xref: /sqlite-3.40.0/src/func.c (revision 8ccdef6b)
1 /*
2 ** 2002 February 23
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C-language implementations for many of the SQL
13 ** functions of SQLite.  (Some function, and in particular the date and
14 ** time functions, are implemented separately.)
15 */
16 #include "sqliteInt.h"
17 #include <stdlib.h>
18 #include <assert.h>
19 #include "vdbeInt.h"
20 
21 /*
22 ** Return the collating function associated with a function.
23 */
24 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
25   VdbeOp *pOp;
26   assert( context->pVdbe!=0 );
27   pOp = &context->pVdbe->aOp[context->iOp-1];
28   assert( pOp->opcode==OP_CollSeq );
29   assert( pOp->p4type==P4_COLLSEQ );
30   return pOp->p4.pColl;
31 }
32 
33 /*
34 ** Indicate that the accumulator load should be skipped on this
35 ** iteration of the aggregate loop.
36 */
37 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
38   context->skipFlag = 1;
39 }
40 
41 /*
42 ** Implementation of the non-aggregate min() and max() functions
43 */
44 static void minmaxFunc(
45   sqlite3_context *context,
46   int argc,
47   sqlite3_value **argv
48 ){
49   int i;
50   int mask;    /* 0 for min() or 0xffffffff for max() */
51   int iBest;
52   CollSeq *pColl;
53 
54   assert( argc>1 );
55   mask = sqlite3_user_data(context)==0 ? 0 : -1;
56   pColl = sqlite3GetFuncCollSeq(context);
57   assert( pColl );
58   assert( mask==-1 || mask==0 );
59   iBest = 0;
60   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
61   for(i=1; i<argc; i++){
62     if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
63     if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
64       testcase( mask==0 );
65       iBest = i;
66     }
67   }
68   sqlite3_result_value(context, argv[iBest]);
69 }
70 
71 /*
72 ** Return the type of the argument.
73 */
74 static void typeofFunc(
75   sqlite3_context *context,
76   int NotUsed,
77   sqlite3_value **argv
78 ){
79   const char *z = 0;
80   UNUSED_PARAMETER(NotUsed);
81   switch( sqlite3_value_type(argv[0]) ){
82     case SQLITE_INTEGER: z = "integer"; break;
83     case SQLITE_TEXT:    z = "text";    break;
84     case SQLITE_FLOAT:   z = "real";    break;
85     case SQLITE_BLOB:    z = "blob";    break;
86     default:             z = "null";    break;
87   }
88   sqlite3_result_text(context, z, -1, SQLITE_STATIC);
89 }
90 
91 
92 /*
93 ** Implementation of the length() function
94 */
95 static void lengthFunc(
96   sqlite3_context *context,
97   int argc,
98   sqlite3_value **argv
99 ){
100   int len;
101 
102   assert( argc==1 );
103   UNUSED_PARAMETER(argc);
104   switch( sqlite3_value_type(argv[0]) ){
105     case SQLITE_BLOB:
106     case SQLITE_INTEGER:
107     case SQLITE_FLOAT: {
108       sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
109       break;
110     }
111     case SQLITE_TEXT: {
112       const unsigned char *z = sqlite3_value_text(argv[0]);
113       if( z==0 ) return;
114       len = 0;
115       while( *z ){
116         len++;
117         SQLITE_SKIP_UTF8(z);
118       }
119       sqlite3_result_int(context, len);
120       break;
121     }
122     default: {
123       sqlite3_result_null(context);
124       break;
125     }
126   }
127 }
128 
129 /*
130 ** Implementation of the abs() function.
131 **
132 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
133 ** the numeric argument X.
134 */
135 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
136   assert( argc==1 );
137   UNUSED_PARAMETER(argc);
138   switch( sqlite3_value_type(argv[0]) ){
139     case SQLITE_INTEGER: {
140       i64 iVal = sqlite3_value_int64(argv[0]);
141       if( iVal<0 ){
142         if( iVal==SMALLEST_INT64 ){
143           /* IMP: R-31676-45509 If X is the integer -9223372036854775808
144           ** then abs(X) throws an integer overflow error since there is no
145           ** equivalent positive 64-bit two complement value. */
146           sqlite3_result_error(context, "integer overflow", -1);
147           return;
148         }
149         iVal = -iVal;
150       }
151       sqlite3_result_int64(context, iVal);
152       break;
153     }
154     case SQLITE_NULL: {
155       /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
156       sqlite3_result_null(context);
157       break;
158     }
159     default: {
160       /* Because sqlite3_value_double() returns 0.0 if the argument is not
161       ** something that can be converted into a number, we have:
162       ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
163       ** that cannot be converted to a numeric value.
164       */
165       double rVal = sqlite3_value_double(argv[0]);
166       if( rVal<0 ) rVal = -rVal;
167       sqlite3_result_double(context, rVal);
168       break;
169     }
170   }
171 }
172 
173 /*
174 ** Implementation of the instr() function.
175 **
176 ** instr(haystack,needle) finds the first occurrence of needle
177 ** in haystack and returns the number of previous characters plus 1,
178 ** or 0 if needle does not occur within haystack.
179 **
180 ** If both haystack and needle are BLOBs, then the result is one more than
181 ** the number of bytes in haystack prior to the first occurrence of needle,
182 ** or 0 if needle never occurs in haystack.
183 */
184 static void instrFunc(
185   sqlite3_context *context,
186   int argc,
187   sqlite3_value **argv
188 ){
189   const unsigned char *zHaystack;
190   const unsigned char *zNeedle;
191   int nHaystack;
192   int nNeedle;
193   int typeHaystack, typeNeedle;
194   int N = 1;
195   int isText;
196 
197   UNUSED_PARAMETER(argc);
198   typeHaystack = sqlite3_value_type(argv[0]);
199   typeNeedle = sqlite3_value_type(argv[1]);
200   if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
201   nHaystack = sqlite3_value_bytes(argv[0]);
202   nNeedle = sqlite3_value_bytes(argv[1]);
203   if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
204     zHaystack = sqlite3_value_blob(argv[0]);
205     zNeedle = sqlite3_value_blob(argv[1]);
206     isText = 0;
207   }else{
208     zHaystack = sqlite3_value_text(argv[0]);
209     zNeedle = sqlite3_value_text(argv[1]);
210     isText = 1;
211   }
212   while( nNeedle<=nHaystack && memcmp(zHaystack, zNeedle, nNeedle)!=0 ){
213     N++;
214     do{
215       nHaystack--;
216       zHaystack++;
217     }while( isText && (zHaystack[0]&0xc0)==0x80 );
218   }
219   if( nNeedle>nHaystack ) N = 0;
220   sqlite3_result_int(context, N);
221 }
222 
223 /*
224 ** Implementation of the printf() function.
225 */
226 static void printfFunc(
227   sqlite3_context *context,
228   int argc,
229   sqlite3_value **argv
230 ){
231   PrintfArguments x;
232   StrAccum str;
233   const char *zFormat;
234   int n;
235   sqlite3 *db = sqlite3_context_db_handle(context);
236 
237   if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
238     x.nArg = argc-1;
239     x.nUsed = 0;
240     x.apArg = argv+1;
241     sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
242     sqlite3XPrintf(&str, SQLITE_PRINTF_SQLFUNC, zFormat, &x);
243     n = str.nChar;
244     sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
245                         SQLITE_DYNAMIC);
246   }
247 }
248 
249 /*
250 ** Implementation of the substr() function.
251 **
252 ** substr(x,p1,p2)  returns p2 characters of x[] beginning with p1.
253 ** p1 is 1-indexed.  So substr(x,1,1) returns the first character
254 ** of x.  If x is text, then we actually count UTF-8 characters.
255 ** If x is a blob, then we count bytes.
256 **
257 ** If p1 is negative, then we begin abs(p1) from the end of x[].
