1 /* 2 ** 2002 February 23 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C-language implementations for many of the SQL 13 ** functions of SQLite. (Some function, and in particular the date and 14 ** time functions, are implemented separately.) 15 */ 16 #include "sqliteInt.h" 17 #include <stdlib.h> 18 #include <assert.h> 19 #ifndef SQLITE_OMIT_FLOATING_POINT 20 #include <math.h> 21 #endif 22 #include "vdbeInt.h" 23 24 /* 25 ** Return the collating function associated with a function. 26 */ 27 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ 28 VdbeOp *pOp; 29 assert( context->pVdbe!=0 ); 30 pOp = &context->pVdbe->aOp[context->iOp-1]; 31 assert( pOp->opcode==OP_CollSeq ); 32 assert( pOp->p4type==P4_COLLSEQ ); 33 return pOp->p4.pColl; 34 } 35 36 /* 37 ** Indicate that the accumulator load should be skipped on this 38 ** iteration of the aggregate loop. 39 */ 40 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){ 41 assert( context->isError<=0 ); 42 context->isError = -1; 43 context->skipFlag = 1; 44 } 45 46 /* 47 ** Implementation of the non-aggregate min() and max() functions 48 */ 49 static void minmaxFunc( 50 sqlite3_context *context, 51 int argc, 52 sqlite3_value **argv 53 ){ 54 int i; 55 int mask; /* 0 for min() or 0xffffffff for max() */ 56 int iBest; 57 CollSeq *pColl; 58 59 assert( argc>1 ); 60 mask = sqlite3_user_data(context)==0 ? 0 : -1; 61 pColl = sqlite3GetFuncCollSeq(context); 62 assert( pColl ); 63 assert( mask==-1 || mask==0 ); 64 iBest = 0; 65 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 66 for(i=1; i<argc; i++){ 67 if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return; 68 if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){ 69 testcase( mask==0 ); 70 iBest = i; 71 } 72 } 73 sqlite3_result_value(context, argv[iBest]); 74 } 75 76 /* 77 ** Return the type of the argument. 78 */ 79 static void typeofFunc( 80 sqlite3_context *context, 81 int NotUsed, 82 sqlite3_value **argv 83 ){ 84 static const char *azType[] = { "integer", "real", "text", "blob", "null" }; 85 int i = sqlite3_value_type(argv[0]) - 1; 86 UNUSED_PARAMETER(NotUsed); 87 assert( i>=0 && i<ArraySize(azType) ); 88 assert( SQLITE_INTEGER==1 ); 89 assert( SQLITE_FLOAT==2 ); 90 assert( SQLITE_TEXT==3 ); 91 assert( SQLITE_BLOB==4 ); 92 assert( SQLITE_NULL==5 ); 93 /* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns 94 ** the datatype code for the initial datatype of the sqlite3_value object 95 ** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT, 96 ** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */ 97 sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC); 98 } 99 100 /* subtype(X) 101 ** 102 ** Return the subtype of X 103 */ 104 static void subtypeFunc( 105 sqlite3_context *context, 106 int argc, 107 sqlite3_value **argv 108 ){ 109 UNUSED_PARAMETER(argc); 110 sqlite3_result_int(context, sqlite3_value_subtype(argv[0])); 111 } 112 113 /* 114 ** Implementation of the length() function 115 */ 116 static void lengthFunc( 117 sqlite3_context *context, 118 int argc, 119 sqlite3_value **argv 120 ){ 121 assert( argc==1 ); 122 UNUSED_PARAMETER(argc); 123 switch( sqlite3_value_type(argv[0]) ){ 124 case SQLITE_BLOB: 125 case SQLITE_INTEGER: 126 case SQLITE_FLOAT: { 127 sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); 128 break; 129 } 130 case SQLITE_TEXT: { 131 const unsigned char *z = sqlite3_value_text(argv[0]); 132 const unsigned char *z0; 133 unsigned char c; 134 if( z==0 ) return; 135 z0 = z; 136 while( (c = *z)!=0 ){ 137 z++; 138 if( c>=0xc0 ){ 139 while( (*z & 0xc0)==0x80 ){ z++; z0++; } 140 } 141 } 142 sqlite3_result_int(context, (int)(z-z0)); 143 break; 144 } 145 default: { 146 sqlite3_result_null(context); 147 break; 148 } 149 } 150 } 151 152 /* 153 ** Implementation of the abs() function. 154 ** 155 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of 156 ** the numeric argument X. 157 */ 158 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 159 assert( argc==1 ); 160 UNUSED_PARAMETER(argc); 161 switch( sqlite3_value_type(argv[0]) ){ 162 case SQLITE_INTEGER: { 163 i64 iVal = sqlite3_value_int64(argv[0]); 164 if( iVal<0 ){ 165 if( iVal==SMALLEST_INT64 ){ 166 /* IMP: R-31676-45509 If X is the integer -9223372036854775808 167 ** then abs(X) throws an integer overflow error since there is no 168 ** equivalent positive 64-bit two complement value. */ 169 sqlite3_result_error(context, "integer overflow", -1); 170 return; 171 } 172 iVal = -iVal; 173 } 174 sqlite3_result_int64(context, iVal); 175 break; 176 } 177 case SQLITE_NULL: { 178 /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */ 179 sqlite3_result_null(context); 180 break; 181 } 182 default: { 183 /* Because sqlite3_value_double() returns 0.0 if the argument is not 184 ** something that can be converted into a number, we have: 185 ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob 186 ** that cannot be converted to a numeric value. 187 */ 188 double rVal = sqlite3_value_double(argv[0]); 189 if( rVal<0 ) rVal = -rVal; 190 sqlite3_result_double(context, rVal); 191 break; 192 } 193 } 194 } 195 196 /* 197 ** Implementation of the instr() function. 198 ** 199 ** instr(haystack,needle) finds the first occurrence of needle 200 ** in haystack and returns the number of previous characters plus 1, 201 ** or 0 if needle does not occur within haystack. 202 ** 203 ** If both haystack and needle are BLOBs, then the result is one more than 204 ** the number of bytes in haystack prior to the first occurrence of needle, 205 ** or 0 if needle never occurs in haystack. 206 */ 207 static void instrFunc( 208 sqlite3_context *context, 209 int argc, 210 sqlite3_value **argv 211 ){ 212 const unsigned char *zHaystack; 213 const unsigned char *zNeedle; 214 int nHaystack; 215 int nNeedle; 216 int typeHaystack, typeNeedle; 217 int N = 1; 218 int isText; 219 unsigned char firstChar; 220 sqlite3_value *pC1 = 0; 221 sqlite3_value *pC2 = 0; 222 223 UNUSED_PARAMETER(argc); 224 typeHaystack = sqlite3_value_type(argv[0]); 225 typeNeedle = sqlite3_value_type(argv[1]); 226 if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return; 227 nHaystack = sqlite3_value_bytes(argv[0]); 228 nNeedle = sqlite3_value_bytes(argv[1]); 229 if( nNeedle>0 ){ 230 if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){ 231 zHaystack = sqlite3_value_blob(argv[0]); 232 zNeedle = sqlite3_value_blob(argv[1]); 233 isText = 0; 234 }else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){ 235 zHaystack = sqlite3_value_text(argv[0]); 236 zNeedle = sqlite3_value_text(argv[1]); 237 isText = 1; 238 }else{ 239 pC1 = sqlite3_value_dup(argv[0]); 240 zHaystack = sqlite3_value_text(pC1); 241 if( zHaystack==0 ) goto endInstrOOM; 242 nHaystack = sqlite3_value_bytes(pC1); 243 pC2 = sqlite3_value_dup(argv[1]); 244 zNeedle = sqlite3_value_text(pC2); 245 if( zNeedle==0 ) goto endInstrOOM; 246 nNeedle = sqlite3_value_bytes(pC2); 247 isText = 1; 248 } 249 if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM; 250 firstChar = zNeedle[0]; 251 while( nNeedle<=nHaystack 252 && (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0) 253 ){ 254 N++; 255 do{ 256 nHaystack--; 257 zHaystack++; 258 }while( isText && (zHaystack[0]&0xc0)==0x80 ); 259 } 260 if( nNeedle>nHaystack ) N = 0; 261 } 262 sqlite3_result_int(context, N); 263 endInstr: 264 sqlite3_value_free(pC1); 265 sqlite3_value_free(pC2); 266 return; 267 endInstrOOM: 268 sqlite3_result_error_nomem(context); 269 goto endInstr; 270 } 271 272 /* 273 ** Implementation of the printf() (a.k.a. format()) SQL function. 274 */ 275 static void printfFunc( 276 sqlite3_context *context, 277 int argc, 278 sqlite3_value **argv 279 ){ 280 PrintfArguments x; 281 StrAccum str; 282 const char *zFormat; 283 int n; 284 sqlite3 *db = sqlite3_context_db_handle(context); 285 286 if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){ 287 x.nArg = argc-1; 288 x.nUsed = 0; 289 x.apArg = argv+1; 290 sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); 291 str.printfFlags = SQLITE_PRINTF_SQLFUNC; 292 sqlite3_str_appendf(&str, zFormat, &x); 293 n = str.nChar; 294 sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n, 295 SQLITE_DYNAMIC); 296 } 297 } 298 299 /* 300 ** Implementation of the substr() function. 301 ** 302 ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. 303 ** p1 is 1-indexed. So substr(x,1,1) returns the first character 304 ** of x. If x is text, then we actually count UTF-8 characters. 305 ** If x is a blob, then we count bytes. 306 ** 307 ** If p1 is negative, then we begin abs(p1) from the end of x[]. 308 ** 309 ** If p2 is negative, return the p2 characters preceding p1. 310 */ 311 static void substrFunc( 312 sqlite3_context *context, 313 int argc, 314 sqlite3_value **argv 315 ){ 316 const unsigned char *z; 317 const unsigned char *z2; 318 int len; 319 int p0type; 320 i64 p1, p2; 321 int negP2 = 0; 322 323 assert( argc==3 || argc==2 ); 324 if( sqlite3_value_type(argv[1])==SQLITE_NULL 325 || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL) 326 ){ 327 return; 328 } 329 p0type = sqlite3_value_type(argv[0]); 330 p1 = sqlite3_value_int(argv[1]); 331 if( p0type==SQLITE_BLOB ){ 332 len = sqlite3_value_bytes(argv[0]); 333 z = sqlite3_value_blob(argv[0]); 334 if( z==0 ) return; 335 assert( len==sqlite3_value_bytes(argv[0]) ); 336 }else{ 337 z = sqlite3_value_text(argv[0]); 338 if( z==0 ) return; 339 len = 0; 340 if( p1<0 ){ 341 for(z2=z; *z2; len++){ 342 SQLITE_SKIP_UTF8(z2); 343 } 344 } 345 } 346 #ifdef SQLITE_SUBSTR_COMPATIBILITY 347 /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as 348 ** as substr(X,1,N) - it returns the first N characters of X. This 349 ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8] 350 ** from 2009-02-02 for compatibility of applications that exploited the 351 ** old buggy behavior. */ 352 if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */ 353 #endif 354 if( argc==3 ){ 355 p2 = sqlite3_value_int(argv[2]); 356 if( p2<0 ){ 357 p2 = -p2; 358 negP2 = 1; 359 } 360 }else{ 361 p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH]; 362 } 363 if( p1<0 ){ 364 p1 += len; 365 if( p1<0 ){ 366 p2 += p1; 367 if( p2<0 ) p2 = 0; 368 p1 = 0; 369 } 370 }else if( p1>0 ){ 371 p1--; 372 }else if( p2>0 ){ 373 p2--; 374 } 375 if( negP2 ){ 376 p1 -= p2; 377 if( p1<0 ){ 378 p2 += p1; 379 p1 = 0; 380 } 381 } 382 assert( p1>=0 && p2>=0 ); 383 if( p0type!