xref: /sqlite-3.40.0/src/func.c (revision 9edb5ceb)
1 /*
2 ** 2002 February 23
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C-language implementations for many of the SQL
13 ** functions of SQLite.  (Some function, and in particular the date and
14 ** time functions, are implemented separately.)
15 */
16 #include "sqliteInt.h"
17 #include <stdlib.h>
18 #include <assert.h>
19 #include "vdbeInt.h"
20 
21 /*
22 ** Return the collating function associated with a function.
23 */
24 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
25   VdbeOp *pOp;
26   assert( context->pVdbe!=0 );
27   pOp = &context->pVdbe->aOp[context->iOp-1];
28   assert( pOp->opcode==OP_CollSeq );
29   assert( pOp->p4type==P4_COLLSEQ );
30   return pOp->p4.pColl;
31 }
32 
33 /*
34 ** Indicate that the accumulator load should be skipped on this
35 ** iteration of the aggregate loop.
36 */
37 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
38   context->skipFlag = 1;
39 }
40 
41 /*
42 ** Implementation of the non-aggregate min() and max() functions
43 */
44 static void minmaxFunc(
45   sqlite3_context *context,
46   int argc,
47   sqlite3_value **argv
48 ){
49   int i;
50   int mask;    /* 0 for min() or 0xffffffff for max() */
51   int iBest;
52   CollSeq *pColl;
53 
54   assert( argc>1 );
55   mask = sqlite3_user_data(context)==0 ? 0 : -1;
56   pColl = sqlite3GetFuncCollSeq(context);
57   assert( pColl );
58   assert( mask==-1 || mask==0 );
59   iBest = 0;
60   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
61   for(i=1; i<argc; i++){
62     if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
63     if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
64       testcase( mask==0 );
65       iBest = i;
66     }
67   }
68   sqlite3_result_value(context, argv[iBest]);
69 }
70 
71 /*
72 ** Return the type of the argument.
73 */
74 static void typeofFunc(
75   sqlite3_context *context,
76   int NotUsed,
77   sqlite3_value **argv
78 ){
79   const char *z = 0;
80   UNUSED_PARAMETER(NotUsed);
81   switch( sqlite3_value_type(argv[0]) ){
82     case SQLITE_INTEGER: z = "integer"; break;
83     case SQLITE_TEXT:    z = "text";    break;
84     case SQLITE_FLOAT:   z = "real";    break;
85     case SQLITE_BLOB:    z = "blob";    break;
86     default:             z = "null";    break;
87   }
88   sqlite3_result_text(context, z, -1, SQLITE_STATIC);
89 }
90 
91 
92 /*
93 ** Implementation of the length() function
94 */
95 static void lengthFunc(
96   sqlite3_context *context,
97   int argc,
98   sqlite3_value **argv
99 ){
100   int len;
101 
102   assert( argc==1 );
103   UNUSED_PARAMETER(argc);
104   switch( sqlite3_value_type(argv[0]) ){
105     case SQLITE_BLOB:
106     case SQLITE_INTEGER:
107     case SQLITE_FLOAT: {
108       sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
109       break;
110     }
111     case SQLITE_TEXT: {
112       const unsigned char *z = sqlite3_value_text(argv[0]);
113       if( z==0 ) return;
114       len = 0;
115       while( *z ){
116         len++;
117         SQLITE_SKIP_UTF8(z);
118       }
119       sqlite3_result_int(context, len);
120       break;
121     }
122     default: {
123       sqlite3_result_null(context);
124       break;
125     }
126   }
127 }
128 
129 /*
130 ** Implementation of the abs() function.
131 **
132 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
133 ** the numeric argument X.
134 */
135 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
136   assert( argc==1 );
137   UNUSED_PARAMETER(argc);
138   switch( sqlite3_value_type(argv[0]) ){
139     case SQLITE_INTEGER: {
140       i64 iVal = sqlite3_value_int64(argv[0]);
141       if( iVal<0 ){
142         if( iVal==SMALLEST_INT64 ){
143           /* IMP: R-31676-45509 If X is the integer -9223372036854775808
144           ** then abs(X) throws an integer overflow error since there is no
145           ** equivalent positive 64-bit two complement value. */
146           sqlite3_result_error(context, "integer overflow", -1);
147           return;
148         }
149         iVal = -iVal;
150       }
151       sqlite3_result_int64(context, iVal);
152       break;
153     }
154     case SQLITE_NULL: {
155       /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
156       sqlite3_result_null(context);
157       break;
158     }
159     default: {
160       /* Because sqlite3_value_double() returns 0.0 if the argument is not
161       ** something that can be converted into a number, we have:
162       ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
163       ** that cannot be converted to a numeric value.
164       */
165       double rVal = sqlite3_value_double(argv[0]);
166       if( rVal<0 ) rVal = -rVal;
167       sqlite3_result_double(context, rVal);
168       break;
169     }
170   }
171 }
172 
173 /*
174 ** Implementation of the instr() function.
175 **
176 ** instr(haystack,needle) finds the first occurrence of needle
177 ** in haystack and returns the number of previous characters plus 1,
178 ** or 0 if needle does not occur within haystack.
179 **
180 ** If both haystack and needle are BLOBs, then the result is one more than
181 ** the number of bytes in haystack prior to the first occurrence of needle,
182 ** or 0 if needle never occurs in haystack.
183 */
184 static void instrFunc(
185   sqlite3_context *context,
186   int argc,
187   sqlite3_value **argv
188 ){
189   const unsigned char *zHaystack;
190   const unsigned char *zNeedle;
191   int nHaystack;
192   int nNeedle;
193   int typeHaystack, typeNeedle;
194   int N = 1;
195   int isText;
196 
197   UNUSED_PARAMETER(argc);
198   typeHaystack = sqlite3_value_type(argv[0]);
199   typeNeedle = sqlite3_value_type(argv[1]);
200   if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
201   nHaystack = sqlite3_value_bytes(argv[0]);
202   nNeedle = sqlite3_value_bytes(argv[1]);
203   if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
204     zHaystack = sqlite3_value_blob(argv[0]);
205     zNeedle = sqlite3_value_blob(argv[1]);
206     isText = 0;
207   }else{
208     zHaystack = sqlite3_value_text(argv[0]);
209     zNeedle = sqlite3_value_text(argv[1]);
210     isText = 1;
211   }
212   while( nNeedle<=nHaystack && memcmp(zHaystack, zNeedle, nNeedle)!=0 ){
213     N++;
214     do{
215       nHaystack--;
216       zHaystack++;
217     }while( isText && (zHaystack[0]&0xc0)==0x80 );
218   }
219   if( nNeedle>nHaystack ) N = 0;
220   sqlite3_result_int(context, N);
221 }
222 
223 /*
224 ** Implementation of the printf() function.
225 */
226 static void printfFunc(
227   sqlite3_context *context,
228   int argc,
229   sqlite3_value **argv
230 ){
231   PrintfArguments x;
232   StrAccum str;
233   const char *zFormat;
234   int n;
235   sqlite3 *db = sqlite3_context_db_handle(context);
236 
237   if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
238     x.nArg = argc-1;
239     x.nUsed = 0;
240     x.apArg = argv+1;
241     sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
242     sqlite3XPrintf(&str, SQLITE_PRINTF_SQLFUNC, zFormat, &x);
243     n = str.nChar;
244     sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
245                         SQLITE_DYNAMIC);
246   }
247 }
248 
249 /*
250 ** Implementation of the substr() function.
251 **
252 ** substr(x,p1,p2)  returns p2 characters of x[] beginning with p1.
253 ** p1 is 1-indexed.  So substr(x,1,1) returns the first character
254 ** of x.  If x is text, then we actually count UTF-8 characters.
255 ** If x is a blob, then we count bytes.
