1 /* 2 ** 3 ** The author disclaims copyright to this source code. In place of 4 ** a legal notice, here is a blessing: 5 ** 6 ** May you do good and not evil. 7 ** May you find forgiveness for yourself and forgive others. 8 ** May you share freely, never taking more than you give. 9 ** 10 ************************************************************************* 11 ** This file contains code used by the compiler to add foreign key 12 ** support to compiled SQL statements. 13 */ 14 #include "sqliteInt.h" 15 16 #ifndef SQLITE_OMIT_FOREIGN_KEY 17 #ifndef SQLITE_OMIT_TRIGGER 18 19 /* 20 ** Deferred and Immediate FKs 21 ** -------------------------- 22 ** 23 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 24 ** If an immediate foreign key constraint is violated, 25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current 26 ** statement transaction rolled back. If a 27 ** deferred foreign key constraint is violated, no action is taken 28 ** immediately. However if the application attempts to commit the 29 ** transaction before fixing the constraint violation, the attempt fails. 30 ** 31 ** Deferred constraints are implemented using a simple counter associated 32 ** with the database handle. The counter is set to zero each time a 33 ** database transaction is opened. Each time a statement is executed 34 ** that causes a foreign key violation, the counter is incremented. Each 35 ** time a statement is executed that removes an existing violation from 36 ** the database, the counter is decremented. When the transaction is 37 ** committed, the commit fails if the current value of the counter is 38 ** greater than zero. This scheme has two big drawbacks: 39 ** 40 ** * When a commit fails due to a deferred foreign key constraint, 41 ** there is no way to tell which foreign constraint is not satisfied, 42 ** or which row it is not satisfied for. 43 ** 44 ** * If the database contains foreign key violations when the 45 ** transaction is opened, this may cause the mechanism to malfunction. 46 ** 47 ** Despite these problems, this approach is adopted as it seems simpler 48 ** than the alternatives. 49 ** 50 ** INSERT operations: 51 ** 52 ** I.1) For each FK for which the table is the child table, search 53 ** the parent table for a match. If none is found increment the 54 ** constraint counter. 55 ** 56 ** I.2) For each FK for which the table is the parent table, 57 ** search the child table for rows that correspond to the new 58 ** row in the parent table. Decrement the counter for each row 59 ** found (as the constraint is now satisfied). 60 ** 61 ** DELETE operations: 62 ** 63 ** D.1) For each FK for which the table is the child table, 64 ** search the parent table for a row that corresponds to the 65 ** deleted row in the child table. If such a row is not found, 66 ** decrement the counter. 67 ** 68 ** D.2) For each FK for which the table is the parent table, search 69 ** the child table for rows that correspond to the deleted row 70 ** in the parent table. For each found increment the counter. 71 ** 72 ** UPDATE operations: 73 ** 74 ** An UPDATE command requires that all 4 steps above are taken, but only 75 ** for FK constraints for which the affected columns are actually 76 ** modified (values must be compared at runtime). 77 ** 78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 79 ** This simplifies the implementation a bit. 80 ** 81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 82 ** resolution is considered to delete rows before the new row is inserted. 83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 84 ** is thrown, even if the FK constraint would be satisfied after the new 85 ** row is inserted. 86 ** 87 ** Immediate constraints are usually handled similarly. The only difference 88 ** is that the counter used is stored as part of each individual statement 89 ** object (struct Vdbe). If, after the statement has run, its immediate 90 ** constraint counter is greater than zero, 91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY 92 ** and the statement transaction is rolled back. An exception is an INSERT 93 ** statement that inserts a single row only (no triggers). In this case, 94 ** instead of using a counter, an exception is thrown immediately if the 95 ** INSERT violates a foreign key constraint. This is necessary as such 96 ** an INSERT does not open a statement transaction. 97 ** 98 ** TODO: How should dropping a table be handled? How should renaming a 99 ** table be handled? 100 ** 101 ** 102 ** Query API Notes 103 ** --------------- 104 ** 105 ** Before coding an UPDATE or DELETE row operation, the code-generator 106 ** for those two operations needs to know whether or not the operation 107 ** requires any FK processing and, if so, which columns of the original 108 ** row are required by the FK processing VDBE code (i.e. if FKs were 109 ** implemented using triggers, which of the old.* columns would be 110 ** accessed). No information is required by the code-generator before 111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 112 ** generation code to query for this information are: 113 ** 114 ** sqlite3FkRequired() - Test to see if FK processing is required. 115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 116 ** 117 ** 118 ** Externally accessible module functions 119 ** -------------------------------------- 120 ** 121 ** sqlite3FkCheck() - Check for foreign key violations. 122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 123 ** sqlite3FkDelete() - Delete an FKey structure. 124 */ 125 126 /* 127 ** VDBE Calling Convention 128 ** ----------------------- 129 ** 130 ** Example: 131 ** 132 ** For the following INSERT statement: 133 ** 134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 135 ** INSERT INTO t1 VALUES(1, 2, 3.1); 136 ** 137 ** Register (x): 2 (type integer) 138 ** Register (x+1): 1 (type integer) 139 ** Register (x+2): NULL (type NULL) 140 ** Register (x+3): 3.1 (type real) 141 */ 142 143 /* 144 ** A foreign key constraint requires that the key columns in the parent 145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 146 ** Given that pParent is the parent table for foreign key constraint pFKey, 147 ** search the schema for a unique index on the parent key columns. 148 ** 149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 151 ** is set to point to the unique index. 