258 **
259 ** If p2 is negative, return the p2 characters preceding p1.
260 */
261 static void substrFunc(
262   sqlite3_context *context,
263   int argc,
264   sqlite3_value **argv
265 ){
266   const unsigned char *z;
267   const unsigned char *z2;
268   int len;
269   int p0type;
270   i64 p1, p2;
271   int negP2 = 0;
272 
273   assert( argc==3 || argc==2 );
274   if( sqlite3_value_type(argv[1])==SQLITE_NULL
275    || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
276   ){
277     return;
278   }
279   p0type = sqlite3_value_type(argv[0]);
280   p1 = sqlite3_value_int(argv[1]);
281   if( p0type==SQLITE_BLOB ){
282     len = sqlite3_value_bytes(argv[0]);
283     z = sqlite3_value_blob(argv[0]);
284     if( z==0 ) return;
285     assert( len==sqlite3_value_bytes(argv[0]) );
286   }else{
287     z = sqlite3_value_text(argv[0]);
288     if( z==0 ) return;
289     len = 0;
290     if( p1<0 ){
291       for(z2=z; *z2; len++){
292         SQLITE_SKIP_UTF8(z2);
293       }
294     }
295   }
296 #ifdef SQLITE_SUBSTR_COMPATIBILITY
297   /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
298   ** as substr(X,1,N) - it returns the first N characters of X.  This
299   ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
300   ** from 2009-02-02 for compatibility of applications that exploited the
301   ** old buggy behavior. */
302   if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
303 #endif
304   if( argc==3 ){
305     p2 = sqlite3_value_int(argv[2]);
306     if( p2<0 ){
307       p2 = -p2;
308       negP2 = 1;
309     }
310   }else{
311     p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
312   }
313   if( p1<0 ){
314     p1 += len;
315     if( p1<0 ){
316       p2 += p1;
317       if( p2<0 ) p2 = 0;
318       p1 = 0;
319     }
320   }else if( p1>0 ){
321     p1--;
322   }else if( p2>0 ){
323     p2--;
324   }
325   if( negP2 ){
326     p1 -= p2;
327     if( p1<0 ){
328       p2 += p1;
329       p1 = 0;
330     }
331   }
332   assert( p1>=0 && p2>=0 );
333   if( p0type!=SQLITE_BLOB ){
334     while( *z && p1 ){
335       SQLITE_SKIP_UTF8(z);
336       p1--;
337     }
338     for(z2=z; *z2 && p2; p2--){
339       SQLITE_SKIP_UTF8(z2);
340     }
341     sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
342                           SQLITE_UTF8);
343   }else{
344     if( p1+p2>len ){
345       p2 = len-p1;
346       if( p2<0 ) p2 = 0;
347     }
348     sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
349   }
350 }
351 
352 /*
353 ** Implementation of the round() function
354 */
355 #ifndef SQLITE_OMIT_FLOATING_POINT
356 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
357   int n = 0;
358   double r;
359   char *zBuf;
360   assert( argc==1 || argc==2 );
361   if( argc==2 ){
362     if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
363     n = sqlite3_value_int(argv[1]);
364     if( n>30 ) n = 30;
365     if( n<0 ) n = 0;
366   }
367   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
368   r = sqlite3_value_double(argv[0]);
369   /* If Y==0 and X will fit in a 64-bit int,
370   ** handle the rounding directly,
371   ** otherwise use printf.
372   */
373   if( n==0 && r>=0 && r<LARGEST_INT64-1 ){
374     r = (double)((sqlite_int64)(r+0.5));
375   }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){
376     r = -(double)((sqlite_int64)((-r)+0.5));
377   }else{
378     zBuf = sqlite3_mprintf("%.*f",n,r);
379     if( zBuf==0 ){
380       sqlite3_result_error_nomem(context);
381       return;
382     }
383     sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
384     sqlite3_free(zBuf);
385   }
386   sqlite3_result_double(context, r);
387 }
388 #endif
389 
390 /*
391 ** Allocate nByte bytes of space using sqlite3Malloc(). If the
392 ** allocation fails, call sqlite3_result_error_nomem() to notify
393 ** the database handle that malloc() has failed and return NULL.
394 ** If nByte is larger than the maximum string or blob length, then
395 ** raise an SQLITE_TOOBIG exception and return NULL.
396 */
397 static void *contextMalloc(sqlite3_context *context, i64 nByte){
398   char *z;
399   sqlite3 *db = sqlite3_context_db_handle(context);
400   assert( nByte>0 );
401   testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
402   testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
403   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
404     sqlite3_result_error_toobig(context);
405     z = 0;
406   }else{
407     z = sqlite3Malloc(nByte);
408     if( !z ){
409       sqlite3_result_error_nomem(context);
410     }
411   }
412   return z;
413 }
414 
415 /*
416 ** Implementation of the upper() and lower() SQL functions.
417 */
418 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
419   char *z1;
420   const char *z2;
421   int i, n;
422   UNUSED_PARAMETER(argc);
423   z2 = (char*)sqlite3_value_text(argv[0]);
424   n = sqlite3_value_bytes(argv[0]);
425   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
426   assert( z2==(char*)sqlite3_value_text(argv[0]) );
427   if( z2 ){
428     z1 = contextMalloc(context, ((i64)n)+1);
429     if( z1 ){
430       for(i=0; i<n; i++){
431         z1[i] = (char)sqlite3Toupper(z2[i]);
432       }
433       sqlite3_result_text(context, z1, n, sqlite3_free);
434     }
435   }
436 }
437 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
438   char *z1;
439   const char *z2;
440   int i, n;
441   UNUSED_PARAMETER(argc);
442   z2 = (char*)sqlite3_value_text(argv[0]);
443   n = sqlite3_value_bytes(argv[0]);
444   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
445   assert( z2==(char*)sqlite3_value_text(argv[0]) );
446   if( z2 ){
447     z1 = contextMalloc(context, ((i64)n)+1);
448     if( z1 ){
449       for(i=0; i<n; i++){
450         z1[i] = sqlite3Tolower(z2[i]);
451       }
452       sqlite3_result_text(context, z1, n, sqlite3_free);
453     }
454   }
455 }
456 
457 /*
458 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
459 ** as VDBE code so that unused argument values do not have to be computed.
460 ** However, we still need some kind of function implementation for this
461 ** routines in the function table.  The noopFunc macro provides this.
462 ** noopFunc will never be called so it doesn't matter what the implementation
463 ** is.  We might as well use the "version()" function as a substitute.
464 */
465 #define noopFunc versionFunc   /* Substitute function - never called */
466 
467 /*
468 ** Implementation of random().  Return a random integer.
469 */
470 static void randomFunc(
471   sqlite3_context *context,
472   int NotUsed,
473   sqlite3_value **NotUsed2
474 ){
475   sqlite_int64 r;
476   UNUSED_PARAMETER2(NotUsed, NotUsed2);
477   sqlite3_randomness(sizeof(r), &r);
478   if( r<0 ){
479     /* We need to prevent a random number of 0x8000000000000000
480     ** (or -9223372036854775808) since when you do abs() of that
481     ** number of you get the same value back again.  To do this
482     ** in a way that is testable, mask the sign bit off of negative
483     ** values, resulting in a positive value.  Then take the
484     ** 2s complement of that positive value.  The end result can
485     ** therefore be no less than -9223372036854775807.
486     */
487     r = -(r & LARGEST_INT64);
488   }
489   sqlite3_result_int64(context, r);
490 }
491 
492 /*
493 ** Implementation of randomblob(N).  Return a random blob
494 ** that is N bytes long.
