1 /* 2 ** 2002 February 23 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C-language implementations for many of the SQL 13 ** functions of SQLite. (Some function, and in particular the date and 14 ** time functions, are implemented separately.) 15 */ 16 #include "sqliteInt.h" 17 #include <stdlib.h> 18 #include <assert.h> 19 #ifndef SQLITE_OMIT_FLOATING_POINT 20 #include <math.h> 21 #endif 22 #include "vdbeInt.h" 23 24 /* 25 ** Return the collating function associated with a function. 26 */ 27 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ 28 VdbeOp *pOp; 29 assert( context->pVdbe!=0 ); 30 pOp = &context->pVdbe->aOp[context->iOp-1]; 31 assert( pOp->opcode==OP_CollSeq ); 32 assert( pOp->p4type==P4_COLLSEQ ); 33 return pOp->p4.pColl; 34 } 35 36 /* 37 ** Indicate that the accumulator load should be skipped on this 38 ** iteration of the aggregate loop. 39 */ 40 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){ 41 assert( context->isError<=0 ); 42 context->isError = -1; 43 context->skipFlag = 1; 44 } 45 46 /* 47 ** Implementation of the non-aggregate min() and max() functions 48 */ 49 static void minmaxFunc( 50 sqlite3_context *context, 51 int argc, 52 sqlite3_value **argv 53 ){ 54 int i; 55 int mask; /* 0 for min() or 0xffffffff for max() */ 56 int iBest; 57 CollSeq *pColl; 58 59 assert( argc>1 ); 60 mask = sqlite3_user_data(context)==0 ? 0 : -1; 61 pColl = sqlite3GetFuncCollSeq(context); 62 assert( pColl ); 63 assert( mask==-1 || mask==0 ); 64 iBest = 0; 65 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 66 for(i=1; i<argc; i++){ 67 if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return; 68 if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){ 69 testcase( mask==0 ); 70 iBest = i; 71 } 72 } 73 sqlite3_result_value(context, argv[iBest]); 74 } 75 76 /* 77 ** Return the type of the argument. 78 */ 79 static void typeofFunc( 80 sqlite3_context *context, 81 int NotUsed, 82 sqlite3_value **argv 83 ){ 84 static const char *azType[] = { "integer", "real", "text", "blob", "null" }; 85 int i = sqlite3_value_type(argv[0]) - 1; 86 UNUSED_PARAMETER(NotUsed); 87 assert( i>=0 && i<ArraySize(azType) ); 88 assert( SQLITE_INTEGER==1 ); 89 assert( SQLITE_FLOAT==2 ); 90 assert( SQLITE_TEXT==3 ); 91 assert( SQLITE_BLOB==4 ); 92 assert( SQLITE_NULL==5 ); 93 /* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns 94 ** the datatype code for the initial datatype of the sqlite3_value object 95 ** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT, 96 ** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */ 97 sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC); 98 } 99 100 101 /* 102 ** Implementation of the length() function 103 */ 104 static void lengthFunc( 105 sqlite3_context *context, 106 int argc, 107 sqlite3_value **argv 108 ){ 109 assert( argc==1 ); 110 UNUSED_PARAMETER(argc); 111 switch( sqlite3_value_type(argv[0]) ){ 112 case SQLITE_BLOB: 113 case SQLITE_INTEGER: 114 case SQLITE_FLOAT: { 115 sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); 116 break; 117 } 118 case SQLITE_TEXT: { 119 const unsigned char *z = sqlite3_value_text(argv[0]); 120 const unsigned char *z0; 121 unsigned char c; 122 if( z==0 ) return; 123 z0 = z; 124 while( (c = *z)!=0 ){ 125 z++; 126 if( c>=0xc0 ){ 127 while( (*z & 0xc0)==0x80 ){ z++; z0++; } 128 } 129 } 130 sqlite3_result_int(context, (int)(z-z0)); 131 break; 132 } 133 default: { 134 sqlite3_result_null(context); 135 break; 136 } 137 } 138 } 139 140 /* 141 ** Implementation of the abs() function. 142 ** 143 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of 144 ** the numeric argument X. 145 */ 146 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 147 assert( argc==1 ); 148 UNUSED_PARAMETER(argc); 149 switch( sqlite3_value_type(argv[0]) ){ 150 case SQLITE_INTEGER: { 151 i64 iVal = sqlite3_value_int64(argv[0]); 152 if( iVal<0 ){ 153 if( iVal==SMALLEST_INT64 ){ 154 /* IMP: R-31676-45509 If X is the integer -9223372036854775808 155 ** then abs(X) throws an integer overflow error since there is no 156 ** equivalent positive 64-bit two complement value. */ 157 sqlite3_result_error(context, "integer overflow", -1); 158 return; 159 } 160 iVal = -iVal; 161 } 162 sqlite3_result_int64(context, iVal); 163 break; 164 } 165 case SQLITE_NULL: { 166 /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */ 167 sqlite3_result_null(context); 168 break; 169 } 170 default: { 171 /* Because sqlite3_value_double() returns 0.0 if the argument is not 172 ** something that can be converted into a number, we have: 173 ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob 174 ** that cannot be converted to a numeric value. 175 */ 176 double rVal = sqlite3_value_double(argv[0]); 177 if( rVal<0 ) rVal = -rVal; 178 sqlite3_result_double(context, rVal); 179 break; 180 } 181 } 182 } 183 184 /* 185 ** Implementation of the instr() function. 186 ** 187 ** instr(haystack,needle) finds the first occurrence of needle 188 ** in haystack and returns the number of previous characters plus 1, 189 ** or 0 if needle does not occur within haystack. 190 ** 191 ** If both haystack and needle are BLOBs, then the result is one more than 192 ** the number of bytes in haystack prior to the first occurrence of needle, 193 ** or 0 if needle never occurs in haystack. 194 */ 195 static void instrFunc( 196 sqlite3_context *context, 197 int argc, 198 sqlite3_value **argv 199 ){ 200 const unsigned char *zHaystack; 201 const unsigned char *zNeedle; 202 int nHaystack; 203 int nNeedle; 204 int typeHaystack, typeNeedle; 205 int N = 1; 206 int isText; 207 unsigned char firstChar; 208 sqlite3_value *pC1 = 0; 209 sqlite3_value *pC2 = 0; 210 211 UNUSED_PARAMETER(argc); 212 typeHaystack = sqlite3_value_type(argv[0]); 213 typeNeedle = sqlite3_value_type(argv[1]); 214 if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return; 215 nHaystack = sqlite3_value_bytes(argv[0]); 216 nNeedle = sqlite3_value_bytes(argv[1]); 217 if( nNeedle>0 ){ 218 if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){ 219 zHaystack = sqlite3_value_blob(argv[0]); 220 zNeedle = sqlite3_value_blob(argv[1]); 221 isText = 0; 222 }else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){ 223 zHaystack = sqlite3_value_text(argv[0]); 224 zNeedle = sqlite3_value_text(argv[1]); 225 isText = 1; 226 }else{ 227 pC1 = sqlite3_value_dup(argv[0]); 228 zHaystack = sqlite3_value_text(pC1); 229 if( zHaystack==0 ) goto endInstrOOM; 230 nHaystack = sqlite3_value_bytes(pC1); 231 pC2 = sqlite3_value_dup(argv[1]); 232 zNeedle = sqlite3_value_text(pC2); 233 if( zNeedle==0 ) goto endInstrOOM; 234 nNeedle = sqlite3_value_bytes(pC2); 235 isText = 1; 236 } 237 if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM; 238 firstChar = zNeedle[0]; 239 while( nNeedle<=nHaystack 240 && (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0) 241 ){ 242 N++; 243 do{ 244 nHaystack--; 245 zHaystack++; 246 }while( isText && (zHaystack[0]&0xc0)==0x80 ); 247 } 248 if( nNeedle>nHaystack ) N = 0; 249 } 250 sqlite3_result_int(context, N); 251 endInstr: 252 sqlite3_value_free(pC1); 253 sqlite3_value_free(pC2); 254 return; 255 endInstrOOM: 256 sqlite3_result_error_nomem(context); 257 goto endInstr; 258 } 259 260 /* 261 ** Implementation of the printf() function. 262 */ 263 static void printfFunc( 264 sqlite3_context *context, 265 int argc, 266 sqlite3_value **argv 267 ){ 268 PrintfArguments x; 269 StrAccum str; 270 const char *zFormat; 271 int n; 272 sqlite3 *db = sqlite3_context_db_handle(context); 273 274 if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){ 275 x.nArg = argc-1; 276 x.nUsed = 0; 277 x.apArg = argv+1; 278 sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); 279 str.printfFlags = SQLITE_PRINTF_SQLFUNC; 280 sqlite3_str_appendf(&str, zFormat, &x); 281 n = str.nChar; 282 sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n, 283 SQLITE_DYNAMIC); 284 } 285 } 286 287 /* 288 ** Implementation of the substr() function. 289 ** 290 ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. 291 ** p1 is 1-indexed. So substr(x,1,1) returns the first character 292 ** of x. If x is text, then we actually count UTF-8 characters. 293 ** If x is a blob, then we count bytes. 294 ** 295 ** If p1 is negative, then we begin abs(p1) from the end of x[]. 296 ** 297 ** If p2 is negative, return the p2 characters preceding p1. 298 */ 299 static void substrFunc( 300 sqlite3_context *context, 301 int argc, 302 sqlite3_value **argv 303 ){ 304 const unsigned char *z; 305 const unsigned char *z2; 306 int len; 307 int p0type; 308 i64 p1, p2; 309 int negP2 = 0; 310 311 assert( argc==3 || argc==2 ); 312 if( sqlite3_value_type(argv[1])==SQLITE_NULL 313 || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL) 314 ){ 315 return; 316 } 317 p0type = sqlite3_value_type(argv[0]); 318 p1 = sqlite3_value_int(argv[1]); 319 if( p0type==SQLITE_BLOB ){ 320 len = sqlite3_value_bytes(argv[0]); 321 z = sqlite3_value_blob(argv[0]); 322 if( z==0 ) return; 323 assert( len==sqlite3_value_bytes(argv[0]) ); 324 }else{ 325 z = sqlite3_value_text(argv[0]); 326 if( z==0 ) return; 327 len = 0; 328 if( p1<0 ){ 329 for(z2=z; *z2; len++){ 330 SQLITE_SKIP_UTF8(z2); 331 } 332 } 333 } 334 #ifdef SQLITE_SUBSTR_COMPATIBILITY 335 /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as 336 ** as substr(X,1,N) - it returns the first N characters of X. This 337 ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8] 338 ** from 2009-02-02 for compatibility of applications that exploited the 339 ** old buggy behavior. */ 340 if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */ 341 #endif 342 if( argc==3 ){ 343 p2 = sqlite3_value_int(argv[2]); 344 if( p2<0 ){ 345 p2 = -p2; 346 negP2 = 1; 347 } 348 }else{ 349 p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH]; 350 } 351 if( p1<0 ){ 352 p1 += len; 353 if( p1<0 ){ 354 p2 += p1; 355 if( p2<0 ) p2 = 0; 356 p1 = 0; 357 } 358 }else if( p1>0 ){ 359 p1--; 360 }else if( p2>0 ){ 361 p2--; 362 } 363 if( negP2 ){ 364 p1 -= p2; 365 if( p1<0 ){ 366 p2 += p1; 367 p1 = 0; 368 } 369 } 370 assert( p1>=0 && p2>=0 ); 371 if( p0type!