1 /* 2 ** 3 ** The author disclaims copyright to this source code. In place of 4 ** a legal notice, here is a blessing: 5 ** 6 ** May you do good and not evil. 7 ** May you find forgiveness for yourself and forgive others. 8 ** May you share freely, never taking more than you give. 9 ** 10 ************************************************************************* 11 ** This file contains code used by the compiler to add foreign key 12 ** support to compiled SQL statements. 13 */ 14 #include "sqliteInt.h" 15 16 #ifndef SQLITE_OMIT_FOREIGN_KEY 17 #ifndef SQLITE_OMIT_TRIGGER 18 19 /* 20 ** Deferred and Immediate FKs 21 ** -------------------------- 22 ** 23 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 24 ** If an immediate foreign key constraint is violated, 25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current 26 ** statement transaction rolled back. If a 27 ** deferred foreign key constraint is violated, no action is taken 28 ** immediately. However if the application attempts to commit the 29 ** transaction before fixing the constraint violation, the attempt fails. 30 ** 31 ** Deferred constraints are implemented using a simple counter associated 32 ** with the database handle. The counter is set to zero each time a 33 ** database transaction is opened. Each time a statement is executed 34 ** that causes a foreign key violation, the counter is incremented. Each 35 ** time a statement is executed that removes an existing violation from 36 ** the database, the counter is decremented. When the transaction is 37 ** committed, the commit fails if the current value of the counter is 38 ** greater than zero. This scheme has two big drawbacks: 39 ** 40 ** * When a commit fails due to a deferred foreign key constraint, 41 ** there is no way to tell which foreign constraint is not satisfied, 42 ** or which row it is not satisfied for. 43 ** 44 ** * If the database contains foreign key violations when the 45 ** transaction is opened, this may cause the mechanism to malfunction. 46 ** 47 ** Despite these problems, this approach is adopted as it seems simpler 48 ** than the alternatives. 49 ** 50 ** INSERT operations: 51 ** 52 ** I.1) For each FK for which the table is the child table, search 53 ** the parent table for a match. If none is found increment the 54 ** constraint counter. 55 ** 56 ** I.2) For each FK for which the table is the parent table, 57 ** search the child table for rows that correspond to the new 58 ** row in the parent table. Decrement the counter for each row 59 ** found (as the constraint is now satisfied). 60 ** 61 ** DELETE operations: 62 ** 63 ** D.1) For each FK for which the table is the child table, 64 ** search the parent table for a row that corresponds to the 65 ** deleted row in the child table. If such a row is not found, 66 ** decrement the counter. 67 ** 68 ** D.2) For each FK for which the table is the parent table, search 69 ** the child table for rows that correspond to the deleted row 70 ** in the parent table. For each found increment the counter. 71 ** 72 ** UPDATE operations: 73 ** 74 ** An UPDATE command requires that all 4 steps above are taken, but only 75 ** for FK constraints for which the affected columns are actually 76 ** modified (values must be compared at runtime). 77 ** 78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 79 ** This simplifies the implementation a bit. 80 ** 81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 82 ** resolution is considered to delete rows before the new row is inserted. 83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 84 ** is thrown, even if the FK constraint would be satisfied after the new 85 ** row is inserted. 86 ** 87 ** Immediate constraints are usually handled similarly. The only difference 88 ** is that the counter used is stored as part of each individual statement 89 ** object (struct Vdbe). If, after the statement has run, its immediate 90 ** constraint counter is greater than zero, 91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY 92 ** and the statement transaction is rolled back. An exception is an INSERT 93 ** statement that inserts a single row only (no triggers). In this case, 94 ** instead of using a counter, an exception is thrown immediately if the 95 ** INSERT violates a foreign key constraint. This is necessary as such 96 ** an INSERT does not open a statement transaction. 97 ** 98 ** TODO: How should dropping a table be handled? How should renaming a 99 ** table be handled? 100 ** 101 ** 102 ** Query API Notes 103 ** --------------- 104 ** 105 ** Before coding an UPDATE or DELETE row operation, the code-generator 106 ** for those two operations needs to know whether or not the operation 107 ** requires any FK processing and, if so, which columns of the original 108 ** row are required by the FK processing VDBE code (i.e. if FKs were 109 ** implemented using triggers, which of the old.* columns would be 110 ** accessed). No information is required by the code-generator before 111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 112 ** generation code to query for this information are: 113 ** 114 ** sqlite3FkRequired() - Test to see if FK processing is required. 115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 116 ** 117 ** 118 ** Externally accessible module functions 119 ** -------------------------------------- 120 ** 121 ** sqlite3FkCheck() - Check for foreign key violations. 122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 123 ** sqlite3FkDelete() - Delete an FKey structure. 124 */ 125 126 /* 127 ** VDBE Calling Convention 128 ** ----------------------- 129 ** 130 ** Example: 131 ** 132 ** For the following INSERT statement: 133 ** 134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 135 ** INSERT INTO t1 VALUES(1, 2, 3.1); 136 ** 137 ** Register (x): 2 (type integer) 138 ** Register (x+1): 1 (type integer) 139 ** Register (x+2): NULL (type NULL) 140 ** Register (x+3): 3.1 (type real) 141 */ 142 143 /* 144 ** A foreign key constraint requires that the key columns in the parent 145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 146 ** Given that pParent is the parent table for foreign key constraint pFKey, 147 ** search the schema for a unique index on the parent key columns. 148 ** 149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 151 ** is set to point to the unique index. 152 ** 153 ** If the parent key consists of a single column (the foreign key constraint 154 ** is not a composite foreign key), output variable *paiCol is set to NULL. 155 ** Otherwise, it is set to point to an allocated array of size N, where 156 ** N is the number of columns in the parent key. The first element of the 157 ** array is the index of the child table column that is mapped by the FK 158 ** constraint to the parent table column stored in the left-most column 159 ** of index *ppIdx. The second element of the array is the index of the 160 ** child table column that corresponds to the second left-most column of 161 ** *ppIdx, and so on. 162 ** 163 ** If the required index cannot be found, either because: 164 ** 165 ** 1) The named parent key columns do not exist, or 166 ** 167 ** 2) The named parent key columns do exist, but are not subject to a 168 ** UNIQUE or PRIMARY KEY constraint, or 169 ** 170 ** 3) No parent key columns were provided explicitly as part of the 171 ** foreign key definition, and the parent table does not have a 172 ** PRIMARY KEY, or 173 ** 174 ** 4) No parent key columns were provided explicitly as part of the 175 ** foreign key definition, and the PRIMARY KEY of the parent table 176 ** consists of a different number of columns to the child key in 177 ** the child table. 