256 **
257 ** If p1 is negative, then we begin abs(p1) from the end of x[].
258 **
259 ** If p2 is negative, return the p2 characters preceding p1.
260 */
261 static void substrFunc(
262   sqlite3_context *context,
263   int argc,
264   sqlite3_value **argv
265 ){
266   const unsigned char *z;
267   const unsigned char *z2;
268   int len;
269   int p0type;
270   i64 p1, p2;
271   int negP2 = 0;
272 
273   assert( argc==3 || argc==2 );
274   if( sqlite3_value_type(argv[1])==SQLITE_NULL
275    || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
276   ){
277     return;
278   }
279   p0type = sqlite3_value_type(argv[0]);
280   p1 = sqlite3_value_int(argv[1]);
281   if( p0type==SQLITE_BLOB ){
282     len = sqlite3_value_bytes(argv[0]);
283     z = sqlite3_value_blob(argv[0]);
284     if( z==0 ) return;
285     assert( len==sqlite3_value_bytes(argv[0]) );
286   }else{
287     z = sqlite3_value_text(argv[0]);
288     if( z==0 ) return;
289     len = 0;
290     if( p1<0 ){
291       for(z2=z; *z2; len++){
292         SQLITE_SKIP_UTF8(z2);
293       }
294     }
295   }
296 #ifdef SQLITE_SUBSTR_COMPATIBILITY
297   /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
298   ** as substr(X,1,N) - it returns the first N characters of X.  This
299   ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
300   ** from 2009-02-02 for compatibility of applications that exploited the
301   ** old buggy behavior. */
302   if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
303 #endif
304   if( argc==3 ){
305     p2 = sqlite3_value_int(argv[2]);
306     if( p2<0 ){
307       p2 = -p2;
308       negP2 = 1;
309     }
310   }else{
311     p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
312   }
313   if( p1<0 ){
314     p1 += len;
315     if( p1<0 ){
316       p2 += p1;
317       if( p2<0 ) p2 = 0;
318       p1 = 0;
319     }
320   }else if( p1>0 ){
321     p1--;
322   }else if( p2>0 ){
323     p2--;
324   }
325   if( negP2 ){
326     p1 -= p2;
327     if( p1<0 ){
328       p2 += p1;
329       p1 = 0;
330     }
331   }
332   assert( p1>=0 && p2>=0 );
333   if( p0type!=SQLITE_BLOB ){
334     while( *z && p1 ){
335       SQLITE_SKIP_UTF8(z);
336       p1--;
337     }
338     for(z2=z; *z2 && p2; p2--){
339       SQLITE_SKIP_UTF8(z2);
340     }
341     sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
342                           SQLITE_UTF8);
343   }else{
344     if( p1+p2>len ){
345       p2 = len-p1;
346       if( p2<0 ) p2 = 0;
347     }
348     sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
349   }
350 }
351 
352 /*
353 ** Implementation of the round() function
354 */
355 #ifndef SQLITE_OMIT_FLOATING_POINT
356 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
357   int n = 0;
358   double r;
359   char *zBuf;
360   assert( argc==1 || argc==2 );
361   if( argc==2 ){
362     if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
363     n = sqlite3_value_int(argv[1]);
364     if( n>30 ) n = 30;
365     if( n<0 ) n = 0;
366   }
367   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
368   r = sqlite3_value_double(argv[0]);
369   /* If Y==0 and X will fit in a 64-bit int,
370   ** handle the rounding directly,
371   ** otherwise use printf.
372   */
373   if( n==0 && r>=0 && r<LARGEST_INT64-1 ){
374     r = (double)((sqlite_int64)(r+0.5));
375   }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){
376     r = -(double)((sqlite_int64)((-r)+0.5));
377   }else{
378     zBuf = sqlite3_mprintf("%.*f",n,r);
379     if( zBuf==0 ){
380       sqlite3_result_error_nomem(context);
381       return;
382     }
383     sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
384     sqlite3_free(zBuf);
385   }
386   sqlite3_result_double(context, r);
387 }
388 #endif
389 
390 /*
391 ** Allocate nByte bytes of space using sqlite3Malloc(). If the
392 ** allocation fails, call sqlite3_result_error_nomem() to notify
393 ** the database handle that malloc() has failed and return NULL.
394 ** If nByte is larger than the maximum string or blob length, then
395 ** raise an SQLITE_TOOBIG exception and return NULL.
396 */
397 static void *contextMalloc(sqlite3_context *context, i64 nByte){
398   char *z;
399   sqlite3 *db = sqlite3_context_db_handle(context);
400   assert( nByte>0 );
401   testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
402   testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
403   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
404     sqlite3_result_error_toobig(context);
405     z = 0;
406   }else{
407     z = sqlite3Malloc(nByte);
408     if( !z ){
409       sqlite3_result_error_nomem(context);
410     }
411   }
412   return z;
413 }
414 
415 /*
416 ** Implementation of the upper() and lower() SQL functions.
417 */
418 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
419   char *z1;
420   const char *z2;
421   int i, n;
422   UNUSED_PARAMETER(argc);
423   z2 = (char*)sqlite3_value_text(argv[0]);
424   n = sqlite3_value_bytes(argv[0]);
425   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
426   assert( z2==(char*)sqlite3_value_text(argv[0]) );
427   if( z2 ){
428     z1 = contextMalloc(context, ((i64)n)+1);
429     if( z1 ){
430       for(i=0; i<n; i++){
431         z1[i] = (char)sqlite3Toupper(z2[i]);
432       }
433       sqlite3_result_text(context, z1, n, sqlite3_free);
434     }
435   }
436 }
437 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
438   char *z1;
439   const char *z2;
440   int i, n;
441   UNUSED_PARAMETER(argc);
442   z2 = (char*)sqlite3_value_text(argv[0]);
443   n = sqlite3_value_bytes(argv[0]);
444   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
445   assert( z2==(char*)sqlite3_value_text(argv[0]) );
446   if( z2 ){
447     z1 = contextMalloc(context, ((i64)n)+1);
448     if( z1 ){
449       for(i=0; i<n; i++){
450         z1[i] = sqlite3Tolower(z2[i]);
451       }
452       sqlite3_result_text(context, z1, n, sqlite3_free);
453     }
454   }
455 }
456 
457 /*
458 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
459 ** as VDBE code so that unused argument values do not have to be computed.
460 ** However, we still need some kind of function implementation for this
461 ** routines in the function table.  The noopFunc macro provides this.
462 ** noopFunc will never be called so it doesn't matter what the implementation
463 ** is.  We might as well use the "version()" function as a substitute.
464 */
465 #define noopFunc versionFunc   /* Substitute function - never called */
466 
467 /*
468 ** Implementation of random().  Return a random integer.
469 */
470 static void randomFunc(
471   sqlite3_context *context,
472   int NotUsed,
473   sqlite3_value **NotUsed2
474 ){
475   sqlite_int64 r;
476   UNUSED_PARAMETER2(NotUsed, NotUsed2);
477   sqlite3_randomness(sizeof(r), &r);
478   if( r<0 ){
479     /* We need to prevent a random number of 0x8000000000000000
480     ** (or -9223372036854775808) since when you do abs() of that
481     ** number of you get the same value back again.  To do this
482     ** in a way that is testable, mask the sign bit off of negative
483     ** values, resulting in a positive value.  Then take the
484     ** 2s complement of that positive value.  The end result can
485     ** therefore be no less than -9223372036854775807.
486     */
487     r = -(r & LARGEST_INT64);
488   }
489   sqlite3_result_int64(context, r);
490 }
491 
492 /*
493 ** Implementation of randomblob(N).  Return a random blob
494 ** that is N bytes long.
