xref: /sqlite-3.40.0/src/func.c (revision bd5af9ea)
1 /*
2 ** 2002 February 23
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C-language implementations for many of the SQL
13 ** functions of SQLite.  (Some function, and in particular the date and
14 ** time functions, are implemented separately.)
15 */
16 #include "sqliteInt.h"
17 #include <stdlib.h>
18 #include <assert.h>
19 #include "vdbeInt.h"
20 
21 /*
22 ** Return the collating function associated with a function.
23 */
24 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
25   VdbeOp *pOp;
26   assert( context->pVdbe!=0 );
27   pOp = &context->pVdbe->aOp[context->iOp-1];
28   assert( pOp->opcode==OP_CollSeq );
29   assert( pOp->p4type==P4_COLLSEQ );
30   return pOp->p4.pColl;
31 }
32 
33 /*
34 ** Indicate that the accumulator load should be skipped on this
35 ** iteration of the aggregate loop.
36 */
37 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
38   context->skipFlag = 1;
39 }
40 
41 /*
42 ** Implementation of the non-aggregate min() and max() functions
43 */
44 static void minmaxFunc(
45   sqlite3_context *context,
46   int argc,
47   sqlite3_value **argv
48 ){
49   int i;
50   int mask;    /* 0 for min() or 0xffffffff for max() */
51   int iBest;
52   CollSeq *pColl;
53 
54   assert( argc>1 );
55   mask = sqlite3_user_data(context)==0 ? 0 : -1;
56   pColl = sqlite3GetFuncCollSeq(context);
57   assert( pColl );
58   assert( mask==-1 || mask==0 );
59   iBest = 0;
60   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
61   for(i=1; i<argc; i++){
62     if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
63     if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
64       testcase( mask==0 );
65       iBest = i;
66     }
67   }
68   sqlite3_result_value(context, argv[iBest]);
69 }
70 
71 /*
72 ** Return the type of the argument.
73 */
74 static void typeofFunc(
75   sqlite3_context *context,
76   int NotUsed,
77   sqlite3_value **argv
78 ){
79   const char *z = 0;
80   UNUSED_PARAMETER(NotUsed);
81   switch( sqlite3_value_type(argv[0]) ){
82     case SQLITE_INTEGER: z = "integer"; break;
83     case SQLITE_TEXT:    z = "text";    break;
84     case SQLITE_FLOAT:   z = "real";    break;
85     case SQLITE_BLOB:    z = "blob";    break;
86     default:             z = "null";    break;
87   }
88   sqlite3_result_text(context, z, -1, SQLITE_STATIC);
89 }
90 
91 
92 /*
93 ** Implementation of the length() function
94 */
95 static void lengthFunc(
96   sqlite3_context *context,
97   int argc,
98   sqlite3_value **argv
99 ){
100   int len;
101 
102   assert( argc==1 );
103   UNUSED_PARAMETER(argc);
104   switch( sqlite3_value_type(argv[0]) ){
105     case SQLITE_BLOB:
106     case SQLITE_INTEGER:
107     case SQLITE_FLOAT: {
108       sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
109       break;
110     }
111     case SQLITE_TEXT: {
112       const unsigned char *z = sqlite3_value_text(argv[0]);
113       if( z==0 ) return;
114       len = 0;
115       while( *z ){
116         len++;
117         SQLITE_SKIP_UTF8(z);
118       }
119       sqlite3_result_int(context, len);
120       break;
121     }
122     default: {
123       sqlite3_result_null(context);
124       break;
125     }
126   }
127 }
128 
129 /*
130 ** Implementation of the abs() function.
131 **
132 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
133 ** the numeric argument X.
134 */
135 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
136   assert( argc==1 );
137   UNUSED_PARAMETER(argc);
138   switch( sqlite3_value_type(argv[0]) ){
139     case SQLITE_INTEGER: {
140       i64 iVal = sqlite3_value_int64(argv[0]);
141       if( iVal<0 ){
142         if( iVal==SMALLEST_INT64 ){
143           /* IMP: R-31676-45509 If X is the integer -9223372036854775808
144           ** then abs(X) throws an integer overflow error since there is no
145           ** equivalent positive 64-bit two complement value. */
146           sqlite3_result_error(context, "integer overflow", -1);
147           return;
148         }
149         iVal = -iVal;
150       }
151       sqlite3_result_int64(context, iVal);
152       break;
153     }
154     case SQLITE_NULL: {
155       /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
156       sqlite3_result_null(context);
157       break;
158     }
159     default: {
160       /* Because sqlite3_value_double() returns 0.0 if the argument is not
161       ** something that can be converted into a number, we have:
162       ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
163       ** that cannot be converted to a numeric value.
164       */
165       double rVal = sqlite3_value_double(argv[0]);
166       if( rVal<0 ) rVal = -rVal;
167       sqlite3_result_double(context, rVal);
168       break;
169     }
170   }
171 }
172 
173 /*
174 ** Implementation of the instr() function.
175 **
176 ** instr(haystack,needle) finds the first occurrence of needle
177 ** in haystack and returns the number of previous characters plus 1,
178 ** or 0 if needle does not occur within haystack.
179 **
180 ** If both haystack and needle are BLOBs, then the result is one more than
181 ** the number of bytes in haystack prior to the first occurrence of needle,
182 ** or 0 if needle never occurs in haystack.
183 */
184 static void instrFunc(
185   sqlite3_context *context,
186   int argc,
187   sqlite3_value **argv
188 ){
189   const unsigned char *zHaystack;
190   const unsigned char *zNeedle;
191   int nHaystack;
192   int nNeedle;
193   int typeHaystack, typeNeedle;
194   int N = 1;
195   int isText;
196 
197   UNUSED_PARAMETER(argc);
198   typeHaystack = sqlite3_value_type(argv[0]);
199   typeNeedle = sqlite3_value_type(argv[1]);
200   if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
201   nHaystack = sqlite3_value_bytes(argv[0]);
202   nNeedle = sqlite3_value_bytes(argv[1]);
203   if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
204     zHaystack = sqlite3_value_blob(argv[0]);
205     zNeedle = sqlite3_value_blob(argv[1]);
206     isText = 0;
207   }else{
208     zHaystack = sqlite3_value_text(argv[0]);
209     zNeedle = sqlite3_value_text(argv[1]);
210     isText = 1;
211   }
212   while( nNeedle<=nHaystack && memcmp(zHaystack, zNeedle, nNeedle)!=0 ){
213     N++;
214     do{
215       nHaystack--;
216       zHaystack++;
217     }while( isText && (zHaystack[0]&0xc0)==0x80 );
218   }
219   if( nNeedle>nHaystack ) N = 0;
220   sqlite3_result_int(context, N);
221 }
222 
223 /*
224 ** Implementation of the printf() function.
225 */
226 static void printfFunc(
227   sqlite3_context *context,
228   int argc,
229   sqlite3_value **argv
230 ){
231   PrintfArguments x;
232   StrAccum str;
233   const char *zFormat;
234   int n;
235   sqlite3 *db = sqlite3_context_db_handle(context);
236 
237   if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
238     x.nArg = argc-1;
239     x.nUsed = 0;
240     x.apArg = argv+1;
241     sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
242     sqlite3XPrintf(&str, SQLITE_PRINTF_SQLFUNC, zFormat, &x);
243     n = str.nChar;
244     sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
245                         SQLITE_DYNAMIC);
246   }
247 }
248 
249 /*
250 ** Implementation of the substr() function.
251 **
252 ** substr(x,p1,p2)  returns p2 characters of x[] beginning with p1.
253 ** p1 is 1-indexed.  So substr(x,1,1) returns the first character
254 ** of x.  If x is text, then we actually count UTF-8 characters.
255 ** If x is a blob, then we count bytes.
256 **
257 ** If p1 is negative, then we begin abs(p1) from the end of x[].