178 ** 179 ** then non-zero is returned, and a "foreign key mismatch" error loaded 180 ** into pParse. If an OOM error occurs, non-zero is returned and the 181 ** pParse->db->mallocFailed flag is set. 182 */ 183 int sqlite3FkLocateIndex( 184 Parse *pParse, /* Parse context to store any error in */ 185 Table *pParent, /* Parent table of FK constraint pFKey */ 186 FKey *pFKey, /* Foreign key to find index for */ 187 Index **ppIdx, /* OUT: Unique index on parent table */ 188 int **paiCol /* OUT: Map of index columns in pFKey */ 189 ){ 190 Index *pIdx = 0; /* Value to return via *ppIdx */ 191 int *aiCol = 0; /* Value to return via *paiCol */ 192 int nCol = pFKey->nCol; /* Number of columns in parent key */ 193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 194 195 /* The caller is responsible for zeroing output parameters. */ 196 assert( ppIdx && *ppIdx==0 ); 197 assert( !paiCol || *paiCol==0 ); 198 assert( pParse ); 199 200 /* If this is a non-composite (single column) foreign key, check if it 201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 202 ** and *paiCol set to zero and return early. 203 ** 204 ** Otherwise, for a composite foreign key (more than one column), allocate 205 ** space for the aiCol array (returned via output parameter *paiCol). 206 ** Non-composite foreign keys do not require the aiCol array. 207 */ 208 if( nCol==1 ){ 209 /* The FK maps to the IPK if any of the following are true: 210 ** 211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 212 ** mapped to the primary key of table pParent, or 213 ** 2) The FK is explicitly mapped to a column declared as INTEGER 214 ** PRIMARY KEY. 215 */ 216 if( pParent->iPKey>=0 ){ 217 if( !zKey ) return 0; 218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zCnName, zKey) ){ 219 return 0; 220 } 221 } 222 }else if( paiCol ){ 223 assert( nCol>1 ); 224 aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int)); 225 if( !aiCol ) return 1; 226 *paiCol = aiCol; 227 } 228 229 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 230 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){ 231 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 232 ** of columns. If each indexed column corresponds to a foreign key 233 ** column of pFKey, then this index is a winner. */ 234 235 if( zKey==0 ){ 236 /* If zKey is NULL, then this foreign key is implicitly mapped to 237 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 238 ** identified by the test. */ 239 if( IsPrimaryKeyIndex(pIdx) ){ 240 if( aiCol ){ 241 int i; 242 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 243 } 244 break; 245 } 246 }else{ 247 /* If zKey is non-NULL, then this foreign key was declared to 248 ** map to an explicit list of columns in table pParent. Check if this 249 ** index matches those columns. Also, check that the index uses 250 ** the default collation sequences for each column. */ 251 int i, j; 252 for(i=0; i<nCol; i++){ 253 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 254 const char *zDfltColl; /* Def. collation for column */ 255 char *zIdxCol; /* Name of indexed column */ 256 257 if( iCol<0 ) break; /* No foreign keys against expression indexes */ 258 259 /* If the index uses a collation sequence that is different from 260 ** the default collation sequence for the column, this index is 261 ** unusable. Bail out early in this case. */ 262 zDfltColl = pParent->aCol[iCol].zCnColl; 263 if( !zDfltColl ) zDfltColl = sqlite3StrBINARY; 264 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 265 266 zIdxCol = pParent->aCol[iCol].zCnName; 267 for(j=0; j<nCol; j++){ 268 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 269 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 270 break; 271 } 272 } 273 if( j==nCol ) break; 274 } 275 if( i==nCol ) break; /* pIdx is usable */ 276 } 277 } 278 } 279 280 if( !pIdx ){ 281 if( !pParse->disableTriggers ){ 282 sqlite3ErrorMsg(pParse, 283 "foreign key mismatch - \"%w\" referencing \"%w\"", 284 pFKey->pFrom->zName, pFKey->zTo); 285 } 286 sqlite3DbFree(pParse->db, aiCol); 287 return 1; 288 } 289 290 *ppIdx = pIdx; 291 return 0; 292 } 293 294 /* 295 ** This function is called when a row is inserted into or deleted from the 296 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 297 ** on the child table of pFKey, this function is invoked twice for each row 298 ** affected - once to "delete" the old row, and then again to "insert" the 299 ** new row. 300 ** 301 ** Each time it is called, this function generates VDBE code to locate the 302 ** row in the parent table that corresponds to the row being inserted into 303 ** or deleted from the child table. If the parent row can be found, no 304 ** special action is taken. Otherwise, if the parent row can *not* be 305 ** found in the parent table: 306 ** 307 ** Operation | FK type | Action taken 308 ** -------------------------------------------------------------------------- 309 ** INSERT immediate Increment the "immediate constraint counter". 310 ** 311 ** DELETE immediate Decrement the "immediate constraint counter". 312 ** 313 ** INSERT deferred Increment the "deferred constraint counter". 314 ** 315 ** DELETE deferred Decrement the "deferred constraint counter". 316 ** 317 ** These operations are identified in the comment at the top of this file 318 ** (fkey.c) as "I.1" and "D.1". 319 */ 320 static void fkLookupParent( 321 Parse *pParse, /* Parse context */ 322 int iDb, /* Index of database housing pTab */ 323 Table *pTab, /* Parent table of FK pFKey */ 324 Index *pIdx, /* Unique index on parent key columns in pTab */ 325 FKey *pFKey, /* Foreign key constraint */ 326 int *aiCol, /* Map from parent key columns to child table columns */ 327 int regData, /* Address of array containing child table row */ 328 int nIncr, /* Increment constraint counter by this */ 329 int isIgnore /* If true, pretend pTab contains all NULL values */ 330 ){ 331 int i; /* Iterator variable */ 332 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 333 int iCur = pParse->nTab - 1; /* Cursor number to use */ 334 int iOk = sqlite3VdbeMakeLabel(pParse); /* jump here if parent key found */ 335 336 sqlite3VdbeVerifyAbortable(v, 337 (!pFKey->isDeferred 338 && !(pParse->db->flags & SQLITE_DeferFKs) 339 && !pParse->pToplevel 340 && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore); 341 342 /* If nIncr is less than zero, then check at runtime if there are any 343 ** outstanding constraints to resolve. If there are not, there is no need 344 ** to check if deleting this row resolves any outstanding violations. 