495 */
496 static void randomBlob(
497   sqlite3_context *context,
498   int argc,
499   sqlite3_value **argv
500 ){
501   int n;
502   unsigned char *p;
503   assert( argc==1 );
504   UNUSED_PARAMETER(argc);
505   n = sqlite3_value_int(argv[0]);
506   if( n<1 ){
507     n = 1;
508   }
509   p = contextMalloc(context, n);
510   if( p ){
511     sqlite3_randomness(n, p);
512     sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
513   }
514 }
515 
516 /*
517 ** Implementation of the last_insert_rowid() SQL function.  The return
518 ** value is the same as the sqlite3_last_insert_rowid() API function.
519 */
520 static void last_insert_rowid(
521   sqlite3_context *context,
522   int NotUsed,
523   sqlite3_value **NotUsed2
524 ){
525   sqlite3 *db = sqlite3_context_db_handle(context);
526   UNUSED_PARAMETER2(NotUsed, NotUsed2);
527   /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
528   ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
529   ** function. */
530   sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
531 }
532 
533 /*
534 ** Implementation of the changes() SQL function.
535 **
536 ** IMP: R-62073-11209 The changes() SQL function is a wrapper
537 ** around the sqlite3_changes() C/C++ function and hence follows the same
538 ** rules for counting changes.
539 */
540 static void changes(
541   sqlite3_context *context,
542   int NotUsed,
543   sqlite3_value **NotUsed2
544 ){
545   sqlite3 *db = sqlite3_context_db_handle(context);
546   UNUSED_PARAMETER2(NotUsed, NotUsed2);
547   sqlite3_result_int(context, sqlite3_changes(db));
548 }
549 
550 /*
551 ** Implementation of the total_changes() SQL function.  The return value is
552 ** the same as the sqlite3_total_changes() API function.
553 */
554 static void total_changes(
555   sqlite3_context *context,
556   int NotUsed,
557   sqlite3_value **NotUsed2
558 ){
559   sqlite3 *db = sqlite3_context_db_handle(context);
560   UNUSED_PARAMETER2(NotUsed, NotUsed2);
561   /* IMP: R-52756-41993 This function is a wrapper around the
562   ** sqlite3_total_changes() C/C++ interface. */
563   sqlite3_result_int(context, sqlite3_total_changes(db));
564 }
565 
566 /*
567 ** A structure defining how to do GLOB-style comparisons.
568 */
569 struct compareInfo {
570   u8 matchAll;
571   u8 matchOne;
572   u8 matchSet;
573   u8 noCase;
574 };
575 
576 /*
577 ** For LIKE and GLOB matching on EBCDIC machines, assume that every
578 ** character is exactly one byte in size.  Also, provde the Utf8Read()
579 ** macro for fast reading of the next character in the common case where
580 ** the next character is ASCII.
581 */
582 #if defined(SQLITE_EBCDIC)
583 # define sqlite3Utf8Read(A)        (*((*A)++))
584 # define Utf8Read(A)               (*(A++))
585 #else
586 # define Utf8Read(A)               (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
587 #endif
588 
589 static const struct compareInfo globInfo = { '*', '?', '[', 0 };
590 /* The correct SQL-92 behavior is for the LIKE operator to ignore
591 ** case.  Thus  'a' LIKE 'A' would be true. */
592 static const struct compareInfo likeInfoNorm = { '%', '_',   0, 1 };
593 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
594 ** is case sensitive causing 'a' LIKE 'A' to be false */
595 static const struct compareInfo likeInfoAlt = { '%', '_',   0, 0 };
596 
597 /*
598 ** Compare two UTF-8 strings for equality where the first string can
599 ** potentially be a "glob" or "like" expression.  Return true (1) if they
600 ** are the same and false (0) if they are different.
601 **
602 ** Globbing rules:
603 **
604 **      '*'       Matches any sequence of zero or more characters.
605 **
606 **      '?'       Matches exactly one character.
607 **
608 **     [...]      Matches one character from the enclosed list of
609 **                characters.
610 **
611 **     [^...]     Matches one character not in the enclosed list.
612 **
613 ** With the [...] and [^...] matching, a ']' character can be included
614 ** in the list by making it the first character after '[' or '^'.  A
615 ** range of characters can be specified using '-'.  Example:
616 ** "[a-z]" matches any single lower-case letter.  To match a '-', make
617 ** it the last character in the list.
618 **
619 ** Like matching rules:
620 **
621 **      '%'       Matches any sequence of zero or more characters
622 **
623 ***     '_'       Matches any one character
624 **
625 **      Ec        Where E is the "esc" character and c is any other
626 **                character, including '%', '_', and esc, match exactly c.
627 **
628 ** The comments within this routine usually assume glob matching.
629 **
630 ** This routine is usually quick, but can be N**2 in the worst case.
631 */
632 static int patternCompare(
633   const u8 *zPattern,              /* The glob pattern */
634   const u8 *zString,               /* The string to compare against the glob */
635   const struct compareInfo *pInfo, /* Information about how to do the compare */
636   u32 esc                          /* The escape character */
637 ){
638   u32 c, c2;                       /* Next pattern and input string chars */
639   u32 matchOne = pInfo->matchOne;  /* "?" or "_" */
640   u32 matchAll = pInfo->matchAll;  /* "*" or "%" */
641   u32 matchOther;                  /* "[" or the escape character */
642   u8 noCase = pInfo->noCase;       /* True if uppercase==lowercase */
643   const u8 *zEscaped = 0;          /* One past the last escaped input char */
644 
645   /* The GLOB operator does not have an ESCAPE clause.  And LIKE does not
646   ** have the matchSet operator.  So we either have to look for one or
647   ** the other, never both.  Hence the single variable matchOther is used
648   ** to store the one we have to look for.
649   */
650   matchOther = esc ? esc : pInfo->matchSet;
651 
652   while( (c = Utf8Read(zPattern))!=0 ){
653     if( c==matchAll ){  /* Match "*" */
654       /* Skip over multiple "*" characters in the pattern.  If there
655       ** are also "?" characters, skip those as well, but consume a
656       ** single character of the input string for each "?" skipped */
657       while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){
658         if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
659           return 0;
660         }
661       }
662       if( c==0 ){
663         return 1;   /* "*" at the end of the pattern matches */
664       }else if( c==matchOther ){
665         if( esc ){
666           c = sqlite3Utf8Read(&zPattern);
667           if( c==0 ) return 0;
668         }else{
669           /* "[...]" immediately follows the "*".  We have to do a slow
670           ** recursive search in this case, but it is an unusual case. */
671           assert( matchOther<0x80 );  /* '[' is a single-byte character */
672           while( *zString
673                  && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
674             SQLITE_SKIP_UTF8(zString);
675           }
676           return *zString!=0;
677         }
678       }
679 
680       /* At this point variable c contains the first character of the
681       ** pattern string past the "*".  Search in the input string for the
682       ** first matching character and recursively contine the match from
683       ** that point.
684       **
685       ** For a case-insensitive search, set variable cx to be the same as
686       ** c but in the other case and search the input string for either
687       ** c or cx.