=SQLITE_BLOB ){ 384 while( *z && p1 ){ 385 SQLITE_SKIP_UTF8(z); 386 p1--; 387 } 388 for(z2=z; *z2 && p2; p2--){ 389 SQLITE_SKIP_UTF8(z2); 390 } 391 sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT, 392 SQLITE_UTF8); 393 }else{ 394 if( p1+p2>len ){ 395 p2 = len-p1; 396 if( p2<0 ) p2 = 0; 397 } 398 sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT); 399 } 400 } 401 402 /* 403 ** Implementation of the round() function 404 */ 405 #ifndef SQLITE_OMIT_FLOATING_POINT 406 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 407 int n = 0; 408 double r; 409 char *zBuf; 410 assert( argc==1 || argc==2 ); 411 if( argc==2 ){ 412 if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return; 413 n = sqlite3_value_int(argv[1]); 414 if( n>30 ) n = 30; 415 if( n<0 ) n = 0; 416 } 417 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 418 r = sqlite3_value_double(argv[0]); 419 /* If Y==0 and X will fit in a 64-bit int, 420 ** handle the rounding directly, 421 ** otherwise use printf. 422 */ 423 if( r<-4503599627370496.0 || r>+4503599627370496.0 ){ 424 /* The value has no fractional part so there is nothing to round */ 425 }else if( n==0 ){ 426 r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5))); 427 }else{ 428 zBuf = sqlite3_mprintf("%.*f",n,r); 429 if( zBuf==0 ){ 430 sqlite3_result_error_nomem(context); 431 return; 432 } 433 sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8); 434 sqlite3_free(zBuf); 435 } 436 sqlite3_result_double(context, r); 437 } 438 #endif 439 440 /* 441 ** Allocate nByte bytes of space using sqlite3Malloc(). If the 442 ** allocation fails, call sqlite3_result_error_nomem() to notify 443 ** the database handle that malloc() has failed and return NULL. 444 ** If nByte is larger than the maximum string or blob length, then 445 ** raise an SQLITE_TOOBIG exception and return NULL. 446 */ 447 static void *contextMalloc(sqlite3_context *context, i64 nByte){ 448 char *z; 449 sqlite3 *db = sqlite3_context_db_handle(context); 450 assert( nByte>0 ); 451 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] ); 452 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); 453 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 454 sqlite3_result_error_toobig(context); 455 z = 0; 456 }else{ 457 z = sqlite3Malloc(nByte); 458 if( !z ){ 459 sqlite3_result_error_nomem(context); 460 } 461 } 462 return z; 463 } 464 465 /* 466 ** Implementation of the upper() and lower() SQL functions. 467 */ 468 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 469 char *z1; 470 const char *z2; 471 int i, n; 472 UNUSED_PARAMETER(argc); 473 z2 = (char*)sqlite3_value_text(argv[0]); 474 n = sqlite3_value_bytes(argv[0]); 475 /* Verify that the call to _bytes() does not invalidate the _text() pointer */ 476 assert( z2==(char*)sqlite3_value_text(argv[0]) ); 477 if( z2 ){ 478 z1 = contextMalloc(context, ((i64)n)+1); 479 if( z1 ){ 480 for(i=0; i<n; i++){ 481 z1[i] = (char)sqlite3Toupper(z2[i]); 482 } 483 sqlite3_result_text(context, z1, n, sqlite3_free); 484 } 485 } 486 } 487 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 488 char *z1; 489 const char *z2; 490 int i, n; 491 UNUSED_PARAMETER(argc); 492 z2 = (char*)sqlite3_value_text(argv[0]); 493 n = sqlite3_value_bytes(argv[0]); 494 /* Verify that the call to _bytes() does not invalidate the _text() pointer */ 495 assert( z2==(char*)sqlite3_value_text(argv[0]) ); 496 if( z2 ){ 497 z1 = contextMalloc(context, ((i64)n)+1); 498 if( z1 ){ 499 for(i=0; i<n; i++){ 500 z1[i] = sqlite3Tolower(z2[i]); 501 } 502 sqlite3_result_text(context, z1, n, sqlite3_free); 503 } 504 } 505 } 506 507 /* 508 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented 509 ** as VDBE code so that unused argument values do not have to be computed. 510 ** However, we still need some kind of function implementation for this 511 ** routines in the function table. The noopFunc macro provides this. 512 ** noopFunc will never be called so it doesn't matter what the implementation 513 ** is. We might as well use the "version()" function as a substitute. 514 */ 515 #define noopFunc versionFunc /* Substitute function - never called */ 516 517 /* 518 ** Implementation of random(). Return a random integer. 519 */ 520 static void randomFunc( 521 sqlite3_context *context, 522 int NotUsed, 523 sqlite3_value **NotUsed2 524 ){ 525 sqlite_int64 r; 526 UNUSED_PARAMETER2(NotUsed, NotUsed2); 527 sqlite3_randomness(sizeof(r), &r); 528 if( r<0 ){ 529 /* We need to prevent a random number of 0x8000000000000000 530 ** (or -9223372036854775808) since when you do abs() of that 531 ** number of you get the same value back again. To do this 532 ** in a way that is testable, mask the sign bit off of negative 533 ** values, resulting in a positive value. Then take the 534 ** 2s complement of that positive value. The end result can 535 ** therefore be no less than -9223372036854775807. 536 */ 537 r = -(r & LARGEST_INT64); 538 } 539 sqlite3_result_int64(context, r); 540 } 541 542 /* 543 ** Implementation of randomblob(N). Return a random blob 544 ** that is N bytes long. 545 */ 546 static void randomBlob( 547 sqlite3_context *context, 548 int argc, 549 sqlite3_value **argv 550 ){ 551 sqlite3_int64 n; 552 unsigned char *p; 553 assert( argc==1 ); 554 UNUSED_PARAMETER(argc); 555 n = sqlite3_value_int64(argv[0]); 556 if( n<1 ){ 557 n = 1; 558 } 559 p = contextMalloc(context, n); 560 if( p ){ 561 sqlite3_randomness(n, p); 562 sqlite3_result_blob(context, (char*)p, n, sqlite3_free); 563 } 564 } 565 566 /* 567 ** Implementation of the last_insert_rowid() SQL function. The return 568 ** value is the same as the sqlite3_last_insert_rowid() API function. 569 */ 570 static void last_insert_rowid( 571 sqlite3_context *context, 572 int NotUsed, 573 sqlite3_value **NotUsed2 574 ){ 575 sqlite3 *db = sqlite3_context_db_handle(context); 576 UNUSED_PARAMETER2(NotUsed, NotUsed2); 577 /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a 578 ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface 579 ** function. */ 580 sqlite3_result_int64(context, sqlite3_last_insert_rowid(db)); 581 } 582 583 /* 584 ** Implementation of the changes() SQL function. 585 ** 586 ** IMP: R-32760-32347 The changes() SQL function is a wrapper 587 ** around the sqlite3_changes64() C/C++ function and hence follows the 588 ** same rules for counting changes. 589 */ 590 static void changes( 591 sqlite3_context *context, 592 int NotUsed, 593 sqlite3_value **NotUsed2 594 ){ 595 sqlite3 *db = sqlite3_context_db_handle(context); 596 UNUSED_PARAMETER2(NotUsed, NotUsed2); 597 sqlite3_result_int64(context, sqlite3_changes64(db)); 598 } 599 600 /* 601 ** Implementation of the total_changes() SQL function. The return value is 602 ** the same as the sqlite3_total_changes64() API function. 603 */ 604 static void total_changes( 605 sqlite3_context *context, 606 int NotUsed, 607 sqlite3_value **NotUsed2 608 ){ 609 sqlite3 *db = sqlite3_context_db_handle(context); 610 UNUSED_PARAMETER2(NotUsed, NotUsed2); 611 /* IMP: R-11217-42568 This function is a wrapper around the 612 ** sqlite3_total_changes64() C/C++ interface. */ 613 sqlite3_result_int64(context, sqlite3_total_changes64(db)); 614 } 615 616 /* 617 ** A structure defining how to do GLOB-style comparisons. 618 */ 619 struct compareInfo { 620 u8 matchAll; /* "*" or "%" */ 621 u8 matchOne; /* "?" or "_" */ 622 u8 matchSet; /* "[" or 0 */ 623 u8 noCase; /* true to ignore case differences */ 624 }; 625 626 /* 627 ** For LIKE and GLOB matching on EBCDIC machines, assume that every 628 ** character is exactly one byte in size. Also, provde the Utf8Read() 629 ** macro for fast reading of the next character in the common case where 630 ** the next character is ASCII. 631 */ 632 #if defined(SQLITE_EBCDIC) 633 # define sqlite3Utf8Read(A) (*((*A)++)) 634 # define Utf8Read(A) (*(A++)) 635 #else 636 # define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A)) 637 #endif 638 639 static const struct compareInfo globInfo = { '*', '?', '[', 0 }; 640 /* The correct SQL-92 behavior is for the LIKE operator to ignore 641 ** case. Thus 'a' LIKE 'A' would be true. */ 642 static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 }; 643 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator 644 ** is case sensitive causing 'a' LIKE 'A' to be false */ 645 static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 }; 646 647 /* 648 ** Possible error returns from patternMatch() 649 */ 650 #define SQLITE_MATCH 0 651 #define SQLITE_NOMATCH 1 652 #define SQLITE_NOWILDCARDMATCH 2 653 654 /* 655 ** Compare two UTF-8 strings for equality where the first string is 656 ** a GLOB or LIKE expression. Return values: 657 ** 658 ** SQLITE_MATCH: Match 659 ** SQLITE_NOMATCH: No match 660 ** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards. 661 ** 662 ** Globbing rules: 663 ** 664 ** '*' Matches any sequence of zero or more characters. 