1 /* 2 ** 3 ** The author disclaims copyright to this source code. In place of 4 ** a legal notice, here is a blessing: 5 ** 6 ** May you do good and not evil. 7 ** May you find forgiveness for yourself and forgive others. 8 ** May you share freely, never taking more than you give. 9 ** 10 ************************************************************************* 11 ** This file contains code used by the compiler to add foreign key 12 ** support to compiled SQL statements. 13 */ 14 #include "sqliteInt.h" 15 16 #ifndef SQLITE_OMIT_FOREIGN_KEY 17 #ifndef SQLITE_OMIT_TRIGGER 18 19 /* 20 ** Deferred and Immediate FKs 21 ** -------------------------- 22 ** 23 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 24 ** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT 25 ** is returned and the current statement transaction rolled back. If a 26 ** deferred foreign key constraint is violated, no action is taken 27 ** immediately. However if the application attempts to commit the 28 ** transaction before fixing the constraint violation, the attempt fails. 29 ** 30 ** Deferred constraints are implemented using a simple counter associated 31 ** with the database handle. The counter is set to zero each time a 32 ** database transaction is opened. Each time a statement is executed 33 ** that causes a foreign key violation, the counter is incremented. Each 34 ** time a statement is executed that removes an existing violation from 35 ** the database, the counter is decremented. When the transaction is 36 ** committed, the commit fails if the current value of the counter is 37 ** greater than zero. This scheme has two big drawbacks: 38 ** 39 ** * When a commit fails due to a deferred foreign key constraint, 40 ** there is no way to tell which foreign constraint is not satisfied, 41 ** or which row it is not satisfied for. 42 ** 43 ** * If the database contains foreign key violations when the 44 ** transaction is opened, this may cause the mechanism to malfunction. 45 ** 46 ** Despite these problems, this approach is adopted as it seems simpler 47 ** than the alternatives. 48 ** 49 ** INSERT operations: 50 ** 51 ** I.1) For each FK for which the table is the child table, search 52 ** the parent table for a match. If none is found increment the 53 ** constraint counter. 54 ** 55 ** I.2) For each FK for which the table is the parent table, 56 ** search the child table for rows that correspond to the new 57 ** row in the parent table. Decrement the counter for each row 58 ** found (as the constraint is now satisfied). 59 ** 60 ** DELETE operations: 61 ** 62 ** D.1) For each FK for which the table is the child table, 63 ** search the parent table for a row that corresponds to the 64 ** deleted row in the child table. If such a row is not found, 65 ** decrement the counter. 66 ** 67 ** D.2) For each FK for which the table is the parent table, search 68 ** the child table for rows that correspond to the deleted row 69 ** in the parent table. For each found increment the counter. 70 ** 71 ** UPDATE operations: 72 ** 73 ** An UPDATE command requires that all 4 steps above are taken, but only 74 ** for FK constraints for which the affected columns are actually 75 ** modified (values must be compared at runtime). 76 ** 77 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 78 ** This simplifies the implementation a bit. 79 ** 80 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 81 ** resolution is considered to delete rows before the new row is inserted. 82 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 83 ** is thrown, even if the FK constraint would be satisfied after the new 84 ** row is inserted. 85 ** 86 ** Immediate constraints are usually handled similarly. The only difference 87 ** is that the counter used is stored as part of each individual statement 88 ** object (struct Vdbe). If, after the statement has run, its immediate 89 ** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT 90 ** and the statement transaction is rolled back. An exception is an INSERT 91 ** statement that inserts a single row only (no triggers). In this case, 92 ** instead of using a counter, an exception is thrown immediately if the 93 ** INSERT violates a foreign key constraint. This is necessary as such 94 ** an INSERT does not open a statement transaction. 95 ** 96 ** TODO: How should dropping a table be handled? How should renaming a 97 ** table be handled? 98 ** 99 ** 100 ** Query API Notes 101 ** --------------- 102 ** 103 ** Before coding an UPDATE or DELETE row operation, the code-generator 104 ** for those two operations needs to know whether or not the operation 105 ** requires any FK processing and, if so, which columns of the original 106 ** row are required by the FK processing VDBE code (i.e. if FKs were 107 ** implemented using triggers, which of the old.* columns would be 108 ** accessed). No information is required by the code-generator before 109 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 110 ** generation code to query for this information are: 111 ** 112 ** sqlite3FkRequired() - Test to see if FK processing is required. 113 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 114 ** 115 ** 116 ** Externally accessible module functions 117 ** -------------------------------------- 118 ** 119 ** sqlite3FkCheck() - Check for foreign key violations. 120 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 121 ** sqlite3FkDelete() - Delete an FKey structure. 122 */ 123 124 /* 125 ** VDBE Calling Convention 126 ** ----------------------- 127 ** 128 ** Example: 129 ** 130 ** For the following INSERT statement: 131 ** 132 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 133 ** INSERT INTO t1 VALUES(1, 2, 3.1); 134 ** 135 ** Register (x): 2 (type integer) 136 ** Register (x+1): 1 (type integer) 137 ** Register (x+2): NULL (type NULL) 138 ** Register (x+3): 3.1 (type real) 139 */ 140 141 /* 142 ** A foreign key constraint requires that the key columns in the parent 143 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 144 ** Given that pParent is the parent table for foreign key constraint pFKey, 145 ** search the schema a unique index on the parent key columns. 