152 ** 153 ** If the parent key consists of a single column (the foreign key constraint 154 ** is not a composite foreign key), output variable *paiCol is set to NULL. 155 ** Otherwise, it is set to point to an allocated array of size N, where 156 ** N is the number of columns in the parent key. The first element of the 157 ** array is the index of the child table column that is mapped by the FK 158 ** constraint to the parent table column stored in the left-most column 159 ** of index *ppIdx. The second element of the array is the index of the 160 ** child table column that corresponds to the second left-most column of 161 ** *ppIdx, and so on. 162 ** 163 ** If the required index cannot be found, either because: 164 ** 165 ** 1) The named parent key columns do not exist, or 166 ** 167 ** 2) The named parent key columns do exist, but are not subject to a 168 ** UNIQUE or PRIMARY KEY constraint, or 169 ** 170 ** 3) No parent key columns were provided explicitly as part of the 171 ** foreign key definition, and the parent table does not have a 172 ** PRIMARY KEY, or 173 ** 174 ** 4) No parent key columns were provided explicitly as part of the 175 ** foreign key definition, and the PRIMARY KEY of the parent table 176 ** consists of a different number of columns to the child key in 177 ** the child table. 178 ** 179 ** then non-zero is returned, and a "foreign key mismatch" error loaded 180 ** into pParse. If an OOM error occurs, non-zero is returned and the 181 ** pParse->db->mallocFailed flag is set. 182 */ 183 int sqlite3FkLocateIndex( 184 Parse *pParse, /* Parse context to store any error in */ 185 Table *pParent, /* Parent table of FK constraint pFKey */ 186 FKey *pFKey, /* Foreign key to find index for */ 187 Index **ppIdx, /* OUT: Unique index on parent table */ 188 int **paiCol /* OUT: Map of index columns in pFKey */ 189 ){ 190 Index *pIdx = 0; /* Value to return via *ppIdx */ 191 int *aiCol = 0; /* Value to return via *paiCol */ 192 int nCol = pFKey->nCol; /* Number of columns in parent key */ 193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 194 195 /* The caller is responsible for zeroing output parameters. */ 196 assert( ppIdx && *ppIdx==0 ); 197 assert( !paiCol || *paiCol==0 ); 198 assert( pParse ); 199 200 /* If this is a non-composite (single column) foreign key, check if it 201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 202 ** and *paiCol set to zero and return early. 203 ** 204 ** Otherwise, for a composite foreign key (more than one column), allocate 205 ** space for the aiCol array (returned via output parameter *paiCol). 206 ** Non-composite foreign keys do not require the aiCol array. 207 */ 208 if( nCol==1 ){ 209 /* The FK maps to the IPK if any of the following are true: 210 ** 211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 212 ** mapped to the primary key of table pParent, or 213 ** 2) The FK is explicitly mapped to a column declared as INTEGER 214 ** PRIMARY KEY. 215 */ 216 if( pParent->iPKey>=0 ){ 217 if( !zKey ) return 0; 218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; 219 } 220 }else if( paiCol ){ 221 assert( nCol>1 ); 222 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int)); 223 if( !aiCol ) return 1; 224 *paiCol = aiCol; 225 } 226 227 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 228 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) ){ 229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 230 ** of columns. If each indexed column corresponds to a foreign key 231 ** column of pFKey, then this index is a winner. */ 232 233 if( zKey==0 ){ 234 /* If zKey is NULL, then this foreign key is implicitly mapped to 235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 236 ** identified by the test. */ 237 if( IsPrimaryKeyIndex(pIdx) ){ 238 if( aiCol ){ 239 int i; 240 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 241 } 242 break; 243 } 244 }else{ 245 /* If zKey is non-NULL, then this foreign key was declared to 246 ** map to an explicit list of columns in table pParent. Check if this 247 ** index matches those columns. Also, check that the index uses 248 ** the default collation sequences for each column. */ 249 int i, j; 250 for(i=0; i<nCol; i++){ 251 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 252 char *zDfltColl; /* Def. collation for column */ 253 char *zIdxCol; /* Name of indexed column */ 254 255 /* If the index uses a collation sequence that is different from 256 ** the default collation sequence for the column, this index is 257 ** unusable. Bail out early in this case. */ 258 zDfltColl = pParent->aCol[iCol].zColl; 259 if( !zDfltColl ){ 260 zDfltColl = "BINARY"; 261 } 262 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 263 264 zIdxCol = pParent->aCol[iCol].zName; 265 for(j=0; j<nCol; j++){ 266 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 267 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 268 break; 269 } 270 } 271 if( j==nCol ) break; 272 } 273 if( i==nCol ) break; /* pIdx is usable */ 274 } 275 } 276 } 277 278 if( !pIdx ){ 279 if( !pParse->disableTriggers ){ 280 sqlite3ErrorMsg(pParse, 281 "foreign key mismatch - \"%w\" referencing \"%w\"", 282 pFKey->pFrom->zName, pFKey->zTo); 283 } 284 sqlite3DbFree(pParse->db, aiCol); 285 return 1; 286 } 287 288 *ppIdx = pIdx; 289 return 0; 290 } 291 292 /* 293 ** This function is called when a row is inserted into or deleted from the 294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 295 ** on the child table of pFKey, this function is invoked twice for each row 296 ** affected - once to "delete" the old row, and then again to "insert" the 297 ** new row. 298 ** 299 ** Each time it is called, this function generates VDBE code to locate the 300 ** row in the parent table that corresponds to the row being inserted into 301 ** or deleted from the child table. If the parent row can be found, no 302 ** special action is taken. Otherwise, if the parent row can *not* be 303 ** found in the parent table: 304 ** 305 ** Operation | FK type | Action taken 306 ** -------------------------------------------------------------------------- 307 ** INSERT immediate Increment the "immediate constraint counter". 308 ** 309 ** DELETE immediate Decrement the "immediate constraint counter". 310 ** 311 ** INSERT deferred Increment the "deferred constraint counter". 312 ** 313 ** DELETE deferred Decrement the "deferred constraint counter". 314 ** 315 ** These operations are identified in the comment at the top of this file 316 ** (fkey.c) as "I.1" and "D.1". 