495 */
496 static void randomBlob(
497   sqlite3_context *context,
498   int argc,
499   sqlite3_value **argv
500 ){
501   int n;
502   unsigned char *p;
503   assert( argc==1 );
504   UNUSED_PARAMETER(argc);
505   n = sqlite3_value_int(argv[0]);
506   if( n<1 ){
507     n = 1;
508   }
509   p = contextMalloc(context, n);
510   if( p ){
511     sqlite3_randomness(n, p);
512     sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
513   }
514 }
515 
516 /*
517 ** Implementation of the last_insert_rowid() SQL function.  The return
518 ** value is the same as the sqlite3_last_insert_rowid() API function.
519 */
520 static void last_insert_rowid(
521   sqlite3_context *context,
522   int NotUsed,
523   sqlite3_value **NotUsed2
524 ){
525   sqlite3 *db = sqlite3_context_db_handle(context);
526   UNUSED_PARAMETER2(NotUsed, NotUsed2);
527   /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
528   ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
529   ** function. */
530   sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
531 }
532 
533 /*
534 ** Implementation of the changes() SQL function.
535 **
536 ** IMP: R-62073-11209 The changes() SQL function is a wrapper
537 ** around the sqlite3_changes() C/C++ function and hence follows the same
538 ** rules for counting changes.
539 */
540 static void changes(
541   sqlite3_context *context,
542   int NotUsed,
543   sqlite3_value **NotUsed2
544 ){
545   sqlite3 *db = sqlite3_context_db_handle(context);
546   UNUSED_PARAMETER2(NotUsed, NotUsed2);
547   sqlite3_result_int(context, sqlite3_changes(db));
548 }
549 
550 /*
551 ** Implementation of the total_changes() SQL function.  The return value is
552 ** the same as the sqlite3_total_changes() API function.
553 */
554 static void total_changes(
555   sqlite3_context *context,
556   int NotUsed,
557   sqlite3_value **NotUsed2
558 ){
559   sqlite3 *db = sqlite3_context_db_handle(context);
560   UNUSED_PARAMETER2(NotUsed, NotUsed2);
561   /* IMP: R-52756-41993 This function is a wrapper around the
562   ** sqlite3_total_changes() C/C++ interface. */
563   sqlite3_result_int(context, sqlite3_total_changes(db));
564 }
565 
566 /*
567 ** A structure defining how to do GLOB-style comparisons.
568 */
569 struct compareInfo {
570   u8 matchAll;
571   u8 matchOne;
572   u8 matchSet;
573   u8 noCase;
574 };
575 
576 /*
577 ** For LIKE and GLOB matching on EBCDIC machines, assume that every
578 ** character is exactly one byte in size.  Also, provde the Utf8Read()
579 ** macro for fast reading of the next character in the common case where
580 ** the next character is ASCII.
581 */
582 #if defined(SQLITE_EBCDIC)
583 # define sqlite3Utf8Read(A)        (*((*A)++))
584 # define Utf8Read(A)               (*(A++))
585 #else
586 # define Utf8Read(A)               (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
587 #endif
588 
589 static const struct compareInfo globInfo = { '*', '?', '[', 0 };
590 /* The correct SQL-92 behavior is for the LIKE operator to ignore
591 ** case.  Thus  'a' LIKE 'A' would be true. */
592 static const struct compareInfo likeInfoNorm = { '%', '_',   0, 1 };
593 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
594 ** is case sensitive causing 'a' LIKE 'A' to be false */
595 static const struct compareInfo likeInfoAlt = { '%', '_',   0, 0 };
596 
597 /*
598 ** Compare two UTF-8 strings for equality where the first string can
599 ** potentially be a "glob" or "like" expression.  Return true (1) if they
600 ** are the same and false (0) if they are different.
601 **
602 ** Globbing rules:
603 **
604 **      '*'       Matches any sequence of zero or more characters.
605 **
606 **      '?'       Matches exactly one character.
607 **
608 **     [...]      Matches one character from the enclosed list of
609 **                characters.
610 **
611 **     [^...]     Matches one character not in the enclosed list.
612 **
613 ** With the [...] and [^...] matching, a ']' character can be included
614 ** in the list by making it the first character after '[' or '^'.  A
615 ** range of characters can be specified using '-'.  Example:
616 ** "[a-z]" matches any single lower-case letter.  To match a '-', make
617 ** it the last character in the list.
618 **
619 ** Like matching rules:
620 **
621 **      '%'       Matches any sequence of zero or more characters
622 **
623 ***     '_'       Matches any one character
624 **
625 **      Ec        Where E is the "esc" character and c is any other
626 **                character, including '%', '_', and esc, match exactly c.
627 **
628 ** The comments within this routine usually assume glob matching.
629 **
630 ** This routine is usually quick, but can be N**2 in the worst case.
631 */
632 static int patternCompare(
633   const u8 *zPattern,              /* The glob pattern */
634   const u8 *zString,               /* The string to compare against the glob */
635   const struct compareInfo *pInfo, /* Information about how to do the compare */
636   u32 esc                          /* The escape character */
637 ){
638   u32 c, c2;                       /* Next pattern and input string chars */
639   u32 matchOne = pInfo->matchOne;  /* "?" or "_" */
640   u32 matchAll = pInfo->matchAll;  /* "*" or "%" */
641   u32 matchOther;                  /* "[" or the escape character */
642   u8 noCase = pInfo->noCase;       /* True if uppercase==lowercase */
643   const u8 *zEscaped = 0;          /* One past the last escaped input char */
644 
645   /* The GLOB operator does not have an ESCAPE clause.  And LIKE does not
646   ** have the matchSet operator.  So we either have to look for one or
647   ** the other, never both.  Hence the single variable matchOther is used
648   ** to store the one we have to look for.
649   */
650   matchOther = esc ? esc : pInfo->matchSet;
651 
652   while( (c = Utf8Read(zPattern))!=0 ){
653     if( c==matchAll ){  /* Match "*" */
654       /* Skip over multiple "*" characters in the pattern.  If there
655       ** are also "?" characters, skip those as well, but consume a
656       ** single character of the input string for each "?" skipped */
657       while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){
658         if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
659           return 0;
660         }
661       }
662       if( c==0 ){
663         return 1;   /* "*" at the end of the pattern matches */
664       }else if( c==matchOther ){
665         if( esc ){
666           c = sqlite3Utf8Read(&zPattern);
667           if( c==0 ) return 0;
668         }else{
669           /* "[...]" immediately follows the "*".  We have to do a slow
670           ** recursive search in this case, but it is an unusual case. */
671           assert( matchOther<0x80 );  /* '[' is a single-byte character */
672           while( *zString
673                  && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
674             SQLITE_SKIP_UTF8(zString);
675           }
676           return *zString!=0;
677         }
678       }
679 
680       /* At this point variable c contains the first character of the
681       ** pattern string past the "*".  Search in the input string for the
682       ** first matching character and recursively contine the match from
683       ** that point.
684       **
685       ** For a case-insensitive search, set variable cx to be the same as
686       ** c but in the other case and search the input string for either
687       ** c or cx.
