xref: /sqlite-3.40.0/src/fkey.c (revision d5578433)
1 /*
2 **
3 ** The author disclaims copyright to this source code.  In place of
4 ** a legal notice, here is a blessing:
5 **
6 **    May you do good and not evil.
7 **    May you find forgiveness for yourself and forgive others.
8 **    May you share freely, never taking more than you give.
9 **
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
13 */
14 #include "sqliteInt.h"
15 
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
18 
19 /*
20 ** Deferred and Immediate FKs
21 ** --------------------------
22 **
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT
25 ** is returned and the current statement transaction rolled back. If a
26 ** deferred foreign key constraint is violated, no action is taken
27 ** immediately. However if the application attempts to commit the
28 ** transaction before fixing the constraint violation, the attempt fails.
29 **
30 ** Deferred constraints are implemented using a simple counter associated
31 ** with the database handle. The counter is set to zero each time a
32 ** database transaction is opened. Each time a statement is executed
33 ** that causes a foreign key violation, the counter is incremented. Each
34 ** time a statement is executed that removes an existing violation from
35 ** the database, the counter is decremented. When the transaction is
36 ** committed, the commit fails if the current value of the counter is
37 ** greater than zero. This scheme has two big drawbacks:
38 **
39 **   * When a commit fails due to a deferred foreign key constraint,
40 **     there is no way to tell which foreign constraint is not satisfied,
41 **     or which row it is not satisfied for.
42 **
43 **   * If the database contains foreign key violations when the
44 **     transaction is opened, this may cause the mechanism to malfunction.
45 **
46 ** Despite these problems, this approach is adopted as it seems simpler
47 ** than the alternatives.
48 **
49 ** INSERT operations:
50 **
51 **   I.1) For each FK for which the table is the child table, search
52 **        the parent table for a match. If none is found increment the
53 **        constraint counter.
54 **
55 **   I.2) For each FK for which the table is the parent table,
56 **        search the child table for rows that correspond to the new
57 **        row in the parent table. Decrement the counter for each row
58 **        found (as the constraint is now satisfied).
59 **
60 ** DELETE operations:
61 **
62 **   D.1) For each FK for which the table is the child table,
63 **        search the parent table for a row that corresponds to the
64 **        deleted row in the child table. If such a row is not found,
65 **        decrement the counter.
66 **
67 **   D.2) For each FK for which the table is the parent table, search
68 **        the child table for rows that correspond to the deleted row
69 **        in the parent table. For each found increment the counter.
70 **
71 ** UPDATE operations:
72 **
73 **   An UPDATE command requires that all 4 steps above are taken, but only
74 **   for FK constraints for which the affected columns are actually
75 **   modified (values must be compared at runtime).
76 **
77 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
78 ** This simplifies the implementation a bit.
79 **
80 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
81 ** resolution is considered to delete rows before the new row is inserted.
82 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
83 ** is thrown, even if the FK constraint would be satisfied after the new
84 ** row is inserted.
85 **
86 ** Immediate constraints are usually handled similarly. The only difference
87 ** is that the counter used is stored as part of each individual statement
88 ** object (struct Vdbe). If, after the statement has run, its immediate
89 ** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT
90 ** and the statement transaction is rolled back. An exception is an INSERT
91 ** statement that inserts a single row only (no triggers). In this case,
92 ** instead of using a counter, an exception is thrown immediately if the
93 ** INSERT violates a foreign key constraint. This is necessary as such
94 ** an INSERT does not open a statement transaction.
95 **
96 ** TODO: How should dropping a table be handled? How should renaming a
97 ** table be handled?
98 **
99 **
100 ** Query API Notes
101 ** ---------------
102 **
103 ** Before coding an UPDATE or DELETE row operation, the code-generator
104 ** for those two operations needs to know whether or not the operation
105 ** requires any FK processing and, if so, which columns of the original
106 ** row are required by the FK processing VDBE code (i.e. if FKs were
107 ** implemented using triggers, which of the old.* columns would be
108 ** accessed). No information is required by the code-generator before
109 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
110 ** generation code to query for this information are:
111 **
112 **   sqlite3FkRequired() - Test to see if FK processing is required.
113 **   sqlite3FkOldmask()  - Query for the set of required old.* columns.
114 **
115 **
116 ** Externally accessible module functions
117 ** --------------------------------------
118 **
119 **   sqlite3FkCheck()    - Check for foreign key violations.
120 **   sqlite3FkActions()  - Code triggers for ON UPDATE/ON DELETE actions.
121 **   sqlite3FkDelete()   - Delete an FKey structure.
122 */
123 
124 /*
125 ** VDBE Calling Convention
126 ** -----------------------
127 **
128 ** Example:
129 **
130 **   For the following INSERT statement:
131 **
132 **     CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
133 **     INSERT INTO t1 VALUES(1, 2, 3.1);
134 **
135 **   Register (x):        2    (type integer)
136 **   Register (x+1):      1    (type integer)
137 **   Register (x+2):      NULL (type NULL)
138 **   Register (x+3):      3.1  (type real)
139 */
140 
141 /*
142 ** A foreign key constraint requires that the key columns in the parent
143 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
144 ** Given that pParent is the parent table for foreign key constraint pFKey,
145 ** search the schema a unique index on the parent key columns.
146 **
147 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
148 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
149 ** is set to point to the unique index.
150 **
151 ** If the parent key consists of a single column (the foreign key constraint
152 ** is not a composite foreign key), output variable *paiCol is set to NULL.
