xref: /sqlite-3.40.0/src/hash.c (revision 8a29dfde)
1 /*
2 ** 2001 September 22
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This is the implementation of generic hash-tables
13 ** used in SQLite.
14 **
15 ** $Id: hash.c,v 1.27 2008/04/02 18:33:08 drh Exp $
16 */
17 #include "sqliteInt.h"
18 #include <assert.h>
19 
20 /* Turn bulk memory into a hash table object by initializing the
21 ** fields of the Hash structure.
22 **
23 ** "pNew" is a pointer to the hash table that is to be initialized.
24 ** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
25 ** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING.  The value of keyClass
26 ** determines what kind of key the hash table will use.  "copyKey" is
27 ** true if the hash table should make its own private copy of keys and
28 ** false if it should just use the supplied pointer.  CopyKey only makes
29 ** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
30 ** for other key classes.
31 */
32 void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){
33   assert( pNew!=0 );
34   assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY );
35   pNew->keyClass = keyClass;
36 #if 0
37   if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0;
38 #endif
39   pNew->copyKey = copyKey;
40   pNew->first = 0;
41   pNew->count = 0;
42   pNew->htsize = 0;
43   pNew->ht = 0;
44 }
45 
46 /* Remove all entries from a hash table.  Reclaim all memory.
47 ** Call this routine to delete a hash table or to reset a hash table
48 ** to the empty state.
49 */
50 void sqlite3HashClear(Hash *pH){
51   HashElem *elem;         /* For looping over all elements of the table */
52 
53   assert( pH!=0 );
54   elem = pH->first;
55   pH->first = 0;
56   sqlite3_free(pH->ht);
57   pH->ht = 0;
58   pH->htsize = 0;
59   while( elem ){
60     HashElem *next_elem = elem->next;
61     if( pH->copyKey && elem->pKey ){
62       sqlite3_free(elem->pKey);
63     }
64     sqlite3_free(elem);
65     elem = next_elem;
66   }
67   pH->count = 0;
68 }
69 
70 #if 0 /* NOT USED */
71 /*
72 ** Hash and comparison functions when the mode is SQLITE_HASH_INT
73 */
74 static int intHash(const void *pKey, int nKey){
75   return nKey ^ (nKey<<8) ^ (nKey>>8);
76 }
77 static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
78   return n2 - n1;
79 }
80 #endif
81 
82 #if 0 /* NOT USED */
83 /*
84 ** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
85 */
86 static int ptrHash(const void *pKey, int nKey){
87   uptr x = Addr(pKey);
88   return x ^ (x<<8) ^ (x>>8);
89 }
90 static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
91   if( pKey1==pKey2 ) return 0;
92   if( pKey1<pKey2 ) return -1;
93   return 1;
94 }
95 #endif
96 
97 /*
98 ** Hash and comparison functions when the mode is SQLITE_HASH_STRING
99 */
100 static int strHash(const void *pKey, int nKey){
101   const char *z = (const char *)pKey;
102   int h = 0;
103   if( nKey<=0 ) nKey = strlen(z);
104   while( nKey > 0  ){
105     h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
106     nKey--;
107   }
108   return h & 0x7fffffff;
109 }
110 static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
111   if( n1!=n2 ) return 1;
112   return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1);
113 }
114 
115 /*
116 ** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
117 */
118 static int binHash(const void *pKey, int nKey){
119   int h = 0;
120   const char *z = (const char *)pKey;
121   while( nKey-- > 0 ){
122     h = (h<<3) ^ h ^ *(z++);
123   }
124   return h & 0x7fffffff;
125 }
126 static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
127   if( n1!=n2 ) return 1;
128   return memcmp(pKey1,pKey2,n1);
129 }
130 
131 /*
132 ** Return a pointer to the appropriate hash function given the key class.
133 **
134 ** The C syntax in this function definition may be unfamilar to some
135 ** programmers, so we provide the following additional explanation:
136 **
137 ** The name of the function is "hashFunction".  The function takes a
138 ** single parameter "keyClass".  The return value of hashFunction()
139 ** is a pointer to another function.  Specifically, the return value
140 ** of hashFunction() is a pointer to a function that takes two parameters
141 ** with types "const void*" and "int" and returns an "int".
142 */
143 static int (*hashFunction(int keyClass))(const void*,int){
144 #if 0  /* HASH_INT and HASH_POINTER are never used */
145   switch( keyClass ){
146     case SQLITE_HASH_INT:     return &intHash;
147     case SQLITE_HASH_POINTER: return &ptrHash;
148     case SQLITE_HASH_STRING:  return &strHash;
149     case SQLITE_HASH_BINARY:  return &binHash;;
150     default: break;
151   }
152   return 0;
153 #else
154   if( keyClass==SQLITE_HASH_STRING ){
155     return &strHash;
156   }else{
157     assert( keyClass==SQLITE_HASH_BINARY );
158     return &binHash;
159   }
160 #endif
161 }
162 
163 /*
164 ** Return a pointer to the appropriate hash function given the key class.