688       */
689       if( c<=0x80 ){
690         u32 cx;
691         if( noCase ){
692           cx = sqlite3Toupper(c);
693           c = sqlite3Tolower(c);
694         }else{
695           cx = c;
696         }
697         while( (c2 = *(zString++))!=0 ){
698           if( c2!=c && c2!=cx ) continue;
699           if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
700         }
701       }else{
702         while( (c2 = Utf8Read(zString))!=0 ){
703           if( c2!=c ) continue;
704           if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
705         }
706       }
707       return 0;
708     }
709     if( c==matchOther ){
710       if( esc ){
711         c = sqlite3Utf8Read(&zPattern);
712         if( c==0 ) return 0;
713         zEscaped = zPattern;
714       }else{
715         u32 prior_c = 0;
716         int seen = 0;
717         int invert = 0;
718         c = sqlite3Utf8Read(&zString);
719         if( c==0 ) return 0;
720         c2 = sqlite3Utf8Read(&zPattern);
721         if( c2=='^' ){
722           invert = 1;
723           c2 = sqlite3Utf8Read(&zPattern);
724         }
725         if( c2==']' ){
726           if( c==']' ) seen = 1;
727           c2 = sqlite3Utf8Read(&zPattern);
728         }
729         while( c2 && c2!=']' ){
730           if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
731             c2 = sqlite3Utf8Read(&zPattern);
732             if( c>=prior_c && c<=c2 ) seen = 1;
733             prior_c = 0;
734           }else{
735             if( c==c2 ){
736               seen = 1;
737             }
738             prior_c = c2;
739           }
740           c2 = sqlite3Utf8Read(&zPattern);
741         }
742         if( c2==0 || (seen ^ invert)==0 ){
743           return 0;
744         }
745         continue;
746       }
747     }
748     c2 = Utf8Read(zString);
749     if( c==c2 ) continue;
750     if( noCase && c<0x80 && c2<0x80 && sqlite3Tolower(c)==sqlite3Tolower(c2) ){
751       continue;
752     }
753     if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
754     return 0;
755   }
756   return *zString==0;
757 }
758 
759 /*
760 ** The sqlite3_strglob() interface.
761 */
762 int sqlite3_strglob(const char *zGlobPattern, const char *zString){
763   return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, 0)==0;
764 }
765 
766 /*
767 ** The sqlite3_strlike() interface.
768 */
769 int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
770   return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc)==0;
771 }
772 
773 /*
774 ** Count the number of times that the LIKE operator (or GLOB which is
775 ** just a variation of LIKE) gets called.  This is used for testing
776 ** only.
777 */
778 #ifdef SQLITE_TEST
779 int sqlite3_like_count = 0;
780 #endif
781 
782 
783 /*
784 ** Implementation of the like() SQL function.  This function implements
785 ** the build-in LIKE operator.  The first argument to the function is the
786 ** pattern and the second argument is the string.  So, the SQL statements:
787 **
788 **       A LIKE B
789 **
790 ** is implemented as like(B,A).
791 **
792 ** This same function (with a different compareInfo structure) computes
793 ** the GLOB operator.
794 */
795 static void likeFunc(
796   sqlite3_context *context,
797   int argc,
798   sqlite3_value **argv
799 ){
800   const unsigned char *zA, *zB;
801   u32 escape = 0;
802   int nPat;
803   sqlite3 *db = sqlite3_context_db_handle(context);
804 
805 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
806   if( sqlite3_value_type(argv[0])==SQLITE_BLOB
807    || sqlite3_value_type(argv[1])==SQLITE_BLOB
808   ){
809 #ifdef SQLITE_TEST
810     sqlite3_like_count++;
811 #endif
812     sqlite3_result_int(context, 0);
813     return;
814   }
815 #endif
816   zB = sqlite3_value_text(argv[0]);
817   zA = sqlite3_value_text(argv[1]);
818 
819   /* Limit the length of the LIKE or GLOB pattern to avoid problems
820   ** of deep recursion and N*N behavior in patternCompare().
821   */
822   nPat = sqlite3_value_bytes(argv[0]);
823   testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
824   testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
825   if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
826     sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
827     return;
828   }
829   assert( zB==sqlite3_value_text(argv[0]) );  /* Encoding did not change */
830 
831   if( argc==3 ){
832     /* The escape character string must consist of a single UTF-8 character.
833     ** Otherwise, return an error.
834     */
835     const unsigned char *zEsc = sqlite3_value_text(argv[2]);
836     if( zEsc==0 ) return;
837     if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
838       sqlite3_result_error(context,
839           "ESCAPE expression must be a single character", -1);
840       return;
841     }
842     escape = sqlite3Utf8Read(&zEsc);
843   }
844   if( zA && zB ){
845     struct compareInfo *pInfo = sqlite3_user_data(context);
846 #ifdef SQLITE_TEST
847     sqlite3_like_count++;
848 #endif
849 
850     sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
851   }
852 }
853 
854 /*
855 ** Implementation of the NULLIF(x,y) function.  The result is the first
856 ** argument if the arguments are different.  The result is NULL if the
857 ** arguments are equal to each other.
858 */
859 static void nullifFunc(
860   sqlite3_context *context,
861   int NotUsed,
862   sqlite3_value **argv
863 ){
864   CollSeq *pColl = sqlite3GetFuncCollSeq(context);
865   UNUSED_PARAMETER(NotUsed);
866   if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
867     sqlite3_result_value(context, argv[0]);
868   }
869 }
870 
871 /*
872 ** Implementation of the sqlite_version() function.  The result is the version
873 ** of the SQLite library that is running.
874 */
875 static void versionFunc(
876   sqlite3_context *context,
877   int NotUsed,
878   sqlite3_value **NotUsed2
879 ){
880   UNUSED_PARAMETER2(NotUsed, NotUsed2);
881   /* IMP: R-48699-48617 This function is an SQL wrapper around the
882   ** sqlite3_libversion() C-interface. */
883   sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
884 }
885 
886 /*
887 ** Implementation of the sqlite_source_id() function. The result is a string
888 ** that identifies the particular version of the source code used to build
889 ** SQLite.
890 */
891 static void sourceidFunc(
892   sqlite3_context *context,
893   int NotUsed,
894   sqlite3_value **NotUsed2
895 ){
896   UNUSED_PARAMETER2(NotUsed, NotUsed2);
897   /* IMP: R-24470-31136 This function is an SQL wrapper around the
898   ** sqlite3_sourceid() C interface. */
899   sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
900 }
901 
902 /*
903 ** Implementation of the sqlite_log() function.  This is a wrapper around
904 ** sqlite3_log().  The return value is NULL.  The function exists purely for
905 ** its side-effects.
906 */
907 static void errlogFunc(
908   sqlite3_context *context,
909   int argc,
910   sqlite3_value **argv
911 ){
912   UNUSED_PARAMETER(argc);
913   UNUSED_PARAMETER(context);
914   sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
915 }
916 
917 /*
918 ** Implementation of the sqlite_compileoption_used() function.
919 ** The result is an integer that identifies if the compiler option
920 ** was used to build SQLite.
921 */
922 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
923 static void compileoptionusedFunc(
924   sqlite3_context *context,
925   int argc,
926   sqlite3_value **argv
927 ){
928   const char *zOptName;
929   assert( argc==1 );
930   UNUSED_PARAMETER(argc);
931   /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
932   ** function is a wrapper around the sqlite3_compileoption_used() C/C++
933   ** function.
934   */
935   if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
936     sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
937   }
938 }
939 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
940 
941 /*
942 ** Implementation of the sqlite_compileoption_get() function.
943 ** The result is a string that identifies the compiler options
944 ** used to build SQLite.
945 */
946 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
947 static void compileoptiongetFunc(
948   sqlite3_context *context,
949   int argc,
950   sqlite3_value **argv
951 ){
952   int n;
953   assert( argc==1 );
954   UNUSED_PARAMETER(argc);
955   /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
956   ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
957   */
958   n = sqlite3_value_int(argv[0]);
959   sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
960 }
961 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
962 
963 /* Array for converting from half-bytes (nybbles) into ASCII hex
964 ** digits. */
965 static const char hexdigits[] = {
966   '0', '1', '2', '3', '4', '5', '6', '7',
967   '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
968 };
969 
970 /*
971 ** Implementation of the QUOTE() function.  This function takes a single
972 ** argument.  If the argument is numeric, the return value is the same as
973 ** the argument.  If the argument is NULL, the return value is the string
974 ** "NULL".  Otherwise, the argument is enclosed in single quotes with
975 ** single-quote escapes.