258 **
259 ** If p2 is negative, return the p2 characters preceding p1.
260 */
261 static void substrFunc(
262   sqlite3_context *context,
263   int argc,
264   sqlite3_value **argv
265 ){
266   const unsigned char *z;
267   const unsigned char *z2;
268   int len;
269   int p0type;
270   i64 p1, p2;
271   int negP2 = 0;
272 
273   assert( argc==3 || argc==2 );
274   if( sqlite3_value_type(argv[1])==SQLITE_NULL
275    || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
276   ){
277     return;
278   }
279   p0type = sqlite3_value_type(argv[0]);
280   p1 = sqlite3_value_int(argv[1]);
281   if( p0type==SQLITE_BLOB ){
282     len = sqlite3_value_bytes(argv[0]);
283     z = sqlite3_value_blob(argv[0]);
284     if( z==0 ) return;
285     assert( len==sqlite3_value_bytes(argv[0]) );
286   }else{
287     z = sqlite3_value_text(argv[0]);
288     if( z==0 ) return;
289     len = 0;
290     if( p1<0 ){
291       for(z2=z; *z2; len++){
292         SQLITE_SKIP_UTF8(z2);
293       }
294     }
295   }
296 #ifdef SQLITE_SUBSTR_COMPATIBILITY
297   /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
298   ** as substr(X,1,N) - it returns the first N characters of X.  This
299   ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
300   ** from 2009-02-02 for compatibility of applications that exploited the
301   ** old buggy behavior. */
302   if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
303 #endif
304   if( argc==3 ){
305     p2 = sqlite3_value_int(argv[2]);
306     if( p2<0 ){
307       p2 = -p2;
308       negP2 = 1;
309     }
310   }else{
311     p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
312   }
313   if( p1<0 ){
314     p1 += len;
315     if( p1<0 ){
316       p2 += p1;
317       if( p2<0 ) p2 = 0;
318       p1 = 0;
319     }
320   }else if( p1>0 ){
321     p1--;
322   }else if( p2>0 ){
323     p2--;
324   }
325   if( negP2 ){
326     p1 -= p2;
327     if( p1<0 ){
328       p2 += p1;
329       p1 = 0;
330     }
331   }
332   assert( p1>=0 && p2>=0 );
333   if( p0type!=SQLITE_BLOB ){
334     while( *z && p1 ){
335       SQLITE_SKIP_UTF8(z);
336       p1--;
337     }
338     for(z2=z; *z2 && p2; p2--){
339       SQLITE_SKIP_UTF8(z2);
340     }
341     sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
342                           SQLITE_UTF8);
343   }else{
344     if( p1+p2>len ){
345       p2 = len-p1;
346       if( p2<0 ) p2 = 0;
347     }
348     sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
349   }
350 }
351 
352 /*
353 ** Implementation of the round() function
354 */
355 #ifndef SQLITE_OMIT_FLOATING_POINT
356 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
357   int n = 0;
358   double r;
359   char *zBuf;
360   assert( argc==1 || argc==2 );
361   if( argc==2 ){
362     if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
363     n = sqlite3_value_int(argv[1]);
364     if( n>30 ) n = 30;
365     if( n<0 ) n = 0;
366   }
367   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
368   r = sqlite3_value_double(argv[0]);
369   /* If Y==0 and X will fit in a 64-bit int,
370   ** handle the rounding directly,
371   ** otherwise use printf.
372   */
373   if( n==0 && r>=0 && r<LARGEST_INT64-1 ){
374     r = (double)((sqlite_int64)(r+0.5));
375   }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){
376     r = -(double)((sqlite_int64)((-r)+0.5));
377   }else{
378     zBuf = sqlite3_mprintf("%.*f",n,r);
379     if( zBuf==0 ){
380       sqlite3_result_error_nomem(context);
381       return;
382     }
383     sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
384     sqlite3_free(zBuf);
385   }
386   sqlite3_result_double(context, r);
387 }
388 #endif
389 
390 /*
391 ** Allocate nByte bytes of space using sqlite3Malloc(). If the
392 ** allocation fails, call sqlite3_result_error_nomem() to notify
393 ** the database handle that malloc() has failed and return NULL.
394 ** If nByte is larger than the maximum string or blob length, then
395 ** raise an SQLITE_TOOBIG exception and return NULL.
396 */
397 static void *contextMalloc(sqlite3_context *context, i64 nByte){
398   char *z;
399   sqlite3 *db = sqlite3_context_db_handle(context);
400   assert( nByte>0 );
401   testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
402   testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
403   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
404     sqlite3_result_error_toobig(context);
405     z = 0;
406   }else{
407     z = sqlite3Malloc(nByte);
408     if( !z ){
409       sqlite3_result_error_nomem(context);
410     }
411   }
412   return z;
413 }
414 
415 /*
416 ** Implementation of the upper() and lower() SQL functions.
417 */
418 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
419   char *z1;
420   const char *z2;
421   int i, n;
422   UNUSED_PARAMETER(argc);
423   z2 = (char*)sqlite3_value_text(argv[0]);
424   n = sqlite3_value_bytes(argv[0]);
425   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
426   assert( z2==(char*)sqlite3_value_text(argv[0]) );
427   if( z2 ){
428     z1 = contextMalloc(context, ((i64)n)+1);
429     if( z1 ){
430       for(i=0; i<n; i++){
431         z1[i] = (char)sqlite3Toupper(z2[i]);
432       }
433       sqlite3_result_text(context, z1, n, sqlite3_free);
434     }
435   }
436 }
437 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
438   char *z1;
439   const char *z2;
440   int i, n;
441   UNUSED_PARAMETER(argc);
442   z2 = (char*)sqlite3_value_text(argv[0]);
443   n = sqlite3_value_bytes(argv[0]);
444   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
445   assert( z2==(char*)sqlite3_value_text(argv[0]) );
446   if( z2 ){
447     z1 = contextMalloc(context, ((i64)n)+1);
448     if( z1 ){
449       for(i=0; i<n; i++){
450         z1[i] = sqlite3Tolower(z2[i]);
451       }
452       sqlite3_result_text(context, z1, n, sqlite3_free);
453     }
454   }
455 }
456 
457 /*
458 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
459 ** as VDBE code so that unused argument values do not have to be computed.
460 ** However, we still need some kind of function implementation for this
461 ** routines in the function table.  The noopFunc macro provides this.
462 ** noopFunc will never be called so it doesn't matter what the implementation
463 ** is.  We might as well use the "version()" function as a substitute.
464 */
465 #define noopFunc versionFunc   /* Substitute function - never called */
466 
467 /*
468 ** Implementation of random().  Return a random integer.
469 */
470 static void randomFunc(
471   sqlite3_context *context,
472   int NotUsed,
473   sqlite3_value **NotUsed2
474 ){
475   sqlite_int64 r;
476   UNUSED_PARAMETER2(NotUsed, NotUsed2);
477   sqlite3_randomness(sizeof(r), &r);
478   if( r<0 ){
479     /* We need to prevent a random number of 0x8000000000000000
480     ** (or -9223372036854775808) since when you do abs() of that
481     ** number of you get the same value back again.  To do this
482     ** in a way that is testable, mask the sign bit off of negative
483     ** values, resulting in a positive value.  Then take the
484     ** 2s complement of that positive value.  The end result can
485     ** therefore be no less than -9223372036854775807.
486     */
487     r = -(r & LARGEST_INT64);
488   }
489   sqlite3_result_int64(context, r);
490 }
491 
492 /*
493 ** Implementation of randomblob(N).  Return a random blob
494 ** that is N bytes long.