146 ** 147 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 148 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 149 ** is set to point to the unique index. 150 ** 151 ** If the parent key consists of a single column (the foreign key constraint 152 ** is not a composite foreign key), output variable *paiCol is set to NULL. 153 ** Otherwise, it is set to point to an allocated array of size N, where 154 ** N is the number of columns in the parent key. The first element of the 155 ** array is the index of the child table column that is mapped by the FK 156 ** constraint to the parent table column stored in the left-most column 157 ** of index *ppIdx. The second element of the array is the index of the 158 ** child table column that corresponds to the second left-most column of 159 ** *ppIdx, and so on. 160 ** 161 ** If the required index cannot be found, either because: 162 ** 163 ** 1) The named parent key columns do not exist, or 164 ** 165 ** 2) The named parent key columns do exist, but are not subject to a 166 ** UNIQUE or PRIMARY KEY constraint, or 167 ** 168 ** 3) No parent key columns were provided explicitly as part of the 169 ** foreign key definition, and the parent table does not have a 170 ** PRIMARY KEY, or 171 ** 172 ** 4) No parent key columns were provided explicitly as part of the 173 ** foreign key definition, and the PRIMARY KEY of the parent table 174 ** consists of a a different number of columns to the child key in 175 ** the child table. 176 ** 177 ** then non-zero is returned, and a "foreign key mismatch" error loaded 178 ** into pParse. If an OOM error occurs, non-zero is returned and the 179 ** pParse->db->mallocFailed flag is set. 180 */ 181 static int locateFkeyIndex( 182 Parse *pParse, /* Parse context to store any error in */ 183 Table *pParent, /* Parent table of FK constraint pFKey */ 184 FKey *pFKey, /* Foreign key to find index for */ 185 Index **ppIdx, /* OUT: Unique index on parent table */ 186 int **paiCol /* OUT: Map of index columns in pFKey */ 187 ){ 188 Index *pIdx = 0; /* Value to return via *ppIdx */ 189 int *aiCol = 0; /* Value to return via *paiCol */ 190 int nCol = pFKey->nCol; /* Number of columns in parent key */ 191 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 192 193 /* The caller is responsible for zeroing output parameters. */ 194 assert( ppIdx && *ppIdx==0 ); 195 assert( !paiCol || *paiCol==0 ); 196 assert( pParse ); 197 198 /* If this is a non-composite (single column) foreign key, check if it 199 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 200 ** and *paiCol set to zero and return early. 201 ** 202 ** Otherwise, for a composite foreign key (more than one column), allocate 203 ** space for the aiCol array (returned via output parameter *paiCol). 204 ** Non-composite foreign keys do not require the aiCol array. 205 */ 206 if( nCol==1 ){ 207 /* The FK maps to the IPK if any of the following are true: 208 ** 209 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 210 ** mapped to the primary key of table pParent, or 211 ** 2) The FK is explicitly mapped to a column declared as INTEGER 212 ** PRIMARY KEY. 213 */ 214 if( pParent->iPKey>=0 ){ 215 if( !zKey ) return 0; 216 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; 217 } 218 }else if( paiCol ){ 219 assert( nCol>1 ); 220 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int)); 221 if( !aiCol ) return 1; 222 *paiCol = aiCol; 223 } 224 225 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 226 if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){ 227 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 228 ** of columns. If each indexed column corresponds to a foreign key 229 ** column of pFKey, then this index is a winner. */ 230 231 if( zKey==0 ){ 232 /* If zKey is NULL, then this foreign key is implicitly mapped to 233 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 234 ** identified by the test (Index.autoIndex==2). */ 235 if( pIdx->autoIndex==2 ){ 236 if( aiCol ){ 237 int i; 238 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 239 } 240 break; 241 } 242 }else{ 243 /* If zKey is non-NULL, then this foreign key was declared to 244 ** map to an explicit list of columns in table pParent. Check if this 245 ** index matches those columns. Also, check that the index uses 246 ** the default collation sequences for each column. */ 247 int i, j; 248 for(i=0; i<nCol; i++){ 249 int iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 250 char *zDfltColl; /* Def. collation for column */ 251 char *zIdxCol; /* Name of indexed column */ 252 253 /* If the index uses a collation sequence that is different from 254 ** the default collation sequence for the column, this index is 255 ** unusable. Bail out early in this case. */ 256 zDfltColl = pParent->aCol[iCol].zColl; 257 if( !zDfltColl ){ 258 zDfltColl = "BINARY"; 259 } 260 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 261 262 zIdxCol = pParent->aCol[iCol].zName; 263 for(j=0; j<nCol; j++){ 264 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 265 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 266 break; 267 } 268 } 269 if( j==nCol ) break; 270 } 271 if( i==nCol ) break; /* pIdx is usable */ 272 } 273 } 274 } 275 276 if( !pIdx ){ 277 if( !pParse->disableTriggers ){ 278 sqlite3ErrorMsg(pParse, "foreign key mismatch"); 279 } 280 sqlite3DbFree(pParse->db, aiCol); 281 return 1; 282 } 283 284 *ppIdx = pIdx; 285 return 0; 286 } 287 288 /* 289 ** This function is called when a row is inserted into or deleted from the 290 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 291 ** on the child table of pFKey, this function is invoked twice for each row 292 ** affected - once to "delete" the old row, and then again to "insert" the 293 ** new row. 294 ** 295 ** Each time it is called, this function generates VDBE code to locate the 296 ** row in the parent table that corresponds to the row being inserted into 297 ** or deleted from the child table. If the parent row can be found, no 298 ** special action is taken. Otherwise, if the parent row can *not* be 299 ** found in the parent table: 300 ** 301 ** Operation | FK type | Action taken 302 ** -------------------------------------------------------------------------- 303 ** INSERT immediate Increment the "immediate constraint counter". 