VALUES clause
896     */
897     NameContext sNC;
898     memset(&sNC, 0, sizeof(sNC));
899     sNC.pParse = pParse;
900     srcTab = -1;
901     assert( useTempTable==0 );
902     if( pList ){
903       nColumn = pList->nExpr;
904       if( sqlite3ResolveExprListNames(&sNC, pList) ){
905         goto insert_cleanup;
906       }
907     }else{
908       nColumn = 0;
909     }
910   }
911 
912   /* If there is no IDLIST term but the table has an integer primary
913   ** key, the set the ipkColumn variable to the integer primary key
914   ** column index in the original table definition.
915   */
916   if( pColumn==0 && nColumn>0 ){
917     ipkColumn = pTab->iPKey;
918 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
919     if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
920       testcase( pTab->tabFlags & TF_HasVirtual );
921       testcase( pTab->tabFlags & TF_HasStored );
922       for(i=ipkColumn-1; i>=0; i--){
923         if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
924           testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
925           testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
926           ipkColumn--;
927         }
928       }
929     }
930 #endif
931   }
932 
933   /* Make sure the number of columns in the source data matches the number
934   ** of columns to be inserted into the table.
935   */
936   for(i=0; i<pTab->nCol; i++){
937     if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
938   }
939   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
940     sqlite3ErrorMsg(pParse,
941        "table %S has %d columns but %d values were supplied",
942        pTabList, 0, pTab->nCol-nHidden, nColumn);
943     goto insert_cleanup;
944   }
945   if( pColumn!=0 && nColumn!=pColumn->nId ){
946     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
947     goto insert_cleanup;
948   }
949 
950   /* Initialize the count of rows to be inserted
951   */
952   if( (db->flags & SQLITE_CountRows)!=0
953    && !pParse->nested
954    && !pParse->pTriggerTab
955   ){
956     regRowCount = ++pParse->nMem;
957     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
958   }
959 
960   /* If this is not a view, open the table and and all indices */
961   if( !isView ){
962     int nIdx;
963     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
964                                       &iDataCur, &iIdxCur);
965     aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
966     if( aRegIdx==0 ){
967       goto insert_cleanup;
968     }
969     for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
970       assert( pIdx );
971       aRegIdx[i] = ++pParse->nMem;
972       pParse->nMem += pIdx->nColumn;
973     }
974     aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */
975   }
976 #ifndef SQLITE_OMIT_UPSERT
977   if( pUpsert ){
978     Upsert *pNx;
979     if( IsVirtual(pTab) ){
980       sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
981               pTab->zName);
982       goto insert_cleanup;
983     }
984     if( pTab->pSelect ){
985       sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
986       goto insert_cleanup;
987     }
988     if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
989       goto insert_cleanup;
990     }
991     pTabList->a[0].iCursor = iDataCur;
992     pNx = pUpsert;
993     do{
994       pNx->pUpsertSrc = pTabList;
995       pNx->regData = regData;
996       pNx->iDataCur = iDataCur;
997       pNx->iIdxCur = iIdxCur;
998       if( pNx->pUpsertTarget ){
999         sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx);
1000       }
1001       pNx = pNx->pNextUpsert;
1002     }while( pNx!=0 );
1003   }
1004 #endif
1005 
1006 
1007   /* This is the top of the main insertion loop */
1008   if( useTempTable ){
1009     /* This block codes the top of loop only.  The complete loop is the
1010     ** following pseudocode (template 4):
1011     **
1012     **         rewind temp table, if empty goto D
1013     **      C: loop over rows of intermediate table
1014     **           transfer values form intermediate table into <table>
1015     **         end loop
1016     **      D: ...
1017     */
1018     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
1019     addrCont = sqlite3VdbeCurrentAddr(v);
1020   }else if( pSelect ){
1021     /* This block codes the top of loop only.  The complete loop is the
1022     ** following pseudocode (template 3):
1023     **
1024     **      C: yield X, at EOF goto D
1025     **         insert the select result into <table> from R..R+n
1026     **         goto C
1027     **      D: ...
1028     */
1029     sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0);
1030     addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1031     VdbeCoverage(v);
1032     if( ipkColumn>=0 ){
1033       /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1034       ** SELECT, go ahead and copy the value into the rowid slot now, so that
1035       ** the value does not get overwritten by a NULL at tag-20191021-002. */
1036       sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
1037     }
1038   }
1039 
1040   /* Compute data for ordinary columns of the new entry.  Values
1041   ** are written in storage order into registers starting with regData.
1042   ** Only ordinary columns are computed in this loop. The rowid
1043   ** (if there is one) is computed later and generated columns are
1044   ** computed after the rowid since they might depend on the value
1045   ** of the rowid.
1046   */
1047   nHidden = 0;
1048   iRegStore = regData;  assert( regData==regRowid+1 );
1049   for(i=0; i<pTab->nCol; i++, iRegStore++){
1050     int k;
1051     u32 colFlags;
1052     assert( i>=nHidden );
1053     if( i==pTab->iPKey ){
1054       /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1055       ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1056       ** using excess space.  The file format definition requires this extra
1057       ** NULL - we cannot optimize further by skipping the column completely */
1058       sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1059       continue;
1060     }
1061     if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
1062       nHidden++;
1063       if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
1064         /* Virtual columns do not participate in OP_MakeRecord.  So back up
1065         ** iRegStore by one slot to compensate for the iRegStore++ in the
1066         ** outer for() loop */
1067         iRegStore--;
1068         continue;
1069       }else if( (colFlags & COLFLAG_STORED)!=0 ){
1070         /* Stored columns are computed later.  But if there are BEFORE
1071         ** triggers, the slots used for stored columns will be OP_Copy-ed
1072         ** to a second block of registers, so the register needs to be
1073         ** initialized to NULL to avoid an uninitialized register read */
1074         if( tmask & TRIGGER_BEFORE ){
1075           sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1076         }
1077         continue;
1078       }else if( pColumn==0 ){
1079         /* Hidden columns that are not explicitly named in the INSERT
1080         ** get there default value */
1081         sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1082         continue;
1083       }
1084     }
1085     if( pColumn ){
1086       for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){}
1087       if( j>=pColumn->nId ){
1088         /* A column not named in the insert column list gets its
1089         ** default value */
1090         sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1091         continue;
1092       }
1093       k = j;
1094     }else if( nColumn==0 ){
1095       /* This is INSERT INTO ... DEFAULT VALUES.  Load the default value. */
1096       sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1097       continue;
1098     }else{
1099       k = i - nHidden;
1100     }
1101 
1102     if( useTempTable ){
1103       sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
1104     }else if( pSelect ){
1105       if( regFromSelect!=regData ){
1106         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
1107       }
1108     }else{
1109       sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore);
1110     }
1111   }
1112 
1113 
1114   /* Run the BEFORE and INSTEAD OF triggers, if there are any
1115   */
1116   endOfLoop = sqlite3VdbeMakeLabel(pParse);
1117   if( tmask & TRIGGER_BEFORE ){
1118     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
1119 
1120     /* build the NEW.* reference row.  Note that if there is an INTEGER
1121     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1122     ** translated into a unique ID for the row.  But on a BEFORE trigger,
1123     ** we do not know what the unique ID will be (because the insert has
1124     ** not happened yet) so we substitute a rowid of -1
1125     */
1126     if( ipkColumn<0 ){
1127       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1128     }else{
1129       int addr1;
1130       assert( !withoutRowid );
1131       if( useTempTable ){
1132         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
1133       }else{
1134         assert( pSelect==0 );  /* Otherwise useTempTable is true */
1135         sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
1136       }
1137       addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
1138       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1139       sqlite3VdbeJumpHere(v, addr1);
1140       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
1141     }
1142 
1143     /* Cannot have triggers on a virtual table. If it were possible,
1144     ** this block would have to account for hidden column.
1145     */
1146     assert( !IsVirtual(pTab) );
1147 
1148     /* Copy the new data already generated. */
1149     assert( pTab->nNVCol>0 );
1150     sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
1151 
1152 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1153     /* Compute the new value for generated columns after all other
1154     ** columns have already been computed.  This must be done after
1155     ** computing the ROWID in case one of the generated columns
1156     ** refers to the ROWID. */
1157     if( pTab->tabFlags & TF_HasGenerated ){
1158       testcase( pTab->tabFlags & TF_HasVirtual );
1159       testcase( pTab->tabFlags & TF_HasStored );
1160       sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
1161     }
1162 #endif
1163 
1164     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1165     ** do not attempt any conversions before assembling the record.
1166     ** If this is a real table, attempt conversions as required by the
1167     ** table column affinities.
1168     */
1169     if( !isView ){
1170       sqlite3TableAffinity(v, pTab, regCols+1);
1171     }
1172 
1173     /* Fire BEFORE or INSTEAD OF triggers */
1174     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
1175         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
1176 
1177     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
1178   }
1179 
1180   if( !isView ){
1181     if( IsVirtual(pTab) ){
1182       /* The row that the VUpdate opcode will delete: none */
1183       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
1184     }
1185     if( ipkColumn>=0 ){
1186       /* Compute the new rowid */
1187       if( useTempTable ){
1188         sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
1189       }else if( pSelect ){
1190         /* Rowid already initialized at tag-20191021-001 */
1191       }else{
1192         Expr *pIpk = pList->a[ipkColumn].pExpr;
1193         if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
1194           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1195           appendFlag = 1;
1196         }else{
1197           sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
1198         }
1199       }
1200       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1201       ** to generate a unique primary key value.
