1 /* 2 ** 3 ** The author disclaims copyright to this source code. In place of 4 ** a legal notice, here is a blessing: 5 ** 6 ** May you do good and not evil. 7 ** May you find forgiveness for yourself and forgive others. 8 ** May you share freely, never taking more than you give. 9 ** 10 ************************************************************************* 11 ** This file contains code used by the compiler to add foreign key 12 ** support to compiled SQL statements. 13 */ 14 #include "sqliteInt.h" 15 16 #ifndef SQLITE_OMIT_FOREIGN_KEY 17 #ifndef SQLITE_OMIT_TRIGGER 18 19 /* 20 ** Deferred and Immediate FKs 21 ** -------------------------- 22 ** 23 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 24 ** If an immediate foreign key constraint is violated, 25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current 26 ** statement transaction rolled back. If a 27 ** deferred foreign key constraint is violated, no action is taken 28 ** immediately. However if the application attempts to commit the 29 ** transaction before fixing the constraint violation, the attempt fails. 30 ** 31 ** Deferred constraints are implemented using a simple counter associated 32 ** with the database handle. The counter is set to zero each time a 33 ** database transaction is opened. Each time a statement is executed 34 ** that causes a foreign key violation, the counter is incremented. Each 35 ** time a statement is executed that removes an existing violation from 36 ** the database, the counter is decremented. When the transaction is 37 ** committed, the commit fails if the current value of the counter is 38 ** greater than zero. This scheme has two big drawbacks: 39 ** 40 ** * When a commit fails due to a deferred foreign key constraint, 41 ** there is no way to tell which foreign constraint is not satisfied, 42 ** or which row it is not satisfied for. 43 ** 44 ** * If the database contains foreign key violations when the 45 ** transaction is opened, this may cause the mechanism to malfunction. 46 ** 47 ** Despite these problems, this approach is adopted as it seems simpler 48 ** than the alternatives. 49 ** 50 ** INSERT operations: 51 ** 52 ** I.1) For each FK for which the table is the child table, search 53 ** the parent table for a match. If none is found increment the 54 ** constraint counter. 55 ** 56 ** I.2) For each FK for which the table is the parent table, 57 ** search the child table for rows that correspond to the new 58 ** row in the parent table. Decrement the counter for each row 59 ** found (as the constraint is now satisfied). 60 ** 61 ** DELETE operations: 62 ** 63 ** D.1) For each FK for which the table is the child table, 64 ** search the parent table for a row that corresponds to the 65 ** deleted row in the child table. If such a row is not found, 66 ** decrement the counter. 67 ** 68 ** D.2) For each FK for which the table is the parent table, search 69 ** the child table for rows that correspond to the deleted row 70 ** in the parent table. For each found increment the counter. 71 ** 72 ** UPDATE operations: 73 ** 74 ** An UPDATE command requires that all 4 steps above are taken, but only 75 ** for FK constraints for which the affected columns are actually 76 ** modified (values must be compared at runtime). 77 ** 78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 79 ** This simplifies the implementation a bit. 80 ** 81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 82 ** resolution is considered to delete rows before the new row is inserted. 83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 84 ** is thrown, even if the FK constraint would be satisfied after the new 85 ** row is inserted. 86 ** 87 ** Immediate constraints are usually handled similarly. The only difference 88 ** is that the counter used is stored as part of each individual statement 89 ** object (struct Vdbe). If, after the statement has run, its immediate 90 ** constraint counter is greater than zero, 91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY 92 ** and the statement transaction is rolled back. An exception is an INSERT 93 ** statement that inserts a single row only (no triggers). In this case, 94 ** instead of using a counter, an exception is thrown immediately if the 95 ** INSERT violates a foreign key constraint. This is necessary as such 96 ** an INSERT does not open a statement transaction. 97 ** 98 ** TODO: How should dropping a table be handled? How should renaming a 99 ** table be handled? 100 ** 101 ** 102 ** Query API Notes 103 ** --------------- 104 ** 105 ** Before coding an UPDATE or DELETE row operation, the code-generator 106 ** for those two operations needs to know whether or not the operation 107 ** requires any FK processing and, if so, which columns of the original 108 ** row are required by the FK processing VDBE code (i.e. if FKs were 109 ** implemented using triggers, which of the old.* columns would be 110 ** accessed). No information is required by the code-generator before 111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 112 ** generation code to query for this information are: 113 ** 114 ** sqlite3FkRequired() - Test to see if FK processing is required. 115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 116 ** 117 ** 118 ** Externally accessible module functions 119 ** -------------------------------------- 120 ** 121 ** sqlite3FkCheck() - Check for foreign key violations. 122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 123 ** sqlite3FkDelete() - Delete an FKey structure. 124 */ 125 126 /* 127 ** VDBE Calling Convention 128 ** ----------------------- 129 ** 130 ** Example: 131 ** 132 ** For the following INSERT statement: 133 ** 134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 135 ** INSERT INTO t1 VALUES(1, 2, 3.1); 136 ** 137 ** Register (x): 2 (type integer) 138 ** Register (x+1): 1 (type integer) 139 ** Register (x+2): NULL (type NULL) 140 ** Register (x+3): 3.1 (type real) 141 */ 142 143 /* 144 ** A foreign key constraint requires that the key columns in the parent 145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 146 ** Given that pParent is the parent table for foreign key constraint pFKey, 147 ** search the schema for a unique index on the parent key columns. 148 ** 149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 151 ** is set to point to the unique index. 