317 */ 318 static void fkLookupParent( 319 Parse *pParse, /* Parse context */ 320 int iDb, /* Index of database housing pTab */ 321 Table *pTab, /* Parent table of FK pFKey */ 322 Index *pIdx, /* Unique index on parent key columns in pTab */ 323 FKey *pFKey, /* Foreign key constraint */ 324 int *aiCol, /* Map from parent key columns to child table columns */ 325 int regData, /* Address of array containing child table row */ 326 int nIncr, /* Increment constraint counter by this */ 327 int isIgnore /* If true, pretend pTab contains all NULL values */ 328 ){ 329 int i; /* Iterator variable */ 330 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 331 int iCur = pParse->nTab - 1; /* Cursor number to use */ 332 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ 333 334 /* If nIncr is less than zero, then check at runtime if there are any 335 ** outstanding constraints to resolve. If there are not, there is no need 336 ** to check if deleting this row resolves any outstanding violations. 337 ** 338 ** Check if any of the key columns in the child table row are NULL. If 339 ** any are, then the constraint is considered satisfied. No need to 340 ** search for a matching row in the parent table. */ 341 if( nIncr<0 ){ 342 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 343 VdbeCoverage(v); 344 } 345 for(i=0; i<pFKey->nCol; i++){ 346 int iReg = aiCol[i] + regData + 1; 347 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); 348 } 349 350 if( isIgnore==0 ){ 351 if( pIdx==0 ){ 352 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 353 ** column of the parent table (table pTab). */ 354 int iMustBeInt; /* Address of MustBeInt instruction */ 355 int regTemp = sqlite3GetTempReg(pParse); 356 357 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 358 ** apply the affinity of the parent key). If this fails, then there 359 ** is no matching parent key. Before using MustBeInt, make a copy of 360 ** the value. Otherwise, the value inserted into the child key column 361 ** will have INTEGER affinity applied to it, which may not be correct. */ 362 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); 363 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 364 VdbeCoverage(v); 365 366 /* If the parent table is the same as the child table, and we are about 367 ** to increment the constraint-counter (i.e. this is an INSERT operation), 368 ** then check if the row being inserted matches itself. If so, do not 369 ** increment the constraint-counter. */ 370 if( pTab==pFKey->pFrom && nIncr==1 ){ 371 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); 372 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 373 } 374 375 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 376 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); 377 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); 378 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 379 sqlite3VdbeJumpHere(v, iMustBeInt); 380 sqlite3ReleaseTempReg(pParse, regTemp); 381 }else{ 382 int nCol = pFKey->nCol; 383 int regTemp = sqlite3GetTempRange(pParse, nCol); 384 int regRec = sqlite3GetTempReg(pParse); 385 386 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 387 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 388 for(i=0; i<nCol; i++){ 389 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i); 390 } 391 392 /* If the parent table is the same as the child table, and we are about 393 ** to increment the constraint-counter (i.e. this is an INSERT operation), 394 ** then check if the row being inserted matches itself. If so, do not 395 ** increment the constraint-counter. 396 ** 397 ** If any of the parent-key values are NULL, then the row cannot match 398 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 399 ** of the parent-key values are NULL (at this point it is known that 400 ** none of the child key values are). 401 */ 402 if( pTab==pFKey->pFrom && nIncr==1 ){ 403 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 404 for(i=0; i<nCol; i++){ 405 int iChild = aiCol[i]+1+regData; 406 int iParent = pIdx->aiColumn[i]+1+regData; 407 assert( aiCol[i]!=pTab->iPKey ); 408 if( pIdx->aiColumn[i]==pTab->iPKey ){ 409 /* The parent key is a composite key that includes the IPK column */ 410 iParent = regData; 411 } 412 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); 413 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 414 } 415 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); 416 } 417 418 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec, 419 sqlite3IndexAffinityStr(v,pIdx), nCol); 420 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v); 421 422 sqlite3ReleaseTempReg(pParse, regRec); 423 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 424 } 425 } 426 427 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) 428 && !pParse->pToplevel 429 && !pParse->isMultiWrite 430 ){ 431 /* Special case: If this is an INSERT statement that will insert exactly 432 ** one row into the table, raise a constraint immediately instead of 433 ** incrementing a counter. This is necessary as the VM code is being 434 ** generated for will not open a statement transaction. */ 435 assert( nIncr==1 ); 436 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 437 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 438 }else{ 439 if( nIncr>0 && pFKey->isDeferred==0 ){ 440 sqlite3ParseToplevel(pParse)->mayAbort = 1; 441 } 442 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 443 } 444 445 sqlite3VdbeResolveLabel(v, iOk); 446 sqlite3VdbeAddOp1(v, OP_Close, iCur); 447 } 448 449 450 /* 451 ** Return an Expr object that refers to a memory register corresponding 452 ** to column iCol of table pTab. 453 ** 454 ** regBase is the first of an array of register that contains the data 455 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first 456 ** column. regBase+2 holds the second column, and so forth. 457 */ 458 static Expr *exprTableRegister( 459 Parse *pParse, /* Parsing and code generating context */ 460 Table *pTab, /* The table whose content is at r[regBase]... */ 461 int regBase, /* Contents of table pTab */ 462 i16 iCol /* Which column of pTab is desired */ 463 ){ 464 Expr *pExpr; 465 Column *pCol; 466 const char *zColl; 467 sqlite3 *db = pParse->db; 468 469 pExpr = sqlite3Expr(db, TK_REGISTER, 0); 470 if( pExpr ){ 471 if( iCol>=0 && iCol!