1202       */
1203       if( !appendFlag ){
1204         int addr1;
1205         if( !IsVirtual(pTab) ){
1206           addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
1207           sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1208           sqlite3VdbeJumpHere(v, addr1);
1209         }else{
1210           addr1 = sqlite3VdbeCurrentAddr(v);
1211           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
1212         }
1213         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
1214       }
1215     }else if( IsVirtual(pTab) || withoutRowid ){
1216       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
1217     }else{
1218       sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1219       appendFlag = 1;
1220     }
1221     autoIncStep(pParse, regAutoinc, regRowid);
1222 
1223 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1224     /* Compute the new value for generated columns after all other
1225     ** columns have already been computed.  This must be done after
1226     ** computing the ROWID in case one of the generated columns
1227     ** is derived from the INTEGER PRIMARY KEY. */
1228     if( pTab->tabFlags & TF_HasGenerated ){
1229       sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
1230     }
1231 #endif
1232 
1233     /* Generate code to check constraints and generate index keys and
1234     ** do the insertion.
1235     */
1236 #ifndef SQLITE_OMIT_VIRTUALTABLE
1237     if( IsVirtual(pTab) ){
1238       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1239       sqlite3VtabMakeWritable(pParse, pTab);
1240       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1241       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1242       sqlite3MayAbort(pParse);
1243     }else
1244 #endif
1245     {
1246       int isReplace;    /* Set to true if constraints may cause a replace */
1247       int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */
1248       sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1249           regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1250       );
1251       sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1252 
1253       /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1254       ** constraints or (b) there are no triggers and this table is not a
1255       ** parent table in a foreign key constraint. It is safe to set the
1256       ** flag in the second case as if any REPLACE constraint is hit, an
1257       ** OP_Delete or OP_IdxDelete instruction will be executed on each
1258       ** cursor that is disturbed. And these instructions both clear the
1259       ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1260       ** functionality.  */
1261       bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
1262       sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1263           regIns, aRegIdx, 0, appendFlag, bUseSeek
1264       );
1265     }
1266   }
1267 
1268   /* Update the count of rows that are inserted
1269   */
1270   if( regRowCount ){
1271     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1272   }
1273 
1274   if( pTrigger ){
1275     /* Code AFTER triggers */
1276     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1277         pTab, regData-2-pTab->nCol, onError, endOfLoop);
1278   }
1279 
1280   /* The bottom of the main insertion loop, if the data source
1281   ** is a SELECT statement.
1282   */
1283   sqlite3VdbeResolveLabel(v, endOfLoop);
1284   if( useTempTable ){
1285     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1286     sqlite3VdbeJumpHere(v, addrInsTop);
1287     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1288   }else if( pSelect ){
1289     sqlite3VdbeGoto(v, addrCont);
1290 #ifdef SQLITE_DEBUG
1291     /* If we are jumping back to an OP_Yield that is preceded by an
1292     ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1293     ** OP_ReleaseReg will be included in the loop. */
1294     if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){
1295       assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield );
1296       sqlite3VdbeChangeP5(v, 1);
1297     }
1298 #endif
1299     sqlite3VdbeJumpHere(v, addrInsTop);
1300   }
1301 
1302 insert_end:
1303   /* Update the sqlite_sequence table by storing the content of the
1304   ** maximum rowid counter values recorded while inserting into
1305   ** autoincrement tables.
1306   */
1307   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1308     sqlite3AutoincrementEnd(pParse);
1309   }
1310 
1311   /*
1312   ** Return the number of rows inserted. If this routine is
1313   ** generating code because of a call to sqlite3NestedParse(), do not
1314   ** invoke the callback function.
1315   */
1316   if( regRowCount ){
1317     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1318     sqlite3VdbeSetNumCols(v, 1);
1319     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1320   }
1321 
1322 insert_cleanup:
1323   sqlite3SrcListDelete(db, pTabList);
1324   sqlite3ExprListDelete(db, pList);
1325   sqlite3UpsertDelete(db, pUpsert);
1326   sqlite3SelectDelete(db, pSelect);
1327   sqlite3IdListDelete(db, pColumn);
1328   sqlite3DbFree(db, aRegIdx);
1329 }
1330 
1331 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1332 ** they may interfere with compilation of other functions in this file
1333 ** (or in another file, if this file becomes part of the amalgamation).  */
1334 #ifdef isView
1335  #undef isView
1336 #endif
1337 #ifdef pTrigger
1338  #undef pTrigger
1339 #endif
1340 #ifdef tmask
1341  #undef tmask
1342 #endif
1343 
1344 /*
1345 ** Meanings of bits in of pWalker->eCode for
1346 ** sqlite3ExprReferencesUpdatedColumn()
1347 */
1348 #define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
1349 #define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */
1350 
1351 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1352 *  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1353 ** expression node references any of the
1354 ** columns that are being modifed by an UPDATE statement.
1355 */
1356 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1357   if( pExpr->op==TK_COLUMN ){
1358     assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1359     if( pExpr->iColumn>=0 ){
1360       if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1361         pWalker->eCode |= CKCNSTRNT_COLUMN;
1362       }
1363     }else{
1364       pWalker->eCode |= CKCNSTRNT_ROWID;
1365     }
1366   }
1367   return WRC_Continue;
1368 }
1369 
1370 /*
1371 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
1372 ** only columns that are modified by the UPDATE are those for which
1373 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1374 **
1375 ** Return true if CHECK constraint pExpr uses any of the
1376 ** changing columns (or the rowid if it is changing).  In other words,
1377 ** return true if this CHECK constraint must be validated for
1378 ** the new row in the UPDATE statement.
1379 **
1380 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1381 ** The operation of this routine is the same - return true if an only if
1382 ** the expression uses one or more of columns identified by the second and
1383 ** third arguments.
1384 */
1385 int sqlite3ExprReferencesUpdatedColumn(
1386   Expr *pExpr,    /* The expression to be checked */
1387   int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */
1388   int chngRowid   /* True if UPDATE changes the rowid */
1389 ){
1390   Walker w;
1391   memset(&w, 0, sizeof(w));
1392   w.eCode = 0;
1393   w.xExprCallback = checkConstraintExprNode;
1394   w.u.aiCol = aiChng;
1395   sqlite3WalkExpr(&w, pExpr);
1396   if( !chngRowid ){
1397     testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1398     w.eCode &= ~CKCNSTRNT_ROWID;
1399   }
1400   testcase( w.eCode==0 );
1401   testcase( w.eCode==CKCNSTRNT_COLUMN );
1402   testcase( w.eCode==CKCNSTRNT_ROWID );
1403   testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1404   return w.eCode!=0;
1405 }
1406 
1407 /*
1408 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit
1409 ** the indexes of a table in the order provided in the Table->pIndex list.
1410 ** However, sometimes (rarely - when there is an upsert) it wants to visit
1411 ** the indexes in a different order.  The following data structures accomplish
1412 ** this.
1413 **
1414 ** The IndexIterator object is used to walk through all of the indexes
1415 ** of a table in either Index.pNext order, or in some other order established
1416 ** by an array of IndexListTerm objects.
1417 */
1418 typedef struct IndexListTerm IndexListTerm;
1419 typedef struct IndexIterator IndexIterator;
1420 struct IndexIterator {
1421   int eType;    /* 0 for Index.pNext list.  1 for an array of IndexListTerm */
1422   int i;        /* Index of the current item from the list */
1423   union {
1424     struct {    /* Use this object for eType==0: A Index.pNext list */
1425       Index *pIdx;   /* The current Index */
1426     } lx;
1427     struct {    /* Use this object for eType==1; Array of IndexListTerm */
1428       int nIdx;               /* Size of the array */
1429       IndexListTerm *aIdx;    /* Array of IndexListTerms */
1430     } ax;
1431   } u;
1432 };
1433 
1434 /* When IndexIterator.eType==1, then each index is an array of instances
1435 ** of the following object
1436 */
1437 struct IndexListTerm {
1438   Index *p;  /* The index */
1439   int ix;    /* Which entry in the original Table.pIndex list is this index*/
1440 };
1441 
1442 /* Return the first index on the list */
1443 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){
1444   assert( pIter->i==0 );
1445   if( pIter->eType ){
1446     *pIx = pIter->u.ax.aIdx[0].ix;
1447     return pIter->u.ax.aIdx[0].p;
1448   }else{
1449     *pIx = 0;
1450     return pIter->u.lx.pIdx;
1451   }
1452 }
1453 
1454 /* Return the next index from the list.  Return NULL when out of indexes */
1455 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){
1456   if( pIter->eType ){
1457     int i = ++pIter->i;
1458     if( i>=pIter->u.ax.nIdx ){
1459       *pIx = i;
1460       return 0;
1461     }
1462     *pIx = pIter->u.ax.aIdx[i].ix;
1463     return pIter->u.ax.aIdx[i].p;
1464   }else{
1465     ++(*pIx);
1466     pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext;
1467     return pIter->u.lx.pIdx;
1468   }
1469 }
1470 
1471 /*
1472 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1473 ** on table pTab.
1474 **
1475 ** The regNewData parameter is the first register in a range that contains
1476 ** the data to be inserted or the data after the update.  There will be
1477 ** pTab->nCol+1 registers in this range.  The first register (the one
1478 ** that regNewData points to) will contain the new rowid, or NULL in the
1479 ** case of a WITHOUT ROWID table.  The second register in the range will
1480 ** contain the content of the first table column.  The third register will
1481 ** contain the content of the second table column.  And so forth.