=SQLITE_BLOB ){ 372 while( *z && p1 ){ 373 SQLITE_SKIP_UTF8(z); 374 p1--; 375 } 376 for(z2=z; *z2 && p2; p2--){ 377 SQLITE_SKIP_UTF8(z2); 378 } 379 sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT, 380 SQLITE_UTF8); 381 }else{ 382 if( p1+p2>len ){ 383 p2 = len-p1; 384 if( p2<0 ) p2 = 0; 385 } 386 sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT); 387 } 388 } 389 390 /* 391 ** Implementation of the round() function 392 */ 393 #ifndef SQLITE_OMIT_FLOATING_POINT 394 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 395 int n = 0; 396 double r; 397 char *zBuf; 398 assert( argc==1 || argc==2 ); 399 if( argc==2 ){ 400 if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return; 401 n = sqlite3_value_int(argv[1]); 402 if( n>30 ) n = 30; 403 if( n<0 ) n = 0; 404 } 405 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 406 r = sqlite3_value_double(argv[0]); 407 /* If Y==0 and X will fit in a 64-bit int, 408 ** handle the rounding directly, 409 ** otherwise use printf. 410 */ 411 if( r<-4503599627370496.0 || r>+4503599627370496.0 ){ 412 /* The value has no fractional part so there is nothing to round */ 413 }else if( n==0 ){ 414 r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5))); 415 }else{ 416 zBuf = sqlite3_mprintf("%.*f",n,r); 417 if( zBuf==0 ){ 418 sqlite3_result_error_nomem(context); 419 return; 420 } 421 sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8); 422 sqlite3_free(zBuf); 423 } 424 sqlite3_result_double(context, r); 425 } 426 #endif 427 428 /* 429 ** Allocate nByte bytes of space using sqlite3Malloc(). If the 430 ** allocation fails, call sqlite3_result_error_nomem() to notify 431 ** the database handle that malloc() has failed and return NULL. 432 ** If nByte is larger than the maximum string or blob length, then 433 ** raise an SQLITE_TOOBIG exception and return NULL. 434 */ 435 static void *contextMalloc(sqlite3_context *context, i64 nByte){ 436 char *z; 437 sqlite3 *db = sqlite3_context_db_handle(context); 438 assert( nByte>0 ); 439 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] ); 440 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); 441 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 442 sqlite3_result_error_toobig(context); 443 z = 0; 444 }else{ 445 z = sqlite3Malloc(nByte); 446 if( !z ){ 447 sqlite3_result_error_nomem(context); 448 } 449 } 450 return z; 451 } 452 453 /* 454 ** Implementation of the upper() and lower() SQL functions. 455 */ 456 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 457 char *z1; 458 const char *z2; 459 int i, n; 460 UNUSED_PARAMETER(argc); 461 z2 = (char*)sqlite3_value_text(argv[0]); 462 n = sqlite3_value_bytes(argv[0]); 463 /* Verify that the call to _bytes() does not invalidate the _text() pointer */ 464 assert( z2==(char*)sqlite3_value_text(argv[0]) ); 465 if( z2 ){ 466 z1 = contextMalloc(context, ((i64)n)+1); 467 if( z1 ){ 468 for(i=0; i<n; i++){ 469 z1[i] = (char)sqlite3Toupper(z2[i]); 470 } 471 sqlite3_result_text(context, z1, n, sqlite3_free); 472 } 473 } 474 } 475 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 476 char *z1; 477 const char *z2; 478 int i, n; 479 UNUSED_PARAMETER(argc); 480 z2 = (char*)sqlite3_value_text(argv[0]); 481 n = sqlite3_value_bytes(argv[0]); 482 /* Verify that the call to _bytes() does not invalidate the _text() pointer */ 483 assert( z2==(char*)sqlite3_value_text(argv[0]) ); 484 if( z2 ){ 485 z1 = contextMalloc(context, ((i64)n)+1); 486 if( z1 ){ 487 for(i=0; i<n; i++){ 488 z1[i] = sqlite3Tolower(z2[i]); 489 } 490 sqlite3_result_text(context, z1, n, sqlite3_free); 491 } 492 } 493 } 494 495 /* 496 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented 497 ** as VDBE code so that unused argument values do not have to be computed. 498 ** However, we still need some kind of function implementation for this 499 ** routines in the function table. The noopFunc macro provides this. 500 ** noopFunc will never be called so it doesn't matter what the implementation 501 ** is. We might as well use the "version()" function as a substitute. 502 */ 503 #define noopFunc versionFunc /* Substitute function - never called */ 504 505 /* 506 ** Implementation of random(). Return a random integer. 507 */ 508 static void randomFunc( 509 sqlite3_context *context, 510 int NotUsed, 511 sqlite3_value **NotUsed2 512 ){ 513 sqlite_int64 r; 514 UNUSED_PARAMETER2(NotUsed, NotUsed2); 515 sqlite3_randomness(sizeof(r), &r); 516 if( r<0 ){ 517 /* We need to prevent a random number of 0x8000000000000000 518 ** (or -9223372036854775808) since when you do abs() of that 519 ** number of you get the same value back again. To do this 520 ** in a way that is testable, mask the sign bit off of negative 521 ** values, resulting in a positive value. Then take the 522 ** 2s complement of that positive value. The end result can 523 ** therefore be no less than -9223372036854775807. 524 */ 525 r = -(r & LARGEST_INT64); 526 } 527 sqlite3_result_int64(context, r); 528 } 529 530 /* 531 ** Implementation of randomblob(N). Return a random blob 532 ** that is N bytes long. 533 */ 534 static void randomBlob( 535 sqlite3_context *context, 536 int argc, 537 sqlite3_value **argv 538 ){ 539 sqlite3_int64 n; 540 unsigned char *p; 541 assert( argc==1 ); 542 UNUSED_PARAMETER(argc); 543 n = sqlite3_value_int64(argv[0]); 544 if( n<1 ){ 545 n = 1; 546 } 547 p = contextMalloc(context, n); 548 if( p ){ 549 sqlite3_randomness(n, p); 550 sqlite3_result_blob(context, (char*)p, n, sqlite3_free); 551 } 552 } 553 554 /* 555 ** Implementation of the last_insert_rowid() SQL function. The return 556 ** value is the same as the sqlite3_last_insert_rowid() API function. 557 */ 558 static void last_insert_rowid( 559 sqlite3_context *context, 560 int NotUsed, 561 sqlite3_value **NotUsed2 562 ){ 563 sqlite3 *db = sqlite3_context_db_handle(context); 564 UNUSED_PARAMETER2(NotUsed, NotUsed2); 565 /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a 566 ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface 567 ** function. */ 568 sqlite3_result_int64(context, sqlite3_last_insert_rowid(db)); 569 } 570 571 /* 572 ** Implementation of the changes() SQL function. 573 ** 574 ** IMP: R-32760-32347 The changes() SQL function is a wrapper 575 ** around the sqlite3_changes64() C/C++ function and hence follows the 576 ** same rules for counting changes. 577 */ 578 static void changes( 579 sqlite3_context *context, 580 int NotUsed, 581 sqlite3_value **NotUsed2 582 ){ 583 sqlite3 *db = sqlite3_context_db_handle(context); 584 UNUSED_PARAMETER2(NotUsed, NotUsed2); 585 sqlite3_result_int64(context, sqlite3_changes64(db)); 586 } 587 588 /* 589 ** Implementation of the total_changes() SQL function. The return value is 590 ** the same as the sqlite3_total_changes64() API function. 591 */ 592 static void total_changes( 593 sqlite3_context *context, 594 int NotUsed, 595 sqlite3_value **NotUsed2 596 ){ 597 sqlite3 *db = sqlite3_context_db_handle(context); 598 UNUSED_PARAMETER2(NotUsed, NotUsed2); 599 /* IMP: R-11217-42568 This function is a wrapper around the 600 ** sqlite3_total_changes64() C/C++ interface. */ 601 sqlite3_result_int64(context, sqlite3_total_changes64(db)); 602 } 603 604 /* 605 ** A structure defining how to do GLOB-style comparisons. 606 */ 607 struct compareInfo { 608 u8 matchAll; /* "*" or "%" */ 609 u8 matchOne; /* "?" or "_" */ 610 u8 matchSet; /* "[" or 0 */ 611 u8 noCase; /* true to ignore case differences */ 612 }; 613 614 /* 615 ** For LIKE and GLOB matching on EBCDIC machines, assume that every 616 ** character is exactly one byte in size. Also, provde the Utf8Read() 617 ** macro for fast reading of the next character in the common case where 618 ** the next character is ASCII. 619 */ 620 #if defined(SQLITE_EBCDIC) 621 # define sqlite3Utf8Read(A) (*((*A)++)) 622 # define Utf8Read(A) (*(A++)) 623 #else 624 # define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A)) 625 #endif 626 627 static const struct compareInfo globInfo = { '*', '?', '[', 0 }; 628 /* The correct SQL-92 behavior is for the LIKE operator to ignore 629 ** case. Thus 'a' LIKE 'A' would be true. */ 630 static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 }; 631 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator 632 ** is case sensitive causing 'a' LIKE 'A' to be false */ 633 static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 }; 634 635 /* 636 ** Possible error returns from patternMatch() 637 */ 638 #define SQLITE_MATCH 0 639 #define SQLITE_NOMATCH 1 640 #define SQLITE_NOWILDCARDMATCH 2 641 642 /* 643 ** Compare two UTF-8 strings for equality where the first string is 644 ** a GLOB or LIKE expression. Return values: 645 ** 646 ** SQLITE_MATCH: Match 647 ** SQLITE_NOMATCH: No match 648 ** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards. 649 ** 650 ** Globbing rules: 651 ** 652 ** '*' Matches any sequence of zero or more characters. 