153 ** Otherwise, it is set to point to an allocated array of size N, where
154 ** N is the number of columns in the parent key. The first element of the
155 ** array is the index of the child table column that is mapped by the FK
156 ** constraint to the parent table column stored in the left-most column
157 ** of index *ppIdx. The second element of the array is the index of the
158 ** child table column that corresponds to the second left-most column of
159 ** *ppIdx, and so on.
160 **
161 ** If the required index cannot be found, either because:
162 **
163 **   1) The named parent key columns do not exist, or
164 **
165 **   2) The named parent key columns do exist, but are not subject to a
166 **      UNIQUE or PRIMARY KEY constraint, or
167 **
168 **   3) No parent key columns were provided explicitly as part of the
169 **      foreign key definition, and the parent table does not have a
170 **      PRIMARY KEY, or
171 **
172 **   4) No parent key columns were provided explicitly as part of the
173 **      foreign key definition, and the PRIMARY KEY of the parent table
174 **      consists of a a different number of columns to the child key in
175 **      the child table.
176 **
177 ** then non-zero is returned, and a "foreign key mismatch" error loaded
178 ** into pParse. If an OOM error occurs, non-zero is returned and the
179 ** pParse->db->mallocFailed flag is set.
180 */
181 static int locateFkeyIndex(
182   Parse *pParse,                  /* Parse context to store any error in */
183   Table *pParent,                 /* Parent table of FK constraint pFKey */
184   FKey *pFKey,                    /* Foreign key to find index for */
185   Index **ppIdx,                  /* OUT: Unique index on parent table */
186   int **paiCol                    /* OUT: Map of index columns in pFKey */
187 ){
188   Index *pIdx = 0;                    /* Value to return via *ppIdx */
189   int *aiCol = 0;                     /* Value to return via *paiCol */
190   int nCol = pFKey->nCol;             /* Number of columns in parent key */
191   char *zKey = pFKey->aCol[0].zCol;   /* Name of left-most parent key column */
192 
193   /* The caller is responsible for zeroing output parameters. */
194   assert( ppIdx && *ppIdx==0 );
195   assert( !paiCol || *paiCol==0 );
196   assert( pParse );
197 
198   /* If this is a non-composite (single column) foreign key, check if it
199   ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
200   ** and *paiCol set to zero and return early.
201   **
202   ** Otherwise, for a composite foreign key (more than one column), allocate
203   ** space for the aiCol array (returned via output parameter *paiCol).
204   ** Non-composite foreign keys do not require the aiCol array.
205   */
206   if( nCol==1 ){
207     /* The FK maps to the IPK if any of the following are true:
208     **
209     **   1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
210     **      mapped to the primary key of table pParent, or
211     **   2) The FK is explicitly mapped to a column declared as INTEGER
212     **      PRIMARY KEY.
213     */
214     if( pParent->iPKey>=0 ){
215       if( !zKey ) return 0;
216       if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
217     }
218   }else if( paiCol ){
219     assert( nCol>1 );
220     aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
221     if( !aiCol ) return 1;
222     *paiCol = aiCol;
223   }
224 
225   for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
226     if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
227       /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
228       ** of columns. If each indexed column corresponds to a foreign key
229       ** column of pFKey, then this index is a winner.  */
230 
231       if( zKey==0 ){
232         /* If zKey is NULL, then this foreign key is implicitly mapped to
233         ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
234         ** identified by the test (Index.autoIndex==2).  */
235         if( pIdx->autoIndex==2 ){
236           if( aiCol ){
237             int i;
238             for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
239           }
240           break;
241         }
242       }else{
243         /* If zKey is non-NULL, then this foreign key was declared to
244         ** map to an explicit list of columns in table pParent. Check if this
245         ** index matches those columns. Also, check that the index uses
246         ** the default collation sequences for each column. */
247         int i, j;
248         for(i=0; i<nCol; i++){
249           int iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
250           char *zDfltColl;                  /* Def. collation for column */
251           char *zIdxCol;                    /* Name of indexed column */
252 
253           /* If the index uses a collation sequence that is different from
254           ** the default collation sequence for the column, this index is
255           ** unusable. Bail out early in this case.  */
256           zDfltColl = pParent->aCol[iCol].zColl;
257           if( !zDfltColl ){
258             zDfltColl = "BINARY";
259           }
260           if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
261 
262           zIdxCol = pParent->aCol[iCol].zName;
263           for(j=0; j<nCol; j++){
264             if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
265               if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
266               break;
267             }
268           }
269           if( j==nCol ) break;
270         }
271         if( i==nCol ) break;      /* pIdx is usable */
272       }
273     }
274   }
275 
276   if( !pIdx ){
277     if( !pParse->disableTriggers ){
278       sqlite3ErrorMsg(pParse, "foreign key mismatch");
279     }
280     sqlite3DbFree(pParse->db, aiCol);
281     return 1;
282   }
283 
284   *ppIdx = pIdx;
285   return 0;
286 }
287 
288 /*
289 ** This function is called when a row is inserted into or deleted from the
290 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
291 ** on the child table of pFKey, this function is invoked twice for each row
292 ** affected - once to "delete" the old row, and then again to "insert" the
293 ** new row.
294 **
295 ** Each time it is called, this function generates VDBE code to locate the
296 ** row in the parent table that corresponds to the row being inserted into
297 ** or deleted from the child table. If the parent row can be found, no
298 ** special action is taken. Otherwise, if the parent row can *not* be
299 ** found in the parent table:
300 **
301 **   Operation | FK type   | Action taken
302 **   --------------------------------------------------------------------------
303 **   INSERT      immediate   Increment the "immediate constraint counter".
304 **
305 **   DELETE      immediate   Decrement the "immediate constraint counter".
306 **
307 **   INSERT      deferred    Increment the "deferred constraint counter".