345 ** 346 ** Check if any of the key columns in the child table row are NULL. If 347 ** any are, then the constraint is considered satisfied. No need to 348 ** search for a matching row in the parent table. */ 349 if( nIncr<0 ){ 350 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 351 VdbeCoverage(v); 352 } 353 for(i=0; i<pFKey->nCol; i++){ 354 int iReg = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) + regData + 1; 355 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); 356 } 357 358 if( isIgnore==0 ){ 359 if( pIdx==0 ){ 360 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 361 ** column of the parent table (table pTab). */ 362 int iMustBeInt; /* Address of MustBeInt instruction */ 363 int regTemp = sqlite3GetTempReg(pParse); 364 365 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 366 ** apply the affinity of the parent key). If this fails, then there 367 ** is no matching parent key. Before using MustBeInt, make a copy of 368 ** the value. Otherwise, the value inserted into the child key column 369 ** will have INTEGER affinity applied to it, which may not be correct. */ 370 sqlite3VdbeAddOp2(v, OP_SCopy, 371 sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[0])+1+regData, regTemp); 372 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 373 VdbeCoverage(v); 374 375 /* If the parent table is the same as the child table, and we are about 376 ** to increment the constraint-counter (i.e. this is an INSERT operation), 377 ** then check if the row being inserted matches itself. If so, do not 378 ** increment the constraint-counter. */ 379 if( pTab==pFKey->pFrom && nIncr==1 ){ 380 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); 381 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 382 } 383 384 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 385 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); 386 sqlite3VdbeGoto(v, iOk); 387 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 388 sqlite3VdbeJumpHere(v, iMustBeInt); 389 sqlite3ReleaseTempReg(pParse, regTemp); 390 }else{ 391 int nCol = pFKey->nCol; 392 int regTemp = sqlite3GetTempRange(pParse, nCol); 393 int regRec = sqlite3GetTempReg(pParse); 394 395 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 396 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 397 for(i=0; i<nCol; i++){ 398 sqlite3VdbeAddOp2(v, OP_Copy, 399 sqlite3TableColumnToStorage(pFKey->pFrom, aiCol[i])+1+regData, 400 regTemp+i); 401 } 402 403 /* If the parent table is the same as the child table, and we are about 404 ** to increment the constraint-counter (i.e. this is an INSERT operation), 405 ** then check if the row being inserted matches itself. If so, do not 406 ** increment the constraint-counter. 407 ** 408 ** If any of the parent-key values are NULL, then the row cannot match 409 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 410 ** of the parent-key values are NULL (at this point it is known that 411 ** none of the child key values are). 412 */ 413 if( pTab==pFKey->pFrom && nIncr==1 ){ 414 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 415 for(i=0; i<nCol; i++){ 416 int iChild = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) 417 +1+regData; 418 int iParent = 1+regData; 419 iParent += sqlite3TableColumnToStorage(pIdx->pTable, 420 pIdx->aiColumn[i]); 421 assert( pIdx->aiColumn[i]>=0 ); 422 assert( aiCol[i]!=pTab->iPKey ); 423 if( pIdx->aiColumn[i]==pTab->iPKey ){ 424 /* The parent key is a composite key that includes the IPK column */ 425 iParent = regData; 426 } 427 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); 428 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 429 } 430 sqlite3VdbeGoto(v, iOk); 431 } 432 433 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec, 434 sqlite3IndexAffinityStr(pParse->db,pIdx), nCol); 435 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v); 436 437 sqlite3ReleaseTempReg(pParse, regRec); 438 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 439 } 440 } 441 442 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) 443 && !pParse->pToplevel 444 && !pParse->isMultiWrite 445 ){ 446 /* Special case: If this is an INSERT statement that will insert exactly 447 ** one row into the table, raise a constraint immediately instead of 448 ** incrementing a counter. This is necessary as the VM code is being 449 ** generated for will not open a statement transaction. */ 450 assert( nIncr==1 ); 451 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 452 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 453 }else{ 454 if( nIncr>0 && pFKey->isDeferred==0 ){ 455 sqlite3MayAbort(pParse); 456 } 457 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 458 } 459 460 sqlite3VdbeResolveLabel(v, iOk); 461 sqlite3VdbeAddOp1(v, OP_Close, iCur); 462 } 463 464 465 /* 466 ** Return an Expr object that refers to a memory register corresponding 467 ** to column iCol of table pTab. 468 ** 469 ** regBase is the first of an array of register that contains the data 470 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first 471 ** column. regBase+2 holds the second column, and so forth. 472 */ 473 static Expr *exprTableRegister( 474 Parse *pParse, /* Parsing and code generating context */ 475 Table *pTab, /* The table whose content is at r[regBase]... */ 476 int regBase, /* Contents of table pTab */ 477 i16 iCol /* Which column of pTab is desired */ 478 ){ 479 Expr *pExpr; 480 Column *pCol; 481 const char *zColl; 482 sqlite3 *db = pParse->db; 483 484 pExpr = sqlite3Expr(db, TK_REGISTER, 0); 485 if( pExpr ){ 486 if( iCol>=0 && iCol!=pTab->iPKey ){ 487 pCol = &pTab->aCol[iCol]; 488 pExpr->iTable = regBase + sqlite3TableColumnToStorage(pTab,iCol) + 1; 489 pExpr->affExpr = pCol->affinity; 490 zColl = pCol->zCnColl; 491 if( zColl==0 ) zColl = db->pDfltColl->zName; 492 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); 493 }else{ 494 pExpr->iTable = regBase; 495 pExpr->affExpr = SQLITE_AFF_INTEGER; 496 } 497 } 498 return pExpr; 499 } 500 501 /* 502 ** Return an Expr object that refers to column iCol of table pTab which 503 ** has cursor iCur. 504 */ 505 static Expr *exprTableColumn( 506 sqlite3 *db, /* The database connection */ 507 Table *pTab, /* The table whose column is desired */ 508 int iCursor, /* The open cursor on the table */ 509 i16 iCol /* The column that is wanted */ 510 ){ 511 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); 512 if( pExpr ){ 513 pExpr->y.pTab = pTab; 514 pExpr->iTable = iCursor; 515 pExpr->iColumn = iCol; 516 } 517 return pExpr; 518 } 519 520 /* 521 ** This function is called to generate code executed when a row is deleted 522 ** from the parent table of foreign key constraint pFKey and, if pFKey is 523 ** deferred, when a row is inserted into the same table. When generating 524 ** code for an SQL UPDATE operation, this function may be called twice - 525 ** once to "delete" the old row and once to "insert" the new row. 526 ** 527 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease 528 ** the number of FK violations in the db) or +1 when deleting one (as this 529 ** may increase the number of FK constraint problems). 