152 ** 153 ** If the parent key consists of a single column (the foreign key constraint 154 ** is not a composite foreign key), output variable *paiCol is set to NULL. 155 ** Otherwise, it is set to point to an allocated array of size N, where 156 ** N is the number of columns in the parent key. The first element of the 157 ** array is the index of the child table column that is mapped by the FK 158 ** constraint to the parent table column stored in the left-most column 159 ** of index *ppIdx. The second element of the array is the index of the 160 ** child table column that corresponds to the second left-most column of 161 ** *ppIdx, and so on. 162 ** 163 ** If the required index cannot be found, either because: 164 ** 165 ** 1) The named parent key columns do not exist, or 166 ** 167 ** 2) The named parent key columns do exist, but are not subject to a 168 ** UNIQUE or PRIMARY KEY constraint, or 169 ** 170 ** 3) No parent key columns were provided explicitly as part of the 171 ** foreign key definition, and the parent table does not have a 172 ** PRIMARY KEY, or 173 ** 174 ** 4) No parent key columns were provided explicitly as part of the 175 ** foreign key definition, and the PRIMARY KEY of the parent table 176 ** consists of a a different number of columns to the child key in 177 ** the child table. 178 ** 179 ** then non-zero is returned, and a "foreign key mismatch" error loaded 180 ** into pParse. If an OOM error occurs, non-zero is returned and the 181 ** pParse->db->mallocFailed flag is set. 182 */ 183 int sqlite3FkLocateIndex( 184 Parse *pParse, /* Parse context to store any error in */ 185 Table *pParent, /* Parent table of FK constraint pFKey */ 186 FKey *pFKey, /* Foreign key to find index for */ 187 Index **ppIdx, /* OUT: Unique index on parent table */ 188 int **paiCol /* OUT: Map of index columns in pFKey */ 189 ){ 190 Index *pIdx = 0; /* Value to return via *ppIdx */ 191 int *aiCol = 0; /* Value to return via *paiCol */ 192 int nCol = pFKey->nCol; /* Number of columns in parent key */ 193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 194 195 /* The caller is responsible for zeroing output parameters. */ 196 assert( ppIdx && *ppIdx==0 ); 197 assert( !paiCol || *paiCol==0 ); 198 assert( pParse ); 199 200 /* If this is a non-composite (single column) foreign key, check if it 201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 202 ** and *paiCol set to zero and return early. 203 ** 204 ** Otherwise, for a composite foreign key (more than one column), allocate 205 ** space for the aiCol array (returned via output parameter *paiCol). 206 ** Non-composite foreign keys do not require the aiCol array. 207 */ 208 if( nCol==1 ){ 209 /* The FK maps to the IPK if any of the following are true: 210 ** 211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 212 ** mapped to the primary key of table pParent, or 213 ** 2) The FK is explicitly mapped to a column declared as INTEGER 214 ** PRIMARY KEY. 215 */ 216 if( pParent->iPKey>=0 ){ 217 if( !zKey ) return 0; 218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; 219 } 220 }else if( paiCol ){ 221 assert( nCol>1 ); 222 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int)); 223 if( !aiCol ) return 1; 224 *paiCol = aiCol; 225 } 226 227 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 228 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) ){ 229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 230 ** of columns. If each indexed column corresponds to a foreign key 231 ** column of pFKey, then this index is a winner. */ 232 233 if( zKey==0 ){ 234 /* If zKey is NULL, then this foreign key is implicitly mapped to 235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 236 ** identified by the test. */ 237 if( IsPrimaryKeyIndex(pIdx) ){ 238 if( aiCol ){ 239 int i; 240 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 241 } 242 break; 243 } 244 }else{ 245 /* If zKey is non-NULL, then this foreign key was declared to 246 ** map to an explicit list of columns in table pParent. Check if this 247 ** index matches those columns. Also, check that the index uses 248 ** the default collation sequences for each column. */ 249 int i, j; 250 for(i=0; i<nCol; i++){ 251 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 252 char *zDfltColl; /* Def. collation for column */ 253 char *zIdxCol; /* Name of indexed column */ 254 255 /* If the index uses a collation sequence that is different from 256 ** the default collation sequence for the column, this index is 257 ** unusable. Bail out early in this case. */ 258 zDfltColl = pParent->aCol[iCol].zColl; 259 if( !zDfltColl ){ 260 zDfltColl = "BINARY"; 261 } 262 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 263 264 zIdxCol = pParent->aCol[iCol].zName; 265 for(j=0; j<nCol; j++){ 266 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 267 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 268 break; 269 } 270 } 271 if( j==nCol ) break; 272 } 273 if( i==nCol ) break; /* pIdx is usable */ 274 } 275 } 276 } 277 278 if( !pIdx ){ 279 if( !pParse->disableTriggers ){ 280 sqlite3ErrorMsg(pParse, 281 "foreign key mismatch - \"%w\" referencing \"%w\"", 282 pFKey->pFrom->zName, pFKey->zTo); 283 } 284 sqlite3DbFree(pParse->db, aiCol); 285 return 1; 286 } 287 288 *ppIdx = pIdx; 289 return 0; 290 } 291 292 /* 293 ** This function is called when a row is inserted into or deleted from the 294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 295 ** on the child table of pFKey, this function is invoked twice for each row 296 ** affected - once to "delete" the old row, and then again to "insert" the 297 ** new row. 298 ** 299 ** Each time it is called, this function generates VDBE code to locate the 300 ** row in the parent table that corresponds to the row being inserted into 301 ** or deleted from the child table. If the parent row can be found, no 302 ** special action is taken. Otherwise, if the parent row can *not* be 303 ** found in the parent table: 304 ** 305 ** Operation | FK type | Action taken 306 ** -------------------------------------------------------------------------- 307 ** INSERT immediate Increment the "immediate constraint counter". 308 ** 309 ** DELETE immediate Decrement the "immediate constraint counter". 310 ** 311 ** INSERT deferred Increment the "deferred constraint counter". 312 ** 313 ** DELETE deferred Decrement the "deferred constraint counter". 314 ** 315 ** These operations are identified in the comment at the top of this file 316 ** (fkey.c) as "I.1" and "D.1". 