495 */
496 static void randomBlob(
497   sqlite3_context *context,
498   int argc,
499   sqlite3_value **argv
500 ){
501   int n;
502   unsigned char *p;
503   assert( argc==1 );
504   UNUSED_PARAMETER(argc);
505   n = sqlite3_value_int(argv[0]);
506   if( n<1 ){
507     n = 1;
508   }
509   p = contextMalloc(context, n);
510   if( p ){
511     sqlite3_randomness(n, p);
512     sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
513   }
514 }
515 
516 /*
517 ** Implementation of the last_insert_rowid() SQL function.  The return
518 ** value is the same as the sqlite3_last_insert_rowid() API function.
519 */
520 static void last_insert_rowid(
521   sqlite3_context *context,
522   int NotUsed,
523   sqlite3_value **NotUsed2
524 ){
525   sqlite3 *db = sqlite3_context_db_handle(context);
526   UNUSED_PARAMETER2(NotUsed, NotUsed2);
527   /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
528   ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
529   ** function. */
530   sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
531 }
532 
533 /*
534 ** Implementation of the changes() SQL function.
535 **
536 ** IMP: R-62073-11209 The changes() SQL function is a wrapper
537 ** around the sqlite3_changes() C/C++ function and hence follows the same
538 ** rules for counting changes.
539 */
540 static void changes(
541   sqlite3_context *context,
542   int NotUsed,
543   sqlite3_value **NotUsed2
544 ){
545   sqlite3 *db = sqlite3_context_db_handle(context);
546   UNUSED_PARAMETER2(NotUsed, NotUsed2);
547   sqlite3_result_int(context, sqlite3_changes(db));
548 }
549 
550 /*
551 ** Implementation of the total_changes() SQL function.  The return value is
552 ** the same as the sqlite3_total_changes() API function.
553 */
554 static void total_changes(
555   sqlite3_context *context,
556   int NotUsed,
557   sqlite3_value **NotUsed2
558 ){
559   sqlite3 *db = sqlite3_context_db_handle(context);
560   UNUSED_PARAMETER2(NotUsed, NotUsed2);
561   /* IMP: R-52756-41993 This function is a wrapper around the
562   ** sqlite3_total_changes() C/C++ interface. */
563   sqlite3_result_int(context, sqlite3_total_changes(db));
564 }
565 
566 /*
567 ** A structure defining how to do GLOB-style comparisons.
568 */
569 struct compareInfo {
570   u8 matchAll;          /* "*" or "%" */
571   u8 matchOne;          /* "?" or "_" */
572   u8 matchSet;          /* "[" or 0 */
573   u8 noCase;            /* true to ignore case differences */
574 };
575 
576 /*
577 ** For LIKE and GLOB matching on EBCDIC machines, assume that every
578 ** character is exactly one byte in size.  Also, provde the Utf8Read()
579 ** macro for fast reading of the next character in the common case where
580 ** the next character is ASCII.
581 */
582 #if defined(SQLITE_EBCDIC)
583 # define sqlite3Utf8Read(A)        (*((*A)++))
584 # define Utf8Read(A)               (*(A++))
585 #else
586 # define Utf8Read(A)               (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
587 #endif
588 
589 static const struct compareInfo globInfo = { '*', '?', '[', 0 };
590 /* The correct SQL-92 behavior is for the LIKE operator to ignore
591 ** case.  Thus  'a' LIKE 'A' would be true. */
592 static const struct compareInfo likeInfoNorm = { '%', '_',   0, 1 };
593 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
594 ** is case sensitive causing 'a' LIKE 'A' to be false */
595 static const struct compareInfo likeInfoAlt = { '%', '_',   0, 0 };
596 
597 /*
598 ** Compare two UTF-8 strings for equality where the first string can
599 ** potentially be a "glob" or "like" expression.  Return true (1) if they
600 ** are the same and false (0) if they are different.
601 **
602 ** Globbing rules:
603 **
604 **      '*'       Matches any sequence of zero or more characters.
605 **
606 **      '?'       Matches exactly one character.
607 **
608 **     [...]      Matches one character from the enclosed list of
609 **                characters.
610 **
611 **     [^...]     Matches one character not in the enclosed list.
612 **
613 ** With the [...] and [^...] matching, a ']' character can be included
614 ** in the list by making it the first character after '[' or '^'.  A
615 ** range of characters can be specified using '-'.  Example:
616 ** "[a-z]" matches any single lower-case letter.  To match a '-', make
617 ** it the last character in the list.
618 **
619 ** Like matching rules:
620 **
621 **      '%'       Matches any sequence of zero or more characters
622 **
623 ***     '_'       Matches any one character
624 **
625 **      Ec        Where E is the "esc" character and c is any other
626 **                character, including '%', '_', and esc, match exactly c.
627 **
628 ** The comments within this routine usually assume glob matching.
629 **
630 ** This routine is usually quick, but can be N**2 in the worst case.
631 */
632 static int patternCompare(
633   const u8 *zPattern,              /* The glob pattern */
634   const u8 *zString,               /* The string to compare against the glob */
635   const struct compareInfo *pInfo, /* Information about how to do the compare */
636   u32 matchOther                   /* The escape char (LIKE) or '[' (GLOB) */
637 ){
638   u32 c, c2;                       /* Next pattern and input string chars */
639   u32 matchOne = pInfo->matchOne;  /* "?" or "_" */
640   u32 matchAll = pInfo->matchAll;  /* "*" or "%" */
641   u8 noCase = pInfo->noCase;       /* True if uppercase==lowercase */
642   const u8 *zEscaped = 0;          /* One past the last escaped input char */
643 
644   while( (c = Utf8Read(zPattern))!=0 ){
645     if( c==matchAll ){  /* Match "*" */
646       /* Skip over multiple "*" characters in the pattern.  If there
647       ** are also "?" characters, skip those as well, but consume a
648       ** single character of the input string for each "?" skipped */
649       while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){
650         if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
651           return 0;
652         }
653       }
654       if( c==0 ){
655         return 1;   /* "*" at the end of the pattern matches */
656       }else if( c==matchOther ){
657         if( pInfo->matchSet==0 ){
658           c = sqlite3Utf8Read(&zPattern);
659           if( c==0 ) return 0;
660         }else{
661           /* "[...]" immediately follows the "*".  We have to do a slow
662           ** recursive search in this case, but it is an unusual case. */
663           assert( matchOther<0x80 );  /* '[' is a single-byte character */
664           while( *zString
665                  && patternCompare(&zPattern[-1],zString,pInfo,matchOther)==0 ){
666             SQLITE_SKIP_UTF8(zString);
667           }
668           return *zString!=0;
669         }
670       }
671 
672       /* At this point variable c contains the first character of the
673       ** pattern string past the "*".  Search in the input string for the
674       ** first matching character and recursively contine the match from
675       ** that point.
676       **
677       ** For a case-insensitive search, set variable cx to be the same as
678       ** c but in the other case and search the input string for either
679       ** c or cx.
680       */
681       if( c<=0x80 ){
682         u32 cx;
683         if( noCase ){
684           cx = sqlite3Toupper(c);
685           c = sqlite3Tolower(c);
686         }else{
687           cx = c;
688         }
689         while( (c2 = *(zString++))!=0 ){
690           if( c2!=c && c2!=cx ) continue;
691           if( patternCompare(zPattern,zString,pInfo,matchOther) ) return 1;
692         }
693       }else{
694         while( (c2 = Utf8Read(zString))!=0 ){
695           if( c2!=c ) continue;
696           if( patternCompare(zPattern,zString,pInfo,matchOther) ) return 1;
697         }
698       }
699       return 0;
700     }
701     if( c==matchOther ){
702       if( pInfo->matchSet==0 ){
703         c = sqlite3Utf8Read(&zPattern);
704         if( c==0 ) return 0;
705         zEscaped = zPattern;
706       }else{
707         u32 prior_c = 0;
708         int seen = 0;
709         int invert = 0;
710         c = sqlite3Utf8Read(&zString);
711         if( c==0 ) return 0;
712         c2 = sqlite3Utf8Read(&zPattern);
713         if( c2=='^' ){
714           invert = 1;
715           c2 = sqlite3Utf8Read(&zPattern);
716         }
717         if( c2==']' ){
718           if( c==']' ) seen = 1;
719           c2 = sqlite3Utf8Read(&zPattern);
720         }
721         while( c2 && c2!=']' ){
722           if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
723             c2 = sqlite3Utf8Read(&zPattern);
724             if( c>=prior_c && c<=c2 ) seen = 1;
725             prior_c = 0;
726           }else{
727             if( c==c2 ){
728               seen = 1;
729             }
730             prior_c = c2;
731           }
732           c2 = sqlite3Utf8Read(&zPattern);
733         }
734         if( c2==0 || (seen ^ invert)==0 ){
735           return 0;
736         }
737         continue;
738       }
739     }
740     c2 = Utf8Read(zString);
741     if( c==c2 ) continue;
742     if( noCase && c<0x80 && c2<0x80 && sqlite3Tolower(c)==sqlite3Tolower(c2) ){
743       continue;
744     }
745     if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
746     return 0;
747   }
748   return *zString==0;
749 }
750 
751 /*
752 ** The sqlite3_strglob() interface.