308 **
309 **   DELETE      deferred    Decrement the "deferred constraint counter".
310 **
311 ** These operations are identified in the comment at the top of this file
312 ** (fkey.c) as "I.1" and "D.1".
313 */
314 static void fkLookupParent(
315   Parse *pParse,        /* Parse context */
316   int iDb,              /* Index of database housing pTab */
317   Table *pTab,          /* Parent table of FK pFKey */
318   Index *pIdx,          /* Unique index on parent key columns in pTab */
319   FKey *pFKey,          /* Foreign key constraint */
320   int *aiCol,           /* Map from parent key columns to child table columns */
321   int regData,          /* Address of array containing child table row */
322   int nIncr,            /* Increment constraint counter by this */
323   int isIgnore          /* If true, pretend pTab contains all NULL values */
324 ){
325   int i;                                    /* Iterator variable */
326   Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
327   int iCur = pParse->nTab - 1;              /* Cursor number to use */
328   int iOk = sqlite3VdbeMakeLabel(v);        /* jump here if parent key found */
329 
330   /* If nIncr is less than zero, then check at runtime if there are any
331   ** outstanding constraints to resolve. If there are not, there is no need
332   ** to check if deleting this row resolves any outstanding violations.
333   **
334   ** Check if any of the key columns in the child table row are NULL. If
335   ** any are, then the constraint is considered satisfied. No need to
336   ** search for a matching row in the parent table.  */
337   if( nIncr<0 ){
338     sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
339   }
340   for(i=0; i<pFKey->nCol; i++){
341     int iReg = aiCol[i] + regData + 1;
342     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
343   }
344 
345   if( isIgnore==0 ){
346     if( pIdx==0 ){
347       /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
348       ** column of the parent table (table pTab).  */
349       int iMustBeInt;               /* Address of MustBeInt instruction */
350       int regTemp = sqlite3GetTempReg(pParse);
351 
352       /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
353       ** apply the affinity of the parent key). If this fails, then there
354       ** is no matching parent key. Before using MustBeInt, make a copy of
355       ** the value. Otherwise, the value inserted into the child key column
356       ** will have INTEGER affinity applied to it, which may not be correct.  */
357       sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
358       iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
359 
360       /* If the parent table is the same as the child table, and we are about
361       ** to increment the constraint-counter (i.e. this is an INSERT operation),
362       ** then check if the row being inserted matches itself. If so, do not
363       ** increment the constraint-counter.  */
364       if( pTab==pFKey->pFrom && nIncr==1 ){
365         sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp);
366       }
367 
368       sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
369       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
370       sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
371       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
372       sqlite3VdbeJumpHere(v, iMustBeInt);
373       sqlite3ReleaseTempReg(pParse, regTemp);
374     }else{
375       int nCol = pFKey->nCol;
376       int regTemp = sqlite3GetTempRange(pParse, nCol);
377       int regRec = sqlite3GetTempReg(pParse);
378       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
379 
380       sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
381       sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
382       for(i=0; i<nCol; i++){
383         sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
384       }
385 
386       /* If the parent table is the same as the child table, and we are about
387       ** to increment the constraint-counter (i.e. this is an INSERT operation),
388       ** then check if the row being inserted matches itself. If so, do not
389       ** increment the constraint-counter.
390       **
391       ** If any of the parent-key values are NULL, then the row cannot match
392       ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
393       ** of the parent-key values are NULL (at this point it is known that
394       ** none of the child key values are).
395       */
396       if( pTab==pFKey->pFrom && nIncr==1 ){
397         int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
398         for(i=0; i<nCol; i++){
399           int iChild = aiCol[i]+1+regData;
400           int iParent = pIdx->aiColumn[i]+1+regData;
401           assert( aiCol[i]!=pTab->iPKey );
402           if( pIdx->aiColumn[i]==pTab->iPKey ){
403             /* The parent key is a composite key that includes the IPK column */
404             iParent = regData;
405           }
406           sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
407           sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
408         }
409         sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
410       }
411 
412       sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
413       sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
414       sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);
415 
416       sqlite3ReleaseTempReg(pParse, regRec);
417       sqlite3ReleaseTempRange(pParse, regTemp, nCol);
418     }
419   }
420 
421   if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
422     /* Special case: If this is an INSERT statement that will insert exactly
423     ** one row into the table, raise a constraint immediately instead of
424     ** incrementing a counter. This is necessary as the VM code is being
425     ** generated for will not open a statement transaction.  */
426     assert( nIncr==1 );
427     sqlite3HaltConstraint(
428         pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
429     );
430   }else{
431     if( nIncr>0 && pFKey->isDeferred==0 ){
432       sqlite3ParseToplevel(pParse)->mayAbort = 1;
433     }
434     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
435   }
436 
437   sqlite3VdbeResolveLabel(v, iOk);
438   sqlite3VdbeAddOp1(v, OP_Close, iCur);
439 }
440 
441 /*
442 ** This function is called to generate code executed when a row is deleted
443 ** from the parent table of foreign key constraint pFKey and, if pFKey is
444 ** deferred, when a row is inserted into the same table. When generating
445 ** code for an SQL UPDATE operation, this function may be called twice -
446 ** once to "delete" the old row and once to "insert" the new row.
447 **
448 ** The code generated by this function scans through the rows in the child
449 ** table that correspond to the parent table row being deleted or inserted.
450 ** For each child row found, one of the following actions is taken:
451 **
452 **   Operation | FK type   | Action taken
453 **   --------------------------------------------------------------------------
454 **   DELETE      immediate   Increment the "immediate constraint counter".
455 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
456 **                           throw a "foreign key constraint failed" exception.
