xref: /sqlite-3.40.0/src/func.c (revision c56fac74)
1 /*
2 ** 2002 February 23
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C-language implementations for many of the SQL
13 ** functions of SQLite.  (Some function, and in particular the date and
14 ** time functions, are implemented separately.)
15 */
16 #include "sqliteInt.h"
17 #include <stdlib.h>
18 #include <assert.h>
19 #include "vdbeInt.h"
20 
21 /*
22 ** Return the collating function associated with a function.
23 */
24 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
25   VdbeOp *pOp;
26   assert( context->pVdbe!=0 );
27   pOp = &context->pVdbe->aOp[context->iOp-1];
28   assert( pOp->opcode==OP_CollSeq );
29   assert( pOp->p4type==P4_COLLSEQ );
30   return pOp->p4.pColl;
31 }
32 
33 /*
34 ** Indicate that the accumulator load should be skipped on this
35 ** iteration of the aggregate loop.
36 */
37 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
38   context->skipFlag = 1;
39 }
40 
41 /*
42 ** Implementation of the non-aggregate min() and max() functions
43 */
44 static void minmaxFunc(
45   sqlite3_context *context,
46   int argc,
47   sqlite3_value **argv
48 ){
49   int i;
50   int mask;    /* 0 for min() or 0xffffffff for max() */
51   int iBest;
52   CollSeq *pColl;
53 
54   assert( argc>1 );
55   mask = sqlite3_user_data(context)==0 ? 0 : -1;
56   pColl = sqlite3GetFuncCollSeq(context);
57   assert( pColl );
58   assert( mask==-1 || mask==0 );
59   iBest = 0;
60   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
61   for(i=1; i<argc; i++){
62     if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
63     if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
64       testcase( mask==0 );
65       iBest = i;
66     }
67   }
68   sqlite3_result_value(context, argv[iBest]);
69 }
70 
71 /*
72 ** Return the type of the argument.
73 */
74 static void typeofFunc(
75   sqlite3_context *context,
76   int NotUsed,
77   sqlite3_value **argv
78 ){
79   const char *z = 0;
80   UNUSED_PARAMETER(NotUsed);
81   switch( sqlite3_value_type(argv[0]) ){
82     case SQLITE_INTEGER: z = "integer"; break;
83     case SQLITE_TEXT:    z = "text";    break;
84     case SQLITE_FLOAT:   z = "real";    break;
85     case SQLITE_BLOB:    z = "blob";    break;
86     default:             z = "null";    break;
87   }
88   sqlite3_result_text(context, z, -1, SQLITE_STATIC);
89 }
90 
91 
92 /*
93 ** Implementation of the length() function
94 */
95 static void lengthFunc(
96   sqlite3_context *context,
97   int argc,
98   sqlite3_value **argv
99 ){
100   int len;
101 
102   assert( argc==1 );
103   UNUSED_PARAMETER(argc);
104   switch( sqlite3_value_type(argv[0]) ){
105     case SQLITE_BLOB:
106     case SQLITE_INTEGER:
107     case SQLITE_FLOAT: {
108       sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
109       break;
110     }
111     case SQLITE_TEXT: {
112       const unsigned char *z = sqlite3_value_text(argv[0]);
113       if( z==0 ) return;
114       len = 0;
115       while( *z ){
116         len++;
117         SQLITE_SKIP_UTF8(z);
118       }
119       sqlite3_result_int(context, len);
120       break;
121     }
122     default: {
123       sqlite3_result_null(context);
124       break;
125     }
126   }
127 }
128 
129 /*
130 ** Implementation of the abs() function.
131 **
132 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
133 ** the numeric argument X.
134 */
135 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
136   assert( argc==1 );
137   UNUSED_PARAMETER(argc);
138   switch( sqlite3_value_type(argv[0]) ){
139     case SQLITE_INTEGER: {
140       i64 iVal = sqlite3_value_int64(argv[0]);
141       if( iVal<0 ){
142         if( iVal==SMALLEST_INT64 ){
143           /* IMP: R-31676-45509 If X is the integer -9223372036854775808
144           ** then abs(X) throws an integer overflow error since there is no
145           ** equivalent positive 64-bit two complement value. */
146           sqlite3_result_error(context, "integer overflow", -1);
147           return;
148         }
149         iVal = -iVal;
150       }
151       sqlite3_result_int64(context, iVal);
152       break;
153     }
154     case SQLITE_NULL: {
155       /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
156       sqlite3_result_null(context);
157       break;
158     }
159     default: {
160       /* Because sqlite3_value_double() returns 0.0 if the argument is not
161       ** something that can be converted into a number, we have:
162       ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
163       ** that cannot be converted to a numeric value.
164       */
165       double rVal = sqlite3_value_double(argv[0]);
166       if( rVal<0 ) rVal = -rVal;
167       sqlite3_result_double(context, rVal);
168       break;
169     }
170   }
171 }
172 
173 /*
174 ** Implementation of the instr() function.
175 **
176 ** instr(haystack,needle) finds the first occurrence of needle
177 ** in haystack and returns the number of previous characters plus 1,
178 ** or 0 if needle does not occur within haystack.
179 **
180 ** If both haystack and needle are BLOBs, then the result is one more than
181 ** the number of bytes in haystack prior to the first occurrence of needle,
182 ** or 0 if needle never occurs in haystack.
183 */
184 static void instrFunc(
185   sqlite3_context *context,
186   int argc,
187   sqlite3_value **argv
188 ){
189   const unsigned char *zHaystack;
190   const unsigned char *zNeedle;
191   int nHaystack;
192   int nNeedle;
193   int typeHaystack, typeNeedle;
194   int N = 1;
195   int isText;
196 
197   UNUSED_PARAMETER(argc);
198   typeHaystack = sqlite3_value_type(argv[0]);
199   typeNeedle = sqlite3_value_type(argv[1]);
200   if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
201   nHaystack = sqlite3_value_bytes(argv[0]);
202   nNeedle = sqlite3_value_bytes(argv[1]);
203   if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
204     zHaystack = sqlite3_value_blob(argv[0]);
205     zNeedle = sqlite3_value_blob(argv[1]);
206     isText = 0;
207   }else{
208     zHaystack = sqlite3_value_text(argv[0]);
209     zNeedle = sqlite3_value_text(argv[1]);
210     isText = 1;
211   }
212   while( nNeedle<=nHaystack && memcmp(zHaystack, zNeedle, nNeedle)!=0 ){
213     N++;
214     do{
215       nHaystack--;
216       zHaystack++;
217     }while( isText && (zHaystack[0]&0xc0)==0x80 );
218   }
219   if( nNeedle>nHaystack ) N = 0;
220   sqlite3_result_int(context, N);
221 }
222 
223 /*
224 ** Implementation of the printf() function.
225 */
226 static void printfFunc(
227   sqlite3_context *context,
228   int argc,
229   sqlite3_value **argv
230 ){
231   PrintfArguments x;
232   StrAccum str;
233   const char *zFormat;
234   int n;
235   sqlite3 *db = sqlite3_context_db_handle(context);
236 
237   if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
238     x.nArg = argc-1;
239     x.nUsed = 0;
240     x.apArg = argv+1;
241     sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
242     sqlite3XPrintf(&str, SQLITE_PRINTF_SQLFUNC, zFormat, &x);
243     n = str.nChar;
244     sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
245                         SQLITE_DYNAMIC);
246   }
247 }
248 
249 /*
250 ** Implementation of the substr() function.
251 **
252 ** substr(x,p1,p2)  returns p2 characters of x[] beginning with p1.
253 ** p1 is 1-indexed.  So substr(x,1,1) returns the first character
254 ** of x.  If x is text, then we actually count UTF-8 characters.
255 ** If x is a blob, then we count bytes.