304 ** 305 ** DELETE immediate Decrement the "immediate constraint counter". 306 ** 307 ** INSERT deferred Increment the "deferred constraint counter". 308 ** 309 ** DELETE deferred Decrement the "deferred constraint counter". 310 ** 311 ** These operations are identified in the comment at the top of this file 312 ** (fkey.c) as "I.1" and "D.1". 313 */ 314 static void fkLookupParent( 315 Parse *pParse, /* Parse context */ 316 int iDb, /* Index of database housing pTab */ 317 Table *pTab, /* Parent table of FK pFKey */ 318 Index *pIdx, /* Unique index on parent key columns in pTab */ 319 FKey *pFKey, /* Foreign key constraint */ 320 int *aiCol, /* Map from parent key columns to child table columns */ 321 int regData, /* Address of array containing child table row */ 322 int nIncr, /* Increment constraint counter by this */ 323 int isIgnore /* If true, pretend pTab contains all NULL values */ 324 ){ 325 int i; /* Iterator variable */ 326 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 327 int iCur = pParse->nTab - 1; /* Cursor number to use */ 328 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ 329 330 /* If nIncr is less than zero, then check at runtime if there are any 331 ** outstanding constraints to resolve. If there are not, there is no need 332 ** to check if deleting this row resolves any outstanding violations. 333 ** 334 ** Check if any of the key columns in the child table row are NULL. If 335 ** any are, then the constraint is considered satisfied. No need to 336 ** search for a matching row in the parent table. */ 337 if( nIncr<0 ){ 338 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 339 } 340 for(i=0; i<pFKey->nCol; i++){ 341 int iReg = aiCol[i] + regData + 1; 342 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); 343 } 344 345 if( isIgnore==0 ){ 346 if( pIdx==0 ){ 347 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 348 ** column of the parent table (table pTab). */ 349 int iMustBeInt; /* Address of MustBeInt instruction */ 350 int regTemp = sqlite3GetTempReg(pParse); 351 352 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 353 ** apply the affinity of the parent key). If this fails, then there 354 ** is no matching parent key. Before using MustBeInt, make a copy of 355 ** the value. Otherwise, the value inserted into the child key column 356 ** will have INTEGER affinity applied to it, which may not be correct. */ 357 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); 358 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 359 360 /* If the parent table is the same as the child table, and we are about 361 ** to increment the constraint-counter (i.e. this is an INSERT operation), 362 ** then check if the row being inserted matches itself. If so, do not 363 ** increment the constraint-counter. */ 364 if( pTab==pFKey->pFrom && nIncr==1 ){ 365 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); 366 } 367 368 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 369 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); 370 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); 371 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 372 sqlite3VdbeJumpHere(v, iMustBeInt); 373 sqlite3ReleaseTempReg(pParse, regTemp); 374 }else{ 375 int nCol = pFKey->nCol; 376 int regTemp = sqlite3GetTempRange(pParse, nCol); 377 int regRec = sqlite3GetTempReg(pParse); 378 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 379 380 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 381 sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF); 382 for(i=0; i<nCol; i++){ 383 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i); 384 } 385 386 /* If the parent table is the same as the child table, and we are about 387 ** to increment the constraint-counter (i.e. this is an INSERT operation), 388 ** then check if the row being inserted matches itself. If so, do not 389 ** increment the constraint-counter. 390 ** 391 ** If any of the parent-key values are NULL, then the row cannot match 392 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 393 ** of the parent-key values are NULL (at this point it is known that 394 ** none of the child key values are). 395 */ 396 if( pTab==pFKey->pFrom && nIncr==1 ){ 397 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 398 for(i=0; i<nCol; i++){ 399 int iChild = aiCol[i]+1+regData; 400 int iParent = pIdx->aiColumn[i]+1+regData; 401 assert( aiCol[i]!=pTab->iPKey ); 402 if( pIdx->aiColumn[i]==pTab->iPKey ){ 403 /* The parent key is a composite key that includes the IPK column */ 404 iParent = regData; 405 } 406 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); 407 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 408 } 409 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); 410 } 411 412 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec); 413 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT); 414 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); 415 416 sqlite3ReleaseTempReg(pParse, regRec); 417 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 418 } 419 } 420 421 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ 422 /* Special case: If this is an INSERT statement that will insert exactly 423 ** one row into the table, raise a constraint immediately instead of 424 ** incrementing a counter. This is necessary as the VM code is being 425 ** generated for will not open a statement transaction. */ 