1482 **
1483 ** The regOldData parameter is similar to regNewData except that it contains
1484 ** the data prior to an UPDATE rather than afterwards.  regOldData is zero
1485 ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by
1486 ** checking regOldData for zero.
1487 **
1488 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1489 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1490 ** might be modified by the UPDATE.  If pkChng is false, then the key of
1491 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1492 **
1493 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1494 ** was explicitly specified as part of the INSERT statement.  If pkChng
1495 ** is zero, it means that the either rowid is computed automatically or
1496 ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT,
1497 ** pkChng will only be true if the INSERT statement provides an integer
1498 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1499 **
1500 ** The code generated by this routine will store new index entries into
1501 ** registers identified by aRegIdx[].  No index entry is created for
1502 ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
1503 ** the same as the order of indices on the linked list of indices
1504 ** at pTab->pIndex.
1505 **
1506 ** (2019-05-07) The generated code also creates a new record for the
1507 ** main table, if pTab is a rowid table, and stores that record in the
1508 ** register identified by aRegIdx[nIdx] - in other words in the first
1509 ** entry of aRegIdx[] past the last index.  It is important that the
1510 ** record be generated during constraint checks to avoid affinity changes
1511 ** to the register content that occur after constraint checks but before
1512 ** the new record is inserted.
1513 **
1514 ** The caller must have already opened writeable cursors on the main
1515 ** table and all applicable indices (that is to say, all indices for which
1516 ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when
1517 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1518 ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor
1519 ** for the first index in the pTab->pIndex list.  Cursors for other indices
1520 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1521 **
1522 ** This routine also generates code to check constraints.  NOT NULL,
1523 ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
1524 ** then the appropriate action is performed.  There are five possible
1525 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1526 **
1527 **  Constraint type  Action       What Happens
1528 **  ---------------  ----------   ----------------------------------------
1529 **  any              ROLLBACK     The current transaction is rolled back and
1530 **                                sqlite3_step() returns immediately with a
1531 **                                return code of SQLITE_CONSTRAINT.
1532 **
1533 **  any              ABORT        Back out changes from the current command
1534 **                                only (do not do a complete rollback) then
1535 **                                cause sqlite3_step() to return immediately
1536 **                                with SQLITE_CONSTRAINT.
1537 **
1538 **  any              FAIL         Sqlite3_step() returns immediately with a
1539 **                                return code of SQLITE_CONSTRAINT.  The
1540 **                                transaction is not rolled back and any
1541 **                                changes to prior rows are retained.
1542 **
1543 **  any              IGNORE       The attempt in insert or update the current
1544 **                                row is skipped, without throwing an error.
1545 **                                Processing continues with the next row.
1546 **                                (There is an immediate jump to ignoreDest.)
1547 **
1548 **  NOT NULL         REPLACE      The NULL value is replace by the default
1549 **                                value for that column.  If the default value
1550 **                                is NULL, the action is the same as ABORT.
1551 **
1552 **  UNIQUE           REPLACE      The other row that conflicts with the row
1553 **                                being inserted is removed.
1554 **
1555 **  CHECK            REPLACE      Illegal.  The results in an exception.
1556 **
1557 ** Which action to take is determined by the overrideError parameter.
1558 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1559 ** is used.  Or if pParse->onError==OE_Default then the onError value
1560 ** for the constraint is used.
1561 */
1562 void sqlite3GenerateConstraintChecks(
1563   Parse *pParse,       /* The parser context */
1564   Table *pTab,         /* The table being inserted or updated */
1565   int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */
1566   int iDataCur,        /* Canonical data cursor (main table or PK index) */
1567   int iIdxCur,         /* First index cursor */
1568   int regNewData,      /* First register in a range holding values to insert */
1569   int regOldData,      /* Previous content.  0 for INSERTs */
1570   u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */
1571   u8 overrideError,    /* Override onError to this if not OE_Default */
1572   int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
1573   int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
1574   int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
1575   Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
1576 ){
1577   Vdbe *v;             /* VDBE under constrution */
1578   Index *pIdx;         /* Pointer to one of the indices */
1579   Index *pPk = 0;      /* The PRIMARY KEY index for WITHOUT ROWID tables */
1580   sqlite3 *db;         /* Database connection */
1581   int i;               /* loop counter */
1582   int ix;              /* Index loop counter */
1583   int nCol;            /* Number of columns */
1584   int onError;         /* Conflict resolution strategy */
1585   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1586   int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1587   Upsert *pUpsertClause = 0;  /* The specific ON CONFLICT clause for pIdx */
1588   u8 isUpdate;           /* True if this is an UPDATE operation */
1589   u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
1590   int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */
1591   int upsertIpkDelay = 0;  /* Address of Goto to bypass initial IPK check */
1592   int ipkTop = 0;        /* Top of the IPK uniqueness check */
1593   int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
1594   /* Variables associated with retesting uniqueness constraints after
1595   ** replace triggers fire have run */
1596   int regTrigCnt;       /* Register used to count replace trigger invocations */
1597   int addrRecheck = 0;  /* Jump here to recheck all uniqueness constraints */
1598   int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
1599   Trigger *pTrigger;    /* List of DELETE triggers on the table pTab */
1600   int nReplaceTrig = 0; /* Number of replace triggers coded */
1601   IndexIterator sIdxIter;  /* Index iterator */
1602 
1603   isUpdate = regOldData!=0;
1604   db = pParse->db;
1605   v = pParse->pVdbe;
1606   assert( v!=0 );
1607   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
1608   nCol = pTab->nCol;
1609 
1610   /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1611   ** normal rowid tables.  nPkField is the number of key fields in the
1612   ** pPk index or 1 for a rowid table.  In other words, nPkField is the
1613   ** number of fields in the true primary key of the table. */
1614   if( HasRowid(pTab) ){
1615     pPk = 0;
1616     nPkField = 1;
1617   }else{
1618     pPk = sqlite3PrimaryKeyIndex(pTab);
1619     nPkField = pPk->nKeyCol;
1620   }
1621 
1622   /* Record that this module has started */
1623   VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1624                      iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1625 
1626   /* Test all NOT NULL constraints.
1627   */
1628   if( pTab->tabFlags & TF_HasNotNull ){
1629     int b2ndPass = 0;         /* True if currently running 2nd pass */
1630     int nSeenReplace = 0;     /* Number of ON CONFLICT REPLACE operations */
1631     int nGenerated = 0;       /* Number of generated columns with NOT NULL */
1632     while(1){  /* Make 2 passes over columns. Exit loop via "break" */
1633       for(i=0; i<nCol; i++){
1634         int iReg;                        /* Register holding column value */
1635         Column *pCol = &pTab->aCol[i];   /* The column to check for NOT NULL */
1636         int isGenerated;                 /* non-zero if column is generated */
1637         onError = pCol->notNull;
1638         if( onError==OE_None ) continue; /* No NOT NULL on this column */
1639         if( i==pTab->iPKey ){
1640           continue;        /* ROWID is never NULL */
1641         }
1642         isGenerated = pCol->colFlags & COLFLAG_GENERATED;
1643         if( isGenerated && !b2ndPass ){
1644           nGenerated++;
1645           continue;        /* Generated columns processed on 2nd pass */
1646         }
1647         if( aiChng && aiChng[i]<0 && !isGenerated ){
1648           /* Do not check NOT NULL on columns that do not change */
1649           continue;
1650         }
1651         if( overrideError!=OE_Default ){
1652           onError = overrideError;
1653         }else if( onError==OE_Default ){
1654           onError = OE_Abort;
1655         }
1656         if( onError==OE_Replace ){
1657           if( b2ndPass        /* REPLACE becomes ABORT on the 2nd pass */
1658            || pCol->pDflt==0  /* REPLACE is ABORT if no DEFAULT value */
1659           ){
1660             testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1661             testcase( pCol->colFlags & COLFLAG_STORED );
1662             testcase( pCol->colFlags & COLFLAG_GENERATED );
1663             onError = OE_Abort;
1664           }else{
1665             assert( !isGenerated );
1666           }
1667         }else if( b2ndPass && !isGenerated ){
1668           continue;
1669         }
1670         assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1671             || onError==OE_Ignore || onError==OE_Replace );
1672         testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
1673         iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
1674         switch( onError ){
1675           case OE_Replace: {
1676             int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg);
1677             VdbeCoverage(v);
1678             assert( (pCol->colFlags & COLFLAG_GENERATED)==0 );
1679             nSeenReplace++;
1680             sqlite3ExprCodeCopy(pParse, pCol->pDflt, iReg);
1681             sqlite3VdbeJumpHere(v, addr1);
1682             break;
1683           }
1684           case OE_Abort:
1685             sqlite3MayAbort(pParse);
1686             /* no break */ deliberate_fall_through
1687           case OE_Rollback:
1688           case OE_Fail: {
1689             char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1690                                         pCol->zName);
1691             sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
1692                               onError, iReg);
1693             sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1694             sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1695             VdbeCoverage(v);
1696             break;
1697           }
1698           default: {
1699             assert( onError==OE_Ignore );
1700             sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
1701             VdbeCoverage(v);
1702             break;
1703           }
1704         } /* end switch(onError) */
1705       } /* end loop i over columns */
1706       if( nGenerated==0 && nSeenReplace==0 ){
1707         /* If there are no generated columns with NOT NULL constraints
1708         ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1709         ** pass is sufficient */
1710         break;
1711       }
1712       if( b2ndPass ) break;  /* Never need more than 2 passes */
1713       b2ndPass = 1;
1714 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1715       if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
1716         /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1717         ** first pass, recomputed values for all generated columns, as
1718         ** those values might depend on columns affected by the REPLACE.