653 ** 654 ** '?' Matches exactly one character. 655 ** 656 ** [...] Matches one character from the enclosed list of 657 ** characters. 658 ** 659 ** [^...] Matches one character not in the enclosed list. 660 ** 661 ** With the [...] and [^...] matching, a ']' character can be included 662 ** in the list by making it the first character after '[' or '^'. A 663 ** range of characters can be specified using '-'. Example: 664 ** "[a-z]" matches any single lower-case letter. To match a '-', make 665 ** it the last character in the list. 666 ** 667 ** Like matching rules: 668 ** 669 ** '%' Matches any sequence of zero or more characters 670 ** 671 *** '_' Matches any one character 672 ** 673 ** Ec Where E is the "esc" character and c is any other 674 ** character, including '%', '_', and esc, match exactly c. 675 ** 676 ** The comments within this routine usually assume glob matching. 677 ** 678 ** This routine is usually quick, but can be N**2 in the worst case. 679 */ 680 static int patternCompare( 681 const u8 *zPattern, /* The glob pattern */ 682 const u8 *zString, /* The string to compare against the glob */ 683 const struct compareInfo *pInfo, /* Information about how to do the compare */ 684 u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */ 685 ){ 686 u32 c, c2; /* Next pattern and input string chars */ 687 u32 matchOne = pInfo->matchOne; /* "?" or "_" */ 688 u32 matchAll = pInfo->matchAll; /* "*" or "%" */ 689 u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */ 690 const u8 *zEscaped = 0; /* One past the last escaped input char */ 691 692 while( (c = Utf8Read(zPattern))!=0 ){ 693 if( c==matchAll ){ /* Match "*" */ 694 /* Skip over multiple "*" characters in the pattern. If there 695 ** are also "?" characters, skip those as well, but consume a 696 ** single character of the input string for each "?" skipped */ 697 while( (c=Utf8Read(zPattern)) == matchAll 698 || (c == matchOne && matchOne!=0) ){ 699 if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){ 700 return SQLITE_NOWILDCARDMATCH; 701 } 702 } 703 if( c==0 ){ 704 return SQLITE_MATCH; /* "*" at the end of the pattern matches */ 705 }else if( c==matchOther ){ 706 if( pInfo->matchSet==0 ){ 707 c = sqlite3Utf8Read(&zPattern); 708 if( c==0 ) return SQLITE_NOWILDCARDMATCH; 709 }else{ 710 /* "[...]" immediately follows the "*". We have to do a slow 711 ** recursive search in this case, but it is an unusual case. */ 712 assert( matchOther<0x80 ); /* '[' is a single-byte character */ 713 while( *zString ){ 714 int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther); 715 if( bMatch!=SQLITE_NOMATCH ) return bMatch; 716 SQLITE_SKIP_UTF8(zString); 717 } 718 return SQLITE_NOWILDCARDMATCH; 719 } 720 } 721 722 /* At this point variable c contains the first character of the 723 ** pattern string past the "*". Search in the input string for the 724 ** first matching character and recursively continue the match from 725 ** that point. 726 ** 727 ** For a case-insensitive search, set variable cx to be the same as 728 ** c but in the other case and search the input string for either 729 ** c or cx. 730 */ 731 if( c<=0x80 ){ 732 char zStop[3]; 733 int bMatch; 734 if( noCase ){ 735 zStop[0] = sqlite3Toupper(c); 736 zStop[1] = sqlite3Tolower(c); 737 zStop[2] = 0; 738 }else{ 739 zStop[0] = c; 740 zStop[1] = 0; 741 } 742 while(1){ 743 zString += strcspn((const char*)zString, zStop); 744 if( zString[0]==0 ) break; 745 zString++; 746 bMatch = patternCompare(zPattern,zString,pInfo,matchOther); 747 if( bMatch!=SQLITE_NOMATCH ) return bMatch; 748 } 749 }else{ 750 int bMatch; 751 while( (c2 = Utf8Read(zString))!=0 ){ 752 if( c2!=c ) continue; 753 bMatch = patternCompare(zPattern,zString,pInfo,matchOther); 754 if( bMatch!=SQLITE_NOMATCH ) return bMatch; 755 } 756 } 757 return SQLITE_NOWILDCARDMATCH; 758 } 759 if( c==matchOther ){ 760 if( pInfo->matchSet==0 ){ 761 c = sqlite3Utf8Read(&zPattern); 762 if( c==0 ) return SQLITE_NOMATCH; 763 zEscaped = zPattern; 764 }else{ 765 u32 prior_c = 0; 766 int seen = 0; 767 int invert = 0; 768 c = sqlite3Utf8Read(&zString); 769 if( c==0 ) return SQLITE_NOMATCH; 770 c2 = sqlite3Utf8Read(&zPattern); 771 if( c2=='^' ){ 772 invert = 1; 773 c2 = sqlite3Utf8Read(&zPattern); 774 } 775 if( c2==']' ){ 776 if( c==']' ) seen = 1; 777 c2 = sqlite3Utf8Read(&zPattern); 778 } 779 while( c2 && c2!=']' ){ 780 if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){ 781 c2 = sqlite3Utf8Read(&zPattern); 782 if( c>=prior_c && c<=c2 ) seen = 1; 783 prior_c = 0; 784 }else{ 785 if( c==c2 ){ 786 seen = 1; 787 } 788 prior_c = c2; 789 } 790 c2 = sqlite3Utf8Read(&zPattern); 791 } 792 if( c2==0 || (seen ^ invert)==0 ){ 793 return SQLITE_NOMATCH; 794 } 795 continue; 796 } 797 } 798 c2 = Utf8Read(zString); 799 if( c==c2 ) continue; 800 if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){ 801 continue; 802 } 803 if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue; 804 return SQLITE_NOMATCH; 805 } 806 return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH; 807 } 808 809 /* 810 ** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and 811 ** non-zero if there is no match. 812 */ 813 int sqlite3_strglob(const char *zGlobPattern, const char *zString){ 814 return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '['); 815 } 816 817 /* 818 ** The sqlite3_strlike() interface. Return 0 on a match and non-zero for 819 ** a miss - like strcmp(). 820 */ 821 int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){ 822 return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc); 823 } 824 825 /* 826 ** Count the number of times that the LIKE operator (or GLOB which is 827 ** just a variation of LIKE) gets called. This is used for testing 828 ** only. 829 */ 830 #ifdef SQLITE_TEST 831 int sqlite3_like_count = 0; 832 #endif 833 834 835 /* 836 ** Implementation of the like() SQL function. This function implements 837 ** the build-in LIKE operator. The first argument to the function is the 838 ** pattern and the second argument is the string. So, the SQL statements: 839 ** 840 ** A LIKE B 841 ** 842 ** is implemented as like(B,A). 843 ** 844 ** This same function (with a different compareInfo structure) computes 845 ** the GLOB operator. 846 */ 847 static void likeFunc( 848 sqlite3_context *context, 849 int argc, 850 sqlite3_value **argv 851 ){ 852 const unsigned char *zA, *zB; 853 u32 escape; 854 int nPat; 855 sqlite3 *db = sqlite3_context_db_handle(context); 856 struct compareInfo *pInfo = sqlite3_user_data(context); 857 struct compareInfo backupInfo; 858 859 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 860 if( sqlite3_value_type(argv[0])==SQLITE_BLOB 861 || sqlite3_value_type(argv[1])==SQLITE_BLOB 862 ){ 863 #ifdef SQLITE_TEST 864 sqlite3_like_count++; 865 #endif 866 sqlite3_result_int(context, 0); 867 return; 868 } 869 #endif 870 871 /* Limit the length of the LIKE or GLOB pattern to avoid problems 872 ** of deep recursion and N*N behavior in patternCompare(). 873 */ 874 nPat = sqlite3_value_bytes(argv[0]); 875 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ); 876 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 ); 877 if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){ 878 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); 879 return; 880 } 881 if( argc==3 ){ 882 /* The escape character string must consist of a single UTF-8 character. 883 ** Otherwise, return an error. 884 */ 885 const unsigned char *zEsc = sqlite3_value_text(argv[2]); 886 if( zEsc==0 ) return; 887 if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){ 888 sqlite3_result_error(context, 889 "ESCAPE expression must be a single character", -1); 890 return; 891 } 892 escape = sqlite3Utf8Read(&zEsc); 893 if( escape==pInfo->matchAll || escape==pInfo->matchOne ){ 894 memcpy(&backupInfo, pInfo, sizeof(backupInfo)); 895 pInfo = &backupInfo; 896 if( escape==pInfo->matchAll ) pInfo->matchAll = 0; 897 if( escape==pInfo->matchOne ) pInfo->matchOne = 0; 898 } 899 }else{ 900 escape = pInfo->matchSet; 901 } 902 zB = sqlite3_value_text(argv[0]); 903 zA = sqlite3_value_text(argv[1]); 904 if( zA && zB ){ 905 #ifdef SQLITE_TEST 906 sqlite3_like_count++; 907 #endif 908 sqlite3_result_int(context, 909 patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH); 910 } 911 } 912 913 /* 914 ** Implementation of the NULLIF(x,y) function. The result is the first 915 ** argument if the arguments are different. The result is NULL if the 916 ** arguments are equal to each other. 917 */ 918 static void nullifFunc( 919 sqlite3_context *context, 920 int NotUsed, 921 sqlite3_value **argv 922 ){ 923 CollSeq *pColl = sqlite3GetFuncCollSeq(context); 924 UNUSED_PARAMETER(NotUsed); 925 if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ 926 sqlite3_result_value(context, argv[0]); 927 } 928 } 929 930 /* 931 ** Implementation of the sqlite_version() function. The result is the version 932 ** of the SQLite library that is running. 933 */ 934 static void versionFunc( 935 sqlite3_context *context, 936 int NotUsed, 937 sqlite3_value **NotUsed2 938 ){ 939 UNUSED_PARAMETER2(NotUsed, NotUsed2); 940 /* IMP: R-48699-48617 This function is an SQL wrapper around the 941 ** sqlite3_libversion() C-interface. */ 942 sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC); 943 } 944 945 /* 946 ** Implementation of the sqlite_source_id() function. The result is a string 947 ** that identifies the particular version of the source code used to build 948 ** SQLite. 