1 /* 2 ** 2002 February 23 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement various SQL 13 ** functions of SQLite. 14 ** 15 ** There is only one exported symbol in this file - the function 16 ** sqliteRegisterBuildinFunctions() found at the bottom of the file. 17 ** All other code has file scope. 18 */ 19 #include "sqliteInt.h" 20 #include <stdlib.h> 21 #include <assert.h> 22 #include "vdbeInt.h" 23 24 /* 25 ** Return the collating function associated with a function. 26 */ 27 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ 28 return context->pColl; 29 } 30 31 /* 32 ** Indicate that the accumulator load should be skipped on this 33 ** iteration of the aggregate loop. 34 */ 35 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){ 36 context->skipFlag = 1; 37 } 38 39 /* 40 ** Implementation of the non-aggregate min() and max() functions 41 */ 42 static void minmaxFunc( 43 sqlite3_context *context, 44 int argc, 45 sqlite3_value **argv 46 ){ 47 int i; 48 int mask; /* 0 for min() or 0xffffffff for max() */ 49 int iBest; 50 CollSeq *pColl; 51 52 assert( argc>1 ); 53 mask = sqlite3_user_data(context)==0 ? 0 : -1; 54 pColl = sqlite3GetFuncCollSeq(context); 55 assert( pColl ); 56 assert( mask==-1 || mask==0 ); 57 iBest = 0; 58 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 59 for(i=1; i<argc; i++){ 60 if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return; 61 if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){ 62 testcase( mask==0 ); 63 iBest = i; 64 } 65 } 66 sqlite3_result_value(context, argv[iBest]); 67 } 68 69 /* 70 ** Return the type of the argument. 71 */ 72 static void typeofFunc( 73 sqlite3_context *context, 74 int NotUsed, 75 sqlite3_value **argv 76 ){ 77 const char *z = 0; 78 UNUSED_PARAMETER(NotUsed); 79 switch( sqlite3_value_type(argv[0]) ){ 80 case SQLITE_INTEGER: z = "integer"; break; 81 case SQLITE_TEXT: z = "text"; break; 82 case SQLITE_FLOAT: z = "real"; break; 83 case SQLITE_BLOB: z = "blob"; break; 84 default: z = "null"; break; 85 } 86 sqlite3_result_text(context, z, -1, SQLITE_STATIC); 87 } 88 89 90 /* 91 ** Implementation of the length() function 92 */ 93 static void lengthFunc( 94 sqlite3_context *context, 95 int argc, 96 sqlite3_value **argv 97 ){ 98 int len; 99 100 assert( argc==1 ); 101 UNUSED_PARAMETER(argc); 102 switch( sqlite3_value_type(argv[0]) ){ 103 case SQLITE_BLOB: 104 case SQLITE_INTEGER: 105 case SQLITE_FLOAT: { 106 sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); 107 break; 108 } 109 case SQLITE_TEXT: { 110 const unsigned char *z = sqlite3_value_text(argv[0]); 111 if( z==0 ) return; 112 len = 0; 113 while( *z ){ 114 len++; 115 SQLITE_SKIP_UTF8(z); 116 } 117 sqlite3_result_int(context, len); 118 break; 119 } 120 default: { 121 sqlite3_result_null(context); 122 break; 123 } 124 } 125 } 126 127 /* 128 ** Implementation of the abs() function. 129 ** 130 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of 131 ** the numeric argument X. 132 */ 133 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 134 assert( argc==1 ); 135 UNUSED_PARAMETER(argc); 136 switch( sqlite3_value_type(argv[0]) ){ 137 case SQLITE_INTEGER: { 138 i64 iVal = sqlite3_value_int64(argv[0]); 139 if( iVal<0 ){ 140 if( (iVal<<1)==0 ){ 141 /* IMP: R-35460-15084 If X is the integer -9223372036854775807 then 142 ** abs(X) throws an integer overflow error since there is no 143 ** equivalent positive 64-bit two complement value. */ 144 sqlite3_result_error(context, "integer overflow", -1); 145 return; 146 } 147 iVal = -iVal; 148 } 149 sqlite3_result_int64(context, iVal); 150 break; 151 } 152 case SQLITE_NULL: { 153 /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */ 154 sqlite3_result_null(context); 155 break; 156 } 157 default: { 158 /* Because sqlite3_value_double() returns 0.0 if the argument is not 159 ** something that can be converted into a number, we have: 160 ** IMP: R-57326-31541 Abs(X) return 0.0 if X is a string or blob that 161 ** cannot be converted to a numeric value. 162 */ 163 double rVal = sqlite3_value_double(argv[0]); 164 if( rVal<0 ) rVal = -rVal; 165 sqlite3_result_double(context, rVal); 166 break; 167 } 168 } 169 } 170 171 /* 172 ** Implementation of the substr() function. 173 ** 174 ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. 175 ** p1 is 1-indexed. So substr(x,1,1) returns the first character 176 ** of x. If x is text, then we actually count UTF-8 characters. 177 ** If x is a blob, then we count bytes. 178 ** 179 ** If p1 is negative, then we begin abs(p1) from the end of x[]. 180 ** 181 ** If p2 is negative, return the p2 characters preceeding p1. 182 */ 183 static void substrFunc( 184 sqlite3_context *context, 185 int argc, 186 sqlite3_value **argv 187 ){ 188 const unsigned char *z; 189 const unsigned char *z2; 190 int len; 191 int p0type; 192 i64 p1, p2; 193 int negP2 = 0; 194 195 assert( argc==3 || argc==2 ); 196 if( sqlite3_value_type(argv[1])==SQLITE_NULL 197 || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL) 198 ){ 199 return; 200 } 201 p0type = sqlite3_value_type(argv[0]); 202 p1 = sqlite3_value_int(argv[1]); 203 if( p0type==SQLITE_BLOB ){ 204 len = sqlite3_value_bytes(argv[0]); 205 z = sqlite3_value_blob(argv[0]); 206 if( z==0 ) return; 207 assert( len==sqlite3_value_bytes(argv[0]) ); 208 }else{ 209 z = sqlite3_value_text(argv[0]); 210 if( z==0 ) return; 211 len = 0; 212 if( p1<0 ){ 213 for(z2=z; *z2; len++){ 214 SQLITE_SKIP_UTF8(z2); 215 } 216 } 217 } 218 if( argc==3 ){ 219 p2 = sqlite3_value_int(argv[2]); 220 if( p2<0 ){ 221 p2 = -p2; 222 negP2 = 1; 223 } 224 }else{ 225 p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH]; 226 } 227 if( p1<0 ){ 228 p1 += len; 229 if( p1<0 ){ 230 p2 += p1; 231 if( p2<0 ) p2 = 0; 232 p1 = 0; 233 } 234 }else if( p1>0 ){ 235 p1--; 236 }else if( p2>0 ){ 237 p2--; 238 } 239 if( negP2 ){ 240 p1 -= p2; 241 if( p1<0 ){ 242 p2 += p1; 243 p1 = 0; 244 } 245 } 246 assert( p1>=0 && p2>=0 ); 247 if( p0type!