665 ** 666 ** '?' Matches exactly one character. 667 ** 668 ** [...] Matches one character from the enclosed list of 669 ** characters. 670 ** 671 ** [^...] Matches one character not in the enclosed list. 672 ** 673 ** With the [...] and [^...] matching, a ']' character can be included 674 ** in the list by making it the first character after '[' or '^'. A 675 ** range of characters can be specified using '-'. Example: 676 ** "[a-z]" matches any single lower-case letter. To match a '-', make 677 ** it the last character in the list. 678 ** 679 ** Like matching rules: 680 ** 681 ** '%' Matches any sequence of zero or more characters 682 ** 683 *** '_' Matches any one character 684 ** 685 ** Ec Where E is the "esc" character and c is any other 686 ** character, including '%', '_', and esc, match exactly c. 687 ** 688 ** The comments within this routine usually assume glob matching. 689 ** 690 ** This routine is usually quick, but can be N**2 in the worst case. 691 */ 692 static int patternCompare( 693 const u8 *zPattern, /* The glob pattern */ 694 const u8 *zString, /* The string to compare against the glob */ 695 const struct compareInfo *pInfo, /* Information about how to do the compare */ 696 u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */ 697 ){ 698 u32 c, c2; /* Next pattern and input string chars */ 699 u32 matchOne = pInfo->matchOne; /* "?" or "_" */ 700 u32 matchAll = pInfo->matchAll; /* "*" or "%" */ 701 u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */ 702 const u8 *zEscaped = 0; /* One past the last escaped input char */ 703 704 while( (c = Utf8Read(zPattern))!=0 ){ 705 if( c==matchAll ){ /* Match "*" */ 706 /* Skip over multiple "*" characters in the pattern. If there 707 ** are also "?" characters, skip those as well, but consume a 708 ** single character of the input string for each "?" skipped */ 709 while( (c=Utf8Read(zPattern)) == matchAll 710 || (c == matchOne && matchOne!=0) ){ 711 if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){ 712 return SQLITE_NOWILDCARDMATCH; 713 } 714 } 715 if( c==0 ){ 716 return SQLITE_MATCH; /* "*" at the end of the pattern matches */ 717 }else if( c==matchOther ){ 718 if( pInfo->matchSet==0 ){ 719 c = sqlite3Utf8Read(&zPattern); 720 if( c==0 ) return SQLITE_NOWILDCARDMATCH; 721 }else{ 722 /* "[...]" immediately follows the "*". We have to do a slow 723 ** recursive search in this case, but it is an unusual case. */ 724 assert( matchOther<0x80 ); /* '[' is a single-byte character */ 725 while( *zString ){ 726 int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther); 727 if( bMatch!=SQLITE_NOMATCH ) return bMatch; 728 SQLITE_SKIP_UTF8(zString); 729 } 730 return SQLITE_NOWILDCARDMATCH; 731 } 732 } 733 734 /* At this point variable c contains the first character of the 735 ** pattern string past the "*". Search in the input string for the 736 ** first matching character and recursively continue the match from 737 ** that point. 738 ** 739 ** For a case-insensitive search, set variable cx to be the same as 740 ** c but in the other case and search the input string for either 741 ** c or cx. 742 */ 743 if( c<=0x80 ){ 744 char zStop[3]; 745 int bMatch; 746 if( noCase ){ 747 zStop[0] = sqlite3Toupper(c); 748 zStop[1] = sqlite3Tolower(c); 749 zStop[2] = 0; 750 }else{ 751 zStop[0] = c; 752 zStop[1] = 0; 753 } 754 while(1){ 755 zString += strcspn((const char*)zString, zStop); 756 if( zString[0]==0 ) break; 757 zString++; 758 bMatch = patternCompare(zPattern,zString,pInfo,matchOther); 759 if( bMatch!=SQLITE_NOMATCH ) return bMatch; 760 } 761 }else{ 762 int bMatch; 763 while( (c2 = Utf8Read(zString))!=0 ){ 764 if( c2!=c ) continue; 765 bMatch = patternCompare(zPattern,zString,pInfo,matchOther); 766 if( bMatch!=SQLITE_NOMATCH ) return bMatch; 767 } 768 } 769 return SQLITE_NOWILDCARDMATCH; 770 } 771 if( c==matchOther ){ 772 if( pInfo->matchSet==0 ){ 773 c = sqlite3Utf8Read(&zPattern); 774 if( c==0 ) return SQLITE_NOMATCH; 775 zEscaped = zPattern; 776 }else{ 777 u32 prior_c = 0; 778 int seen = 0; 779 int invert = 0; 780 c = sqlite3Utf8Read(&zString); 781 if( c==0 ) return SQLITE_NOMATCH; 782 c2 = sqlite3Utf8Read(&zPattern); 783 if( c2=='^' ){ 784 invert = 1; 785 c2 = sqlite3Utf8Read(&zPattern); 786 } 787 if( c2==']' ){ 788 if( c==']' ) seen = 1; 789 c2 = sqlite3Utf8Read(&zPattern); 790 } 791 while( c2 && c2!=']' ){ 792 if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){ 793 c2 = sqlite3Utf8Read(&zPattern); 794 if( c>=prior_c && c<=c2 ) seen = 1; 795 prior_c = 0; 796 }else{ 797 if( c==c2 ){ 798 seen = 1; 799 } 800 prior_c = c2; 801 } 802 c2 = sqlite3Utf8Read(&zPattern); 803 } 804 if( c2==0 || (seen ^ invert)==0 ){ 805 return SQLITE_NOMATCH; 806 } 807 continue; 808 } 809 } 810 c2 = Utf8Read(zString); 811 if( c==c2 ) continue; 812 if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){ 813 continue; 814 } 815 if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue; 816 return SQLITE_NOMATCH; 817 } 818 return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH; 819 } 820 821 /* 822 ** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and 823 ** non-zero if there is no match. 824 */ 825 int sqlite3_strglob(const char *zGlobPattern, const char *zString){ 826 return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '['); 827 } 828 829 /* 830 ** The sqlite3_strlike() interface. Return 0 on a match and non-zero for 831 ** a miss - like strcmp(). 832 */ 833 int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){ 834 return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc); 835 } 836 837 /* 838 ** Count the number of times that the LIKE operator (or GLOB which is 839 ** just a variation of LIKE) gets called. This is used for testing 840 ** only. 841 */ 842 #ifdef SQLITE_TEST 843 int sqlite3_like_count = 0; 844 #endif 845 846 847 /* 848 ** Implementation of the like() SQL function. This function implements 849 ** the build-in LIKE operator. The first argument to the function is the 850 ** pattern and the second argument is the string. So, the SQL statements: 851 ** 852 ** A LIKE B 853 ** 854 ** is implemented as like(B,A). 855 ** 856 ** This same function (with a different compareInfo structure) computes 857 ** the GLOB operator. 858 */ 859 static void likeFunc( 860 sqlite3_context *context, 861 int argc, 862 sqlite3_value **argv 863 ){ 864 const unsigned char *zA, *zB; 865 u32 escape; 866 int nPat; 867 sqlite3 *db = sqlite3_context_db_handle(context); 868 struct compareInfo *pInfo = sqlite3_user_data(context); 869 struct compareInfo backupInfo; 870 871 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 872 if( sqlite3_value_type(argv[0])==SQLITE_BLOB 873 || sqlite3_value_type(argv[1])==SQLITE_BLOB 874 ){ 875 #ifdef SQLITE_TEST 876 sqlite3_like_count++; 877 #endif 878 sqlite3_result_int(context, 0); 879 return; 880 } 881 #endif 882 883 /* Limit the length of the LIKE or GLOB pattern to avoid problems 884 ** of deep recursion and N*N behavior in patternCompare(). 885 */ 886 nPat = sqlite3_value_bytes(argv[0]); 887 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ); 888 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 ); 889 if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){ 890 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); 891 return; 892 } 893 if( argc==3 ){ 894 /* The escape character string must consist of a single UTF-8 character. 895 ** Otherwise, return an error. 896 */ 897 const unsigned char *zEsc = sqlite3_value_text(argv[2]); 898 if( zEsc==0 ) return; 899 if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){ 900 sqlite3_result_error(context, 901 "ESCAPE expression must be a single character", -1); 902 return; 903 } 904 escape = sqlite3Utf8Read(&zEsc); 905 if( escape==pInfo->matchAll || escape==pInfo->matchOne ){ 906 memcpy(&backupInfo, pInfo, sizeof(backupInfo)); 907 pInfo = &backupInfo; 908 if( escape==pInfo->matchAll ) pInfo->matchAll = 0; 909 if( escape==pInfo->matchOne ) pInfo->matchOne = 0; 910 } 911 }else{ 912 escape = pInfo->matchSet; 913 } 914 zB = sqlite3_value_text(argv[0]); 915 zA = sqlite3_value_text(argv[1]); 916 if( zA && zB ){ 917 #ifdef SQLITE_TEST 918 sqlite3_like_count++; 919 #endif 920 sqlite3_result_int(context, 921 patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH); 922 } 923 } 924 925 /* 926 ** Implementation of the NULLIF(x,y) function. The result is the first 927 ** argument if the arguments are different. The result is NULL if the 928 ** arguments are equal to each other. 929 */ 930 static void nullifFunc( 931 sqlite3_context *context, 932 int NotUsed, 933 sqlite3_value **argv 934 ){ 935 CollSeq *pColl = sqlite3GetFuncCollSeq(context); 936 UNUSED_PARAMETER(NotUsed); 937 if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ 938 sqlite3_result_value(context, argv[0]); 939 } 940 } 941 942 /* 943 ** Implementation of the sqlite_version() function. The result is the version 944 ** of the SQLite library that is running. 945 */ 946 static void versionFunc( 947 sqlite3_context *context, 948 int NotUsed, 949 sqlite3_value **NotUsed2 950 ){ 951 UNUSED_PARAMETER2(NotUsed, NotUsed2); 952 /* IMP: R-48699-48617 This function is an SQL wrapper around the 953 ** sqlite3_libversion() C-interface. */ 954 sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC); 955 } 956 957 /* 958 ** Implementation of the sqlite_source_id() function. The result is a string 959 ** that identifies the particular version of the source code used to build 960 ** SQLite. 