256 **
257 ** If p1 is negative, then we begin abs(p1) from the end of x[].
258 **
259 ** If p2 is negative, return the p2 characters preceding p1.
260 */
261 static void substrFunc(
262   sqlite3_context *context,
263   int argc,
264   sqlite3_value **argv
265 ){
266   const unsigned char *z;
267   const unsigned char *z2;
268   int len;
269   int p0type;
270   i64 p1, p2;
271   int negP2 = 0;
272 
273   assert( argc==3 || argc==2 );
274   if( sqlite3_value_type(argv[1])==SQLITE_NULL
275    || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
276   ){
277     return;
278   }
279   p0type = sqlite3_value_type(argv[0]);
280   p1 = sqlite3_value_int(argv[1]);
281   if( p0type==SQLITE_BLOB ){
282     len = sqlite3_value_bytes(argv[0]);
283     z = sqlite3_value_blob(argv[0]);
284     if( z==0 ) return;
285     assert( len==sqlite3_value_bytes(argv[0]) );
286   }else{
287     z = sqlite3_value_text(argv[0]);
288     if( z==0 ) return;
289     len = 0;
290     if( p1<0 ){
291       for(z2=z; *z2; len++){
292         SQLITE_SKIP_UTF8(z2);
293       }
294     }
295   }
296 #ifdef SQLITE_SUBSTR_COMPATIBILITY
297   /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
298   ** as substr(X,1,N) - it returns the first N characters of X.  This
299   ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
300   ** from 2009-02-02 for compatibility of applications that exploited the
301   ** old buggy behavior. */
302   if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
303 #endif
304   if( argc==3 ){
305     p2 = sqlite3_value_int(argv[2]);
306     if( p2<0 ){
307       p2 = -p2;
308       negP2 = 1;
309     }
310   }else{
311     p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
312   }
313   if( p1<0 ){
314     p1 += len;
315     if( p1<0 ){
316       p2 += p1;
317       if( p2<0 ) p2 = 0;
318       p1 = 0;
319     }
320   }else if( p1>0 ){
321     p1--;
322   }else if( p2>0 ){
323     p2--;
324   }
325   if( negP2 ){
326     p1 -= p2;
327     if( p1<0 ){
328       p2 += p1;
329       p1 = 0;
330     }
331   }
332   assert( p1>=0 && p2>=0 );
333   if( p0type!=SQLITE_BLOB ){
334     while( *z && p1 ){
335       SQLITE_SKIP_UTF8(z);
336       p1--;
337     }
338     for(z2=z; *z2 && p2; p2--){
339       SQLITE_SKIP_UTF8(z2);
340     }
341     sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
342                           SQLITE_UTF8);
343   }else{
344     if( p1+p2>len ){
345       p2 = len-p1;
346       if( p2<0 ) p2 = 0;
347     }
348     sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
349   }
350 }
351 
352 /*
353 ** Implementation of the round() function
354 */
355 #ifndef SQLITE_OMIT_FLOATING_POINT
356 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
357   int n = 0;
358   double r;
359   char *zBuf;
360   assert( argc==1 || argc==2 );
361   if( argc==2 ){
362     if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
363     n = sqlite3_value_int(argv[1]);
364     if( n>30 ) n = 30;
365     if( n<0 ) n = 0;
366   }
367   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
368   r = sqlite3_value_double(argv[0]);
369   /* If Y==0 and X will fit in a 64-bit int,
370   ** handle the rounding directly,
371   ** otherwise use printf.
372   */
373   if( n==0 && r>=0 && r<LARGEST_INT64-1 ){
374     r = (double)((sqlite_int64)(r+0.5));
375   }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){
376     r = -(double)((sqlite_int64)((-r)+0.5));
377   }else{
378     zBuf = sqlite3_mprintf("%.*f",n,r);
379     if( zBuf==0 ){
380       sqlite3_result_error_nomem(context);
381       return;
382     }
383     sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
384     sqlite3_free(zBuf);
385   }
386   sqlite3_result_double(context, r);
387 }
388 #endif
389 
390 /*
391 ** Allocate nByte bytes of space using sqlite3Malloc(). If the
392 ** allocation fails, call sqlite3_result_error_nomem() to notify
393 ** the database handle that malloc() has failed and return NULL.
394 ** If nByte is larger than the maximum string or blob length, then
395 ** raise an SQLITE_TOOBIG exception and return NULL.
396 */
397 static void *contextMalloc(sqlite3_context *context, i64 nByte){
398   char *z;
399   sqlite3 *db = sqlite3_context_db_handle(context);
400   assert( nByte>0 );
401   testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
402   testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
403   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
404     sqlite3_result_error_toobig(context);
405     z = 0;
406   }else{
407     z = sqlite3Malloc(nByte);
408     if( !z ){
409       sqlite3_result_error_nomem(context);
410     }
411   }
412   return z;
413 }
414 
415 /*
416 ** Implementation of the upper() and lower() SQL functions.
417 */
418 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
419   char *z1;
420   const char *z2;
421   int i, n;
422   UNUSED_PARAMETER(argc);
423   z2 = (char*)sqlite3_value_text(argv[0]);
424   n = sqlite3_value_bytes(argv[0]);
425   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
426   assert( z2==(char*)sqlite3_value_text(argv[0]) );
427   if( z2 ){
428     z1 = contextMalloc(context, ((i64)n)+1);
429     if( z1 ){
430       for(i=0; i<n; i++){
431         z1[i] = (char)sqlite3Toupper(z2[i]);
432       }
433       sqlite3_result_text(context, z1, n, sqlite3_free);
434     }
435   }
436 }
437 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
438   char *z1;
439   const char *z2;
440   int i, n;
441   UNUSED_PARAMETER(argc);
442   z2 = (char*)sqlite3_value_text(argv[0]);
443   n = sqlite3_value_bytes(argv[0]);
444   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
445   assert( z2==(char*)sqlite3_value_text(argv[0]) );
446   if( z2 ){
447     z1 = contextMalloc(context, ((i64)n)+1);
448     if( z1 ){
449       for(i=0; i<n; i++){
450         z1[i] = sqlite3Tolower(z2[i]);
451       }
452       sqlite3_result_text(context, z1, n, sqlite3_free);
453     }
454   }
455 }
456 
457 /*
458 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
459 ** as VDBE code so that unused argument values do not have to be computed.
460 ** However, we still need some kind of function implementation for this
461 ** routines in the function table.  The noopFunc macro provides this.
462 ** noopFunc will never be called so it doesn't matter what the implementation
463 ** is.  We might as well use the "version()" function as a substitute.
464 */
465 #define noopFunc versionFunc   /* Substitute function - never called */
466 
467 /*
468 ** Implementation of random().  Return a random integer.
469 */
470 static void randomFunc(
471   sqlite3_context *context,
472   int NotUsed,
473   sqlite3_value **NotUsed2
474 ){
475   sqlite_int64 r;
476   UNUSED_PARAMETER2(NotUsed, NotUsed2);
477   sqlite3_randomness(sizeof(r), &r);
478   if( r<0 ){
479     /* We need to prevent a random number of 0x8000000000000000
480     ** (or -9223372036854775808) since when you do abs() of that
481     ** number of you get the same value back again.  To do this
482     ** in a way that is testable, mask the sign bit off of negative
483     ** values, resulting in a positive value.  Then take the
484     ** 2s complement of that positive value.  The end result can
485     ** therefore be no less than -9223372036854775807.
486     */
487     r = -(r & LARGEST_INT64);
488   }
489   sqlite3_result_int64(context, r);
490 }
491 
492 /*
493 ** Implementation of randomblob(N).  Return a random blob
494 ** that is N bytes long.