753 */
754 int sqlite3_strglob(const char *zGlobPattern, const char *zString){
755   return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[')==0;
756 }
757 
758 /*
759 ** The sqlite3_strlike() interface.
760 */
761 int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
762   return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc)==0;
763 }
764 
765 /*
766 ** Count the number of times that the LIKE operator (or GLOB which is
767 ** just a variation of LIKE) gets called.  This is used for testing
768 ** only.
769 */
770 #ifdef SQLITE_TEST
771 int sqlite3_like_count = 0;
772 #endif
773 
774 
775 /*
776 ** Implementation of the like() SQL function.  This function implements
777 ** the build-in LIKE operator.  The first argument to the function is the
778 ** pattern and the second argument is the string.  So, the SQL statements:
779 **
780 **       A LIKE B
781 **
782 ** is implemented as like(B,A).
783 **
784 ** This same function (with a different compareInfo structure) computes
785 ** the GLOB operator.
786 */
787 static void likeFunc(
788   sqlite3_context *context,
789   int argc,
790   sqlite3_value **argv
791 ){
792   const unsigned char *zA, *zB;
793   u32 escape;
794   int nPat;
795   sqlite3 *db = sqlite3_context_db_handle(context);
796   struct compareInfo *pInfo = sqlite3_user_data(context);
797 
798 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
799   if( sqlite3_value_type(argv[0])==SQLITE_BLOB
800    || sqlite3_value_type(argv[1])==SQLITE_BLOB
801   ){
802 #ifdef SQLITE_TEST
803     sqlite3_like_count++;
804 #endif
805     sqlite3_result_int(context, 0);
806     return;
807   }
808 #endif
809   zB = sqlite3_value_text(argv[0]);
810   zA = sqlite3_value_text(argv[1]);
811 
812   /* Limit the length of the LIKE or GLOB pattern to avoid problems
813   ** of deep recursion and N*N behavior in patternCompare().
814   */
815   nPat = sqlite3_value_bytes(argv[0]);
816   testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
817   testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
818   if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
819     sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
820     return;
821   }
822   assert( zB==sqlite3_value_text(argv[0]) );  /* Encoding did not change */
823 
824   if( argc==3 ){
825     /* The escape character string must consist of a single UTF-8 character.
826     ** Otherwise, return an error.
827     */
828     const unsigned char *zEsc = sqlite3_value_text(argv[2]);
829     if( zEsc==0 ) return;
830     if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
831       sqlite3_result_error(context,
832           "ESCAPE expression must be a single character", -1);
833       return;
834     }
835     escape = sqlite3Utf8Read(&zEsc);
836   }else{
837     escape = pInfo->matchSet;
838   }
839   if( zA && zB ){
840 #ifdef SQLITE_TEST
841     sqlite3_like_count++;
842 #endif
843     sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
844   }
845 }
846 
847 /*
848 ** Implementation of the NULLIF(x,y) function.  The result is the first
849 ** argument if the arguments are different.  The result is NULL if the
850 ** arguments are equal to each other.
851 */
852 static void nullifFunc(
853   sqlite3_context *context,
854   int NotUsed,
855   sqlite3_value **argv
856 ){
857   CollSeq *pColl = sqlite3GetFuncCollSeq(context);
858   UNUSED_PARAMETER(NotUsed);
859   if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
860     sqlite3_result_value(context, argv[0]);
861   }
862 }
863 
864 /*
865 ** Implementation of the sqlite_version() function.  The result is the version
866 ** of the SQLite library that is running.
867 */
868 static void versionFunc(
869   sqlite3_context *context,
870   int NotUsed,
871   sqlite3_value **NotUsed2
872 ){
873   UNUSED_PARAMETER2(NotUsed, NotUsed2);
874   /* IMP: R-48699-48617 This function is an SQL wrapper around the
875   ** sqlite3_libversion() C-interface. */
876   sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
877 }
878 
879 /*
880 ** Implementation of the sqlite_source_id() function. The result is a string
881 ** that identifies the particular version of the source code used to build
882 ** SQLite.
883 */
884 static void sourceidFunc(
885   sqlite3_context *context,
886   int NotUsed,
887   sqlite3_value **NotUsed2
888 ){
889   UNUSED_PARAMETER2(NotUsed, NotUsed2);
890   /* IMP: R-24470-31136 This function is an SQL wrapper around the
891   ** sqlite3_sourceid() C interface. */
892   sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
893 }
894 
895 /*
896 ** Implementation of the sqlite_log() function.  This is a wrapper around
897 ** sqlite3_log().  The return value is NULL.  The function exists purely for
898 ** its side-effects.
899 */
900 static void errlogFunc(
901   sqlite3_context *context,
902   int argc,
903   sqlite3_value **argv
904 ){
905   UNUSED_PARAMETER(argc);
906   UNUSED_PARAMETER(context);
907   sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
908 }
909 
910 /*
911 ** Implementation of the sqlite_compileoption_used() function.
912 ** The result is an integer that identifies if the compiler option
913 ** was used to build SQLite.
914 */
915 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
916 static void compileoptionusedFunc(
917   sqlite3_context *context,
918   int argc,
919   sqlite3_value **argv
920 ){
921   const char *zOptName;
922   assert( argc==1 );
923   UNUSED_PARAMETER(argc);
924   /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
925   ** function is a wrapper around the sqlite3_compileoption_used() C/C++
926   ** function.
927   */
928   if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
929     sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
930   }
931 }
932 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
933 
934 /*
935 ** Implementation of the sqlite_compileoption_get() function.
936 ** The result is a string that identifies the compiler options
937 ** used to build SQLite.
938 */
939 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
940 static void compileoptiongetFunc(
941   sqlite3_context *context,
942   int argc,
943   sqlite3_value **argv
944 ){
945   int n;
946   assert( argc==1 );
947   UNUSED_PARAMETER(argc);
948   /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
949   ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
950   */
951   n = sqlite3_value_int(argv[0]);
952   sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
953 }
954 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
955 
956 /* Array for converting from half-bytes (nybbles) into ASCII hex
957 ** digits. */
958 static const char hexdigits[] = {
959   '0', '1', '2', '3', '4', '5', '6', '7',
960   '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
961 };
962 
963 /*
964 ** Implementation of the QUOTE() function.  This function takes a single
965 ** argument.  If the argument is numeric, the return value is the same as
966 ** the argument.  If the argument is NULL, the return value is the string
967 ** "NULL".  Otherwise, the argument is enclosed in single quotes with
968 ** single-quote escapes.