=SQLITE_BLOB ){ 248 while( *z && p1 ){ 249 SQLITE_SKIP_UTF8(z); 250 p1--; 251 } 252 for(z2=z; *z2 && p2; p2--){ 253 SQLITE_SKIP_UTF8(z2); 254 } 255 sqlite3_result_text(context, (char*)z, (int)(z2-z), SQLITE_TRANSIENT); 256 }else{ 257 if( p1+p2>len ){ 258 p2 = len-p1; 259 if( p2<0 ) p2 = 0; 260 } 261 sqlite3_result_blob(context, (char*)&z[p1], (int)p2, SQLITE_TRANSIENT); 262 } 263 } 264 265 /* 266 ** Implementation of the round() function 267 */ 268 #ifndef SQLITE_OMIT_FLOATING_POINT 269 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 270 int n = 0; 271 double r; 272 char *zBuf; 273 assert( argc==1 || argc==2 ); 274 if( argc==2 ){ 275 if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return; 276 n = sqlite3_value_int(argv[1]); 277 if( n>30 ) n = 30; 278 if( n<0 ) n = 0; 279 } 280 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 281 r = sqlite3_value_double(argv[0]); 282 /* If Y==0 and X will fit in a 64-bit int, 283 ** handle the rounding directly, 284 ** otherwise use printf. 285 */ 286 if( n==0 && r>=0 && r<LARGEST_INT64-1 ){ 287 r = (double)((sqlite_int64)(r+0.5)); 288 }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){ 289 r = -(double)((sqlite_int64)((-r)+0.5)); 290 }else{ 291 zBuf = sqlite3_mprintf("%.*f",n,r); 292 if( zBuf==0 ){ 293 sqlite3_result_error_nomem(context); 294 return; 295 } 296 sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8); 297 sqlite3_free(zBuf); 298 } 299 sqlite3_result_double(context, r); 300 } 301 #endif 302 303 /* 304 ** Allocate nByte bytes of space using sqlite3_malloc(). If the 305 ** allocation fails, call sqlite3_result_error_nomem() to notify 306 ** the database handle that malloc() has failed and return NULL. 307 ** If nByte is larger than the maximum string or blob length, then 308 ** raise an SQLITE_TOOBIG exception and return NULL. 309 */ 310 static void *contextMalloc(sqlite3_context *context, i64 nByte){ 311 char *z; 312 sqlite3 *db = sqlite3_context_db_handle(context); 313 assert( nByte>0 ); 314 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] ); 315 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); 316 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 317 sqlite3_result_error_toobig(context); 318 z = 0; 319 }else{ 320 z = sqlite3Malloc((int)nByte); 321 if( !z ){ 322 sqlite3_result_error_nomem(context); 323 } 324 } 325 return z; 326 } 327 328 /* 329 ** Implementation of the upper() and lower() SQL functions. 330 */ 331 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 332 char *z1; 333 const char *z2; 334 int i, n; 335 UNUSED_PARAMETER(argc); 336 z2 = (char*)sqlite3_value_text(argv[0]); 337 n = sqlite3_value_bytes(argv[0]); 338 /* Verify that the call to _bytes() does not invalidate the _text() pointer */ 339 assert( z2==(char*)sqlite3_value_text(argv[0]) ); 340 if( z2 ){ 341 z1 = contextMalloc(context, ((i64)n)+1); 342 if( z1 ){ 343 for(i=0; i<n; i++){ 344 z1[i] = (char)sqlite3Toupper(z2[i]); 345 } 346 sqlite3_result_text(context, z1, n, sqlite3_free); 347 } 348 } 349 } 350 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 351 char *z1; 352 const char *z2; 353 int i, n; 354 UNUSED_PARAMETER(argc); 355 z2 = (char*)sqlite3_value_text(argv[0]); 356 n = sqlite3_value_bytes(argv[0]); 357 /* Verify that the call to _bytes() does not invalidate the _text() pointer */ 358 assert( z2==(char*)sqlite3_value_text(argv[0]) ); 359 if( z2 ){ 360 z1 = contextMalloc(context, ((i64)n)+1); 361 if( z1 ){ 362 for(i=0; i<n; i++){ 363 z1[i] = sqlite3Tolower(z2[i]); 364 } 365 sqlite3_result_text(context, z1, n, sqlite3_free); 366 } 367 } 368 } 369 370 371 #if 0 /* This function is never used. */ 372 /* 373 ** The COALESCE() and IFNULL() functions used to be implemented as shown 374 ** here. But now they are implemented as VDBE code so that unused arguments 375 ** do not have to be computed. This legacy implementation is retained as 376 ** comment. 377 */ 378 /* 379 ** Implementation of the IFNULL(), NVL(), and COALESCE() functions. 380 ** All three do the same thing. They return the first non-NULL 381 ** argument. 382 */ 383 static void ifnullFunc( 384 sqlite3_context *context, 385 int argc, 386 sqlite3_value **argv 387 ){ 388 int i; 389 for(i=0; i<argc; i++){ 390 if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){ 391 sqlite3_result_value(context, argv[i]); 392 break; 393 } 394 } 395 } 396 #endif /* NOT USED */ 397 #define ifnullFunc versionFunc /* Substitute function - never called */ 398 399 /* 400 ** Implementation of random(). Return a random integer. 401 */ 402 static void randomFunc( 403 sqlite3_context *context, 404 int NotUsed, 405 sqlite3_value **NotUsed2 406 ){ 407 sqlite_int64 r; 408 UNUSED_PARAMETER2(NotUsed, NotUsed2); 409 sqlite3_randomness(sizeof(r), &r); 410 if( r<0 ){ 411 /* We need to prevent a random number of 0x8000000000000000 412 ** (or -9223372036854775808) since when you do abs() of that 413 ** number of you get the same value back again. To do this 414 ** in a way that is testable, mask the sign bit off of negative 415 ** values, resulting in a positive value. Then take the 416 ** 2s complement of that positive value. The end result can 417 ** therefore be no less than -9223372036854775807. 418 */ 419 r = -(r & LARGEST_INT64); 420 } 421 sqlite3_result_int64(context, r); 422 } 423 424 /* 425 ** Implementation of randomblob(N). Return a random blob 426 ** that is N bytes long. 427 */ 428 static void randomBlob( 429 sqlite3_context *context, 430 int argc, 431 sqlite3_value **argv 432 ){ 433 int n; 434 unsigned char *p; 435 assert( argc==1 ); 436 UNUSED_PARAMETER(argc); 437 n = sqlite3_value_int(argv[0]); 438 if( n<1 ){ 439 n = 1; 440 } 441 p = contextMalloc(context, n); 442 if( p ){ 443 sqlite3_randomness(n, p); 444 sqlite3_result_blob(context, (char*)p, n, sqlite3_free); 445 } 446 } 447 448 /* 449 ** Implementation of the last_insert_rowid() SQL function. The return 450 ** value is the same as the sqlite3_last_insert_rowid() API function. 451 */ 452 static void last_insert_rowid( 453 sqlite3_context *context, 454 int NotUsed, 455 sqlite3_value **NotUsed2 456 ){ 457 sqlite3 *db = sqlite3_context_db_handle(context); 458 UNUSED_PARAMETER2(NotUsed, NotUsed2); 459 /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a 460 ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface 461 ** function. */ 462 sqlite3_result_int64(context, sqlite3_last_insert_rowid(db)); 463 } 464 465 /* 466 ** Implementation of the changes() SQL function. 467 ** 468 ** IMP: R-62073-11209 The changes() SQL function is a wrapper 469 ** around the sqlite3_changes() C/C++ function and hence follows the same 470 ** rules for counting changes. 