495 */
496 static void randomBlob(
497   sqlite3_context *context,
498   int argc,
499   sqlite3_value **argv
500 ){
501   int n;
502   unsigned char *p;
503   assert( argc==1 );
504   UNUSED_PARAMETER(argc);
505   n = sqlite3_value_int(argv[0]);
506   if( n<1 ){
507     n = 1;
508   }
509   p = contextMalloc(context, n);
510   if( p ){
511     sqlite3_randomness(n, p);
512     sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
513   }
514 }
515 
516 /*
517 ** Implementation of the last_insert_rowid() SQL function.  The return
518 ** value is the same as the sqlite3_last_insert_rowid() API function.
519 */
520 static void last_insert_rowid(
521   sqlite3_context *context,
522   int NotUsed,
523   sqlite3_value **NotUsed2
524 ){
525   sqlite3 *db = sqlite3_context_db_handle(context);
526   UNUSED_PARAMETER2(NotUsed, NotUsed2);
527   /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
528   ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
529   ** function. */
530   sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
531 }
532 
533 /*
534 ** Implementation of the changes() SQL function.
535 **
536 ** IMP: R-62073-11209 The changes() SQL function is a wrapper
537 ** around the sqlite3_changes() C/C++ function and hence follows the same
538 ** rules for counting changes.
539 */
540 static void changes(
541   sqlite3_context *context,
542   int NotUsed,
543   sqlite3_value **NotUsed2
544 ){
545   sqlite3 *db = sqlite3_context_db_handle(context);
546   UNUSED_PARAMETER2(NotUsed, NotUsed2);
547   sqlite3_result_int(context, sqlite3_changes(db));
548 }
549 
550 /*
551 ** Implementation of the total_changes() SQL function.  The return value is
552 ** the same as the sqlite3_total_changes() API function.
553 */
554 static void total_changes(
555   sqlite3_context *context,
556   int NotUsed,
557   sqlite3_value **NotUsed2
558 ){
559   sqlite3 *db = sqlite3_context_db_handle(context);
560   UNUSED_PARAMETER2(NotUsed, NotUsed2);
561   /* IMP: R-52756-41993 This function is a wrapper around the
562   ** sqlite3_total_changes() C/C++ interface. */
563   sqlite3_result_int(context, sqlite3_total_changes(db));
564 }
565 
566 /*
567 ** A structure defining how to do GLOB-style comparisons.
568 */
569 struct compareInfo {
570   u8 matchAll;
571   u8 matchOne;
572   u8 matchSet;
573   u8 noCase;
574 };
575 
576 /*
577 ** For LIKE and GLOB matching on EBCDIC machines, assume that every
578 ** character is exactly one byte in size.  Also, provde the Utf8Read()
579 ** macro for fast reading of the next character in the common case where
580 ** the next character is ASCII.
581 */
582 #if defined(SQLITE_EBCDIC)
583 # define sqlite3Utf8Read(A)        (*((*A)++))
584 # define Utf8Read(A)               (*(A++))
585 #else
586 # define Utf8Read(A)               (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
587 #endif
588 
589 static const struct compareInfo globInfo = { '*', '?', '[', 0 };
590 /* The correct SQL-92 behavior is for the LIKE operator to ignore
591 ** case.  Thus  'a' LIKE 'A' would be true. */
592 static const struct compareInfo likeInfoNorm = { '%', '_',   0, 1 };
593 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
594 ** is case sensitive causing 'a' LIKE 'A' to be false */
595 static const struct compareInfo likeInfoAlt = { '%', '_',   0, 0 };
596 
597 /*
598 ** Compare two UTF-8 strings for equality where the first string can
599 ** potentially be a "glob" or "like" expression.  Return true (1) if they
600 ** are the same and false (0) if they are different.
601 **
602 ** Globbing rules:
603 **
604 **      '*'       Matches any sequence of zero or more characters.
605 **
606 **      '?'       Matches exactly one character.
607 **
608 **     [...]      Matches one character from the enclosed list of
609 **                characters.
610 **
611 **     [^...]     Matches one character not in the enclosed list.
612 **
613 ** With the [...] and [^...] matching, a ']' character can be included
614 ** in the list by making it the first character after '[' or '^'.  A
615 ** range of characters can be specified using '-'.  Example:
616 ** "[a-z]" matches any single lower-case letter.  To match a '-', make
617 ** it the last character in the list.
618 **
619 ** Like matching rules:
620 **
621 **      '%'       Matches any sequence of zero or more characters
622 **
623 ***     '_'       Matches any one character
624 **
625 **      Ec        Where E is the "esc" character and c is any other
626 **                character, including '%', '_', and esc, match exactly c.
627 **
628 ** The comments within this routine usually assume glob matching.
629 **
630 ** This routine is usually quick, but can be N**2 in the worst case.
631 */
632 static int patternCompare(
633   const u8 *zPattern,              /* The glob pattern */
634   const u8 *zString,               /* The string to compare against the glob */
635   const struct compareInfo *pInfo, /* Information about how to do the compare */
636   u32 esc                          /* The escape character */
637 ){
638   u32 c, c2;                       /* Next pattern and input string chars */
639   u32 matchOne = pInfo->matchOne;  /* "?" or "_" */
640   u32 matchAll = pInfo->matchAll;  /* "*" or "%" */
641   u32 matchOther;                  /* "[" or the escape character */
642   u8 noCase = pInfo->noCase;       /* True if uppercase==lowercase */
643   const u8 *zEscaped = 0;          /* One past the last escaped input char */
644 
645   /* The GLOB operator does not have an ESCAPE clause.  And LIKE does not
646   ** have the matchSet operator.  So we either have to look for one or
647   ** the other, never both.  Hence the single variable matchOther is used
648   ** to store the one we have to look for.
649   */
650   matchOther = esc ? esc : pInfo->matchSet;
651 
652   while( (c = Utf8Read(zPattern))!=0 ){
653     if( c==matchAll ){  /* Match "*" */
654       /* Skip over multiple "*" characters in the pattern.  If there
655       ** are also "?" characters, skip those as well, but consume a
656       ** single character of the input string for each "?" skipped */
657       while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){
658         if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
659           return 0;
660         }
661       }
662       if( c==0 ){
663         return 1;   /* "*" at the end of the pattern matches */
664       }else if( c==matchOther ){
665         if( esc ){
666           c = sqlite3Utf8Read(&zPattern);
667           if( c==0 ) return 0;
668         }else{
669           /* "[...]" immediately follows the "*".  We have to do a slow
670           ** recursive search in this case, but it is an unusual case. */
671           assert( matchOther<0x80 );  /* '[' is a single-byte character */
672           while( *zString
673                  && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
674             SQLITE_SKIP_UTF8(zString);
675           }
676           return *zString!=0;
677         }
678       }
679 
680       /* At this point variable c contains the first character of the
681       ** pattern string past the "*".  Search in the input string for the
682       ** first matching character and recursively contine the match from
683       ** that point.
684       **
685       ** For a case-insensitive search, set variable cx to be the same as
686       ** c but in the other case and search the input string for either
687       ** c or cx.