976 */
977 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
978   assert( argc==1 );
979   UNUSED_PARAMETER(argc);
980   switch( sqlite3_value_type(argv[0]) ){
981     case SQLITE_FLOAT: {
982       double r1, r2;
983       char zBuf[50];
984       r1 = sqlite3_value_double(argv[0]);
985       sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
986       sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8);
987       if( r1!=r2 ){
988         sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1);
989       }
990       sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
991       break;
992     }
993     case SQLITE_INTEGER: {
994       sqlite3_result_value(context, argv[0]);
995       break;
996     }
997     case SQLITE_BLOB: {
998       char *zText = 0;
999       char const *zBlob = sqlite3_value_blob(argv[0]);
1000       int nBlob = sqlite3_value_bytes(argv[0]);
1001       assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
1002       zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
1003       if( zText ){
1004         int i;
1005         for(i=0; i<nBlob; i++){
1006           zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
1007           zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
1008         }
1009         zText[(nBlob*2)+2] = '\'';
1010         zText[(nBlob*2)+3] = '\0';
1011         zText[0] = 'X';
1012         zText[1] = '\'';
1013         sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
1014         sqlite3_free(zText);
1015       }
1016       break;
1017     }
1018     case SQLITE_TEXT: {
1019       int i,j;
1020       u64 n;
1021       const unsigned char *zArg = sqlite3_value_text(argv[0]);
1022       char *z;
1023 
1024       if( zArg==0 ) return;
1025       for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
1026       z = contextMalloc(context, ((i64)i)+((i64)n)+3);
1027       if( z ){
1028         z[0] = '\'';
1029         for(i=0, j=1; zArg[i]; i++){
1030           z[j++] = zArg[i];
1031           if( zArg[i]=='\'' ){
1032             z[j++] = '\'';
1033           }
1034         }
1035         z[j++] = '\'';
1036         z[j] = 0;
1037         sqlite3_result_text(context, z, j, sqlite3_free);
1038       }
1039       break;
1040     }
1041     default: {
1042       assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
1043       sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
1044       break;
1045     }
1046   }
1047 }
1048 
1049 /*
1050 ** The unicode() function.  Return the integer unicode code-point value
1051 ** for the first character of the input string.
1052 */
1053 static void unicodeFunc(
1054   sqlite3_context *context,
1055   int argc,
1056   sqlite3_value **argv
1057 ){
1058   const unsigned char *z = sqlite3_value_text(argv[0]);
1059   (void)argc;
1060   if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
1061 }
1062 
1063 /*
1064 ** The char() function takes zero or more arguments, each of which is
1065 ** an integer.  It constructs a string where each character of the string
1066 ** is the unicode character for the corresponding integer argument.
1067 */
1068 static void charFunc(
1069   sqlite3_context *context,
1070   int argc,
1071   sqlite3_value **argv
1072 ){
1073   unsigned char *z, *zOut;
1074   int i;
1075   zOut = z = sqlite3_malloc64( argc*4+1 );
1076   if( z==0 ){
1077     sqlite3_result_error_nomem(context);
1078     return;
1079   }
1080   for(i=0; i<argc; i++){
1081     sqlite3_int64 x;
1082     unsigned c;
1083     x = sqlite3_value_int64(argv[i]);
1084     if( x<0 || x>0x10ffff ) x = 0xfffd;
1085     c = (unsigned)(x & 0x1fffff);
1086     if( c<0x00080 ){
1087       *zOut++ = (u8)(c&0xFF);
1088     }else if( c<0x00800 ){
1089       *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
1090       *zOut++ = 0x80 + (u8)(c & 0x3F);
1091     }else if( c<0x10000 ){
1092       *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
1093       *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1094       *zOut++ = 0x80 + (u8)(c & 0x3F);
1095     }else{
1096       *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
1097       *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
1098       *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1099       *zOut++ = 0x80 + (u8)(c & 0x3F);
1100     }                                                    \
1101   }
1102   sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
1103 }
1104 
1105 /*
1106 ** The hex() function.  Interpret the argument as a blob.  Return
1107 ** a hexadecimal rendering as text.
1108 */
1109 static void hexFunc(
1110   sqlite3_context *context,
1111   int argc,
1112   sqlite3_value **argv
1113 ){
1114   int i, n;
1115   const unsigned char *pBlob;
1116   char *zHex, *z;
1117   assert( argc==1 );
1118   UNUSED_PARAMETER(argc);
1119   pBlob = sqlite3_value_blob(argv[0]);
1120   n = sqlite3_value_bytes(argv[0]);
1121   assert( pBlob==sqlite3_value_blob(argv[0]) );  /* No encoding change */
1122   z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
1123   if( zHex ){
1124     for(i=0; i<n; i++, pBlob++){
1125       unsigned char c = *pBlob;
1126       *(z++) = hexdigits[(c>>4)&0xf];
1127       *(z++) = hexdigits[c&0xf];
1128     }
1129     *z = 0;
1130     sqlite3_result_text(context, zHex, n*2, sqlite3_free);
1131   }
1132 }
1133 
1134 /*
1135 ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
1136 */
1137 static void zeroblobFunc(
1138   sqlite3_context *context,
1139   int argc,
1140   sqlite3_value **argv
1141 ){
1142   i64 n;
1143   int rc;
1144   assert( argc==1 );
1145   UNUSED_PARAMETER(argc);
1146   n = sqlite3_value_int64(argv[0]);
1147   if( n<0 ) n = 0;
1148   rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
1149   if( rc ){
1150     sqlite3_result_error_code(context, rc);
1151   }
1152 }
1153 
1154 /*
1155 ** The replace() function.  Three arguments are all strings: call
1156 ** them A, B, and C. The result is also a string which is derived
1157 ** from A by replacing every occurrence of B with C.  The match
1158 ** must be exact.  Collating sequences are not used.