949 */ 950 static void sourceidFunc( 951 sqlite3_context *context, 952 int NotUsed, 953 sqlite3_value **NotUsed2 954 ){ 955 UNUSED_PARAMETER2(NotUsed, NotUsed2); 956 /* IMP: R-24470-31136 This function is an SQL wrapper around the 957 ** sqlite3_sourceid() C interface. */ 958 sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC); 959 } 960 961 /* 962 ** Implementation of the sqlite_log() function. This is a wrapper around 963 ** sqlite3_log(). The return value is NULL. The function exists purely for 964 ** its side-effects. 965 */ 966 static void errlogFunc( 967 sqlite3_context *context, 968 int argc, 969 sqlite3_value **argv 970 ){ 971 UNUSED_PARAMETER(argc); 972 UNUSED_PARAMETER(context); 973 sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1])); 974 } 975 976 /* 977 ** Implementation of the sqlite_compileoption_used() function. 978 ** The result is an integer that identifies if the compiler option 979 ** was used to build SQLite. 980 */ 981 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 982 static void compileoptionusedFunc( 983 sqlite3_context *context, 984 int argc, 985 sqlite3_value **argv 986 ){ 987 const char *zOptName; 988 assert( argc==1 ); 989 UNUSED_PARAMETER(argc); 990 /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL 991 ** function is a wrapper around the sqlite3_compileoption_used() C/C++ 992 ** function. 993 */ 994 if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){ 995 sqlite3_result_int(context, sqlite3_compileoption_used(zOptName)); 996 } 997 } 998 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 999 1000 /* 1001 ** Implementation of the sqlite_compileoption_get() function. 1002 ** The result is a string that identifies the compiler options 1003 ** used to build SQLite. 1004 */ 1005 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 1006 static void compileoptiongetFunc( 1007 sqlite3_context *context, 1008 int argc, 1009 sqlite3_value **argv 1010 ){ 1011 int n; 1012 assert( argc==1 ); 1013 UNUSED_PARAMETER(argc); 1014 /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function 1015 ** is a wrapper around the sqlite3_compileoption_get() C/C++ function. 1016 */ 1017 n = sqlite3_value_int(argv[0]); 1018 sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC); 1019 } 1020 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 1021 1022 /* Array for converting from half-bytes (nybbles) into ASCII hex 1023 ** digits. */ 1024 static const char hexdigits[] = { 1025 '0', '1', '2', '3', '4', '5', '6', '7', 1026 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' 1027 }; 1028 1029 /* 1030 ** Implementation of the QUOTE() function. This function takes a single 1031 ** argument. If the argument is numeric, the return value is the same as 1032 ** the argument. If the argument is NULL, the return value is the string 1033 ** "NULL". Otherwise, the argument is enclosed in single quotes with 1034 ** single-quote escapes. 1035 */ 1036 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ 1037 assert( argc==1 ); 1038 UNUSED_PARAMETER(argc); 1039 switch( sqlite3_value_type(argv[0]) ){ 1040 case SQLITE_FLOAT: { 1041 double r1, r2; 1042 char zBuf[50]; 1043 r1 = sqlite3_value_double(argv[0]); 1044 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1); 1045 sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8); 1046 if( r1!=r2 ){ 1047 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1); 1048 } 1049 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); 1050 break; 1051 } 1052 case SQLITE_INTEGER: { 1053 sqlite3_result_value(context, argv[0]); 1054 break; 1055 } 1056 case SQLITE_BLOB: { 1057 char *zText = 0; 1058 char const *zBlob = sqlite3_value_blob(argv[0]); 1059 int nBlob = sqlite3_value_bytes(argv[0]); 1060 assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ 1061 zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4); 1062 if( zText ){ 1063 int i; 1064 for(i=0; i<nBlob; i++){ 1065 zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F]; 1066 zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; 1067 } 1068 zText[(nBlob*2)+2] = '\''; 1069 zText[(nBlob*2)+3] = '\0'; 1070 zText[0] = 'X'; 1071 zText[1] = '\''; 1072 sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT); 1073 sqlite3_free(zText); 1074 } 1075 break; 1076 } 1077 case SQLITE_TEXT: { 1078 int i,j; 1079 u64 n; 1080 const unsigned char *zArg = sqlite3_value_text(argv[0]); 1081 char *z; 1082 1083 if( zArg==0 ) return; 1084 for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; } 1085 z = contextMalloc(context, ((i64)i)+((i64)n)+3); 1086 if( z ){ 1087 z[0] = '\''; 1088 for(i=0, j=1; zArg[i]; i++){ 1089 z[j++] = zArg[i]; 1090 if( zArg[i]=='\'' ){ 1091 z[j++] = '\''; 1092 } 1093 } 1094 z[j++] = '\''; 1095 z[j] = 0; 1096 sqlite3_result_text(context, z, j, sqlite3_free); 1097 } 1098 break; 1099 } 1100 default: { 1101 assert( sqlite3_value_type(argv[0])==SQLITE_NULL ); 1102 sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC); 1103 break; 1104 } 1105 } 1106 } 1107 1108 /* 1109 ** The unicode() function. Return the integer unicode code-point value 1110 ** for the first character of the input string. 1111 */ 1112 static void unicodeFunc( 1113 sqlite3_context *context, 1114 int argc, 1115 sqlite3_value **argv 1116 ){ 1117 const unsigned char *z = sqlite3_value_text(argv[0]); 1118 (void)argc; 1119 if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z)); 1120 } 1121 1122 /* 1123 ** The char() function takes zero or more arguments, each of which is 1124 ** an integer. It constructs a string where each character of the string 1125 ** is the unicode character for the corresponding integer argument. 1126 */ 1127 static void charFunc( 1128 sqlite3_context *context, 1129 int argc, 1130 sqlite3_value **argv 1131 ){ 1132 unsigned char *z, *zOut; 1133 int i; 1134 zOut = z = sqlite3_malloc64( argc*4+1 ); 1135 if( z==0 ){ 1136 sqlite3_result_error_nomem(context); 1137 return; 1138 } 1139 for(i=0; i<argc; i++){ 1140 sqlite3_int64 x; 1141 unsigned c; 1142 x = sqlite3_value_int64(argv[i]); 1143 if( x<0 || x>0x10ffff ) x = 0xfffd; 1144 c = (unsigned)(x & 0x1fffff); 1145 if( c<0x00080 ){ 1146 *zOut++ = (u8)(c&0xFF); 1147 }else if( c<0x00800 ){ 1148 *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); 1149 *zOut++ = 0x80 + (u8)(c & 0x3F); 1150 }else if( c<0x10000 ){ 1151 *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); 1152 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); 1153 *zOut++ = 0x80 + (u8)(c & 0x3F); 1154 }else{ 1155 *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); 1156 *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); 1157 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); 1158 *zOut++ = 0x80 + (u8)(c & 0x3F); 1159 } \ 1160 } 1161 sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8); 1162 } 1163 1164 /* 1165 ** The hex() function. Interpret the argument as a blob. Return 1166 ** a hexadecimal rendering as text. 1167 */ 1168 static void hexFunc( 1169 sqlite3_context *context, 1170 int argc, 1171 sqlite3_value **argv 1172 ){ 1173 int i, n; 1174 const unsigned char *pBlob; 1175 char *zHex, *z; 1176 assert( argc==1 ); 1177 UNUSED_PARAMETER(argc); 1178 pBlob = sqlite3_value_blob(argv[0]); 1179 n = sqlite3_value_bytes(argv[0]); 1180 assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ 1181 z = zHex = contextMalloc(context, ((i64)n)*2 + 1); 1182 if( zHex ){ 1183 for(i=0; i<n; i++, pBlob++){ 1184 unsigned char c = *pBlob; 1185 *(z++) = hexdigits[(c>>4)&0xf]; 1186 *(z++) = hexdigits[c&0xf]; 1187 } 1188 *z = 0; 1189 sqlite3_result_text(context, zHex, n*2, sqlite3_free); 1190 } 1191 } 1192 1193 /* 1194 ** The zeroblob(N) function returns a zero-filled blob of size N bytes. 1195 */ 1196 static void zeroblobFunc( 1197 sqlite3_context *context, 1198 int argc, 1199 sqlite3_value **argv 1200 ){ 1201 i64 n; 1202 int rc; 1203 assert( argc==1 ); 1204 UNUSED_PARAMETER(argc); 1205 n = sqlite3_value_int64(argv[0]); 1206 if( n<0 ) n = 0; 1207 rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */ 1208 if( rc ){ 1209 sqlite3_result_error_code(context, rc); 1210 } 1211 } 1212 1213 /* 1214 ** The replace() function. Three arguments are all strings: call 1215 ** them A, B, and C. The result is also a string which is derived 1216 ** from A by replacing every occurrence of B with C. The match 1217 ** must be exact. Collating sequences are not used. 1218 */ 1219 static void replaceFunc( 1220 sqlite3_context *context, 1221 int argc, 1222 sqlite3_value **argv 1223 ){ 1224 const unsigned char *zStr; /* The input string A */ 1225 const unsigned char *zPattern; /* The pattern string B */ 1226 const unsigned char *zRep; /* The replacement string C */ 1227 unsigned char *zOut; /* The output */ 1228 int nStr; /* Size of zStr */ 1229 int nPattern; /* Size of zPattern */ 1230 int nRep; /* Size of zRep */ 1231 i64 nOut; /* Maximum size of zOut */ 1232 int loopLimit; /* Last zStr[] that might match zPattern[] */ 1233 int i, j; /* Loop counters */ 1234 unsigned cntExpand; /* Number zOut expansions */ 1235 sqlite3 *db = sqlite3_context_db_handle(context); 1236 1237 assert( argc==3 ); 1238 UNUSED_PARAMETER(argc); 1239 zStr = sqlite3_value_text(argv[0]); 1240 if( zStr==0 ) return; 1241 nStr = sqlite3_value_bytes(argv[0]); 1242 assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */ 1243 zPattern = sqlite3_value_text(argv[1]); 1244 if( zPattern==0 ){ 1245 assert( sqlite3_value_type(argv[1])==SQLITE_NULL 1246 || sqlite3_context_db_handle(context)->mallocFailed ); 1247 return; 1248 } 1249 if( zPattern[0]==0 ){ 1250 assert( sqlite3_value_type(argv[1])!