471 */ 472 static void changes( 473 sqlite3_context *context, 474 int NotUsed, 475 sqlite3_value **NotUsed2 476 ){ 477 sqlite3 *db = sqlite3_context_db_handle(context); 478 UNUSED_PARAMETER2(NotUsed, NotUsed2); 479 sqlite3_result_int(context, sqlite3_changes(db)); 480 } 481 482 /* 483 ** Implementation of the total_changes() SQL function. The return value is 484 ** the same as the sqlite3_total_changes() API function. 485 */ 486 static void total_changes( 487 sqlite3_context *context, 488 int NotUsed, 489 sqlite3_value **NotUsed2 490 ){ 491 sqlite3 *db = sqlite3_context_db_handle(context); 492 UNUSED_PARAMETER2(NotUsed, NotUsed2); 493 /* IMP: R-52756-41993 This function is a wrapper around the 494 ** sqlite3_total_changes() C/C++ interface. */ 495 sqlite3_result_int(context, sqlite3_total_changes(db)); 496 } 497 498 /* 499 ** A structure defining how to do GLOB-style comparisons. 500 */ 501 struct compareInfo { 502 u8 matchAll; 503 u8 matchOne; 504 u8 matchSet; 505 u8 noCase; 506 }; 507 508 /* 509 ** For LIKE and GLOB matching on EBCDIC machines, assume that every 510 ** character is exactly one byte in size. Also, all characters are 511 ** able to participate in upper-case-to-lower-case mappings in EBCDIC 512 ** whereas only characters less than 0x80 do in ASCII. 513 */ 514 #if defined(SQLITE_EBCDIC) 515 # define sqlite3Utf8Read(A,C) (*(A++)) 516 # define GlogUpperToLower(A) A = sqlite3UpperToLower[A] 517 #else 518 # define GlogUpperToLower(A) if( !((A)&~0x7f) ){ A = sqlite3UpperToLower[A]; } 519 #endif 520 521 static const struct compareInfo globInfo = { '*', '?', '[', 0 }; 522 /* The correct SQL-92 behavior is for the LIKE operator to ignore 523 ** case. Thus 'a' LIKE 'A' would be true. */ 524 static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 }; 525 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator 526 ** is case sensitive causing 'a' LIKE 'A' to be false */ 527 static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 }; 528 529 /* 530 ** Compare two UTF-8 strings for equality where the first string can 531 ** potentially be a "glob" expression. Return true (1) if they 532 ** are the same and false (0) if they are different. 533 ** 534 ** Globbing rules: 535 ** 536 ** '*' Matches any sequence of zero or more characters. 537 ** 538 ** '?' Matches exactly one character. 539 ** 540 ** [...] Matches one character from the enclosed list of 541 ** characters. 542 ** 543 ** [^...] Matches one character not in the enclosed list. 544 ** 545 ** With the [...] and [^...] matching, a ']' character can be included 546 ** in the list by making it the first character after '[' or '^'. A 547 ** range of characters can be specified using '-'. Example: 548 ** "[a-z]" matches any single lower-case letter. To match a '-', make 549 ** it the last character in the list. 550 ** 551 ** This routine is usually quick, but can be N**2 in the worst case. 552 ** 553 ** Hints: to match '*' or '?', put them in "[]". Like this: 554 ** 555 ** abc[*]xyz Matches "abc*xyz" only 556 */ 557 static int patternCompare( 558 const u8 *zPattern, /* The glob pattern */ 559 const u8 *zString, /* The string to compare against the glob */ 560 const struct compareInfo *pInfo, /* Information about how to do the compare */ 561 u32 esc /* The escape character */ 562 ){ 563 u32 c, c2; 564 int invert; 565 int seen; 566 u8 matchOne = pInfo->matchOne; 567 u8 matchAll = pInfo->matchAll; 568 u8 matchSet = pInfo->matchSet; 569 u8 noCase = pInfo->noCase; 570 int prevEscape = 0; /* True if the previous character was 'escape' */ 571 572 while( (c = sqlite3Utf8Read(zPattern,&zPattern))!=0 ){ 573 if( !prevEscape && c==matchAll ){ 574 while( (c=sqlite3Utf8Read(zPattern,&zPattern)) == matchAll 575 || c == matchOne ){ 576 if( c==matchOne && sqlite3Utf8Read(zString, &zString)==0 ){ 577 return 0; 578 } 579 } 580 if( c==0 ){ 581 return 1; 582 }else if( c==esc ){ 583 c = sqlite3Utf8Read(zPattern, &zPattern); 584 if( c==0 ){ 585 return 0; 586 } 587 }else if( c==matchSet ){ 588 assert( esc==0 ); /* This is GLOB, not LIKE */ 589 assert( matchSet<0x80 ); /* '[' is a single-byte character */ 590 while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){ 591 SQLITE_SKIP_UTF8(zString); 592 } 593 return *zString!=0; 594 } 595 while( (c2 = sqlite3Utf8Read(zString,&zString))!=0 ){ 596 if( noCase ){ 597 GlogUpperToLower(c2); 598 GlogUpperToLower(c); 599 while( c2 != 0 && c2 != c ){ 600 c2 = sqlite3Utf8Read(zString, &zString); 601 GlogUpperToLower(c2); 602 } 603 }else{ 604 while( c2 != 0 && c2 != c ){ 605 c2 = sqlite3Utf8Read(zString, &zString); 606 } 607 } 608 if( c2==0 ) return 0; 609 if( patternCompare(zPattern,zString,pInfo,esc) ) return 1; 610 } 611 return 0; 612 }else if( !prevEscape && c==matchOne ){ 613 if( sqlite3Utf8Read(zString, &zString)==0 ){ 614 return 0; 615 } 616 }else if( c==matchSet ){ 617 u32 prior_c = 0; 618 assert( esc==0 ); /* This only occurs for GLOB, not LIKE */ 619 seen = 0; 620 invert = 0; 621 c = sqlite3Utf8Read(zString, &zString); 622 if( c==0 ) return 0; 623 c2 = sqlite3Utf8Read(zPattern, &zPattern); 624 if( c2=='^' ){ 625 invert = 1; 626 c2 = sqlite3Utf8Read(zPattern, &zPattern); 627 } 628 if( c2==']' ){ 629 if( c==']' ) seen = 1; 630 c2 = sqlite3Utf8Read(zPattern, &zPattern); 631 } 632 while( c2 && c2!=']' ){ 633 if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){ 634 c2 = sqlite3Utf8Read(zPattern, &zPattern); 635 if( c>=prior_c && c<=c2 ) seen = 1; 636 prior_c = 0; 637 }else{ 638 if( c==c2 ){ 639 seen = 1; 640 } 641 prior_c = c2; 642 } 643 c2 = sqlite3Utf8Read(zPattern, &zPattern); 644 } 645 if( c2==0 || (seen ^ invert)==0 ){ 646 return 0; 647 } 648 }else if( esc==c && !prevEscape ){ 649 prevEscape = 1; 650 }else{ 651 c2 = sqlite3Utf8Read(zString, &zString); 652 if( noCase ){ 653 GlogUpperToLower(c); 654 GlogUpperToLower(c2); 655 } 656 if( c!=c2 ){ 657 return 0; 658 } 659 prevEscape = 0; 660 } 661 } 662 return *zString==0; 663 } 664 665 /* 666 ** Count the number of times that the LIKE operator (or GLOB which is 667 ** just a variation of LIKE) gets called. This is used for testing 668 ** only. 669 */ 670 #ifdef SQLITE_TEST 671 int sqlite3_like_count = 0; 672 #endif 673 674 675 /* 676 ** Implementation of the like() SQL function. This function implements 677 ** the build-in LIKE operator. The first argument to the function is the 678 ** pattern and the second argument is the string. So, the SQL statements: 679 ** 680 ** A LIKE B 681 ** 682 ** is implemented as like(B,A). 