688       */
689       if( c<=0x80 ){
690         u32 cx;
691         if( noCase ){
692           cx = sqlite3Toupper(c);
693           c = sqlite3Tolower(c);
694         }else{
695           cx = c;
696         }
697         while( (c2 = *(zString++))!=0 ){
698           if( c2!=c && c2!=cx ) continue;
699           if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
700         }
701       }else{
702         while( (c2 = Utf8Read(zString))!=0 ){
703           if( c2!=c ) continue;
704           if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
705         }
706       }
707       return 0;
708     }
709     if( c==matchOther ){
710       if( esc ){
711         c = sqlite3Utf8Read(&zPattern);
712         if( c==0 ) return 0;
713         zEscaped = zPattern;
714       }else{
715         u32 prior_c = 0;
716         int seen = 0;
717         int invert = 0;
718         c = sqlite3Utf8Read(&zString);
719         if( c==0 ) return 0;
720         c2 = sqlite3Utf8Read(&zPattern);
721         if( c2=='^' ){
722           invert = 1;
723           c2 = sqlite3Utf8Read(&zPattern);
724         }
725         if( c2==']' ){
726           if( c==']' ) seen = 1;
727           c2 = sqlite3Utf8Read(&zPattern);
728         }
729         while( c2 && c2!=']' ){
730           if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
731             c2 = sqlite3Utf8Read(&zPattern);
732             if( c>=prior_c && c<=c2 ) seen = 1;
733             prior_c = 0;
734           }else{
735             if( c==c2 ){
736               seen = 1;
737             }
738             prior_c = c2;
739           }
740           c2 = sqlite3Utf8Read(&zPattern);
741         }
742         if( c2==0 || (seen ^ invert)==0 ){
743           return 0;
744         }
745         continue;
746       }
747     }
748     c2 = Utf8Read(zString);
749     if( c==c2 ) continue;
750     if( noCase && c<0x80 && c2<0x80 && sqlite3Tolower(c)==sqlite3Tolower(c2) ){
751       continue;
752     }
753     if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
754     return 0;
755   }
756   return *zString==0;
757 }
758 
759 /*
760 ** The sqlite3_strglob() interface.
761 */
762 int sqlite3_strglob(const char *zGlobPattern, const char *zString){
763   return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, 0)==0;
764 }
765 
766 /*
767 ** Count the number of times that the LIKE operator (or GLOB which is
768 ** just a variation of LIKE) gets called.  This is used for testing
769 ** only.
770 */
771 #ifdef SQLITE_TEST
772 int sqlite3_like_count = 0;
773 #endif
774 
775 
776 /*
777 ** Implementation of the like() SQL function.  This function implements
778 ** the build-in LIKE operator.  The first argument to the function is the
779 ** pattern and the second argument is the string.  So, the SQL statements:
780 **
781 **       A LIKE B
782 **
783 ** is implemented as like(B,A).
784 **
785 ** This same function (with a different compareInfo structure) computes
786 ** the GLOB operator.
787 */
788 static void likeFunc(
789   sqlite3_context *context,
790   int argc,
791   sqlite3_value **argv
792 ){
793   const unsigned char *zA, *zB;
794   u32 escape = 0;
795   int nPat;
796   sqlite3 *db = sqlite3_context_db_handle(context);
797 
798   zB = sqlite3_value_text(argv[0]);
799   zA = sqlite3_value_text(argv[1]);
800 
801   /* Limit the length of the LIKE or GLOB pattern to avoid problems
802   ** of deep recursion and N*N behavior in patternCompare().
803   */
804   nPat = sqlite3_value_bytes(argv[0]);
805   testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
806   testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
807   if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
808     sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
809     return;
810   }
811   assert( zB==sqlite3_value_text(argv[0]) );  /* Encoding did not change */
812 
813   if( argc==3 ){
814     /* The escape character string must consist of a single UTF-8 character.
815     ** Otherwise, return an error.
816     */
817     const unsigned char *zEsc = sqlite3_value_text(argv[2]);
818     if( zEsc==0 ) return;
819     if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
820       sqlite3_result_error(context,
821           "ESCAPE expression must be a single character", -1);
822       return;
823     }
824     escape = sqlite3Utf8Read(&zEsc);
825   }
826   if( zA && zB ){
827     struct compareInfo *pInfo = sqlite3_user_data(context);
828 #ifdef SQLITE_TEST
829     sqlite3_like_count++;
830 #endif
831 
832     sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
833   }
834 }
835 
836 /*
837 ** Implementation of the NULLIF(x,y) function.  The result is the first
838 ** argument if the arguments are different.  The result is NULL if the
839 ** arguments are equal to each other.
840 */
841 static void nullifFunc(
842   sqlite3_context *context,
843   int NotUsed,
844   sqlite3_value **argv
845 ){
846   CollSeq *pColl = sqlite3GetFuncCollSeq(context);
847   UNUSED_PARAMETER(NotUsed);
848   if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
849     sqlite3_result_value(context, argv[0]);
850   }
851 }
852 
853 /*
854 ** Implementation of the sqlite_version() function.  The result is the version
855 ** of the SQLite library that is running.
856 */
857 static void versionFunc(
858   sqlite3_context *context,
859   int NotUsed,
860   sqlite3_value **NotUsed2
861 ){
862   UNUSED_PARAMETER2(NotUsed, NotUsed2);
863   /* IMP: R-48699-48617 This function is an SQL wrapper around the
864   ** sqlite3_libversion() C-interface. */
865   sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
866 }
867 
868 /*
869 ** Implementation of the sqlite_source_id() function. The result is a string
870 ** that identifies the particular version of the source code used to build
871 ** SQLite.
872 */
873 static void sourceidFunc(
874   sqlite3_context *context,
875   int NotUsed,
876   sqlite3_value **NotUsed2
877 ){
878   UNUSED_PARAMETER2(NotUsed, NotUsed2);
879   /* IMP: R-24470-31136 This function is an SQL wrapper around the
880   ** sqlite3_sourceid() C interface. */
881   sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
882 }
883 
884 /*
885 ** Implementation of the sqlite_log() function.  This is a wrapper around
886 ** sqlite3_log().  The return value is NULL.  The function exists purely for
887 ** its side-effects.
888 */
889 static void errlogFunc(
890   sqlite3_context *context,
891   int argc,
892   sqlite3_value **argv
893 ){
894   UNUSED_PARAMETER(argc);
895   UNUSED_PARAMETER(context);
896   sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
897 }
898 
899 /*
900 ** Implementation of the sqlite_compileoption_used() function.
901 ** The result is an integer that identifies if the compiler option
902 ** was used to build SQLite.
903 */
904 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
905 static void compileoptionusedFunc(
906   sqlite3_context *context,
907   int argc,
908   sqlite3_value **argv
909 ){
910   const char *zOptName;
911   assert( argc==1 );
912   UNUSED_PARAMETER(argc);
913   /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
914   ** function is a wrapper around the sqlite3_compileoption_used() C/C++
915   ** function.
916   */
917   if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
918     sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
919   }
920 }
921 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
922 
923 /*
924 ** Implementation of the sqlite_compileoption_get() function.
925 ** The result is a string that identifies the compiler options
926 ** used to build SQLite.
927 */
928 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
929 static void compileoptiongetFunc(
930   sqlite3_context *context,
931   int argc,
932   sqlite3_value **argv
933 ){
934   int n;
935   assert( argc==1 );
936   UNUSED_PARAMETER(argc);
937   /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
938   ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
939   */
940   n = sqlite3_value_int(argv[0]);
941   sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
942 }
943 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
944 
945 /* Array for converting from half-bytes (nybbles) into ASCII hex
946 ** digits. */
947 static const char hexdigits[] = {
948   '0', '1', '2', '3', '4', '5', '6', '7',
949   '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
950 };
951 
952 /*
953 ** Implementation of the QUOTE() function.  This function takes a single
954 ** argument.  If the argument is numeric, the return value is the same as
955 ** the argument.  If the argument is NULL, the return value is the string
956 ** "NULL".  Otherwise, the argument is enclosed in single quotes with
957 ** single-quote escapes.