=pTab->iPKey ){ 472 pCol = &pTab->aCol[iCol]; 473 pExpr->iTable = regBase + iCol + 1; 474 pExpr->affinity = pCol->affinity; 475 zColl = pCol->zColl; 476 if( zColl==0 ) zColl = db->pDfltColl->zName; 477 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); 478 }else{ 479 pExpr->iTable = regBase; 480 pExpr->affinity = SQLITE_AFF_INTEGER; 481 } 482 } 483 return pExpr; 484 } 485 486 /* 487 ** Return an Expr object that refers to column iCol of table pTab which 488 ** has cursor iCur. 489 */ 490 static Expr *exprTableColumn( 491 sqlite3 *db, /* The database connection */ 492 Table *pTab, /* The table whose column is desired */ 493 int iCursor, /* The open cursor on the table */ 494 i16 iCol /* The column that is wanted */ 495 ){ 496 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); 497 if( pExpr ){ 498 pExpr->pTab = pTab; 499 pExpr->iTable = iCursor; 500 pExpr->iColumn = iCol; 501 } 502 return pExpr; 503 } 504 505 /* 506 ** This function is called to generate code executed when a row is deleted 507 ** from the parent table of foreign key constraint pFKey and, if pFKey is 508 ** deferred, when a row is inserted into the same table. When generating 509 ** code for an SQL UPDATE operation, this function may be called twice - 510 ** once to "delete" the old row and once to "insert" the new row. 511 ** 512 ** The code generated by this function scans through the rows in the child 513 ** table that correspond to the parent table row being deleted or inserted. 514 ** For each child row found, one of the following actions is taken: 515 ** 516 ** Operation | FK type | Action taken 517 ** -------------------------------------------------------------------------- 518 ** DELETE immediate Increment the "immediate constraint counter". 519 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 520 ** throw a "FOREIGN KEY constraint failed" exception. 521 ** 522 ** INSERT immediate Decrement the "immediate constraint counter". 523 ** 524 ** DELETE deferred Increment the "deferred constraint counter". 525 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 526 ** throw a "FOREIGN KEY constraint failed" exception. 527 ** 528 ** INSERT deferred Decrement the "deferred constraint counter". 529 ** 530 ** These operations are identified in the comment at the top of this file 531 ** (fkey.c) as "I.2" and "D.2". 532 */ 533 static void fkScanChildren( 534 Parse *pParse, /* Parse context */ 535 SrcList *pSrc, /* The child table to be scanned */ 536 Table *pTab, /* The parent table */ 537 Index *pIdx, /* Index on parent covering the foreign key */ 538 FKey *pFKey, /* The foreign key linking pSrc to pTab */ 539 int *aiCol, /* Map from pIdx cols to child table cols */ 540 int regData, /* Parent row data starts here */ 541 int nIncr /* Amount to increment deferred counter by */ 542 ){ 543 sqlite3 *db = pParse->db; /* Database handle */ 544 int i; /* Iterator variable */ 545 Expr *pWhere = 0; /* WHERE clause to scan with */ 546 NameContext sNameContext; /* Context used to resolve WHERE clause */ 547 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 548 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 549 Vdbe *v = sqlite3GetVdbe(pParse); 550 551 assert( pIdx==0 || pIdx->pTable==pTab ); 552 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); 553 assert( pIdx!=0 || pFKey->nCol==1 ); 554 assert( pIdx!=0 || HasRowid(pTab) ); 555 556 if( nIncr<0 ){ 557 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 558 VdbeCoverage(v); 559 } 560 561 /* Create an Expr object representing an SQL expression like: 562 ** 563 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 564 ** 565 ** The collation sequence used for the comparison should be that of 566 ** the parent key columns. The affinity of the parent key column should 567 ** be applied to each child key value before the comparison takes place. 568 */ 569 for(i=0; i<pFKey->nCol; i++){ 570 Expr *pLeft; /* Value from parent table row */ 571 Expr *pRight; /* Column ref to child table */ 572 Expr *pEq; /* Expression (pLeft = pRight) */ 573 i16 iCol; /* Index of column in child table */ 574 const char *zCol; /* Name of column in child table */ 575 576 iCol = pIdx ? pIdx->aiColumn[i] : -1; 577 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 578 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 579 assert( iCol>=0 ); 580 zCol = pFKey->pFrom->aCol[iCol].zName; 581 pRight = sqlite3Expr(db, TK_ID, zCol); 582 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); 583 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 584 } 585 586 /* If the child table is the same as the parent table, then add terms 587 ** to the WHERE clause that prevent this entry from being scanned. 588 ** The added WHERE clause terms are like this: 589 ** 590 ** $current_rowid!=rowid 591 ** NOT( $current_a==a AND $current_b==b AND ... ) 592 ** 593 ** The first form is used for rowid tables. The second form is used 594 ** for WITHOUT ROWID tables. In the second form, the primary key is 595 ** (a,b,...) 596 */ 597 if( pTab==pFKey->pFrom && nIncr>0 ){ 598 Expr *pNe; /* Expression (pLeft != pRight) */ 599 Expr *pLeft; /* Value from parent table row */ 600 Expr *pRight; /* Column ref to child table */ 601 if( HasRowid(pTab) ){ 602 pLeft = exprTableRegister(pParse, pTab, regData, -1); 603 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); 604 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); 605 }else{ 606 Expr *pEq, *pAll = 0; 607 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 608 assert( pIdx!=0 ); 609 for(i=0; i<pPk->nKeyCol; i++){ 610 i16 iCol = pIdx->aiColumn[i]; 611 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 612 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol); 613 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); 614 pAll = sqlite3ExprAnd(db, pAll, pEq); 615 } 616 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0, 0); 617 } 618 pWhere = sqlite3ExprAnd(db, pWhere, pNe); 619 } 620 621 /* Resolve the references in the WHERE clause. */ 622 memset(&sNameContext, 0, sizeof(NameContext)); 623 sNameContext.pSrcList = pSrc; 624 sNameContext.pParse = pParse; 625 sqlite3ResolveExprNames(&sNameContext, pWhere); 626 627 /* Create VDBE to loop through the entries in pSrc that match the WHERE 628 ** clause. If the constraint is not deferred, throw an exception for 629 ** each row found. Otherwise, for deferred constraints, increment the 630 ** deferred constraint counter by nIncr for each row selected. */ 631 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); 632 if( nIncr>0 && pFKey->isDeferred==0 ){ 633 sqlite3ParseToplevel(pParse)->mayAbort = 1; 634 } 635 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 636 if( pWInfo ){ 637 sqlite3WhereEnd(pWInfo); 638 } 639 640 /* Clean up the WHERE clause constructed above. */ 641 sqlite3ExprDelete(db, pWhere); 642 if( iFkIfZero ){ 643 sqlite3VdbeJumpHere(v, iFkIfZero); 644 } 645 } 646 647 /* 648 ** This function returns a linked list of FKey objects (connected by 649 ** FKey.pNextTo) holding all children of table pTab. For example, 650 ** given the following schema: 651 ** 652 ** CREATE TABLE t1(a PRIMARY KEY); 653 ** CREATE TABLE t2(b REFERENCES t1(a); 654 ** 655 ** Calling this function with table "t1" as an argument returns a pointer 656 ** to the FKey structure representing the foreign key constraint on table 657 ** "t2". Calling this function with "t2" as the argument would return a 658 ** NULL pointer (as there are no FK constraints for which t2 is the parent 659 ** table). 