969 */
970 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
971   assert( argc==1 );
972   UNUSED_PARAMETER(argc);
973   switch( sqlite3_value_type(argv[0]) ){
974     case SQLITE_FLOAT: {
975       double r1, r2;
976       char zBuf[50];
977       r1 = sqlite3_value_double(argv[0]);
978       sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
979       sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8);
980       if( r1!=r2 ){
981         sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1);
982       }
983       sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
984       break;
985     }
986     case SQLITE_INTEGER: {
987       sqlite3_result_value(context, argv[0]);
988       break;
989     }
990     case SQLITE_BLOB: {
991       char *zText = 0;
992       char const *zBlob = sqlite3_value_blob(argv[0]);
993       int nBlob = sqlite3_value_bytes(argv[0]);
994       assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
995       zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
996       if( zText ){
997         int i;
998         for(i=0; i<nBlob; i++){
999           zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
1000           zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
1001         }
1002         zText[(nBlob*2)+2] = '\'';
1003         zText[(nBlob*2)+3] = '\0';
1004         zText[0] = 'X';
1005         zText[1] = '\'';
1006         sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
1007         sqlite3_free(zText);
1008       }
1009       break;
1010     }
1011     case SQLITE_TEXT: {
1012       int i,j;
1013       u64 n;
1014       const unsigned char *zArg = sqlite3_value_text(argv[0]);
1015       char *z;
1016 
1017       if( zArg==0 ) return;
1018       for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
1019       z = contextMalloc(context, ((i64)i)+((i64)n)+3);
1020       if( z ){
1021         z[0] = '\'';
1022         for(i=0, j=1; zArg[i]; i++){
1023           z[j++] = zArg[i];
1024           if( zArg[i]=='\'' ){
1025             z[j++] = '\'';
1026           }
1027         }
1028         z[j++] = '\'';
1029         z[j] = 0;
1030         sqlite3_result_text(context, z, j, sqlite3_free);
1031       }
1032       break;
1033     }
1034     default: {
1035       assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
1036       sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
1037       break;
1038     }
1039   }
1040 }
1041 
1042 /*
1043 ** The unicode() function.  Return the integer unicode code-point value
1044 ** for the first character of the input string.
1045 */
1046 static void unicodeFunc(
1047   sqlite3_context *context,
1048   int argc,
1049   sqlite3_value **argv
1050 ){
1051   const unsigned char *z = sqlite3_value_text(argv[0]);
1052   (void)argc;
1053   if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
1054 }
1055 
1056 /*
1057 ** The char() function takes zero or more arguments, each of which is
1058 ** an integer.  It constructs a string where each character of the string
1059 ** is the unicode character for the corresponding integer argument.
1060 */
1061 static void charFunc(
1062   sqlite3_context *context,
1063   int argc,
1064   sqlite3_value **argv
1065 ){
1066   unsigned char *z, *zOut;
1067   int i;
1068   zOut = z = sqlite3_malloc64( argc*4+1 );
1069   if( z==0 ){
1070     sqlite3_result_error_nomem(context);
1071     return;
1072   }
1073   for(i=0; i<argc; i++){
1074     sqlite3_int64 x;
1075     unsigned c;
1076     x = sqlite3_value_int64(argv[i]);
1077     if( x<0 || x>0x10ffff ) x = 0xfffd;
1078     c = (unsigned)(x & 0x1fffff);
1079     if( c<0x00080 ){
1080       *zOut++ = (u8)(c&0xFF);
1081     }else if( c<0x00800 ){
1082       *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
1083       *zOut++ = 0x80 + (u8)(c & 0x3F);
1084     }else if( c<0x10000 ){
1085       *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
1086       *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1087       *zOut++ = 0x80 + (u8)(c & 0x3F);
1088     }else{
1089       *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
1090       *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
1091       *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1092       *zOut++ = 0x80 + (u8)(c & 0x3F);
1093     }                                                    \
1094   }
1095   sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
1096 }
1097 
1098 /*
1099 ** The hex() function.  Interpret the argument as a blob.  Return
1100 ** a hexadecimal rendering as text.
1101 */
1102 static void hexFunc(
1103   sqlite3_context *context,
1104   int argc,
1105   sqlite3_value **argv
1106 ){
1107   int i, n;
1108   const unsigned char *pBlob;
1109   char *zHex, *z;
1110   assert( argc==1 );
1111   UNUSED_PARAMETER(argc);
1112   pBlob = sqlite3_value_blob(argv[0]);
1113   n = sqlite3_value_bytes(argv[0]);
1114   assert( pBlob==sqlite3_value_blob(argv[0]) );  /* No encoding change */
1115   z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
1116   if( zHex ){
1117     for(i=0; i<n; i++, pBlob++){
1118       unsigned char c = *pBlob;
1119       *(z++) = hexdigits[(c>>4)&0xf];
1120       *(z++) = hexdigits[c&0xf];
1121     }
1122     *z = 0;
1123     sqlite3_result_text(context, zHex, n*2, sqlite3_free);
1124   }
1125 }
1126 
1127 /*
1128 ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
1129 */
1130 static void zeroblobFunc(
1131   sqlite3_context *context,
1132   int argc,
1133   sqlite3_value **argv
1134 ){
1135   i64 n;
1136   int rc;
1137   assert( argc==1 );
1138   UNUSED_PARAMETER(argc);
1139   n = sqlite3_value_int64(argv[0]);
1140   if( n<0 ) n = 0;
1141   rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
1142   if( rc ){
1143     sqlite3_result_error_code(context, rc);
1144   }
1145 }
1146 
1147 /*
1148 ** The replace() function.  Three arguments are all strings: call
1149 ** them A, B, and C. The result is also a string which is derived
1150 ** from A by replacing every occurrence of B with C.  The match
1151 ** must be exact.  Collating sequences are not used.