=SQLITE_NULL ); 1251 sqlite3_result_value(context, argv[0]); 1252 return; 1253 } 1254 nPattern = sqlite3_value_bytes(argv[1]); 1255 assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */ 1256 zRep = sqlite3_value_text(argv[2]); 1257 if( zRep==0 ) return; 1258 nRep = sqlite3_value_bytes(argv[2]); 1259 assert( zRep==sqlite3_value_text(argv[2]) ); 1260 nOut = nStr + 1; 1261 assert( nOut<SQLITE_MAX_LENGTH ); 1262 zOut = contextMalloc(context, (i64)nOut); 1263 if( zOut==0 ){ 1264 return; 1265 } 1266 loopLimit = nStr - nPattern; 1267 cntExpand = 0; 1268 for(i=j=0; i<=loopLimit; i++){ 1269 if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){ 1270 zOut[j++] = zStr[i]; 1271 }else{ 1272 if( nRep>nPattern ){ 1273 nOut += nRep - nPattern; 1274 testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] ); 1275 testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] ); 1276 if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1277 sqlite3_result_error_toobig(context); 1278 sqlite3_free(zOut); 1279 return; 1280 } 1281 cntExpand++; 1282 if( (cntExpand&(cntExpand-1))==0 ){ 1283 /* Grow the size of the output buffer only on substitutions 1284 ** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */ 1285 u8 *zOld; 1286 zOld = zOut; 1287 zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1)); 1288 if( zOut==0 ){ 1289 sqlite3_result_error_nomem(context); 1290 sqlite3_free(zOld); 1291 return; 1292 } 1293 } 1294 } 1295 memcpy(&zOut[j], zRep, nRep); 1296 j += nRep; 1297 i += nPattern-1; 1298 } 1299 } 1300 assert( j+nStr-i+1<=nOut ); 1301 memcpy(&zOut[j], &zStr[i], nStr-i); 1302 j += nStr - i; 1303 assert( j<=nOut ); 1304 zOut[j] = 0; 1305 sqlite3_result_text(context, (char*)zOut, j, sqlite3_free); 1306 } 1307 1308 /* 1309 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions. 1310 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both. 1311 */ 1312 static void trimFunc( 1313 sqlite3_context *context, 1314 int argc, 1315 sqlite3_value **argv 1316 ){ 1317 const unsigned char *zIn; /* Input string */ 1318 const unsigned char *zCharSet; /* Set of characters to trim */ 1319 unsigned int nIn; /* Number of bytes in input */ 1320 int flags; /* 1: trimleft 2: trimright 3: trim */ 1321 int i; /* Loop counter */ 1322 unsigned int *aLen = 0; /* Length of each character in zCharSet */ 1323 unsigned char **azChar = 0; /* Individual characters in zCharSet */ 1324 int nChar; /* Number of characters in zCharSet */ 1325 1326 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ 1327 return; 1328 } 1329 zIn = sqlite3_value_text(argv[0]); 1330 if( zIn==0 ) return; 1331 nIn = (unsigned)sqlite3_value_bytes(argv[0]); 1332 assert( zIn==sqlite3_value_text(argv[0]) ); 1333 if( argc==1 ){ 1334 static const unsigned lenOne[] = { 1 }; 1335 static unsigned char * const azOne[] = { (u8*)" " }; 1336 nChar = 1; 1337 aLen = (unsigned*)lenOne; 1338 azChar = (unsigned char **)azOne; 1339 zCharSet = 0; 1340 }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){ 1341 return; 1342 }else{ 1343 const unsigned char *z; 1344 for(z=zCharSet, nChar=0; *z; nChar++){ 1345 SQLITE_SKIP_UTF8(z); 1346 } 1347 if( nChar>0 ){ 1348 azChar = contextMalloc(context, 1349 ((i64)nChar)*(sizeof(char*)+sizeof(unsigned))); 1350 if( azChar==0 ){ 1351 return; 1352 } 1353 aLen = (unsigned*)&azChar[nChar]; 1354 for(z=zCharSet, nChar=0; *z; nChar++){ 1355 azChar[nChar] = (unsigned char *)z; 1356 SQLITE_SKIP_UTF8(z); 1357 aLen[nChar] = (unsigned)(z - azChar[nChar]); 1358 } 1359 } 1360 } 1361 if( nChar>0 ){ 1362 flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context)); 1363 if( flags & 1 ){ 1364 while( nIn>0 ){ 1365 unsigned int len = 0; 1366 for(i=0; i<nChar; i++){ 1367 len = aLen[i]; 1368 if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break; 1369 } 1370 if( i>=nChar ) break; 1371 zIn += len; 1372 nIn -= len; 1373 } 1374 } 1375 if( flags & 2 ){ 1376 while( nIn>0 ){ 1377 unsigned int len = 0; 1378 for(i=0; i<nChar; i++){ 1379 len = aLen[i]; 1380 if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break; 1381 } 1382 if( i>=nChar ) break; 1383 nIn -= len; 1384 } 1385 } 1386 if( zCharSet ){ 1387 sqlite3_free(azChar); 1388 } 1389 } 1390 sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT); 1391 } 1392 1393 1394 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 1395 /* 1396 ** The "unknown" function is automatically substituted in place of 1397 ** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN 1398 ** when the SQLITE_ENABLE_UNKNOWN_FUNCTION compile-time option is used. 1399 ** When the "sqlite3" command-line shell is built using this functionality, 1400 ** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries 1401 ** involving application-defined functions to be examined in a generic 1402 ** sqlite3 shell. 1403 */ 1404 static void unknownFunc( 1405 sqlite3_context *context, 1406 int argc, 1407 sqlite3_value **argv 1408 ){ 1409 /* no-op */ 1410 } 1411 #endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/ 1412 1413 1414 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It 1415 ** is only available if the SQLITE_SOUNDEX compile-time option is used 1416 ** when SQLite is built. 1417 */ 1418 #ifdef SQLITE_SOUNDEX 1419 /* 1420 ** Compute the soundex encoding of a word. 1421 ** 1422 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the 1423 ** soundex encoding of the string X. 1424 */ 1425 static void soundexFunc( 1426 sqlite3_context *context, 1427 int argc, 1428 sqlite3_value **argv 1429 ){ 1430 char zResult[8]; 1431 const u8 *zIn; 1432 int i, j; 1433 static const unsigned char iCode[] = { 1434 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1435 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1436 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1437 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1438 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, 1439 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1440 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, 1441 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1442 }; 1443 assert( argc==1 ); 1444 zIn = (u8*)sqlite3_value_text(argv[0]); 1445 if( zIn==0 ) zIn = (u8*)""; 1446 for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){} 1447 if( zIn[i] ){ 1448 u8 prevcode = iCode[zIn[i]&0x7f]; 1449 zResult[0] = sqlite3Toupper(zIn[i]); 1450 for(j=1; j<4 && zIn[i]; i++){ 1451 int code = iCode[zIn[i]&0x7f]; 1452 if( code>0 ){ 1453 if( code!=prevcode ){ 1454 prevcode = code; 1455 zResult[j++] = code + '0'; 1456 } 1457 }else{ 1458 prevcode = 0; 1459 } 1460 } 1461 while( j<4 ){ 1462 zResult[j++] = '0'; 1463 } 1464 zResult[j] = 0; 1465 sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT); 1466 }else{ 1467 /* IMP: R-64894-50321 The string "?000" is returned if the argument 1468 ** is NULL or contains no ASCII alphabetic characters. */ 1469 sqlite3_result_text(context, "?000", 4, SQLITE_STATIC); 1470 } 1471 } 1472 #endif /* SQLITE_SOUNDEX */ 1473 1474 #ifndef SQLITE_OMIT_LOAD_EXTENSION 1475 /* 1476 ** A function that loads a shared-library extension then returns NULL. 1477 */ 1478 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){ 1479 const char *zFile = (const char *)sqlite3_value_text(argv[0]); 1480 const char *zProc; 1481 sqlite3 *db = sqlite3_context_db_handle(context); 1482 char *zErrMsg = 0; 1483 1484 /* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc 1485 ** flag is set. See the sqlite3_enable_load_extension() API. 1486 */ 1487 if( (db->flags & SQLITE_LoadExtFunc)==0 ){ 1488 sqlite3_result_error(context, "not authorized", -1); 1489 return; 1490 } 1491 1492 if( argc==2 ){ 1493 zProc = (const char *)sqlite3_value_text(argv[1]); 1494 }else{ 1495 zProc = 0; 1496 } 1497 if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){ 1498 sqlite3_result_error(context, zErrMsg, -1); 1499 sqlite3_free(zErrMsg); 1500 } 1501 } 1502 #endif 1503 1504 1505 /* 1506 ** An instance of the following structure holds the context of a 1507 ** sum() or avg() aggregate computation. 1508 */ 1509 typedef struct SumCtx SumCtx; 1510 struct SumCtx { 1511 double rSum; /* Floating point sum */ 1512 i64 iSum; /* Integer sum */ 1513 i64 cnt; /* Number of elements summed */ 1514 u8 overflow; /* True if integer overflow seen */ 1515 u8 approx; /* True if non-integer value was input to the sum */ 1516 }; 1517 1518 /* 1519 ** Routines used to compute the sum, average, and total. 1520 ** 1521 ** The SUM() function follows the (broken) SQL standard which means 1522 ** that it returns NULL if it sums over no inputs. TOTAL returns 1523 ** 0.0 in that case. In addition, TOTAL always returns a float where 1524 ** SUM might return an integer if it never encounters a floating point 1525 ** value. TOTAL never fails, but SUM might through an exception if 1526 ** it overflows an integer. 1527 */ 1528 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ 1529 SumCtx *p; 1530 int type; 1531 assert( argc==1 ); 1532 UNUSED_PARAMETER(argc); 1533 p = sqlite3_aggregate_context(context, sizeof(*p)); 1534 type = sqlite3_value_numeric_type(argv[0]); 1535 if( p && type!