457 **
458 **   INSERT      immediate   Decrement the "immediate constraint counter".
459 **
460 **   DELETE      deferred    Increment the "deferred constraint counter".
461 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
462 **                           throw a "foreign key constraint failed" exception.
463 **
464 **   INSERT      deferred    Decrement the "deferred constraint counter".
465 **
466 ** These operations are identified in the comment at the top of this file
467 ** (fkey.c) as "I.2" and "D.2".
468 */
469 static void fkScanChildren(
470   Parse *pParse,                  /* Parse context */
471   SrcList *pSrc,                  /* SrcList containing the table to scan */
472   Table *pTab,
473   Index *pIdx,                    /* Foreign key index */
474   FKey *pFKey,                    /* Foreign key relationship */
475   int *aiCol,                     /* Map from pIdx cols to child table cols */
476   int regData,                    /* Referenced table data starts here */
477   int nIncr                       /* Amount to increment deferred counter by */
478 ){
479   sqlite3 *db = pParse->db;       /* Database handle */
480   int i;                          /* Iterator variable */
481   Expr *pWhere = 0;               /* WHERE clause to scan with */
482   NameContext sNameContext;       /* Context used to resolve WHERE clause */
483   WhereInfo *pWInfo;              /* Context used by sqlite3WhereXXX() */
484   int iFkIfZero = 0;              /* Address of OP_FkIfZero */
485   Vdbe *v = sqlite3GetVdbe(pParse);
486 
487   assert( !pIdx || pIdx->pTable==pTab );
488 
489   if( nIncr<0 ){
490     iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
491   }
492 
493   /* Create an Expr object representing an SQL expression like:
494   **
495   **   <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
496   **
497   ** The collation sequence used for the comparison should be that of
498   ** the parent key columns. The affinity of the parent key column should
499   ** be applied to each child key value before the comparison takes place.
500   */
501   for(i=0; i<pFKey->nCol; i++){
502     Expr *pLeft;                  /* Value from parent table row */
503     Expr *pRight;                 /* Column ref to child table */
504     Expr *pEq;                    /* Expression (pLeft = pRight) */
505     int iCol;                     /* Index of column in child table */
506     const char *zCol;             /* Name of column in child table */
507 
508     pLeft = sqlite3Expr(db, TK_REGISTER, 0);
509     if( pLeft ){
510       /* Set the collation sequence and affinity of the LHS of each TK_EQ
511       ** expression to the parent key column defaults.  */
512       if( pIdx ){
513         Column *pCol;
514         iCol = pIdx->aiColumn[i];
515         pCol = &pTab->aCol[iCol];
516         if( pTab->iPKey==iCol ) iCol = -1;
517         pLeft->iTable = regData+iCol+1;
518         pLeft->affinity = pCol->affinity;
519         pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl);
520       }else{
521         pLeft->iTable = regData;
522         pLeft->affinity = SQLITE_AFF_INTEGER;
523       }
524     }
525     iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
526     assert( iCol>=0 );
527     zCol = pFKey->pFrom->aCol[iCol].zName;
528     pRight = sqlite3Expr(db, TK_ID, zCol);
529     pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
530     pWhere = sqlite3ExprAnd(db, pWhere, pEq);
531   }
532 
533   /* If the child table is the same as the parent table, and this scan
534   ** is taking place as part of a DELETE operation (operation D.2), omit the
535   ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE
536   ** clause, where $rowid is the rowid of the row being deleted.  */
537   if( pTab==pFKey->pFrom && nIncr>0 ){
538     Expr *pEq;                    /* Expression (pLeft = pRight) */
539     Expr *pLeft;                  /* Value from parent table row */
540     Expr *pRight;                 /* Column ref to child table */
541     pLeft = sqlite3Expr(db, TK_REGISTER, 0);
542     pRight = sqlite3Expr(db, TK_COLUMN, 0);
543     if( pLeft && pRight ){
544       pLeft->iTable = regData;
545       pLeft->affinity = SQLITE_AFF_INTEGER;
546       pRight->iTable = pSrc->a[0].iCursor;
547       pRight->iColumn = -1;
548     }
549     pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
550     pWhere = sqlite3ExprAnd(db, pWhere, pEq);
551   }
552 
553   /* Resolve the references in the WHERE clause. */
554   memset(&sNameContext, 0, sizeof(NameContext));
555   sNameContext.pSrcList = pSrc;
556   sNameContext.pParse = pParse;
557   sqlite3ResolveExprNames(&sNameContext, pWhere);
558 
559   /* Create VDBE to loop through the entries in pSrc that match the WHERE
560   ** clause. If the constraint is not deferred, throw an exception for
561   ** each row found. Otherwise, for deferred constraints, increment the
562   ** deferred constraint counter by nIncr for each row selected.  */
563   pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
564   if( nIncr>0 && pFKey->isDeferred==0 ){
565     sqlite3ParseToplevel(pParse)->mayAbort = 1;
566   }
567   sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
568   if( pWInfo ){
569     sqlite3WhereEnd(pWInfo);
570   }
571 
572   /* Clean up the WHERE clause constructed above. */
573   sqlite3ExprDelete(db, pWhere);
574   if( iFkIfZero ){
575     sqlite3VdbeJumpHere(v, iFkIfZero);
576   }
577 }
578 
579 /*
580 ** This function returns a pointer to the head of a linked list of FK
581 ** constraints for which table pTab is the parent table. For example,
582 ** given the following schema:
583 **
584 **   CREATE TABLE t1(a PRIMARY KEY);
585 **   CREATE TABLE t2(b REFERENCES t1(a);
586 **
587 ** Calling this function with table "t1" as an argument returns a pointer
588 ** to the FKey structure representing the foreign key constraint on table
589 ** "t2". Calling this function with "t2" as the argument would return a
590 ** NULL pointer (as there are no FK constraints for which t2 is the parent
591 ** table).