1719         */
1720         sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab);
1721       }
1722 #endif
1723     } /* end of 2-pass loop */
1724   } /* end if( has-not-null-constraints ) */
1725 
1726   /* Test all CHECK constraints
1727   */
1728 #ifndef SQLITE_OMIT_CHECK
1729   if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1730     ExprList *pCheck = pTab->pCheck;
1731     pParse->iSelfTab = -(regNewData+1);
1732     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1733     for(i=0; i<pCheck->nExpr; i++){
1734       int allOk;
1735       Expr *pCopy;
1736       Expr *pExpr = pCheck->a[i].pExpr;
1737       if( aiChng
1738        && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1739       ){
1740         /* The check constraints do not reference any of the columns being
1741         ** updated so there is no point it verifying the check constraint */
1742         continue;
1743       }
1744       if( bAffinityDone==0 ){
1745         sqlite3TableAffinity(v, pTab, regNewData+1);
1746         bAffinityDone = 1;
1747       }
1748       allOk = sqlite3VdbeMakeLabel(pParse);
1749       sqlite3VdbeVerifyAbortable(v, onError);
1750       pCopy = sqlite3ExprDup(db, pExpr, 0);
1751       if( !db->mallocFailed ){
1752         sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL);
1753       }
1754       sqlite3ExprDelete(db, pCopy);
1755       if( onError==OE_Ignore ){
1756         sqlite3VdbeGoto(v, ignoreDest);
1757       }else{
1758         char *zName = pCheck->a[i].zEName;
1759         assert( zName!=0 || pParse->db->mallocFailed );
1760         if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1761         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1762                               onError, zName, P4_TRANSIENT,
1763                               P5_ConstraintCheck);
1764       }
1765       sqlite3VdbeResolveLabel(v, allOk);
1766     }
1767     pParse->iSelfTab = 0;
1768   }
1769 #endif /* !defined(SQLITE_OMIT_CHECK) */
1770 
1771   /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1772   ** order:
1773   **
1774   **   (1)  OE_Update
1775   **   (2)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1776   **   (3)  OE_Replace
1777   **
1778   ** OE_Fail and OE_Ignore must happen before any changes are made.
1779   ** OE_Update guarantees that only a single row will change, so it
1780   ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback
1781   ** could happen in any order, but they are grouped up front for
1782   ** convenience.
1783   **
1784   ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1785   ** The order of constraints used to have OE_Update as (2) and OE_Abort
1786   ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1787   ** constraint before any others, so it had to be moved.
1788   **
1789   ** Constraint checking code is generated in this order:
1790   **   (A)  The rowid constraint
1791   **   (B)  Unique index constraints that do not have OE_Replace as their
1792   **        default conflict resolution strategy
1793   **   (C)  Unique index that do use OE_Replace by default.
1794   **
1795   ** The ordering of (2) and (3) is accomplished by making sure the linked
1796   ** list of indexes attached to a table puts all OE_Replace indexes last
1797   ** in the list.  See sqlite3CreateIndex() for where that happens.
1798   */
1799   sIdxIter.eType = 0;
1800   sIdxIter.i = 0;
1801   sIdxIter.u.ax.aIdx = 0;  /* Silence harmless compiler warning */
1802   sIdxIter.u.lx.pIdx = pTab->pIndex;
1803   if( pUpsert ){
1804     if( pUpsert->pUpsertTarget==0 ){
1805       /* There is just on ON CONFLICT clause and it has no constraint-target */
1806       assert( pUpsert->pNextUpsert==0 );
1807       if( pUpsert->isDoUpdate==0 ){
1808         /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
1809         ** Make all unique constraint resolution be OE_Ignore */
1810         overrideError = OE_Ignore;
1811         pUpsert = 0;
1812       }else{
1813         /* A single ON CONFLICT DO UPDATE.  Make all resolutions OE_Update */
1814         overrideError = OE_Update;
1815       }
1816     }else if( pTab->pIndex!=0 ){
1817       /* Otherwise, we'll need to run the IndexListTerm array version of the
1818       ** iterator to ensure that all of the ON CONFLICT conditions are
1819       ** checked first and in order. */
1820       int nIdx, jj;
1821       u64 nByte;
1822       Upsert *pTerm;
1823       u8 *bUsed;
1824       for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
1825          assert( aRegIdx[nIdx]>0 );
1826       }
1827       sIdxIter.eType = 1;
1828       sIdxIter.u.ax.nIdx = nIdx;
1829       nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx;
1830       sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte);
1831       if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */
1832       bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx];
1833       pUpsert->pToFree = sIdxIter.u.ax.aIdx;
1834       for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){
1835         if( pTerm->pUpsertTarget==0 ) break;
1836         if( pTerm->pUpsertIdx==0 ) continue;  /* Skip ON CONFLICT for the IPK */
1837         jj = 0;
1838         pIdx = pTab->pIndex;
1839         while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){
1840            pIdx = pIdx->pNext;
1841            jj++;
1842         }
1843         if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */
1844         bUsed[jj] = 1;
1845         sIdxIter.u.ax.aIdx[i].p = pIdx;
1846         sIdxIter.u.ax.aIdx[i].ix = jj;
1847         i++;
1848       }
1849       for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){
1850         if( bUsed[jj] ) continue;
1851         sIdxIter.u.ax.aIdx[i].p = pIdx;
1852         sIdxIter.u.ax.aIdx[i].ix = jj;
1853         i++;
1854       }
1855       assert( i==nIdx );
1856     }
1857   }
1858 
1859   /* Determine if it is possible that triggers (either explicitly coded
1860   ** triggers or FK resolution actions) might run as a result of deletes
1861   ** that happen when OE_Replace conflict resolution occurs. (Call these
1862   ** "replace triggers".)  If any replace triggers run, we will need to
1863   ** recheck all of the uniqueness constraints after they have all run.
1864   ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1865   **
1866   ** If replace triggers are a possibility, then
1867   **
1868   **   (1) Allocate register regTrigCnt and initialize it to zero.
1869   **       That register will count the number of replace triggers that
1870   **       fire.  Constraint recheck only occurs if the number is positive.
1871   **   (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1872   **   (3) Initialize addrRecheck and lblRecheckOk
1873   **
1874   ** The uniqueness rechecking code will create a series of tests to run
1875   ** in a second pass.  The addrRecheck and lblRecheckOk variables are
1876   ** used to link together these tests which are separated from each other
1877   ** in the generate bytecode.
1878   */
1879   if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
1880     /* There are not DELETE triggers nor FK constraints.  No constraint
1881     ** rechecks are needed. */
1882     pTrigger = 0;
1883     regTrigCnt = 0;
1884   }else{
1885     if( db->flags&SQLITE_RecTriggers ){
1886       pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1887       regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
1888     }else{
1889       pTrigger = 0;
1890       regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
1891     }
1892     if( regTrigCnt ){
1893       /* Replace triggers might exist.  Allocate the counter and
1894       ** initialize it to zero. */
1895       regTrigCnt = ++pParse->nMem;
1896       sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
1897       VdbeComment((v, "trigger count"));
1898       lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
1899       addrRecheck = lblRecheckOk;
1900     }
1901   }
1902 
1903   /* If rowid is changing, make sure the new rowid does not previously
1904   ** exist in the table.
1905   */
1906   if( pkChng && pPk==0 ){
1907     int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
1908 
1909     /* Figure out what action to take in case of a rowid collision */
1910     onError = pTab->keyConf;
1911     if( overrideError!=OE_Default ){
1912       onError = overrideError;
1913     }else if( onError==OE_Default ){
1914       onError = OE_Abort;
1915     }
1916 
1917     /* figure out whether or not upsert applies in this case */
1918     if( pUpsert ){
1919       pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0);
1920       if( pUpsertClause!=0 ){
1921         if( pUpsertClause->isDoUpdate==0 ){
1922           onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
1923         }else{
1924           onError = OE_Update;  /* DO UPDATE */
1925         }
1926       }
1927       if( pUpsertClause!=pUpsert ){
1928         /* The first ON CONFLICT clause has a conflict target other than
1929         ** the IPK.  We have to jump ahead to that first ON CONFLICT clause
1930         ** and then come back here and deal with the IPK afterwards */
1931         upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto);
1932       }
1933     }
1934 
1935     /* If the response to a rowid conflict is REPLACE but the response
1936     ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1937     ** to defer the running of the rowid conflict checking until after
1938     ** the UNIQUE constraints have run.
1939     */
1940     if( onError==OE_Replace      /* IPK rule is REPLACE */
1941      && onError!=overrideError   /* Rules for other contraints are different */
1942      && pTab->pIndex             /* There exist other constraints */
1943     ){
1944       ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
1945       VdbeComment((v, "defer IPK REPLACE until last"));
1946     }
1947 
1948     if( isUpdate ){
1949       /* pkChng!=0 does not mean that the rowid has changed, only that
1950       ** it might have changed.  Skip the conflict logic below if the rowid
1951       ** is unchanged. */
1952       sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1953       sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1954       VdbeCoverage(v);
1955     }
1956 
1957     /* Check to see if the new rowid already exists in the table.  Skip
1958     ** the following conflict logic if it does not. */
1959     VdbeNoopComment((v, "uniqueness check for ROWID"));
1960     sqlite3VdbeVerifyAbortable(v, onError);
1961     sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1962     VdbeCoverage(v);
1963 
1964     switch( onError ){
1965       default: {
1966         onError = OE_Abort;
1967         /* no break */ deliberate_fall_through
1968       }
1969       case OE_Rollback:
1970       case OE_Abort:
1971       case OE_Fail: {
1972         testcase( onError==OE_Rollback );
1973         testcase( onError==OE_Abort );
1974         testcase( onError==OE_Fail );
1975         sqlite3RowidConstraint(pParse, onError, pTab);
1976         break;
1977       }
1978       case OE_Replace: {
1979         /* If there are DELETE triggers on this table and the
1980         ** recursive-triggers flag is set, call GenerateRowDelete() to
1981         ** remove the conflicting row from the table. This will fire
1982         ** the triggers and remove both the table and index b-tree entries.