1152 */
1153 static void replaceFunc(
1154   sqlite3_context *context,
1155   int argc,
1156   sqlite3_value **argv
1157 ){
1158   const unsigned char *zStr;        /* The input string A */
1159   const unsigned char *zPattern;    /* The pattern string B */
1160   const unsigned char *zRep;        /* The replacement string C */
1161   unsigned char *zOut;              /* The output */
1162   int nStr;                /* Size of zStr */
1163   int nPattern;            /* Size of zPattern */
1164   int nRep;                /* Size of zRep */
1165   i64 nOut;                /* Maximum size of zOut */
1166   int loopLimit;           /* Last zStr[] that might match zPattern[] */
1167   int i, j;                /* Loop counters */
1168 
1169   assert( argc==3 );
1170   UNUSED_PARAMETER(argc);
1171   zStr = sqlite3_value_text(argv[0]);
1172   if( zStr==0 ) return;
1173   nStr = sqlite3_value_bytes(argv[0]);
1174   assert( zStr==sqlite3_value_text(argv[0]) );  /* No encoding change */
1175   zPattern = sqlite3_value_text(argv[1]);
1176   if( zPattern==0 ){
1177     assert( sqlite3_value_type(argv[1])==SQLITE_NULL
1178             || sqlite3_context_db_handle(context)->mallocFailed );
1179     return;
1180   }
1181   if( zPattern[0]==0 ){
1182     assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
1183     sqlite3_result_value(context, argv[0]);
1184     return;
1185   }
1186   nPattern = sqlite3_value_bytes(argv[1]);
1187   assert( zPattern==sqlite3_value_text(argv[1]) );  /* No encoding change */
1188   zRep = sqlite3_value_text(argv[2]);
1189   if( zRep==0 ) return;
1190   nRep = sqlite3_value_bytes(argv[2]);
1191   assert( zRep==sqlite3_value_text(argv[2]) );
1192   nOut = nStr + 1;
1193   assert( nOut<SQLITE_MAX_LENGTH );
1194   zOut = contextMalloc(context, (i64)nOut);
1195   if( zOut==0 ){
1196     return;
1197   }
1198   loopLimit = nStr - nPattern;
1199   for(i=j=0; i<=loopLimit; i++){
1200     if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
1201       zOut[j++] = zStr[i];
1202     }else{
1203       u8 *zOld;
1204       sqlite3 *db = sqlite3_context_db_handle(context);
1205       nOut += nRep - nPattern;
1206       testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
1207       testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
1208       if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1209         sqlite3_result_error_toobig(context);
1210         sqlite3_free(zOut);
1211         return;
1212       }
1213       zOld = zOut;
1214       zOut = sqlite3_realloc64(zOut, (int)nOut);
1215       if( zOut==0 ){
1216         sqlite3_result_error_nomem(context);
1217         sqlite3_free(zOld);
1218         return;
1219       }
1220       memcpy(&zOut[j], zRep, nRep);
1221       j += nRep;
1222       i += nPattern-1;
1223     }
1224   }
1225   assert( j+nStr-i+1==nOut );
1226   memcpy(&zOut[j], &zStr[i], nStr-i);
1227   j += nStr - i;
1228   assert( j<=nOut );
1229   zOut[j] = 0;
1230   sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
1231 }
1232 
1233 /*
1234 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
1235 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
1236 */
1237 static void trimFunc(
1238   sqlite3_context *context,
1239   int argc,
1240   sqlite3_value **argv
1241 ){
1242   const unsigned char *zIn;         /* Input string */
1243   const unsigned char *zCharSet;    /* Set of characters to trim */
1244   int nIn;                          /* Number of bytes in input */
1245   int flags;                        /* 1: trimleft  2: trimright  3: trim */
1246   int i;                            /* Loop counter */
1247   unsigned char *aLen = 0;          /* Length of each character in zCharSet */
1248   unsigned char **azChar = 0;       /* Individual characters in zCharSet */
1249   int nChar;                        /* Number of characters in zCharSet */
1250 
1251   if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1252     return;
1253   }
1254   zIn = sqlite3_value_text(argv[0]);
1255   if( zIn==0 ) return;
1256   nIn = sqlite3_value_bytes(argv[0]);
1257   assert( zIn==sqlite3_value_text(argv[0]) );
1258   if( argc==1 ){
1259     static const unsigned char lenOne[] = { 1 };
1260     static unsigned char * const azOne[] = { (u8*)" " };
1261     nChar = 1;
1262     aLen = (u8*)lenOne;
1263     azChar = (unsigned char **)azOne;
1264     zCharSet = 0;
1265   }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
1266     return;
1267   }else{
1268     const unsigned char *z;
1269     for(z=zCharSet, nChar=0; *z; nChar++){
1270       SQLITE_SKIP_UTF8(z);
1271     }
1272     if( nChar>0 ){
1273       azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
1274       if( azChar==0 ){
1275         return;
1276       }
1277       aLen = (unsigned char*)&azChar[nChar];
1278       for(z=zCharSet, nChar=0; *z; nChar++){
1279         azChar[nChar] = (unsigned char *)z;
1280         SQLITE_SKIP_UTF8(z);
1281         aLen[nChar] = (u8)(z - azChar[nChar]);
1282       }
1283     }
1284   }
1285   if( nChar>0 ){
1286     flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
1287     if( flags & 1 ){
1288       while( nIn>0 ){
1289         int len = 0;
1290         for(i=0; i<nChar; i++){
1291           len = aLen[i];
1292           if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
1293         }
1294         if( i>=nChar ) break;
1295         zIn += len;
1296         nIn -= len;
1297       }
1298     }
1299     if( flags & 2 ){
1300       while( nIn>0 ){
1301         int len = 0;
1302         for(i=0; i<nChar; i++){
1303           len = aLen[i];
1304           if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
1305         }
1306         if( i>=nChar ) break;
1307         nIn -= len;
1308       }
1309     }
1310     if( zCharSet ){
1311       sqlite3_free(azChar);
1312     }
1313   }
1314   sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
1315 }
1316 
1317 
1318 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
1319 ** is only available if the SQLITE_SOUNDEX compile-time option is used
1320 ** when SQLite is built.
1321 */
1322 #ifdef SQLITE_SOUNDEX
1323 /*
1324 ** Compute the soundex encoding of a word.
1325 **
1326 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
1327 ** soundex encoding of the string X.
1328 */
1329 static void soundexFunc(
1330   sqlite3_context *context,
1331   int argc,
1332   sqlite3_value **argv
1333 ){
1334   char zResult[8];
1335   const u8 *zIn;
1336   int i, j;
1337   static const unsigned char iCode[] = {
1338     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1339     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1340     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1341     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1342     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1343     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1344     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1345     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1346   };
1347   assert( argc==1 );
1348   zIn = (u8*)sqlite3_value_text(argv[0]);
1349   if( zIn==0 ) zIn = (u8*)"";
1350   for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
1351   if( zIn[i] ){
1352     u8 prevcode = iCode[zIn[i]&0x7f];
1353     zResult[0] = sqlite3Toupper(zIn[i]);
1354     for(j=1; j<4 && zIn[i]; i++){
1355       int code = iCode[zIn[i]&0x7f];
1356       if( code>0 ){
1357         if( code!=prevcode ){
1358           prevcode = code;
1359           zResult[j++] = code + '0';
1360         }
1361       }else{
1362         prevcode = 0;
1363       }
1364     }
1365     while( j<4 ){
1366       zResult[j++] = '0';
1367     }
1368     zResult[j] = 0;
1369     sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
1370   }else{
1371     /* IMP: R-64894-50321 The string "?000" is returned if the argument
1372     ** is NULL or contains no ASCII alphabetic characters. */
1373     sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
1374   }
1375 }
1376 #endif /* SQLITE_SOUNDEX */
1377 
1378 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1379 /*
1380 ** A function that loads a shared-library extension then returns NULL.
1381 */
1382 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
1383   const char *zFile = (const char *)sqlite3_value_text(argv[0]);
1384   const char *zProc;
1385   sqlite3 *db = sqlite3_context_db_handle(context);
1386   char *zErrMsg = 0;
1387 
1388   if( argc==2 ){
1389     zProc = (const char *)sqlite3_value_text(argv[1]);
1390   }else{
1391     zProc = 0;
1392   }
1393   if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
1394     sqlite3_result_error(context, zErrMsg, -1);
1395     sqlite3_free(zErrMsg);
1396   }
1397 }
1398 #endif
1399 
1400 
1401 /*
1402 ** An instance of the following structure holds the context of a
1403 ** sum() or avg() aggregate computation.
1404 */
1405 typedef struct SumCtx SumCtx;
1406 struct SumCtx {
1407   double rSum;      /* Floating point sum */
1408   i64 iSum;         /* Integer sum */
1409   i64 cnt;          /* Number of elements summed */
1410   u8 overflow;      /* True if integer overflow seen */
1411   u8 approx;        /* True if non-integer value was input to the sum */
1412 };
1413 
1414 /*
1415 ** Routines used to compute the sum, average, and total.
1416 **
1417 ** The SUM() function follows the (broken) SQL standard which means
1418 ** that it returns NULL if it sums over no inputs.  TOTAL returns
1419 ** 0.0 in that case.  In addition, TOTAL always returns a float where
1420 ** SUM might return an integer if it never encounters a floating point
1421 ** value.  TOTAL never fails, but SUM might through an exception if
1422 ** it overflows an integer.