426 assert( nIncr==1 ); 427 sqlite3HaltConstraint( 428 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC 429 ); 430 }else{ 431 if( nIncr>0 && pFKey->isDeferred==0 ){ 432 sqlite3ParseToplevel(pParse)->mayAbort = 1; 433 } 434 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 435 } 436 437 sqlite3VdbeResolveLabel(v, iOk); 438 sqlite3VdbeAddOp1(v, OP_Close, iCur); 439 } 440 441 /* 442 ** This function is called to generate code executed when a row is deleted 443 ** from the parent table of foreign key constraint pFKey and, if pFKey is 444 ** deferred, when a row is inserted into the same table. When generating 445 ** code for an SQL UPDATE operation, this function may be called twice - 446 ** once to "delete" the old row and once to "insert" the new row. 447 ** 448 ** The code generated by this function scans through the rows in the child 449 ** table that correspond to the parent table row being deleted or inserted. 450 ** For each child row found, one of the following actions is taken: 451 ** 452 ** Operation | FK type | Action taken 453 ** -------------------------------------------------------------------------- 454 ** DELETE immediate Increment the "immediate constraint counter". 455 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 456 ** throw a "foreign key constraint failed" exception. 457 ** 458 ** INSERT immediate Decrement the "immediate constraint counter". 459 ** 460 ** DELETE deferred Increment the "deferred constraint counter". 461 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 462 ** throw a "foreign key constraint failed" exception. 463 ** 464 ** INSERT deferred Decrement the "deferred constraint counter". 465 ** 466 ** These operations are identified in the comment at the top of this file 467 ** (fkey.c) as "I.2" and "D.2". 468 */ 469 static void fkScanChildren( 470 Parse *pParse, /* Parse context */ 471 SrcList *pSrc, /* SrcList containing the table to scan */ 472 Table *pTab, 473 Index *pIdx, /* Foreign key index */ 474 FKey *pFKey, /* Foreign key relationship */ 475 int *aiCol, /* Map from pIdx cols to child table cols */ 476 int regData, /* Referenced table data starts here */ 477 int nIncr /* Amount to increment deferred counter by */ 478 ){ 479 sqlite3 *db = pParse->db; /* Database handle */ 480 int i; /* Iterator variable */ 481 Expr *pWhere = 0; /* WHERE clause to scan with */ 482 NameContext sNameContext; /* Context used to resolve WHERE clause */ 483 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 484 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 485 Vdbe *v = sqlite3GetVdbe(pParse); 486 487 assert( !pIdx || pIdx->pTable==pTab ); 488 489 if( nIncr<0 ){ 490 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 491 } 492 493 /* Create an Expr object representing an SQL expression like: 494 ** 495 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 496 ** 497 ** The collation sequence used for the comparison should be that of 498 ** the parent key columns. The affinity of the parent key column should 499 ** be applied to each child key value before the comparison takes place. 500 */ 501 for(i=0; i<pFKey->nCol; i++){ 502 Expr *pLeft; /* Value from parent table row */ 503 Expr *pRight; /* Column ref to child table */ 504 Expr *pEq; /* Expression (pLeft = pRight) */ 505 int iCol; /* Index of column in child table */ 506 const char *zCol; /* Name of column in child table */ 507 508 pLeft = sqlite3Expr(db, TK_REGISTER, 0); 509 if( pLeft ){ 510 /* Set the collation sequence and affinity of the LHS of each TK_EQ 511 ** expression to the parent key column defaults. */ 512 if( pIdx ){ 513 Column *pCol; 514 iCol = pIdx->aiColumn[i]; 515 pCol = &pTab->aCol[iCol]; 516 if( pTab->iPKey==iCol ) iCol = -1; 517 pLeft->iTable = regData+iCol+1; 518 pLeft->affinity = pCol->affinity; 519 pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl); 520 }else{ 521 pLeft->iTable = regData; 522 pLeft->affinity = SQLITE_AFF_INTEGER; 523 } 524 } 525 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 526 assert( iCol>=0 ); 527 zCol = pFKey->pFrom->aCol[iCol].zName; 528 pRight = sqlite3Expr(db, TK_ID, zCol); 529 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); 530 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 531 } 532 533 /* If the child table is the same as the parent table, and this scan 534 ** is taking place as part of a DELETE operation (operation D.2), omit the 535 ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE 536 ** clause, where $rowid is the rowid of the row being deleted. */ 537 if( pTab==pFKey->pFrom && nIncr>0 ){ 538 Expr *pEq; /* Expression (pLeft = pRight) */ 539 Expr *pLeft; /* Value from parent table row */ 540 Expr *pRight; /* Column ref to child table */ 541 pLeft = sqlite3Expr(db, TK_REGISTER, 0); 542 pRight = sqlite3Expr(db, TK_COLUMN, 0); 543 if( pLeft && pRight ){ 544 pLeft->iTable = regData; 545 pLeft->affinity = SQLITE_AFF_INTEGER; 546 pRight->iTable = pSrc->a[0].iCursor; 547 pRight->iColumn = -1; 548 } 549 pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); 550 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 551 } 552 553 /* Resolve the references in the WHERE clause. */ 554 memset(&sNameContext, 0, sizeof(NameContext)); 555 sNameContext.pSrcList = pSrc; 556 sNameContext.pParse = pParse; 557 sqlite3ResolveExprNames(&sNameContext, pWhere); 558 559 /* Create VDBE to loop through the entries in pSrc that match the WHERE 560 ** clause. If the constraint is not deferred, throw an exception for 561 ** each row found. Otherwise, for deferred constraints, increment the 562 ** deferred constraint counter by nIncr for each row selected. */ 563 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); 564 if( nIncr>0 && pFKey->isDeferred==0 ){ 565 sqlite3ParseToplevel(pParse)->mayAbort = 1; 566 } 567 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 568 if( pWInfo ){ 569 sqlite3WhereEnd(pWInfo); 570 } 571 572 /* Clean up the WHERE clause constructed above. */ 573 sqlite3ExprDelete(db, pWhere); 574 if( iFkIfZero ){ 575 sqlite3VdbeJumpHere(v, iFkIfZero); 576 } 577 } 578 579 /* 580 ** This function returns a pointer to the head of a linked list of FK 581 ** constraints for which table pTab is the parent table. For example, 582 ** given the following schema: 583 ** 584 ** CREATE TABLE t1(a PRIMARY KEY); 585 ** CREATE TABLE t2(b REFERENCES t1(a); 586 ** 587 ** Calling this function with table "t1" as an argument returns a pointer 588 ** to the FKey structure representing the foreign key constraint on table 589 ** "t2". Calling this function with "t2" as the argument would return a 590 ** NULL pointer (as there are no FK constraints for which t2 is the parent 591 ** table). 