688       */
689       if( c<=0x80 ){
690         u32 cx;
691         if( noCase ){
692           cx = sqlite3Toupper(c);
693           c = sqlite3Tolower(c);
694         }else{
695           cx = c;
696         }
697         while( (c2 = *(zString++))!=0 ){
698           if( c2!=c && c2!=cx ) continue;
699           if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
700         }
701       }else{
702         while( (c2 = Utf8Read(zString))!=0 ){
703           if( c2!=c ) continue;
704           if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
705         }
706       }
707       return 0;
708     }
709     if( c==matchOther ){
710       if( esc ){
711         c = sqlite3Utf8Read(&zPattern);
712         if( c==0 ) return 0;
713         zEscaped = zPattern;
714       }else{
715         u32 prior_c = 0;
716         int seen = 0;
717         int invert = 0;
718         c = sqlite3Utf8Read(&zString);
719         if( c==0 ) return 0;
720         c2 = sqlite3Utf8Read(&zPattern);
721         if( c2=='^' ){
722           invert = 1;
723           c2 = sqlite3Utf8Read(&zPattern);
724         }
725         if( c2==']' ){
726           if( c==']' ) seen = 1;
727           c2 = sqlite3Utf8Read(&zPattern);
728         }
729         while( c2 && c2!=']' ){
730           if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
731             c2 = sqlite3Utf8Read(&zPattern);
732             if( c>=prior_c && c<=c2 ) seen = 1;
733             prior_c = 0;
734           }else{
735             if( c==c2 ){
736               seen = 1;
737             }
738             prior_c = c2;
739           }
740           c2 = sqlite3Utf8Read(&zPattern);
741         }
742         if( c2==0 || (seen ^ invert)==0 ){
743           return 0;
744         }
745         continue;
746       }
747     }
748     c2 = Utf8Read(zString);
749     if( c==c2 ) continue;
750     if( noCase && c<0x80 && c2<0x80 && sqlite3Tolower(c)==sqlite3Tolower(c2) ){
751       continue;
752     }
753     if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
754     return 0;
755   }
756   return *zString==0;
757 }
758 
759 /*
760 ** The sqlite3_strglob() interface.
761 */
762 int sqlite3_strglob(const char *zGlobPattern, const char *zString){
763   return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, 0)==0;
764 }
765 
766 /*
767 ** Count the number of times that the LIKE operator (or GLOB which is
768 ** just a variation of LIKE) gets called.  This is used for testing
769 ** only.
770 */
771 #ifdef SQLITE_TEST
772 int sqlite3_like_count = 0;
773 #endif
774 
775 
776 /*
777 ** Implementation of the like() SQL function.  This function implements
778 ** the build-in LIKE operator.  The first argument to the function is the
779 ** pattern and the second argument is the string.  So, the SQL statements:
780 **
781 **       A LIKE B
782 **
783 ** is implemented as like(B,A).
784 **
785 ** This same function (with a different compareInfo structure) computes
786 ** the GLOB operator.
787 */
788 static void likeFunc(
789   sqlite3_context *context,
790   int argc,
791   sqlite3_value **argv
792 ){
793   const unsigned char *zA, *zB;
794   u32 escape = 0;
795   int nPat;
796   sqlite3 *db = sqlite3_context_db_handle(context);
797 
798   zB = sqlite3_value_text(argv[0]);
799   zA = sqlite3_value_text(argv[1]);
800 
801   /* Limit the length of the LIKE or GLOB pattern to avoid problems
802   ** of deep recursion and N*N behavior in patternCompare().
803   */
804   nPat = sqlite3_value_bytes(argv[0]);
805   testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
806   testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
807   if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
808     sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
809     return;
810   }
811   assert( zB==sqlite3_value_text(argv[0]) );  /* Encoding did not change */
812 
813   if( argc==3 ){
814     /* The escape character string must consist of a single UTF-8 character.
815     ** Otherwise, return an error.
816     */
817     const unsigned char *zEsc = sqlite3_value_text(argv[2]);
818     if( zEsc==0 ) return;
819     if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
820       sqlite3_result_error(context,
821           "ESCAPE expression must be a single character", -1);
822       return;
823     }
824     escape = sqlite3Utf8Read(&zEsc);
825   }
826   if( zA && zB ){
827     struct compareInfo *pInfo = sqlite3_user_data(context);
828 #ifdef SQLITE_TEST
829     sqlite3_like_count++;
830 #endif
831 
832     sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
833   }
834 }
835 
836 /*
837 ** Implementation of the NULLIF(x,y) function.  The result is the first
838 ** argument if the arguments are different.  The result is NULL if the
839 ** arguments are equal to each other.
840 */
841 static void nullifFunc(
842   sqlite3_context *context,
843   int NotUsed,
844   sqlite3_value **argv
845 ){
846   CollSeq *pColl = sqlite3GetFuncCollSeq(context);
847   UNUSED_PARAMETER(NotUsed);
848   if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
849     sqlite3_result_value(context, argv[0]);
850   }
851 }
852 
853 /*
854 ** Implementation of the sqlite_version() function.  The result is the version
855 ** of the SQLite library that is running.
856 */
857 static void versionFunc(
858   sqlite3_context *context,
859   int NotUsed,
860   sqlite3_value **NotUsed2
861 ){
862   UNUSED_PARAMETER2(NotUsed, NotUsed2);
863   /* IMP: R-48699-48617 This function is an SQL wrapper around the
864   ** sqlite3_libversion() C-interface. */
865   sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
866 }
867 
868 /*
869 ** Implementation of the sqlite_source_id() function. The result is a string
870 ** that identifies the particular version of the source code used to build
871 ** SQLite.
872 */
873 static void sourceidFunc(
874   sqlite3_context *context,
875   int NotUsed,
876   sqlite3_value **NotUsed2
877 ){
878   UNUSED_PARAMETER2(NotUsed, NotUsed2);
879   /* IMP: R-24470-31136 This function is an SQL wrapper around the
880   ** sqlite3_sourceid() C interface. */
881   sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
882 }
883 
884 /*
885 ** Implementation of the sqlite_log() function.  This is a wrapper around
886 ** sqlite3_log().  The return value is NULL.  The function exists purely for
887 ** its side-effects.
888 */
889 static void errlogFunc(
890   sqlite3_context *context,
891   int argc,
892   sqlite3_value **argv
893 ){
894   UNUSED_PARAMETER(argc);
895   UNUSED_PARAMETER(context);
896   sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
897 }
898 
899 /*
900 ** Implementation of the sqlite_compileoption_used() function.
901 ** The result is an integer that identifies if the compiler option
902 ** was used to build SQLite.
903 */
904 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
905 static void compileoptionusedFunc(
906   sqlite3_context *context,
907   int argc,
908   sqlite3_value **argv
909 ){
910   const char *zOptName;
911   assert( argc==1 );
912   UNUSED_PARAMETER(argc);
913   /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
914   ** function is a wrapper around the sqlite3_compileoption_used() C/C++
915   ** function.
916   */
917   if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
918     sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
919   }
920 }
921 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
922 
923 /*
924 ** Implementation of the sqlite_compileoption_get() function.
925 ** The result is a string that identifies the compiler options
926 ** used to build SQLite.
927 */
928 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
929 static void compileoptiongetFunc(
930   sqlite3_context *context,
931   int argc,
932   sqlite3_value **argv
933 ){
934   int n;
935   assert( argc==1 );
936   UNUSED_PARAMETER(argc);
937   /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
938   ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
939   */
940   n = sqlite3_value_int(argv[0]);
941   sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
942 }
943 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
944 
945 /* Array for converting from half-bytes (nybbles) into ASCII hex
946 ** digits. */
947 static const char hexdigits[] = {
948   '0', '1', '2', '3', '4', '5', '6', '7',
949   '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
950 };
951 
952 /*
953 ** Implementation of the QUOTE() function.  This function takes a single
954 ** argument.  If the argument is numeric, the return value is the same as
955 ** the argument.  If the argument is NULL, the return value is the string
956 ** "NULL".  Otherwise, the argument is enclosed in single quotes with
957 ** single-quote escapes.