1423 */
1424 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1425   SumCtx *p;
1426   int type;
1427   assert( argc==1 );
1428   UNUSED_PARAMETER(argc);
1429   p = sqlite3_aggregate_context(context, sizeof(*p));
1430   type = sqlite3_value_numeric_type(argv[0]);
1431   if( p && type!=SQLITE_NULL ){
1432     p->cnt++;
1433     if( type==SQLITE_INTEGER ){
1434       i64 v = sqlite3_value_int64(argv[0]);
1435       p->rSum += v;
1436       if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
1437         p->overflow = 1;
1438       }
1439     }else{
1440       p->rSum += sqlite3_value_double(argv[0]);
1441       p->approx = 1;
1442     }
1443   }
1444 }
1445 static void sumFinalize(sqlite3_context *context){
1446   SumCtx *p;
1447   p = sqlite3_aggregate_context(context, 0);
1448   if( p && p->cnt>0 ){
1449     if( p->overflow ){
1450       sqlite3_result_error(context,"integer overflow",-1);
1451     }else if( p->approx ){
1452       sqlite3_result_double(context, p->rSum);
1453     }else{
1454       sqlite3_result_int64(context, p->iSum);
1455     }
1456   }
1457 }
1458 static void avgFinalize(sqlite3_context *context){
1459   SumCtx *p;
1460   p = sqlite3_aggregate_context(context, 0);
1461   if( p && p->cnt>0 ){
1462     sqlite3_result_double(context, p->rSum/(double)p->cnt);
1463   }
1464 }
1465 static void totalFinalize(sqlite3_context *context){
1466   SumCtx *p;
1467   p = sqlite3_aggregate_context(context, 0);
1468   /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1469   sqlite3_result_double(context, p ? p->rSum : (double)0);
1470 }
1471 
1472 /*
1473 ** The following structure keeps track of state information for the
1474 ** count() aggregate function.
1475 */
1476 typedef struct CountCtx CountCtx;
1477 struct CountCtx {
1478   i64 n;
1479 };
1480 
1481 /*
1482 ** Routines to implement the count() aggregate function.
1483 */
1484 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1485   CountCtx *p;
1486   p = sqlite3_aggregate_context(context, sizeof(*p));
1487   if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
1488     p->n++;
1489   }
1490 
1491 #ifndef SQLITE_OMIT_DEPRECATED
1492   /* The sqlite3_aggregate_count() function is deprecated.  But just to make
1493   ** sure it still operates correctly, verify that its count agrees with our
1494   ** internal count when using count(*) and when the total count can be
1495   ** expressed as a 32-bit integer. */
1496   assert( argc==1 || p==0 || p->n>0x7fffffff
1497           || p->n==sqlite3_aggregate_count(context) );
1498 #endif
1499 }
1500 static void countFinalize(sqlite3_context *context){
1501   CountCtx *p;
1502   p = sqlite3_aggregate_context(context, 0);
1503   sqlite3_result_int64(context, p ? p->n : 0);
1504 }
1505 
1506 /*
1507 ** Routines to implement min() and max() aggregate functions.
1508 */
1509 static void minmaxStep(
1510   sqlite3_context *context,
1511   int NotUsed,
1512   sqlite3_value **argv
1513 ){
1514   Mem *pArg  = (Mem *)argv[0];
1515   Mem *pBest;
1516   UNUSED_PARAMETER(NotUsed);
1517 
1518   pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
1519   if( !pBest ) return;
1520 
1521   if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1522     if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
1523   }else if( pBest->flags ){
1524     int max;
1525     int cmp;
1526     CollSeq *pColl = sqlite3GetFuncCollSeq(context);
1527     /* This step function is used for both the min() and max() aggregates,
1528     ** the only difference between the two being that the sense of the
1529     ** comparison is inverted. For the max() aggregate, the
1530     ** sqlite3_user_data() function returns (void *)-1. For min() it
1531     ** returns (void *)db, where db is the sqlite3* database pointer.
1532     ** Therefore the next statement sets variable 'max' to 1 for the max()
1533     ** aggregate, or 0 for min().
1534     */
1535     max = sqlite3_user_data(context)!=0;
1536     cmp = sqlite3MemCompare(pBest, pArg, pColl);
1537     if( (max && cmp<0) || (!max && cmp>0) ){
1538       sqlite3VdbeMemCopy(pBest, pArg);
1539     }else{
1540       sqlite3SkipAccumulatorLoad(context);
1541     }
1542   }else{
1543     pBest->db = sqlite3_context_db_handle(context);
1544     sqlite3VdbeMemCopy(pBest, pArg);
1545   }
1546 }
1547 static void minMaxFinalize(sqlite3_context *context){
1548   sqlite3_value *pRes;
1549   pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
1550   if( pRes ){
1551     if( pRes->flags ){
1552       sqlite3_result_value(context, pRes);
1553     }
1554     sqlite3VdbeMemRelease(pRes);
1555   }
1556 }
1557 
1558 /*
1559 ** group_concat(EXPR, ?SEPARATOR?)
1560 */
1561 static void groupConcatStep(
1562   sqlite3_context *context,
1563   int argc,
1564   sqlite3_value **argv
1565 ){
1566   const char *zVal;
1567   StrAccum *pAccum;
1568   const char *zSep;
1569   int nVal, nSep;
1570   assert( argc==1 || argc==2 );
1571   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
1572   pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
1573 
1574   if( pAccum ){
1575     sqlite3 *db = sqlite3_context_db_handle(context);
1576     int firstTerm = pAccum->mxAlloc==0;
1577     pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
1578     if( !firstTerm ){
1579       if( argc==2 ){
1580         zSep = (char*)sqlite3_value_text(argv[1]);
1581         nSep = sqlite3_value_bytes(argv[1]);
1582       }else{
1583         zSep = ",";
1584         nSep = 1;
1585       }
1586       if( nSep ) sqlite3StrAccumAppend(pAccum, zSep, nSep);
1587     }
1588     zVal = (char*)sqlite3_value_text(argv[0]);
1589     nVal = sqlite3_value_bytes(argv[0]);
1590     if( zVal ) sqlite3StrAccumAppend(pAccum, zVal, nVal);
1591   }
1592 }
1593 static void groupConcatFinalize(sqlite3_context *context){
1594   StrAccum *pAccum;
1595   pAccum = sqlite3_aggregate_context(context, 0);
1596   if( pAccum ){
1597     if( pAccum->accError==STRACCUM_TOOBIG ){
1598       sqlite3_result_error_toobig(context);
1599     }else if( pAccum->accError==STRACCUM_NOMEM ){
1600       sqlite3_result_error_nomem(context);
1601     }else{
1602       sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
1603                           sqlite3_free);
1604     }
1605   }
1606 }
1607 
1608 /*
1609 ** This routine does per-connection function registration.  Most
1610 ** of the built-in functions above are part of the global function set.
1611 ** This routine only deals with those that are not global.
1612 */
1613 void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
1614   int rc = sqlite3_overload_function(db, "MATCH", 2);
1615   assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
1616   if( rc==SQLITE_NOMEM ){
1617     db->mallocFailed = 1;
1618   }
1619 }
1620 
1621 /*
1622 ** Set the LIKEOPT flag on the 2-argument function with the given name.
1623 */
1624 static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
1625   FuncDef *pDef;
1626   pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName),
1627                              2, SQLITE_UTF8, 0);
1628   if( ALWAYS(pDef) ){
1629     pDef->funcFlags |= flagVal;
1630   }
1631 }
1632 
1633 /*
1634 ** Register the built-in LIKE and GLOB functions.  The caseSensitive
1635 ** parameter determines whether or not the LIKE operator is case
1636 ** sensitive.  GLOB is always case sensitive.
1637 */
1638 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
1639   struct compareInfo *pInfo;
1640   if( caseSensitive ){
1641     pInfo = (struct compareInfo*)&likeInfoAlt;
1642   }else{
1643     pInfo = (struct compareInfo*)&likeInfoNorm;
1644   }
1645   sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1646   sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1647   sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
1648       (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0);
1649   setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
1650   setLikeOptFlag(db, "like",
1651       caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
1652 }
1653 
1654 /*
1655 ** pExpr points to an expression which implements a function.  If
1656 ** it is appropriate to apply the LIKE optimization to that function
1657 ** then set aWc[0] through aWc[2] to the wildcard characters and
1658 ** return TRUE.  If the function is not a LIKE-style function then
1659 ** return FALSE.