530 ** 531 ** The code generated by this function scans through the rows in the child 532 ** table that correspond to the parent table row being deleted or inserted. 533 ** For each child row found, one of the following actions is taken: 534 ** 535 ** Operation | FK type | Action taken 536 ** -------------------------------------------------------------------------- 537 ** DELETE immediate Increment the "immediate constraint counter". 538 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 539 ** throw a "FOREIGN KEY constraint failed" exception. 540 ** 541 ** INSERT immediate Decrement the "immediate constraint counter". 542 ** 543 ** DELETE deferred Increment the "deferred constraint counter". 544 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 545 ** throw a "FOREIGN KEY constraint failed" exception. 546 ** 547 ** INSERT deferred Decrement the "deferred constraint counter". 548 ** 549 ** These operations are identified in the comment at the top of this file 550 ** (fkey.c) as "I.2" and "D.2". 551 */ 552 static void fkScanChildren( 553 Parse *pParse, /* Parse context */ 554 SrcList *pSrc, /* The child table to be scanned */ 555 Table *pTab, /* The parent table */ 556 Index *pIdx, /* Index on parent covering the foreign key */ 557 FKey *pFKey, /* The foreign key linking pSrc to pTab */ 558 int *aiCol, /* Map from pIdx cols to child table cols */ 559 int regData, /* Parent row data starts here */ 560 int nIncr /* Amount to increment deferred counter by */ 561 ){ 562 sqlite3 *db = pParse->db; /* Database handle */ 563 int i; /* Iterator variable */ 564 Expr *pWhere = 0; /* WHERE clause to scan with */ 565 NameContext sNameContext; /* Context used to resolve WHERE clause */ 566 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 567 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 568 Vdbe *v = sqlite3GetVdbe(pParse); 569 570 assert( pIdx==0 || pIdx->pTable==pTab ); 571 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); 572 assert( pIdx!=0 || pFKey->nCol==1 ); 573 assert( pIdx!=0 || HasRowid(pTab) ); 574 575 if( nIncr<0 ){ 576 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 577 VdbeCoverage(v); 578 } 579 580 /* Create an Expr object representing an SQL expression like: 581 ** 582 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 583 ** 584 ** The collation sequence used for the comparison should be that of 585 ** the parent key columns. The affinity of the parent key column should 586 ** be applied to each child key value before the comparison takes place. 587 */ 588 for(i=0; i<pFKey->nCol; i++){ 589 Expr *pLeft; /* Value from parent table row */ 590 Expr *pRight; /* Column ref to child table */ 591 Expr *pEq; /* Expression (pLeft = pRight) */ 592 i16 iCol; /* Index of column in child table */ 593 const char *zCol; /* Name of column in child table */ 594 595 iCol = pIdx ? pIdx->aiColumn[i] : -1; 596 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 597 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 598 assert( iCol>=0 ); 599 zCol = pFKey->pFrom->aCol[iCol].zCnName; 600 pRight = sqlite3Expr(db, TK_ID, zCol); 601 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); 602 pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); 603 } 604 605 /* If the child table is the same as the parent table, then add terms 606 ** to the WHERE clause that prevent this entry from being scanned. 607 ** The added WHERE clause terms are like this: 608 ** 609 ** $current_rowid!=rowid 610 ** NOT( $current_a==a AND $current_b==b AND ... ) 611 ** 612 ** The first form is used for rowid tables. The second form is used 613 ** for WITHOUT ROWID tables. In the second form, the *parent* key is 614 ** (a,b,...). Either the parent or primary key could be used to 615 ** uniquely identify the current row, but the parent key is more convenient 616 ** as the required values have already been loaded into registers 617 ** by the caller. 618 */ 619 if( pTab==pFKey->pFrom && nIncr>0 ){ 620 Expr *pNe; /* Expression (pLeft != pRight) */ 621 Expr *pLeft; /* Value from parent table row */ 622 Expr *pRight; /* Column ref to child table */ 623 if( HasRowid(pTab) ){ 624 pLeft = exprTableRegister(pParse, pTab, regData, -1); 625 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); 626 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight); 627 }else{ 628 Expr *pEq, *pAll = 0; 629 assert( pIdx!=0 ); 630 for(i=0; i<pIdx->nKeyCol; i++){ 631 i16 iCol = pIdx->aiColumn[i]; 632 assert( iCol>=0 ); 633 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 634 pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zCnName); 635 pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight); 636 pAll = sqlite3ExprAnd(pParse, pAll, pEq); 637 } 638 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0); 639 } 640 pWhere = sqlite3ExprAnd(pParse, pWhere, pNe); 641 } 642 643 /* Resolve the references in the WHERE clause. */ 644 memset(&sNameContext, 0, sizeof(NameContext)); 645 sNameContext.pSrcList = pSrc; 646 sNameContext.pParse = pParse; 647 sqlite3ResolveExprNames(&sNameContext, pWhere); 648 649 /* Create VDBE to loop through the entries in pSrc that match the WHERE 650 ** clause. For each row found, increment either the deferred or immediate 651 ** foreign key constraint counter. */ 652 if( pParse->nErr==0 ){ 653 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); 654 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 655 if( pWInfo ){ 656 sqlite3WhereEnd(pWInfo); 657 } 658 } 659 660 /* Clean up the WHERE clause constructed above. */ 661 sqlite3ExprDelete(db, pWhere); 662 if( iFkIfZero ){ 663 sqlite3VdbeJumpHereOrPopInst(v, iFkIfZero); 664 } 665 } 666 667 /* 668 ** This function returns a linked list of FKey objects (connected by 669 ** FKey.pNextTo) holding all children of table pTab. For example, 670 ** given the following schema: 671 ** 672 ** CREATE TABLE t1(a PRIMARY KEY); 673 ** CREATE TABLE t2(b REFERENCES t1(a); 674 ** 675 ** Calling this function with table "t1" as an argument returns a pointer 676 ** to the FKey structure representing the foreign key constraint on table 677 ** "t2". Calling this function with "t2" as the argument would return a 678 ** NULL pointer (as there are no FK constraints for which t2 is the parent 679 ** table). 680 */ 681 FKey *sqlite3FkReferences(Table *pTab){ 682 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName); 683 } 684 685 /* 686 ** The second argument is a Trigger structure allocated by the 687 ** fkActionTrigger() routine. This function deletes the Trigger structure 688 ** and all of its sub-components. 689 ** 690 ** The Trigger structure or any of its sub-components may be allocated from 691 ** the lookaside buffer belonging to database handle dbMem. 