660 */ 661 FKey *sqlite3FkReferences(Table *pTab){ 662 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName); 663 } 664 665 /* 666 ** The second argument is a Trigger structure allocated by the 667 ** fkActionTrigger() routine. This function deletes the Trigger structure 668 ** and all of its sub-components. 669 ** 670 ** The Trigger structure or any of its sub-components may be allocated from 671 ** the lookaside buffer belonging to database handle dbMem. 672 */ 673 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 674 if( p ){ 675 TriggerStep *pStep = p->step_list; 676 sqlite3ExprDelete(dbMem, pStep->pWhere); 677 sqlite3ExprListDelete(dbMem, pStep->pExprList); 678 sqlite3SelectDelete(dbMem, pStep->pSelect); 679 sqlite3ExprDelete(dbMem, p->pWhen); 680 sqlite3DbFree(dbMem, p); 681 } 682 } 683 684 /* 685 ** This function is called to generate code that runs when table pTab is 686 ** being dropped from the database. The SrcList passed as the second argument 687 ** to this function contains a single entry guaranteed to resolve to 688 ** table pTab. 689 ** 690 ** Normally, no code is required. However, if either 691 ** 692 ** (a) The table is the parent table of a FK constraint, or 693 ** (b) The table is the child table of a deferred FK constraint and it is 694 ** determined at runtime that there are outstanding deferred FK 695 ** constraint violations in the database, 696 ** 697 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 698 ** the table from the database. Triggers are disabled while running this 699 ** DELETE, but foreign key actions are not. 700 */ 701 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 702 sqlite3 *db = pParse->db; 703 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ 704 int iSkip = 0; 705 Vdbe *v = sqlite3GetVdbe(pParse); 706 707 assert( v ); /* VDBE has already been allocated */ 708 if( sqlite3FkReferences(pTab)==0 ){ 709 /* Search for a deferred foreign key constraint for which this table 710 ** is the child table. If one cannot be found, return without 711 ** generating any VDBE code. If one can be found, then jump over 712 ** the entire DELETE if there are no outstanding deferred constraints 713 ** when this statement is run. */ 714 FKey *p; 715 for(p=pTab->pFKey; p; p=p->pNextFrom){ 716 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; 717 } 718 if( !p ) return; 719 iSkip = sqlite3VdbeMakeLabel(v); 720 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); 721 } 722 723 pParse->disableTriggers = 1; 724 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); 725 pParse->disableTriggers = 0; 726 727 /* If the DELETE has generated immediate foreign key constraint 728 ** violations, halt the VDBE and return an error at this point, before 729 ** any modifications to the schema are made. This is because statement 730 ** transactions are not able to rollback schema changes. 731 ** 732 ** If the SQLITE_DeferFKs flag is set, then this is not required, as 733 ** the statement transaction will not be rolled back even if FK 734 ** constraints are violated. 735 */ 736 if( (db->flags & SQLITE_DeferFKs)==0 ){ 737 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 738 VdbeCoverage(v); 739 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 740 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 741 } 742 743 if( iSkip ){ 744 sqlite3VdbeResolveLabel(v, iSkip); 745 } 746 } 747 } 748 749 750 /* 751 ** The second argument points to an FKey object representing a foreign key 752 ** for which pTab is the child table. An UPDATE statement against pTab 753 ** is currently being processed. For each column of the table that is 754 ** actually updated, the corresponding element in the aChange[] array 755 ** is zero or greater (if a column is unmodified the corresponding element 756 ** is set to -1). If the rowid column is modified by the UPDATE statement 757 ** the bChngRowid argument is non-zero. 758 ** 759 ** This function returns true if any of the columns that are part of the 760 ** child key for FK constraint *p are modified. 761 */ 762 static int fkChildIsModified( 763 Table *pTab, /* Table being updated */ 764 FKey *p, /* Foreign key for which pTab is the child */ 765 int *aChange, /* Array indicating modified columns */ 766 int bChngRowid /* True if rowid is modified by this update */ 767 ){ 768 int i; 769 for(i=0; i<p->nCol; i++){ 770 int iChildKey = p->aCol[i].iFrom; 771 if( aChange[iChildKey]>=0 ) return 1; 772 if( iChildKey==pTab->iPKey && bChngRowid ) return 1; 773 } 774 return 0; 775 } 776 777 /* 778 ** The second argument points to an FKey object representing a foreign key 779 ** for which pTab is the parent table. An UPDATE statement against pTab 780 ** is currently being processed. For each column of the table that is 781 ** actually updated, the corresponding element in the aChange[] array 782 ** is zero or greater (if a column is unmodified the corresponding element 783 ** is set to -1). If the rowid column is modified by the UPDATE statement 784 ** the bChngRowid argument is non-zero. 785 ** 786 ** This function returns true if any of the columns that are part of the 787 ** parent key for FK constraint *p are modified. 788 */ 789 static int fkParentIsModified( 790 Table *pTab, 791 FKey *p, 792 int *aChange, 793 int bChngRowid 794 ){ 795 int i; 796 for(i=0; i<p->nCol; i++){ 797 char *zKey = p->aCol[i].zCol; 798 int iKey; 799 for(iKey=0; iKey<pTab->nCol; iKey++){ 800 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ 801 Column *pCol = &pTab->aCol[iKey]; 802 if( zKey ){ 803 if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1; 804 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ 805 return 1; 806 } 807 } 808 } 809 } 810 return 0; 811 } 812 813 /* 814 ** This function is called when inserting, deleting or updating a row of 815 ** table pTab to generate VDBE code to perform foreign key constraint 816 ** processing for the operation. 