1983         **
1984         ** Otherwise, if there are no triggers or the recursive-triggers
1985         ** flag is not set, but the table has one or more indexes, call
1986         ** GenerateRowIndexDelete(). This removes the index b-tree entries
1987         ** only. The table b-tree entry will be replaced by the new entry
1988         ** when it is inserted.
1989         **
1990         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1991         ** also invoke MultiWrite() to indicate that this VDBE may require
1992         ** statement rollback (if the statement is aborted after the delete
1993         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1994         ** but being more selective here allows statements like:
1995         **
1996         **   REPLACE INTO t(rowid) VALUES($newrowid)
1997         **
1998         ** to run without a statement journal if there are no indexes on the
1999         ** table.
2000         */
2001         if( regTrigCnt ){
2002           sqlite3MultiWrite(pParse);
2003           sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2004                                    regNewData, 1, 0, OE_Replace, 1, -1);
2005           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2006           nReplaceTrig++;
2007         }else{
2008 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2009           assert( HasRowid(pTab) );
2010           /* This OP_Delete opcode fires the pre-update-hook only. It does
2011           ** not modify the b-tree. It is more efficient to let the coming
2012           ** OP_Insert replace the existing entry than it is to delete the
2013           ** existing entry and then insert a new one. */
2014           sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
2015           sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2016 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2017           if( pTab->pIndex ){
2018             sqlite3MultiWrite(pParse);
2019             sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
2020           }
2021         }
2022         seenReplace = 1;
2023         break;
2024       }
2025 #ifndef SQLITE_OMIT_UPSERT
2026       case OE_Update: {
2027         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
2028         /* no break */ deliberate_fall_through
2029       }
2030 #endif
2031       case OE_Ignore: {
2032         testcase( onError==OE_Ignore );
2033         sqlite3VdbeGoto(v, ignoreDest);
2034         break;
2035       }
2036     }
2037     sqlite3VdbeResolveLabel(v, addrRowidOk);
2038     if( pUpsert && pUpsertClause!=pUpsert ){
2039       upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto);
2040     }else if( ipkTop ){
2041       ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
2042       sqlite3VdbeJumpHere(v, ipkTop-1);
2043     }
2044   }
2045 
2046   /* Test all UNIQUE constraints by creating entries for each UNIQUE
2047   ** index and making sure that duplicate entries do not already exist.
2048   ** Compute the revised record entries for indices as we go.
2049   **
2050   ** This loop also handles the case of the PRIMARY KEY index for a
2051   ** WITHOUT ROWID table.
2052   */
2053   for(pIdx = indexIteratorFirst(&sIdxIter, &ix);
2054       pIdx;
2055       pIdx = indexIteratorNext(&sIdxIter, &ix)
2056   ){
2057     int regIdx;          /* Range of registers hold conent for pIdx */
2058     int regR;            /* Range of registers holding conflicting PK */
2059     int iThisCur;        /* Cursor for this UNIQUE index */
2060     int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
2061     int addrConflictCk;  /* First opcode in the conflict check logic */
2062 
2063     if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
2064     if( pUpsert ){
2065       pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx);
2066       if( upsertIpkDelay && pUpsertClause==pUpsert ){
2067         sqlite3VdbeJumpHere(v, upsertIpkDelay);
2068       }
2069     }
2070     addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
2071     if( bAffinityDone==0 ){
2072       sqlite3TableAffinity(v, pTab, regNewData+1);
2073       bAffinityDone = 1;
2074     }
2075     VdbeNoopComment((v, "prep index %s", pIdx->zName));
2076     iThisCur = iIdxCur+ix;
2077 
2078 
2079     /* Skip partial indices for which the WHERE clause is not true */
2080     if( pIdx->pPartIdxWhere ){
2081       sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
2082       pParse->iSelfTab = -(regNewData+1);
2083       sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
2084                             SQLITE_JUMPIFNULL);
2085       pParse->iSelfTab = 0;
2086     }
2087 
2088     /* Create a record for this index entry as it should appear after
2089     ** the insert or update.  Store that record in the aRegIdx[ix] register
2090     */
2091     regIdx = aRegIdx[ix]+1;
2092     for(i=0; i<pIdx->nColumn; i++){
2093       int iField = pIdx->aiColumn[i];
2094       int x;
2095       if( iField==XN_EXPR ){
2096         pParse->iSelfTab = -(regNewData+1);
2097         sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
2098         pParse->iSelfTab = 0;
2099         VdbeComment((v, "%s column %d", pIdx->zName, i));
2100       }else if( iField==XN_ROWID || iField==pTab->iPKey ){
2101         x = regNewData;
2102         sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
2103         VdbeComment((v, "rowid"));
2104       }else{
2105         testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
2106         x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
2107         sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
2108         VdbeComment((v, "%s", pTab->aCol[iField].zName));
2109       }
2110     }
2111     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
2112     VdbeComment((v, "for %s", pIdx->zName));
2113 #ifdef SQLITE_ENABLE_NULL_TRIM
2114     if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2115       sqlite3SetMakeRecordP5(v, pIdx->pTable);
2116     }
2117 #endif
2118     sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0);
2119 
2120     /* In an UPDATE operation, if this index is the PRIMARY KEY index
2121     ** of a WITHOUT ROWID table and there has been no change the
2122     ** primary key, then no collision is possible.  The collision detection
2123     ** logic below can all be skipped. */
2124     if( isUpdate && pPk==pIdx && pkChng==0 ){
2125       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2126       continue;
2127     }
2128 
2129     /* Find out what action to take in case there is a uniqueness conflict */
2130     onError = pIdx->onError;
2131     if( onError==OE_None ){
2132       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2133       continue;  /* pIdx is not a UNIQUE index */
2134     }
2135     if( overrideError!=OE_Default ){
2136       onError = overrideError;
2137     }else if( onError==OE_Default ){
2138       onError = OE_Abort;
2139     }
2140 
2141     /* Figure out if the upsert clause applies to this index */
2142     if( pUpsertClause ){
2143       if( pUpsertClause->isDoUpdate==0 ){
2144         onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
2145       }else{
2146         onError = OE_Update;  /* DO UPDATE */
2147       }
2148     }
2149 
2150     /* Collision detection may be omitted if all of the following are true:
2151     **   (1) The conflict resolution algorithm is REPLACE
2152     **   (2) The table is a WITHOUT ROWID table
2153     **   (3) There are no secondary indexes on the table
2154     **   (4) No delete triggers need to be fired if there is a conflict
2155     **   (5) No FK constraint counters need to be updated if a conflict occurs.
2156     **
2157     ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2158     ** must be explicitly deleted in order to ensure any pre-update hook
2159     ** is invoked.  */
2160 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2161     if( (ix==0 && pIdx->pNext==0)                   /* Condition 3 */
2162      && pPk==pIdx                                   /* Condition 2 */
2163      && onError==OE_Replace                         /* Condition 1 */
2164      && ( 0==(db->flags&SQLITE_RecTriggers) ||      /* Condition 4 */
2165           0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
2166      && ( 0==(db->flags&SQLITE_ForeignKeys) ||      /* Condition 5 */
2167          (0==pTab->pFKey && 0==sqlite3FkReferences(pTab)))
2168     ){
2169       sqlite3VdbeResolveLabel(v, addrUniqueOk);
2170       continue;
2171     }
2172 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2173 
2174     /* Check to see if the new index entry will be unique */
2175     sqlite3VdbeVerifyAbortable(v, onError);
2176     addrConflictCk =
2177       sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
2178                            regIdx, pIdx->nKeyCol); VdbeCoverage(v);
2179 
2180     /* Generate code to handle collisions */
2181     regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField);
2182     if( isUpdate || onError==OE_Replace ){
2183       if( HasRowid(pTab) ){
2184         sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
2185         /* Conflict only if the rowid of the existing index entry
2186         ** is different from old-rowid */
2187         if( isUpdate ){
2188           sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
2189           sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2190           VdbeCoverage(v);
2191         }
2192       }else{
2193         int x;
2194         /* Extract the PRIMARY KEY from the end of the index entry and
2195         ** store it in registers regR..regR+nPk-1 */
2196         if( pIdx!=pPk ){
2197           for(i=0; i<pPk->nKeyCol; i++){
2198             assert( pPk->aiColumn[i]>=0 );
2199             x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
2200             sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
2201             VdbeComment((v, "%s.%s", pTab->zName,
2202                          pTab->aCol[pPk->aiColumn[i]].zName));
2203           }
2204         }
2205         if( isUpdate ){
2206           /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2207           ** table, only conflict if the new PRIMARY KEY values are actually
2208           ** different from the old.