692 */ 693 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 694 if( p ){ 695 TriggerStep *pStep = p->step_list; 696 sqlite3ExprDelete(dbMem, pStep->pWhere); 697 sqlite3ExprListDelete(dbMem, pStep->pExprList); 698 sqlite3SelectDelete(dbMem, pStep->pSelect); 699 sqlite3ExprDelete(dbMem, p->pWhen); 700 sqlite3DbFree(dbMem, p); 701 } 702 } 703 704 /* 705 ** This function is called to generate code that runs when table pTab is 706 ** being dropped from the database. The SrcList passed as the second argument 707 ** to this function contains a single entry guaranteed to resolve to 708 ** table pTab. 709 ** 710 ** Normally, no code is required. However, if either 711 ** 712 ** (a) The table is the parent table of a FK constraint, or 713 ** (b) The table is the child table of a deferred FK constraint and it is 714 ** determined at runtime that there are outstanding deferred FK 715 ** constraint violations in the database, 716 ** 717 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 718 ** the table from the database. Triggers are disabled while running this 719 ** DELETE, but foreign key actions are not. 720 */ 721 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 722 sqlite3 *db = pParse->db; 723 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) ){ 724 int iSkip = 0; 725 Vdbe *v = sqlite3GetVdbe(pParse); 726 727 assert( v ); /* VDBE has already been allocated */ 728 assert( !IsView(pTab) ); /* Not a view */ 729 assert( !IsVirtual(pTab) ); 730 if( sqlite3FkReferences(pTab)==0 ){ 731 /* Search for a deferred foreign key constraint for which this table 732 ** is the child table. If one cannot be found, return without 733 ** generating any VDBE code. If one can be found, then jump over 734 ** the entire DELETE if there are no outstanding deferred constraints 735 ** when this statement is run. */ 736 FKey *p; 737 for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ 738 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; 739 } 740 if( !p ) return; 741 iSkip = sqlite3VdbeMakeLabel(pParse); 742 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); 743 } 744 745 pParse->disableTriggers = 1; 746 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0); 747 pParse->disableTriggers = 0; 748 749 /* If the DELETE has generated immediate foreign key constraint 750 ** violations, halt the VDBE and return an error at this point, before 751 ** any modifications to the schema are made. This is because statement 752 ** transactions are not able to rollback schema changes. 753 ** 754 ** If the SQLITE_DeferFKs flag is set, then this is not required, as 755 ** the statement transaction will not be rolled back even if FK 756 ** constraints are violated. 757 */ 758 if( (db->flags & SQLITE_DeferFKs)==0 ){ 759 sqlite3VdbeVerifyAbortable(v, OE_Abort); 760 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 761 VdbeCoverage(v); 762 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 763 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 764 } 765 766 if( iSkip ){ 767 sqlite3VdbeResolveLabel(v, iSkip); 768 } 769 } 770 } 771 772 773 /* 774 ** The second argument points to an FKey object representing a foreign key 775 ** for which pTab is the child table. An UPDATE statement against pTab 776 ** is currently being processed. For each column of the table that is 777 ** actually updated, the corresponding element in the aChange[] array 778 ** is zero or greater (if a column is unmodified the corresponding element 779 ** is set to -1). If the rowid column is modified by the UPDATE statement 780 ** the bChngRowid argument is non-zero. 781 ** 782 ** This function returns true if any of the columns that are part of the 783 ** child key for FK constraint *p are modified. 784 */ 785 static int fkChildIsModified( 786 Table *pTab, /* Table being updated */ 787 FKey *p, /* Foreign key for which pTab is the child */ 788 int *aChange, /* Array indicating modified columns */ 789 int bChngRowid /* True if rowid is modified by this update */ 790 ){ 791 int i; 792 for(i=0; i<p->nCol; i++){ 793 int iChildKey = p->aCol[i].iFrom; 794 if( aChange[iChildKey]>=0 ) return 1; 795 if( iChildKey==pTab->iPKey && bChngRowid ) return 1; 796 } 797 return 0; 798 } 799 800 /* 801 ** The second argument points to an FKey object representing a foreign key 802 ** for which pTab is the parent table. An UPDATE statement against pTab 803 ** is currently being processed. For each column of the table that is 804 ** actually updated, the corresponding element in the aChange[] array 805 ** is zero or greater (if a column is unmodified the corresponding element 806 ** is set to -1). If the rowid column is modified by the UPDATE statement 807 ** the bChngRowid argument is non-zero. 808 ** 809 ** This function returns true if any of the columns that are part of the 810 ** parent key for FK constraint *p are modified. 811 */ 812 static int fkParentIsModified( 813 Table *pTab, 814 FKey *p, 815 int *aChange, 816 int bChngRowid 817 ){ 818 int i; 819 for(i=0; i<p->nCol; i++){ 820 char *zKey = p->aCol[i].zCol; 821 int iKey; 822 for(iKey=0; iKey<pTab->nCol; iKey++){ 823 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ 824 Column *pCol = &pTab->aCol[iKey]; 825 if( zKey ){ 826 if( 0==sqlite3StrICmp(pCol->zCnName, zKey) ) return 1; 827 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ 828 return 1; 829 } 830 } 831 } 832 } 833 return 0; 834 } 835 836 /* 837 ** Return true if the parser passed as the first argument is being 838 ** used to code a trigger that is really a "SET NULL" action belonging 839 ** to trigger pFKey. 840 */ 841 static int isSetNullAction(Parse *pParse, FKey *pFKey){ 842 Parse *pTop = sqlite3ParseToplevel(pParse); 843 if( pTop->pTriggerPrg ){ 844 Trigger *p = pTop->pTriggerPrg->pTrigger; 845 if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull) 846 || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull) 847 ){ 848 return 1; 849 } 850 } 851 return 0; 852 } 853 854 /* 855 ** This function is called when inserting, deleting or updating a row of 856 ** table pTab to generate VDBE code to perform foreign key constraint 857 ** processing for the operation. 858 ** 859 ** For a DELETE operation, parameter regOld is passed the index of the 860 ** first register in an array of (pTab->nCol+1) registers containing the 861 ** rowid of the row being deleted, followed by each of the column values 862 ** of the row being deleted, from left to right. Parameter regNew is passed 863 ** zero in this case. 864 ** 865 ** For an INSERT operation, regOld is passed zero and regNew is passed the 866 ** first register of an array of (pTab->nCol+1) registers containing the new 867 ** row data. 868 ** 869 ** For an UPDATE operation, this function is called twice. Once before 870 ** the original record is deleted from the table using the calling convention 871 ** described for DELETE. Then again after the original record is deleted 872 ** but before the new record is inserted using the INSERT convention. 873 */ 874 void sqlite3FkCheck( 875 Parse *pParse, /* Parse context */ 876 Table *pTab, /* Row is being deleted from this table */ 877 int regOld, /* Previous row data is stored here */ 878 int regNew, /* New row data is stored here */ 879 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 880 int bChngRowid /* True if rowid is UPDATEd */ 881 ){ 882 sqlite3 *db = pParse->db; /* Database handle */ 883 FKey *pFKey; /* Used to iterate through FKs */ 884 int iDb; /* Index of database containing pTab */ 885 const char *zDb; /* Name of database containing pTab */ 886 int isIgnoreErrors = pParse->disableTriggers; 887 888 /* Exactly one of regOld and regNew should be non-zero. */ 889 assert( (regOld==0)!