961 */ 962 static void sourceidFunc( 963 sqlite3_context *context, 964 int NotUsed, 965 sqlite3_value **NotUsed2 966 ){ 967 UNUSED_PARAMETER2(NotUsed, NotUsed2); 968 /* IMP: R-24470-31136 This function is an SQL wrapper around the 969 ** sqlite3_sourceid() C interface. */ 970 sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC); 971 } 972 973 /* 974 ** Implementation of the sqlite_log() function. This is a wrapper around 975 ** sqlite3_log(). The return value is NULL. The function exists purely for 976 ** its side-effects. 977 */ 978 static void errlogFunc( 979 sqlite3_context *context, 980 int argc, 981 sqlite3_value **argv 982 ){ 983 UNUSED_PARAMETER(argc); 984 UNUSED_PARAMETER(context); 985 sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1])); 986 } 987 988 /* 989 ** Implementation of the sqlite_compileoption_used() function. 990 ** The result is an integer that identifies if the compiler option 991 ** was used to build SQLite. 992 */ 993 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 994 static void compileoptionusedFunc( 995 sqlite3_context *context, 996 int argc, 997 sqlite3_value **argv 998 ){ 999 const char *zOptName; 1000 assert( argc==1 ); 1001 UNUSED_PARAMETER(argc); 1002 /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL 1003 ** function is a wrapper around the sqlite3_compileoption_used() C/C++ 1004 ** function. 1005 */ 1006 if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){ 1007 sqlite3_result_int(context, sqlite3_compileoption_used(zOptName)); 1008 } 1009 } 1010 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 1011 1012 /* 1013 ** Implementation of the sqlite_compileoption_get() function. 1014 ** The result is a string that identifies the compiler options 1015 ** used to build SQLite. 1016 */ 1017 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 1018 static void compileoptiongetFunc( 1019 sqlite3_context *context, 1020 int argc, 1021 sqlite3_value **argv 1022 ){ 1023 int n; 1024 assert( argc==1 ); 1025 UNUSED_PARAMETER(argc); 1026 /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function 1027 ** is a wrapper around the sqlite3_compileoption_get() C/C++ function. 1028 */ 1029 n = sqlite3_value_int(argv[0]); 1030 sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC); 1031 } 1032 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 1033 1034 /* Array for converting from half-bytes (nybbles) into ASCII hex 1035 ** digits. */ 1036 static const char hexdigits[] = { 1037 '0', '1', '2', '3', '4', '5', '6', '7', 1038 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' 1039 }; 1040 1041 /* 1042 ** Append to pStr text that is the SQL literal representation of the 1043 ** value contained in pValue. 1044 */ 1045 void sqlite3QuoteValue(StrAccum *pStr, sqlite3_value *pValue){ 1046 /* As currently implemented, the string must be initially empty. 1047 ** we might relax this requirement in the future, but that will 1048 ** require enhancements to the implementation. */ 1049 assert( pStr!=0 && pStr->nChar==0 ); 1050 1051 switch( sqlite3_value_type(pValue) ){ 1052 case SQLITE_FLOAT: { 1053 double r1, r2; 1054 const char *zVal; 1055 r1 = sqlite3_value_double(pValue); 1056 sqlite3_str_appendf(pStr, "%!.15g", r1); 1057 zVal = sqlite3_str_value(pStr); 1058 if( zVal ){ 1059 sqlite3AtoF(zVal, &r2, pStr->nChar, SQLITE_UTF8); 1060 if( r1!=r2 ){ 1061 sqlite3_str_reset(pStr); 1062 sqlite3_str_appendf(pStr, "%!.20e", r1); 1063 } 1064 } 1065 break; 1066 } 1067 case SQLITE_INTEGER: { 1068 sqlite3_str_appendf(pStr, "%lld", sqlite3_value_int64(pValue)); 1069 break; 1070 } 1071 case SQLITE_BLOB: { 1072 char const *zBlob = sqlite3_value_blob(pValue); 1073 int nBlob = sqlite3_value_bytes(pValue); 1074 assert( zBlob==sqlite3_value_blob(pValue) ); /* No encoding change */ 1075 sqlite3StrAccumEnlarge(pStr, nBlob*2 + 4); 1076 if( pStr->accError==0 ){ 1077 char *zText = pStr->zText; 1078 int i; 1079 for(i=0; i<nBlob; i++){ 1080 zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F]; 1081 zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; 1082 } 1083 zText[(nBlob*2)+2] = '\''; 1084 zText[(nBlob*2)+3] = '\0'; 1085 zText[0] = 'X'; 1086 zText[1] = '\''; 1087 pStr->nChar = nBlob*2 + 3; 1088 } 1089 break; 1090 } 1091 case SQLITE_TEXT: { 1092 const unsigned char *zArg = sqlite3_value_text(pValue); 1093 sqlite3_str_appendf(pStr, "%Q", zArg); 1094 break; 1095 } 1096 default: { 1097 assert( sqlite3_value_type(pValue)==SQLITE_NULL ); 1098 sqlite3_str_append(pStr, "NULL", 4); 1099 break; 1100 } 1101 } 1102 } 1103 1104 /* 1105 ** Implementation of the QUOTE() function. 1106 ** 1107 ** The quote(X) function returns the text of an SQL literal which is the 1108 ** value of its argument suitable for inclusion into an SQL statement. 1109 ** Strings are surrounded by single-quotes with escapes on interior quotes 1110 ** as needed. BLOBs are encoded as hexadecimal literals. Strings with 1111 ** embedded NUL characters cannot be represented as string literals in SQL 1112 ** and hence the returned string literal is truncated prior to the first NUL. 1113 */ 1114 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 1115 sqlite3_str str; 1116 sqlite3 *db = sqlite3_context_db_handle(context); 1117 assert( argc==1 ); 1118 UNUSED_PARAMETER(argc); 1119 sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); 1120 sqlite3QuoteValue(&str,argv[0]); 1121 sqlite3_result_text(context, sqlite3StrAccumFinish(&str), str.nChar, 1122 SQLITE_DYNAMIC); 1123 if( str.accError!=SQLITE_OK ){ 1124 sqlite3_result_null(context); 1125 sqlite3_result_error_code(context, str.accError); 1126 } 1127 } 1128 1129 /* 1130 ** The unicode() function. Return the integer unicode code-point value 1131 ** for the first character of the input string. 1132 */ 1133 static void unicodeFunc( 1134 sqlite3_context *context, 1135 int argc, 1136 sqlite3_value **argv 1137 ){ 1138 const unsigned char *z = sqlite3_value_text(argv[0]); 1139 (void)argc; 1140 if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z)); 1141 } 1142 1143 /* 1144 ** The char() function takes zero or more arguments, each of which is 1145 ** an integer. It constructs a string where each character of the string 1146 ** is the unicode character for the corresponding integer argument. 1147 */ 1148 static void charFunc( 1149 sqlite3_context *context, 1150 int argc, 1151 sqlite3_value **argv 1152 ){ 1153 unsigned char *z, *zOut; 1154 int i; 1155 zOut = z = sqlite3_malloc64( argc*4+1 ); 1156 if( z==0 ){ 1157 sqlite3_result_error_nomem(context); 1158 return; 1159 } 1160 for(i=0; i<argc; i++){ 1161 sqlite3_int64 x; 1162 unsigned c; 1163 x = sqlite3_value_int64(argv[i]); 1164 if( x<0 || x>0x10ffff ) x = 0xfffd; 1165 c = (unsigned)(x & 0x1fffff); 1166 if( c<0x00080 ){ 1167 *zOut++ = (u8)(c&0xFF); 1168 }else if( c<0x00800 ){ 1169 *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); 1170 *zOut++ = 0x80 + (u8)(c & 0x3F); 1171 }else if( c<0x10000 ){ 1172 *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); 1173 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); 1174 *zOut++ = 0x80 + (u8)(c & 0x3F); 1175 }else{ 1176 *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); 1177 *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); 1178 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); 1179 *zOut++ = 0x80 + (u8)(c & 0x3F); 1180 } \ 1181 } 1182 sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8); 1183 } 1184 1185 /* 1186 ** The hex() function. Interpret the argument as a blob. Return 1187 ** a hexadecimal rendering as text. 1188 */ 1189 static void hexFunc( 1190 sqlite3_context *context, 1191 int argc, 1192 sqlite3_value **argv 1193 ){ 1194 int i, n; 1195 const unsigned char *pBlob; 1196 char *zHex, *z; 1197 assert( argc==1 ); 1198 UNUSED_PARAMETER(argc); 1199 pBlob = sqlite3_value_blob(argv[0]); 1200 n = sqlite3_value_bytes(argv[0]); 1201 assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ 1202 z = zHex = contextMalloc(context, ((i64)n)*2 + 1); 1203 if( zHex ){ 1204 for(i=0; i<n; i++, pBlob++){ 1205 unsigned char c = *pBlob; 1206 *(z++) = hexdigits[(c>>4)&0xf]; 1207 *(z++) = hexdigits[c&0xf]; 1208 } 1209 *z = 0; 1210 sqlite3_result_text(context, zHex, n*2, sqlite3_free); 1211 } 1212 } 1213 1214 /* 1215 ** The zeroblob(N) function returns a zero-filled blob of size N bytes. 1216 */ 1217 static void zeroblobFunc( 1218 sqlite3_context *context, 1219 int argc, 1220 sqlite3_value **argv 1221 ){ 1222 i64 n; 1223 int rc; 1224 assert( argc==1 ); 1225 UNUSED_PARAMETER(argc); 1226 n = sqlite3_value_int64(argv[0]); 1227 if( n<0 ) n = 0; 1228 rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */ 1229 if( rc ){ 1230 sqlite3_result_error_code(context, rc); 1231 } 1232 } 1233 1234 /* 1235 ** The replace() function. Three arguments are all strings: call 1236 ** them A, B, and C. The result is also a string which is derived 1237 ** from A by replacing every occurrence of B with C. The match 1238 ** must be exact. Collating sequences are not used. 1239 */ 1240 static void replaceFunc( 1241 sqlite3_context *context, 1242 int argc, 1243 sqlite3_value **argv 1244 ){ 1245 const unsigned char *zStr; /* The input string A */ 1246 const unsigned char *zPattern; /* The pattern string B */ 1247 const unsigned char *zRep; /* The replacement string C */ 1248 unsigned char *zOut; /* The output */ 1249 int nStr; /* Size of zStr */ 1250 int nPattern; /* Size of zPattern */ 1251 int nRep; /* Size of zRep */ 1252 i64 nOut; /* Maximum size of zOut */ 1253 int loopLimit; /* Last zStr[] that might match zPattern[] */ 1254 int i, j; /* Loop counters */ 1255 unsigned cntExpand; /* Number zOut expansions */ 1256 sqlite3 *db = sqlite3_context_db_handle(context); 1257 1258 assert( argc==3 ); 1259 UNUSED_PARAMETER(argc); 1260 zStr = sqlite3_value_text(argv[0]); 1261 if( zStr==0 ) return; 1262 nStr = sqlite3_value_bytes(argv[0]); 1263 assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */ 1264 zPattern = sqlite3_value_text(argv[1]); 1265 if( zPattern==0 ){ 1266 assert( sqlite3_value_type(argv[1])==SQLITE_NULL 1267 || sqlite3_context_db_handle(context)->mallocFailed ); 1268 return; 1269 } 1270 if( zPattern[0]==0 ){ 1271 assert( sqlite3_value_type(argv[1])!