817 ** 818 ** For a DELETE operation, parameter regOld is passed the index of the 819 ** first register in an array of (pTab->nCol+1) registers containing the 820 ** rowid of the row being deleted, followed by each of the column values 821 ** of the row being deleted, from left to right. Parameter regNew is passed 822 ** zero in this case. 823 ** 824 ** For an INSERT operation, regOld is passed zero and regNew is passed the 825 ** first register of an array of (pTab->nCol+1) registers containing the new 826 ** row data. 827 ** 828 ** For an UPDATE operation, this function is called twice. Once before 829 ** the original record is deleted from the table using the calling convention 830 ** described for DELETE. Then again after the original record is deleted 831 ** but before the new record is inserted using the INSERT convention. 832 */ 833 void sqlite3FkCheck( 834 Parse *pParse, /* Parse context */ 835 Table *pTab, /* Row is being deleted from this table */ 836 int regOld, /* Previous row data is stored here */ 837 int regNew, /* New row data is stored here */ 838 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 839 int bChngRowid /* True if rowid is UPDATEd */ 840 ){ 841 sqlite3 *db = pParse->db; /* Database handle */ 842 FKey *pFKey; /* Used to iterate through FKs */ 843 int iDb; /* Index of database containing pTab */ 844 const char *zDb; /* Name of database containing pTab */ 845 int isIgnoreErrors = pParse->disableTriggers; 846 847 /* Exactly one of regOld and regNew should be non-zero. */ 848 assert( (regOld==0)!=(regNew==0) ); 849 850 /* If foreign-keys are disabled, this function is a no-op. */ 851 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 852 853 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 854 zDb = db->aDb[iDb].zName; 855 856 /* Loop through all the foreign key constraints for which pTab is the 857 ** child table (the table that the foreign key definition is part of). */ 858 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 859 Table *pTo; /* Parent table of foreign key pFKey */ 860 Index *pIdx = 0; /* Index on key columns in pTo */ 861 int *aiFree = 0; 862 int *aiCol; 863 int iCol; 864 int i; 865 int isIgnore = 0; 866 867 if( aChange 868 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 869 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 870 ){ 871 continue; 872 } 873 874 /* Find the parent table of this foreign key. Also find a unique index 875 ** on the parent key columns in the parent table. If either of these 876 ** schema items cannot be located, set an error in pParse and return 877 ** early. */ 878 if( pParse->disableTriggers ){ 879 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 880 }else{ 881 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 882 } 883 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 884 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 885 if( !isIgnoreErrors || db->mallocFailed ) return; 886 if( pTo==0 ){ 887 /* If isIgnoreErrors is true, then a table is being dropped. In this 888 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 889 ** before actually dropping it in order to check FK constraints. 890 ** If the parent table of an FK constraint on the current table is 891 ** missing, behave as if it is empty. i.e. decrement the relevant 892 ** FK counter for each row of the current table with non-NULL keys. 893 */ 894 Vdbe *v = sqlite3GetVdbe(pParse); 895 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 896 for(i=0; i<pFKey->nCol; i++){ 897 int iReg = pFKey->aCol[i].iFrom + regOld + 1; 898 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); 899 } 900 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 901 } 902 continue; 903 } 904 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 905 906 if( aiFree ){ 907 aiCol = aiFree; 908 }else{ 909 iCol = pFKey->aCol[0].iFrom; 910 aiCol = &iCol; 911 } 912 for(i=0; i<pFKey->nCol; i++){ 913 if( aiCol[i]==pTab->iPKey ){ 914 aiCol[i] = -1; 915 } 916 #ifndef SQLITE_OMIT_AUTHORIZATION 917 /* Request permission to read the parent key columns. If the 918 ** authorization callback returns SQLITE_IGNORE, behave as if any 919 ** values read from the parent table are NULL. */ 920 if( db->xAuth ){ 921 int rcauth; 922 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; 923 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 924 isIgnore = (rcauth==SQLITE_IGNORE); 925 } 926 #endif 927 } 928 929 /* Take a shared-cache advisory read-lock on the parent table. Allocate 930 ** a cursor to use to search the unique index on the parent key columns 931 ** in the parent table. */ 932 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 933 pParse->nTab++; 934 935 if( regOld!=0 ){ 936 /* A row is being removed from the child table. Search for the parent. 937 ** If the parent does not exist, removing the child row resolves an 938 ** outstanding foreign key constraint violation. */ 939 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore); 940 } 941 if( regNew!=0 ){ 942 /* A row is being added to the child table. If a parent row cannot 943 ** be found, adding the child row has violated the FK constraint. */ 944 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore); 945 } 946 947 sqlite3DbFree(db, aiFree); 948 } 949 950 /* Loop through all the foreign key constraints that refer to this table. 951 ** (the "child" constraints) */ 952 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 953 Index *pIdx = 0; /* Foreign key index for pFKey */ 954 SrcList *pSrc; 955 int *aiCol = 0; 956 957 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ 958 continue; 959 } 960 961 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 962 && !pParse->pToplevel && !pParse->isMultiWrite 963 ){ 964 assert( regOld==0 && regNew!=0 ); 965 /* Inserting a single row into a parent table cannot cause an immediate 966 ** foreign key violation. So do nothing in this case. */ 967 continue; 968 } 969 970 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 971 if( !isIgnoreErrors || db->mallocFailed ) return; 972 continue; 973 } 974 assert( aiCol || pFKey->nCol==1 ); 975 976 /* Create a SrcList structure containing the child table. We need the 977 ** child table as a SrcList for sqlite3WhereBegin() */ 978 pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 979 if( pSrc ){ 980 struct SrcList_item *pItem = pSrc->a; 981 pItem->pTab = pFKey->pFrom; 982 pItem->zName = pFKey->pFrom->zName; 983 pItem->pTab->nRef++; 984 pItem->iCursor = pParse->nTab++; 985 986 if( regNew!=0 ){ 987 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 988 } 989 if( regOld!