=(regNew==0) ); 890 891 /* If foreign-keys are disabled, this function is a no-op. */ 892 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 893 894 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 895 zDb = db->aDb[iDb].zDbSName; 896 897 /* Loop through all the foreign key constraints for which pTab is the 898 ** child table (the table that the foreign key definition is part of). */ 899 assert( !IsVirtual(pTab) ); 900 for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ 901 Table *pTo; /* Parent table of foreign key pFKey */ 902 Index *pIdx = 0; /* Index on key columns in pTo */ 903 int *aiFree = 0; 904 int *aiCol; 905 int iCol; 906 int i; 907 int bIgnore = 0; 908 909 if( aChange 910 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 911 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 912 ){ 913 continue; 914 } 915 916 /* Find the parent table of this foreign key. Also find a unique index 917 ** on the parent key columns in the parent table. If either of these 918 ** schema items cannot be located, set an error in pParse and return 919 ** early. */ 920 if( pParse->disableTriggers ){ 921 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 922 }else{ 923 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 924 } 925 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 926 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 927 if( !isIgnoreErrors || db->mallocFailed ) return; 928 if( pTo==0 ){ 929 /* If isIgnoreErrors is true, then a table is being dropped. In this 930 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 931 ** before actually dropping it in order to check FK constraints. 932 ** If the parent table of an FK constraint on the current table is 933 ** missing, behave as if it is empty. i.e. decrement the relevant 934 ** FK counter for each row of the current table with non-NULL keys. 935 */ 936 Vdbe *v = sqlite3GetVdbe(pParse); 937 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 938 for(i=0; i<pFKey->nCol; i++){ 939 int iFromCol, iReg; 940 iFromCol = pFKey->aCol[i].iFrom; 941 iReg = sqlite3TableColumnToStorage(pFKey->pFrom,iFromCol) + regOld+1; 942 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); 943 } 944 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 945 } 946 continue; 947 } 948 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 949 950 if( aiFree ){ 951 aiCol = aiFree; 952 }else{ 953 iCol = pFKey->aCol[0].iFrom; 954 aiCol = &iCol; 955 } 956 for(i=0; i<pFKey->nCol; i++){ 957 if( aiCol[i]==pTab->iPKey ){ 958 aiCol[i] = -1; 959 } 960 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 961 #ifndef SQLITE_OMIT_AUTHORIZATION 962 /* Request permission to read the parent key columns. If the 963 ** authorization callback returns SQLITE_IGNORE, behave as if any 964 ** values read from the parent table are NULL. */ 965 if( db->xAuth ){ 966 int rcauth; 967 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zCnName; 968 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 969 bIgnore = (rcauth==SQLITE_IGNORE); 970 } 971 #endif 972 } 973 974 /* Take a shared-cache advisory read-lock on the parent table. Allocate 975 ** a cursor to use to search the unique index on the parent key columns 976 ** in the parent table. */ 977 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 978 pParse->nTab++; 979 980 if( regOld!=0 ){ 981 /* A row is being removed from the child table. Search for the parent. 982 ** If the parent does not exist, removing the child row resolves an 983 ** outstanding foreign key constraint violation. */ 984 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore); 985 } 986 if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){ 987 /* A row is being added to the child table. If a parent row cannot 988 ** be found, adding the child row has violated the FK constraint. 989 ** 990 ** If this operation is being performed as part of a trigger program 991 ** that is actually a "SET NULL" action belonging to this very 992 ** foreign key, then omit this scan altogether. As all child key 993 ** values are guaranteed to be NULL, it is not possible for adding 994 ** this row to cause an FK violation. */ 995 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore); 996 } 997 998 sqlite3DbFree(db, aiFree); 999 } 1000 1001 /* Loop through all the foreign key constraints that refer to this table. 1002 ** (the "child" constraints) */ 1003 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1004 Index *pIdx = 0; /* Foreign key index for pFKey */ 1005 SrcList *pSrc; 1006 int *aiCol = 0; 1007 1008 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ 1009 continue; 1010 } 1011 1012 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 1013 && !pParse->pToplevel && !pParse->isMultiWrite 1014 ){ 1015 assert( regOld==0 && regNew!=0 ); 1016 /* Inserting a single row into a parent table cannot cause (or fix) 1017 ** an immediate foreign key violation. So do nothing in this case. */ 1018 continue; 1019 } 1020 1021 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 1022 if( !isIgnoreErrors || db->mallocFailed ) return; 1023 continue; 1024 } 1025 assert( aiCol || pFKey->nCol==1 ); 1026 1027 /* Create a SrcList structure containing the child table. We need the 1028 ** child table as a SrcList for sqlite3WhereBegin() */ 1029 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1030 if( pSrc ){ 1031 SrcItem *pItem = pSrc->a; 1032 pItem->pTab = pFKey->pFrom; 1033 pItem->zName = pFKey->pFrom->zName; 1034 pItem->pTab->nTabRef++; 1035 pItem->iCursor = pParse->nTab++; 1036 1037 if( regNew!=0 ){ 1038 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 1039 } 1040 if( regOld!=0 ){ 1041 int eAction = pFKey->aAction[aChange!=0]; 1042 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 1043 /* If this is a deferred FK constraint, or a CASCADE or SET NULL 1044 ** action applies, then any foreign key violations caused by 1045 ** removing the parent key will be rectified by the action trigger. 1046 ** So do not set the "may-abort" flag in this case. 1047 ** 1048 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the 1049 ** may-abort flag will eventually be set on this statement anyway 1050 ** (when this function is called as part of processing the UPDATE 1051 ** within the action trigger). 