=SQLITE_NULL ); 1272 sqlite3_result_value(context, argv[0]); 1273 return; 1274 } 1275 nPattern = sqlite3_value_bytes(argv[1]); 1276 assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */ 1277 zRep = sqlite3_value_text(argv[2]); 1278 if( zRep==0 ) return; 1279 nRep = sqlite3_value_bytes(argv[2]); 1280 assert( zRep==sqlite3_value_text(argv[2]) ); 1281 nOut = nStr + 1; 1282 assert( nOut<SQLITE_MAX_LENGTH ); 1283 zOut = contextMalloc(context, (i64)nOut); 1284 if( zOut==0 ){ 1285 return; 1286 } 1287 loopLimit = nStr - nPattern; 1288 cntExpand = 0; 1289 for(i=j=0; i<=loopLimit; i++){ 1290 if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){ 1291 zOut[j++] = zStr[i]; 1292 }else{ 1293 if( nRep>nPattern ){ 1294 nOut += nRep - nPattern; 1295 testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] ); 1296 testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] ); 1297 if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1298 sqlite3_result_error_toobig(context); 1299 sqlite3_free(zOut); 1300 return; 1301 } 1302 cntExpand++; 1303 if( (cntExpand&(cntExpand-1))==0 ){ 1304 /* Grow the size of the output buffer only on substitutions 1305 ** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */ 1306 u8 *zOld; 1307 zOld = zOut; 1308 zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1)); 1309 if( zOut==0 ){ 1310 sqlite3_result_error_nomem(context); 1311 sqlite3_free(zOld); 1312 return; 1313 } 1314 } 1315 } 1316 memcpy(&zOut[j], zRep, nRep); 1317 j += nRep; 1318 i += nPattern-1; 1319 } 1320 } 1321 assert( j+nStr-i+1<=nOut ); 1322 memcpy(&zOut[j], &zStr[i], nStr-i); 1323 j += nStr - i; 1324 assert( j<=nOut ); 1325 zOut[j] = 0; 1326 sqlite3_result_text(context, (char*)zOut, j, sqlite3_free); 1327 } 1328 1329 /* 1330 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions. 1331 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both. 1332 */ 1333 static void trimFunc( 1334 sqlite3_context *context, 1335 int argc, 1336 sqlite3_value **argv 1337 ){ 1338 const unsigned char *zIn; /* Input string */ 1339 const unsigned char *zCharSet; /* Set of characters to trim */ 1340 unsigned int nIn; /* Number of bytes in input */ 1341 int flags; /* 1: trimleft 2: trimright 3: trim */ 1342 int i; /* Loop counter */ 1343 unsigned int *aLen = 0; /* Length of each character in zCharSet */ 1344 unsigned char **azChar = 0; /* Individual characters in zCharSet */ 1345 int nChar; /* Number of characters in zCharSet */ 1346 1347 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ 1348 return; 1349 } 1350 zIn = sqlite3_value_text(argv[0]); 1351 if( zIn==0 ) return; 1352 nIn = (unsigned)sqlite3_value_bytes(argv[0]); 1353 assert( zIn==sqlite3_value_text(argv[0]) ); 1354 if( argc==1 ){ 1355 static const unsigned lenOne[] = { 1 }; 1356 static unsigned char * const azOne[] = { (u8*)" " }; 1357 nChar = 1; 1358 aLen = (unsigned*)lenOne; 1359 azChar = (unsigned char **)azOne; 1360 zCharSet = 0; 1361 }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){ 1362 return; 1363 }else{ 1364 const unsigned char *z; 1365 for(z=zCharSet, nChar=0; *z; nChar++){ 1366 SQLITE_SKIP_UTF8(z); 1367 } 1368 if( nChar>0 ){ 1369 azChar = contextMalloc(context, 1370 ((i64)nChar)*(sizeof(char*)+sizeof(unsigned))); 1371 if( azChar==0 ){ 1372 return; 1373 } 1374 aLen = (unsigned*)&azChar[nChar]; 1375 for(z=zCharSet, nChar=0; *z; nChar++){ 1376 azChar[nChar] = (unsigned char *)z; 1377 SQLITE_SKIP_UTF8(z); 1378 aLen[nChar] = (unsigned)(z - azChar[nChar]); 1379 } 1380 } 1381 } 1382 if( nChar>0 ){ 1383 flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context)); 1384 if( flags & 1 ){ 1385 while( nIn>0 ){ 1386 unsigned int len = 0; 1387 for(i=0; i<nChar; i++){ 1388 len = aLen[i]; 1389 if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break; 1390 } 1391 if( i>=nChar ) break; 1392 zIn += len; 1393 nIn -= len; 1394 } 1395 } 1396 if( flags & 2 ){ 1397 while( nIn>0 ){ 1398 unsigned int len = 0; 1399 for(i=0; i<nChar; i++){ 1400 len = aLen[i]; 1401 if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break; 1402 } 1403 if( i>=nChar ) break; 1404 nIn -= len; 1405 } 1406 } 1407 if( zCharSet ){ 1408 sqlite3_free(azChar); 1409 } 1410 } 1411 sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT); 1412 } 1413 1414 1415 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 1416 /* 1417 ** The "unknown" function is automatically substituted in place of 1418 ** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN 1419 ** when the SQLITE_ENABLE_UNKNOWN_FUNCTION compile-time option is used. 1420 ** When the "sqlite3" command-line shell is built using this functionality, 1421 ** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries 1422 ** involving application-defined functions to be examined in a generic 1423 ** sqlite3 shell. 1424 */ 1425 static void unknownFunc( 1426 sqlite3_context *context, 1427 int argc, 1428 sqlite3_value **argv 1429 ){ 1430 /* no-op */ 1431 } 1432 #endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/ 1433 1434 1435 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It 1436 ** is only available if the SQLITE_SOUNDEX compile-time option is used 1437 ** when SQLite is built. 1438 */ 1439 #ifdef SQLITE_SOUNDEX 1440 /* 1441 ** Compute the soundex encoding of a word. 1442 ** 1443 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the 1444 ** soundex encoding of the string X. 1445 */ 1446 static void soundexFunc( 1447 sqlite3_context *context, 1448 int argc, 1449 sqlite3_value **argv 1450 ){ 1451 char zResult[8]; 1452 const u8 *zIn; 1453 int i, j; 1454 static const unsigned char iCode[] = { 1455 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1456 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1457 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1458 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1459 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, 1460 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1461 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, 1462 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1463 }; 1464 assert( argc==1 ); 1465 zIn = (u8*)sqlite3_value_text(argv[0]); 1466 if( zIn==0 ) zIn = (u8*)""; 1467 for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){} 1468 if( zIn[i] ){ 1469 u8 prevcode = iCode[zIn[i]&0x7f]; 1470 zResult[0] = sqlite3Toupper(zIn[i]); 1471 for(j=1; j<4 && zIn[i]; i++){ 1472 int code = iCode[zIn[i]&0x7f]; 1473 if( code>0 ){ 1474 if( code!=prevcode ){ 1475 prevcode = code; 1476 zResult[j++] = code + '0'; 1477 } 1478 }else{ 1479 prevcode = 0; 1480 } 1481 } 1482 while( j<4 ){ 1483 zResult[j++] = '0'; 1484 } 1485 zResult[j] = 0; 1486 sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT); 1487 }else{ 1488 /* IMP: R-64894-50321 The string "?000" is returned if the argument 1489 ** is NULL or contains no ASCII alphabetic characters. */ 1490 sqlite3_result_text(context, "?000", 4, SQLITE_STATIC); 1491 } 1492 } 1493 #endif /* SQLITE_SOUNDEX */ 1494 1495 #ifndef SQLITE_OMIT_LOAD_EXTENSION 1496 /* 1497 ** A function that loads a shared-library extension then returns NULL. 1498 */ 1499 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){ 1500 const char *zFile = (const char *)sqlite3_value_text(argv[0]); 1501 const char *zProc; 1502 sqlite3 *db = sqlite3_context_db_handle(context); 1503 char *zErrMsg = 0; 1504 1505 /* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc 1506 ** flag is set. See the sqlite3_enable_load_extension() API. 1507 */ 1508 if( (db->flags & SQLITE_LoadExtFunc)==0 ){ 1509 sqlite3_result_error(context, "not authorized", -1); 1510 return; 1511 } 1512 1513 if( argc==2 ){ 1514 zProc = (const char *)sqlite3_value_text(argv[1]); 1515 }else{ 1516 zProc = 0; 1517 } 1518 if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){ 1519 sqlite3_result_error(context, zErrMsg, -1); 1520 sqlite3_free(zErrMsg); 1521 } 1522 } 1523 #endif 1524 1525 1526 /* 1527 ** An instance of the following structure holds the context of a 1528 ** sum() or avg() aggregate computation. 1529 */ 1530 typedef struct SumCtx SumCtx; 1531 struct SumCtx { 1532 double rSum; /* Floating point sum */ 1533 i64 iSum; /* Integer sum */ 1534 i64 cnt; /* Number of elements summed */ 1535 u8 overflow; /* True if integer overflow seen */ 1536 u8 approx; /* True if non-integer value was input to the sum */ 1537 }; 1538 1539 /* 1540 ** Routines used to compute the sum, average, and total. 1541 ** 1542 ** The SUM() function follows the (broken) SQL standard which means 1543 ** that it returns NULL if it sums over no inputs. TOTAL returns 1544 ** 0.0 in that case. In addition, TOTAL always returns a float where 1545 ** SUM might return an integer if it never encounters a floating point 1546 ** value. TOTAL never fails, but SUM might through an exception if 1547 ** it overflows an integer. 