958 */
959 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
960   assert( argc==1 );
961   UNUSED_PARAMETER(argc);
962   switch( sqlite3_value_type(argv[0]) ){
963     case SQLITE_FLOAT: {
964       double r1, r2;
965       char zBuf[50];
966       r1 = sqlite3_value_double(argv[0]);
967       sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
968       sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8);
969       if( r1!=r2 ){
970         sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1);
971       }
972       sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
973       break;
974     }
975     case SQLITE_INTEGER: {
976       sqlite3_result_value(context, argv[0]);
977       break;
978     }
979     case SQLITE_BLOB: {
980       char *zText = 0;
981       char const *zBlob = sqlite3_value_blob(argv[0]);
982       int nBlob = sqlite3_value_bytes(argv[0]);
983       assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
984       zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
985       if( zText ){
986         int i;
987         for(i=0; i<nBlob; i++){
988           zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
989           zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
990         }
991         zText[(nBlob*2)+2] = '\'';
992         zText[(nBlob*2)+3] = '\0';
993         zText[0] = 'X';
994         zText[1] = '\'';
995         sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
996         sqlite3_free(zText);
997       }
998       break;
999     }
1000     case SQLITE_TEXT: {
1001       int i,j;
1002       u64 n;
1003       const unsigned char *zArg = sqlite3_value_text(argv[0]);
1004       char *z;
1005 
1006       if( zArg==0 ) return;
1007       for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
1008       z = contextMalloc(context, ((i64)i)+((i64)n)+3);
1009       if( z ){
1010         z[0] = '\'';
1011         for(i=0, j=1; zArg[i]; i++){
1012           z[j++] = zArg[i];
1013           if( zArg[i]=='\'' ){
1014             z[j++] = '\'';
1015           }
1016         }
1017         z[j++] = '\'';
1018         z[j] = 0;
1019         sqlite3_result_text(context, z, j, sqlite3_free);
1020       }
1021       break;
1022     }
1023     default: {
1024       assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
1025       sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
1026       break;
1027     }
1028   }
1029 }
1030 
1031 /*
1032 ** The unicode() function.  Return the integer unicode code-point value
1033 ** for the first character of the input string.
1034 */
1035 static void unicodeFunc(
1036   sqlite3_context *context,
1037   int argc,
1038   sqlite3_value **argv
1039 ){
1040   const unsigned char *z = sqlite3_value_text(argv[0]);
1041   (void)argc;
1042   if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
1043 }
1044 
1045 /*
1046 ** The char() function takes zero or more arguments, each of which is
1047 ** an integer.  It constructs a string where each character of the string
1048 ** is the unicode character for the corresponding integer argument.
1049 */
1050 static void charFunc(
1051   sqlite3_context *context,
1052   int argc,
1053   sqlite3_value **argv
1054 ){
1055   unsigned char *z, *zOut;
1056   int i;
1057   zOut = z = sqlite3_malloc64( argc*4+1 );
1058   if( z==0 ){
1059     sqlite3_result_error_nomem(context);
1060     return;
1061   }
1062   for(i=0; i<argc; i++){
1063     sqlite3_int64 x;
1064     unsigned c;
1065     x = sqlite3_value_int64(argv[i]);
1066     if( x<0 || x>0x10ffff ) x = 0xfffd;
1067     c = (unsigned)(x & 0x1fffff);
1068     if( c<0x00080 ){
1069       *zOut++ = (u8)(c&0xFF);
1070     }else if( c<0x00800 ){
1071       *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
1072       *zOut++ = 0x80 + (u8)(c & 0x3F);
1073     }else if( c<0x10000 ){
1074       *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
1075       *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1076       *zOut++ = 0x80 + (u8)(c & 0x3F);
1077     }else{
1078       *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
1079       *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
1080       *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1081       *zOut++ = 0x80 + (u8)(c & 0x3F);
1082     }                                                    \
1083   }
1084   sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
1085 }
1086 
1087 /*
1088 ** The hex() function.  Interpret the argument as a blob.  Return
1089 ** a hexadecimal rendering as text.
1090 */
1091 static void hexFunc(
1092   sqlite3_context *context,
1093   int argc,
1094   sqlite3_value **argv
1095 ){
1096   int i, n;
1097   const unsigned char *pBlob;
1098   char *zHex, *z;
1099   assert( argc==1 );
1100   UNUSED_PARAMETER(argc);
1101   pBlob = sqlite3_value_blob(argv[0]);
1102   n = sqlite3_value_bytes(argv[0]);
1103   assert( pBlob==sqlite3_value_blob(argv[0]) );  /* No encoding change */
1104   z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
1105   if( zHex ){
1106     for(i=0; i<n; i++, pBlob++){
1107       unsigned char c = *pBlob;
1108       *(z++) = hexdigits[(c>>4)&0xf];
1109       *(z++) = hexdigits[c&0xf];
1110     }
1111     *z = 0;
1112     sqlite3_result_text(context, zHex, n*2, sqlite3_free);
1113   }
1114 }
1115 
1116 /*
1117 ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
1118 */
1119 static void zeroblobFunc(
1120   sqlite3_context *context,
1121   int argc,
1122   sqlite3_value **argv
1123 ){
1124   i64 n;
1125   int rc;
1126   assert( argc==1 );
1127   UNUSED_PARAMETER(argc);
1128   n = sqlite3_value_int64(argv[0]);
1129   if( n<0 ) n = 0;
1130   rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
1131   if( rc ){
1132     sqlite3_result_error_code(context, rc);
1133   }
1134 }
1135 
1136 /*
1137 ** The replace() function.  Three arguments are all strings: call
1138 ** them A, B, and C. The result is also a string which is derived
1139 ** from A by replacing every occurrence of B with C.  The match
1140 ** must be exact.  Collating sequences are not used.
1141 */
1142 static void replaceFunc(
1143   sqlite3_context *context,
1144   int argc,
1145   sqlite3_value **argv
1146 ){
1147   const unsigned char *zStr;        /* The input string A */
1148   const unsigned char *zPattern;    /* The pattern string B */
1149   const unsigned char *zRep;        /* The replacement string C */
1150   unsigned char *zOut;              /* The output */
1151   int nStr;                /* Size of zStr */
1152   int nPattern;            /* Size of zPattern */
1153   int nRep;                /* Size of zRep */
1154   i64 nOut;                /* Maximum size of zOut */
1155   int loopLimit;           /* Last zStr[] that might match zPattern[] */
1156   int i, j;                /* Loop counters */
1157 
1158   assert( argc==3 );
1159   UNUSED_PARAMETER(argc);
1160   zStr = sqlite3_value_text(argv[0]);
1161   if( zStr==0 ) return;
1162   nStr = sqlite3_value_bytes(argv[0]);
1163   assert( zStr==sqlite3_value_text(argv[0]) );  /* No encoding change */
1164   zPattern = sqlite3_value_text(argv[1]);
1165   if( zPattern==0 ){
1166     assert( sqlite3_value_type(argv[1])==SQLITE_NULL
1167             || sqlite3_context_db_handle(context)->mallocFailed );
1168     return;
1169   }
1170   if( zPattern[0]==0 ){
1171     assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
1172     sqlite3_result_value(context, argv[0]);
1173     return;
1174   }
1175   nPattern = sqlite3_value_bytes(argv[1]);
1176   assert( zPattern==sqlite3_value_text(argv[1]) );  /* No encoding change */
1177   zRep = sqlite3_value_text(argv[2]);
1178   if( zRep==0 ) return;
1179   nRep = sqlite3_value_bytes(argv[2]);
1180   assert( zRep==sqlite3_value_text(argv[2]) );
1181   nOut = nStr + 1;
1182   assert( nOut<SQLITE_MAX_LENGTH );
1183   zOut = contextMalloc(context, (i64)nOut);
1184   if( zOut==0 ){