1159 */
1160 static void replaceFunc(
1161   sqlite3_context *context,
1162   int argc,
1163   sqlite3_value **argv
1164 ){
1165   const unsigned char *zStr;        /* The input string A */
1166   const unsigned char *zPattern;    /* The pattern string B */
1167   const unsigned char *zRep;        /* The replacement string C */
1168   unsigned char *zOut;              /* The output */
1169   int nStr;                /* Size of zStr */
1170   int nPattern;            /* Size of zPattern */
1171   int nRep;                /* Size of zRep */
1172   i64 nOut;                /* Maximum size of zOut */
1173   int loopLimit;           /* Last zStr[] that might match zPattern[] */
1174   int i, j;                /* Loop counters */
1175 
1176   assert( argc==3 );
1177   UNUSED_PARAMETER(argc);
1178   zStr = sqlite3_value_text(argv[0]);
1179   if( zStr==0 ) return;
1180   nStr = sqlite3_value_bytes(argv[0]);
1181   assert( zStr==sqlite3_value_text(argv[0]) );  /* No encoding change */
1182   zPattern = sqlite3_value_text(argv[1]);
1183   if( zPattern==0 ){
1184     assert( sqlite3_value_type(argv[1])==SQLITE_NULL
1185             || sqlite3_context_db_handle(context)->mallocFailed );
1186     return;
1187   }
1188   if( zPattern[0]==0 ){
1189     assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
1190     sqlite3_result_value(context, argv[0]);
1191     return;
1192   }
1193   nPattern = sqlite3_value_bytes(argv[1]);
1194   assert( zPattern==sqlite3_value_text(argv[1]) );  /* No encoding change */
1195   zRep = sqlite3_value_text(argv[2]);
1196   if( zRep==0 ) return;
1197   nRep = sqlite3_value_bytes(argv[2]);
1198   assert( zRep==sqlite3_value_text(argv[2]) );
1199   nOut = nStr + 1;
1200   assert( nOut<SQLITE_MAX_LENGTH );
1201   zOut = contextMalloc(context, (i64)nOut);
1202   if( zOut==0 ){
1203     return;
1204   }
1205   loopLimit = nStr - nPattern;
1206   for(i=j=0; i<=loopLimit; i++){
1207     if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
1208       zOut[j++] = zStr[i];
1209     }else{
1210       u8 *zOld;
1211       sqlite3 *db = sqlite3_context_db_handle(context);
1212       nOut += nRep - nPattern;
1213       testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
1214       testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
1215       if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1216         sqlite3_result_error_toobig(context);
1217         sqlite3_free(zOut);
1218         return;
1219       }
1220       zOld = zOut;
1221       zOut = sqlite3_realloc64(zOut, (int)nOut);
1222       if( zOut==0 ){
1223         sqlite3_result_error_nomem(context);
1224         sqlite3_free(zOld);
1225         return;
1226       }
1227       memcpy(&zOut[j], zRep, nRep);
1228       j += nRep;
1229       i += nPattern-1;
1230     }
1231   }
1232   assert( j+nStr-i+1==nOut );
1233   memcpy(&zOut[j], &zStr[i], nStr-i);
1234   j += nStr - i;
1235   assert( j<=nOut );
1236   zOut[j] = 0;
1237   sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
1238 }
1239 
1240 /*
1241 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
1242 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
1243 */
1244 static void trimFunc(
1245   sqlite3_context *context,
1246   int argc,
1247   sqlite3_value **argv
1248 ){
1249   const unsigned char *zIn;         /* Input string */
1250   const unsigned char *zCharSet;    /* Set of characters to trim */
1251   int nIn;                          /* Number of bytes in input */
1252   int flags;                        /* 1: trimleft  2: trimright  3: trim */
1253   int i;                            /* Loop counter */
1254   unsigned char *aLen = 0;          /* Length of each character in zCharSet */
1255   unsigned char **azChar = 0;       /* Individual characters in zCharSet */
1256   int nChar;                        /* Number of characters in zCharSet */
1257 
1258   if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1259     return;
1260   }
1261   zIn = sqlite3_value_text(argv[0]);
1262   if( zIn==0 ) return;
1263   nIn = sqlite3_value_bytes(argv[0]);
1264   assert( zIn==sqlite3_value_text(argv[0]) );
1265   if( argc==1 ){
1266     static const unsigned char lenOne[] = { 1 };
1267     static unsigned char * const azOne[] = { (u8*)" " };
1268     nChar = 1;
1269     aLen = (u8*)lenOne;
1270     azChar = (unsigned char **)azOne;
1271     zCharSet = 0;
1272   }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
1273     return;
1274   }else{
1275     const unsigned char *z;
1276     for(z=zCharSet, nChar=0; *z; nChar++){
1277       SQLITE_SKIP_UTF8(z);
1278     }
1279     if( nChar>0 ){
1280       azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
1281       if( azChar==0 ){
1282         return;
1283       }
1284       aLen = (unsigned char*)&azChar[nChar];
1285       for(z=zCharSet, nChar=0; *z; nChar++){
1286         azChar[nChar] = (unsigned char *)z;
1287         SQLITE_SKIP_UTF8(z);
1288         aLen[nChar] = (u8)(z - azChar[nChar]);
1289       }
1290     }
1291   }
1292   if( nChar>0 ){
1293     flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
1294     if( flags & 1 ){
1295       while( nIn>0 ){
1296         int len = 0;
1297         for(i=0; i<nChar; i++){
1298           len = aLen[i];
1299           if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
1300         }
1301         if( i>=nChar ) break;
1302         zIn += len;
1303         nIn -= len;
1304       }
1305     }
1306     if( flags & 2 ){
1307       while( nIn>0 ){
1308         int len = 0;
1309         for(i=0; i<nChar; i++){
1310           len = aLen[i];
1311           if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
1312         }
1313         if( i>=nChar ) break;
1314         nIn -= len;
1315       }
1316     }
1317     if( zCharSet ){
1318       sqlite3_free(azChar);
1319     }
1320   }
1321   sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
1322 }
1323 
1324 
1325 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
1326 ** is only available if the SQLITE_SOUNDEX compile-time option is used
1327 ** when SQLite is built.
1328 */
1329 #ifdef SQLITE_SOUNDEX
1330 /*
1331 ** Compute the soundex encoding of a word.
1332 **
1333 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
1334 ** soundex encoding of the string X.
1335 */
1336 static void soundexFunc(
1337   sqlite3_context *context,
1338   int argc,
1339   sqlite3_value **argv
1340 ){
1341   char zResult[8];
1342   const u8 *zIn;
1343   int i, j;
1344   static const unsigned char iCode[] = {
1345     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1346     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1347     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1348     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1349     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1350     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1351     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1352     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1353   };
1354   assert( argc==1 );
1355   zIn = (u8*)sqlite3_value_text(argv[0]);
1356   if( zIn==0 ) zIn = (u8*)"";
1357   for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
1358   if( zIn[i] ){
1359     u8 prevcode = iCode[zIn[i]&0x7f];
1360     zResult[0] = sqlite3Toupper(zIn[i]);
1361     for(j=1; j<4 && zIn[i]; i++){
1362       int code = iCode[zIn[i]&0x7f];
1363       if( code>0 ){
1364         if( code!=prevcode ){
1365           prevcode = code;
1366           zResult[j++] = code + '0';
1367         }
1368       }else{
1369         prevcode = 0;
1370       }
1371     }
1372     while( j<4 ){
1373       zResult[j++] = '0';
1374     }
1375     zResult[j] = 0;
1376     sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
1377   }else{
1378     /* IMP: R-64894-50321 The string "?000" is returned if the argument
1379     ** is NULL or contains no ASCII alphabetic characters. */
1380     sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
1381   }
1382 }
1383 #endif /* SQLITE_SOUNDEX */
1384 
1385 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1386 /*
1387 ** A function that loads a shared-library extension then returns NULL.
1388 */
1389 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
1390   const char *zFile = (const char *)sqlite3_value_text(argv[0]);
1391   const char *zProc;
1392   sqlite3 *db = sqlite3_context_db_handle(context);
1393   char *zErrMsg = 0;
1394 
1395   if( argc==2 ){
1396     zProc = (const char *)sqlite3_value_text(argv[1]);
1397   }else{
1398     zProc = 0;
1399   }
1400   if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
1401     sqlite3_result_error(context, zErrMsg, -1);
1402     sqlite3_free(zErrMsg);
1403   }
1404 }
1405 #endif
1406 
1407 
1408 /*
1409 ** An instance of the following structure holds the context of a
1410 ** sum() or avg() aggregate computation.
1411 */
1412 typedef struct SumCtx SumCtx;
1413 struct SumCtx {
1414   double rSum;      /* Floating point sum */
1415   i64 iSum;         /* Integer sum */
1416   i64 cnt;          /* Number of elements summed */
1417   u8 overflow;      /* True if integer overflow seen */
1418   u8 approx;        /* True if non-integer value was input to the sum */
1419 };
1420 
1421 /*
1422 ** Routines used to compute the sum, average, and total.
1423 **
1424 ** The SUM() function follows the (broken) SQL standard which means
1425 ** that it returns NULL if it sums over no inputs.  TOTAL returns
1426 ** 0.0 in that case.  In addition, TOTAL always returns a float where
1427 ** SUM might return an integer if it never encounters a floating point
1428 ** value.  TOTAL never fails, but SUM might through an exception if
1429 ** it overflows an integer.