683 ** 684 ** This same function (with a different compareInfo structure) computes 685 ** the GLOB operator. 686 */ 687 static void likeFunc( 688 sqlite3_context *context, 689 int argc, 690 sqlite3_value **argv 691 ){ 692 const unsigned char *zA, *zB; 693 u32 escape = 0; 694 int nPat; 695 sqlite3 *db = sqlite3_context_db_handle(context); 696 697 zB = sqlite3_value_text(argv[0]); 698 zA = sqlite3_value_text(argv[1]); 699 700 /* Limit the length of the LIKE or GLOB pattern to avoid problems 701 ** of deep recursion and N*N behavior in patternCompare(). 702 */ 703 nPat = sqlite3_value_bytes(argv[0]); 704 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ); 705 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 ); 706 if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){ 707 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); 708 return; 709 } 710 assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */ 711 712 if( argc==3 ){ 713 /* The escape character string must consist of a single UTF-8 character. 714 ** Otherwise, return an error. 715 */ 716 const unsigned char *zEsc = sqlite3_value_text(argv[2]); 717 if( zEsc==0 ) return; 718 if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){ 719 sqlite3_result_error(context, 720 "ESCAPE expression must be a single character", -1); 721 return; 722 } 723 escape = sqlite3Utf8Read(zEsc, &zEsc); 724 } 725 if( zA && zB ){ 726 struct compareInfo *pInfo = sqlite3_user_data(context); 727 #ifdef SQLITE_TEST 728 sqlite3_like_count++; 729 #endif 730 731 sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape)); 732 } 733 } 734 735 /* 736 ** Implementation of the NULLIF(x,y) function. The result is the first 737 ** argument if the arguments are different. The result is NULL if the 738 ** arguments are equal to each other. 739 */ 740 static void nullifFunc( 741 sqlite3_context *context, 742 int NotUsed, 743 sqlite3_value **argv 744 ){ 745 CollSeq *pColl = sqlite3GetFuncCollSeq(context); 746 UNUSED_PARAMETER(NotUsed); 747 if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ 748 sqlite3_result_value(context, argv[0]); 749 } 750 } 751 752 /* 753 ** Implementation of the sqlite_version() function. The result is the version 754 ** of the SQLite library that is running. 755 */ 756 static void versionFunc( 757 sqlite3_context *context, 758 int NotUsed, 759 sqlite3_value **NotUsed2 760 ){ 761 UNUSED_PARAMETER2(NotUsed, NotUsed2); 762 /* IMP: R-48699-48617 This function is an SQL wrapper around the 763 ** sqlite3_libversion() C-interface. */ 764 sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC); 765 } 766 767 /* 768 ** Implementation of the sqlite_source_id() function. The result is a string 769 ** that identifies the particular version of the source code used to build 770 ** SQLite. 771 */ 772 static void sourceidFunc( 773 sqlite3_context *context, 774 int NotUsed, 775 sqlite3_value **NotUsed2 776 ){ 777 UNUSED_PARAMETER2(NotUsed, NotUsed2); 778 /* IMP: R-24470-31136 This function is an SQL wrapper around the 779 ** sqlite3_sourceid() C interface. */ 780 sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC); 781 } 782 783 /* 784 ** Implementation of the sqlite_log() function. This is a wrapper around 785 ** sqlite3_log(). The return value is NULL. The function exists purely for 786 ** its side-effects. 787 */ 788 static void errlogFunc( 789 sqlite3_context *context, 790 int argc, 791 sqlite3_value **argv 792 ){ 793 UNUSED_PARAMETER(argc); 794 UNUSED_PARAMETER(context); 795 sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1])); 796 } 797 798 /* 799 ** Implementation of the sqlite_compileoption_used() function. 800 ** The result is an integer that identifies if the compiler option 801 ** was used to build SQLite. 802 */ 803 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 804 static void compileoptionusedFunc( 805 sqlite3_context *context, 806 int argc, 807 sqlite3_value **argv 808 ){ 809 const char *zOptName; 810 assert( argc==1 ); 811 UNUSED_PARAMETER(argc); 812 /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL 813 ** function is a wrapper around the sqlite3_compileoption_used() C/C++ 814 ** function. 815 */ 816 if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){ 817 sqlite3_result_int(context, sqlite3_compileoption_used(zOptName)); 818 } 819 } 820 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 821 822 /* 823 ** Implementation of the sqlite_compileoption_get() function. 824 ** The result is a string that identifies the compiler options 825 ** used to build SQLite. 826 */ 827 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 828 static void compileoptiongetFunc( 829 sqlite3_context *context, 830 int argc, 831 sqlite3_value **argv 832 ){ 833 int n; 834 assert( argc==1 ); 835 UNUSED_PARAMETER(argc); 836 /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function 837 ** is a wrapper around the sqlite3_compileoption_get() C/C++ function. 838 */ 839 n = sqlite3_value_int(argv[0]); 840 sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC); 841 } 842 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 843 844 /* Array for converting from half-bytes (nybbles) into ASCII hex 845 ** digits. */ 846 static const char hexdigits[] = { 847 '0', '1', '2', '3', '4', '5', '6', '7', 848 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' 849 }; 850 851 /* 852 ** EXPERIMENTAL - This is not an official function. The interface may 853 ** change. This function may disappear. Do not write code that depends 854 ** on this function. 855 ** 856 ** Implementation of the QUOTE() function. This function takes a single 857 ** argument. If the argument is numeric, the return value is the same as 858 ** the argument. If the argument is NULL, the return value is the string 859 ** "NULL". Otherwise, the argument is enclosed in single quotes with 860 ** single-quote escapes. 861 */ 862 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 863 assert( argc==1 ); 864 UNUSED_PARAMETER(argc); 865 switch( sqlite3_value_type(argv[0]) ){ 866 case SQLITE_FLOAT: { 867 double r1, r2; 868 char zBuf[50]; 869 r1 = sqlite3_value_double(argv[0]); 870 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1); 871 sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8); 872 if( r1!