592 */ 593 FKey *sqlite3FkReferences(Table *pTab){ 594 int nName = sqlite3Strlen30(pTab->zName); 595 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName); 596 } 597 598 /* 599 ** The second argument is a Trigger structure allocated by the 600 ** fkActionTrigger() routine. This function deletes the Trigger structure 601 ** and all of its sub-components. 602 ** 603 ** The Trigger structure or any of its sub-components may be allocated from 604 ** the lookaside buffer belonging to database handle dbMem. 605 */ 606 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 607 if( p ){ 608 TriggerStep *pStep = p->step_list; 609 sqlite3ExprDelete(dbMem, pStep->pWhere); 610 sqlite3ExprListDelete(dbMem, pStep->pExprList); 611 sqlite3SelectDelete(dbMem, pStep->pSelect); 612 sqlite3ExprDelete(dbMem, p->pWhen); 613 sqlite3DbFree(dbMem, p); 614 } 615 } 616 617 /* 618 ** This function is called to generate code that runs when table pTab is 619 ** being dropped from the database. The SrcList passed as the second argument 620 ** to this function contains a single entry guaranteed to resolve to 621 ** table pTab. 622 ** 623 ** Normally, no code is required. However, if either 624 ** 625 ** (a) The table is the parent table of a FK constraint, or 626 ** (b) The table is the child table of a deferred FK constraint and it is 627 ** determined at runtime that there are outstanding deferred FK 628 ** constraint violations in the database, 629 ** 630 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 631 ** the table from the database. Triggers are disabled while running this 632 ** DELETE, but foreign key actions are not. 633 */ 634 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 635 sqlite3 *db = pParse->db; 636 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ 637 int iSkip = 0; 638 Vdbe *v = sqlite3GetVdbe(pParse); 639 640 assert( v ); /* VDBE has already been allocated */ 641 if( sqlite3FkReferences(pTab)==0 ){ 642 /* Search for a deferred foreign key constraint for which this table 643 ** is the child table. If one cannot be found, return without 644 ** generating any VDBE code. If one can be found, then jump over 645 ** the entire DELETE if there are no outstanding deferred constraints 646 ** when this statement is run. */ 647 FKey *p; 648 for(p=pTab->pFKey; p; p=p->pNextFrom){ 649 if( p->isDeferred ) break; 650 } 651 if( !p ) return; 652 iSkip = sqlite3VdbeMakeLabel(v); 653 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); 654 } 655 656 pParse->disableTriggers = 1; 657 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); 658 pParse->disableTriggers = 0; 659 660 /* If the DELETE has generated immediate foreign key constraint 661 ** violations, halt the VDBE and return an error at this point, before 662 ** any modifications to the schema are made. This is because statement 663 ** transactions are not able to rollback schema changes. */ 664 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 665 sqlite3HaltConstraint( 666 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC 667 ); 668 669 if( iSkip ){ 670 sqlite3VdbeResolveLabel(v, iSkip); 671 } 672 } 673 } 674 675 /* 676 ** This function is called when inserting, deleting or updating a row of 677 ** table pTab to generate VDBE code to perform foreign key constraint 678 ** processing for the operation. 679 ** 680 ** For a DELETE operation, parameter regOld is passed the index of the 681 ** first register in an array of (pTab->nCol+1) registers containing the 682 ** rowid of the row being deleted, followed by each of the column values 683 ** of the row being deleted, from left to right. Parameter regNew is passed 684 ** zero in this case. 685 ** 686 ** For an INSERT operation, regOld is passed zero and regNew is passed the 687 ** first register of an array of (pTab->nCol+1) registers containing the new 688 ** row data. 689 ** 690 ** For an UPDATE operation, this function is called twice. Once before 691 ** the original record is deleted from the table using the calling convention 692 ** described for DELETE. Then again after the original record is deleted 693 ** but before the new record is inserted using the INSERT convention. 694 */ 695 void sqlite3FkCheck( 696 Parse *pParse, /* Parse context */ 697 Table *pTab, /* Row is being deleted from this table */ 698 int regOld, /* Previous row data is stored here */ 699 int regNew /* New row data is stored here */ 700 ){ 701 sqlite3 *db = pParse->db; /* Database handle */ 702 FKey *pFKey; /* Used to iterate through FKs */ 703 int iDb; /* Index of database containing pTab */ 704 const char *zDb; /* Name of database containing pTab */ 705 int isIgnoreErrors = pParse->disableTriggers; 706 707 /* Exactly one of regOld and regNew should be non-zero. */ 708 assert( (regOld==0)!