592 */
593 FKey *sqlite3FkReferences(Table *pTab){
594   int nName = sqlite3Strlen30(pTab->zName);
595   return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
596 }
597 
598 /*
599 ** The second argument is a Trigger structure allocated by the
600 ** fkActionTrigger() routine. This function deletes the Trigger structure
601 ** and all of its sub-components.
602 **
603 ** The Trigger structure or any of its sub-components may be allocated from
604 ** the lookaside buffer belonging to database handle dbMem.
605 */
606 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
607   if( p ){
608     TriggerStep *pStep = p->step_list;
609     sqlite3ExprDelete(dbMem, pStep->pWhere);
610     sqlite3ExprListDelete(dbMem, pStep->pExprList);
611     sqlite3SelectDelete(dbMem, pStep->pSelect);
612     sqlite3ExprDelete(dbMem, p->pWhen);
613     sqlite3DbFree(dbMem, p);
614   }
615 }
616 
617 /*
618 ** This function is called to generate code that runs when table pTab is
619 ** being dropped from the database. The SrcList passed as the second argument
620 ** to this function contains a single entry guaranteed to resolve to
621 ** table pTab.
622 **
623 ** Normally, no code is required. However, if either
624 **
625 **   (a) The table is the parent table of a FK constraint, or
626 **   (b) The table is the child table of a deferred FK constraint and it is
627 **       determined at runtime that there are outstanding deferred FK
628 **       constraint violations in the database,
629 **
630 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
631 ** the table from the database. Triggers are disabled while running this
632 ** DELETE, but foreign key actions are not.
633 */
634 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
635   sqlite3 *db = pParse->db;
636   if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
637     int iSkip = 0;
638     Vdbe *v = sqlite3GetVdbe(pParse);
639 
640     assert( v );                  /* VDBE has already been allocated */
641     if( sqlite3FkReferences(pTab)==0 ){
642       /* Search for a deferred foreign key constraint for which this table
643       ** is the child table. If one cannot be found, return without
644       ** generating any VDBE code. If one can be found, then jump over
645       ** the entire DELETE if there are no outstanding deferred constraints
646       ** when this statement is run.  */
647       FKey *p;
648       for(p=pTab->pFKey; p; p=p->pNextFrom){
649         if( p->isDeferred ) break;
650       }
651       if( !p ) return;
652       iSkip = sqlite3VdbeMakeLabel(v);
653       sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip);
654     }
655 
656     pParse->disableTriggers = 1;
657     sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
658     pParse->disableTriggers = 0;
659 
660     /* If the DELETE has generated immediate foreign key constraint
661     ** violations, halt the VDBE and return an error at this point, before
662     ** any modifications to the schema are made. This is because statement
663     ** transactions are not able to rollback schema changes.  */
664     sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
665     sqlite3HaltConstraint(
666         pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
667     );
668 
669     if( iSkip ){
670       sqlite3VdbeResolveLabel(v, iSkip);
671     }
672   }
673 }
674 
675 /*
676 ** This function is called when inserting, deleting or updating a row of
677 ** table pTab to generate VDBE code to perform foreign key constraint
678 ** processing for the operation.
679 **
680 ** For a DELETE operation, parameter regOld is passed the index of the
681 ** first register in an array of (pTab->nCol+1) registers containing the
682 ** rowid of the row being deleted, followed by each of the column values
683 ** of the row being deleted, from left to right. Parameter regNew is passed
684 ** zero in this case.
685 **
686 ** For an INSERT operation, regOld is passed zero and regNew is passed the
687 ** first register of an array of (pTab->nCol+1) registers containing the new
688 ** row data.
689 **
690 ** For an UPDATE operation, this function is called twice. Once before
691 ** the original record is deleted from the table using the calling convention
692 ** described for DELETE. Then again after the original record is deleted
693 ** but before the new record is inserted using the INSERT convention.
694 */
695 void sqlite3FkCheck(
696   Parse *pParse,                  /* Parse context */
697   Table *pTab,                    /* Row is being deleted from this table */
698   int regOld,                     /* Previous row data is stored here */
699   int regNew                      /* New row data is stored here */
700 ){
701   sqlite3 *db = pParse->db;       /* Database handle */
702   FKey *pFKey;                    /* Used to iterate through FKs */
703   int iDb;                        /* Index of database containing pTab */
704   const char *zDb;                /* Name of database containing pTab */
705   int isIgnoreErrors = pParse->disableTriggers;
706 
707   /* Exactly one of regOld and regNew should be non-zero. */
708   assert( (regOld==0)!=(regNew==0) );
709 
710   /* If foreign-keys are disabled, this function is a no-op. */
711   if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
712 
713   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
714   zDb = db->aDb[iDb].zName;
715 
716   /* Loop through all the foreign key constraints for which pTab is the
717   ** child table (the table that the foreign key definition is part of).  */
718   for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
719     Table *pTo;                   /* Parent table of foreign key pFKey */
720     Index *pIdx = 0;              /* Index on key columns in pTo */
721     int *aiFree = 0;
722     int *aiCol;
723     int iCol;
724     int i;
725     int isIgnore = 0;
726 
727     /* Find the parent table of this foreign key. Also find a unique index
728     ** on the parent key columns in the parent table. If either of these
729     ** schema items cannot be located, set an error in pParse and return
730     ** early.  */
731     if( pParse->disableTriggers ){
732       pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
733     }else{
734       pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
735     }
736     if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
737       assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
738       if( !isIgnoreErrors || db->mallocFailed ) return;
739       if( pTo==0 ){
740         /* If isIgnoreErrors is true, then a table is being dropped. In this
741         ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
742         ** before actually dropping it in order to check FK constraints.