=0 ){ 990 /* If there is a RESTRICT action configured for the current operation 991 ** on the parent table of this FK, then throw an exception 992 ** immediately if the FK constraint is violated, even if this is a 993 ** deferred trigger. That's what RESTRICT means. To defer checking 994 ** the constraint, the FK should specify NO ACTION (represented 995 ** using OE_None). NO ACTION is the default. */ 996 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 997 } 998 pItem->zName = 0; 999 sqlite3SrcListDelete(db, pSrc); 1000 } 1001 sqlite3DbFree(db, aiCol); 1002 } 1003 } 1004 1005 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 1006 1007 /* 1008 ** This function is called before generating code to update or delete a 1009 ** row contained in table pTab. 1010 */ 1011 u32 sqlite3FkOldmask( 1012 Parse *pParse, /* Parse context */ 1013 Table *pTab /* Table being modified */ 1014 ){ 1015 u32 mask = 0; 1016 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1017 FKey *p; 1018 int i; 1019 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1020 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 1021 } 1022 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1023 Index *pIdx = 0; 1024 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); 1025 if( pIdx ){ 1026 for(i=0; i<pIdx->nKeyCol; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]); 1027 } 1028 } 1029 } 1030 return mask; 1031 } 1032 1033 1034 /* 1035 ** This function is called before generating code to update or delete a 1036 ** row contained in table pTab. If the operation is a DELETE, then 1037 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 1038 ** to an array of size N, where N is the number of columns in table pTab. 1039 ** If the i'th column is not modified by the UPDATE, then the corresponding 1040 ** entry in the aChange[] array is set to -1. If the column is modified, 1041 ** the value is 0 or greater. Parameter chngRowid is set to true if the 1042 ** UPDATE statement modifies the rowid fields of the table. 1043 ** 1044 ** If any foreign key processing will be required, this function returns 1045 ** true. If there is no foreign key related processing, this function 1046 ** returns false. 1047 */ 1048 int sqlite3FkRequired( 1049 Parse *pParse, /* Parse context */ 1050 Table *pTab, /* Table being modified */ 1051 int *aChange, /* Non-NULL for UPDATE operations */ 1052 int chngRowid /* True for UPDATE that affects rowid */ 1053 ){ 1054 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1055 if( !aChange ){ 1056 /* A DELETE operation. Foreign key processing is required if the 1057 ** table in question is either the child or parent table for any 1058 ** foreign key constraint. */ 1059 return (sqlite3FkReferences(pTab) || pTab->pFKey); 1060 }else{ 1061 /* This is an UPDATE. Foreign key processing is only required if the 1062 ** operation modifies one or more child or parent key columns. */ 1063 FKey *p; 1064 1065 /* Check if any child key columns are being modified. */ 1066 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1067 if( fkChildIsModified(pTab, p, aChange, chngRowid) ) return 1; 1068 } 1069 1070 /* Check if any parent key columns are being modified. */ 1071 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1072 if( fkParentIsModified(pTab, p, aChange, chngRowid) ) return 1; 1073 } 1074 } 1075 } 1076 return 0; 1077 } 1078 1079 /* 1080 ** This function is called when an UPDATE or DELETE operation is being 1081 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 1082 ** If the current operation is an UPDATE, then the pChanges parameter is 1083 ** passed a pointer to the list of columns being modified. If it is a 1084 ** DELETE, pChanges is passed a NULL pointer. 1085 ** 1086 ** It returns a pointer to a Trigger structure containing a trigger 1087 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 1088 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is 1089 ** returned (these actions require no special handling by the triggers 1090 ** sub-system, code for them is created by fkScanChildren()). 1091 ** 1092 ** For example, if pFKey is the foreign key and pTab is table "p" in 1093 ** the following schema: 1094 ** 1095 ** CREATE TABLE p(pk PRIMARY KEY); 1096 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 1097 ** 1098 ** then the returned trigger structure is equivalent to: 1099 ** 1100 ** CREATE TRIGGER ... DELETE ON p BEGIN 1101 ** DELETE FROM c WHERE ck = old.pk; 1102 ** END; 1103 ** 1104 ** The returned pointer is cached as part of the foreign key object. It 1105 ** is eventually freed along with the rest of the foreign key object by 1106 ** sqlite3FkDelete(). 1107 */ 1108 static Trigger *fkActionTrigger( 1109 Parse *pParse, /* Parse context */ 1110 Table *pTab, /* Table being updated or deleted from */ 1111 FKey *pFKey, /* Foreign key to get action for */ 1112 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 1113 ){ 1114 sqlite3 *db = pParse->db; /* Database handle */ 1115 int action; /* One of OE_None, OE_Cascade etc. */ 1116 Trigger *pTrigger; /* Trigger definition to return */ 1117 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 1118 1119 action = pFKey->aAction[iAction]; 1120 pTrigger = pFKey->apTrigger[iAction]; 1121 1122 if( action!=OE_None && !pTrigger ){ 1123 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */ 1124 char const *zFrom; /* Name of child table */ 1125 int nFrom; /* Length in bytes of zFrom */ 1126 Index *pIdx = 0; /* Parent key index for this FK */ 1127 int *aiCol = 0; /* child table cols -> parent key cols */ 1128 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 1129 Expr *pWhere = 0; /* WHERE clause of trigger step */ 1130 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 1131 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 1132 int i; /* Iterator variable */ 1133 Expr *pWhen = 0; /* WHEN clause for the trigger */ 1134 1135 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 1136 assert( aiCol || pFKey->nCol==1 ); 1137 1138 for(i=0; i<pFKey->nCol; i++){ 1139 Token tOld = { "old", 3 }; /* Literal "old" token */ 1140 Token tNew = { "new", 3 }; /* Literal "new" token */ 1141 Token tFromCol; /* Name of column in child table */ 1142 Token tToCol; /* Name of column in parent table */ 1143 int iFromCol; /* Idx of column in child table */ 1144 Expr *pEq; /* tFromCol = OLD.tToCol */ 1145 1146 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 1147 assert( iFromCol>=0 ); 1148 tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid"; 1149 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName; 1150 1151 tToCol.n = sqlite3Strlen30(tToCol.z); 1152 tFromCol.n = sqlite3Strlen30(tFromCol.z); 1153 1154 /* Create the expression "OLD.zToCol = zFromCol". It is important 1155 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 1156 ** that the affinity and collation sequence associated with the 1157 ** parent table are used for the comparison. */ 1158 pEq = sqlite3PExpr(pParse, TK_EQ, 1159 sqlite3PExpr(pParse, TK_DOT, 1160 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), 1161 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) 1162 , 0), 1163 sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol) 1164 , 0); 1165 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 1166 1167 /* For ON UPDATE, construct the next term of the WHEN clause. 