1185     return;
1186   }
1187   loopLimit = nStr - nPattern;
1188   for(i=j=0; i<=loopLimit; i++){
1189     if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
1190       zOut[j++] = zStr[i];
1191     }else{
1192       u8 *zOld;
1193       sqlite3 *db = sqlite3_context_db_handle(context);
1194       nOut += nRep - nPattern;
1195       testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
1196       testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
1197       if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1198         sqlite3_result_error_toobig(context);
1199         sqlite3_free(zOut);
1200         return;
1201       }
1202       zOld = zOut;
1203       zOut = sqlite3_realloc64(zOut, (int)nOut);
1204       if( zOut==0 ){
1205         sqlite3_result_error_nomem(context);
1206         sqlite3_free(zOld);
1207         return;
1208       }
1209       memcpy(&zOut[j], zRep, nRep);
1210       j += nRep;
1211       i += nPattern-1;
1212     }
1213   }
1214   assert( j+nStr-i+1==nOut );
1215   memcpy(&zOut[j], &zStr[i], nStr-i);
1216   j += nStr - i;
1217   assert( j<=nOut );
1218   zOut[j] = 0;
1219   sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
1220 }
1221 
1222 /*
1223 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
1224 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
1225 */
1226 static void trimFunc(
1227   sqlite3_context *context,
1228   int argc,
1229   sqlite3_value **argv
1230 ){
1231   const unsigned char *zIn;         /* Input string */
1232   const unsigned char *zCharSet;    /* Set of characters to trim */
1233   int nIn;                          /* Number of bytes in input */
1234   int flags;                        /* 1: trimleft  2: trimright  3: trim */
1235   int i;                            /* Loop counter */
1236   unsigned char *aLen = 0;          /* Length of each character in zCharSet */
1237   unsigned char **azChar = 0;       /* Individual characters in zCharSet */
1238   int nChar;                        /* Number of characters in zCharSet */
1239 
1240   if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1241     return;
1242   }
1243   zIn = sqlite3_value_text(argv[0]);
1244   if( zIn==0 ) return;
1245   nIn = sqlite3_value_bytes(argv[0]);
1246   assert( zIn==sqlite3_value_text(argv[0]) );
1247   if( argc==1 ){
1248     static const unsigned char lenOne[] = { 1 };
1249     static unsigned char * const azOne[] = { (u8*)" " };
1250     nChar = 1;
1251     aLen = (u8*)lenOne;
1252     azChar = (unsigned char **)azOne;
1253     zCharSet = 0;
1254   }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
1255     return;
1256   }else{
1257     const unsigned char *z;
1258     for(z=zCharSet, nChar=0; *z; nChar++){
1259       SQLITE_SKIP_UTF8(z);
1260     }
1261     if( nChar>0 ){
1262       azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
1263       if( azChar==0 ){
1264         return;
1265       }
1266       aLen = (unsigned char*)&azChar[nChar];
1267       for(z=zCharSet, nChar=0; *z; nChar++){
1268         azChar[nChar] = (unsigned char *)z;
1269         SQLITE_SKIP_UTF8(z);
1270         aLen[nChar] = (u8)(z - azChar[nChar]);
1271       }
1272     }
1273   }
1274   if( nChar>0 ){
1275     flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
1276     if( flags & 1 ){
1277       while( nIn>0 ){
1278         int len = 0;
1279         for(i=0; i<nChar; i++){
1280           len = aLen[i];
1281           if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
1282         }
1283         if( i>=nChar ) break;
1284         zIn += len;
1285         nIn -= len;
1286       }
1287     }
1288     if( flags & 2 ){
1289       while( nIn>0 ){
1290         int len = 0;
1291         for(i=0; i<nChar; i++){
1292           len = aLen[i];
1293           if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
1294         }
1295         if( i>=nChar ) break;
1296         nIn -= len;
1297       }
1298     }
1299     if( zCharSet ){
1300       sqlite3_free(azChar);
1301     }
1302   }
1303   sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
1304 }
1305 
1306 
1307 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
1308 ** is only available if the SQLITE_SOUNDEX compile-time option is used
1309 ** when SQLite is built.
1310 */
1311 #ifdef SQLITE_SOUNDEX
1312 /*
1313 ** Compute the soundex encoding of a word.
1314 **
1315 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
1316 ** soundex encoding of the string X.
1317 */
1318 static void soundexFunc(
1319   sqlite3_context *context,
1320   int argc,
1321   sqlite3_value **argv
1322 ){
1323   char zResult[8];
1324   const u8 *zIn;
1325   int i, j;
1326   static const unsigned char iCode[] = {
1327     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1328     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1329     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1330     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1331     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1332     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1333     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1334     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1335   };
1336   assert( argc==1 );
1337   zIn = (u8*)sqlite3_value_text(argv[0]);
1338   if( zIn==0 ) zIn = (u8*)"";
1339   for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
1340   if( zIn[i] ){
1341     u8 prevcode = iCode[zIn[i]&0x7f];
1342     zResult[0] = sqlite3Toupper(zIn[i]);
1343     for(j=1; j<4 && zIn[i]; i++){
1344       int code = iCode[zIn[i]&0x7f];
1345       if( code>0 ){
1346         if( code!=prevcode ){
1347           prevcode = code;
1348           zResult[j++] = code + '0';
1349         }
1350       }else{
1351         prevcode = 0;
1352       }
1353     }
1354     while( j<4 ){
1355       zResult[j++] = '0';
1356     }
1357     zResult[j] = 0;
1358     sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
1359   }else{
1360     /* IMP: R-64894-50321 The string "?000" is returned if the argument
1361     ** is NULL or contains no ASCII alphabetic characters. */
1362     sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
1363   }
1364 }
1365 #endif /* SQLITE_SOUNDEX */
1366 
1367 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1368 /*
1369 ** A function that loads a shared-library extension then returns NULL.
1370 */
1371 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
1372   const char *zFile = (const char *)sqlite3_value_text(argv[0]);
1373   const char *zProc;
1374   sqlite3 *db = sqlite3_context_db_handle(context);
1375   char *zErrMsg = 0;
1376 
1377   if( argc==2 ){
1378     zProc = (const char *)sqlite3_value_text(argv[1]);
1379   }else{
1380     zProc = 0;
1381   }
1382   if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
1383     sqlite3_result_error(context, zErrMsg, -1);
1384     sqlite3_free(zErrMsg);
1385   }
1386 }
1387 #endif
1388 
1389 
1390 /*
1391 ** An instance of the following structure holds the context of a
1392 ** sum() or avg() aggregate computation.
1393 */
1394 typedef struct SumCtx SumCtx;
1395 struct SumCtx {
1396   double rSum;      /* Floating point sum */
1397   i64 iSum;         /* Integer sum */
1398   i64 cnt;          /* Number of elements summed */
1399   u8 overflow;      /* True if integer overflow seen */
1400   u8 approx;        /* True if non-integer value was input to the sum */
1401 };
1402 
1403 /*
1404 ** Routines used to compute the sum, average, and total.
1405 **
1406 ** The SUM() function follows the (broken) SQL standard which means
1407 ** that it returns NULL if it sums over no inputs.  TOTAL returns
1408 ** 0.0 in that case.  In addition, TOTAL always returns a float where
1409 ** SUM might return an integer if it never encounters a floating point
1410 ** value.  TOTAL never fails, but SUM might through an exception if
1411 ** it overflows an integer.