317 */ 318 static void fkLookupParent( 319 Parse *pParse, /* Parse context */ 320 int iDb, /* Index of database housing pTab */ 321 Table *pTab, /* Parent table of FK pFKey */ 322 Index *pIdx, /* Unique index on parent key columns in pTab */ 323 FKey *pFKey, /* Foreign key constraint */ 324 int *aiCol, /* Map from parent key columns to child table columns */ 325 int regData, /* Address of array containing child table row */ 326 int nIncr, /* Increment constraint counter by this */ 327 int isIgnore /* If true, pretend pTab contains all NULL values */ 328 ){ 329 int i; /* Iterator variable */ 330 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 331 int iCur = pParse->nTab - 1; /* Cursor number to use */ 332 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ 333 334 /* If nIncr is less than zero, then check at runtime if there are any 335 ** outstanding constraints to resolve. If there are not, there is no need 336 ** to check if deleting this row resolves any outstanding violations. 337 ** 338 ** Check if any of the key columns in the child table row are NULL. If 339 ** any are, then the constraint is considered satisfied. No need to 340 ** search for a matching row in the parent table. */ 341 if( nIncr<0 ){ 342 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 343 VdbeCoverage(v); 344 } 345 for(i=0; i<pFKey->nCol; i++){ 346 int iReg = aiCol[i] + regData + 1; 347 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); 348 } 349 350 if( isIgnore==0 ){ 351 if( pIdx==0 ){ 352 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 353 ** column of the parent table (table pTab). */ 354 int iMustBeInt; /* Address of MustBeInt instruction */ 355 int regTemp = sqlite3GetTempReg(pParse); 356 357 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 358 ** apply the affinity of the parent key). If this fails, then there 359 ** is no matching parent key. Before using MustBeInt, make a copy of 360 ** the value. Otherwise, the value inserted into the child key column 361 ** will have INTEGER affinity applied to it, which may not be correct. */ 362 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); 363 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 364 VdbeCoverage(v); 365 366 /* If the parent table is the same as the child table, and we are about 367 ** to increment the constraint-counter (i.e. this is an INSERT operation), 368 ** then check if the row being inserted matches itself. If so, do not 369 ** increment the constraint-counter. */ 370 if( pTab==pFKey->pFrom && nIncr==1 ){ 371 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); 372 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 373 } 374 375 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 376 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); 377 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); 378 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 379 sqlite3VdbeJumpHere(v, iMustBeInt); 380 sqlite3ReleaseTempReg(pParse, regTemp); 381 }else{ 382 int nCol = pFKey->nCol; 383 int regTemp = sqlite3GetTempRange(pParse, nCol); 384 int regRec = sqlite3GetTempReg(pParse); 385 386 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 387 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 388 for(i=0; i<nCol; i++){ 389 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i); 390 } 391 392 /* If the parent table is the same as the child table, and we are about 393 ** to increment the constraint-counter (i.e. this is an INSERT operation), 394 ** then check if the row being inserted matches itself. If so, do not 395 ** increment the constraint-counter. 396 ** 397 ** If any of the parent-key values are NULL, then the row cannot match 398 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 399 ** of the parent-key values are NULL (at this point it is known that 400 ** none of the child key values are). 401 */ 402 if( pTab==pFKey->pFrom && nIncr==1 ){ 403 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 404 for(i=0; i<nCol; i++){ 405 int iChild = aiCol[i]+1+regData; 406 int iParent = pIdx->aiColumn[i]+1+regData; 407 assert( aiCol[i]!=pTab->iPKey ); 408 if( pIdx->aiColumn[i]==pTab->iPKey ){ 409 /* The parent key is a composite key that includes the IPK column */ 410 iParent = regData; 411 } 412 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); 413 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 414 } 415 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); 416 } 417 418 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec, 419 sqlite3IndexAffinityStr(v,pIdx), nCol); 420 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v); 421 422 sqlite3ReleaseTempReg(pParse, regRec); 423 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 424 } 425 } 426 427 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) 428 && !pParse->pToplevel 429 && !pParse->isMultiWrite 430 ){ 431 /* Special case: If this is an INSERT statement that will insert exactly 432 ** one row into the table, raise a constraint immediately instead of 433 ** incrementing a counter. This is necessary as the VM code is being 434 ** generated for will not open a statement transaction. */ 435 assert( nIncr==1 ); 436 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 437 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 438 }else{ 439 if( nIncr>0 && pFKey->isDeferred==0 ){ 440 sqlite3ParseToplevel(pParse)->mayAbort = 1; 441 } 442 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 443 } 444 445 sqlite3VdbeResolveLabel(v, iOk); 446 sqlite3VdbeAddOp1(v, OP_Close, iCur); 447 } 448 449 450 /* 451 ** Return an Expr object that refers to a memory register corresponding 452 ** to column iCol of table pTab. 453 ** 454 ** regBase is the first of an array of register that contains the data 455 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first 456 ** column. regBase+2 holds the second column, and so forth. 457 */ 458 static Expr *exprTableRegister( 459 Parse *pParse, /* Parsing and code generating context */ 460 Table *pTab, /* The table whose content is at r[regBase]... */ 461 int regBase, /* Contents of table pTab */ 462 i16 iCol /* Which column of pTab is desired */ 463 ){ 464 Expr *pExpr; 465 Column *pCol; 466 const char *zColl; 467 sqlite3 *db = pParse->db; 468 469 pExpr = sqlite3Expr(db, TK_REGISTER, 0); 470 if( pExpr ){ 471 if( iCol>=0 && iCol!