165 **
166 ** For help in interpreted the obscure C code in the function definition,
167 ** see the header comment on the previous function.
168 */
169 static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
170 #if 0 /* HASH_INT and HASH_POINTER are never used */
171   switch( keyClass ){
172     case SQLITE_HASH_INT:     return &intCompare;
173     case SQLITE_HASH_POINTER: return &ptrCompare;
174     case SQLITE_HASH_STRING:  return &strCompare;
175     case SQLITE_HASH_BINARY:  return &binCompare;
176     default: break;
177   }
178   return 0;
179 #else
180   if( keyClass==SQLITE_HASH_STRING ){
181     return &strCompare;
182   }else{
183     assert( keyClass==SQLITE_HASH_BINARY );
184     return &binCompare;
185   }
186 #endif
187 }
188 
189 /* Link an element into the hash table
190 */
191 static void insertElement(
192   Hash *pH,              /* The complete hash table */
193   struct _ht *pEntry,    /* The entry into which pNew is inserted */
194   HashElem *pNew         /* The element to be inserted */
195 ){
196   HashElem *pHead;       /* First element already in pEntry */
197   pHead = pEntry->chain;
198   if( pHead ){
199     pNew->next = pHead;
200     pNew->prev = pHead->prev;
201     if( pHead->prev ){ pHead->prev->next = pNew; }
202     else             { pH->first = pNew; }
203     pHead->prev = pNew;
204   }else{
205     pNew->next = pH->first;
206     if( pH->first ){ pH->first->prev = pNew; }
207     pNew->prev = 0;
208     pH->first = pNew;
209   }
210   pEntry->count++;
211   pEntry->chain = pNew;
212 }
213 
214 
215 /* Resize the hash table so that it cantains "new_size" buckets.
216 ** "new_size" must be a power of 2.  The hash table might fail
217 ** to resize if sqlite3_malloc() fails.
218 */
219 static void rehash(Hash *pH, int new_size){
220   struct _ht *new_ht;            /* The new hash table */
221   HashElem *elem, *next_elem;    /* For looping over existing elements */
222   int (*xHash)(const void*,int); /* The hash function */
223 
224 #ifdef SQLITE_MALLOC_SOFT_LIMIT
225   if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
226     new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
227   }
228   if( new_size==pH->htsize ) return;
229 #endif
230 
231   /* There is a call to sqlite3_malloc() inside rehash(). If there is
232   ** already an allocation at pH->ht, then if this malloc() fails it
233   ** is benign (since failing to resize a hash table is a performance
234   ** hit only, not a fatal error).
235   */
236   sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, pH->htsize>0);
237   new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) );
238   sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0);
239 
240   if( new_ht==0 ) return;
241   sqlite3_free(pH->ht);
242   pH->ht = new_ht;
243   pH->htsize = new_size;
244   xHash = hashFunction(pH->keyClass);
245   for(elem=pH->first, pH->first=0; elem; elem = next_elem){
246     int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
247     next_elem = elem->next;
248     insertElement(pH, &new_ht[h], elem);
249   }
250 }
251 
252 /* This function (for internal use only) locates an element in an
253 ** hash table that matches the given key.  The hash for this key has
254 ** already been computed and is passed as the 4th parameter.
255 */
256 static HashElem *findElementGivenHash(
257   const Hash *pH,     /* The pH to be searched */
258   const void *pKey,   /* The key we are searching for */
259   int nKey,
260   int h               /* The hash for this key. */
261 ){
262   HashElem *elem;                /* Used to loop thru the element list */
263   int count;                     /* Number of elements left to test */
264   int (*xCompare)(const void*,int,const void*,int);  /* comparison function */
265 
266   if( pH->ht ){
267     struct _ht *pEntry = &pH->ht[h];
268     elem = pEntry->chain;
269     count = pEntry->count;
270     xCompare = compareFunction(pH->keyClass);
271     while( count-- && elem ){
272       if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
273         return elem;
274       }
275       elem = elem->next;
276     }
277   }
278   return 0;
279 }
280 
281 /* Remove a single entry from the hash table given a pointer to that
282 ** element and a hash on the element's key.
