1 /* 2 ** 2001 September 22 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This is the implementation of generic hash-tables 13 ** used in SQLite. 14 ** 15 ** $Id: hash.c,v 1.27 2008/04/02 18:33:08 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <assert.h> 19 20 /* Turn bulk memory into a hash table object by initializing the 21 ** fields of the Hash structure. 22 ** 23 ** "pNew" is a pointer to the hash table that is to be initialized. 24 ** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER, 25 ** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass 26 ** determines what kind of key the hash table will use. "copyKey" is 27 ** true if the hash table should make its own private copy of keys and 28 ** false if it should just use the supplied pointer. CopyKey only makes 29 ** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored 30 ** for other key classes. 31 */ 32 void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){ 33 assert( pNew!=0 ); 34 assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY ); 35 pNew->keyClass = keyClass; 36 #if 0 37 if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0; 38 #endif 39 pNew->copyKey = copyKey; 40 pNew->first = 0; 41 pNew->count = 0; 42 pNew->htsize = 0; 43 pNew->ht = 0; 44 } 45 46 /* Remove all entries from a hash table. Reclaim all memory. 47 ** Call this routine to delete a hash table or to reset a hash table 48 ** to the empty state. 49 */ 50 void sqlite3HashClear(Hash *pH){ 51 HashElem *elem; /* For looping over all elements of the table */ 52 53 assert( pH!=0 ); 54 elem = pH->first; 55 pH->first = 0; 56 sqlite3_free(pH->ht); 57 pH->ht = 0; 58 pH->htsize = 0; 59 while( elem ){ 60 HashElem *next_elem = elem->next; 61 if( pH->copyKey && elem->pKey ){ 62 sqlite3_free(elem->pKey); 63 } 64 sqlite3_free(elem); 65 elem = next_elem; 66 } 67 pH->count = 0; 68 } 69 70 #if 0 /* NOT USED */ 71 /* 72 ** Hash and comparison functions when the mode is SQLITE_HASH_INT 73 */ 74 static int intHash(const void *pKey, int nKey){ 75 return nKey ^ (nKey<<8) ^ (nKey>>8); 76 } 77 static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){ 78 return n2 - n1; 79 } 80 #endif 81 82 #if 0 /* NOT USED */ 83 /* 84 ** Hash and comparison functions when the mode is SQLITE_HASH_POINTER 85 */ 86 static int ptrHash(const void *pKey, int nKey){ 87 uptr x = Addr(pKey); 88 return x ^ (x<<8) ^ (x>>8); 89 } 90 static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){ 91 if( pKey1==pKey2 ) return 0; 92 if( pKey1<pKey2 ) return -1; 93 return 1; 94 } 95 #endif 96 97 /* 98 ** Hash and comparison functions when the mode is SQLITE_HASH_STRING 99 */ 100 static int strHash(const void *pKey, int nKey){ 101 const char *z = (const char *)pKey; 102 int h = 0; 103 if( nKey<=0 ) nKey = strlen(z); 104 while( nKey > 0 ){ 105 h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++]; 106 nKey--; 107 } 108 return h & 0x7fffffff; 109 } 110 static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){ 111 if( n1!=n2 ) return 1; 112 return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1); 113 } 114 115 /* 116 ** Hash and comparison functions when the mode is SQLITE_HASH_BINARY 117 */ 118 static int binHash(const void *pKey, int nKey){ 119 int h = 0; 120 const char *z = (const char *)pKey; 121 while( nKey-- > 0 ){ 122 h = (h<<3) ^ h ^ *(z++); 123 } 124 return h & 0x7fffffff; 125 } 126 static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){ 127 if( n1!=n2 ) return 1; 128 return memcmp(pKey1,pKey2,n1); 129 } 130 131 /* 132 ** Return a pointer to the appropriate hash function given the key class. 133 ** 134 ** The C syntax in this function definition may be unfamilar to some 135 ** programmers, so we provide the following additional explanation: 136 ** 137 ** The name of the function is "hashFunction". The function takes a 138 ** single parameter "keyClass". The return value of hashFunction() 139 ** is a pointer to another function. Specifically, the return value 140 ** of hashFunction() is a pointer to a function that takes two parameters 141 ** with types "const void*" and "int" and returns an "int". 