1660 **
1661 ** *pIsNocase is set to true if uppercase and lowercase are equivalent for
1662 ** the function (default for LIKE).  If the function makes the distinction
1663 ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
1664 ** false.
1665 */
1666 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
1667   FuncDef *pDef;
1668   if( pExpr->op!=TK_FUNCTION
1669    || !pExpr->x.pList
1670    || pExpr->x.pList->nExpr!=2
1671   ){
1672     return 0;
1673   }
1674   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
1675   pDef = sqlite3FindFunction(db, pExpr->u.zToken,
1676                              sqlite3Strlen30(pExpr->u.zToken),
1677                              2, SQLITE_UTF8, 0);
1678   if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
1679     return 0;
1680   }
1681 
1682   /* The memcpy() statement assumes that the wildcard characters are
1683   ** the first three statements in the compareInfo structure.  The
1684   ** asserts() that follow verify that assumption
1685   */
1686   memcpy(aWc, pDef->pUserData, 3);
1687   assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
1688   assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
1689   assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
1690   *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
1691   return 1;
1692 }
1693 
1694 /*
1695 ** All of the FuncDef structures in the aBuiltinFunc[] array above
1696 ** to the global function hash table.  This occurs at start-time (as
1697 ** a consequence of calling sqlite3_initialize()).
1698 **
1699 ** After this routine runs
1700 */
1701 void sqlite3RegisterGlobalFunctions(void){
1702   /*
1703   ** The following array holds FuncDef structures for all of the functions
1704   ** defined in this file.
1705   **
1706   ** The array cannot be constant since changes are made to the
1707   ** FuncDef.pHash elements at start-time.  The elements of this array
1708   ** are read-only after initialization is complete.
1709   */
1710   static SQLITE_WSD FuncDef aBuiltinFunc[] = {
1711     FUNCTION(ltrim,              1, 1, 0, trimFunc         ),
1712     FUNCTION(ltrim,              2, 1, 0, trimFunc         ),
1713     FUNCTION(rtrim,              1, 2, 0, trimFunc         ),
1714     FUNCTION(rtrim,              2, 2, 0, trimFunc         ),
1715     FUNCTION(trim,               1, 3, 0, trimFunc         ),
1716     FUNCTION(trim,               2, 3, 0, trimFunc         ),
1717     FUNCTION(min,               -1, 0, 1, minmaxFunc       ),
1718     FUNCTION(min,                0, 0, 1, 0                ),
1719     AGGREGATE2(min,              1, 0, 1, minmaxStep,      minMaxFinalize,
1720                                           SQLITE_FUNC_MINMAX ),
1721     FUNCTION(max,               -1, 1, 1, minmaxFunc       ),
1722     FUNCTION(max,                0, 1, 1, 0                ),
1723     AGGREGATE2(max,              1, 1, 1, minmaxStep,      minMaxFinalize,
1724                                           SQLITE_FUNC_MINMAX ),
1725     FUNCTION2(typeof,            1, 0, 0, typeofFunc,  SQLITE_FUNC_TYPEOF),
1726     FUNCTION2(length,            1, 0, 0, lengthFunc,  SQLITE_FUNC_LENGTH),
1727     FUNCTION(instr,              2, 0, 0, instrFunc        ),
1728     FUNCTION(substr,             2, 0, 0, substrFunc       ),
1729     FUNCTION(substr,             3, 0, 0, substrFunc       ),
1730     FUNCTION(printf,            -1, 0, 0, printfFunc       ),
1731     FUNCTION(unicode,            1, 0, 0, unicodeFunc      ),
1732     FUNCTION(char,              -1, 0, 0, charFunc         ),
1733     FUNCTION(abs,                1, 0, 0, absFunc          ),
1734 #ifndef SQLITE_OMIT_FLOATING_POINT
1735     FUNCTION(round,              1, 0, 0, roundFunc        ),
1736     FUNCTION(round,              2, 0, 0, roundFunc        ),
1737 #endif
1738     FUNCTION(upper,              1, 0, 0, upperFunc        ),
1739     FUNCTION(lower,              1, 0, 0, lowerFunc        ),
1740     FUNCTION(coalesce,           1, 0, 0, 0                ),
1741     FUNCTION(coalesce,           0, 0, 0, 0                ),
1742     FUNCTION2(coalesce,         -1, 0, 0, noopFunc,  SQLITE_FUNC_COALESCE),
1743     FUNCTION(hex,                1, 0, 0, hexFunc          ),
1744     FUNCTION2(ifnull,            2, 0, 0, noopFunc,  SQLITE_FUNC_COALESCE),
1745     FUNCTION2(unlikely,          1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
1746     FUNCTION2(likelihood,        2, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
1747     FUNCTION2(likely,            1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
1748     VFUNCTION(random,            0, 0, 0, randomFunc       ),
1749     VFUNCTION(randomblob,        1, 0, 0, randomBlob       ),
1750     FUNCTION(nullif,             2, 0, 1, nullifFunc       ),
1751     DFUNCTION(sqlite_version,    0, 0, 0, versionFunc      ),
1752     DFUNCTION(sqlite_source_id,  0, 0, 0, sourceidFunc     ),
1753     FUNCTION(sqlite_log,         2, 0, 0, errlogFunc       ),
1754 #if SQLITE_USER_AUTHENTICATION
1755     FUNCTION(sqlite_crypt,       2, 0, 0, sqlite3CryptFunc ),
1756 #endif
1757 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1758     DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc  ),
1759     DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc  ),
1760 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1761     FUNCTION(quote,              1, 0, 0, quoteFunc        ),
1762     VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
1763     VFUNCTION(changes,           0, 0, 0, changes          ),
1764     VFUNCTION(total_changes,     0, 0, 0, total_changes    ),
1765     FUNCTION(replace,            3, 0, 0, replaceFunc      ),
1766     FUNCTION(zeroblob,           1, 0, 0, zeroblobFunc     ),
1767   #ifdef SQLITE_SOUNDEX
1768     FUNCTION(soundex,            1, 0, 0, soundexFunc      ),
1769   #endif
1770   #ifndef SQLITE_OMIT_LOAD_EXTENSION
1771     VFUNCTION(load_extension,    1, 0, 0, loadExt          ),
1772     VFUNCTION(load_extension,    2, 0, 0, loadExt          ),
1773   #endif
1774     AGGREGATE(sum,               1, 0, 0, sumStep,         sumFinalize    ),
1775     AGGREGATE(total,             1, 0, 0, sumStep,         totalFinalize    ),
1776     AGGREGATE(avg,               1, 0, 0, sumStep,         avgFinalize    ),
1777     AGGREGATE2(count,            0, 0, 0, countStep,       countFinalize,
1778                SQLITE_FUNC_COUNT  ),
1779     AGGREGATE(count,             1, 0, 0, countStep,       countFinalize  ),
1780     AGGREGATE(group_concat,      1, 0, 0, groupConcatStep, groupConcatFinalize),
1781     AGGREGATE(group_concat,      2, 0, 0, groupConcatStep, groupConcatFinalize),
1782 
1783     LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1784   #ifdef SQLITE_CASE_SENSITIVE_LIKE
1785     LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1786     LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1787   #else
1788     LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
1789     LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
1790   #endif
1791   };
1792 
1793   int i;
1794   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
1795   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc);
1796 
1797   for(i=0; i<ArraySize(aBuiltinFunc); i++){
1798     sqlite3FuncDefInsert(pHash, &aFunc[i]);
1799   }
1800   sqlite3RegisterDateTimeFunctions();
1801 #ifndef SQLITE_OMIT_ALTERTABLE
1802   sqlite3AlterFunctions();
1803 #endif
1804 #if defined(SQLITE_ENABLE_STAT3) || defined(SQLITE_ENABLE_STAT4)
1805   sqlite3AnalyzeFunctions();
1806 #endif
1807 }
1808