=SQLITE_NULL ){ 1536 p->cnt++; 1537 if( type==SQLITE_INTEGER ){ 1538 i64 v = sqlite3_value_int64(argv[0]); 1539 p->rSum += v; 1540 if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){ 1541 p->approx = p->overflow = 1; 1542 } 1543 }else{ 1544 p->rSum += sqlite3_value_double(argv[0]); 1545 p->approx = 1; 1546 } 1547 } 1548 } 1549 #ifndef SQLITE_OMIT_WINDOWFUNC 1550 static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){ 1551 SumCtx *p; 1552 int type; 1553 assert( argc==1 ); 1554 UNUSED_PARAMETER(argc); 1555 p = sqlite3_aggregate_context(context, sizeof(*p)); 1556 type = sqlite3_value_numeric_type(argv[0]); 1557 /* p is always non-NULL because sumStep() will have been called first 1558 ** to initialize it */ 1559 if( ALWAYS(p) && type!=SQLITE_NULL ){ 1560 assert( p->cnt>0 ); 1561 p->cnt--; 1562 assert( type==SQLITE_INTEGER || p->approx ); 1563 if( type==SQLITE_INTEGER && p->approx==0 ){ 1564 i64 v = sqlite3_value_int64(argv[0]); 1565 p->rSum -= v; 1566 p->iSum -= v; 1567 }else{ 1568 p->rSum -= sqlite3_value_double(argv[0]); 1569 } 1570 } 1571 } 1572 #else 1573 # define sumInverse 0 1574 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1575 static void sumFinalize(sqlite3_context *context){ 1576 SumCtx *p; 1577 p = sqlite3_aggregate_context(context, 0); 1578 if( p && p->cnt>0 ){ 1579 if( p->overflow ){ 1580 sqlite3_result_error(context,"integer overflow",-1); 1581 }else if( p->approx ){ 1582 sqlite3_result_double(context, p->rSum); 1583 }else{ 1584 sqlite3_result_int64(context, p->iSum); 1585 } 1586 } 1587 } 1588 static void avgFinalize(sqlite3_context *context){ 1589 SumCtx *p; 1590 p = sqlite3_aggregate_context(context, 0); 1591 if( p && p->cnt>0 ){ 1592 sqlite3_result_double(context, p->rSum/(double)p->cnt); 1593 } 1594 } 1595 static void totalFinalize(sqlite3_context *context){ 1596 SumCtx *p; 1597 p = sqlite3_aggregate_context(context, 0); 1598 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1599 sqlite3_result_double(context, p ? p->rSum : (double)0); 1600 } 1601 1602 /* 1603 ** The following structure keeps track of state information for the 1604 ** count() aggregate function. 1605 */ 1606 typedef struct CountCtx CountCtx; 1607 struct CountCtx { 1608 i64 n; 1609 #ifdef SQLITE_DEBUG 1610 int bInverse; /* True if xInverse() ever called */ 1611 #endif 1612 }; 1613 1614 /* 1615 ** Routines to implement the count() aggregate function. 1616 */ 1617 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ 1618 CountCtx *p; 1619 p = sqlite3_aggregate_context(context, sizeof(*p)); 1620 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ 1621 p->n++; 1622 } 1623 1624 #ifndef SQLITE_OMIT_DEPRECATED 1625 /* The sqlite3_aggregate_count() function is deprecated. But just to make 1626 ** sure it still operates correctly, verify that its count agrees with our 1627 ** internal count when using count(*) and when the total count can be 1628 ** expressed as a 32-bit integer. */ 1629 assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse 1630 || p->n==sqlite3_aggregate_count(context) ); 1631 #endif 1632 } 1633 static void countFinalize(sqlite3_context *context){ 1634 CountCtx *p; 1635 p = sqlite3_aggregate_context(context, 0); 1636 sqlite3_result_int64(context, p ? p->n : 0); 1637 } 1638 #ifndef SQLITE_OMIT_WINDOWFUNC 1639 static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){ 1640 CountCtx *p; 1641 p = sqlite3_aggregate_context(ctx, sizeof(*p)); 1642 /* p is always non-NULL since countStep() will have been called first */ 1643 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){ 1644 p->n--; 1645 #ifdef SQLITE_DEBUG 1646 p->bInverse = 1; 1647 #endif 1648 } 1649 } 1650 #else 1651 # define countInverse 0 1652 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1653 1654 /* 1655 ** Routines to implement min() and max() aggregate functions. 1656 */ 1657 static void minmaxStep( 1658 sqlite3_context *context, 1659 int NotUsed, 1660 sqlite3_value **argv 1661 ){ 1662 Mem *pArg = (Mem *)argv[0]; 1663 Mem *pBest; 1664 UNUSED_PARAMETER(NotUsed); 1665 1666 pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); 1667 if( !pBest ) return; 1668 1669 if( sqlite3_value_type(pArg)==SQLITE_NULL ){ 1670 if( pBest->flags ) sqlite3SkipAccumulatorLoad(context); 1671 }else if( pBest->flags ){ 1672 int max; 1673 int cmp; 1674 CollSeq *pColl = sqlite3GetFuncCollSeq(context); 1675 /* This step function is used for both the min() and max() aggregates, 1676 ** the only difference between the two being that the sense of the 1677 ** comparison is inverted. For the max() aggregate, the 1678 ** sqlite3_user_data() function returns (void *)-1. For min() it 1679 ** returns (void *)db, where db is the sqlite3* database pointer. 1680 ** Therefore the next statement sets variable 'max' to 1 for the max() 1681 ** aggregate, or 0 for min(). 1682 */ 1683 max = sqlite3_user_data(context)!=0; 1684 cmp = sqlite3MemCompare(pBest, pArg, pColl); 1685 if( (max && cmp<0) || (!max && cmp>0) ){ 1686 sqlite3VdbeMemCopy(pBest, pArg); 1687 }else{ 1688 sqlite3SkipAccumulatorLoad(context); 1689 } 1690 }else{ 1691 pBest->db = sqlite3_context_db_handle(context); 1692 sqlite3VdbeMemCopy(pBest, pArg); 1693 } 1694 } 1695 static void minMaxValueFinalize(sqlite3_context *context, int bValue){ 1696 sqlite3_value *pRes; 1697 pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); 1698 if( pRes ){ 1699 if( pRes->flags ){ 1700 sqlite3_result_value(context, pRes); 1701 } 1702 if( bValue==0 ) sqlite3VdbeMemRelease(pRes); 1703 } 1704 } 1705 #ifndef SQLITE_OMIT_WINDOWFUNC 1706 static void minMaxValue(sqlite3_context *context){ 1707 minMaxValueFinalize(context, 1); 1708 } 1709 #else 1710 # define minMaxValue 0 1711 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1712 static void minMaxFinalize(sqlite3_context *context){ 1713 minMaxValueFinalize(context, 0); 1714 } 1715 1716 /* 1717 ** group_concat(EXPR, ?SEPARATOR?) 1718 ** 1719 ** The SEPARATOR goes before the EXPR string. This is tragic. The 1720 ** groupConcatInverse() implementation would have been easier if the 1721 ** SEPARATOR were appended after EXPR. And the order is undocumented, 1722 ** so we could change it, in theory. But the old behavior has been 1723 ** around for so long that we dare not, for fear of breaking something. 1724 */ 1725 typedef struct { 1726 StrAccum str; /* The accumulated concatenation */ 1727 #ifndef SQLITE_OMIT_WINDOWFUNC 1728 int nAccum; /* Number of strings presently concatenated */ 1729 int nFirstSepLength; /* Used to detect separator length change */ 1730 /* If pnSepLengths!=0, refs an array of inter-string separator lengths, 1731 ** stored as actually incorporated into presently accumulated result. 1732 ** (Hence, its slots in use number nAccum-1 between method calls.) 1733 ** If pnSepLengths==0, nFirstSepLength is the length used throughout. 1734 */ 1735 int *pnSepLengths; 1736 #endif 1737 } GroupConcatCtx; 1738 1739 static void groupConcatStep( 1740 sqlite3_context *context, 1741 int argc, 1742 sqlite3_value **argv 1743 ){ 1744 const char *zVal; 1745 GroupConcatCtx *pGCC; 1746 const char *zSep; 1747 int nVal, nSep; 1748 assert( argc==1 || argc==2 ); 1749 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 1750 pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC)); 1751 if( pGCC ){ 1752 sqlite3 *db = sqlite3_context_db_handle(context); 1753 int firstTerm = pGCC->str.mxAlloc==0; 1754 pGCC->str.mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH]; 1755 if( argc==1 ){ 1756 if( !firstTerm ){ 1757 sqlite3_str_appendchar(&pGCC->str, 1, ','); 1758 } 1759 #ifndef SQLITE_OMIT_WINDOWFUNC 1760 else{ 1761 pGCC->nFirstSepLength = 1; 1762 } 1763 #endif 1764 }else if( !firstTerm ){ 1765 zSep = (char*)sqlite3_value_text(argv[1]); 1766 nSep = sqlite3_value_bytes(argv[1]); 1767 if( zSep ){ 1768 sqlite3_str_append(&pGCC->str, zSep, nSep); 1769 } 1770 #ifndef SQLITE_OMIT_WINDOWFUNC 1771 else{ 1772 nSep = 0; 1773 } 1774 if( nSep != pGCC->nFirstSepLength || pGCC->pnSepLengths != 0 ){ 1775 int *pnsl = pGCC->pnSepLengths; 1776 if( pnsl == 0 ){ 1777 /* First separator length variation seen, start tracking them. */ 1778 pnsl = (int*)sqlite3_malloc64((pGCC->nAccum+1) * sizeof(int)); 1779 if( pnsl!=0 ){ 1780 int i = 0, nA = pGCC->nAccum-1; 1781 while( i<nA ) pnsl[i++] = pGCC->nFirstSepLength; 1782 } 1783 }else{ 1784 pnsl = (int*)sqlite3_realloc64(pnsl, pGCC->nAccum * sizeof(int)); 1785 } 1786 if( pnsl!=0 ){ 1787 if( ALWAYS(pGCC->nAccum>0) ){ 1788 pnsl[pGCC->nAccum-1] = nSep; 1789 } 1790 pGCC->pnSepLengths = pnsl; 1791 }else{ 1792 sqlite3StrAccumSetError(&pGCC->str, SQLITE_NOMEM); 1793 } 1794 } 1795 #endif 1796 } 1797 #ifndef SQLITE_OMIT_WINDOWFUNC 1798 else{ 1799 pGCC->nFirstSepLength = sqlite3_value_bytes(argv[1]); 1800 } 1801 pGCC->nAccum += 1; 1802 #endif 1803 zVal = (char*)sqlite3_value_text(argv[0]); 1804 nVal = sqlite3_value_bytes(argv[0]); 1805 if( zVal ) sqlite3_str_append(&pGCC->str, zVal, nVal); 1806 } 1807 } 1808 1809 #ifndef SQLITE_OMIT_WINDOWFUNC 1810 static void groupConcatInverse( 1811 sqlite3_context *context, 1812 int argc, 1813 sqlite3_value **argv 1814 ){ 1815 GroupConcatCtx *pGCC; 1816 assert( argc==1 || argc==2 ); 1817 (void)argc; /* Suppress unused parameter warning */ 1818 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; 1819 pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC)); 1820 /* pGCC is always non-NULL since groupConcatStep() will have always 1821 ** run frist to initialize it */ 1822 if( ALWAYS(pGCC) ){ 1823 int nVS = sqlite3_value_bytes(argv[0]); 1824 pGCC->nAccum -= 1; 1825 if( pGCC->pnSepLengths!