1548 */ 1549 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ 1550 SumCtx *p; 1551 int type; 1552 assert( argc==1 ); 1553 UNUSED_PARAMETER(argc); 1554 p = sqlite3_aggregate_context(context, sizeof(*p)); 1555 type = sqlite3_value_numeric_type(argv[0]); 1556 if( p && type!=SQLITE_NULL ){ 1557 p->cnt++; 1558 if( type==SQLITE_INTEGER ){ 1559 i64 v = sqlite3_value_int64(argv[0]); 1560 p->rSum += v; 1561 if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){ 1562 p->approx = p->overflow = 1; 1563 } 1564 }else{ 1565 p->rSum += sqlite3_value_double(argv[0]); 1566 p->approx = 1; 1567 } 1568 } 1569 } 1570 #ifndef SQLITE_OMIT_WINDOWFUNC 1571 static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){ 1572 SumCtx *p; 1573 int type; 1574 assert( argc==1 ); 1575 UNUSED_PARAMETER(argc); 1576 p = sqlite3_aggregate_context(context, sizeof(*p)); 1577 type = sqlite3_value_numeric_type(argv[0]); 1578 /* p is always non-NULL because sumStep() will have been called first 1579 ** to initialize it */ 1580 if( ALWAYS(p) && type!=SQLITE_NULL ){ 1581 assert( p->cnt>0 ); 1582 p->cnt--; 1583 assert( type==SQLITE_INTEGER || p->approx ); 1584 if( type==SQLITE_INTEGER && p->approx==0 ){ 1585 i64 v = sqlite3_value_int64(argv[0]); 1586 p->rSum -= v; 1587 p->iSum -= v; 1588 }else{ 1589 p->rSum -= sqlite3_value_double(argv[0]); 1590 } 1591 } 1592 } 1593 #else 1594 # define sumInverse 0 1595 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1596 static void sumFinalize(sqlite3_context *context){ 1597 SumCtx *p; 1598 p = sqlite3_aggregate_context(context, 0); 1599 if( p && p->cnt>0 ){ 1600 if( p->overflow ){ 1601 sqlite3_result_error(context,"integer overflow",-1); 1602 }else if( p->approx ){ 1603 sqlite3_result_double(context, p->rSum); 1604 }else{ 1605 sqlite3_result_int64(context, p->iSum); 1606 } 1607 } 1608 } 1609 static void avgFinalize(sqlite3_context *context){ 1610 SumCtx *p; 1611 p = sqlite3_aggregate_context(context, 0); 1612 if( p && p->cnt>0 ){ 1613 sqlite3_result_double(context, p->rSum/(double)p->cnt); 1614 } 1615 } 1616 static void totalFinalize(sqlite3_context *context){ 1617 SumCtx *p; 1618 p = sqlite3_aggregate_context(context, 0); 1619 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1620 sqlite3_result_double(context, p ? p->rSum : (double)0); 1621 } 1622 1623 /* 1624 ** The following structure keeps track of state information for the 1625 ** count() aggregate function. 1626 */ 1627 typedef struct CountCtx CountCtx; 1628 struct CountCtx { 1629 i64 n; 1630 #ifdef SQLITE_DEBUG 1631 int bInverse; /* True if xInverse() ever called */ 1632 #endif 1633 }; 1634 1635 /* 1636 ** Routines to implement the count() aggregate function. 1637 */ 1638 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ 1639 CountCtx *p; 1640 p = sqlite3_aggregate_context(context, sizeof(*p)); 1641 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ 1642 p->n++; 1643 } 1644 1645 #ifndef SQLITE_OMIT_DEPRECATED 1646 /* The sqlite3_aggregate_count() function is deprecated. But just to make 1647 ** sure it still operates correctly, verify that its count agrees with our 1648 ** internal count when using count(*) and when the total count can be 1649 ** expressed as a 32-bit integer. */ 1650 assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse 1651 || p->n==sqlite3_aggregate_count(context) ); 1652 #endif 1653 } 1654 static void countFinalize(sqlite3_context *context){ 1655 CountCtx *p; 1656 p = sqlite3_aggregate_context(context, 0); 1657 sqlite3_result_int64(context, p ? p->n : 0); 1658 } 1659 #ifndef SQLITE_OMIT_WINDOWFUNC 1660 static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){ 1661 CountCtx *p; 1662 p = sqlite3_aggregate_context(ctx, sizeof(*p)); 1663 /* p is always non-NULL since countStep() will have been called first */ 1664 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){ 1665 p->n--; 1666 #ifdef SQLITE_DEBUG 1667 p->bInverse = 1; 1668 #endif 1669 } 1670 } 1671 #else 1672 # define countInverse 0 1673 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1674 1675 /* 1676 ** Routines to implement min() and max() aggregate functions. 1677 */ 1678 static void minmaxStep( 1679 sqlite3_context *context, 1680 int NotUsed, 1681 sqlite3_value **argv 1682 ){ 1683 Mem *pArg = (Mem *)argv[0]; 1684 Mem *pBest; 1685 UNUSED_PARAMETER(NotUsed); 1686 1687 pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); 1688 if( !pBest ) return; 1689 1690 if( sqlite3_value_type(pArg)==SQLITE_NULL ){ 1691 if( pBest->flags ) sqlite3SkipAccumulatorLoad(context); 1692 }else if( pBest->flags ){ 1693 int max; 1694 int cmp; 1695 CollSeq *pColl = sqlite3GetFuncCollSeq(context); 1696 /* This step function is used for both the min() and max() aggregates, 1697 ** the only difference between the two being that the sense of the 1698 ** comparison is inverted. For the max() aggregate, the 1699 ** sqlite3_user_data() function returns (void *)-1. For min() it 1700 ** returns (void *)db, where db is the sqlite3* database pointer. 1701 ** Therefore the next statement sets variable 'max' to 1 for the max() 1702 ** aggregate, or 0 for min(). 1703 */ 1704 max = sqlite3_user_data(context)!=0; 1705 cmp = sqlite3MemCompare(pBest, pArg, pColl); 1706 if( (max && cmp<0) || (!max && cmp>0) ){ 1707 sqlite3VdbeMemCopy(pBest, pArg); 1708 }else{ 1709 sqlite3SkipAccumulatorLoad(context); 1710 } 1711 }else{ 1712 pBest->db = sqlite3_context_db_handle(context); 1713 sqlite3VdbeMemCopy(pBest, pArg); 1714 } 1715 } 1716 static void minMaxValueFinalize(sqlite3_context *context, int bValue){ 1717 sqlite3_value *pRes; 1718 pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); 1719 if( pRes ){ 1720 if( pRes->flags ){ 1721 sqlite3_result_value(context, pRes); 1722 } 1723 if( bValue==0 ) sqlite3VdbeMemRelease(pRes); 1724 } 1725 } 1726 #ifndef SQLITE_OMIT_WINDOWFUNC 1727 static void minMaxValue(sqlite3_context *context){ 1728 minMaxValueFinalize(context, 1); 1729 } 1730 #else 1731 # define minMaxValue 0 1732 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1733 static void minMaxFinalize(sqlite3_context *context){ 1734 minMaxValueFinalize(context, 0); 1735 } 1736 1737 /* 1738 ** group_concat(EXPR, ?SEPARATOR?) 1739 ** 1740 ** The SEPARATOR goes before the EXPR string. This is tragic. The 1741 ** groupConcatInverse() implementation would have been easier if the 1742 ** SEPARATOR were appended after EXPR. And the order is undocumented, 1743 ** so we could change it, in theory. But the old behavior has been 1744 ** around for so long that we dare not, for fear of breaking something. 1745 */ 1746 typedef struct { 1747 StrAccum str; /* The accumulated concatenation */ 1748 #ifndef SQLITE_OMIT_WINDOWFUNC 1749 int nAccum; /* Number of strings presently concatenated */ 1750 int nFirstSepLength; /* Used to detect separator length change */ 1751 /* If pnSepLengths!=0, refs an array of inter-string separator lengths, 1752 ** stored as actually incorporated into presently accumulated result. 1753 ** (Hence, its slots in use number nAccum-1 between method calls.) 1754 ** If pnSepLengths==0, nFirstSepLength is the length used throughout. 1755 */ 1756 int *pnSepLengths; 1757 #endif 1758 } GroupConcatCtx; 1759 1760 static void groupConcatStep( 1761 sqlite3_context *context, 1762 int argc, 1763 sqlite3_value **argv 1764 ){ 1765 const char *zVal; 1766 GroupConcatCtx *pGCC; 1767 const char *zSep; 1768 int nVal, nSep; 1769 assert( argc==1 || argc==2 ); 1770 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 1771 pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC)); 1772 if( pGCC ){ 1773 sqlite3 *db = sqlite3_context_db_handle(context); 1774 int firstTerm = pGCC->str.mxAlloc==0; 1775 pGCC->str.mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH]; 1776 if( argc==1 ){ 1777 if( !firstTerm ){ 1778 sqlite3_str_appendchar(&pGCC->str, 1, ','); 1779 } 1780 #ifndef SQLITE_OMIT_WINDOWFUNC 1781 else{ 1782 pGCC->nFirstSepLength = 1; 1783 } 1784 #endif 1785 }else if( !firstTerm ){ 1786 zSep = (char*)sqlite3_value_text(argv[1]); 1787 nSep = sqlite3_value_bytes(argv[1]); 1788 if( zSep ){ 1789 sqlite3_str_append(&pGCC->str, zSep, nSep); 1790 } 1791 #ifndef SQLITE_OMIT_WINDOWFUNC 1792 else{ 1793 nSep = 0; 1794 } 1795 if( nSep != pGCC->nFirstSepLength || pGCC->pnSepLengths != 0 ){ 1796 int *pnsl = pGCC->pnSepLengths; 1797 if( pnsl == 0 ){ 1798 /* First separator length variation seen, start tracking them. */ 1799 pnsl = (int*)sqlite3_malloc64((pGCC->nAccum+1) * sizeof(int)); 1800 if( pnsl!=0 ){ 1801 int i = 0, nA = pGCC->nAccum-1; 1802 while( i<nA ) pnsl[i++] = pGCC->nFirstSepLength; 1803 } 1804 }else{ 1805 pnsl = (int*)sqlite3_realloc64(pnsl, pGCC->nAccum * sizeof(int)); 1806 } 1807 if( pnsl!=0 ){ 1808 if( ALWAYS(pGCC->nAccum>0) ){ 1809 pnsl[pGCC->nAccum-1] = nSep; 1810 } 1811 pGCC->pnSepLengths = pnsl; 1812 }else{ 1813 sqlite3StrAccumSetError(&pGCC->str, SQLITE_NOMEM); 1814 } 1815 } 1816 #endif 1817 } 1818 #ifndef SQLITE_OMIT_WINDOWFUNC 1819 else{ 1820 pGCC->nFirstSepLength = sqlite3_value_bytes(argv[1]); 1821 } 1822 pGCC->nAccum += 1; 1823 #endif 1824 zVal = (char*)sqlite3_value_text(argv[0]); 1825 nVal = sqlite3_value_bytes(argv[0]); 1826 if( zVal ) sqlite3_str_append(&pGCC->str, zVal, nVal); 1827 } 1828 } 1829 1830 #ifndef SQLITE_OMIT_WINDOWFUNC 1831 static void groupConcatInverse( 1832 sqlite3_context *context, 1833 int argc, 1834 sqlite3_value **argv 1835 ){ 1836 GroupConcatCtx *pGCC; 1837 assert( argc==1 || argc==2 ); 1838 (void)argc; /* Suppress unused parameter warning */ 1839 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 1840 pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC)); 1841 /* pGCC is always non-NULL since groupConcatStep() will have always 1842 ** run frist to initialize it */ 1843 if( ALWAYS(pGCC) ){ 1844 int nVS; 1845 /* Must call sqlite3_value_text() to convert the argument into text prior 1846 ** to invoking sqlite3_value_bytes(), in case the text encoding is UTF16 */ 1847 (void)sqlite3_value_text(argv[0]); 1848 nVS = sqlite3_value_bytes(argv[0]); 1849 pGCC->nAccum -= 1; 1850 if( pGCC->pnSepLengths!