=r2 ){ 873 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1); 874 } 875 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 876 break; 877 } 878 case SQLITE_INTEGER: { 879 sqlite3_result_value(context, argv[0]); 880 break; 881 } 882 case SQLITE_BLOB: { 883 char *zText = 0; 884 char const *zBlob = sqlite3_value_blob(argv[0]); 885 int nBlob = sqlite3_value_bytes(argv[0]); 886 assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ 887 zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4); 888 if( zText ){ 889 int i; 890 for(i=0; i<nBlob; i++){ 891 zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F]; 892 zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; 893 } 894 zText[(nBlob*2)+2] = '\''; 895 zText[(nBlob*2)+3] = '\0'; 896 zText[0] = 'X'; 897 zText[1] = '\''; 898 sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT); 899 sqlite3_free(zText); 900 } 901 break; 902 } 903 case SQLITE_TEXT: { 904 int i,j; 905 u64 n; 906 const unsigned char *zArg = sqlite3_value_text(argv[0]); 907 char *z; 908 909 if( zArg==0 ) return; 910 for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; } 911 z = contextMalloc(context, ((i64)i)+((i64)n)+3); 912 if( z ){ 913 z[0] = '\''; 914 for(i=0, j=1; zArg[i]; i++){ 915 z[j++] = zArg[i]; 916 if( zArg[i]=='\'' ){ 917 z[j++] = '\''; 918 } 919 } 920 z[j++] = '\''; 921 z[j] = 0; 922 sqlite3_result_text(context, z, j, sqlite3_free); 923 } 924 break; 925 } 926 default: { 927 assert( sqlite3_value_type(argv[0])==SQLITE_NULL ); 928 sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC); 929 break; 930 } 931 } 932 } 933 934 /* 935 ** The hex() function. Interpret the argument as a blob. Return 936 ** a hexadecimal rendering as text. 937 */ 938 static void hexFunc( 939 sqlite3_context *context, 940 int argc, 941 sqlite3_value **argv 942 ){ 943 int i, n; 944 const unsigned char *pBlob; 945 char *zHex, *z; 946 assert( argc==1 ); 947 UNUSED_PARAMETER(argc); 948 pBlob = sqlite3_value_blob(argv[0]); 949 n = sqlite3_value_bytes(argv[0]); 950 assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ 951 z = zHex = contextMalloc(context, ((i64)n)*2 + 1); 952 if( zHex ){ 953 for(i=0; i<n; i++, pBlob++){ 954 unsigned char c = *pBlob; 955 *(z++) = hexdigits[(c>>4)&0xf]; 956 *(z++) = hexdigits[c&0xf]; 957 } 958 *z = 0; 959 sqlite3_result_text(context, zHex, n*2, sqlite3_free); 960 } 961 } 962 963 /* 964 ** The zeroblob(N) function returns a zero-filled blob of size N bytes. 965 */ 966 static void zeroblobFunc( 967 sqlite3_context *context, 968 int argc, 969 sqlite3_value **argv 970 ){ 971 i64 n; 972 sqlite3 *db = sqlite3_context_db_handle(context); 973 assert( argc==1 ); 974 UNUSED_PARAMETER(argc); 975 n = sqlite3_value_int64(argv[0]); 976 testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH] ); 977 testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); 978 if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 979 sqlite3_result_error_toobig(context); 980 }else{ 981 sqlite3_result_zeroblob(context, (int)n); /* IMP: R-00293-64994 */ 982 } 983 } 984 985 /* 986 ** The replace() function. Three arguments are all strings: call 987 ** them A, B, and C. The result is also a string which is derived 988 ** from A by replacing every occurance of B with C. The match 989 ** must be exact. Collating sequences are not used. 990 */ 991 static void replaceFunc( 992 sqlite3_context *context, 993 int argc, 994 sqlite3_value **argv 995 ){ 996 const unsigned char *zStr; /* The input string A */ 997 const unsigned char *zPattern; /* The pattern string B */ 998 const unsigned char *zRep; /* The replacement string C */ 999 unsigned char *zOut; /* The output */ 1000 int nStr; /* Size of zStr */ 1001 int nPattern; /* Size of zPattern */ 1002 int nRep; /* Size of zRep */ 1003 i64 nOut; /* Maximum size of zOut */ 1004 int loopLimit; /* Last zStr[] that might match zPattern[] */ 1005 int i, j; /* Loop counters */ 1006 1007 assert( argc==3 ); 1008 UNUSED_PARAMETER(argc); 1009 zStr = sqlite3_value_text(argv[0]); 1010 if( zStr==0 ) return; 1011 nStr = sqlite3_value_bytes(argv[0]); 1012 assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */ 1013 zPattern = sqlite3_value_text(argv[1]); 1014 if( zPattern==0 ){ 1015 assert( sqlite3_value_type(argv[1])==SQLITE_NULL 1016 || sqlite3_context_db_handle(context)->mallocFailed ); 1017 return; 1018 } 1019 if( zPattern[0]==0 ){ 1020 assert( sqlite3_value_type(argv[1])!=SQLITE_NULL ); 1021 sqlite3_result_value(context, argv[0]); 1022 return; 1023 } 1024 nPattern = sqlite3_value_bytes(argv[1]); 1025 assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */ 1026 zRep = sqlite3_value_text(argv[2]); 1027 if( zRep==0 ) return; 1028 nRep = sqlite3_value_bytes(argv[2]); 1029 assert( zRep==sqlite3_value_text(argv[2]) ); 1030 nOut = nStr + 1; 1031 assert( nOut<SQLITE_MAX_LENGTH ); 1032 zOut = contextMalloc(context, (i64)nOut); 1033 if( zOut==0 ){ 1034 return; 1035 } 1036 loopLimit = nStr - nPattern; 1037 for(i=j=0; i<=loopLimit; i++){ 1038 if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){ 1039 zOut[j++] = zStr[i]; 1040 }else{ 1041 u8 *zOld; 1042 sqlite3 *db = sqlite3_context_db_handle(context); 1043 nOut += nRep - nPattern; 1044 testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] ); 1045 testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] ); 1046 if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1047 sqlite3_result_error_toobig(context); 1048 sqlite3_free(zOut); 1049 return; 1050 } 1051 zOld = zOut; 1052 zOut = sqlite3_realloc(zOut, (int)nOut); 1053 if( zOut==0 ){ 1054 sqlite3_result_error_nomem(context); 1055 sqlite3_free(zOld); 1056 return; 1057 } 1058 memcpy(&zOut[j], zRep, nRep); 1059 j += nRep; 1060 i += nPattern-1; 1061 } 1062 } 1063 assert( j+nStr-i+1==nOut ); 1064 memcpy(&zOut[j], &zStr[i], nStr-i); 1065 j += nStr - i; 1066 assert( j<=nOut ); 1067 zOut[j] = 0; 1068 sqlite3_result_text(context, (char*)zOut, j, sqlite3_free); 1069 } 1070 1071 /* 1072 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions. 1073 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both. 1074 */ 1075 static void trimFunc( 1076 sqlite3_context *context, 1077 int argc, 1078 sqlite3_value **argv 1079 ){ 1080 const unsigned char *zIn; /* Input string */ 1081 const unsigned char *zCharSet; /* Set of characters to trim */ 1082 int nIn; /* Number of bytes in input */ 1083 int flags; /* 1: trimleft 2: trimright 3: trim */ 1084 int i; /* Loop counter */ 1085 unsigned char *aLen = 0; /* Length of each character in zCharSet */ 1086 unsigned char **azChar = 0; /* Individual characters in zCharSet */ 1087 int nChar; /* Number of characters in zCharSet */ 1088 1089 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ 1090 return; 1091 } 1092 zIn = sqlite3_value_text(argv[0]); 1093 if( zIn==0 ) return; 1094 nIn = sqlite3_value_bytes(argv[0]); 1095 assert( zIn==sqlite3_value_text(argv[0]) ); 1096 if( argc==1 ){ 1097 static const unsigned char lenOne[] = { 1 }; 1098 static unsigned char * const azOne[] = { (u8*)" " }; 1099 nChar = 1; 1100 aLen = (u8*)lenOne; 1101 azChar = (unsigned char **)azOne; 1102 zCharSet = 0; 1103 }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){ 1104 return; 1105 }else{ 1106 const unsigned char *z; 1107 for(z=zCharSet, nChar=0; *z; nChar++){ 1108 SQLITE_SKIP_UTF8(z); 1109 } 1110 if( nChar>0 ){ 1111 azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1)); 1112 if( azChar==0 ){ 1113 return; 1114 } 1115 aLen = (unsigned char*)&azChar[nChar]; 1116 for(z=zCharSet, nChar=0; *z; nChar++){ 1117 azChar[nChar] = (unsigned char *)z; 1118 SQLITE_SKIP_UTF8(z); 1119 aLen[nChar] = (u8)(z - azChar[nChar]); 1120 } 1121 } 1122 } 1123 if( nChar>0 ){ 1124 flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context)); 1125 if( flags & 1 ){ 1126 while( nIn>0 ){ 1127 int len = 0; 1128 for(i=0; i<nChar; i++){ 1129 len = aLen[i]; 1130 if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break; 1131 } 1132 if( i>=nChar ) break; 1133 zIn += len; 1134 nIn -= len; 1135 } 1136 } 1137 if( flags & 2 ){ 1138 while( nIn>0 ){ 1139 int len = 0; 1140 for(i=0; i<nChar; i++){ 1141 len = aLen[i]; 1142 if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break; 1143 } 1144 if( i>=nChar ) break; 1145 nIn -= len; 1146 } 1147 } 1148 if( zCharSet ){ 1149 sqlite3_free(azChar); 1150 } 1151 } 1152 sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT); 1153 } 1154 1155 1156 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It 1157 ** is only available if the SQLITE_SOUNDEX compile-time option is used 1158 ** when SQLite is built. 1159 */ 1160 #ifdef SQLITE_SOUNDEX 1161 /* 1162 ** Compute the soundex encoding of a word. 1163 ** 1164 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the 1165 ** soundex encoding of the string X. 1166 */ 1167 static void soundexFunc( 1168 sqlite3_context *context, 1169 int argc, 1170 sqlite3_value **argv 1171 ){ 1172 char zResult[8]; 1173 const u8 *zIn; 1174 int i, j; 1175 static const unsigned char iCode[] = { 1176 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1177 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1178 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1179 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1180 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, 1181 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1182 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, 1183 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1184 }; 1185 assert( argc==1 ); 1186 zIn = (u8*)sqlite3_value_text(argv[0]); 1187 if( zIn==0 ) zIn = (u8*)""; 1188 for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){} 1189 if( zIn[i] ){ 1190 u8 prevcode = iCode[zIn[i]&0x7f]; 1191 zResult[0] = sqlite3Toupper(zIn[i]); 1192 for(j=1; j<4 && zIn[i]; i++){ 1193 int code = iCode[zIn[i]&0x7f]; 1194 if( code>0 ){ 1195 if( code!=prevcode ){ 1196 prevcode = code; 1197 zResult[j++] = code + '0'; 1198 } 1199 }else{ 1200 prevcode = 0; 1201 } 1202 } 1203 while( j<4 ){ 1204 zResult[j++] = '0'; 1205 } 1206 zResult[j] = 0; 1207 sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT); 1208 }else{ 1209 /* IMP: R-64894-50321 The string "?000" is returned if the argument 1210 ** is NULL or contains no ASCII alphabetic characters. */ 1211 sqlite3_result_text(context, "?000", 4, SQLITE_STATIC); 1212 } 1213 } 1214 #endif /* SQLITE_SOUNDEX */ 1215 1216 #ifndef SQLITE_OMIT_LOAD_EXTENSION 1217 /* 1218 ** A function that loads a shared-library extension then returns NULL. 1219 */ 1220 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){ 1221 const char *zFile = (const char *)sqlite3_value_text(argv[0]); 1222 const char *zProc; 1223 sqlite3 *db = sqlite3_context_db_handle(context); 1224 char *zErrMsg = 0; 1225 1226 if( argc==2 ){ 1227 zProc = (const char *)sqlite3_value_text(argv[1]); 1228 }else{ 1229 zProc = 0; 1230 } 1231 if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){ 1232 sqlite3_result_error(context, zErrMsg, -1); 1233 sqlite3_free(zErrMsg); 1234 } 1235 } 1236 #endif 1237 1238 1239 /* 1240 ** An instance of the following structure holds the context of a 1241 ** sum() or avg() aggregate computation. 1242 */ 1243 typedef struct SumCtx SumCtx; 1244 struct SumCtx { 1245 double rSum; /* Floating point sum */ 1246 i64 iSum; /* Integer sum */ 1247 i64 cnt; /* Number of elements summed */ 1248 u8 overflow; /* True if integer overflow seen */ 1249 u8 approx; /* True if non-integer value was input to the sum */ 1250 }; 1251 1252 /* 1253 ** Routines used to compute the sum, average, and total. 1254 ** 1255 ** The SUM() function follows the (broken) SQL standard which means 1256 ** that it returns NULL if it sums over no inputs. TOTAL returns 1257 ** 0.0 in that case. In addition, TOTAL always returns a float where 1258 ** SUM might return an integer if it never encounters a floating point 1259 ** value. TOTAL never fails, but SUM might through an exception if 1260 ** it overflows an integer. 1261 */ 1262 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ 1263 SumCtx *p; 1264 int type; 1265 assert( argc==1 ); 1266 UNUSED_PARAMETER(argc); 1267 p = sqlite3_aggregate_context(context, sizeof(*p)); 1268 type = sqlite3_value_numeric_type(argv[0]); 1269 if( p && type!