=(regNew==0) ); 709 710 /* If foreign-keys are disabled, this function is a no-op. */ 711 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 712 713 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 714 zDb = db->aDb[iDb].zName; 715 716 /* Loop through all the foreign key constraints for which pTab is the 717 ** child table (the table that the foreign key definition is part of). */ 718 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 719 Table *pTo; /* Parent table of foreign key pFKey */ 720 Index *pIdx = 0; /* Index on key columns in pTo */ 721 int *aiFree = 0; 722 int *aiCol; 723 int iCol; 724 int i; 725 int isIgnore = 0; 726 727 /* Find the parent table of this foreign key. Also find a unique index 728 ** on the parent key columns in the parent table. If either of these 729 ** schema items cannot be located, set an error in pParse and return 730 ** early. */ 731 if( pParse->disableTriggers ){ 732 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 733 }else{ 734 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 735 } 736 if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 737 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 738 if( !isIgnoreErrors || db->mallocFailed ) return; 739 if( pTo==0 ){ 740 /* If isIgnoreErrors is true, then a table is being dropped. In this 741 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 742 ** before actually dropping it in order to check FK constraints. 743 ** If the parent table of an FK constraint on the current table is 744 ** missing, behave as if it is empty. i.e. decrement the relevant 745 ** FK counter for each row of the current table with non-NULL keys. 746 */ 747 Vdbe *v = sqlite3GetVdbe(pParse); 748 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 749 for(i=0; i<pFKey->nCol; i++){ 750 int iReg = pFKey->aCol[i].iFrom + regOld + 1; 751 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); 752 } 753 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 754 } 755 continue; 756 } 757 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 758 759 if( aiFree ){ 760 aiCol = aiFree; 761 }else{ 762 iCol = pFKey->aCol[0].iFrom; 763 aiCol = &iCol; 764 } 765 for(i=0; i<pFKey->nCol; i++){ 766 if( aiCol[i]==pTab->iPKey ){ 767 aiCol[i] = -1; 768 } 769 #ifndef SQLITE_OMIT_AUTHORIZATION 770 /* Request permission to read the parent key columns. If the 771 ** authorization callback returns SQLITE_IGNORE, behave as if any 772 ** values read from the parent table are NULL. */ 773 if( db->xAuth ){ 774 int rcauth; 775 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; 776 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 777 isIgnore = (rcauth==SQLITE_IGNORE); 778 } 779 #endif 780 } 781 782 /* Take a shared-cache advisory read-lock on the parent table. Allocate 783 ** a cursor to use to search the unique index on the parent key columns 784 ** in the parent table. */ 785 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 786 pParse->nTab++; 787 788 if( regOld!=0 ){ 789 /* A row is being removed from the child table. Search for the parent. 790 ** If the parent does not exist, removing the child row resolves an 791 ** outstanding foreign key constraint violation. */ 792 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore); 793 } 794 if( regNew!=0 ){ 795 /* A row is being added to the child table. If a parent row cannot 796 ** be found, adding the child row has violated the FK constraint. */ 797 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore); 798 } 799 800 sqlite3DbFree(db, aiFree); 801 } 802 803 /* Loop through all the foreign key constraints that refer to this table */ 804 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 805 Index *pIdx = 0; /* Foreign key index for pFKey */ 806 SrcList *pSrc; 807 int *aiCol = 0; 808 809 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ 810 assert( regOld==0 && regNew!=0 ); 811 /* Inserting a single row into a parent table cannot cause an immediate 812 ** foreign key violation. So do nothing in this case. */ 813 continue; 814 } 815 816 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 817 if( !isIgnoreErrors || db->mallocFailed ) return; 818 continue; 819 } 820 assert( aiCol || pFKey->nCol==1 ); 821 822 /* Create a SrcList structure containing a single table (the table 823 ** the foreign key that refers to this table is attached to). This 824 ** is required for the sqlite3WhereXXX() interface. */ 825 pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 826 if( pSrc ){ 827 struct SrcList_item *pItem = pSrc->a; 828 pItem->pTab = pFKey->pFrom; 829 pItem->zName = pFKey->pFrom->zName; 830 pItem->pTab->nRef++; 831 pItem->iCursor = pParse->nTab++; 832 833 if( regNew!=0 ){ 834 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 835 } 836 if( regOld!=0 ){ 837 /* If there is a RESTRICT action configured for the current operation 838 ** on the parent table of this FK, then throw an exception 839 ** immediately if the FK constraint is violated, even if this is a 840 ** deferred trigger. That's what RESTRICT means. To defer checking 841 ** the constraint, the FK should specify NO ACTION (represented 842 ** using OE_None). NO ACTION is the default. */ 843 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 844 } 845 pItem->zName = 0; 846 sqlite3SrcListDelete(db, pSrc); 847 } 848 sqlite3DbFree(db, aiCol); 849 } 850 } 851 852 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 853 854 /* 855 ** This function is called before generating code to update or delete a 856 ** row contained in table pTab. 857 */ 858 u32 sqlite3FkOldmask( 859 Parse *pParse, /* Parse context */ 860 Table *pTab /* Table being modified */ 861 ){ 862 u32 mask = 0; 863 if( pParse->db->flags&SQLITE_ForeignKeys ){ 864 FKey *p; 865 int i; 866 for(p=pTab->pFKey; p; p=p->pNextFrom){ 867 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 868 } 869 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 870 Index *pIdx = 0; 871 locateFkeyIndex(pParse, pTab, p, &pIdx, 0); 872 if( pIdx ){ 873 for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]); 874 } 875 } 876 } 877 return mask; 878 } 879 880 /* 881 ** This function is called before generating code to update or delete a 882 ** row contained in table pTab. If the operation is a DELETE, then 883 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 884 ** to an array of size N, where N is the number of columns in table pTab. 885 ** If the i'th column is not modified by the UPDATE, then the corresponding 886 ** entry in the aChange[] array is set to -1. If the column is modified, 887 ** the value is 0 or greater. Parameter chngRowid is set to true if the 888 ** UPDATE statement modifies the rowid fields of the table. 