=0 ){ 1851 assert(pGCC->nAccum >= 0); 1852 if( pGCC->nAccum>0 ){ 1853 nVS += *pGCC->pnSepLengths; 1854 memmove(pGCC->pnSepLengths, pGCC->pnSepLengths+1, 1855 (pGCC->nAccum-1)*sizeof(int)); 1856 } 1857 }else{ 1858 /* If removing single accumulated string, harmlessly over-do. */ 1859 nVS += pGCC->nFirstSepLength; 1860 } 1861 if( nVS>=(int)pGCC->str.nChar ){ 1862 pGCC->str.nChar = 0; 1863 }else{ 1864 pGCC->str.nChar -= nVS; 1865 memmove(pGCC->str.zText, &pGCC->str.zText[nVS], pGCC->str.nChar); 1866 } 1867 if( pGCC->str.nChar==0 ){ 1868 pGCC->str.mxAlloc = 0; 1869 sqlite3_free(pGCC->pnSepLengths); 1870 pGCC->pnSepLengths = 0; 1871 } 1872 } 1873 } 1874 #else 1875 # define groupConcatInverse 0 1876 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1877 static void groupConcatFinalize(sqlite3_context *context){ 1878 GroupConcatCtx *pGCC 1879 = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0); 1880 if( pGCC ){ 1881 sqlite3ResultStrAccum(context, &pGCC->str); 1882 #ifndef SQLITE_OMIT_WINDOWFUNC 1883 sqlite3_free(pGCC->pnSepLengths); 1884 #endif 1885 } 1886 } 1887 #ifndef SQLITE_OMIT_WINDOWFUNC 1888 static void groupConcatValue(sqlite3_context *context){ 1889 GroupConcatCtx *pGCC 1890 = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0); 1891 if( pGCC ){ 1892 StrAccum *pAccum = &pGCC->str; 1893 if( pAccum->accError==SQLITE_TOOBIG ){ 1894 sqlite3_result_error_toobig(context); 1895 }else if( pAccum->accError==SQLITE_NOMEM ){ 1896 sqlite3_result_error_nomem(context); 1897 }else{ 1898 const char *zText = sqlite3_str_value(pAccum); 1899 sqlite3_result_text(context, zText, pAccum->nChar, SQLITE_TRANSIENT); 1900 } 1901 } 1902 } 1903 #else 1904 # define groupConcatValue 0 1905 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1906 1907 /* 1908 ** This routine does per-connection function registration. Most 1909 ** of the built-in functions above are part of the global function set. 1910 ** This routine only deals with those that are not global. 1911 */ 1912 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){ 1913 int rc = sqlite3_overload_function(db, "MATCH", 2); 1914 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); 1915 if( rc==SQLITE_NOMEM ){ 1916 sqlite3OomFault(db); 1917 } 1918 } 1919 1920 /* 1921 ** Re-register the built-in LIKE functions. The caseSensitive 1922 ** parameter determines whether or not the LIKE operator is case 1923 ** sensitive. 1924 */ 1925 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ 1926 struct compareInfo *pInfo; 1927 int flags; 1928 if( caseSensitive ){ 1929 pInfo = (struct compareInfo*)&likeInfoAlt; 1930 flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE; 1931 }else{ 1932 pInfo = (struct compareInfo*)&likeInfoNorm; 1933 flags = SQLITE_FUNC_LIKE; 1934 } 1935 sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0); 1936 sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0); 1937 sqlite3FindFunction(db, "like", 2, SQLITE_UTF8, 0)->funcFlags |= flags; 1938 sqlite3FindFunction(db, "like", 3, SQLITE_UTF8, 0)->funcFlags |= flags; 1939 } 1940 1941 /* 1942 ** pExpr points to an expression which implements a function. If 1943 ** it is appropriate to apply the LIKE optimization to that function 1944 ** then set aWc[0] through aWc[2] to the wildcard characters and the 1945 ** escape character and then return TRUE. If the function is not a 1946 ** LIKE-style function then return FALSE. 1947 ** 1948 ** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE 1949 ** operator if c is a string literal that is exactly one byte in length. 1950 ** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is 1951 ** no ESCAPE clause. 1952 ** 1953 ** *pIsNocase is set to true if uppercase and lowercase are equivalent for 1954 ** the function (default for LIKE). If the function makes the distinction 1955 ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to 1956 ** false. 1957 */ 1958 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ 1959 FuncDef *pDef; 1960 int nExpr; 1961 assert( pExpr!=0 ); 1962 assert( pExpr->op==TK_FUNCTION ); 1963 assert( ExprUseXList(pExpr) ); 1964 if( !pExpr->x.pList ){ 1965 return 0; 1966 } 1967 nExpr = pExpr->x.pList->nExpr; 1968 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1969 pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0); 1970 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 1971 if( pDef==0 ) return 0; 1972 #endif 1973 if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){ 1974 return 0; 1975 } 1976 1977 /* The memcpy() statement assumes that the wildcard characters are 1978 ** the first three statements in the compareInfo structure. The 1979 ** asserts() that follow verify that assumption 1980 */ 1981 memcpy(aWc, pDef->pUserData, 3); 1982 assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); 1983 assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); 1984 assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); 1985 1986 if( nExpr<3 ){ 1987 aWc[3] = 0; 1988 }else{ 1989 Expr *pEscape = pExpr->x.pList->a[2].pExpr; 1990 char *zEscape; 1991 if( pEscape->op!=TK_STRING ) return 0; 1992 assert( !ExprHasProperty(pEscape, EP_IntValue) ); 1993 zEscape = pEscape->u.zToken; 1994 if( zEscape[0]==0 || zEscape[1]!=0 ) return 0; 1995 if( zEscape[0]==aWc[0] ) return 0; 1996 if( zEscape[0]==aWc[1] ) return 0; 1997 aWc[3] = zEscape[0]; 1998 } 1999 2000 *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0; 2001 return 1; 2002 } 2003 2004 /* Mathematical Constants */ 2005 #ifndef M_PI 2006 # define M_PI 3.141592653589793238462643383279502884 2007 #endif 2008 #ifndef M_LN10 2009 # define M_LN10 2.302585092994045684017991454684364208 2010 #endif 2011 #ifndef M_LN2 2012 # define M_LN2 0.693147180559945309417232121458176568 2013 #endif 2014 2015 2016 /* Extra math functions that require linking with -lm 2017 */ 2018 #ifdef SQLITE_ENABLE_MATH_FUNCTIONS 2019 /* 2020 ** Implementation SQL functions: 2021 ** 2022 ** ceil(X) 2023 ** ceiling(X) 2024 ** floor(X) 2025 ** 2026 ** The sqlite3_user_data() pointer is a pointer to the libm implementation 2027 ** of the underlying C function. 2028 */ 2029 static void ceilingFunc( 2030 sqlite3_context *context, 2031 int argc, 2032 sqlite3_value **argv 2033 ){ 2034 assert( argc==1 ); 2035 switch( sqlite3_value_numeric_type(argv[0]) ){ 2036 case SQLITE_INTEGER: { 2037 sqlite3_result_int64(context, sqlite3_value_int64(argv[0])); 2038 break; 2039 } 2040 case SQLITE_FLOAT: { 2041 double (*x)(double) = (double(*)(double))sqlite3_user_data(context); 2042 sqlite3_result_double(context, x(sqlite3_value_double(argv[0]))); 2043 break; 2044 } 2045 default: { 2046 break; 2047 } 2048 } 2049 } 2050 2051 /* 2052 ** On some systems, ceil() and floor() are intrinsic function. You are 2053 ** unable to take a pointer to these functions. Hence, we here wrap them 2054 ** in our own actual functions. 2055 */ 2056 static double xCeil(double x){ return ceil(x); } 2057 static double xFloor(double x){ return floor(x); } 2058 2059 /* 2060 ** Implementation of SQL functions: 2061 ** 2062 ** ln(X) - natural logarithm 2063 ** log(X) - log X base 10 2064 ** log10(X) - log X base 10 2065 ** log(B,X) - log X base B 2066 */ 2067 static void logFunc( 2068 sqlite3_context *context, 2069 int argc, 2070 sqlite3_value **argv 2071 ){ 2072 double x, b, ans; 2073 assert( argc==1 || argc==2 ); 2074 switch( sqlite3_value_numeric_type(argv[0]) ){ 2075 case SQLITE_INTEGER: 2076 case SQLITE_FLOAT: 2077 x = sqlite3_value_double(argv[0]); 2078 if( x<=0.0 ) return; 2079 break; 2080 default: 2081 return; 2082 } 2083 if( argc==2 ){ 2084 switch( sqlite3_value_numeric_type(argv[0]) ){ 2085 case SQLITE_INTEGER: 2086 case SQLITE_FLOAT: 2087 b = log(x); 2088 if( b<=0.0 ) return; 2089 x = sqlite3_value_double(argv[1]); 2090 if( x<=0.0 ) return; 2091 break; 2092 default: 2093 return; 2094 } 2095 ans = log(x)/b; 2096 }else{ 2097 ans = log(x); 2098 switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context)) ){ 2099 case 1: 2100 /* Convert from natural logarithm to log base 10 */ 2101 ans /= M_LN10; 2102 break; 2103 case 2: 2104 /* Convert from natural logarithm to log base 2 */ 2105 ans /= M_LN2; 2106 break; 2107 default: 2108 break; 2109 } 2110 } 2111 sqlite3_result_double(context, ans); 2112 } 2113 2114 /* 2115 ** Functions to converts degrees to radians and radians to degrees. 2116 */ 2117 static double degToRad(double x){ return x*(M_PI/180.0); } 2118 static double radToDeg(double x){ return x*(180.0/M_PI); } 2119 2120 /* 2121 ** Implementation of 1-argument SQL math functions: 2122 ** 2123 ** exp(X) - Compute e to the X-th power 2124 */ 2125 static void math1Func( 2126 sqlite3_context *context, 2127 int argc, 2128 sqlite3_value **argv 2129 ){ 2130 int type0; 2131 double v0, ans; 2132 double (*x)(double); 2133 assert( argc==1 ); 2134 type0 = sqlite3_value_numeric_type(argv[0]); 2135 if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; 2136 v0 = sqlite3_value_double(argv[0]); 2137 x = (double(*)(double))sqlite3_user_data(context); 2138 ans = x(v0); 2139 sqlite3_result_double(context, ans); 2140 } 2141 2142 /* 2143 ** Implementation of 2-argument SQL math functions: 2144 ** 2145 ** power(X,Y) - Compute X to the Y-th power 2146 */ 2147 static void math2Func( 2148 sqlite3_context *context, 2149 int argc, 2150 sqlite3_value **argv 2151 ){ 2152 int type0, type1; 2153 double v0, v1, ans; 2154 double (*x)(double,double); 2155 assert( argc==2 ); 2156 type0 = sqlite3_value_numeric_type(argv[0]); 2157 if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; 2158 type1 = sqlite3_value_numeric_type(argv[1]); 2159 if( type1!