=SQLITE_NULL ){ 1270 p->cnt++; 1271 if( type==SQLITE_INTEGER ){ 1272 i64 v = sqlite3_value_int64(argv[0]); 1273 p->rSum += v; 1274 if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){ 1275 p->overflow = 1; 1276 } 1277 }else{ 1278 p->rSum += sqlite3_value_double(argv[0]); 1279 p->approx = 1; 1280 } 1281 } 1282 } 1283 static void sumFinalize(sqlite3_context *context){ 1284 SumCtx *p; 1285 p = sqlite3_aggregate_context(context, 0); 1286 if( p && p->cnt>0 ){ 1287 if( p->overflow ){ 1288 sqlite3_result_error(context,"integer overflow",-1); 1289 }else if( p->approx ){ 1290 sqlite3_result_double(context, p->rSum); 1291 }else{ 1292 sqlite3_result_int64(context, p->iSum); 1293 } 1294 } 1295 } 1296 static void avgFinalize(sqlite3_context *context){ 1297 SumCtx *p; 1298 p = sqlite3_aggregate_context(context, 0); 1299 if( p && p->cnt>0 ){ 1300 sqlite3_result_double(context, p->rSum/(double)p->cnt); 1301 } 1302 } 1303 static void totalFinalize(sqlite3_context *context){ 1304 SumCtx *p; 1305 p = sqlite3_aggregate_context(context, 0); 1306 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1307 sqlite3_result_double(context, p ? p->rSum : (double)0); 1308 } 1309 1310 /* 1311 ** The following structure keeps track of state information for the 1312 ** count() aggregate function. 1313 */ 1314 typedef struct CountCtx CountCtx; 1315 struct CountCtx { 1316 i64 n; 1317 }; 1318 1319 /* 1320 ** Routines to implement the count() aggregate function. 1321 */ 1322 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ 1323 CountCtx *p; 1324 p = sqlite3_aggregate_context(context, sizeof(*p)); 1325 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ 1326 p->n++; 1327 } 1328 1329 #ifndef SQLITE_OMIT_DEPRECATED 1330 /* The sqlite3_aggregate_count() function is deprecated. But just to make 1331 ** sure it still operates correctly, verify that its count agrees with our 1332 ** internal count when using count(*) and when the total count can be 1333 ** expressed as a 32-bit integer. */ 1334 assert( argc==1 || p==0 || p->n>0x7fffffff 1335 || p->n==sqlite3_aggregate_count(context) ); 1336 #endif 1337 } 1338 static void countFinalize(sqlite3_context *context){ 1339 CountCtx *p; 1340 p = sqlite3_aggregate_context(context, 0); 1341 sqlite3_result_int64(context, p ? p->n : 0); 1342 } 1343 1344 /* 1345 ** Routines to implement min() and max() aggregate functions. 1346 */ 1347 static void minmaxStep( 1348 sqlite3_context *context, 1349 int NotUsed, 1350 sqlite3_value **argv 1351 ){ 1352 Mem *pArg = (Mem *)argv[0]; 1353 Mem *pBest; 1354 UNUSED_PARAMETER(NotUsed); 1355 1356 pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); 1357 if( !pBest ) return; 1358 1359 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ 1360 if( pBest->flags ) sqlite3SkipAccumulatorLoad(context); 1361 }else if( pBest->flags ){ 1362 int max; 1363 int cmp; 1364 CollSeq *pColl = sqlite3GetFuncCollSeq(context); 1365 /* This step function is used for both the min() and max() aggregates, 1366 ** the only difference between the two being that the sense of the 1367 ** comparison is inverted. For the max() aggregate, the 1368 ** sqlite3_user_data() function returns (void *)-1. For min() it 1369 ** returns (void *)db, where db is the sqlite3* database pointer. 1370 ** Therefore the next statement sets variable 'max' to 1 for the max() 1371 ** aggregate, or 0 for min(). 1372 */ 1373 max = sqlite3_user_data(context)!=0; 1374 cmp = sqlite3MemCompare(pBest, pArg, pColl); 1375 if( (max && cmp<0) || (!max && cmp>0) ){ 1376 sqlite3VdbeMemCopy(pBest, pArg); 1377 }else{ 1378 sqlite3SkipAccumulatorLoad(context); 1379 } 1380 }else{ 1381 sqlite3VdbeMemCopy(pBest, pArg); 1382 } 1383 } 1384 static void minMaxFinalize(sqlite3_context *context){ 1385 sqlite3_value *pRes; 1386 pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); 1387 if( pRes ){ 1388 if( pRes->flags ){ 1389 sqlite3_result_value(context, pRes); 1390 } 1391 sqlite3VdbeMemRelease(pRes); 1392 } 1393 } 1394 1395 /* 1396 ** group_concat(EXPR, ?SEPARATOR?) 1397 */ 1398 static void groupConcatStep( 1399 sqlite3_context *context, 1400 int argc, 1401 sqlite3_value **argv 1402 ){ 1403 const char *zVal; 1404 StrAccum *pAccum; 1405 const char *zSep; 1406 int nVal, nSep; 1407 assert( argc==1 || argc==2 ); 1408 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 1409 pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum)); 1410 1411 if( pAccum ){ 1412 sqlite3 *db = sqlite3_context_db_handle(context); 1413 int firstTerm = pAccum->useMalloc==0; 1414 pAccum->useMalloc = 2; 1415 pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH]; 1416 if( !firstTerm ){ 1417 if( argc==2 ){ 1418 zSep = (char*)sqlite3_value_text(argv[1]); 1419 nSep = sqlite3_value_bytes(argv[1]); 1420 }else{ 1421 zSep = ","; 1422 nSep = 1; 1423 } 1424 sqlite3StrAccumAppend(pAccum, zSep, nSep); 1425 } 1426 zVal = (char*)sqlite3_value_text(argv[0]); 1427 nVal = sqlite3_value_bytes(argv[0]); 1428 sqlite3StrAccumAppend(pAccum, zVal, nVal); 1429 } 1430 } 1431 static void groupConcatFinalize(sqlite3_context *context){ 1432 StrAccum *pAccum; 1433 pAccum = sqlite3_aggregate_context(context, 0); 1434 if( pAccum ){ 1435 if( pAccum->tooBig ){ 1436 sqlite3_result_error_toobig(context); 1437 }else if( pAccum->mallocFailed ){ 1438 sqlite3_result_error_nomem(context); 1439 }else{ 1440 sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, 1441 sqlite3_free); 1442 } 1443 } 1444 } 1445 1446 /* 1447 ** This routine does per-connection function registration. Most 1448 ** of the built-in functions above are part of the global function set. 1449 ** This routine only deals with those that are not global. 1450 */ 1451 void sqlite3RegisterBuiltinFunctions(sqlite3 *db){ 1452 int rc = sqlite3_overload_function(db, "MATCH", 2); 1453 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); 1454 if( rc==SQLITE_NOMEM ){ 1455 db->mallocFailed = 1; 1456 } 1457 } 1458 1459 /* 1460 ** Set the LIKEOPT flag on the 2-argument function with the given name. 1461 */ 1462 static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){ 1463 FuncDef *pDef; 1464 pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName), 1465 2, SQLITE_UTF8, 0); 1466 if( ALWAYS(pDef) ){ 1467 pDef->flags = flagVal; 1468 } 1469 } 1470 1471 /* 1472 ** Register the built-in LIKE and GLOB functions. The caseSensitive 1473 ** parameter determines whether or not the LIKE operator is case 1474 ** sensitive. GLOB is always case sensitive. 