1412 */
1413 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1414   SumCtx *p;
1415   int type;
1416   assert( argc==1 );
1417   UNUSED_PARAMETER(argc);
1418   p = sqlite3_aggregate_context(context, sizeof(*p));
1419   type = sqlite3_value_numeric_type(argv[0]);
1420   if( p && type!=SQLITE_NULL ){
1421     p->cnt++;
1422     if( type==SQLITE_INTEGER ){
1423       i64 v = sqlite3_value_int64(argv[0]);
1424       p->rSum += v;
1425       if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
1426         p->overflow = 1;
1427       }
1428     }else{
1429       p->rSum += sqlite3_value_double(argv[0]);
1430       p->approx = 1;
1431     }
1432   }
1433 }
1434 static void sumFinalize(sqlite3_context *context){
1435   SumCtx *p;
1436   p = sqlite3_aggregate_context(context, 0);
1437   if( p && p->cnt>0 ){
1438     if( p->overflow ){
1439       sqlite3_result_error(context,"integer overflow",-1);
1440     }else if( p->approx ){
1441       sqlite3_result_double(context, p->rSum);
1442     }else{
1443       sqlite3_result_int64(context, p->iSum);
1444     }
1445   }
1446 }
1447 static void avgFinalize(sqlite3_context *context){
1448   SumCtx *p;
1449   p = sqlite3_aggregate_context(context, 0);
1450   if( p && p->cnt>0 ){
1451     sqlite3_result_double(context, p->rSum/(double)p->cnt);
1452   }
1453 }
1454 static void totalFinalize(sqlite3_context *context){
1455   SumCtx *p;
1456   p = sqlite3_aggregate_context(context, 0);
1457   /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1458   sqlite3_result_double(context, p ? p->rSum : (double)0);
1459 }
1460 
1461 /*
1462 ** The following structure keeps track of state information for the
1463 ** count() aggregate function.
1464 */
1465 typedef struct CountCtx CountCtx;
1466 struct CountCtx {
1467   i64 n;
1468 };
1469 
1470 /*
1471 ** Routines to implement the count() aggregate function.
1472 */
1473 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1474   CountCtx *p;
1475   p = sqlite3_aggregate_context(context, sizeof(*p));
1476   if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
1477     p->n++;
1478   }
1479 
1480 #ifndef SQLITE_OMIT_DEPRECATED
1481   /* The sqlite3_aggregate_count() function is deprecated.  But just to make
1482   ** sure it still operates correctly, verify that its count agrees with our
1483   ** internal count when using count(*) and when the total count can be
1484   ** expressed as a 32-bit integer. */
1485   assert( argc==1 || p==0 || p->n>0x7fffffff
1486           || p->n==sqlite3_aggregate_count(context) );
1487 #endif
1488 }
1489 static void countFinalize(sqlite3_context *context){
1490   CountCtx *p;
1491   p = sqlite3_aggregate_context(context, 0);
1492   sqlite3_result_int64(context, p ? p->n : 0);
1493 }
1494 
1495 /*
1496 ** Routines to implement min() and max() aggregate functions.
1497 */
1498 static void minmaxStep(
1499   sqlite3_context *context,
1500   int NotUsed,
1501   sqlite3_value **argv
1502 ){
1503   Mem *pArg  = (Mem *)argv[0];
1504   Mem *pBest;
1505   UNUSED_PARAMETER(NotUsed);
1506 
1507   pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
1508   if( !pBest ) return;
1509 
1510   if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1511     if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
1512   }else if( pBest->flags ){
1513     int max;
1514     int cmp;
1515     CollSeq *pColl = sqlite3GetFuncCollSeq(context);
1516     /* This step function is used for both the min() and max() aggregates,
1517     ** the only difference between the two being that the sense of the
1518     ** comparison is inverted. For the max() aggregate, the
1519     ** sqlite3_user_data() function returns (void *)-1. For min() it
1520     ** returns (void *)db, where db is the sqlite3* database pointer.
1521     ** Therefore the next statement sets variable 'max' to 1 for the max()
1522     ** aggregate, or 0 for min().
1523     */
1524     max = sqlite3_user_data(context)!=0;
1525     cmp = sqlite3MemCompare(pBest, pArg, pColl);
1526     if( (max && cmp<0) || (!max && cmp>0) ){
1527       sqlite3VdbeMemCopy(pBest, pArg);
1528     }else{
1529       sqlite3SkipAccumulatorLoad(context);
1530     }
1531   }else{
1532     pBest->db = sqlite3_context_db_handle(context);
1533     sqlite3VdbeMemCopy(pBest, pArg);
1534   }
1535 }
1536 static void minMaxFinalize(sqlite3_context *context){
1537   sqlite3_value *pRes;
1538   pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
1539   if( pRes ){
1540     if( pRes->flags ){
1541       sqlite3_result_value(context, pRes);
1542     }
1543     sqlite3VdbeMemRelease(pRes);
1544   }
1545 }
1546 
1547 /*
1548 ** group_concat(EXPR, ?SEPARATOR?)
1549 */
1550 static void groupConcatStep(
1551   sqlite3_context *context,
1552   int argc,
1553   sqlite3_value **argv
1554 ){
1555   const char *zVal;
1556   StrAccum *pAccum;
1557   const char *zSep;
1558   int nVal, nSep;
1559   assert( argc==1 || argc==2 );
1560   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
1561   pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
1562 
1563   if( pAccum ){
1564     sqlite3 *db = sqlite3_context_db_handle(context);
1565     int firstTerm = pAccum->mxAlloc==0;
1566     pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
1567     if( !firstTerm ){
1568       if( argc==2 ){
1569         zSep = (char*)sqlite3_value_text(argv[1]);
1570         nSep = sqlite3_value_bytes(argv[1]);
1571       }else{
1572         zSep = ",";
1573         nSep = 1;
1574       }
1575       if( nSep ) sqlite3StrAccumAppend(pAccum, zSep, nSep);
1576     }
1577     zVal = (char*)sqlite3_value_text(argv[0]);
1578     nVal = sqlite3_value_bytes(argv[0]);
1579     if( zVal ) sqlite3StrAccumAppend(pAccum, zVal, nVal);
1580   }
1581 }
1582 static void groupConcatFinalize(sqlite3_context *context){
1583   StrAccum *pAccum;
1584   pAccum = sqlite3_aggregate_context(context, 0);
1585   if( pAccum ){
1586     if( pAccum->accError==STRACCUM_TOOBIG ){
1587       sqlite3_result_error_toobig(context);
1588     }else if( pAccum->accError==STRACCUM_NOMEM ){
1589       sqlite3_result_error_nomem(context);
1590     }else{
1591       sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
1592                           sqlite3_free);
1593     }
1594   }
1595 }
1596 
1597 /*
1598 ** This routine does per-connection function registration.  Most
1599 ** of the built-in functions above are part of the global function set.
1600 ** This routine only deals with those that are not global.
1601 */
1602 void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
1603   int rc = sqlite3_overload_function(db, "MATCH", 2);
1604   assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
1605   if( rc==SQLITE_NOMEM ){
1606     db->mallocFailed = 1;
1607   }
1608 }
1609 
1610 /*
1611 ** Set the LIKEOPT flag on the 2-argument function with the given name.
1612 */
1613 static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
1614   FuncDef *pDef;
1615   pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName),
1616                              2, SQLITE_UTF8, 0);
1617   if( ALWAYS(pDef) ){
1618     pDef->funcFlags |= flagVal;
1619   }
1620 }
1621 
1622 /*
1623 ** Register the built-in LIKE and GLOB functions.  The caseSensitive
1624 ** parameter determines whether or not the LIKE operator is case
1625 ** sensitive.  GLOB is always case sensitive.
1626 */
1627 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
1628   struct compareInfo *pInfo;
1629   if( caseSensitive ){
1630     pInfo = (struct compareInfo*)&likeInfoAlt;
1631   }else{
1632     pInfo = (struct compareInfo*)&likeInfoNorm;
1633   }
1634   sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1635   sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1636   sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
1637       (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0);
1638   setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
1639   setLikeOptFlag(db, "like",
1640       caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
1641 }
1642 
1643 /*
1644 ** pExpr points to an expression which implements a function.  If
1645 ** it is appropriate to apply the LIKE optimization to that function
1646 ** then set aWc[0] through aWc[2] to the wildcard characters and
1647 ** return TRUE.  If the function is not a LIKE-style function then
1648 ** return FALSE.