=SQLITE_INTEGER && type1!=SQLITE_FLOAT ) return; 2160 v0 = sqlite3_value_double(argv[0]); 2161 v1 = sqlite3_value_double(argv[1]); 2162 x = (double(*)(double,double))sqlite3_user_data(context); 2163 ans = x(v0, v1); 2164 sqlite3_result_double(context, ans); 2165 } 2166 2167 /* 2168 ** Implementation of 0-argument pi() function. 2169 */ 2170 static void piFunc( 2171 sqlite3_context *context, 2172 int argc, 2173 sqlite3_value **argv 2174 ){ 2175 assert( argc==0 ); 2176 sqlite3_result_double(context, M_PI); 2177 } 2178 2179 #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */ 2180 2181 /* 2182 ** Implementation of sign(X) function. 2183 */ 2184 static void signFunc( 2185 sqlite3_context *context, 2186 int argc, 2187 sqlite3_value **argv 2188 ){ 2189 int type0; 2190 double x; 2191 UNUSED_PARAMETER(argc); 2192 assert( argc==1 ); 2193 type0 = sqlite3_value_numeric_type(argv[0]); 2194 if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; 2195 x = sqlite3_value_double(argv[0]); 2196 sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0); 2197 } 2198 2199 /* 2200 ** All of the FuncDef structures in the aBuiltinFunc[] array above 2201 ** to the global function hash table. This occurs at start-time (as 2202 ** a consequence of calling sqlite3_initialize()). 2203 ** 2204 ** After this routine runs 2205 */ 2206 void sqlite3RegisterBuiltinFunctions(void){ 2207 /* 2208 ** The following array holds FuncDef structures for all of the functions 2209 ** defined in this file. 2210 ** 2211 ** The array cannot be constant since changes are made to the 2212 ** FuncDef.pHash elements at start-time. The elements of this array 2213 ** are read-only after initialization is complete. 2214 ** 2215 ** For peak efficiency, put the most frequently used function last. 2216 */ 2217 static FuncDef aBuiltinFunc[] = { 2218 /***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/ 2219 #if !defined(SQLITE_UNTESTABLE) 2220 TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0), 2221 TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0), 2222 TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0), 2223 TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0), 2224 #endif /* !defined(SQLITE_UNTESTABLE) */ 2225 /***** Regular functions *****/ 2226 #ifdef SQLITE_SOUNDEX 2227 FUNCTION(soundex, 1, 0, 0, soundexFunc ), 2228 #endif 2229 #ifndef SQLITE_OMIT_LOAD_EXTENSION 2230 SFUNCTION(load_extension, 1, 0, 0, loadExt ), 2231 SFUNCTION(load_extension, 2, 0, 0, loadExt ), 2232 #endif 2233 #if SQLITE_USER_AUTHENTICATION 2234 FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ), 2235 #endif 2236 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 2237 DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), 2238 DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), 2239 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 2240 INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY), 2241 INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY), 2242 INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY), 2243 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2244 INLINE_FUNC(sqlite_offset, 1, INLINEFUNC_sqlite_offset, 0 ), 2245 #endif 2246 FUNCTION(ltrim, 1, 1, 0, trimFunc ), 2247 FUNCTION(ltrim, 2, 1, 0, trimFunc ), 2248 FUNCTION(rtrim, 1, 2, 0, trimFunc ), 2249 FUNCTION(rtrim, 2, 2, 0, trimFunc ), 2250 FUNCTION(trim, 1, 3, 0, trimFunc ), 2251 FUNCTION(trim, 2, 3, 0, trimFunc ), 2252 FUNCTION(min, -1, 0, 1, minmaxFunc ), 2253 FUNCTION(min, 0, 0, 1, 0 ), 2254 WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0, 2255 SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ), 2256 FUNCTION(max, -1, 1, 1, minmaxFunc ), 2257 FUNCTION(max, 0, 1, 1, 0 ), 2258 WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0, 2259 SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ), 2260 FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF), 2261 FUNCTION2(subtype, 1, 0, 0, subtypeFunc, SQLITE_FUNC_TYPEOF), 2262 FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH), 2263 FUNCTION(instr, 2, 0, 0, instrFunc ), 2264 FUNCTION(printf, -1, 0, 0, printfFunc ), 2265 FUNCTION(format, -1, 0, 0, printfFunc ), 2266 FUNCTION(unicode, 1, 0, 0, unicodeFunc ), 2267 FUNCTION(char, -1, 0, 0, charFunc ), 2268 FUNCTION(abs, 1, 0, 0, absFunc ), 2269 #ifndef SQLITE_OMIT_FLOATING_POINT 2270 FUNCTION(round, 1, 0, 0, roundFunc ), 2271 FUNCTION(round, 2, 0, 0, roundFunc ), 2272 #endif 2273 FUNCTION(upper, 1, 0, 0, upperFunc ), 2274 FUNCTION(lower, 1, 0, 0, lowerFunc ), 2275 FUNCTION(hex, 1, 0, 0, hexFunc ), 2276 INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ), 2277 VFUNCTION(random, 0, 0, 0, randomFunc ), 2278 VFUNCTION(randomblob, 1, 0, 0, randomBlob ), 2279 FUNCTION(nullif, 2, 0, 1, nullifFunc ), 2280 DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ), 2281 DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), 2282 FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ), 2283 FUNCTION(quote, 1, 0, 0, quoteFunc ), 2284 VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), 2285 VFUNCTION(changes, 0, 0, 0, changes ), 2286 VFUNCTION(total_changes, 0, 0, 0, total_changes ), 2287 FUNCTION(replace, 3, 0, 0, replaceFunc ), 2288 FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), 2289 FUNCTION(substr, 2, 0, 0, substrFunc ), 2290 FUNCTION(substr, 3, 0, 0, substrFunc ), 2291 FUNCTION(substring, 2, 0, 0, substrFunc ), 2292 FUNCTION(substring, 3, 0, 0, substrFunc ), 2293 WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0), 2294 WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0), 2295 WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0), 2296 WAGGREGATE(count, 0,0,0, countStep, 2297 countFinalize, countFinalize, countInverse, 2298 SQLITE_FUNC_COUNT|SQLITE_FUNC_ANYORDER ), 2299 WAGGREGATE(count, 1,0,0, countStep, 2300 countFinalize, countFinalize, countInverse, SQLITE_FUNC_ANYORDER ), 2301 WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep, 2302 groupConcatFinalize, groupConcatValue, groupConcatInverse, 0), 2303 WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep, 2304 groupConcatFinalize, groupConcatValue, groupConcatInverse, 0), 2305 2306 LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), 2307 #ifdef SQLITE_CASE_SENSITIVE_LIKE 2308 LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), 2309 LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), 2310 #else 2311 LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE), 2312 LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE), 2313 #endif 2314 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 2315 FUNCTION(unknown, -1, 0, 0, unknownFunc ), 2316 #endif 2317 FUNCTION(coalesce, 1, 0, 0, 0 ), 2318 FUNCTION(coalesce, 0, 0, 0, 0 ), 2319 #ifdef SQLITE_ENABLE_MATH_FUNCTIONS 2320 MFUNCTION(ceil, 1, xCeil, ceilingFunc ), 2321 MFUNCTION(ceiling, 1, xCeil, ceilingFunc ), 2322 MFUNCTION(floor, 1, xFloor, ceilingFunc ), 2323 #if SQLITE_HAVE_C99_MATH_FUNCS 2324 MFUNCTION(trunc, 1, trunc, ceilingFunc ), 2325 #endif 2326 FUNCTION(ln, 1, 0, 0, logFunc ), 2327 FUNCTION(log, 1, 1, 0, logFunc ), 2328 FUNCTION(log10, 1, 1, 0, logFunc ), 2329 FUNCTION(log2, 1, 2, 0, logFunc ), 2330 FUNCTION(log, 2, 0, 0, logFunc ), 2331 MFUNCTION(exp, 1, exp, math1Func ), 2332 MFUNCTION(pow, 2, pow, math2Func ), 2333 MFUNCTION(power, 2, pow, math2Func ), 2334 MFUNCTION(mod, 2, fmod, math2Func ), 2335 MFUNCTION(acos, 1, acos, math1Func ), 2336 MFUNCTION(asin, 1, asin, math1Func ), 2337 MFUNCTION(atan, 1, atan, math1Func ), 2338 MFUNCTION(atan2, 2, atan2, math2Func ), 2339 MFUNCTION(cos, 1, cos, math1Func ), 2340 MFUNCTION(sin, 1, sin, math1Func ), 2341 MFUNCTION(tan, 1, tan, math1Func ), 2342 MFUNCTION(cosh, 1, cosh, math1Func ), 2343 MFUNCTION(sinh, 1, sinh, math1Func ), 2344 MFUNCTION(tanh, 1, tanh, math1Func ), 2345 #if SQLITE_HAVE_C99_MATH_FUNCS 2346 MFUNCTION(acosh, 1, acosh, math1Func ), 2347 MFUNCTION(asinh, 1, asinh, math1Func ), 2348 MFUNCTION(atanh, 1, atanh, math1Func ), 2349 #endif 2350 MFUNCTION(sqrt, 1, sqrt, math1Func ), 2351 MFUNCTION(radians, 1, degToRad, math1Func ), 2352 MFUNCTION(degrees, 1, radToDeg, math1Func ), 2353 FUNCTION(pi, 0, 0, 0, piFunc ), 2354 #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */ 2355 FUNCTION(sign, 1, 0, 0, signFunc ), 2356 INLINE_FUNC(coalesce, -1, INLINEFUNC_coalesce, 0 ), 2357 INLINE_FUNC(iif, 3, INLINEFUNC_iif, 0 ), 2358 }; 2359 #ifndef SQLITE_OMIT_ALTERTABLE 2360 sqlite3AlterFunctions(); 2361 #endif 2362 sqlite3WindowFunctions(); 2363 sqlite3RegisterDateTimeFunctions(); 2364 sqlite3RegisterJsonFunctions(); 2365 sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc)); 2366 2367 #if 0 /* Enable to print out how the built-in functions are hashed */ 2368 { 2369 int i; 2370 FuncDef *p; 2371 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){ 2372 printf("FUNC-HASH %02d:", i); 2373 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){ 2374 int n = sqlite3Strlen30(p->zName); 2375 int h = p->zName[0] + n; 2376 assert( p->funcFlags & SQLITE_FUNC_BUILTIN ); 2377 printf(" %s(%d)", p->zName, h); 2378 } 2379 printf("\n"); 2380 } 2381 } 2382 #endif 2383 } 2384