1475 */ 1476 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ 1477 struct compareInfo *pInfo; 1478 if( caseSensitive ){ 1479 pInfo = (struct compareInfo*)&likeInfoAlt; 1480 }else{ 1481 pInfo = (struct compareInfo*)&likeInfoNorm; 1482 } 1483 sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0); 1484 sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0); 1485 sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8, 1486 (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0); 1487 setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE); 1488 setLikeOptFlag(db, "like", 1489 caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE); 1490 } 1491 1492 /* 1493 ** pExpr points to an expression which implements a function. If 1494 ** it is appropriate to apply the LIKE optimization to that function 1495 ** then set aWc[0] through aWc[2] to the wildcard characters and 1496 ** return TRUE. If the function is not a LIKE-style function then 1497 ** return FALSE. 1498 */ 1499 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ 1500 FuncDef *pDef; 1501 if( pExpr->op!=TK_FUNCTION 1502 || !pExpr->x.pList 1503 || pExpr->x.pList->nExpr!=2 1504 ){ 1505 return 0; 1506 } 1507 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 1508 pDef = sqlite3FindFunction(db, pExpr->u.zToken, 1509 sqlite3Strlen30(pExpr->u.zToken), 1510 2, SQLITE_UTF8, 0); 1511 if( NEVER(pDef==0) || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){ 1512 return 0; 1513 } 1514 1515 /* The memcpy() statement assumes that the wildcard characters are 1516 ** the first three statements in the compareInfo structure. The 1517 ** asserts() that follow verify that assumption 1518 */ 1519 memcpy(aWc, pDef->pUserData, 3); 1520 assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); 1521 assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); 1522 assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); 1523 *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0; 1524 return 1; 1525 } 1526 1527 /* 1528 ** All all of the FuncDef structures in the aBuiltinFunc[] array above 1529 ** to the global function hash table. This occurs at start-time (as 1530 ** a consequence of calling sqlite3_initialize()). 1531 ** 1532 ** After this routine runs 1533 */ 1534 void sqlite3RegisterGlobalFunctions(void){ 1535 /* 1536 ** The following array holds FuncDef structures for all of the functions 1537 ** defined in this file. 1538 ** 1539 ** The array cannot be constant since changes are made to the 1540 ** FuncDef.pHash elements at start-time. The elements of this array 1541 ** are read-only after initialization is complete. 1542 */ 1543 static SQLITE_WSD FuncDef aBuiltinFunc[] = { 1544 FUNCTION(ltrim, 1, 1, 0, trimFunc ), 1545 FUNCTION(ltrim, 2, 1, 0, trimFunc ), 1546 FUNCTION(rtrim, 1, 2, 0, trimFunc ), 1547 FUNCTION(rtrim, 2, 2, 0, trimFunc ), 1548 FUNCTION(trim, 1, 3, 0, trimFunc ), 1549 FUNCTION(trim, 2, 3, 0, trimFunc ), 1550 FUNCTION(min, -1, 0, 1, minmaxFunc ), 1551 FUNCTION(min, 0, 0, 1, 0 ), 1552 AGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize ), 1553 FUNCTION(max, -1, 1, 1, minmaxFunc ), 1554 FUNCTION(max, 0, 1, 1, 0 ), 1555 AGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize ), 1556 FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF), 1557 FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH), 1558 FUNCTION(substr, 2, 0, 0, substrFunc ), 1559 FUNCTION(substr, 3, 0, 0, substrFunc ), 1560 FUNCTION(abs, 1, 0, 0, absFunc ), 1561 #ifndef SQLITE_OMIT_FLOATING_POINT 1562 FUNCTION(round, 1, 0, 0, roundFunc ), 1563 FUNCTION(round, 2, 0, 0, roundFunc ), 1564 #endif 1565 FUNCTION(upper, 1, 0, 0, upperFunc ), 1566 FUNCTION(lower, 1, 0, 0, lowerFunc ), 1567 FUNCTION(coalesce, 1, 0, 0, 0 ), 1568 FUNCTION(coalesce, 0, 0, 0, 0 ), 1569 FUNCTION2(coalesce, -1, 0, 0, ifnullFunc, SQLITE_FUNC_COALESCE), 1570 FUNCTION(hex, 1, 0, 0, hexFunc ), 1571 FUNCTION2(ifnull, 2, 0, 0, ifnullFunc, SQLITE_FUNC_COALESCE), 1572 FUNCTION(random, 0, 0, 0, randomFunc ), 1573 FUNCTION(randomblob, 1, 0, 0, randomBlob ), 1574 FUNCTION(nullif, 2, 0, 1, nullifFunc ), 1575 FUNCTION(sqlite_version, 0, 0, 0, versionFunc ), 1576 FUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), 1577 FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ), 1578 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 1579 FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), 1580 FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), 1581 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 1582 FUNCTION(quote, 1, 0, 0, quoteFunc ), 1583 FUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), 1584 FUNCTION(changes, 0, 0, 0, changes ), 1585 FUNCTION(total_changes, 0, 0, 0, total_changes ), 1586 FUNCTION(replace, 3, 0, 0, replaceFunc ), 1587 FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), 1588 #ifdef SQLITE_SOUNDEX 1589 FUNCTION(soundex, 1, 0, 0, soundexFunc ), 1590 #endif 1591 #ifndef SQLITE_OMIT_LOAD_EXTENSION 1592 FUNCTION(load_extension, 1, 0, 0, loadExt ), 1593 FUNCTION(load_extension, 2, 0, 0, loadExt ), 1594 #endif 1595 AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ), 1596 AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ), 1597 AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ), 1598 /* AGGREGATE(count, 0, 0, 0, countStep, countFinalize ), */ 1599 {0,SQLITE_UTF8,SQLITE_FUNC_COUNT,0,0,0,countStep,countFinalize,"count",0,0}, 1600 AGGREGATE(count, 1, 0, 0, countStep, countFinalize ), 1601 AGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize), 1602 AGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize), 1603 1604 LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), 1605 #ifdef SQLITE_CASE_SENSITIVE_LIKE 1606 LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), 1607 LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), 1608 #else 1609 LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE), 1610 LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE), 1611 #endif 1612 }; 1613 1614 int i; 1615 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 1616 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc); 1617 1618 for(i=0; i<ArraySize(aBuiltinFunc); i++){ 1619 sqlite3FuncDefInsert(pHash, &aFunc[i]); 1620 } 1621 sqlite3RegisterDateTimeFunctions(); 1622 #ifndef SQLITE_OMIT_ALTERTABLE 1623 sqlite3AlterFunctions(); 1624 #endif 1625 } 1626