1430 */
1431 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1432   SumCtx *p;
1433   int type;
1434   assert( argc==1 );
1435   UNUSED_PARAMETER(argc);
1436   p = sqlite3_aggregate_context(context, sizeof(*p));
1437   type = sqlite3_value_numeric_type(argv[0]);
1438   if( p && type!=SQLITE_NULL ){
1439     p->cnt++;
1440     if( type==SQLITE_INTEGER ){
1441       i64 v = sqlite3_value_int64(argv[0]);
1442       p->rSum += v;
1443       if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
1444         p->overflow = 1;
1445       }
1446     }else{
1447       p->rSum += sqlite3_value_double(argv[0]);
1448       p->approx = 1;
1449     }
1450   }
1451 }
1452 static void sumFinalize(sqlite3_context *context){
1453   SumCtx *p;
1454   p = sqlite3_aggregate_context(context, 0);
1455   if( p && p->cnt>0 ){
1456     if( p->overflow ){
1457       sqlite3_result_error(context,"integer overflow",-1);
1458     }else if( p->approx ){
1459       sqlite3_result_double(context, p->rSum);
1460     }else{
1461       sqlite3_result_int64(context, p->iSum);
1462     }
1463   }
1464 }
1465 static void avgFinalize(sqlite3_context *context){
1466   SumCtx *p;
1467   p = sqlite3_aggregate_context(context, 0);
1468   if( p && p->cnt>0 ){
1469     sqlite3_result_double(context, p->rSum/(double)p->cnt);
1470   }
1471 }
1472 static void totalFinalize(sqlite3_context *context){
1473   SumCtx *p;
1474   p = sqlite3_aggregate_context(context, 0);
1475   /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1476   sqlite3_result_double(context, p ? p->rSum : (double)0);
1477 }
1478 
1479 /*
1480 ** The following structure keeps track of state information for the
1481 ** count() aggregate function.
1482 */
1483 typedef struct CountCtx CountCtx;
1484 struct CountCtx {
1485   i64 n;
1486 };
1487 
1488 /*
1489 ** Routines to implement the count() aggregate function.
1490 */
1491 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1492   CountCtx *p;
1493   p = sqlite3_aggregate_context(context, sizeof(*p));
1494   if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
1495     p->n++;
1496   }
1497 
1498 #ifndef SQLITE_OMIT_DEPRECATED
1499   /* The sqlite3_aggregate_count() function is deprecated.  But just to make
1500   ** sure it still operates correctly, verify that its count agrees with our
1501   ** internal count when using count(*) and when the total count can be
1502   ** expressed as a 32-bit integer. */
1503   assert( argc==1 || p==0 || p->n>0x7fffffff
1504           || p->n==sqlite3_aggregate_count(context) );
1505 #endif
1506 }
1507 static void countFinalize(sqlite3_context *context){
1508   CountCtx *p;
1509   p = sqlite3_aggregate_context(context, 0);
1510   sqlite3_result_int64(context, p ? p->n : 0);
1511 }
1512 
1513 /*
1514 ** Routines to implement min() and max() aggregate functions.
1515 */
1516 static void minmaxStep(
1517   sqlite3_context *context,
1518   int NotUsed,
1519   sqlite3_value **argv
1520 ){
1521   Mem *pArg  = (Mem *)argv[0];
1522   Mem *pBest;
1523   UNUSED_PARAMETER(NotUsed);
1524 
1525   pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
1526   if( !pBest ) return;
1527 
1528   if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1529     if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
1530   }else if( pBest->flags ){
1531     int max;
1532     int cmp;
1533     CollSeq *pColl = sqlite3GetFuncCollSeq(context);
1534     /* This step function is used for both the min() and max() aggregates,
1535     ** the only difference between the two being that the sense of the
1536     ** comparison is inverted. For the max() aggregate, the
1537     ** sqlite3_user_data() function returns (void *)-1. For min() it
1538     ** returns (void *)db, where db is the sqlite3* database pointer.
1539     ** Therefore the next statement sets variable 'max' to 1 for the max()
1540     ** aggregate, or 0 for min().
1541     */
1542     max = sqlite3_user_data(context)!=0;
1543     cmp = sqlite3MemCompare(pBest, pArg, pColl);
1544     if( (max && cmp<0) || (!max && cmp>0) ){
1545       sqlite3VdbeMemCopy(pBest, pArg);
1546     }else{
1547       sqlite3SkipAccumulatorLoad(context);
1548     }
1549   }else{
1550     pBest->db = sqlite3_context_db_handle(context);
1551     sqlite3VdbeMemCopy(pBest, pArg);
1552   }
1553 }
1554 static void minMaxFinalize(sqlite3_context *context){
1555   sqlite3_value *pRes;
1556   pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
1557   if( pRes ){
1558     if( pRes->flags ){
1559       sqlite3_result_value(context, pRes);
1560     }
1561     sqlite3VdbeMemRelease(pRes);
1562   }
1563 }
1564 
1565 /*
1566 ** group_concat(EXPR, ?SEPARATOR?)
1567 */
1568 static void groupConcatStep(
1569   sqlite3_context *context,
1570   int argc,
1571   sqlite3_value **argv
1572 ){
1573   const char *zVal;
1574   StrAccum *pAccum;
1575   const char *zSep;
1576   int nVal, nSep;
1577   assert( argc==1 || argc==2 );
1578   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
1579   pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
1580 
1581   if( pAccum ){
1582     sqlite3 *db = sqlite3_context_db_handle(context);
1583     int firstTerm = pAccum->mxAlloc==0;
1584     pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
1585     if( !firstTerm ){
1586       if( argc==2 ){
1587         zSep = (char*)sqlite3_value_text(argv[1]);
1588         nSep = sqlite3_value_bytes(argv[1]);
1589       }else{
1590         zSep = ",";
1591         nSep = 1;
1592       }
1593       if( nSep ) sqlite3StrAccumAppend(pAccum, zSep, nSep);
1594     }
1595     zVal = (char*)sqlite3_value_text(argv[0]);
1596     nVal = sqlite3_value_bytes(argv[0]);
1597     if( zVal ) sqlite3StrAccumAppend(pAccum, zVal, nVal);
1598   }
1599 }
1600 static void groupConcatFinalize(sqlite3_context *context){
1601   StrAccum *pAccum;
1602   pAccum = sqlite3_aggregate_context(context, 0);
1603   if( pAccum ){
1604     if( pAccum->accError==STRACCUM_TOOBIG ){
1605       sqlite3_result_error_toobig(context);
1606     }else if( pAccum->accError==STRACCUM_NOMEM ){
1607       sqlite3_result_error_nomem(context);
1608     }else{
1609       sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
1610                           sqlite3_free);
1611     }
1612   }
1613 }
1614 
1615 /*
1616 ** This routine does per-connection function registration.  Most
1617 ** of the built-in functions above are part of the global function set.
1618 ** This routine only deals with those that are not global.
1619 */
1620 void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
1621   int rc = sqlite3_overload_function(db, "MATCH", 2);
1622   assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
1623   if( rc==SQLITE_NOMEM ){
1624     db->mallocFailed = 1;
1625   }
1626 }
1627 
1628 /*
1629 ** Set the LIKEOPT flag on the 2-argument function with the given name.
1630 */
1631 static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
1632   FuncDef *pDef;
1633   pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName),
1634                              2, SQLITE_UTF8, 0);
1635   if( ALWAYS(pDef) ){
1636     pDef->funcFlags |= flagVal;
1637   }
1638 }
1639 
1640 /*
1641 ** Register the built-in LIKE and GLOB functions.  The caseSensitive
1642 ** parameter determines whether or not the LIKE operator is case
1643 ** sensitive.  GLOB is always case sensitive.
1644 */
1645 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
1646   struct compareInfo *pInfo;
1647   if( caseSensitive ){
1648     pInfo = (struct compareInfo*)&likeInfoAlt;
1649   }else{
1650     pInfo = (struct compareInfo*)&likeInfoNorm;
1651   }
1652   sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1653   sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1654   sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
1655       (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0);
1656   setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
1657   setLikeOptFlag(db, "like",
1658       caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
1659 }
1660 
1661 /*
1662 ** pExpr points to an expression which implements a function.  If
1663 ** it is appropriate to apply the LIKE optimization to that function
1664 ** then set aWc[0] through aWc[2] to the wildcard characters and
1665 ** return TRUE.  If the function is not a LIKE-style function then
1666 ** return FALSE.