=0 ){ 1826 assert(pGCC->nAccum >= 0); 1827 if( pGCC->nAccum>0 ){ 1828 nVS += *pGCC->pnSepLengths; 1829 memmove(pGCC->pnSepLengths, pGCC->pnSepLengths+1, 1830 (pGCC->nAccum-1)*sizeof(int)); 1831 } 1832 }else{ 1833 /* If removing single accumulated string, harmlessly over-do. */ 1834 nVS += pGCC->nFirstSepLength; 1835 } 1836 if( nVS>=(int)pGCC->str.nChar ){ 1837 pGCC->str.nChar = 0; 1838 }else{ 1839 pGCC->str.nChar -= nVS; 1840 memmove(pGCC->str.zText, &pGCC->str.zText[nVS], pGCC->str.nChar); 1841 } 1842 if( pGCC->str.nChar==0 ){ 1843 pGCC->str.mxAlloc = 0; 1844 sqlite3_free(pGCC->pnSepLengths); 1845 pGCC->pnSepLengths = 0; 1846 } 1847 } 1848 } 1849 #else 1850 # define groupConcatInverse 0 1851 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1852 static void groupConcatFinalize(sqlite3_context *context){ 1853 GroupConcatCtx *pGCC 1854 = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0); 1855 if( pGCC ){ 1856 sqlite3ResultStrAccum(context, &pGCC->str); 1857 #ifndef SQLITE_OMIT_WINDOWFUNC 1858 sqlite3_free(pGCC->pnSepLengths); 1859 #endif 1860 } 1861 } 1862 #ifndef SQLITE_OMIT_WINDOWFUNC 1863 static void groupConcatValue(sqlite3_context *context){ 1864 GroupConcatCtx *pGCC 1865 = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0); 1866 if( pGCC ){ 1867 StrAccum *pAccum = &pGCC->str; 1868 if( pAccum->accError==SQLITE_TOOBIG ){ 1869 sqlite3_result_error_toobig(context); 1870 }else if( pAccum->accError==SQLITE_NOMEM ){ 1871 sqlite3_result_error_nomem(context); 1872 }else{ 1873 const char *zText = sqlite3_str_value(pAccum); 1874 sqlite3_result_text(context, zText, pAccum->nChar, SQLITE_TRANSIENT); 1875 } 1876 } 1877 } 1878 #else 1879 # define groupConcatValue 0 1880 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1881 1882 /* 1883 ** This routine does per-connection function registration. Most 1884 ** of the built-in functions above are part of the global function set. 1885 ** This routine only deals with those that are not global. 1886 */ 1887 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){ 1888 int rc = sqlite3_overload_function(db, "MATCH", 2); 1889 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); 1890 if( rc==SQLITE_NOMEM ){ 1891 sqlite3OomFault(db); 1892 } 1893 } 1894 1895 /* 1896 ** Re-register the built-in LIKE functions. The caseSensitive 1897 ** parameter determines whether or not the LIKE operator is case 1898 ** sensitive. 1899 */ 1900 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ 1901 struct compareInfo *pInfo; 1902 int flags; 1903 if( caseSensitive ){ 1904 pInfo = (struct compareInfo*)&likeInfoAlt; 1905 flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE; 1906 }else{ 1907 pInfo = (struct compareInfo*)&likeInfoNorm; 1908 flags = SQLITE_FUNC_LIKE; 1909 } 1910 sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0); 1911 sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0); 1912 sqlite3FindFunction(db, "like", 2, SQLITE_UTF8, 0)->funcFlags |= flags; 1913 sqlite3FindFunction(db, "like", 3, SQLITE_UTF8, 0)->funcFlags |= flags; 1914 } 1915 1916 /* 1917 ** pExpr points to an expression which implements a function. If 1918 ** it is appropriate to apply the LIKE optimization to that function 1919 ** then set aWc[0] through aWc[2] to the wildcard characters and the 1920 ** escape character and then return TRUE. If the function is not a 1921 ** LIKE-style function then return FALSE. 1922 ** 1923 ** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE 1924 ** operator if c is a string literal that is exactly one byte in length. 1925 ** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is 1926 ** no ESCAPE clause. 1927 ** 1928 ** *pIsNocase is set to true if uppercase and lowercase are equivalent for 1929 ** the function (default for LIKE). If the function makes the distinction 1930 ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to 1931 ** false. 1932 */ 1933 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ 1934 FuncDef *pDef; 1935 int nExpr; 1936 assert( pExpr!=0 ); 1937 assert( pExpr->op==TK_FUNCTION ); 1938 assert( ExprUseXList(pExpr) ); 1939 if( !pExpr->x.pList ){ 1940 return 0; 1941 } 1942 nExpr = pExpr->x.pList->nExpr; 1943 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1944 pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0); 1945 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 1946 if( pDef==0 ) return 0; 1947 #endif 1948 if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){ 1949 return 0; 1950 } 1951 1952 /* The memcpy() statement assumes that the wildcard characters are 1953 ** the first three statements in the compareInfo structure. The 1954 ** asserts() that follow verify that assumption 1955 */ 1956 memcpy(aWc, pDef->pUserData, 3); 1957 assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); 1958 assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); 1959 assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); 1960 1961 if( nExpr<3 ){ 1962 aWc[3] = 0; 1963 }else{ 1964 Expr *pEscape = pExpr->x.pList->a[2].pExpr; 1965 char *zEscape; 1966 if( pEscape->op!=TK_STRING ) return 0; 1967 assert( !ExprHasProperty(pEscape, EP_IntValue) ); 1968 zEscape = pEscape->u.zToken; 1969 if( zEscape[0]==0 || zEscape[1]!=0 ) return 0; 1970 if( zEscape[0]==aWc[0] ) return 0; 1971 if( zEscape[0]==aWc[1] ) return 0; 1972 aWc[3] = zEscape[0]; 1973 } 1974 1975 *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0; 1976 return 1; 1977 } 1978 1979 /* Mathematical Constants */ 1980 #ifndef M_PI 1981 # define M_PI 3.141592653589793238462643383279502884 1982 #endif 1983 #ifndef M_LN10 1984 # define M_LN10 2.302585092994045684017991454684364208 1985 #endif 1986 #ifndef M_LN2 1987 # define M_LN2 0.693147180559945309417232121458176568 1988 #endif 1989 1990 1991 /* Extra math functions that require linking with -lm 1992 */ 1993 #ifdef SQLITE_ENABLE_MATH_FUNCTIONS 1994 /* 1995 ** Implementation SQL functions: 1996 ** 1997 ** ceil(X) 1998 ** ceiling(X) 1999 ** floor(X) 2000 ** 2001 ** The sqlite3_user_data() pointer is a pointer to the libm implementation 2002 ** of the underlying C function. 2003 */ 2004 static void ceilingFunc( 2005 sqlite3_context *context, 2006 int argc, 2007 sqlite3_value **argv 2008 ){ 2009 assert( argc==1 ); 2010 switch( sqlite3_value_numeric_type(argv[0]) ){ 2011 case SQLITE_INTEGER: { 2012 sqlite3_result_int64(context, sqlite3_value_int64(argv[0])); 2013 break; 2014 } 2015 case SQLITE_FLOAT: { 2016 double (*x)(double) = (double(*)(double))sqlite3_user_data(context); 2017 sqlite3_result_double(context, x(sqlite3_value_double(argv[0]))); 2018 break; 2019 } 2020 default: { 2021 break; 2022 } 2023 } 2024 } 2025 2026 /* 2027 ** On some systems, ceil() and floor() are intrinsic function. You are 2028 ** unable to take a pointer to these functions. Hence, we here wrap them 2029 ** in our own actual functions. 2030 */ 2031 static double xCeil(double x){ return ceil(x); } 2032 static double xFloor(double x){ return floor(x); } 2033 2034 /* 2035 ** Implementation of SQL functions: 2036 ** 2037 ** ln(X) - natural logarithm 2038 ** log(X) - log X base 10 2039 ** log10(X) - log X base 10 2040 ** log(B,X) - log X base B 2041 */ 2042 static void logFunc( 2043 sqlite3_context *context, 2044 int argc, 2045 sqlite3_value **argv 2046 ){ 2047 double x, b, ans; 2048 assert( argc==1 || argc==2 ); 2049 switch( sqlite3_value_numeric_type(argv[0]) ){ 2050 case SQLITE_INTEGER: 2051 case SQLITE_FLOAT: 2052 x = sqlite3_value_double(argv[0]); 2053 if( x<=0.0 ) return; 2054 break; 2055 default: 2056 return; 2057 } 2058 if( argc==2 ){ 2059 switch( sqlite3_value_numeric_type(argv[0]) ){ 2060 case SQLITE_INTEGER: 2061 case SQLITE_FLOAT: 2062 b = log(x); 2063 if( b<=0.0 ) return; 2064 x = sqlite3_value_double(argv[1]); 2065 if( x<=0.0 ) return; 2066 break; 2067 default: 2068 return; 2069 } 2070 ans = log(x)/b; 2071 }else{ 2072 ans = log(x); 2073 switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context)) ){ 2074 case 1: 2075 /* Convert from natural logarithm to log base 10 */ 2076 ans *= 1.0/M_LN10; 2077 break; 2078 case 2: 2079 /* Convert from natural logarithm to log base 2 */ 2080 ans *= 1.0/M_LN2; 2081 break; 2082 default: 2083 break; 2084 } 2085 } 2086 sqlite3_result_double(context, ans); 2087 } 2088 2089 /* 2090 ** Functions to converts degrees to radians and radians to degrees. 2091 */ 2092 static double degToRad(double x){ return x*(M_PI/180.0); } 2093 static double radToDeg(double x){ return x*(180.0/M_PI); } 2094 2095 /* 2096 ** Implementation of 1-argument SQL math functions: 2097 ** 2098 ** exp(X) - Compute e to the X-th power 2099 */ 2100 static void math1Func( 2101 sqlite3_context *context, 2102 int argc, 2103 sqlite3_value **argv 2104 ){ 2105 int type0; 2106 double v0, ans; 2107 double (*x)(double); 2108 assert( argc==1 ); 2109 type0 = sqlite3_value_numeric_type(argv[0]); 2110 if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; 2111 v0 = sqlite3_value_double(argv[0]); 2112 x = (double(*)(double))sqlite3_user_data(context); 2113 ans = x(v0); 2114 sqlite3_result_double(context, ans); 2115 } 2116 2117 /* 2118 ** Implementation of 2-argument SQL math functions: 2119 ** 2120 ** power(X,Y) - Compute X to the Y-th power 2121 */ 2122 static void math2Func( 2123 sqlite3_context *context, 2124 int argc, 2125 sqlite3_value **argv 2126 ){ 2127 int type0, type1; 2128 double v0, v1, ans; 2129 double (*x)(double,double); 2130 assert( argc==2 ); 2131 type0 = sqlite3_value_numeric_type(argv[0]); 2132 if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; 2133 type1 = sqlite3_value_numeric_type(argv[1]); 2134 if( type1!