2209           **
2210           ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2211           ** of the matched index row are different from the original PRIMARY
2212           ** KEY values of this row before the update.  */
2213           int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
2214           int op = OP_Ne;
2215           int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
2216 
2217           for(i=0; i<pPk->nKeyCol; i++){
2218             char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
2219             x = pPk->aiColumn[i];
2220             assert( x>=0 );
2221             if( i==(pPk->nKeyCol-1) ){
2222               addrJump = addrUniqueOk;
2223               op = OP_Eq;
2224             }
2225             x = sqlite3TableColumnToStorage(pTab, x);
2226             sqlite3VdbeAddOp4(v, op,
2227                 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
2228             );
2229             sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2230             VdbeCoverageIf(v, op==OP_Eq);
2231             VdbeCoverageIf(v, op==OP_Ne);
2232           }
2233         }
2234       }
2235     }
2236 
2237     /* Generate code that executes if the new index entry is not unique */
2238     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
2239         || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
2240     switch( onError ){
2241       case OE_Rollback:
2242       case OE_Abort:
2243       case OE_Fail: {
2244         testcase( onError==OE_Rollback );
2245         testcase( onError==OE_Abort );
2246         testcase( onError==OE_Fail );
2247         sqlite3UniqueConstraint(pParse, onError, pIdx);
2248         break;
2249       }
2250 #ifndef SQLITE_OMIT_UPSERT
2251       case OE_Update: {
2252         sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
2253         /* no break */ deliberate_fall_through
2254       }
2255 #endif
2256       case OE_Ignore: {
2257         testcase( onError==OE_Ignore );
2258         sqlite3VdbeGoto(v, ignoreDest);
2259         break;
2260       }
2261       default: {
2262         int nConflictCk;   /* Number of opcodes in conflict check logic */
2263 
2264         assert( onError==OE_Replace );
2265         nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
2266         assert( nConflictCk>0 );
2267         testcase( nConflictCk>1 );
2268         if( regTrigCnt ){
2269           sqlite3MultiWrite(pParse);
2270           nReplaceTrig++;
2271         }
2272         if( pTrigger && isUpdate ){
2273           sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur);
2274         }
2275         sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2276             regR, nPkField, 0, OE_Replace,
2277             (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
2278         if( pTrigger && isUpdate ){
2279           sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur);
2280         }
2281         if( regTrigCnt ){
2282           int addrBypass;  /* Jump destination to bypass recheck logic */
2283 
2284           sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2285           addrBypass = sqlite3VdbeAddOp0(v, OP_Goto);  /* Bypass recheck */
2286           VdbeComment((v, "bypass recheck"));
2287 
2288           /* Here we insert code that will be invoked after all constraint
2289           ** checks have run, if and only if one or more replace triggers
2290           ** fired. */
2291           sqlite3VdbeResolveLabel(v, lblRecheckOk);
2292           lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
2293           if( pIdx->pPartIdxWhere ){
2294             /* Bypass the recheck if this partial index is not defined
2295             ** for the current row */
2296             sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
2297             VdbeCoverage(v);
2298           }
2299           /* Copy the constraint check code from above, except change
2300           ** the constraint-ok jump destination to be the address of
2301           ** the next retest block */
2302           while( nConflictCk>0 ){
2303             VdbeOp x;    /* Conflict check opcode to copy */
2304             /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2305             ** Hence, make a complete copy of the opcode, rather than using
2306             ** a pointer to the opcode. */
2307             x = *sqlite3VdbeGetOp(v, addrConflictCk);
2308             if( x.opcode!=OP_IdxRowid ){
2309               int p2;      /* New P2 value for copied conflict check opcode */
2310               const char *zP4;
2311               if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
2312                 p2 = lblRecheckOk;
2313               }else{
2314                 p2 = x.p2;
2315               }
2316               zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z;
2317               sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type);
2318               sqlite3VdbeChangeP5(v, x.p5);
2319               VdbeCoverageIf(v, p2!=x.p2);
2320             }
2321             nConflictCk--;
2322             addrConflictCk++;
2323           }
2324           /* If the retest fails, issue an abort */
2325           sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
2326 
2327           sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
2328         }
2329         seenReplace = 1;
2330         break;
2331       }
2332     }
2333     sqlite3VdbeResolveLabel(v, addrUniqueOk);
2334     if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
2335     if( pUpsertClause
2336      && upsertIpkReturn
2337      && sqlite3UpsertNextIsIPK(pUpsertClause)
2338     ){
2339       sqlite3VdbeGoto(v, upsertIpkDelay+1);
2340       sqlite3VdbeJumpHere(v, upsertIpkReturn);
2341       upsertIpkReturn = 0;
2342     }
2343   }
2344 
2345   /* If the IPK constraint is a REPLACE, run it last */
2346   if( ipkTop ){
2347     sqlite3VdbeGoto(v, ipkTop);
2348     VdbeComment((v, "Do IPK REPLACE"));
2349     sqlite3VdbeJumpHere(v, ipkBottom);
2350   }
2351 
2352   /* Recheck all uniqueness constraints after replace triggers have run */
2353   testcase( regTrigCnt!=0 && nReplaceTrig==0 );
2354   assert( regTrigCnt!=0 || nReplaceTrig==0 );
2355   if( nReplaceTrig ){
2356     sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
2357     if( !pPk ){
2358       if( isUpdate ){
2359         sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
2360         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2361         VdbeCoverage(v);
2362       }
2363       sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
2364       VdbeCoverage(v);
2365       sqlite3RowidConstraint(pParse, OE_Abort, pTab);
2366     }else{
2367       sqlite3VdbeGoto(v, addrRecheck);
2368     }
2369     sqlite3VdbeResolveLabel(v, lblRecheckOk);
2370   }
2371 
2372   /* Generate the table record */
2373   if( HasRowid(pTab) ){
2374     int regRec = aRegIdx[ix];
2375     sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
2376     sqlite3SetMakeRecordP5(v, pTab);
2377     if( !bAffinityDone ){
2378       sqlite3TableAffinity(v, pTab, 0);
2379     }
2380   }
2381 
2382   *pbMayReplace = seenReplace;
2383   VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
2384 }
2385 
2386 #ifdef SQLITE_ENABLE_NULL_TRIM
2387 /*
2388 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2389 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2390 **
2391 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2392 */
2393 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
2394   u16 i;
2395 
2396   /* Records with omitted columns are only allowed for schema format
2397   ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2398   if( pTab->pSchema->file_format<2 ) return;
2399 
2400   for(i=pTab->nCol-1; i>0; i--){
2401     if( pTab->aCol[i].pDflt!=0 ) break;
2402     if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
2403   }
2404   sqlite3VdbeChangeP5(v, i+1);
2405 }
2406 #endif
2407 
2408 /*
2409 ** This routine generates code to finish the INSERT or UPDATE operation
2410 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2411 ** A consecutive range of registers starting at regNewData contains the
2412 ** rowid and the content to be inserted.
2413 **
2414 ** The arguments to this routine should be the same as the first six
2415 ** arguments to sqlite3GenerateConstraintChecks.
2416 */
2417 void sqlite3CompleteInsertion(
2418   Parse *pParse,      /* The parser context */
2419   Table *pTab,        /* the table into which we are inserting */
2420   int iDataCur,       /* Cursor of the canonical data source */
2421   int iIdxCur,        /* First index cursor */
2422   int regNewData,     /* Range of content */
2423   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
2424   int update_flags,   /* True for UPDATE, False for INSERT */
2425   int appendBias,     /* True if this is likely to be an append */
2426   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2427 ){
2428   Vdbe *v;            /* Prepared statements under construction */
2429   Index *pIdx;        /* An index being inserted or updated */
2430   u8 pik_flags;       /* flag values passed to the btree insert */
2431   int i;              /* Loop counter */
2432 
2433   assert( update_flags==0
2434        || update_flags==OPFLAG_ISUPDATE
2435        || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
2436   );
2437 
2438   v = pParse->pVdbe;
2439   assert( v!=0 );
2440   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
2441   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2442     /* All REPLACE indexes are at the end of the list */
2443     assert( pIdx->onError!=OE_Replace
2444          || pIdx->pNext==0
2445          || pIdx->pNext->onError==OE_Replace );
2446     if( aRegIdx[i]==0 ) continue;
2447     if( pIdx->pPartIdxWhere ){
2448       sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
2449       VdbeCoverage(v);
2450     }
2451     pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
2452     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2453       assert( pParse->nested==0 );
2454       pik_flags |= OPFLAG_NCHANGE;
2455       pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
2456 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2457       if( update_flags==0 ){
2458         int r = sqlite3GetTempReg(pParse);
2459         sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
2460         sqlite3VdbeAddOp4(v, OP_Insert,
2461             iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE
2462         );
2463         sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
2464         sqlite3ReleaseTempReg(pParse, r);
2465       }
2466 #endif
2467     }
2468     sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
2469                          aRegIdx[i]+1,
2470                          pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
2471     sqlite3VdbeChangeP5(v, pik_flags);
2472   }
2473   if( !HasRowid(pTab) ) return;
2474   if( pParse->nested ){
2475     pik_flags = 0;
2476   }else{
2477     pik_flags = OPFLAG_NCHANGE;
2478     pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
2479   }
2480   if( appendBias ){
2481     pik_flags |= OPFLAG_APPEND;
2482   }
2483   if( useSeekResult ){
2484     pik_flags |= OPFLAG_USESEEKRESULT;
2485   }
2486   sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
2487   if( !pParse->nested ){
2488     sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2489   }
2490   sqlite3VdbeChangeP5(v, pik_flags);
2491 }
2492 
2493 /*
2494 ** Allocate cursors for the pTab table and all its indices and generate
2495 ** code to open and initialized those cursors.