1667 **
1668 ** *pIsNocase is set to true if uppercase and lowercase are equivalent for
1669 ** the function (default for LIKE).  If the function makes the distinction
1670 ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
1671 ** false.
1672 */
1673 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
1674   FuncDef *pDef;
1675   if( pExpr->op!=TK_FUNCTION
1676    || !pExpr->x.pList
1677    || pExpr->x.pList->nExpr!=2
1678   ){
1679     return 0;
1680   }
1681   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
1682   pDef = sqlite3FindFunction(db, pExpr->u.zToken,
1683                              sqlite3Strlen30(pExpr->u.zToken),
1684                              2, SQLITE_UTF8, 0);
1685   if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
1686     return 0;
1687   }
1688 
1689   /* The memcpy() statement assumes that the wildcard characters are
1690   ** the first three statements in the compareInfo structure.  The
1691   ** asserts() that follow verify that assumption
1692   */
1693   memcpy(aWc, pDef->pUserData, 3);
1694   assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
1695   assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
1696   assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
1697   *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
1698   return 1;
1699 }
1700 
1701 /*
1702 ** All of the FuncDef structures in the aBuiltinFunc[] array above
1703 ** to the global function hash table.  This occurs at start-time (as
1704 ** a consequence of calling sqlite3_initialize()).
1705 **
1706 ** After this routine runs
1707 */
1708 void sqlite3RegisterGlobalFunctions(void){
1709   /*
1710   ** The following array holds FuncDef structures for all of the functions
1711   ** defined in this file.
1712   **
1713   ** The array cannot be constant since changes are made to the
1714   ** FuncDef.pHash elements at start-time.  The elements of this array
1715   ** are read-only after initialization is complete.
1716   */
1717   static SQLITE_WSD FuncDef aBuiltinFunc[] = {
1718     FUNCTION(ltrim,              1, 1, 0, trimFunc         ),
1719     FUNCTION(ltrim,              2, 1, 0, trimFunc         ),
1720     FUNCTION(rtrim,              1, 2, 0, trimFunc         ),
1721     FUNCTION(rtrim,              2, 2, 0, trimFunc         ),
1722     FUNCTION(trim,               1, 3, 0, trimFunc         ),
1723     FUNCTION(trim,               2, 3, 0, trimFunc         ),
1724     FUNCTION(min,               -1, 0, 1, minmaxFunc       ),
1725     FUNCTION(min,                0, 0, 1, 0                ),
1726     AGGREGATE2(min,              1, 0, 1, minmaxStep,      minMaxFinalize,
1727                                           SQLITE_FUNC_MINMAX ),
1728     FUNCTION(max,               -1, 1, 1, minmaxFunc       ),
1729     FUNCTION(max,                0, 1, 1, 0                ),
1730     AGGREGATE2(max,              1, 1, 1, minmaxStep,      minMaxFinalize,
1731                                           SQLITE_FUNC_MINMAX ),
1732     FUNCTION2(typeof,            1, 0, 0, typeofFunc,  SQLITE_FUNC_TYPEOF),
1733     FUNCTION2(length,            1, 0, 0, lengthFunc,  SQLITE_FUNC_LENGTH),
1734     FUNCTION(instr,              2, 0, 0, instrFunc        ),
1735     FUNCTION(substr,             2, 0, 0, substrFunc       ),
1736     FUNCTION(substr,             3, 0, 0, substrFunc       ),
1737     FUNCTION(printf,            -1, 0, 0, printfFunc       ),
1738     FUNCTION(unicode,            1, 0, 0, unicodeFunc      ),
1739     FUNCTION(char,              -1, 0, 0, charFunc         ),
1740     FUNCTION(abs,                1, 0, 0, absFunc          ),
1741 #ifndef SQLITE_OMIT_FLOATING_POINT
1742     FUNCTION(round,              1, 0, 0, roundFunc        ),
1743     FUNCTION(round,              2, 0, 0, roundFunc        ),
1744 #endif
1745     FUNCTION(upper,              1, 0, 0, upperFunc        ),
1746     FUNCTION(lower,              1, 0, 0, lowerFunc        ),
1747     FUNCTION(coalesce,           1, 0, 0, 0                ),
1748     FUNCTION(coalesce,           0, 0, 0, 0                ),
1749     FUNCTION2(coalesce,         -1, 0, 0, noopFunc,  SQLITE_FUNC_COALESCE),
1750     FUNCTION(hex,                1, 0, 0, hexFunc          ),
1751     FUNCTION2(ifnull,            2, 0, 0, noopFunc,  SQLITE_FUNC_COALESCE),
1752     FUNCTION2(unlikely,          1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
1753     FUNCTION2(likelihood,        2, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
1754     FUNCTION2(likely,            1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
1755     VFUNCTION(random,            0, 0, 0, randomFunc       ),
1756     VFUNCTION(randomblob,        1, 0, 0, randomBlob       ),
1757     FUNCTION(nullif,             2, 0, 1, nullifFunc       ),
1758     DFUNCTION(sqlite_version,    0, 0, 0, versionFunc      ),
1759     DFUNCTION(sqlite_source_id,  0, 0, 0, sourceidFunc     ),
1760     FUNCTION(sqlite_log,         2, 0, 0, errlogFunc       ),
1761 #if SQLITE_USER_AUTHENTICATION
1762     FUNCTION(sqlite_crypt,       2, 0, 0, sqlite3CryptFunc ),
1763 #endif
1764 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1765     DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc  ),
1766     DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc  ),
1767 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1768     FUNCTION(quote,              1, 0, 0, quoteFunc        ),
1769     VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
1770     VFUNCTION(changes,           0, 0, 0, changes          ),
1771     VFUNCTION(total_changes,     0, 0, 0, total_changes    ),
1772     FUNCTION(replace,            3, 0, 0, replaceFunc      ),
1773     FUNCTION(zeroblob,           1, 0, 0, zeroblobFunc     ),
1774   #ifdef SQLITE_SOUNDEX
1775     FUNCTION(soundex,            1, 0, 0, soundexFunc      ),
1776   #endif
1777   #ifndef SQLITE_OMIT_LOAD_EXTENSION
1778     VFUNCTION(load_extension,    1, 0, 0, loadExt          ),
1779     VFUNCTION(load_extension,    2, 0, 0, loadExt          ),
1780   #endif
1781     AGGREGATE(sum,               1, 0, 0, sumStep,         sumFinalize    ),
1782     AGGREGATE(total,             1, 0, 0, sumStep,         totalFinalize    ),
1783     AGGREGATE(avg,               1, 0, 0, sumStep,         avgFinalize    ),
1784     AGGREGATE2(count,            0, 0, 0, countStep,       countFinalize,
1785                SQLITE_FUNC_COUNT  ),
1786     AGGREGATE(count,             1, 0, 0, countStep,       countFinalize  ),
1787     AGGREGATE(group_concat,      1, 0, 0, groupConcatStep, groupConcatFinalize),
1788     AGGREGATE(group_concat,      2, 0, 0, groupConcatStep, groupConcatFinalize),
1789 
1790     LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1791   #ifdef SQLITE_CASE_SENSITIVE_LIKE
1792     LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1793     LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1794   #else
1795     LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
1796     LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
1797   #endif
1798   };
1799 
1800   int i;
1801   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
1802   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc);
1803 
1804   for(i=0; i<ArraySize(aBuiltinFunc); i++){
1805     sqlite3FuncDefInsert(pHash, &aFunc[i]);
1806   }
1807   sqlite3RegisterDateTimeFunctions();
1808 #ifndef SQLITE_OMIT_ALTERTABLE
1809   sqlite3AlterFunctions();
1810 #endif
1811 #if defined(SQLITE_ENABLE_STAT3) || defined(SQLITE_ENABLE_STAT4)
1812   sqlite3AnalyzeFunctions();
1813 #endif
1814 }
1815