142 */ 143 static int (*hashFunction(int keyClass))(const void*,int){ 144 #if 0 /* HASH_INT and HASH_POINTER are never used */ 145 switch( keyClass ){ 146 case SQLITE_HASH_INT: return &intHash; 147 case SQLITE_HASH_POINTER: return &ptrHash; 148 case SQLITE_HASH_STRING: return &strHash; 149 case SQLITE_HASH_BINARY: return &binHash;; 150 default: break; 151 } 152 return 0; 153 #else 154 if( keyClass==SQLITE_HASH_STRING ){ 155 return &strHash; 156 }else{ 157 assert( keyClass==SQLITE_HASH_BINARY ); 158 return &binHash; 159 } 160 #endif 161 } 162 163 /* 164 ** Return a pointer to the appropriate hash function given the key class. 165 ** 166 ** For help in interpreted the obscure C code in the function definition, 167 ** see the header comment on the previous function. 168 */ 169 static int (*compareFunction(int keyClass))(const void*,int,const void*,int){ 170 #if 0 /* HASH_INT and HASH_POINTER are never used */ 171 switch( keyClass ){ 172 case SQLITE_HASH_INT: return &intCompare; 173 case SQLITE_HASH_POINTER: return &ptrCompare; 174 case SQLITE_HASH_STRING: return &strCompare; 175 case SQLITE_HASH_BINARY: return &binCompare; 176 default: break; 177 } 178 return 0; 179 #else 180 if( keyClass==SQLITE_HASH_STRING ){ 181 return &strCompare; 182 }else{ 183 assert( keyClass==SQLITE_HASH_BINARY ); 184 return &binCompare; 185 } 186 #endif 187 } 188 189 /* Link an element into the hash table 190 */ 191 static void insertElement( 192 Hash *pH, /* The complete hash table */ 193 struct _ht *pEntry, /* The entry into which pNew is inserted */ 194 HashElem *pNew /* The element to be inserted */ 195 ){ 196 HashElem *pHead; /* First element already in pEntry */ 197 pHead = pEntry->chain; 198 if( pHead ){ 199 pNew->next = pHead; 200 pNew->prev = pHead->prev; 201 if( pHead->prev ){ pHead->prev->next = pNew; } 202 else { pH->first = pNew; } 203 pHead->prev = pNew; 204 }else{ 205 pNew->next = pH->first; 206 if( pH->first ){ pH->first->prev = pNew; } 207 pNew->prev = 0; 208 pH->first = pNew; 209 } 210 pEntry->count++; 211 pEntry->chain = pNew; 212 } 213 214 215 /* Resize the hash table so that it cantains "new_size" buckets. 216 ** "new_size" must be a power of 2. The hash table might fail 217 ** to resize if sqlite3_malloc() fails. 218 */ 219 static void rehash(Hash *pH, int new_size){ 220 struct _ht *new_ht; /* The new hash table */ 221 HashElem *elem, *next_elem; /* For looping over existing elements */ 222 int (*xHash)(const void*,int); /* The hash function */ 223 224 #ifdef SQLITE_MALLOC_SOFT_LIMIT 225 if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){ 226 new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht); 227 } 228 if( new_size==pH->htsize ) return; 229 #endif 230 231 /* There is a call to sqlite3_malloc() inside rehash(). If there is 232 ** already an allocation at pH->ht, then if this malloc() fails it 233 ** is benign (since failing to resize a hash table is a performance 234 ** hit only, not a fatal error). 235 */ 236 sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, pH->htsize>0); 237 new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) ); 238 sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0); 239 240 if( new_ht==0 ) return; 241 sqlite3_free(pH->ht); 242 pH->ht = new_ht; 243 pH->htsize = new_size; 244 xHash = hashFunction(pH->keyClass); 245 for(elem=pH->first, pH->first=0; elem; elem = next_elem){ 246 int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1); 247 next_elem = elem->next; 248 insertElement(pH, &new_ht[h], elem); 249 } 250 } 251 252 /* This function (for internal use only) locates an element in an 253 ** hash table that matches the given key. The hash for this key has 254 ** already been computed and is passed as the 4th parameter. 255 */ 256 static HashElem *findElementGivenHash( 257 const Hash *pH, /* The pH to be searched */ 258 const void *pKey, /* The key we are searching for */ 259 int nKey, 260 int h /* The hash for this key. */ 261 ){ 262 HashElem *elem; /* Used to loop thru the element list */ 263 int count; /* Number of elements left to test */ 264 int (*xCompare)(const void*,int,const void*,int); /* comparison function */ 265 266 if( pH->ht ){ 267 struct _ht *pEntry = &pH->ht[h]; 268 elem = pEntry->chain; 269 count = pEntry->count; 270 xCompare = compareFunction(pH->keyClass); 271 while( count-- && elem ){ 272 if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ 273 return elem; 274 } 275 elem = elem->next; 276 } 277 } 278 return 0; 279 } 280 281 /* Remove a single entry from the hash table given a pointer to that 282 ** element and a hash on the element's key. 283 */ 284 static void removeElementGivenHash( 285 Hash *pH, /* The pH containing "elem" */ 286 HashElem* elem, /* The element to be removed from the pH */ 287 int h /* Hash value for the element */ 288 ){ 289 struct _ht *pEntry; 290 if( elem->prev ){ 291 elem->prev->next = elem->next; 292 }else{ 293 pH->first = elem->next; 294 } 295 if( elem->next ){ 296 elem->next->prev = elem->prev; 297 } 298 pEntry = &pH->ht[h]; 299 if( pEntry->chain==elem ){ 300 pEntry->chain = elem->next; 301 } 302 pEntry->count--; 303 if( pEntry->count<=0 ){ 304 pEntry->chain = 0; 305 } 306 if( pH->copyKey ){ 307 sqlite3_free(elem->pKey); 308 } 309 sqlite3_free( elem ); 310 pH->count--; 311 if( pH->count<=0 ){ 312 assert( pH->first==0 ); 313 assert( pH->count==0 ); 314 sqlite3HashClear(pH); 315 } 316 } 317 318 /* Attempt to locate an element of the hash table pH with a key 319 ** that matches pKey,nKey. Return a pointer to the corresponding 320 ** HashElem structure for this element if it is found, or NULL 321 ** otherwise. 322 */ 323 HashElem *sqlite3HashFindElem(const Hash *pH, const void *pKey, int nKey){ 324 int h; /* A hash on key */ 325 HashElem *elem; /* The element that matches key */ 326 int (*xHash)(const void*,int); /* The hash function */ 327 328 if( pH==0 || pH->ht==0 ) return 0; 329 xHash = hashFunction(pH->keyClass); 330 assert( xHash!=0 ); 331 h = (*xHash)(pKey,nKey); 332 elem = findElementGivenHash(pH,pKey,nKey, h % pH->htsize); 333 return elem; 334 } 335 336 /* Attempt to locate an element of the hash table pH with a key 337 ** that matches pKey,nKey. Return the data for this element if it is 338 ** found, or NULL if there is no match. 339 */ 340 void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){ 341 HashElem *elem; /* The element that matches key */ 342 elem = sqlite3HashFindElem(pH, pKey, nKey); 343 return elem ? elem->data : 0; 344 } 345 346 /* Insert an element into the hash table pH. The key is pKey,nKey 347 ** and the data is "data". 348 ** 349 ** If no element exists with a matching key, then a new 350 ** element is created. A copy of the key is made if the copyKey 351 ** flag is set. NULL is returned. 352 ** 353 ** If another element already exists with the same key, then the 354 ** new data replaces the old data and the old data is returned. 355 ** The key is not copied in this instance. If a malloc fails, then 356 ** the new data is returned and the hash table is unchanged. 357 ** 358 ** If the "data" parameter to this function is NULL, then the 359 ** element corresponding to "key" is removed from the hash table. 360 */ 361 void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){ 362 int hraw; /* Raw hash value of the key */ 363 int h; /* the hash of the key modulo hash table size */ 364 HashElem *elem; /* Used to loop thru the element list */ 365 HashElem *new_elem; /* New element added to the pH */ 366 int (*xHash)(const void*,int); /* The hash function */ 367 368 assert( pH!=0 ); 369 xHash = hashFunction(pH->keyClass); 370 assert( xHash!=0 ); 371 hraw = (*xHash)(pKey, nKey); 372 if( pH->htsize ){ 373 h = hraw % pH->htsize; 374 elem = findElementGivenHash(pH,pKey,nKey,h); 375 if( elem ){ 376 void *old_data = elem->data; 377 if( data==0 ){ 378 removeElementGivenHash(pH,elem,h); 379 }else{ 380 elem->data = data; 381 if( !pH->copyKey ){ 382 elem->pKey = (void *)pKey; 383 } 384 assert(nKey==elem->nKey); 385 } 386 return old_data; 387 } 388 } 389 if( data==0 ) return 0; 390 new_elem = (HashElem*)sqlite3_malloc( sizeof(HashElem) ); 391 if( new_elem==0 ) return data; 392 if( pH->copyKey && pKey!=0 ){ 393 new_elem->pKey = sqlite3_malloc( nKey ); 394 if( new_elem->pKey==0 ){ 395 sqlite3_free(new_elem); 396 return data; 397 } 398 memcpy((void*)new_elem->pKey, pKey, nKey); 399 }else{ 400 new_elem->pKey = (void*)pKey; 401 } 402 new_elem->nKey = nKey; 403 pH->count++; 404 if( pH->htsize==0 ){ 405 rehash(pH, 128/sizeof(pH->ht[0])); 406 if( pH->htsize==0 ){ 407 pH->count = 0; 408 if( pH->copyKey ){ 409 sqlite3_free(new_elem->pKey); 410 } 411 sqlite3_free(new_elem); 412 return data; 413 } 414 } 415 if( pH->count > pH->htsize ){ 416 rehash(pH,pH->htsize*2); 417 } 418 assert( pH->htsize>0 ); 419 h = hraw % pH->htsize; 420 insertElement(pH, &pH->ht[h], new_elem); 421 new_elem->data = data; 422 return 0; 423 } 424