743         ** If the parent table of an FK constraint on the current table is
744         ** missing, behave as if it is empty. i.e. decrement the relevant
745         ** FK counter for each row of the current table with non-NULL keys.
746         */
747         Vdbe *v = sqlite3GetVdbe(pParse);
748         int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
749         for(i=0; i<pFKey->nCol; i++){
750           int iReg = pFKey->aCol[i].iFrom + regOld + 1;
751           sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump);
752         }
753         sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
754       }
755       continue;
756     }
757     assert( pFKey->nCol==1 || (aiFree && pIdx) );
758 
759     if( aiFree ){
760       aiCol = aiFree;
761     }else{
762       iCol = pFKey->aCol[0].iFrom;
763       aiCol = &iCol;
764     }
765     for(i=0; i<pFKey->nCol; i++){
766       if( aiCol[i]==pTab->iPKey ){
767         aiCol[i] = -1;
768       }
769 #ifndef SQLITE_OMIT_AUTHORIZATION
770       /* Request permission to read the parent key columns. If the
771       ** authorization callback returns SQLITE_IGNORE, behave as if any
772       ** values read from the parent table are NULL. */
773       if( db->xAuth ){
774         int rcauth;
775         char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
776         rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
777         isIgnore = (rcauth==SQLITE_IGNORE);
778       }
779 #endif
780     }
781 
782     /* Take a shared-cache advisory read-lock on the parent table. Allocate
783     ** a cursor to use to search the unique index on the parent key columns
784     ** in the parent table.  */
785     sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
786     pParse->nTab++;
787 
788     if( regOld!=0 ){
789       /* A row is being removed from the child table. Search for the parent.
790       ** If the parent does not exist, removing the child row resolves an
791       ** outstanding foreign key constraint violation. */
792       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
793     }
794     if( regNew!=0 ){
795       /* A row is being added to the child table. If a parent row cannot
796       ** be found, adding the child row has violated the FK constraint. */
797       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
798     }
799 
800     sqlite3DbFree(db, aiFree);
801   }
802 
803   /* Loop through all the foreign key constraints that refer to this table */
804   for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
805     Index *pIdx = 0;              /* Foreign key index for pFKey */
806     SrcList *pSrc;
807     int *aiCol = 0;
808 
809     if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
810       assert( regOld==0 && regNew!=0 );
811       /* Inserting a single row into a parent table cannot cause an immediate
812       ** foreign key violation. So do nothing in this case.  */
813       continue;
814     }
815 
816     if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
817       if( !isIgnoreErrors || db->mallocFailed ) return;
818       continue;
819     }
820     assert( aiCol || pFKey->nCol==1 );
821 
822     /* Create a SrcList structure containing a single table (the table
823     ** the foreign key that refers to this table is attached to). This
824     ** is required for the sqlite3WhereXXX() interface.  */
825     pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
826     if( pSrc ){
827       struct SrcList_item *pItem = pSrc->a;
828       pItem->pTab = pFKey->pFrom;
829       pItem->zName = pFKey->pFrom->zName;
830       pItem->pTab->nRef++;
831       pItem->iCursor = pParse->nTab++;
832 
833       if( regNew!=0 ){
834         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
835       }
836       if( regOld!=0 ){
837         /* If there is a RESTRICT action configured for the current operation
838         ** on the parent table of this FK, then throw an exception
839         ** immediately if the FK constraint is violated, even if this is a
840         ** deferred trigger. That's what RESTRICT means. To defer checking
841         ** the constraint, the FK should specify NO ACTION (represented
842         ** using OE_None). NO ACTION is the default.  */
843         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
844       }
845       pItem->zName = 0;
846       sqlite3SrcListDelete(db, pSrc);
847     }
848     sqlite3DbFree(db, aiCol);
849   }
850 }
851 
852 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
853 
854 /*
855 ** This function is called before generating code to update or delete a
856 ** row contained in table pTab.
857 */
858 u32 sqlite3FkOldmask(
859   Parse *pParse,                  /* Parse context */
860   Table *pTab                     /* Table being modified */
861 ){
862   u32 mask = 0;
863   if( pParse->db->flags&SQLITE_ForeignKeys ){
864     FKey *p;
865     int i;
866     for(p=pTab->pFKey; p; p=p->pNextFrom){
867       for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
868     }
869     for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
870       Index *pIdx = 0;
871       locateFkeyIndex(pParse, pTab, p, &pIdx, 0);
872       if( pIdx ){
873         for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
874       }
875     }
876   }
877   return mask;
878 }
879 
880 /*
881 ** This function is called before generating code to update or delete a
882 ** row contained in table pTab. If the operation is a DELETE, then
883 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
884 ** to an array of size N, where N is the number of columns in table pTab.
885 ** If the i'th column is not modified by the UPDATE, then the corresponding
886 ** entry in the aChange[] array is set to -1. If the column is modified,
887 ** the value is 0 or greater. Parameter chngRowid is set to true if the
888 ** UPDATE statement modifies the rowid fields of the table.
889 **
890 ** If any foreign key processing will be required, this function returns
891 ** true. If there is no foreign key related processing, this function
892 ** returns false.