1649 **
1650 ** *pIsNocase is set to true if uppercase and lowercase are equivalent for
1651 ** the function (default for LIKE).  If the function makes the distinction
1652 ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
1653 ** false.
1654 */
1655 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
1656   FuncDef *pDef;
1657   if( pExpr->op!=TK_FUNCTION
1658    || !pExpr->x.pList
1659    || pExpr->x.pList->nExpr!=2
1660   ){
1661     return 0;
1662   }
1663   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
1664   pDef = sqlite3FindFunction(db, pExpr->u.zToken,
1665                              sqlite3Strlen30(pExpr->u.zToken),
1666                              2, SQLITE_UTF8, 0);
1667   if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
1668     return 0;
1669   }
1670 
1671   /* The memcpy() statement assumes that the wildcard characters are
1672   ** the first three statements in the compareInfo structure.  The
1673   ** asserts() that follow verify that assumption
1674   */
1675   memcpy(aWc, pDef->pUserData, 3);
1676   assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
1677   assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
1678   assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
1679   *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
1680   return 1;
1681 }
1682 
1683 /*
1684 ** All of the FuncDef structures in the aBuiltinFunc[] array above
1685 ** to the global function hash table.  This occurs at start-time (as
1686 ** a consequence of calling sqlite3_initialize()).
1687 **
1688 ** After this routine runs
1689 */
1690 void sqlite3RegisterGlobalFunctions(void){
1691   /*
1692   ** The following array holds FuncDef structures for all of the functions
1693   ** defined in this file.
1694   **
1695   ** The array cannot be constant since changes are made to the
1696   ** FuncDef.pHash elements at start-time.  The elements of this array
1697   ** are read-only after initialization is complete.
1698   */
1699   static SQLITE_WSD FuncDef aBuiltinFunc[] = {
1700     FUNCTION(ltrim,              1, 1, 0, trimFunc         ),
1701     FUNCTION(ltrim,              2, 1, 0, trimFunc         ),
1702     FUNCTION(rtrim,              1, 2, 0, trimFunc         ),
1703     FUNCTION(rtrim,              2, 2, 0, trimFunc         ),
1704     FUNCTION(trim,               1, 3, 0, trimFunc         ),
1705     FUNCTION(trim,               2, 3, 0, trimFunc         ),
1706     FUNCTION(min,               -1, 0, 1, minmaxFunc       ),
1707     FUNCTION(min,                0, 0, 1, 0                ),
1708     AGGREGATE2(min,              1, 0, 1, minmaxStep,      minMaxFinalize,
1709                                           SQLITE_FUNC_MINMAX ),
1710     FUNCTION(max,               -1, 1, 1, minmaxFunc       ),
1711     FUNCTION(max,                0, 1, 1, 0                ),
1712     AGGREGATE2(max,              1, 1, 1, minmaxStep,      minMaxFinalize,
1713                                           SQLITE_FUNC_MINMAX ),
1714     FUNCTION2(typeof,            1, 0, 0, typeofFunc,  SQLITE_FUNC_TYPEOF),
1715     FUNCTION2(length,            1, 0, 0, lengthFunc,  SQLITE_FUNC_LENGTH),
1716     FUNCTION(instr,              2, 0, 0, instrFunc        ),
1717     FUNCTION(substr,             2, 0, 0, substrFunc       ),
1718     FUNCTION(substr,             3, 0, 0, substrFunc       ),
1719     FUNCTION(printf,            -1, 0, 0, printfFunc       ),
1720     FUNCTION(unicode,            1, 0, 0, unicodeFunc      ),
1721     FUNCTION(char,              -1, 0, 0, charFunc         ),
1722     FUNCTION(abs,                1, 0, 0, absFunc          ),
1723 #ifndef SQLITE_OMIT_FLOATING_POINT
1724     FUNCTION(round,              1, 0, 0, roundFunc        ),
1725     FUNCTION(round,              2, 0, 0, roundFunc        ),
1726 #endif
1727     FUNCTION(upper,              1, 0, 0, upperFunc        ),
1728     FUNCTION(lower,              1, 0, 0, lowerFunc        ),
1729     FUNCTION(coalesce,           1, 0, 0, 0                ),
1730     FUNCTION(coalesce,           0, 0, 0, 0                ),
1731     FUNCTION2(coalesce,         -1, 0, 0, noopFunc,  SQLITE_FUNC_COALESCE),
1732     FUNCTION(hex,                1, 0, 0, hexFunc          ),
1733     FUNCTION2(ifnull,            2, 0, 0, noopFunc,  SQLITE_FUNC_COALESCE),
1734     FUNCTION2(unlikely,          1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
1735     FUNCTION2(likelihood,        2, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
1736     FUNCTION2(likely,            1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
1737     VFUNCTION(random,            0, 0, 0, randomFunc       ),
1738     VFUNCTION(randomblob,        1, 0, 0, randomBlob       ),
1739     FUNCTION(nullif,             2, 0, 1, nullifFunc       ),
1740     DFUNCTION(sqlite_version,    0, 0, 0, versionFunc      ),
1741     DFUNCTION(sqlite_source_id,  0, 0, 0, sourceidFunc     ),
1742     FUNCTION(sqlite_log,         2, 0, 0, errlogFunc       ),
1743 #if SQLITE_USER_AUTHENTICATION
1744     FUNCTION(sqlite_crypt,       2, 0, 0, sqlite3CryptFunc ),
1745 #endif
1746 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1747     DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc  ),
1748     DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc  ),
1749 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1750     FUNCTION(quote,              1, 0, 0, quoteFunc        ),
1751     VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
1752     VFUNCTION(changes,           0, 0, 0, changes          ),
1753     VFUNCTION(total_changes,     0, 0, 0, total_changes    ),
1754     FUNCTION(replace,            3, 0, 0, replaceFunc      ),
1755     FUNCTION(zeroblob,           1, 0, 0, zeroblobFunc     ),
1756   #ifdef SQLITE_SOUNDEX
1757     FUNCTION(soundex,            1, 0, 0, soundexFunc      ),
1758   #endif
1759   #ifndef SQLITE_OMIT_LOAD_EXTENSION
1760     VFUNCTION(load_extension,    1, 0, 0, loadExt          ),
1761     VFUNCTION(load_extension,    2, 0, 0, loadExt          ),
1762   #endif
1763     AGGREGATE(sum,               1, 0, 0, sumStep,         sumFinalize    ),
1764     AGGREGATE(total,             1, 0, 0, sumStep,         totalFinalize    ),
1765     AGGREGATE(avg,               1, 0, 0, sumStep,         avgFinalize    ),
1766     AGGREGATE2(count,            0, 0, 0, countStep,       countFinalize,
1767                SQLITE_FUNC_COUNT  ),
1768     AGGREGATE(count,             1, 0, 0, countStep,       countFinalize  ),
1769     AGGREGATE(group_concat,      1, 0, 0, groupConcatStep, groupConcatFinalize),
1770     AGGREGATE(group_concat,      2, 0, 0, groupConcatStep, groupConcatFinalize),
1771 
1772     LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1773   #ifdef SQLITE_CASE_SENSITIVE_LIKE
1774     LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1775     LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1776   #else
1777     LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
1778     LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
1779   #endif
1780   };
1781 
1782   int i;
1783   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
1784   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc);
1785 
1786   for(i=0; i<ArraySize(aBuiltinFunc); i++){
1787     sqlite3FuncDefInsert(pHash, &aFunc[i]);
1788   }
1789   sqlite3RegisterDateTimeFunctions();
1790 #ifndef SQLITE_OMIT_ALTERTABLE
1791   sqlite3AlterFunctions();
1792 #endif
1793 #if defined(SQLITE_ENABLE_STAT3) || defined(SQLITE_ENABLE_STAT4)
1794   sqlite3AnalyzeFunctions();
1795 #endif
1796 }
1797