2496 **
2497 ** The cursor for the object that contains the complete data (normally
2498 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2499 ** ROWID table) is returned in *piDataCur.  The first index cursor is
2500 ** returned in *piIdxCur.  The number of indices is returned.
2501 **
2502 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2503 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2504 ** If iBase is negative, then allocate the next available cursor.
2505 **
2506 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2507 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2508 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2509 ** pTab->pIndex list.
2510 **
2511 ** If pTab is a virtual table, then this routine is a no-op and the
2512 ** *piDataCur and *piIdxCur values are left uninitialized.
2513 */
2514 int sqlite3OpenTableAndIndices(
2515   Parse *pParse,   /* Parsing context */
2516   Table *pTab,     /* Table to be opened */
2517   int op,          /* OP_OpenRead or OP_OpenWrite */
2518   u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2519   int iBase,       /* Use this for the table cursor, if there is one */
2520   u8 *aToOpen,     /* If not NULL: boolean for each table and index */
2521   int *piDataCur,  /* Write the database source cursor number here */
2522   int *piIdxCur    /* Write the first index cursor number here */
2523 ){
2524   int i;
2525   int iDb;
2526   int iDataCur;
2527   Index *pIdx;
2528   Vdbe *v;
2529 
2530   assert( op==OP_OpenRead || op==OP_OpenWrite );
2531   assert( op==OP_OpenWrite || p5==0 );
2532   if( IsVirtual(pTab) ){
2533     /* This routine is a no-op for virtual tables. Leave the output
2534     ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
2535     ** can detect if they are used by mistake in the caller. */
2536     return 0;
2537   }
2538   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2539   v = pParse->pVdbe;
2540   assert( v!=0 );
2541   if( iBase<0 ) iBase = pParse->nTab;
2542   iDataCur = iBase++;
2543   if( piDataCur ) *piDataCur = iDataCur;
2544   if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2545     sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2546   }else{
2547     sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2548   }
2549   if( piIdxCur ) *piIdxCur = iBase;
2550   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2551     int iIdxCur = iBase++;
2552     assert( pIdx->pSchema==pTab->pSchema );
2553     if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2554       if( piDataCur ) *piDataCur = iIdxCur;
2555       p5 = 0;
2556     }
2557     if( aToOpen==0 || aToOpen[i+1] ){
2558       sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2559       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2560       sqlite3VdbeChangeP5(v, p5);
2561       VdbeComment((v, "%s", pIdx->zName));
2562     }
2563   }
2564   if( iBase>pParse->nTab ) pParse->nTab = iBase;
2565   return i;
2566 }
2567 
2568 
2569 #ifdef SQLITE_TEST
2570 /*
2571 ** The following global variable is incremented whenever the
2572 ** transfer optimization is used.  This is used for testing
2573 ** purposes only - to make sure the transfer optimization really
2574 ** is happening when it is supposed to.
2575 */
2576 int sqlite3_xferopt_count;
2577 #endif /* SQLITE_TEST */
2578 
2579 
2580 #ifndef SQLITE_OMIT_XFER_OPT
2581 /*
2582 ** Check to see if index pSrc is compatible as a source of data
2583 ** for index pDest in an insert transfer optimization.  The rules
2584 ** for a compatible index:
2585 **
2586 **    *   The index is over the same set of columns
2587 **    *   The same DESC and ASC markings occurs on all columns
2588 **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
2589 **    *   The same collating sequence on each column
2590 **    *   The index has the exact same WHERE clause
2591 */
2592 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2593   int i;
2594   assert( pDest && pSrc );
2595   assert( pDest->pTable!=pSrc->pTable );
2596   if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
2597     return 0;   /* Different number of columns */
2598   }
2599   if( pDest->onError!=pSrc->onError ){
2600     return 0;   /* Different conflict resolution strategies */
2601   }
2602   for(i=0; i<pSrc->nKeyCol; i++){
2603     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2604       return 0;   /* Different columns indexed */
2605     }
2606     if( pSrc->aiColumn[i]==XN_EXPR ){
2607       assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2608       if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2609                              pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2610         return 0;   /* Different expressions in the index */
2611       }
2612     }
2613     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2614       return 0;   /* Different sort orders */
2615     }
2616     if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2617       return 0;   /* Different collating sequences */
2618     }
2619   }
2620   if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2621     return 0;     /* Different WHERE clauses */
2622   }
2623 
2624   /* If no test above fails then the indices must be compatible */
2625   return 1;
2626 }
2627 
2628 /*
2629 ** Attempt the transfer optimization on INSERTs of the form
2630 **
2631 **     INSERT INTO tab1 SELECT * FROM tab2;
2632 **
2633 ** The xfer optimization transfers raw records from tab2 over to tab1.
2634 ** Columns are not decoded and reassembled, which greatly improves
2635 ** performance.  Raw index records are transferred in the same way.
2636 **
2637 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2638 ** There are lots of rules for determining compatibility - see comments
2639 ** embedded in the code for details.
2640 **
2641 ** This routine returns TRUE if the optimization is guaranteed to be used.
2642 ** Sometimes the xfer optimization will only work if the destination table
2643 ** is empty - a factor that can only be determined at run-time.  In that
2644 ** case, this routine generates code for the xfer optimization but also
2645 ** does a test to see if the destination table is empty and jumps over the
2646 ** xfer optimization code if the test fails.  In that case, this routine
2647 ** returns FALSE so that the caller will know to go ahead and generate
2648 ** an unoptimized transfer.  This routine also returns FALSE if there
2649 ** is no chance that the xfer optimization can be applied.
2650 **
2651 ** This optimization is particularly useful at making VACUUM run faster.
2652 */
2653 static int xferOptimization(
2654   Parse *pParse,        /* Parser context */
2655   Table *pDest,         /* The table we are inserting into */
2656   Select *pSelect,      /* A SELECT statement to use as the data source */
2657   int onError,          /* How to handle constraint errors */
2658   int iDbDest           /* The database of pDest */
2659 ){
2660   sqlite3 *db = pParse->db;
2661   ExprList *pEList;                /* The result set of the SELECT */
2662   Table *pSrc;                     /* The table in the FROM clause of SELECT */
2663   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
2664   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
2665   int i;                           /* Loop counter */
2666   int iDbSrc;                      /* The database of pSrc */
2667   int iSrc, iDest;                 /* Cursors from source and destination */
2668   int addr1, addr2;                /* Loop addresses */
2669   int emptyDestTest = 0;           /* Address of test for empty pDest */
2670   int emptySrcTest = 0;            /* Address of test for empty pSrc */
2671   Vdbe *v;                         /* The VDBE we are building */
2672   int regAutoinc;                  /* Memory register used by AUTOINC */
2673   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
2674   int regData, regRowid;           /* Registers holding data and rowid */
2675 
2676   if( pSelect==0 ){
2677     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
2678   }
2679   if( pParse->pWith || pSelect->pWith ){
2680     /* Do not attempt to process this query if there are an WITH clauses
2681     ** attached to it. Proceeding may generate a false "no such table: xxx"
2682     ** error if pSelect reads from a CTE named "xxx".  */
2683     return 0;
2684   }
2685   if( sqlite3TriggerList(pParse, pDest) ){
2686     return 0;   /* tab1 must not have triggers */
2687   }
2688 #ifndef SQLITE_OMIT_VIRTUALTABLE
2689   if( IsVirtual(pDest) ){
2690     return 0;   /* tab1 must not be a virtual table */
2691   }
2692 #endif
2693   if( onError==OE_Default ){
2694     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2695     if( onError==OE_Default ) onError = OE_Abort;
2696   }
2697   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
2698   if( pSelect->pSrc->nSrc!=1 ){
2699     return 0;   /* FROM clause must have exactly one term */
2700   }
2701   if( pSelect->pSrc->a[0].pSelect ){
2702     return 0;   /* FROM clause cannot contain a subquery */
2703   }
2704   if( pSelect->pWhere ){
2705     return 0;   /* SELECT may not have a WHERE clause */
2706   }
2707   if( pSelect->pOrderBy ){
2708     return 0;   /* SELECT may not have an ORDER BY clause */
2709   }
2710   /* Do not need to test for a HAVING clause.  If HAVING is present but
2711   ** there is no ORDER BY, we will get an error. */
2712   if( pSelect->pGroupBy ){
2713     return 0;   /* SELECT may not have a GROUP BY clause */
2714   }
2715   if( pSelect->pLimit ){
2716     return 0;   /* SELECT may not have a LIMIT clause */
2717   }
2718   if( pSelect->pPrior ){
2719     return 0;   /* SELECT may not be a compound query */
2720   }
2721   if( pSelect->selFlags & SF_Distinct ){
2722     return 0;   /* SELECT may not be DISTINCT */
2723   }
2724   pEList = pSelect->pEList;
2725   assert( pEList!=0 );
2726   if( pEList->nExpr!=1 ){
2727     return 0;   /* The result set must have exactly one column */
2728   }
2729   assert( pEList->a[0].pExpr );
2730   if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2731     return 0;   /* The result set must be the special operator "*" */
2732   }
2733 
2734   /* At this point we have established that the statement is of the
2735   ** correct syntactic form to participate in this optimization.  Now
2736   ** we have to check the semantics.