958 */
959 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
960   assert( argc==1 );
961   UNUSED_PARAMETER(argc);
962   switch( sqlite3_value_type(argv[0]) ){
963     case SQLITE_FLOAT: {
964       double r1, r2;
965       char zBuf[50];
966       r1 = sqlite3_value_double(argv[0]);
967       sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
968       sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8);
969       if( r1!=r2 ){
970         sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1);
971       }
972       sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
973       break;
974     }
975     case SQLITE_INTEGER: {
976       sqlite3_result_value(context, argv[0]);
977       break;
978     }
979     case SQLITE_BLOB: {
980       char *zText = 0;
981       char const *zBlob = sqlite3_value_blob(argv[0]);
982       int nBlob = sqlite3_value_bytes(argv[0]);
983       assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
984       zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
985       if( zText ){
986         int i;
987         for(i=0; i<nBlob; i++){
988           zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
989           zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
990         }
991         zText[(nBlob*2)+2] = '\'';
992         zText[(nBlob*2)+3] = '\0';
993         zText[0] = 'X';
994         zText[1] = '\'';
995         sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
996         sqlite3_free(zText);
997       }
998       break;
999     }
1000     case SQLITE_TEXT: {
1001       int i,j;
1002       u64 n;
1003       const unsigned char *zArg = sqlite3_value_text(argv[0]);
1004       char *z;
1005 
1006       if( zArg==0 ) return;
1007       for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
1008       z = contextMalloc(context, ((i64)i)+((i64)n)+3);
1009       if( z ){
1010         z[0] = '\'';
1011         for(i=0, j=1; zArg[i]; i++){
1012           z[j++] = zArg[i];
1013           if( zArg[i]=='\'' ){
1014             z[j++] = '\'';
1015           }
1016         }
1017         z[j++] = '\'';
1018         z[j] = 0;
1019         sqlite3_result_text(context, z, j, sqlite3_free);
1020       }
1021       break;
1022     }
1023     default: {
1024       assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
1025       sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
1026       break;
1027     }
1028   }
1029 }
1030 
1031 /*
1032 ** The unicode() function.  Return the integer unicode code-point value
1033 ** for the first character of the input string.
1034 */
1035 static void unicodeFunc(
1036   sqlite3_context *context,
1037   int argc,
1038   sqlite3_value **argv
1039 ){
1040   const unsigned char *z = sqlite3_value_text(argv[0]);
1041   (void)argc;
1042   if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
1043 }
1044 
1045 /*
1046 ** The char() function takes zero or more arguments, each of which is
1047 ** an integer.  It constructs a string where each character of the string
1048 ** is the unicode character for the corresponding integer argument.
1049 */
1050 static void charFunc(
1051   sqlite3_context *context,
1052   int argc,
1053   sqlite3_value **argv
1054 ){
1055   unsigned char *z, *zOut;
1056   int i;
1057   zOut = z = sqlite3_malloc64( argc*4+1 );
1058   if( z==0 ){
1059     sqlite3_result_error_nomem(context);
1060     return;
1061   }
1062   for(i=0; i<argc; i++){
1063     sqlite3_int64 x;
1064     unsigned c;
1065     x = sqlite3_value_int64(argv[i]);
1066     if( x<0 || x>0x10ffff ) x = 0xfffd;
1067     c = (unsigned)(x & 0x1fffff);
1068     if( c<0x00080 ){
1069       *zOut++ = (u8)(c&0xFF);
1070     }else if( c<0x00800 ){
1071       *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
1072       *zOut++ = 0x80 + (u8)(c & 0x3F);
1073     }else if( c<0x10000 ){
1074       *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
1075       *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1076       *zOut++ = 0x80 + (u8)(c & 0x3F);
1077     }else{
1078       *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
1079       *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
1080       *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1081       *zOut++ = 0x80 + (u8)(c & 0x3F);
1082     }                                                    \
1083   }
1084   sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
1085 }
1086 
1087 /*
1088 ** The hex() function.  Interpret the argument as a blob.  Return
1089 ** a hexadecimal rendering as text.
1090 */
1091 static void hexFunc(
1092   sqlite3_context *context,
1093   int argc,
1094   sqlite3_value **argv
1095 ){
1096   int i, n;
1097   const unsigned char *pBlob;
1098   char *zHex, *z;
1099   assert( argc==1 );
1100   UNUSED_PARAMETER(argc);
1101   pBlob = sqlite3_value_blob(argv[0]);
1102   n = sqlite3_value_bytes(argv[0]);
1103   assert( pBlob==sqlite3_value_blob(argv[0]) );  /* No encoding change */
1104   z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
1105   if( zHex ){
1106     for(i=0; i<n; i++, pBlob++){
1107       unsigned char c = *pBlob;
1108       *(z++) = hexdigits[(c>>4)&0xf];
1109       *(z++) = hexdigits[c&0xf];
1110     }
1111     *z = 0;
1112     sqlite3_result_text(context, zHex, n*2, sqlite3_free);
1113   }
1114 }
1115 
1116 /*
1117 ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
1118 */
1119 static void zeroblobFunc(
1120   sqlite3_context *context,
1121   int argc,
1122   sqlite3_value **argv
1123 ){
1124   i64 n;
1125   sqlite3 *db = sqlite3_context_db_handle(context);
1126   assert( argc==1 );
1127   UNUSED_PARAMETER(argc);
1128   n = sqlite3_value_int64(argv[0]);
1129   testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH] );
1130   testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
1131   if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1132     sqlite3_result_error_toobig(context);
1133   }else{
1134     sqlite3_result_zeroblob(context, (int)n); /* IMP: R-00293-64994 */
1135   }
1136 }
1137 
1138 /*
1139 ** The replace() function.  Three arguments are all strings: call
1140 ** them A, B, and C. The result is also a string which is derived
1141 ** from A by replacing every occurrence of B with C.  The match
1142 ** must be exact.  Collating sequences are not used.
1143 */
1144 static void replaceFunc(
1145   sqlite3_context *context,
1146   int argc,
1147   sqlite3_value **argv
1148 ){
1149   const unsigned char *zStr;        /* The input string A */
1150   const unsigned char *zPattern;    /* The pattern string B */
1151   const unsigned char *zRep;        /* The replacement string C */
1152   unsigned char *zOut;              /* The output */
1153   int nStr;                /* Size of zStr */
1154   int nPattern;            /* Size of zPattern */
1155   int nRep;                /* Size of zRep */
1156   i64 nOut;                /* Maximum size of zOut */
1157   int loopLimit;           /* Last zStr[] that might match zPattern[] */
1158   int i, j;                /* Loop counters */
1159 
1160   assert( argc==3 );
1161   UNUSED_PARAMETER(argc);
1162   zStr = sqlite3_value_text(argv[0]);
1163   if( zStr==0 ) return;
1164   nStr = sqlite3_value_bytes(argv[0]);
1165   assert( zStr==sqlite3_value_text(argv[0]) );  /* No encoding change */
1166   zPattern = sqlite3_value_text(argv[1]);
1167   if( zPattern==0 ){
1168     assert( sqlite3_value_type(argv[1])==SQLITE_NULL
1169             || sqlite3_context_db_handle(context)->mallocFailed );
1170     return;
1171   }
1172   if( zPattern[0]==0 ){
1173     assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
1174     sqlite3_result_value(context, argv[0]);
1175     return;
1176   }
1177   nPattern = sqlite3_value_bytes(argv[1]);
1178   assert( zPattern==sqlite3_value_text(argv[1]) );  /* No encoding change */
1179   zRep = sqlite3_value_text(argv[2]);
1180   if( zRep==0 ) return;
1181   nRep = sqlite3_value_bytes(argv[2]);
1182   assert( zRep==sqlite3_value_text(argv[2]) );
1183   nOut = nStr + 1;