893 */
894 int sqlite3FkRequired(
895   Parse *pParse,                  /* Parse context */
896   Table *pTab,                    /* Table being modified */
897   int *aChange,                   /* Non-NULL for UPDATE operations */
898   int chngRowid                   /* True for UPDATE that affects rowid */
899 ){
900   if( pParse->db->flags&SQLITE_ForeignKeys ){
901     if( !aChange ){
902       /* A DELETE operation. Foreign key processing is required if the
903       ** table in question is either the child or parent table for any
904       ** foreign key constraint.  */
905       return (sqlite3FkReferences(pTab) || pTab->pFKey);
906     }else{
907       /* This is an UPDATE. Foreign key processing is only required if the
908       ** operation modifies one or more child or parent key columns. */
909       int i;
910       FKey *p;
911 
912       /* Check if any child key columns are being modified. */
913       for(p=pTab->pFKey; p; p=p->pNextFrom){
914         for(i=0; i<p->nCol; i++){
915           int iChildKey = p->aCol[i].iFrom;
916           if( aChange[iChildKey]>=0 ) return 1;
917           if( iChildKey==pTab->iPKey && chngRowid ) return 1;
918         }
919       }
920 
921       /* Check if any parent key columns are being modified. */
922       for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
923         for(i=0; i<p->nCol; i++){
924           char *zKey = p->aCol[i].zCol;
925           int iKey;
926           for(iKey=0; iKey<pTab->nCol; iKey++){
927             Column *pCol = &pTab->aCol[iKey];
928             if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){
929               if( aChange[iKey]>=0 ) return 1;
930               if( iKey==pTab->iPKey && chngRowid ) return 1;
931             }
932           }
933         }
934       }
935     }
936   }
937   return 0;
938 }
939 
940 /*
941 ** This function is called when an UPDATE or DELETE operation is being
942 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
943 ** If the current operation is an UPDATE, then the pChanges parameter is
944 ** passed a pointer to the list of columns being modified. If it is a
945 ** DELETE, pChanges is passed a NULL pointer.
946 **
947 ** It returns a pointer to a Trigger structure containing a trigger
948 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
949 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
950 ** returned (these actions require no special handling by the triggers
951 ** sub-system, code for them is created by fkScanChildren()).
952 **
953 ** For example, if pFKey is the foreign key and pTab is table "p" in
954 ** the following schema:
955 **
956 **   CREATE TABLE p(pk PRIMARY KEY);
957 **   CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
958 **
959 ** then the returned trigger structure is equivalent to:
960 **
961 **   CREATE TRIGGER ... DELETE ON p BEGIN
962 **     DELETE FROM c WHERE ck = old.pk;
963 **   END;
964 **
965 ** The returned pointer is cached as part of the foreign key object. It
966 ** is eventually freed along with the rest of the foreign key object by
967 ** sqlite3FkDelete().
968 */
969 static Trigger *fkActionTrigger(
970   Parse *pParse,                  /* Parse context */
971   Table *pTab,                    /* Table being updated or deleted from */
972   FKey *pFKey,                    /* Foreign key to get action for */
973   ExprList *pChanges              /* Change-list for UPDATE, NULL for DELETE */
974 ){
975   sqlite3 *db = pParse->db;       /* Database handle */
976   int action;                     /* One of OE_None, OE_Cascade etc. */
977   Trigger *pTrigger;              /* Trigger definition to return */
978   int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */
979 
980   action = pFKey->aAction[iAction];
981   pTrigger = pFKey->apTrigger[iAction];
982 
983   if( action!=OE_None && !pTrigger ){
984     u8 enableLookaside;           /* Copy of db->lookaside.bEnabled */
985     char const *zFrom;            /* Name of child table */
986     int nFrom;                    /* Length in bytes of zFrom */
987     Index *pIdx = 0;              /* Parent key index for this FK */
988     int *aiCol = 0;               /* child table cols -> parent key cols */
989     TriggerStep *pStep = 0;        /* First (only) step of trigger program */
990     Expr *pWhere = 0;             /* WHERE clause of trigger step */
991     ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
992     Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
993     int i;                        /* Iterator variable */
994     Expr *pWhen = 0;              /* WHEN clause for the trigger */
995 
996     if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
997     assert( aiCol || pFKey->nCol==1 );
998 
999     for(i=0; i<pFKey->nCol; i++){
1000       Token tOld = { "old", 3 };  /* Literal "old" token */
1001       Token tNew = { "new", 3 };  /* Literal "new" token */
1002       Token tFromCol;             /* Name of column in child table */
1003       Token tToCol;               /* Name of column in parent table */
1004       int iFromCol;               /* Idx of column in child table */
1005       Expr *pEq;                  /* tFromCol = OLD.tToCol */
1006 
1007       iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
1008       assert( iFromCol>=0 );
1009       tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
1010       tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
1011 
1012       tToCol.n = sqlite3Strlen30(tToCol.z);
1013       tFromCol.n = sqlite3Strlen30(tFromCol.z);
1014 
1015       /* Create the expression "OLD.zToCol = zFromCol". It is important
1016       ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1017       ** that the affinity and collation sequence associated with the
1018       ** parent table are used for the comparison. */
1019       pEq = sqlite3PExpr(pParse, TK_EQ,
1020           sqlite3PExpr(pParse, TK_DOT,
1021             sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
1022             sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
1023           , 0),
1024           sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
1025       , 0);
1026       pWhere = sqlite3ExprAnd(db, pWhere, pEq);
1027 
1028       /* For ON UPDATE, construct the next term of the WHEN clause.