1168 ** The final WHEN clause will be like this: 1169 ** 1170 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 1171 */ 1172 if( pChanges ){ 1173 pEq = sqlite3PExpr(pParse, TK_IS, 1174 sqlite3PExpr(pParse, TK_DOT, 1175 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), 1176 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), 1177 0), 1178 sqlite3PExpr(pParse, TK_DOT, 1179 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), 1180 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), 1181 0), 1182 0); 1183 pWhen = sqlite3ExprAnd(db, pWhen, pEq); 1184 } 1185 1186 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 1187 Expr *pNew; 1188 if( action==OE_Cascade ){ 1189 pNew = sqlite3PExpr(pParse, TK_DOT, 1190 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), 1191 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) 1192 , 0); 1193 }else if( action==OE_SetDflt ){ 1194 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; 1195 if( pDflt ){ 1196 pNew = sqlite3ExprDup(db, pDflt, 0); 1197 }else{ 1198 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 1199 } 1200 }else{ 1201 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 1202 } 1203 pList = sqlite3ExprListAppend(pParse, pList, pNew); 1204 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 1205 } 1206 } 1207 sqlite3DbFree(db, aiCol); 1208 1209 zFrom = pFKey->pFrom->zName; 1210 nFrom = sqlite3Strlen30(zFrom); 1211 1212 if( action==OE_Restrict ){ 1213 Token tFrom; 1214 Expr *pRaise; 1215 1216 tFrom.z = zFrom; 1217 tFrom.n = nFrom; 1218 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); 1219 if( pRaise ){ 1220 pRaise->affinity = OE_Abort; 1221 } 1222 pSelect = sqlite3SelectNew(pParse, 1223 sqlite3ExprListAppend(pParse, 0, pRaise), 1224 sqlite3SrcListAppend(db, 0, &tFrom, 0), 1225 pWhere, 1226 0, 0, 0, 0, 0, 0 1227 ); 1228 pWhere = 0; 1229 } 1230 1231 /* Disable lookaside memory allocation */ 1232 enableLookaside = db->lookaside.bEnabled; 1233 db->lookaside.bEnabled = 0; 1234 1235 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 1236 sizeof(Trigger) + /* struct Trigger */ 1237 sizeof(TriggerStep) + /* Single step in trigger program */ 1238 nFrom + 1 /* Space for pStep->target.z */ 1239 ); 1240 if( pTrigger ){ 1241 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 1242 pStep->target.z = (char *)&pStep[1]; 1243 pStep->target.n = nFrom; 1244 memcpy((char *)pStep->target.z, zFrom, nFrom); 1245 1246 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 1247 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 1248 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1249 if( pWhen ){ 1250 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0); 1251 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 1252 } 1253 } 1254 1255 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 1256 db->lookaside.bEnabled = enableLookaside; 1257 1258 sqlite3ExprDelete(db, pWhere); 1259 sqlite3ExprDelete(db, pWhen); 1260 sqlite3ExprListDelete(db, pList); 1261 sqlite3SelectDelete(db, pSelect); 1262 if( db->mallocFailed==1 ){ 1263 fkTriggerDelete(db, pTrigger); 1264 return 0; 1265 } 1266 assert( pStep!=0 ); 1267 1268 switch( action ){ 1269 case OE_Restrict: 1270 pStep->op = TK_SELECT; 1271 break; 1272 case OE_Cascade: 1273 if( !pChanges ){ 1274 pStep->op = TK_DELETE; 1275 break; 1276 } 1277 default: 1278 pStep->op = TK_UPDATE; 1279 } 1280 pStep->pTrig = pTrigger; 1281 pTrigger->pSchema = pTab->pSchema; 1282 pTrigger->pTabSchema = pTab->pSchema; 1283 pFKey->apTrigger[iAction] = pTrigger; 1284 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 1285 } 1286 1287 return pTrigger; 1288 } 1289 1290 /* 1291 ** This function is called when deleting or updating a row to implement 1292 ** any required CASCADE, SET NULL or SET DEFAULT actions. 1293 */ 1294 void sqlite3FkActions( 1295 Parse *pParse, /* Parse context */ 1296 Table *pTab, /* Table being updated or deleted from */ 1297 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 1298 int regOld, /* Address of array containing old row */ 1299 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 1300 int bChngRowid /* True if rowid is UPDATEd */ 1301 ){ 1302 /* If foreign-key support is enabled, iterate through all FKs that 1303 ** refer to table pTab. If there is an action associated with the FK 1304 ** for this operation (either update or delete), invoke the associated 1305 ** trigger sub-program. */ 1306 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1307 FKey *pFKey; /* Iterator variable */ 1308 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1309 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ 1310 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); 1311 if( pAct ){ 1312 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); 1313 } 1314 } 1315 } 1316 } 1317 } 1318 1319 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 1320 1321 /* 1322 ** Free all memory associated with foreign key definitions attached to 1323 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 1324 ** hash table. 1325 */ 1326 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 1327 FKey *pFKey; /* Iterator variable */ 1328 FKey *pNext; /* Copy of pFKey->pNextFrom */ 1329 1330 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 1331 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ 1332 1333 /* Remove the FK from the fkeyHash hash table. */ 1334 if( !db || db->pnBytesFreed==0 ){ 1335 if( pFKey->pPrevTo ){ 1336 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 1337 }else{ 1338 void *p = (void *)pFKey->pNextTo; 1339 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); 1340 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p); 1341 } 1342 if( pFKey->pNextTo ){ 1343 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 1344 } 1345 } 1346 1347 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 1348 ** classified as either immediate or deferred. 1349 */ 1350 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 1351 1352 /* Delete any triggers created to implement actions for this FK. */ 1353 #ifndef SQLITE_OMIT_TRIGGER 1354 fkTriggerDelete(db, pFKey->apTrigger[0]); 1355 fkTriggerDelete(db, pFKey->apTrigger[1]); 1356 #endif 1357 1358 pNext = pFKey->pNextFrom; 1359 sqlite3DbFree(db, pFKey); 1360 } 1361 } 1362 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ 1363