1184   assert( nOut<SQLITE_MAX_LENGTH );
1185   zOut = contextMalloc(context, (i64)nOut);
1186   if( zOut==0 ){
1187     return;
1188   }
1189   loopLimit = nStr - nPattern;
1190   for(i=j=0; i<=loopLimit; i++){
1191     if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
1192       zOut[j++] = zStr[i];
1193     }else{
1194       u8 *zOld;
1195       sqlite3 *db = sqlite3_context_db_handle(context);
1196       nOut += nRep - nPattern;
1197       testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
1198       testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
1199       if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1200         sqlite3_result_error_toobig(context);
1201         sqlite3_free(zOut);
1202         return;
1203       }
1204       zOld = zOut;
1205       zOut = sqlite3_realloc64(zOut, (int)nOut);
1206       if( zOut==0 ){
1207         sqlite3_result_error_nomem(context);
1208         sqlite3_free(zOld);
1209         return;
1210       }
1211       memcpy(&zOut[j], zRep, nRep);
1212       j += nRep;
1213       i += nPattern-1;
1214     }
1215   }
1216   assert( j+nStr-i+1==nOut );
1217   memcpy(&zOut[j], &zStr[i], nStr-i);
1218   j += nStr - i;
1219   assert( j<=nOut );
1220   zOut[j] = 0;
1221   sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
1222 }
1223 
1224 /*
1225 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
1226 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
1227 */
1228 static void trimFunc(
1229   sqlite3_context *context,
1230   int argc,
1231   sqlite3_value **argv
1232 ){
1233   const unsigned char *zIn;         /* Input string */
1234   const unsigned char *zCharSet;    /* Set of characters to trim */
1235   int nIn;                          /* Number of bytes in input */
1236   int flags;                        /* 1: trimleft  2: trimright  3: trim */
1237   int i;                            /* Loop counter */
1238   unsigned char *aLen = 0;          /* Length of each character in zCharSet */
1239   unsigned char **azChar = 0;       /* Individual characters in zCharSet */
1240   int nChar;                        /* Number of characters in zCharSet */
1241 
1242   if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1243     return;
1244   }
1245   zIn = sqlite3_value_text(argv[0]);
1246   if( zIn==0 ) return;
1247   nIn = sqlite3_value_bytes(argv[0]);
1248   assert( zIn==sqlite3_value_text(argv[0]) );
1249   if( argc==1 ){
1250     static const unsigned char lenOne[] = { 1 };
1251     static unsigned char * const azOne[] = { (u8*)" " };
1252     nChar = 1;
1253     aLen = (u8*)lenOne;
1254     azChar = (unsigned char **)azOne;
1255     zCharSet = 0;
1256   }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
1257     return;
1258   }else{
1259     const unsigned char *z;
1260     for(z=zCharSet, nChar=0; *z; nChar++){
1261       SQLITE_SKIP_UTF8(z);
1262     }
1263     if( nChar>0 ){
1264       azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
1265       if( azChar==0 ){
1266         return;
1267       }
1268       aLen = (unsigned char*)&azChar[nChar];
1269       for(z=zCharSet, nChar=0; *z; nChar++){
1270         azChar[nChar] = (unsigned char *)z;
1271         SQLITE_SKIP_UTF8(z);
1272         aLen[nChar] = (u8)(z - azChar[nChar]);
1273       }
1274     }
1275   }
1276   if( nChar>0 ){
1277     flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
1278     if( flags & 1 ){
1279       while( nIn>0 ){
1280         int len = 0;
1281         for(i=0; i<nChar; i++){
1282           len = aLen[i];
1283           if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
1284         }
1285         if( i>=nChar ) break;
1286         zIn += len;
1287         nIn -= len;
1288       }
1289     }
1290     if( flags & 2 ){
1291       while( nIn>0 ){
1292         int len = 0;
1293         for(i=0; i<nChar; i++){
1294           len = aLen[i];
1295           if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
1296         }
1297         if( i>=nChar ) break;
1298         nIn -= len;
1299       }
1300     }
1301     if( zCharSet ){
1302       sqlite3_free(azChar);
1303     }
1304   }
1305   sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
1306 }
1307 
1308 
1309 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
1310 ** is only available if the SQLITE_SOUNDEX compile-time option is used
1311 ** when SQLite is built.
1312 */
1313 #ifdef SQLITE_SOUNDEX
1314 /*
1315 ** Compute the soundex encoding of a word.
1316 **
1317 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
1318 ** soundex encoding of the string X.
1319 */
1320 static void soundexFunc(
1321   sqlite3_context *context,
1322   int argc,
1323   sqlite3_value **argv
1324 ){
1325   char zResult[8];
1326   const u8 *zIn;
1327   int i, j;
1328   static const unsigned char iCode[] = {
1329     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1330     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1331     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1332     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1333     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1334     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1335     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1336     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1337   };
1338   assert( argc==1 );
1339   zIn = (u8*)sqlite3_value_text(argv[0]);
1340   if( zIn==0 ) zIn = (u8*)"";
1341   for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
1342   if( zIn[i] ){
1343     u8 prevcode = iCode[zIn[i]&0x7f];
1344     zResult[0] = sqlite3Toupper(zIn[i]);
1345     for(j=1; j<4 && zIn[i]; i++){
1346       int code = iCode[zIn[i]&0x7f];
1347       if( code>0 ){
1348         if( code!=prevcode ){
1349           prevcode = code;
1350           zResult[j++] = code + '0';
1351         }
1352       }else{
1353         prevcode = 0;
1354       }
1355     }
1356     while( j<4 ){
1357       zResult[j++] = '0';
1358     }
1359     zResult[j] = 0;
1360     sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
1361   }else{
1362     /* IMP: R-64894-50321 The string "?000" is returned if the argument
1363     ** is NULL or contains no ASCII alphabetic characters. */
1364     sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
1365   }
1366 }
1367 #endif /* SQLITE_SOUNDEX */
1368 
1369 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1370 /*
1371 ** A function that loads a shared-library extension then returns NULL.
1372 */
1373 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
1374   const char *zFile = (const char *)sqlite3_value_text(argv[0]);
1375   const char *zProc;
1376   sqlite3 *db = sqlite3_context_db_handle(context);
1377   char *zErrMsg = 0;
1378 
1379   if( argc==2 ){
1380     zProc = (const char *)sqlite3_value_text(argv[1]);
1381   }else{
1382     zProc = 0;
1383   }
1384   if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
1385     sqlite3_result_error(context, zErrMsg, -1);
1386     sqlite3_free(zErrMsg);
1387   }
1388 }
1389 #endif
1390 
1391 
1392 /*
1393 ** An instance of the following structure holds the context of a
1394 ** sum() or avg() aggregate computation.
1395 */
1396 typedef struct SumCtx SumCtx;
1397 struct SumCtx {
1398   double rSum;      /* Floating point sum */
1399   i64 iSum;         /* Integer sum */
1400   i64 cnt;          /* Number of elements summed */
1401   u8 overflow;      /* True if integer overflow seen */
1402   u8 approx;        /* True if non-integer value was input to the sum */
1403 };
1404 
1405 /*
1406 ** Routines used to compute the sum, average, and total.
1407 **
1408 ** The SUM() function follows the (broken) SQL standard which means
1409 ** that it returns NULL if it sums over no inputs.  TOTAL returns
1410 ** 0.0 in that case.  In addition, TOTAL always returns a float where
1411 ** SUM might return an integer if it never encounters a floating point
1412 ** value.  TOTAL never fails, but SUM might through an exception if
1413 ** it overflows an integer.