1052 ** 1053 ** Note 2: At first glance it may seem like SQLite could simply omit 1054 ** all OP_FkCounter related scans when either CASCADE or SET NULL 1055 ** applies. The trouble starts if the CASCADE or SET NULL action 1056 ** trigger causes other triggers or action rules attached to the 1057 ** child table to fire. In these cases the fk constraint counters 1058 ** might be set incorrectly if any OP_FkCounter related scans are 1059 ** omitted. */ 1060 if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){ 1061 sqlite3MayAbort(pParse); 1062 } 1063 } 1064 pItem->zName = 0; 1065 sqlite3SrcListDelete(db, pSrc); 1066 } 1067 sqlite3DbFree(db, aiCol); 1068 } 1069 } 1070 1071 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 1072 1073 /* 1074 ** This function is called before generating code to update or delete a 1075 ** row contained in table pTab. 1076 */ 1077 u32 sqlite3FkOldmask( 1078 Parse *pParse, /* Parse context */ 1079 Table *pTab /* Table being modified */ 1080 ){ 1081 u32 mask = 0; 1082 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1083 FKey *p; 1084 int i; 1085 assert( !IsVirtual(pTab) ); 1086 for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ 1087 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 1088 } 1089 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1090 Index *pIdx = 0; 1091 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); 1092 if( pIdx ){ 1093 for(i=0; i<pIdx->nKeyCol; i++){ 1094 assert( pIdx->aiColumn[i]>=0 ); 1095 mask |= COLUMN_MASK(pIdx->aiColumn[i]); 1096 } 1097 } 1098 } 1099 } 1100 return mask; 1101 } 1102 1103 1104 /* 1105 ** This function is called before generating code to update or delete a 1106 ** row contained in table pTab. If the operation is a DELETE, then 1107 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 1108 ** to an array of size N, where N is the number of columns in table pTab. 1109 ** If the i'th column is not modified by the UPDATE, then the corresponding 1110 ** entry in the aChange[] array is set to -1. If the column is modified, 1111 ** the value is 0 or greater. Parameter chngRowid is set to true if the 1112 ** UPDATE statement modifies the rowid fields of the table. 1113 ** 1114 ** If any foreign key processing will be required, this function returns 1115 ** non-zero. If there is no foreign key related processing, this function 1116 ** returns zero. 1117 ** 1118 ** For an UPDATE, this function returns 2 if: 1119 ** 1120 ** * There are any FKs for which pTab is the child and the parent table 1121 ** and any FK processing at all is required (even of a different FK), or 1122 ** 1123 ** * the UPDATE modifies one or more parent keys for which the action is 1124 ** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL). 1125 ** 1126 ** Or, assuming some other foreign key processing is required, 1. 1127 */ 1128 int sqlite3FkRequired( 1129 Parse *pParse, /* Parse context */ 1130 Table *pTab, /* Table being modified */ 1131 int *aChange, /* Non-NULL for UPDATE operations */ 1132 int chngRowid /* True for UPDATE that affects rowid */ 1133 ){ 1134 int eRet = 1; /* Value to return if bHaveFK is true */ 1135 int bHaveFK = 0; /* If FK processing is required */ 1136 if( pParse->db->flags&SQLITE_ForeignKeys && !IsVirtual(pTab) ){ 1137 if( !aChange ){ 1138 /* A DELETE operation. Foreign key processing is required if the 1139 ** table in question is either the child or parent table for any 1140 ** foreign key constraint. */ 1141 bHaveFK = (sqlite3FkReferences(pTab) || pTab->u.tab.pFKey); 1142 }else{ 1143 /* This is an UPDATE. Foreign key processing is only required if the 1144 ** operation modifies one or more child or parent key columns. */ 1145 FKey *p; 1146 1147 /* Check if any child key columns are being modified. */ 1148 for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ 1149 if( fkChildIsModified(pTab, p, aChange, chngRowid) ){ 1150 if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) eRet = 2; 1151 bHaveFK = 1; 1152 } 1153 } 1154 1155 /* Check if any parent key columns are being modified. */ 1156 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1157 if( fkParentIsModified(pTab, p, aChange, chngRowid) ){ 1158 if( p->aAction[1]!=OE_None ) return 2; 1159 bHaveFK = 1; 1160 } 1161 } 1162 } 1163 } 1164 return bHaveFK ? eRet : 0; 1165 } 1166 1167 /* 1168 ** This function is called when an UPDATE or DELETE operation is being 1169 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 1170 ** If the current operation is an UPDATE, then the pChanges parameter is 1171 ** passed a pointer to the list of columns being modified. If it is a 1172 ** DELETE, pChanges is passed a NULL pointer. 1173 ** 1174 ** It returns a pointer to a Trigger structure containing a trigger 1175 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 1176 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is 1177 ** returned (these actions require no special handling by the triggers 1178 ** sub-system, code for them is created by fkScanChildren()). 1179 ** 1180 ** For example, if pFKey is the foreign key and pTab is table "p" in 1181 ** the following schema: 1182 ** 1183 ** CREATE TABLE p(pk PRIMARY KEY); 1184 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 1185 ** 1186 ** then the returned trigger structure is equivalent to: 1187 ** 1188 ** CREATE TRIGGER ... DELETE ON p BEGIN 1189 ** DELETE FROM c WHERE ck = old.pk; 1190 ** END; 1191 ** 1192 ** The returned pointer is cached as part of the foreign key object. It 1193 ** is eventually freed along with the rest of the foreign key object by 1194 ** sqlite3FkDelete(). 1195 */ 1196 static Trigger *fkActionTrigger( 1197 Parse *pParse, /* Parse context */ 1198 Table *pTab, /* Table being updated or deleted from */ 1199 FKey *pFKey, /* Foreign key to get action for */ 1200 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 1201 ){ 1202 sqlite3 *db = pParse->db; /* Database handle */ 1203 int action; /* One of OE_None, OE_Cascade etc. */ 1204 Trigger *pTrigger; /* Trigger definition to return */ 1205 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 1206 1207 action = pFKey->aAction[iAction]; 1208 if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){ 1209 return 0; 1210 } 1211 pTrigger = pFKey->apTrigger[iAction]; 1212 1213 if( action!=OE_None && !pTrigger ){ 1214 char const *zFrom; /* Name of child table */ 1215 int nFrom; /* Length in bytes of zFrom */ 1216 Index *pIdx = 0; /* Parent key index for this FK */ 1217 int *aiCol = 0; /* child table cols -> parent key cols */ 1218 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 1219 Expr *pWhere = 0; /* WHERE clause of trigger step */ 1220 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 1221 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 1222 int i; /* Iterator variable */ 1223 Expr *pWhen = 0; /* WHEN clause for the trigger */ 1224 1225 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 1226 assert( aiCol || pFKey->nCol==1 ); 1227 1228 for(i=0; i<pFKey->nCol; i++){ 1229 Token tOld = { "old", 3 }; /* Literal "old" token */ 1230 Token tNew = { "new", 3 }; /* Literal "new" token */ 1231 Token tFromCol; /* Name of column in child table */ 1232 Token tToCol; /* Name of column in parent table */ 1233 int iFromCol; /* Idx of column in child table */ 1234 Expr *pEq; /* tFromCol = OLD.tToCol */ 1235 1236 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 1237 assert( iFromCol>=0 ); 1238 assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) ); 1239 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 1240 sqlite3TokenInit(&tToCol, 1241 pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zCnName); 1242 sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zCnName); 1243 1244 /* Create the expression "OLD.zToCol = zFromCol". It is important 1245 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 1246 ** that the affinity and collation sequence associated with the 1247 ** parent table are used for the comparison. */ 1248 pEq = sqlite3PExpr(pParse, TK_EQ, 1249 sqlite3PExpr(pParse, TK_DOT, 1250 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1251 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 1252 sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) 1253 ); 1254 pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); 1255 1256 /* For ON UPDATE, construct the next term of the WHEN clause. 