2737   */
2738   pItem = pSelect->pSrc->a;
2739   pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2740   if( pSrc==0 ){
2741     return 0;   /* FROM clause does not contain a real table */
2742   }
2743   if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2744     testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */
2745     return 0;   /* tab1 and tab2 may not be the same table */
2746   }
2747   if( HasRowid(pDest)!=HasRowid(pSrc) ){
2748     return 0;   /* source and destination must both be WITHOUT ROWID or not */
2749   }
2750 #ifndef SQLITE_OMIT_VIRTUALTABLE
2751   if( IsVirtual(pSrc) ){
2752     return 0;   /* tab2 must not be a virtual table */
2753   }
2754 #endif
2755   if( pSrc->pSelect ){
2756     return 0;   /* tab2 may not be a view */
2757   }
2758   if( pDest->nCol!=pSrc->nCol ){
2759     return 0;   /* Number of columns must be the same in tab1 and tab2 */
2760   }
2761   if( pDest->iPKey!=pSrc->iPKey ){
2762     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
2763   }
2764   for(i=0; i<pDest->nCol; i++){
2765     Column *pDestCol = &pDest->aCol[i];
2766     Column *pSrcCol = &pSrc->aCol[i];
2767 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2768     if( (db->mDbFlags & DBFLAG_Vacuum)==0
2769      && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2770     ){
2771       return 0;    /* Neither table may have __hidden__ columns */
2772     }
2773 #endif
2774 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2775     /* Even if tables t1 and t2 have identical schemas, if they contain
2776     ** generated columns, then this statement is semantically incorrect:
2777     **
2778     **     INSERT INTO t2 SELECT * FROM t1;
2779     **
2780     ** The reason is that generated column values are returned by the
2781     ** the SELECT statement on the right but the INSERT statement on the
2782     ** left wants them to be omitted.
2783     **
2784     ** Nevertheless, this is a useful notational shorthand to tell SQLite
2785     ** to do a bulk transfer all of the content from t1 over to t2.
2786     **
2787     ** We could, in theory, disable this (except for internal use by the
2788     ** VACUUM command where it is actually needed).  But why do that?  It
2789     ** seems harmless enough, and provides a useful service.
2790     */
2791     if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
2792         (pSrcCol->colFlags & COLFLAG_GENERATED) ){
2793       return 0;    /* Both columns have the same generated-column type */
2794     }
2795     /* But the transfer is only allowed if both the source and destination
2796     ** tables have the exact same expressions for generated columns.
2797     ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2798     */
2799     if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
2800       if( sqlite3ExprCompare(0, pSrcCol->pDflt, pDestCol->pDflt, -1)!=0 ){
2801         testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
2802         testcase( pDestCol->colFlags & COLFLAG_STORED );
2803         return 0;  /* Different generator expressions */
2804       }
2805     }
2806 #endif
2807     if( pDestCol->affinity!=pSrcCol->affinity ){
2808       return 0;    /* Affinity must be the same on all columns */
2809     }
2810     if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
2811       return 0;    /* Collating sequence must be the same on all columns */
2812     }
2813     if( pDestCol->notNull && !pSrcCol->notNull ){
2814       return 0;    /* tab2 must be NOT NULL if tab1 is */
2815     }
2816     /* Default values for second and subsequent columns need to match. */
2817     if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
2818       assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN );
2819       assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN );
2820       if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0)
2821        || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken,
2822                                        pSrcCol->pDflt->u.zToken)!=0)
2823       ){
2824         return 0;    /* Default values must be the same for all columns */
2825       }
2826     }
2827   }
2828   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2829     if( IsUniqueIndex(pDestIdx) ){
2830       destHasUniqueIdx = 1;
2831     }
2832     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2833       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2834     }
2835     if( pSrcIdx==0 ){
2836       return 0;    /* pDestIdx has no corresponding index in pSrc */
2837     }
2838     if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2839          && sqlite3FaultSim(411)==SQLITE_OK ){
2840       /* The sqlite3FaultSim() call allows this corruption test to be
2841       ** bypassed during testing, in order to exercise other corruption tests
2842       ** further downstream. */
2843       return 0;   /* Corrupt schema - two indexes on the same btree */
2844     }
2845   }
2846 #ifndef SQLITE_OMIT_CHECK
2847   if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2848     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
2849   }
2850 #endif
2851 #ifndef SQLITE_OMIT_FOREIGN_KEY
2852   /* Disallow the transfer optimization if the destination table constains
2853   ** any foreign key constraints.  This is more restrictive than necessary.
2854   ** But the main beneficiary of the transfer optimization is the VACUUM
2855   ** command, and the VACUUM command disables foreign key constraints.  So
2856   ** the extra complication to make this rule less restrictive is probably
2857   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2858   */
2859   if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
2860     return 0;
2861   }
2862 #endif
2863   if( (db->flags & SQLITE_CountRows)!=0 ){
2864     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
2865   }
2866 
2867   /* If we get this far, it means that the xfer optimization is at
2868   ** least a possibility, though it might only work if the destination
2869   ** table (tab1) is initially empty.
2870   */
2871 #ifdef SQLITE_TEST
2872   sqlite3_xferopt_count++;
2873 #endif
2874   iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2875   v = sqlite3GetVdbe(pParse);
2876   sqlite3CodeVerifySchema(pParse, iDbSrc);
2877   iSrc = pParse->nTab++;
2878   iDest = pParse->nTab++;
2879   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2880   regData = sqlite3GetTempReg(pParse);
2881   sqlite3VdbeAddOp2(v, OP_Null, 0, regData);
2882   regRowid = sqlite3GetTempReg(pParse);
2883   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2884   assert( HasRowid(pDest) || destHasUniqueIdx );
2885   if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2886       (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
2887    || destHasUniqueIdx                              /* (2) */
2888    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
2889   )){
2890     /* In some circumstances, we are able to run the xfer optimization
2891     ** only if the destination table is initially empty. Unless the
2892     ** DBFLAG_Vacuum flag is set, this block generates code to make
2893     ** that determination. If DBFLAG_Vacuum is set, then the destination
2894     ** table is always empty.
2895     **
2896     ** Conditions under which the destination must be empty:
2897     **
2898     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2899     **     (If the destination is not initially empty, the rowid fields
2900     **     of index entries might need to change.)
2901     **
2902     ** (2) The destination has a unique index.  (The xfer optimization
2903     **     is unable to test uniqueness.)
2904     **
2905     ** (3) onError is something other than OE_Abort and OE_Rollback.
2906     */
2907     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
2908     emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
2909     sqlite3VdbeJumpHere(v, addr1);
2910   }
2911   if( HasRowid(pSrc) ){
2912     u8 insFlags;
2913     sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2914     emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2915     if( pDest->iPKey>=0 ){
2916       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2917       if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
2918         sqlite3VdbeVerifyAbortable(v, onError);
2919         addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2920         VdbeCoverage(v);
2921         sqlite3RowidConstraint(pParse, onError, pDest);
2922         sqlite3VdbeJumpHere(v, addr2);
2923       }
2924       autoIncStep(pParse, regAutoinc, regRowid);
2925     }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
2926       addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2927     }else{
2928       addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2929       assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2930     }
2931 
2932     if( db->mDbFlags & DBFLAG_Vacuum ){
2933       sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2934       insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
2935     }else{
2936       insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT;
2937     }
2938 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2939     if( db->xPreUpdateCallback ){
2940       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2941       insFlags &= ~OPFLAG_PREFORMAT;
2942     }else
2943 #endif
2944     {
2945       sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid);
2946     }
2947     sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
2948         (char*)pDest, P4_TABLE);
2949     sqlite3VdbeChangeP5(v, insFlags);
2950 
2951     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
2952     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2953     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2954   }else{
2955     sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2956     sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2957   }
2958   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2959     u8 idxInsFlags = 0;
2960     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2961       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2962     }
2963     assert( pSrcIdx );
2964     sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2965     sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2966     VdbeComment((v, "%s", pSrcIdx->zName));
2967     sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2968     sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2969     sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2970     VdbeComment((v, "%s", pDestIdx->zName));
2971     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2972     if( db->mDbFlags & DBFLAG_Vacuum ){
2973       /* This INSERT command is part of a VACUUM operation, which guarantees
2974       ** that the destination table is empty. If all indexed columns use
2975       ** collation sequence BINARY, then it can also be assumed that the
2976       ** index will be populated by inserting keys in strictly sorted
2977       ** order. In this case, instead of seeking within the b-tree as part
2978       ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
2979       ** OP_IdxInsert to seek to the point within the b-tree where each key
2980       ** should be inserted. This is faster.
2981       **
2982       ** If any of the indexed columns use a collation sequence other than
2983       ** BINARY, this optimization is disabled. This is because the user
2984       ** might change the definition of a collation sequence and then run
2985       ** a VACUUM command. In that case keys may not be written in strictly
2986       ** sorted order.  */
2987       for(i=0; i<pSrcIdx->nColumn; i++){
2988         const char *zColl = pSrcIdx->azColl[i];
2989         if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
2990       }
2991       if( i==pSrcIdx->nColumn ){
2992         idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
2993         sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2994         sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regData);
2995       }
2996     }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2997       idxInsFlags |= OPFLAG_NCHANGE;
2998     }
2999     if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){
3000       sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3001     }
3002     sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
3003     sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
3004     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
3005     sqlite3VdbeJumpHere(v, addr1);
3006     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3007     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3008   }
3009   if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
3010   sqlite3ReleaseTempReg(pParse, regRowid);
3011   sqlite3ReleaseTempReg(pParse, regData);
3012   if( emptyDestTest ){
3013     sqlite3AutoincrementEnd(pParse);
3014     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
3015     sqlite3VdbeJumpHere(v, emptyDestTest);
3016     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3017     return 0;
3018   }else{
3019     return 1;
3020   }
3021 }
3022 #endif /* SQLITE_OMIT_XFER_OPT */
3023