1414 */
1415 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1416   SumCtx *p;
1417   int type;
1418   assert( argc==1 );
1419   UNUSED_PARAMETER(argc);
1420   p = sqlite3_aggregate_context(context, sizeof(*p));
1421   type = sqlite3_value_numeric_type(argv[0]);
1422   if( p && type!=SQLITE_NULL ){
1423     p->cnt++;
1424     if( type==SQLITE_INTEGER ){
1425       i64 v = sqlite3_value_int64(argv[0]);
1426       p->rSum += v;
1427       if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
1428         p->overflow = 1;
1429       }
1430     }else{
1431       p->rSum += sqlite3_value_double(argv[0]);
1432       p->approx = 1;
1433     }
1434   }
1435 }
1436 static void sumFinalize(sqlite3_context *context){
1437   SumCtx *p;
1438   p = sqlite3_aggregate_context(context, 0);
1439   if( p && p->cnt>0 ){
1440     if( p->overflow ){
1441       sqlite3_result_error(context,"integer overflow",-1);
1442     }else if( p->approx ){
1443       sqlite3_result_double(context, p->rSum);
1444     }else{
1445       sqlite3_result_int64(context, p->iSum);
1446     }
1447   }
1448 }
1449 static void avgFinalize(sqlite3_context *context){
1450   SumCtx *p;
1451   p = sqlite3_aggregate_context(context, 0);
1452   if( p && p->cnt>0 ){
1453     sqlite3_result_double(context, p->rSum/(double)p->cnt);
1454   }
1455 }
1456 static void totalFinalize(sqlite3_context *context){
1457   SumCtx *p;
1458   p = sqlite3_aggregate_context(context, 0);
1459   /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1460   sqlite3_result_double(context, p ? p->rSum : (double)0);
1461 }
1462 
1463 /*
1464 ** The following structure keeps track of state information for the
1465 ** count() aggregate function.
1466 */
1467 typedef struct CountCtx CountCtx;
1468 struct CountCtx {
1469   i64 n;
1470 };
1471 
1472 /*
1473 ** Routines to implement the count() aggregate function.
1474 */
1475 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1476   CountCtx *p;
1477   p = sqlite3_aggregate_context(context, sizeof(*p));
1478   if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
1479     p->n++;
1480   }
1481 
1482 #ifndef SQLITE_OMIT_DEPRECATED
1483   /* The sqlite3_aggregate_count() function is deprecated.  But just to make
1484   ** sure it still operates correctly, verify that its count agrees with our
1485   ** internal count when using count(*) and when the total count can be
1486   ** expressed as a 32-bit integer. */
1487   assert( argc==1 || p==0 || p->n>0x7fffffff
1488           || p->n==sqlite3_aggregate_count(context) );
1489 #endif
1490 }
1491 static void countFinalize(sqlite3_context *context){
1492   CountCtx *p;
1493   p = sqlite3_aggregate_context(context, 0);
1494   sqlite3_result_int64(context, p ? p->n : 0);
1495 }
1496 
1497 /*
1498 ** Routines to implement min() and max() aggregate functions.
1499 */
1500 static void minmaxStep(
1501   sqlite3_context *context,
1502   int NotUsed,
1503   sqlite3_value **argv
1504 ){
1505   Mem *pArg  = (Mem *)argv[0];
1506   Mem *pBest;
1507   UNUSED_PARAMETER(NotUsed);
1508 
1509   pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
1510   if( !pBest ) return;
1511 
1512   if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1513     if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
1514   }else if( pBest->flags ){
1515     int max;
1516     int cmp;
1517     CollSeq *pColl = sqlite3GetFuncCollSeq(context);
1518     /* This step function is used for both the min() and max() aggregates,
1519     ** the only difference between the two being that the sense of the
1520     ** comparison is inverted. For the max() aggregate, the
1521     ** sqlite3_user_data() function returns (void *)-1. For min() it
1522     ** returns (void *)db, where db is the sqlite3* database pointer.
1523     ** Therefore the next statement sets variable 'max' to 1 for the max()
1524     ** aggregate, or 0 for min().
1525     */
1526     max = sqlite3_user_data(context)!=0;
1527     cmp = sqlite3MemCompare(pBest, pArg, pColl);
1528     if( (max && cmp<0) || (!max && cmp>0) ){
1529       sqlite3VdbeMemCopy(pBest, pArg);
1530     }else{
1531       sqlite3SkipAccumulatorLoad(context);
1532     }
1533   }else{
1534     pBest->db = sqlite3_context_db_handle(context);
1535     sqlite3VdbeMemCopy(pBest, pArg);
1536   }
1537 }
1538 static void minMaxFinalize(sqlite3_context *context){
1539   sqlite3_value *pRes;
1540   pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
1541   if( pRes ){
1542     if( pRes->flags ){
1543       sqlite3_result_value(context, pRes);
1544     }
1545     sqlite3VdbeMemRelease(pRes);
1546   }
1547 }
1548 
1549 /*
1550 ** group_concat(EXPR, ?SEPARATOR?)
1551 */
1552 static void groupConcatStep(
1553   sqlite3_context *context,
1554   int argc,
1555   sqlite3_value **argv
1556 ){
1557   const char *zVal;
1558   StrAccum *pAccum;
1559   const char *zSep;
1560   int nVal, nSep;
1561   assert( argc==1 || argc==2 );
1562   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
1563   pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
1564 
1565   if( pAccum ){
1566     sqlite3 *db = sqlite3_context_db_handle(context);
1567     int firstTerm = pAccum->mxAlloc==0;
1568     pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
1569     if( !firstTerm ){
1570       if( argc==2 ){
1571         zSep = (char*)sqlite3_value_text(argv[1]);
1572         nSep = sqlite3_value_bytes(argv[1]);
1573       }else{
1574         zSep = ",";
1575         nSep = 1;
1576       }
1577       if( nSep ) sqlite3StrAccumAppend(pAccum, zSep, nSep);
1578     }
1579     zVal = (char*)sqlite3_value_text(argv[0]);
1580     nVal = sqlite3_value_bytes(argv[0]);
1581     if( zVal ) sqlite3StrAccumAppend(pAccum, zVal, nVal);
1582   }
1583 }
1584 static void groupConcatFinalize(sqlite3_context *context){
1585   StrAccum *pAccum;
1586   pAccum = sqlite3_aggregate_context(context, 0);
1587   if( pAccum ){
1588     if( pAccum->accError==STRACCUM_TOOBIG ){
1589       sqlite3_result_error_toobig(context);
1590     }else if( pAccum->accError==STRACCUM_NOMEM ){
1591       sqlite3_result_error_nomem(context);
1592     }else{
1593       sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
1594                           sqlite3_free);
1595     }
1596   }
1597 }
1598 
1599 /*
1600 ** This routine does per-connection function registration.  Most
1601 ** of the built-in functions above are part of the global function set.
1602 ** This routine only deals with those that are not global.
1603 */
1604 void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
1605   int rc = sqlite3_overload_function(db, "MATCH", 2);
1606   assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
1607   if( rc==SQLITE_NOMEM ){
1608     db->mallocFailed = 1;
1609   }
1610 }
1611 
1612 /*
1613 ** Set the LIKEOPT flag on the 2-argument function with the given name.
1614 */
1615 static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
1616   FuncDef *pDef;
1617   pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName),
1618                              2, SQLITE_UTF8, 0);
1619   if( ALWAYS(pDef) ){
1620     pDef->funcFlags |= flagVal;
1621   }
1622 }
1623 
1624 /*
1625 ** Register the built-in LIKE and GLOB functions.  The caseSensitive
1626 ** parameter determines whether or not the LIKE operator is case
1627 ** sensitive.  GLOB is always case sensitive.
1628 */
1629 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
1630   struct compareInfo *pInfo;
1631   if( caseSensitive ){
1632     pInfo = (struct compareInfo*)&likeInfoAlt;
1633   }else{
1634     pInfo = (struct compareInfo*)&likeInfoNorm;
1635   }
1636   sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1637   sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1638   sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
1639       (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0);
1640   setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
1641   setLikeOptFlag(db, "like",
1642       caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
1643 }
1644 
1645 /*
1646 ** pExpr points to an expression which implements a function.  If
1647 ** it is appropriate to apply the LIKE optimization to that function
1648 ** then set aWc[0] through aWc[2] to the wildcard characters and
1649 ** return TRUE.  If the function is not a LIKE-style function then
1650 ** return FALSE.