=pTab->iPKey ){ 472 pCol = &pTab->aCol[iCol]; 473 pExpr->iTable = regBase + iCol + 1; 474 pExpr->affinity = pCol->affinity; 475 zColl = pCol->zColl; 476 if( zColl==0 ) zColl = db->pDfltColl->zName; 477 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); 478 }else{ 479 pExpr->iTable = regBase; 480 pExpr->affinity = SQLITE_AFF_INTEGER; 481 } 482 } 483 return pExpr; 484 } 485 486 /* 487 ** Return an Expr object that refers to column iCol of table pTab which 488 ** has cursor iCur. 489 */ 490 static Expr *exprTableColumn( 491 sqlite3 *db, /* The database connection */ 492 Table *pTab, /* The table whose column is desired */ 493 int iCursor, /* The open cursor on the table */ 494 i16 iCol /* The column that is wanted */ 495 ){ 496 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); 497 if( pExpr ){ 498 pExpr->pTab = pTab; 499 pExpr->iTable = iCursor; 500 pExpr->iColumn = iCol; 501 } 502 return pExpr; 503 } 504 505 /* 506 ** This function is called to generate code executed when a row is deleted 507 ** from the parent table of foreign key constraint pFKey and, if pFKey is 508 ** deferred, when a row is inserted into the same table. When generating 509 ** code for an SQL UPDATE operation, this function may be called twice - 510 ** once to "delete" the old row and once to "insert" the new row. 511 ** 512 ** The code generated by this function scans through the rows in the child 513 ** table that correspond to the parent table row being deleted or inserted. 514 ** For each child row found, one of the following actions is taken: 515 ** 516 ** Operation | FK type | Action taken 517 ** -------------------------------------------------------------------------- 518 ** DELETE immediate Increment the "immediate constraint counter". 519 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 520 ** throw a "FOREIGN KEY constraint failed" exception. 521 ** 522 ** INSERT immediate Decrement the "immediate constraint counter". 523 ** 524 ** DELETE deferred Increment the "deferred constraint counter". 525 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 526 ** throw a "FOREIGN KEY constraint failed" exception. 527 ** 528 ** INSERT deferred Decrement the "deferred constraint counter". 529 ** 530 ** These operations are identified in the comment at the top of this file 531 ** (fkey.c) as "I.2" and "D.2". 532 */ 533 static void fkScanChildren( 534 Parse *pParse, /* Parse context */ 535 SrcList *pSrc, /* The child table to be scanned */ 536 Table *pTab, /* The parent table */ 537 Index *pIdx, /* Index on parent covering the foreign key */ 538 FKey *pFKey, /* The foreign key linking pSrc to pTab */ 539 int *aiCol, /* Map from pIdx cols to child table cols */ 540 int regData, /* Parent row data starts here */ 541 int nIncr /* Amount to increment deferred counter by */ 542 ){ 543 sqlite3 *db = pParse->db; /* Database handle */ 544 int i; /* Iterator variable */ 545 Expr *pWhere = 0; /* WHERE clause to scan with */ 546 NameContext sNameContext; /* Context used to resolve WHERE clause */ 547 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 548 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 549 Vdbe *v = sqlite3GetVdbe(pParse); 550 551 assert( pIdx==0 || pIdx->pTable==pTab ); 552 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); 553 assert( pIdx!=0 || pFKey->nCol==1 ); 554 assert( pIdx!=0 || HasRowid(pTab) ); 555 556 if( nIncr<0 ){ 557 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 558 VdbeCoverage(v); 559 } 560 561 /* Create an Expr object representing an SQL expression like: 562 ** 563 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 564 ** 565 ** The collation sequence used for the comparison should be that of 566 ** the parent key columns. The affinity of the parent key column should 567 ** be applied to each child key value before the comparison takes place. 568 */ 569 for(i=0; i<pFKey->nCol; i++){ 570 Expr *pLeft; /* Value from parent table row */ 571 Expr *pRight; /* Column ref to child table */ 572 Expr *pEq; /* Expression (pLeft = pRight) */ 573 i16 iCol; /* Index of column in child table */ 574 const char *zCol; /* Name of column in child table */ 575 576 iCol = pIdx ? pIdx->aiColumn[i] : -1; 577 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 578 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 579 assert( iCol>=0 ); 580 zCol = pFKey->pFrom->aCol[iCol].zName; 581 pRight = sqlite3Expr(db, TK_ID, zCol); 582 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); 583 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 584 } 585 586 /* If the child table is the same as the parent table, then add terms 587 ** to the WHERE clause that prevent this entry from being scanned. 588 ** The added WHERE clause terms are like this: 589 ** 590 ** $current_rowid!=rowid 591 ** NOT( $current_a==a AND $current_b==b AND ... ) 592 ** 593 ** The first form is used for rowid tables. The second form is used 594 ** for WITHOUT ROWID tables. In the second form, the primary key is 595 ** (a,b,...) 596 */ 597 if( pTab==pFKey->pFrom && nIncr>0 ){ 598 Expr *pNe; /* Expression (pLeft != pRight) */ 599 Expr *pLeft; /* Value from parent table row */ 600 Expr *pRight; /* Column ref to child table */ 601 if( HasRowid(pTab) ){ 602 pLeft = exprTableRegister(pParse, pTab, regData, -1); 603 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); 604 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); 605 }else{ 606 Expr *pEq, *pAll = 0; 607 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 608 assert( pIdx!=0 ); 609 for(i=0; i<pPk->nKeyCol; i++){ 610 i16 iCol = pIdx->aiColumn[i]; 611 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 612 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol); 613 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); 614 pAll = sqlite3ExprAnd(db, pAll, pEq); 615 } 616 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0, 0); 617 } 618 pWhere = sqlite3ExprAnd(db, pWhere, pNe); 619 } 620 621 /* Resolve the references in the WHERE clause. */ 622 memset(&sNameContext, 0, sizeof(NameContext)); 623 sNameContext.pSrcList = pSrc; 624 sNameContext.pParse = pParse; 625 sqlite3ResolveExprNames(&sNameContext, pWhere); 626 627 /* Create VDBE to loop through the entries in pSrc that match the WHERE 628 ** clause. If the constraint is not deferred, throw an exception for 629 ** each row found. Otherwise, for deferred constraints, increment the 630 ** deferred constraint counter by nIncr for each row selected. */ 631 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); 632 if( nIncr>0 && pFKey->isDeferred==0 ){ 633 sqlite3ParseToplevel(pParse)->mayAbort = 1; 634 } 635 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 636 if( pWInfo ){ 637 sqlite3WhereEnd(pWInfo); 638 } 639 640 /* Clean up the WHERE clause constructed above. */ 641 sqlite3ExprDelete(db, pWhere); 642 if( iFkIfZero ){ 643 sqlite3VdbeJumpHere(v, iFkIfZero); 644 } 645 } 646 647 /* 648 ** This function returns a linked list of FKey objects (connected by 649 ** FKey.pNextTo) holding all children of table pTab. For example, 650 ** given the following schema: 651 ** 652 ** CREATE TABLE t1(a PRIMARY KEY); 653 ** CREATE TABLE t2(b REFERENCES t1(a); 654 ** 655 ** Calling this function with table "t1" as an argument returns a pointer 656 ** to the FKey structure representing the foreign key constraint on table 657 ** "t2". Calling this function with "t2" as the argument would return a 658 ** NULL pointer (as there are no FK constraints for which t2 is the parent 659 ** table). 