1257 ** The final WHEN clause will be like this: 1258 ** 1259 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 1260 */ 1261 if( pChanges ){ 1262 pEq = sqlite3PExpr(pParse, TK_IS, 1263 sqlite3PExpr(pParse, TK_DOT, 1264 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1265 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 1266 sqlite3PExpr(pParse, TK_DOT, 1267 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1268 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)) 1269 ); 1270 pWhen = sqlite3ExprAnd(pParse, pWhen, pEq); 1271 } 1272 1273 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 1274 Expr *pNew; 1275 if( action==OE_Cascade ){ 1276 pNew = sqlite3PExpr(pParse, TK_DOT, 1277 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1278 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)); 1279 }else if( action==OE_SetDflt ){ 1280 Column *pCol = pFKey->pFrom->aCol + iFromCol; 1281 Expr *pDflt; 1282 if( pCol->colFlags & COLFLAG_GENERATED ){ 1283 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1284 testcase( pCol->colFlags & COLFLAG_STORED ); 1285 pDflt = 0; 1286 }else{ 1287 pDflt = sqlite3ColumnExpr(pFKey->pFrom, pCol); 1288 } 1289 if( pDflt ){ 1290 pNew = sqlite3ExprDup(db, pDflt, 0); 1291 }else{ 1292 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 1293 } 1294 }else{ 1295 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 1296 } 1297 pList = sqlite3ExprListAppend(pParse, pList, pNew); 1298 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 1299 } 1300 } 1301 sqlite3DbFree(db, aiCol); 1302 1303 zFrom = pFKey->pFrom->zName; 1304 nFrom = sqlite3Strlen30(zFrom); 1305 1306 if( action==OE_Restrict ){ 1307 Token tFrom; 1308 Expr *pRaise; 1309 1310 tFrom.z = zFrom; 1311 tFrom.n = nFrom; 1312 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); 1313 if( pRaise ){ 1314 pRaise->affExpr = OE_Abort; 1315 } 1316 pSelect = sqlite3SelectNew(pParse, 1317 sqlite3ExprListAppend(pParse, 0, pRaise), 1318 sqlite3SrcListAppend(pParse, 0, &tFrom, 0), 1319 pWhere, 1320 0, 0, 0, 0, 0 1321 ); 1322 pWhere = 0; 1323 } 1324 1325 /* Disable lookaside memory allocation */ 1326 DisableLookaside; 1327 1328 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 1329 sizeof(Trigger) + /* struct Trigger */ 1330 sizeof(TriggerStep) + /* Single step in trigger program */ 1331 nFrom + 1 /* Space for pStep->zTarget */ 1332 ); 1333 if( pTrigger ){ 1334 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 1335 pStep->zTarget = (char *)&pStep[1]; 1336 memcpy((char *)pStep->zTarget, zFrom, nFrom); 1337 1338 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 1339 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 1340 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1341 if( pWhen ){ 1342 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0); 1343 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 1344 } 1345 } 1346 1347 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 1348 EnableLookaside; 1349 1350 sqlite3ExprDelete(db, pWhere); 1351 sqlite3ExprDelete(db, pWhen); 1352 sqlite3ExprListDelete(db, pList); 1353 sqlite3SelectDelete(db, pSelect); 1354 if( db->mallocFailed==1 ){ 1355 fkTriggerDelete(db, pTrigger); 1356 return 0; 1357 } 1358 assert( pStep!=0 ); 1359 assert( pTrigger!=0 ); 1360 1361 switch( action ){ 1362 case OE_Restrict: 1363 pStep->op = TK_SELECT; 1364 break; 1365 case OE_Cascade: 1366 if( !pChanges ){ 1367 pStep->op = TK_DELETE; 1368 break; 1369 } 1370 /* no break */ deliberate_fall_through 1371 default: 1372 pStep->op = TK_UPDATE; 1373 } 1374 pStep->pTrig = pTrigger; 1375 pTrigger->pSchema = pTab->pSchema; 1376 pTrigger->pTabSchema = pTab->pSchema; 1377 pFKey->apTrigger[iAction] = pTrigger; 1378 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 1379 } 1380 1381 return pTrigger; 1382 } 1383 1384 /* 1385 ** This function is called when deleting or updating a row to implement 1386 ** any required CASCADE, SET NULL or SET DEFAULT actions. 1387 */ 1388 void sqlite3FkActions( 1389 Parse *pParse, /* Parse context */ 1390 Table *pTab, /* Table being updated or deleted from */ 1391 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 1392 int regOld, /* Address of array containing old row */ 1393 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 1394 int bChngRowid /* True if rowid is UPDATEd */ 1395 ){ 1396 /* If foreign-key support is enabled, iterate through all FKs that 1397 ** refer to table pTab. If there is an action associated with the FK 1398 ** for this operation (either update or delete), invoke the associated 1399 ** trigger sub-program. */ 1400 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1401 FKey *pFKey; /* Iterator variable */ 1402 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1403 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ 1404 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); 1405 if( pAct ){ 1406 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); 1407 } 1408 } 1409 } 1410 } 1411 } 1412 1413 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 1414 1415 /* 1416 ** Free all memory associated with foreign key definitions attached to 1417 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 1418 ** hash table. 1419 */ 1420 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 1421 FKey *pFKey; /* Iterator variable */ 1422 FKey *pNext; /* Copy of pFKey->pNextFrom */ 1423 1424 assert( !IsVirtual(pTab) ); 1425 for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pNext){ 1426 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 1427 1428 /* Remove the FK from the fkeyHash hash table. */ 1429 if( !db || db->pnBytesFreed==0 ){ 1430 if( pFKey->pPrevTo ){ 1431 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 1432 }else{ 1433 void *p = (void *)pFKey->pNextTo; 1434 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); 1435 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p); 1436 } 1437 if( pFKey->pNextTo ){ 1438 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 1439 } 1440 } 1441 1442 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 1443 ** classified as either immediate or deferred. 1444 */ 1445 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 1446 1447 /* Delete any triggers created to implement actions for this FK. */ 1448 #ifndef SQLITE_OMIT_TRIGGER 1449 fkTriggerDelete(db, pFKey->apTrigger[0]); 1450 fkTriggerDelete(db, pFKey->apTrigger[1]); 1451 #endif 1452 1453 pNext = pFKey->pNextFrom; 1454 sqlite3DbFree(db, pFKey); 1455 } 1456 } 1457 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ 1458