1029       ** The final WHEN clause will be like this:
1030       **
1031       **    WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1032       */
1033       if( pChanges ){
1034         pEq = sqlite3PExpr(pParse, TK_IS,
1035             sqlite3PExpr(pParse, TK_DOT,
1036               sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
1037               sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1038               0),
1039             sqlite3PExpr(pParse, TK_DOT,
1040               sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1041               sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1042               0),
1043             0);
1044         pWhen = sqlite3ExprAnd(db, pWhen, pEq);
1045       }
1046 
1047       if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1048         Expr *pNew;
1049         if( action==OE_Cascade ){
1050           pNew = sqlite3PExpr(pParse, TK_DOT,
1051             sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1052             sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
1053           , 0);
1054         }else if( action==OE_SetDflt ){
1055           Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
1056           if( pDflt ){
1057             pNew = sqlite3ExprDup(db, pDflt, 0);
1058           }else{
1059             pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1060           }
1061         }else{
1062           pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1063         }
1064         pList = sqlite3ExprListAppend(pParse, pList, pNew);
1065         sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1066       }
1067     }
1068     sqlite3DbFree(db, aiCol);
1069 
1070     zFrom = pFKey->pFrom->zName;
1071     nFrom = sqlite3Strlen30(zFrom);
1072 
1073     if( action==OE_Restrict ){
1074       Token tFrom;
1075       Expr *pRaise;
1076 
1077       tFrom.z = zFrom;
1078       tFrom.n = nFrom;
1079       pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed");
1080       if( pRaise ){
1081         pRaise->affinity = OE_Abort;
1082       }
1083       pSelect = sqlite3SelectNew(pParse,
1084           sqlite3ExprListAppend(pParse, 0, pRaise),
1085           sqlite3SrcListAppend(db, 0, &tFrom, 0),
1086           pWhere,
1087           0, 0, 0, 0, 0, 0
1088       );
1089       pWhere = 0;
1090     }
1091 
1092     /* Disable lookaside memory allocation */
1093     enableLookaside = db->lookaside.bEnabled;
1094     db->lookaside.bEnabled = 0;
1095 
1096     pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1097         sizeof(Trigger) +         /* struct Trigger */
1098         sizeof(TriggerStep) +     /* Single step in trigger program */
1099         nFrom + 1                 /* Space for pStep->target.z */
1100     );
1101     if( pTrigger ){
1102       pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1103       pStep->target.z = (char *)&pStep[1];
1104       pStep->target.n = nFrom;
1105       memcpy((char *)pStep->target.z, zFrom, nFrom);
1106 
1107       pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1108       pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1109       pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1110       if( pWhen ){
1111         pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
1112         pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1113       }
1114     }
1115 
1116     /* Re-enable the lookaside buffer, if it was disabled earlier. */
1117     db->lookaside.bEnabled = enableLookaside;
1118 
1119     sqlite3ExprDelete(db, pWhere);
1120     sqlite3ExprDelete(db, pWhen);
1121     sqlite3ExprListDelete(db, pList);
1122     sqlite3SelectDelete(db, pSelect);
1123     if( db->mallocFailed==1 ){
1124       fkTriggerDelete(db, pTrigger);
1125       return 0;
1126     }
1127     assert( pStep!=0 );
1128 
1129     switch( action ){
1130       case OE_Restrict:
1131         pStep->op = TK_SELECT;
1132         break;
1133       case OE_Cascade:
1134         if( !pChanges ){
1135           pStep->op = TK_DELETE;
1136           break;
1137         }
1138       default:
1139         pStep->op = TK_UPDATE;
1140     }
1141     pStep->pTrig = pTrigger;
1142     pTrigger->pSchema = pTab->pSchema;
1143     pTrigger->pTabSchema = pTab->pSchema;
1144     pFKey->apTrigger[iAction] = pTrigger;
1145     pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1146   }
1147 
1148   return pTrigger;
1149 }
1150 
1151 /*
1152 ** This function is called when deleting or updating a row to implement
1153 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1154 */
1155 void sqlite3FkActions(
1156   Parse *pParse,                  /* Parse context */
1157   Table *pTab,                    /* Table being updated or deleted from */
1158   ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
1159   int regOld                      /* Address of array containing old row */
1160 ){
1161   /* If foreign-key support is enabled, iterate through all FKs that
1162   ** refer to table pTab. If there is an action associated with the FK
1163   ** for this operation (either update or delete), invoke the associated
1164   ** trigger sub-program.  */
1165   if( pParse->db->flags&SQLITE_ForeignKeys ){
1166     FKey *pFKey;                  /* Iterator variable */
1167     for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1168       Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1169       if( pAction ){
1170         sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
1171       }
1172     }
1173   }
1174 }
1175 
1176 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1177 
1178 /*
1179 ** Free all memory associated with foreign key definitions attached to
1180 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1181 ** hash table.
1182 */
1183 void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1184   FKey *pFKey;                    /* Iterator variable */
1185   FKey *pNext;                    /* Copy of pFKey->pNextFrom */
1186 
1187   assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1188   for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1189 
1190     /* Remove the FK from the fkeyHash hash table. */
1191     if( !db || db->pnBytesFreed==0 ){
1192       if( pFKey->pPrevTo ){
1193         pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1194       }else{
1195         void *p = (void *)pFKey->pNextTo;
1196         const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1197         sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p);
1198       }
1199       if( pFKey->pNextTo ){
1200         pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1201       }
1202     }
1203 
1204     /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1205     ** classified as either immediate or deferred.
1206     */
1207     assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1208 
1209     /* Delete any triggers created to implement actions for this FK. */
1210 #ifndef SQLITE_OMIT_TRIGGER
1211     fkTriggerDelete(db, pFKey->apTrigger[0]);
1212     fkTriggerDelete(db, pFKey->apTrigger[1]);
1213 #endif
1214 
1215     pNext = pFKey->pNextFrom;
1216     sqlite3DbFree(db, pFKey);
1217   }
1218 }
1219 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
1220