660 */ 661 FKey *sqlite3FkReferences(Table *pTab){ 662 int nName = sqlite3Strlen30(pTab->zName); 663 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName); 664 } 665 666 /* 667 ** The second argument is a Trigger structure allocated by the 668 ** fkActionTrigger() routine. This function deletes the Trigger structure 669 ** and all of its sub-components. 670 ** 671 ** The Trigger structure or any of its sub-components may be allocated from 672 ** the lookaside buffer belonging to database handle dbMem. 673 */ 674 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 675 if( p ){ 676 TriggerStep *pStep = p->step_list; 677 sqlite3ExprDelete(dbMem, pStep->pWhere); 678 sqlite3ExprListDelete(dbMem, pStep->pExprList); 679 sqlite3SelectDelete(dbMem, pStep->pSelect); 680 sqlite3ExprDelete(dbMem, p->pWhen); 681 sqlite3DbFree(dbMem, p); 682 } 683 } 684 685 /* 686 ** This function is called to generate code that runs when table pTab is 687 ** being dropped from the database. The SrcList passed as the second argument 688 ** to this function contains a single entry guaranteed to resolve to 689 ** table pTab. 690 ** 691 ** Normally, no code is required. However, if either 692 ** 693 ** (a) The table is the parent table of a FK constraint, or 694 ** (b) The table is the child table of a deferred FK constraint and it is 695 ** determined at runtime that there are outstanding deferred FK 696 ** constraint violations in the database, 697 ** 698 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 699 ** the table from the database. Triggers are disabled while running this 700 ** DELETE, but foreign key actions are not. 701 */ 702 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 703 sqlite3 *db = pParse->db; 704 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ 705 int iSkip = 0; 706 Vdbe *v = sqlite3GetVdbe(pParse); 707 708 assert( v ); /* VDBE has already been allocated */ 709 if( sqlite3FkReferences(pTab)==0 ){ 710 /* Search for a deferred foreign key constraint for which this table 711 ** is the child table. If one cannot be found, return without 712 ** generating any VDBE code. If one can be found, then jump over 713 ** the entire DELETE if there are no outstanding deferred constraints 714 ** when this statement is run. */ 715 FKey *p; 716 for(p=pTab->pFKey; p; p=p->pNextFrom){ 717 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; 718 } 719 if( !p ) return; 720 iSkip = sqlite3VdbeMakeLabel(v); 721 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); 722 } 723 724 pParse->disableTriggers = 1; 725 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); 726 pParse->disableTriggers = 0; 727 728 /* If the DELETE has generated immediate foreign key constraint 729 ** violations, halt the VDBE and return an error at this point, before 730 ** any modifications to the schema are made. This is because statement 731 ** transactions are not able to rollback schema changes. 732 ** 733 ** If the SQLITE_DeferFKs flag is set, then this is not required, as 734 ** the statement transaction will not be rolled back even if FK 735 ** constraints are violated. 736 */ 737 if( (db->flags & SQLITE_DeferFKs)==0 ){ 738 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 739 VdbeCoverage(v); 740 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 741 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 742 } 743 744 if( iSkip ){ 745 sqlite3VdbeResolveLabel(v, iSkip); 746 } 747 } 748 } 749 750 751 /* 752 ** The second argument points to an FKey object representing a foreign key 753 ** for which pTab is the child table. An UPDATE statement against pTab 754 ** is currently being processed. For each column of the table that is 755 ** actually updated, the corresponding element in the aChange[] array 756 ** is zero or greater (if a column is unmodified the corresponding element 757 ** is set to -1). If the rowid column is modified by the UPDATE statement 758 ** the bChngRowid argument is non-zero. 759 ** 760 ** This function returns true if any of the columns that are part of the 761 ** child key for FK constraint *p are modified. 762 */ 763 static int fkChildIsModified( 764 Table *pTab, /* Table being updated */ 765 FKey *p, /* Foreign key for which pTab is the child */ 766 int *aChange, /* Array indicating modified columns */ 767 int bChngRowid /* True if rowid is modified by this update */ 768 ){ 769 int i; 770 for(i=0; i<p->nCol; i++){ 771 int iChildKey = p->aCol[i].iFrom; 772 if( aChange[iChildKey]>=0 ) return 1; 773 if( iChildKey==pTab->iPKey && bChngRowid ) return 1; 774 } 775 return 0; 776 } 777 778 /* 779 ** The second argument points to an FKey object representing a foreign key 780 ** for which pTab is the parent table. An UPDATE statement against pTab 781 ** is currently being processed. For each column of the table that is 782 ** actually updated, the corresponding element in the aChange[] array 783 ** is zero or greater (if a column is unmodified the corresponding element 784 ** is set to -1). If the rowid column is modified by the UPDATE statement 785 ** the bChngRowid argument is non-zero. 786 ** 787 ** This function returns true if any of the columns that are part of the 788 ** parent key for FK constraint *p are modified. 789 */ 790 static int fkParentIsModified( 791 Table *pTab, 792 FKey *p, 793 int *aChange, 794 int bChngRowid 795 ){ 796 int i; 797 for(i=0; i<p->nCol; i++){ 798 char *zKey = p->aCol[i].zCol; 799 int iKey; 800 for(iKey=0; iKey<pTab->nCol; iKey++){ 801 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ 802 Column *pCol = &pTab->aCol[iKey]; 803 if( zKey ){ 804 if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1; 805 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ 806 return 1; 807 } 808 } 809 } 810 } 811 return 0; 812 } 813 814 /* 815 ** This function is called when inserting, deleting or updating a row of 816 ** table pTab to generate VDBE code to perform foreign key constraint 817 ** processing for the operation. 