889 ** 890 ** If any foreign key processing will be required, this function returns 891 ** true. If there is no foreign key related processing, this function 892 ** returns false. 893 */ 894 int sqlite3FkRequired( 895 Parse *pParse, /* Parse context */ 896 Table *pTab, /* Table being modified */ 897 int *aChange, /* Non-NULL for UPDATE operations */ 898 int chngRowid /* True for UPDATE that affects rowid */ 899 ){ 900 if( pParse->db->flags&SQLITE_ForeignKeys ){ 901 if( !aChange ){ 902 /* A DELETE operation. Foreign key processing is required if the 903 ** table in question is either the child or parent table for any 904 ** foreign key constraint. */ 905 return (sqlite3FkReferences(pTab) || pTab->pFKey); 906 }else{ 907 /* This is an UPDATE. Foreign key processing is only required if the 908 ** operation modifies one or more child or parent key columns. */ 909 int i; 910 FKey *p; 911 912 /* Check if any child key columns are being modified. */ 913 for(p=pTab->pFKey; p; p=p->pNextFrom){ 914 for(i=0; i<p->nCol; i++){ 915 int iChildKey = p->aCol[i].iFrom; 916 if( aChange[iChildKey]>=0 ) return 1; 917 if( iChildKey==pTab->iPKey && chngRowid ) return 1; 918 } 919 } 920 921 /* Check if any parent key columns are being modified. */ 922 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 923 for(i=0; i<p->nCol; i++){ 924 char *zKey = p->aCol[i].zCol; 925 int iKey; 926 for(iKey=0; iKey<pTab->nCol; iKey++){ 927 Column *pCol = &pTab->aCol[iKey]; 928 if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){ 929 if( aChange[iKey]>=0 ) return 1; 930 if( iKey==pTab->iPKey && chngRowid ) return 1; 931 } 932 } 933 } 934 } 935 } 936 } 937 return 0; 938 } 939 940 /* 941 ** This function is called when an UPDATE or DELETE operation is being 942 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 943 ** If the current operation is an UPDATE, then the pChanges parameter is 944 ** passed a pointer to the list of columns being modified. If it is a 945 ** DELETE, pChanges is passed a NULL pointer. 946 ** 947 ** It returns a pointer to a Trigger structure containing a trigger 948 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 949 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is 950 ** returned (these actions require no special handling by the triggers 951 ** sub-system, code for them is created by fkScanChildren()). 952 ** 953 ** For example, if pFKey is the foreign key and pTab is table "p" in 954 ** the following schema: 955 ** 956 ** CREATE TABLE p(pk PRIMARY KEY); 957 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 958 ** 959 ** then the returned trigger structure is equivalent to: 960 ** 961 ** CREATE TRIGGER ... DELETE ON p BEGIN 962 ** DELETE FROM c WHERE ck = old.pk; 963 ** END; 964 ** 965 ** The returned pointer is cached as part of the foreign key object. It 966 ** is eventually freed along with the rest of the foreign key object by 967 ** sqlite3FkDelete(). 968 */ 969 static Trigger *fkActionTrigger( 970 Parse *pParse, /* Parse context */ 971 Table *pTab, /* Table being updated or deleted from */ 972 FKey *pFKey, /* Foreign key to get action for */ 973 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 974 ){ 975 sqlite3 *db = pParse->db; /* Database handle */ 976 int action; /* One of OE_None, OE_Cascade etc. */ 977 Trigger *pTrigger; /* Trigger definition to return */ 978 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 979 980 action = pFKey->aAction[iAction]; 981 pTrigger = pFKey->apTrigger[iAction]; 982 983 if( action!=OE_None && !pTrigger ){ 984 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */ 985 char const *zFrom; /* Name of child table */ 986 int nFrom; /* Length in bytes of zFrom */ 987 Index *pIdx = 0; /* Parent key index for this FK */ 988 int *aiCol = 0; /* child table cols -> parent key cols */ 989 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 990 Expr *pWhere = 0; /* WHERE clause of trigger step */ 991 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 992 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 993 int i; /* Iterator variable */ 994 Expr *pWhen = 0; /* WHEN clause for the trigger */ 995 996 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 997 assert( aiCol || pFKey->nCol==1 ); 998 999 for(i=0; i<pFKey->nCol; i++){ 1000 Token tOld = { "old", 3 }; /* Literal "old" token */ 1001 Token tNew = { "new", 3 }; /* Literal "new" token */ 1002 Token tFromCol; /* Name of column in child table */ 1003 Token tToCol; /* Name of column in parent table */ 1004 int iFromCol; /* Idx of column in child table */ 1005 Expr *pEq; /* tFromCol = OLD.tToCol */ 1006 1007 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 1008 assert( iFromCol>=0 ); 1009 tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid"; 1010 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName; 1011 1012 tToCol.n = sqlite3Strlen30(tToCol.z); 1013 tFromCol.n = sqlite3Strlen30(tFromCol.z); 1014 1015 /* Create the expression "OLD.zToCol = zFromCol". It is important 1016 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 1017 ** that the affinity and collation sequence associated with the 1018 ** parent table are used for the comparison. */ 1019 pEq = sqlite3PExpr(pParse, TK_EQ, 1020 sqlite3PExpr(pParse, TK_DOT, 1021 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), 1022 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) 1023 , 0), 1024 sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol) 1025 , 0); 1026 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 1027 1028 /* For ON UPDATE, construct the next term of the WHEN clause. 