1651 **
1652 ** *pIsNocase is set to true if uppercase and lowercase are equivalent for
1653 ** the function (default for LIKE).  If the function makes the distinction
1654 ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
1655 ** false.
1656 */
1657 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
1658   FuncDef *pDef;
1659   if( pExpr->op!=TK_FUNCTION
1660    || !pExpr->x.pList
1661    || pExpr->x.pList->nExpr!=2
1662   ){
1663     return 0;
1664   }
1665   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
1666   pDef = sqlite3FindFunction(db, pExpr->u.zToken,
1667                              sqlite3Strlen30(pExpr->u.zToken),
1668                              2, SQLITE_UTF8, 0);
1669   if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
1670     return 0;
1671   }
1672 
1673   /* The memcpy() statement assumes that the wildcard characters are
1674   ** the first three statements in the compareInfo structure.  The
1675   ** asserts() that follow verify that assumption
1676   */
1677   memcpy(aWc, pDef->pUserData, 3);
1678   assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
1679   assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
1680   assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
1681   *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
1682   return 1;
1683 }
1684 
1685 /*
1686 ** All of the FuncDef structures in the aBuiltinFunc[] array above
1687 ** to the global function hash table.  This occurs at start-time (as
1688 ** a consequence of calling sqlite3_initialize()).
1689 **
1690 ** After this routine runs
1691 */
1692 void sqlite3RegisterGlobalFunctions(void){
1693   /*
1694   ** The following array holds FuncDef structures for all of the functions
1695   ** defined in this file.
1696   **
1697   ** The array cannot be constant since changes are made to the
1698   ** FuncDef.pHash elements at start-time.  The elements of this array
1699   ** are read-only after initialization is complete.
1700   */
1701   static SQLITE_WSD FuncDef aBuiltinFunc[] = {
1702     FUNCTION(ltrim,              1, 1, 0, trimFunc         ),
1703     FUNCTION(ltrim,              2, 1, 0, trimFunc         ),
1704     FUNCTION(rtrim,              1, 2, 0, trimFunc         ),
1705     FUNCTION(rtrim,              2, 2, 0, trimFunc         ),
1706     FUNCTION(trim,               1, 3, 0, trimFunc         ),
1707     FUNCTION(trim,               2, 3, 0, trimFunc         ),
1708     FUNCTION(min,               -1, 0, 1, minmaxFunc       ),
1709     FUNCTION(min,                0, 0, 1, 0                ),
1710     AGGREGATE2(min,              1, 0, 1, minmaxStep,      minMaxFinalize,
1711                                           SQLITE_FUNC_MINMAX ),
1712     FUNCTION(max,               -1, 1, 1, minmaxFunc       ),
1713     FUNCTION(max,                0, 1, 1, 0                ),
1714     AGGREGATE2(max,              1, 1, 1, minmaxStep,      minMaxFinalize,
1715                                           SQLITE_FUNC_MINMAX ),
1716     FUNCTION2(typeof,            1, 0, 0, typeofFunc,  SQLITE_FUNC_TYPEOF),
1717     FUNCTION2(length,            1, 0, 0, lengthFunc,  SQLITE_FUNC_LENGTH),
1718     FUNCTION(instr,              2, 0, 0, instrFunc        ),
1719     FUNCTION(substr,             2, 0, 0, substrFunc       ),
1720     FUNCTION(substr,             3, 0, 0, substrFunc       ),
1721     FUNCTION(printf,            -1, 0, 0, printfFunc       ),
1722     FUNCTION(unicode,            1, 0, 0, unicodeFunc      ),
1723     FUNCTION(char,              -1, 0, 0, charFunc         ),
1724     FUNCTION(abs,                1, 0, 0, absFunc          ),
1725 #ifndef SQLITE_OMIT_FLOATING_POINT
1726     FUNCTION(round,              1, 0, 0, roundFunc        ),
1727     FUNCTION(round,              2, 0, 0, roundFunc        ),
1728 #endif
1729     FUNCTION(upper,              1, 0, 0, upperFunc        ),
1730     FUNCTION(lower,              1, 0, 0, lowerFunc        ),
1731     FUNCTION(coalesce,           1, 0, 0, 0                ),
1732     FUNCTION(coalesce,           0, 0, 0, 0                ),
1733     FUNCTION2(coalesce,         -1, 0, 0, noopFunc,  SQLITE_FUNC_COALESCE),
1734     FUNCTION(hex,                1, 0, 0, hexFunc          ),
1735     FUNCTION2(ifnull,            2, 0, 0, noopFunc,  SQLITE_FUNC_COALESCE),
1736     FUNCTION2(unlikely,          1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
1737     FUNCTION2(likelihood,        2, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
1738     FUNCTION2(likely,            1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
1739     VFUNCTION(random,            0, 0, 0, randomFunc       ),
1740     VFUNCTION(randomblob,        1, 0, 0, randomBlob       ),
1741     FUNCTION(nullif,             2, 0, 1, nullifFunc       ),
1742     FUNCTION(sqlite_version,     0, 0, 0, versionFunc      ),
1743     FUNCTION(sqlite_source_id,   0, 0, 0, sourceidFunc     ),
1744     FUNCTION(sqlite_log,         2, 0, 0, errlogFunc       ),
1745 #if SQLITE_USER_AUTHENTICATION
1746     FUNCTION(sqlite_crypt,       2, 0, 0, sqlite3CryptFunc ),
1747 #endif
1748 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1749     FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc  ),
1750     FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc  ),
1751 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1752     FUNCTION(quote,              1, 0, 0, quoteFunc        ),
1753     VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
1754     VFUNCTION(changes,           0, 0, 0, changes          ),
1755     VFUNCTION(total_changes,     0, 0, 0, total_changes    ),
1756     FUNCTION(replace,            3, 0, 0, replaceFunc      ),
1757     FUNCTION(zeroblob,           1, 0, 0, zeroblobFunc     ),
1758   #ifdef SQLITE_SOUNDEX
1759     FUNCTION(soundex,            1, 0, 0, soundexFunc      ),
1760   #endif
1761   #ifndef SQLITE_OMIT_LOAD_EXTENSION
1762     FUNCTION(load_extension,     1, 0, 0, loadExt          ),
1763     FUNCTION(load_extension,     2, 0, 0, loadExt          ),
1764   #endif
1765     AGGREGATE(sum,               1, 0, 0, sumStep,         sumFinalize    ),
1766     AGGREGATE(total,             1, 0, 0, sumStep,         totalFinalize    ),
1767     AGGREGATE(avg,               1, 0, 0, sumStep,         avgFinalize    ),
1768     AGGREGATE2(count,            0, 0, 0, countStep,       countFinalize,
1769                SQLITE_FUNC_COUNT  ),
1770     AGGREGATE(count,             1, 0, 0, countStep,       countFinalize  ),
1771     AGGREGATE(group_concat,      1, 0, 0, groupConcatStep, groupConcatFinalize),
1772     AGGREGATE(group_concat,      2, 0, 0, groupConcatStep, groupConcatFinalize),
1773 
1774     LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1775   #ifdef SQLITE_CASE_SENSITIVE_LIKE
1776     LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1777     LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1778   #else
1779     LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
1780     LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
1781   #endif
1782   };
1783 
1784   int i;
1785   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
1786   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc);
1787 
1788   for(i=0; i<ArraySize(aBuiltinFunc); i++){
1789     sqlite3FuncDefInsert(pHash, &aFunc[i]);
1790   }
1791   sqlite3RegisterDateTimeFunctions();
1792 #ifndef SQLITE_OMIT_ALTERTABLE
1793   sqlite3AlterFunctions();
1794 #endif
1795 #if defined(SQLITE_ENABLE_STAT3) || defined(SQLITE_ENABLE_STAT4)
1796   sqlite3AnalyzeFunctions();
1797 #endif
1798 }
1799