818 ** 819 ** For a DELETE operation, parameter regOld is passed the index of the 820 ** first register in an array of (pTab->nCol+1) registers containing the 821 ** rowid of the row being deleted, followed by each of the column values 822 ** of the row being deleted, from left to right. Parameter regNew is passed 823 ** zero in this case. 824 ** 825 ** For an INSERT operation, regOld is passed zero and regNew is passed the 826 ** first register of an array of (pTab->nCol+1) registers containing the new 827 ** row data. 828 ** 829 ** For an UPDATE operation, this function is called twice. Once before 830 ** the original record is deleted from the table using the calling convention 831 ** described for DELETE. Then again after the original record is deleted 832 ** but before the new record is inserted using the INSERT convention. 833 */ 834 void sqlite3FkCheck( 835 Parse *pParse, /* Parse context */ 836 Table *pTab, /* Row is being deleted from this table */ 837 int regOld, /* Previous row data is stored here */ 838 int regNew, /* New row data is stored here */ 839 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 840 int bChngRowid /* True if rowid is UPDATEd */ 841 ){ 842 sqlite3 *db = pParse->db; /* Database handle */ 843 FKey *pFKey; /* Used to iterate through FKs */ 844 int iDb; /* Index of database containing pTab */ 845 const char *zDb; /* Name of database containing pTab */ 846 int isIgnoreErrors = pParse->disableTriggers; 847 848 /* Exactly one of regOld and regNew should be non-zero. */ 849 assert( (regOld==0)!=(regNew==0) ); 850 851 /* If foreign-keys are disabled, this function is a no-op. */ 852 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 853 854 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 855 zDb = db->aDb[iDb].zName; 856 857 /* Loop through all the foreign key constraints for which pTab is the 858 ** child table (the table that the foreign key definition is part of). */ 859 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 860 Table *pTo; /* Parent table of foreign key pFKey */ 861 Index *pIdx = 0; /* Index on key columns in pTo */ 862 int *aiFree = 0; 863 int *aiCol; 864 int iCol; 865 int i; 866 int isIgnore = 0; 867 868 if( aChange 869 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 870 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 871 ){ 872 continue; 873 } 874 875 /* Find the parent table of this foreign key. Also find a unique index 876 ** on the parent key columns in the parent table. If either of these 877 ** schema items cannot be located, set an error in pParse and return 878 ** early. */ 879 if( pParse->disableTriggers ){ 880 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 881 }else{ 882 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 883 } 884 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 885 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 886 if( !isIgnoreErrors || db->mallocFailed ) return; 887 if( pTo==0 ){ 888 /* If isIgnoreErrors is true, then a table is being dropped. In this 889 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 890 ** before actually dropping it in order to check FK constraints. 891 ** If the parent table of an FK constraint on the current table is 892 ** missing, behave as if it is empty. i.e. decrement the relevant 893 ** FK counter for each row of the current table with non-NULL keys. 894 */ 895 Vdbe *v = sqlite3GetVdbe(pParse); 896 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 897 for(i=0; i<pFKey->nCol; i++){ 898 int iReg = pFKey->aCol[i].iFrom + regOld + 1; 899 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); 900 } 901 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 902 } 903 continue; 904 } 905 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 906 907 if( aiFree ){ 908 aiCol = aiFree; 909 }else{ 910 iCol = pFKey->aCol[0].iFrom; 911 aiCol = &iCol; 912 } 913 for(i=0; i<pFKey->nCol; i++){ 914 if( aiCol[i]==pTab->iPKey ){ 915 aiCol[i] = -1; 916 } 917 #ifndef SQLITE_OMIT_AUTHORIZATION 918 /* Request permission to read the parent key columns. If the 919 ** authorization callback returns SQLITE_IGNORE, behave as if any 920 ** values read from the parent table are NULL. */ 921 if( db->xAuth ){ 922 int rcauth; 923 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; 924 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 925 isIgnore = (rcauth==SQLITE_IGNORE); 926 } 927 #endif 928 } 929 930 /* Take a shared-cache advisory read-lock on the parent table. Allocate 931 ** a cursor to use to search the unique index on the parent key columns 932 ** in the parent table. */ 933 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 934 pParse->nTab++; 935 936 if( regOld!=0 ){ 937 /* A row is being removed from the child table. Search for the parent. 938 ** If the parent does not exist, removing the child row resolves an 939 ** outstanding foreign key constraint violation. */ 940 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore); 941 } 942 if( regNew!=0 ){ 943 /* A row is being added to the child table. If a parent row cannot 944 ** be found, adding the child row has violated the FK constraint. */ 945 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore); 946 } 947 948 sqlite3DbFree(db, aiFree); 949 } 950 951 /* Loop through all the foreign key constraints that refer to this table. 952 ** (the "child" constraints) */ 953 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 954 Index *pIdx = 0; /* Foreign key index for pFKey */ 955 SrcList *pSrc; 956 int *aiCol = 0; 957 958 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ 959 continue; 960 } 961 962 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 963 && !pParse->pToplevel && !pParse->isMultiWrite 964 ){ 965 assert( regOld==0 && regNew!=0 ); 966 /* Inserting a single row into a parent table cannot cause an immediate 967 ** foreign key violation. So do nothing in this case. */ 968 continue; 969 } 970 971 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 972 if( !isIgnoreErrors || db->mallocFailed ) return; 973 continue; 974 } 975 assert( aiCol || pFKey->nCol==1 ); 976 977 /* Create a SrcList structure containing the child table. We need the 978 ** child table as a SrcList for sqlite3WhereBegin() */ 979 pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 980 if( pSrc ){ 981 struct SrcList_item *pItem = pSrc->a; 982 pItem->pTab = pFKey->pFrom; 983 pItem->zName = pFKey->pFrom->zName; 984 pItem->pTab->nRef++; 985 pItem->iCursor = pParse->nTab++; 986 987 if( regNew!=0 ){ 988 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 989 } 990 if( regOld!