283 */
284 static void removeElementGivenHash(
285   Hash *pH,         /* The pH containing "elem" */
286   HashElem* elem,   /* The element to be removed from the pH */
287   int h             /* Hash value for the element */
288 ){
289   struct _ht *pEntry;
290   if( elem->prev ){
291     elem->prev->next = elem->next;
292   }else{
293     pH->first = elem->next;
294   }
295   if( elem->next ){
296     elem->next->prev = elem->prev;
297   }
298   pEntry = &pH->ht[h];
299   if( pEntry->chain==elem ){
300     pEntry->chain = elem->next;
301   }
302   pEntry->count--;
303   if( pEntry->count<=0 ){
304     pEntry->chain = 0;
305   }
306   if( pH->copyKey ){
307     sqlite3_free(elem->pKey);
308   }
309   sqlite3_free( elem );
310   pH->count--;
311   if( pH->count<=0 ){
312     assert( pH->first==0 );
313     assert( pH->count==0 );
314     sqlite3HashClear(pH);
315   }
316 }
317 
318 /* Attempt to locate an element of the hash table pH with a key
319 ** that matches pKey,nKey.  Return a pointer to the corresponding
320 ** HashElem structure for this element if it is found, or NULL
321 ** otherwise.
322 */
323 HashElem *sqlite3HashFindElem(const Hash *pH, const void *pKey, int nKey){
324   int h;             /* A hash on key */
325   HashElem *elem;    /* The element that matches key */
326   int (*xHash)(const void*,int);  /* The hash function */
327 
328   if( pH==0 || pH->ht==0 ) return 0;
329   xHash = hashFunction(pH->keyClass);
330   assert( xHash!=0 );
331   h = (*xHash)(pKey,nKey);
332   elem = findElementGivenHash(pH,pKey,nKey, h % pH->htsize);
333   return elem;
334 }
335 
336 /* Attempt to locate an element of the hash table pH with a key
337 ** that matches pKey,nKey.  Return the data for this element if it is
338 ** found, or NULL if there is no match.
339 */
340 void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
341   HashElem *elem;    /* The element that matches key */
342   elem = sqlite3HashFindElem(pH, pKey, nKey);
343   return elem ? elem->data : 0;
344 }
345 
346 /* Insert an element into the hash table pH.  The key is pKey,nKey
347 ** and the data is "data".
348 **
349 ** If no element exists with a matching key, then a new
350 ** element is created.  A copy of the key is made if the copyKey
351 ** flag is set.  NULL is returned.
352 **
353 ** If another element already exists with the same key, then the
354 ** new data replaces the old data and the old data is returned.
355 ** The key is not copied in this instance.  If a malloc fails, then
356 ** the new data is returned and the hash table is unchanged.
357 **
358 ** If the "data" parameter to this function is NULL, then the
359 ** element corresponding to "key" is removed from the hash table.
360 */
361 void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
362   int hraw;             /* Raw hash value of the key */
363   int h;                /* the hash of the key modulo hash table size */
364   HashElem *elem;       /* Used to loop thru the element list */
365   HashElem *new_elem;   /* New element added to the pH */
366   int (*xHash)(const void*,int);  /* The hash function */
367 
368   assert( pH!=0 );
369   xHash = hashFunction(pH->keyClass);
370   assert( xHash!=0 );
371   hraw = (*xHash)(pKey, nKey);
372   if( pH->htsize ){
373     h = hraw % pH->htsize;
374     elem = findElementGivenHash(pH,pKey,nKey,h);
375     if( elem ){
376       void *old_data = elem->data;
377       if( data==0 ){
378         removeElementGivenHash(pH,elem,h);
379       }else{
380         elem->data = data;
381         if( !pH->copyKey ){
382           elem->pKey = (void *)pKey;
383         }
384         assert(nKey==elem->nKey);
385       }
386       return old_data;
387     }
388   }
389   if( data==0 ) return 0;
390   new_elem = (HashElem*)sqlite3_malloc( sizeof(HashElem) );
391   if( new_elem==0 ) return data;
392   if( pH->copyKey && pKey!=0 ){
393     new_elem->pKey = sqlite3_malloc( nKey );
394     if( new_elem->pKey==0 ){
395       sqlite3_free(new_elem);
396       return data;
397     }
398     memcpy((void*)new_elem->pKey, pKey, nKey);
399   }else{
400     new_elem->pKey = (void*)pKey;
401   }
402   new_elem->nKey = nKey;
403   pH->count++;
404   if( pH->htsize==0 ){
405     rehash(pH, 128/sizeof(pH->ht[0]));
406     if( pH->htsize==0 ){
407       pH->count = 0;
408       if( pH->copyKey ){
409         sqlite3_free(new_elem->pKey);
410       }
411       sqlite3_free(new_elem);
412       return data;
413     }
414   }
415   if( pH->count > pH->htsize ){
416     rehash(pH,pH->htsize*2);
417   }
418   assert( pH->htsize>0 );
419   h = hraw % pH->htsize;
420   insertElement(pH, &pH->ht[h], new_elem);
421   new_elem->data = data;
422   return 0;
423 }
424