1029 ** The final WHEN clause will be like this: 1030 ** 1031 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 1032 */ 1033 if( pChanges ){ 1034 pEq = sqlite3PExpr(pParse, TK_IS, 1035 sqlite3PExpr(pParse, TK_DOT, 1036 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), 1037 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), 1038 0), 1039 sqlite3PExpr(pParse, TK_DOT, 1040 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), 1041 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), 1042 0), 1043 0); 1044 pWhen = sqlite3ExprAnd(db, pWhen, pEq); 1045 } 1046 1047 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 1048 Expr *pNew; 1049 if( action==OE_Cascade ){ 1050 pNew = sqlite3PExpr(pParse, TK_DOT, 1051 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), 1052 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) 1053 , 0); 1054 }else if( action==OE_SetDflt ){ 1055 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; 1056 if( pDflt ){ 1057 pNew = sqlite3ExprDup(db, pDflt, 0); 1058 }else{ 1059 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 1060 } 1061 }else{ 1062 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 1063 } 1064 pList = sqlite3ExprListAppend(pParse, pList, pNew); 1065 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 1066 } 1067 } 1068 sqlite3DbFree(db, aiCol); 1069 1070 zFrom = pFKey->pFrom->zName; 1071 nFrom = sqlite3Strlen30(zFrom); 1072 1073 if( action==OE_Restrict ){ 1074 Token tFrom; 1075 Expr *pRaise; 1076 1077 tFrom.z = zFrom; 1078 tFrom.n = nFrom; 1079 pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed"); 1080 if( pRaise ){ 1081 pRaise->affinity = OE_Abort; 1082 } 1083 pSelect = sqlite3SelectNew(pParse, 1084 sqlite3ExprListAppend(pParse, 0, pRaise), 1085 sqlite3SrcListAppend(db, 0, &tFrom, 0), 1086 pWhere, 1087 0, 0, 0, 0, 0, 0 1088 ); 1089 pWhere = 0; 1090 } 1091 1092 /* Disable lookaside memory allocation */ 1093 enableLookaside = db->lookaside.bEnabled; 1094 db->lookaside.bEnabled = 0; 1095 1096 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 1097 sizeof(Trigger) + /* struct Trigger */ 1098 sizeof(TriggerStep) + /* Single step in trigger program */ 1099 nFrom + 1 /* Space for pStep->target.z */ 1100 ); 1101 if( pTrigger ){ 1102 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 1103 pStep->target.z = (char *)&pStep[1]; 1104 pStep->target.n = nFrom; 1105 memcpy((char *)pStep->target.z, zFrom, nFrom); 1106 1107 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 1108 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 1109 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1110 if( pWhen ){ 1111 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0); 1112 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 1113 } 1114 } 1115 1116 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 1117 db->lookaside.bEnabled = enableLookaside; 1118 1119 sqlite3ExprDelete(db, pWhere); 1120 sqlite3ExprDelete(db, pWhen); 1121 sqlite3ExprListDelete(db, pList); 1122 sqlite3SelectDelete(db, pSelect); 1123 if( db->mallocFailed==1 ){ 1124 fkTriggerDelete(db, pTrigger); 1125 return 0; 1126 } 1127 assert( pStep!=0 ); 1128 1129 switch( action ){ 1130 case OE_Restrict: 1131 pStep->op = TK_SELECT; 1132 break; 1133 case OE_Cascade: 1134 if( !pChanges ){ 1135 pStep->op = TK_DELETE; 1136 break; 1137 } 1138 default: 1139 pStep->op = TK_UPDATE; 1140 } 1141 pStep->pTrig = pTrigger; 1142 pTrigger->pSchema = pTab->pSchema; 1143 pTrigger->pTabSchema = pTab->pSchema; 1144 pFKey->apTrigger[iAction] = pTrigger; 1145 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 1146 } 1147 1148 return pTrigger; 1149 } 1150 1151 /* 1152 ** This function is called when deleting or updating a row to implement 1153 ** any required CASCADE, SET NULL or SET DEFAULT actions. 1154 */ 1155 void sqlite3FkActions( 1156 Parse *pParse, /* Parse context */ 1157 Table *pTab, /* Table being updated or deleted from */ 1158 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 1159 int regOld /* Address of array containing old row */ 1160 ){ 1161 /* If foreign-key support is enabled, iterate through all FKs that 1162 ** refer to table pTab. If there is an action associated with the FK 1163 ** for this operation (either update or delete), invoke the associated 1164 ** trigger sub-program. */ 1165 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1166 FKey *pFKey; /* Iterator variable */ 1167 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1168 Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges); 1169 if( pAction ){ 1170 sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0); 1171 } 1172 } 1173 } 1174 } 1175 1176 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 1177 1178 /* 1179 ** Free all memory associated with foreign key definitions attached to 1180 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 1181 ** hash table. 1182 */ 1183 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 1184 FKey *pFKey; /* Iterator variable */ 1185 FKey *pNext; /* Copy of pFKey->pNextFrom */ 1186 1187 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 1188 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ 1189 1190 /* Remove the FK from the fkeyHash hash table. */ 1191 if( !db || db->pnBytesFreed==0 ){ 1192 if( pFKey->pPrevTo ){ 1193 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 1194 }else{ 1195 void *p = (void *)pFKey->pNextTo; 1196 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); 1197 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p); 1198 } 1199 if( pFKey->pNextTo ){ 1200 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 1201 } 1202 } 1203 1204 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 1205 ** classified as either immediate or deferred. 1206 */ 1207 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 1208 1209 /* Delete any triggers created to implement actions for this FK. */ 1210 #ifndef SQLITE_OMIT_TRIGGER 1211 fkTriggerDelete(db, pFKey->apTrigger[0]); 1212 fkTriggerDelete(db, pFKey->apTrigger[1]); 1213 #endif 1214 1215 pNext = pFKey->pNextFrom; 1216 sqlite3DbFree(db, pFKey); 1217 } 1218 } 1219 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ 1220