=0 ){ 991 /* If there is a RESTRICT action configured for the current operation 992 ** on the parent table of this FK, then throw an exception 993 ** immediately if the FK constraint is violated, even if this is a 994 ** deferred trigger. That's what RESTRICT means. To defer checking 995 ** the constraint, the FK should specify NO ACTION (represented 996 ** using OE_None). NO ACTION is the default. */ 997 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 998 } 999 pItem->zName = 0; 1000 sqlite3SrcListDelete(db, pSrc); 1001 } 1002 sqlite3DbFree(db, aiCol); 1003 } 1004 } 1005 1006 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 1007 1008 /* 1009 ** This function is called before generating code to update or delete a 1010 ** row contained in table pTab. 1011 */ 1012 u32 sqlite3FkOldmask( 1013 Parse *pParse, /* Parse context */ 1014 Table *pTab /* Table being modified */ 1015 ){ 1016 u32 mask = 0; 1017 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1018 FKey *p; 1019 int i; 1020 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1021 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 1022 } 1023 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1024 Index *pIdx = 0; 1025 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); 1026 if( pIdx ){ 1027 for(i=0; i<pIdx->nKeyCol; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]); 1028 } 1029 } 1030 } 1031 return mask; 1032 } 1033 1034 1035 /* 1036 ** This function is called before generating code to update or delete a 1037 ** row contained in table pTab. If the operation is a DELETE, then 1038 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 1039 ** to an array of size N, where N is the number of columns in table pTab. 1040 ** If the i'th column is not modified by the UPDATE, then the corresponding 1041 ** entry in the aChange[] array is set to -1. If the column is modified, 1042 ** the value is 0 or greater. Parameter chngRowid is set to true if the 1043 ** UPDATE statement modifies the rowid fields of the table. 1044 ** 1045 ** If any foreign key processing will be required, this function returns 1046 ** true. If there is no foreign key related processing, this function 1047 ** returns false. 1048 */ 1049 int sqlite3FkRequired( 1050 Parse *pParse, /* Parse context */ 1051 Table *pTab, /* Table being modified */ 1052 int *aChange, /* Non-NULL for UPDATE operations */ 1053 int chngRowid /* True for UPDATE that affects rowid */ 1054 ){ 1055 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1056 if( !aChange ){ 1057 /* A DELETE operation. Foreign key processing is required if the 1058 ** table in question is either the child or parent table for any 1059 ** foreign key constraint. */ 1060 return (sqlite3FkReferences(pTab) || pTab->pFKey); 1061 }else{ 1062 /* This is an UPDATE. Foreign key processing is only required if the 1063 ** operation modifies one or more child or parent key columns. */ 1064 FKey *p; 1065 1066 /* Check if any child key columns are being modified. */ 1067 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1068 if( fkChildIsModified(pTab, p, aChange, chngRowid) ) return 1; 1069 } 1070 1071 /* Check if any parent key columns are being modified. */ 1072 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1073 if( fkParentIsModified(pTab, p, aChange, chngRowid) ) return 1; 1074 } 1075 } 1076 } 1077 return 0; 1078 } 1079 1080 /* 1081 ** This function is called when an UPDATE or DELETE operation is being 1082 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 1083 ** If the current operation is an UPDATE, then the pChanges parameter is 1084 ** passed a pointer to the list of columns being modified. If it is a 1085 ** DELETE, pChanges is passed a NULL pointer. 1086 ** 1087 ** It returns a pointer to a Trigger structure containing a trigger 1088 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 1089 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is 1090 ** returned (these actions require no special handling by the triggers 1091 ** sub-system, code for them is created by fkScanChildren()). 1092 ** 1093 ** For example, if pFKey is the foreign key and pTab is table "p" in 1094 ** the following schema: 1095 ** 1096 ** CREATE TABLE p(pk PRIMARY KEY); 1097 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 1098 ** 1099 ** then the returned trigger structure is equivalent to: 1100 ** 1101 ** CREATE TRIGGER ... DELETE ON p BEGIN 1102 ** DELETE FROM c WHERE ck = old.pk; 1103 ** END; 1104 ** 1105 ** The returned pointer is cached as part of the foreign key object. It 1106 ** is eventually freed along with the rest of the foreign key object by 1107 ** sqlite3FkDelete(). 1108 */ 1109 static Trigger *fkActionTrigger( 1110 Parse *pParse, /* Parse context */ 1111 Table *pTab, /* Table being updated or deleted from */ 1112 FKey *pFKey, /* Foreign key to get action for */ 1113 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 1114 ){ 1115 sqlite3 *db = pParse->db; /* Database handle */ 1116 int action; /* One of OE_None, OE_Cascade etc. */ 1117 Trigger *pTrigger; /* Trigger definition to return */ 1118 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 1119 1120 action = pFKey->aAction[iAction]; 1121 pTrigger = pFKey->apTrigger[iAction]; 1122 1123 if( action!=OE_None && !pTrigger ){ 1124 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */ 1125 char const *zFrom; /* Name of child table */ 1126 int nFrom; /* Length in bytes of zFrom */ 1127 Index *pIdx = 0; /* Parent key index for this FK */ 1128 int *aiCol = 0; /* child table cols -> parent key cols */ 1129 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 1130 Expr *pWhere = 0; /* WHERE clause of trigger step */ 1131 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 1132 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 1133 int i; /* Iterator variable */ 1134 Expr *pWhen = 0; /* WHEN clause for the trigger */ 1135 1136 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 1137 assert( aiCol || pFKey->nCol==1 ); 1138 1139 for(i=0; i<pFKey->nCol; i++){ 1140 Token tOld = { "old", 3 }; /* Literal "old" token */ 1141 Token tNew = { "new", 3 }; /* Literal "new" token */ 1142 Token tFromCol; /* Name of column in child table */ 1143 Token tToCol; /* Name of column in parent table */ 1144 int iFromCol; /* Idx of column in child table */ 1145 Expr *pEq; /* tFromCol = OLD.tToCol */ 1146 1147 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 1148 assert( iFromCol>=0 ); 1149 tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid"; 1150 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName; 1151 1152 tToCol.n = sqlite3Strlen30(tToCol.z); 1153 tFromCol.n = sqlite3Strlen30(tFromCol.z); 1154 1155 /* Create the expression "OLD.zToCol = zFromCol". It is important 1156 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 1157 ** that the affinity and collation sequence associated with the 1158 ** parent table are used for the comparison. */ 1159 pEq = sqlite3PExpr(pParse, TK_EQ, 1160 sqlite3PExpr(pParse, TK_DOT, 1161 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), 1162 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) 1163 , 0), 1164 sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol) 1165 , 0); 1166 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 1167 1168 /* For ON UPDATE, construct the next term of the WHEN clause. 