=SQLITE_INTEGER && type1!=SQLITE_FLOAT ) return; 2135 v0 = sqlite3_value_double(argv[0]); 2136 v1 = sqlite3_value_double(argv[1]); 2137 x = (double(*)(double,double))sqlite3_user_data(context); 2138 ans = x(v0, v1); 2139 sqlite3_result_double(context, ans); 2140 } 2141 2142 /* 2143 ** Implementation of 0-argument pi() function. 2144 */ 2145 static void piFunc( 2146 sqlite3_context *context, 2147 int argc, 2148 sqlite3_value **argv 2149 ){ 2150 assert( argc==0 ); 2151 sqlite3_result_double(context, M_PI); 2152 } 2153 2154 #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */ 2155 2156 /* 2157 ** Implementation of sign(X) function. 2158 */ 2159 static void signFunc( 2160 sqlite3_context *context, 2161 int argc, 2162 sqlite3_value **argv 2163 ){ 2164 int type0; 2165 double x; 2166 UNUSED_PARAMETER(argc); 2167 assert( argc==1 ); 2168 type0 = sqlite3_value_numeric_type(argv[0]); 2169 if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; 2170 x = sqlite3_value_double(argv[0]); 2171 sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0); 2172 } 2173 2174 /* 2175 ** All of the FuncDef structures in the aBuiltinFunc[] array above 2176 ** to the global function hash table. This occurs at start-time (as 2177 ** a consequence of calling sqlite3_initialize()). 2178 ** 2179 ** After this routine runs 2180 */ 2181 void sqlite3RegisterBuiltinFunctions(void){ 2182 /* 2183 ** The following array holds FuncDef structures for all of the functions 2184 ** defined in this file. 2185 ** 2186 ** The array cannot be constant since changes are made to the 2187 ** FuncDef.pHash elements at start-time. The elements of this array 2188 ** are read-only after initialization is complete. 2189 ** 2190 ** For peak efficiency, put the most frequently used function last. 2191 */ 2192 static FuncDef aBuiltinFunc[] = { 2193 /***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/ 2194 #if !defined(SQLITE_UNTESTABLE) 2195 TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0), 2196 TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0), 2197 TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0), 2198 TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0), 2199 #endif /* !defined(SQLITE_UNTESTABLE) */ 2200 /***** Regular functions *****/ 2201 #ifdef SQLITE_SOUNDEX 2202 FUNCTION(soundex, 1, 0, 0, soundexFunc ), 2203 #endif 2204 #ifndef SQLITE_OMIT_LOAD_EXTENSION 2205 SFUNCTION(load_extension, 1, 0, 0, loadExt ), 2206 SFUNCTION(load_extension, 2, 0, 0, loadExt ), 2207 #endif 2208 #if SQLITE_USER_AUTHENTICATION 2209 FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ), 2210 #endif 2211 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 2212 DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), 2213 DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), 2214 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 2215 INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY), 2216 INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY), 2217 INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY), 2218 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2219 FUNCTION2(sqlite_offset, 1, 0, 0, noopFunc, SQLITE_FUNC_OFFSET| 2220 SQLITE_FUNC_TYPEOF), 2221 #endif 2222 FUNCTION(ltrim, 1, 1, 0, trimFunc ), 2223 FUNCTION(ltrim, 2, 1, 0, trimFunc ), 2224 FUNCTION(rtrim, 1, 2, 0, trimFunc ), 2225 FUNCTION(rtrim, 2, 2, 0, trimFunc ), 2226 FUNCTION(trim, 1, 3, 0, trimFunc ), 2227 FUNCTION(trim, 2, 3, 0, trimFunc ), 2228 FUNCTION(min, -1, 0, 1, minmaxFunc ), 2229 FUNCTION(min, 0, 0, 1, 0 ), 2230 WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0, 2231 SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ), 2232 FUNCTION(max, -1, 1, 1, minmaxFunc ), 2233 FUNCTION(max, 0, 1, 1, 0 ), 2234 WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0, 2235 SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ), 2236 FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF), 2237 FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH), 2238 FUNCTION(instr, 2, 0, 0, instrFunc ), 2239 FUNCTION(printf, -1, 0, 0, printfFunc ), 2240 FUNCTION(unicode, 1, 0, 0, unicodeFunc ), 2241 FUNCTION(char, -1, 0, 0, charFunc ), 2242 FUNCTION(abs, 1, 0, 0, absFunc ), 2243 #ifndef SQLITE_OMIT_FLOATING_POINT 2244 FUNCTION(round, 1, 0, 0, roundFunc ), 2245 FUNCTION(round, 2, 0, 0, roundFunc ), 2246 #endif 2247 FUNCTION(upper, 1, 0, 0, upperFunc ), 2248 FUNCTION(lower, 1, 0, 0, lowerFunc ), 2249 FUNCTION(hex, 1, 0, 0, hexFunc ), 2250 INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ), 2251 VFUNCTION(random, 0, 0, 0, randomFunc ), 2252 VFUNCTION(randomblob, 1, 0, 0, randomBlob ), 2253 FUNCTION(nullif, 2, 0, 1, nullifFunc ), 2254 DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ), 2255 DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), 2256 FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ), 2257 FUNCTION(quote, 1, 0, 0, quoteFunc ), 2258 VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), 2259 VFUNCTION(changes, 0, 0, 0, changes ), 2260 VFUNCTION(total_changes, 0, 0, 0, total_changes ), 2261 FUNCTION(replace, 3, 0, 0, replaceFunc ), 2262 FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), 2263 FUNCTION(substr, 2, 0, 0, substrFunc ), 2264 FUNCTION(substr, 3, 0, 0, substrFunc ), 2265 FUNCTION(substring, 2, 0, 0, substrFunc ), 2266 FUNCTION(substring, 3, 0, 0, substrFunc ), 2267 WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0), 2268 WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0), 2269 WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0), 2270 WAGGREGATE(count, 0,0,0, countStep, 2271 countFinalize, countFinalize, countInverse, 2272 SQLITE_FUNC_COUNT|SQLITE_FUNC_ANYORDER ), 2273 WAGGREGATE(count, 1,0,0, countStep, 2274 countFinalize, countFinalize, countInverse, SQLITE_FUNC_ANYORDER ), 2275 WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep, 2276 groupConcatFinalize, groupConcatValue, groupConcatInverse, 0), 2277 WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep, 2278 groupConcatFinalize, groupConcatValue, groupConcatInverse, 0), 2279 2280 LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), 2281 #ifdef SQLITE_CASE_SENSITIVE_LIKE 2282 LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), 2283 LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), 2284 #else 2285 LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE), 2286 LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE), 2287 #endif 2288 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 2289 FUNCTION(unknown, -1, 0, 0, unknownFunc ), 2290 #endif 2291 FUNCTION(coalesce, 1, 0, 0, 0 ), 2292 FUNCTION(coalesce, 0, 0, 0, 0 ), 2293 #ifdef SQLITE_ENABLE_MATH_FUNCTIONS 2294 MFUNCTION(ceil, 1, xCeil, ceilingFunc ), 2295 MFUNCTION(ceiling, 1, xCeil, ceilingFunc ), 2296 MFUNCTION(floor, 1, xFloor, ceilingFunc ), 2297 #if SQLITE_HAVE_C99_MATH_FUNCS 2298 MFUNCTION(trunc, 1, trunc, ceilingFunc ), 2299 #endif 2300 FUNCTION(ln, 1, 0, 0, logFunc ), 2301 FUNCTION(log, 1, 1, 0, logFunc ), 2302 FUNCTION(log10, 1, 1, 0, logFunc ), 2303 FUNCTION(log2, 1, 2, 0, logFunc ), 2304 FUNCTION(log, 2, 0, 0, logFunc ), 2305 MFUNCTION(exp, 1, exp, math1Func ), 2306 MFUNCTION(pow, 2, pow, math2Func ), 2307 MFUNCTION(power, 2, pow, math2Func ), 2308 MFUNCTION(mod, 2, fmod, math2Func ), 2309 MFUNCTION(acos, 1, acos, math1Func ), 2310 MFUNCTION(asin, 1, asin, math1Func ), 2311 MFUNCTION(atan, 1, atan, math1Func ), 2312 MFUNCTION(atan2, 2, atan2, math2Func ), 2313 MFUNCTION(cos, 1, cos, math1Func ), 2314 MFUNCTION(sin, 1, sin, math1Func ), 2315 MFUNCTION(tan, 1, tan, math1Func ), 2316 MFUNCTION(cosh, 1, cosh, math1Func ), 2317 MFUNCTION(sinh, 1, sinh, math1Func ), 2318 MFUNCTION(tanh, 1, tanh, math1Func ), 2319 #if SQLITE_HAVE_C99_MATH_FUNCS 2320 MFUNCTION(acosh, 1, acosh, math1Func ), 2321 MFUNCTION(asinh, 1, asinh, math1Func ), 2322 MFUNCTION(atanh, 1, atanh, math1Func ), 2323 #endif 2324 MFUNCTION(sqrt, 1, sqrt, math1Func ), 2325 MFUNCTION(radians, 1, degToRad, math1Func ), 2326 MFUNCTION(degrees, 1, radToDeg, math1Func ), 2327 FUNCTION(pi, 0, 0, 0, piFunc ), 2328 #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */ 2329 FUNCTION(sign, 1, 0, 0, signFunc ), 2330 INLINE_FUNC(coalesce, -1, INLINEFUNC_coalesce, 0 ), 2331 INLINE_FUNC(iif, 3, INLINEFUNC_iif, 0 ), 2332 }; 2333 #ifndef SQLITE_OMIT_ALTERTABLE 2334 sqlite3AlterFunctions(); 2335 #endif 2336 sqlite3WindowFunctions(); 2337 sqlite3RegisterDateTimeFunctions(); 2338 sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc)); 2339 2340 #if 0 /* Enable to print out how the built-in functions are hashed */ 2341 { 2342 int i; 2343 FuncDef *p; 2344 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){ 2345 printf("FUNC-HASH %02d:", i); 2346 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){ 2347 int n = sqlite3Strlen30(p->zName); 2348 int h = p->zName[0] + n; 2349 assert( p->funcFlags & SQLITE_FUNC_BUILTIN ); 2350 printf(" %s(%d)", p->zName, h); 2351 } 2352 printf("\n"); 2353 } 2354 } 2355 #endif 2356 } 2357