1169 ** The final WHEN clause will be like this: 1170 ** 1171 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 1172 */ 1173 if( pChanges ){ 1174 pEq = sqlite3PExpr(pParse, TK_IS, 1175 sqlite3PExpr(pParse, TK_DOT, 1176 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), 1177 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), 1178 0), 1179 sqlite3PExpr(pParse, TK_DOT, 1180 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), 1181 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), 1182 0), 1183 0); 1184 pWhen = sqlite3ExprAnd(db, pWhen, pEq); 1185 } 1186 1187 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 1188 Expr *pNew; 1189 if( action==OE_Cascade ){ 1190 pNew = sqlite3PExpr(pParse, TK_DOT, 1191 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), 1192 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) 1193 , 0); 1194 }else if( action==OE_SetDflt ){ 1195 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; 1196 if( pDflt ){ 1197 pNew = sqlite3ExprDup(db, pDflt, 0); 1198 }else{ 1199 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 1200 } 1201 }else{ 1202 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 1203 } 1204 pList = sqlite3ExprListAppend(pParse, pList, pNew); 1205 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 1206 } 1207 } 1208 sqlite3DbFree(db, aiCol); 1209 1210 zFrom = pFKey->pFrom->zName; 1211 nFrom = sqlite3Strlen30(zFrom); 1212 1213 if( action==OE_Restrict ){ 1214 Token tFrom; 1215 Expr *pRaise; 1216 1217 tFrom.z = zFrom; 1218 tFrom.n = nFrom; 1219 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); 1220 if( pRaise ){ 1221 pRaise->affinity = OE_Abort; 1222 } 1223 pSelect = sqlite3SelectNew(pParse, 1224 sqlite3ExprListAppend(pParse, 0, pRaise), 1225 sqlite3SrcListAppend(db, 0, &tFrom, 0), 1226 pWhere, 1227 0, 0, 0, 0, 0, 0 1228 ); 1229 pWhere = 0; 1230 } 1231 1232 /* Disable lookaside memory allocation */ 1233 enableLookaside = db->lookaside.bEnabled; 1234 db->lookaside.bEnabled = 0; 1235 1236 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 1237 sizeof(Trigger) + /* struct Trigger */ 1238 sizeof(TriggerStep) + /* Single step in trigger program */ 1239 nFrom + 1 /* Space for pStep->target.z */ 1240 ); 1241 if( pTrigger ){ 1242 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 1243 pStep->target.z = (char *)&pStep[1]; 1244 pStep->target.n = nFrom; 1245 memcpy((char *)pStep->target.z, zFrom, nFrom); 1246 1247 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 1248 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 1249 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1250 if( pWhen ){ 1251 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0); 1252 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 1253 } 1254 } 1255 1256 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 1257 db->lookaside.bEnabled = enableLookaside; 1258 1259 sqlite3ExprDelete(db, pWhere); 1260 sqlite3ExprDelete(db, pWhen); 1261 sqlite3ExprListDelete(db, pList); 1262 sqlite3SelectDelete(db, pSelect); 1263 if( db->mallocFailed==1 ){ 1264 fkTriggerDelete(db, pTrigger); 1265 return 0; 1266 } 1267 assert( pStep!=0 ); 1268 1269 switch( action ){ 1270 case OE_Restrict: 1271 pStep->op = TK_SELECT; 1272 break; 1273 case OE_Cascade: 1274 if( !pChanges ){ 1275 pStep->op = TK_DELETE; 1276 break; 1277 } 1278 default: 1279 pStep->op = TK_UPDATE; 1280 } 1281 pStep->pTrig = pTrigger; 1282 pTrigger->pSchema = pTab->pSchema; 1283 pTrigger->pTabSchema = pTab->pSchema; 1284 pFKey->apTrigger[iAction] = pTrigger; 1285 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 1286 } 1287 1288 return pTrigger; 1289 } 1290 1291 /* 1292 ** This function is called when deleting or updating a row to implement 1293 ** any required CASCADE, SET NULL or SET DEFAULT actions. 1294 */ 1295 void sqlite3FkActions( 1296 Parse *pParse, /* Parse context */ 1297 Table *pTab, /* Table being updated or deleted from */ 1298 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 1299 int regOld, /* Address of array containing old row */ 1300 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 1301 int bChngRowid /* True if rowid is UPDATEd */ 1302 ){ 1303 /* If foreign-key support is enabled, iterate through all FKs that 1304 ** refer to table pTab. If there is an action associated with the FK 1305 ** for this operation (either update or delete), invoke the associated 1306 ** trigger sub-program. */ 1307 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1308 FKey *pFKey; /* Iterator variable */ 1309 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1310 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ 1311 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); 1312 if( pAct ){ 1313 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); 1314 } 1315 } 1316 } 1317 } 1318 } 1319 1320 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 1321 1322 /* 1323 ** Free all memory associated with foreign key definitions attached to 1324 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 1325 ** hash table. 1326 */ 1327 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 1328 FKey *pFKey; /* Iterator variable */ 1329 FKey *pNext; /* Copy of pFKey->pNextFrom */ 1330 1331 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 1332 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ 1333 1334 /* Remove the FK from the fkeyHash hash table. */ 1335 if( !db || db->pnBytesFreed==0 ){ 1336 if( pFKey->pPrevTo ){ 1337 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 1338 }else{ 1339 void *p = (void *)pFKey->pNextTo; 1340 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); 1341 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p); 1342 } 1343 if( pFKey->pNextTo ){ 1344 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 1345 } 1346 } 1347 1348 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 1349 ** classified as either immediate or deferred. 1350 */ 1351 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 1352 1353 /* Delete any triggers created to implement actions for this FK. */ 1354 #ifndef SQLITE_OMIT_TRIGGER 1355 fkTriggerDelete(db, pFKey->apTrigger[0]); 1356 fkTriggerDelete(db, pFKey->apTrigger[1]); 1357 #endif 1358 1359 pNext = pFKey->pNextFrom; 1360 sqlite3DbFree(db, pFKey); 1361 } 1362 } 1363 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ 1364