1 /* 2 ** 3 ** The author disclaims copyright to this source code. In place of 4 ** a legal notice, here is a blessing: 5 ** 6 ** May you do good and not evil. 7 ** May you find forgiveness for yourself and forgive others. 8 ** May you share freely, never taking more than you give. 9 ** 10 ************************************************************************* 11 ** This file contains code used by the compiler to add foreign key 12 ** support to compiled SQL statements. 13 */ 14 #include "sqliteInt.h" 15 16 #ifndef SQLITE_OMIT_FOREIGN_KEY 17 #ifndef SQLITE_OMIT_TRIGGER 18 19 /* 20 ** Deferred and Immediate FKs 21 ** -------------------------- 22 ** 23 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 24 ** If an immediate foreign key constraint is violated, 25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current 26 ** statement transaction rolled back. If a 27 ** deferred foreign key constraint is violated, no action is taken 28 ** immediately. However if the application attempts to commit the 29 ** transaction before fixing the constraint violation, the attempt fails. 30 ** 31 ** Deferred constraints are implemented using a simple counter associated 32 ** with the database handle. The counter is set to zero each time a 33 ** database transaction is opened. Each time a statement is executed 34 ** that causes a foreign key violation, the counter is incremented. Each 35 ** time a statement is executed that removes an existing violation from 36 ** the database, the counter is decremented. When the transaction is 37 ** committed, the commit fails if the current value of the counter is 38 ** greater than zero. This scheme has two big drawbacks: 39 ** 40 ** * When a commit fails due to a deferred foreign key constraint, 41 ** there is no way to tell which foreign constraint is not satisfied, 42 ** or which row it is not satisfied for. 43 ** 44 ** * If the database contains foreign key violations when the 45 ** transaction is opened, this may cause the mechanism to malfunction. 46 ** 47 ** Despite these problems, this approach is adopted as it seems simpler 48 ** than the alternatives. 49 ** 50 ** INSERT operations: 51 ** 52 ** I.1) For each FK for which the table is the child table, search 53 ** the parent table for a match. If none is found increment the 54 ** constraint counter. 55 ** 56 ** I.2) For each FK for which the table is the parent table, 57 ** search the child table for rows that correspond to the new 58 ** row in the parent table. Decrement the counter for each row 59 ** found (as the constraint is now satisfied). 60 ** 61 ** DELETE operations: 62 ** 63 ** D.1) For each FK for which the table is the child table, 64 ** search the parent table for a row that corresponds to the 65 ** deleted row in the child table. If such a row is not found, 66 ** decrement the counter. 67 ** 68 ** D.2) For each FK for which the table is the parent table, search 69 ** the child table for rows that correspond to the deleted row 70 ** in the parent table. For each found increment the counter. 71 ** 72 ** UPDATE operations: 73 ** 74 ** An UPDATE command requires that all 4 steps above are taken, but only 75 ** for FK constraints for which the affected columns are actually 76 ** modified (values must be compared at runtime). 77 ** 78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 79 ** This simplifies the implementation a bit. 80 ** 81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 82 ** resolution is considered to delete rows before the new row is inserted. 83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 84 ** is thrown, even if the FK constraint would be satisfied after the new 85 ** row is inserted. 86 ** 87 ** Immediate constraints are usually handled similarly. The only difference 88 ** is that the counter used is stored as part of each individual statement 89 ** object (struct Vdbe). If, after the statement has run, its immediate 90 ** constraint counter is greater than zero, 91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY 92 ** and the statement transaction is rolled back. An exception is an INSERT 93 ** statement that inserts a single row only (no triggers). In this case, 94 ** instead of using a counter, an exception is thrown immediately if the 95 ** INSERT violates a foreign key constraint. This is necessary as such 96 ** an INSERT does not open a statement transaction. 97 ** 98 ** TODO: How should dropping a table be handled? How should renaming a 99 ** table be handled? 100 ** 101 ** 102 ** Query API Notes 103 ** --------------- 104 ** 105 ** Before coding an UPDATE or DELETE row operation, the code-generator 106 ** for those two operations needs to know whether or not the operation 107 ** requires any FK processing and, if so, which columns of the original 108 ** row are required by the FK processing VDBE code (i.e. if FKs were 109 ** implemented using triggers, which of the old.* columns would be 110 ** accessed). No information is required by the code-generator before 111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 112 ** generation code to query for this information are: 113 ** 114 ** sqlite3FkRequired() - Test to see if FK processing is required. 115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 116 ** 117 ** 118 ** Externally accessible module functions 119 ** -------------------------------------- 120 ** 121 ** sqlite3FkCheck() - Check for foreign key violations. 122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 123 ** sqlite3FkDelete() - Delete an FKey structure. 124 */ 125 126 /* 127 ** VDBE Calling Convention 128 ** ----------------------- 129 ** 130 ** Example: 131 ** 132 ** For the following INSERT statement: 133 ** 134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 135 ** INSERT INTO t1 VALUES(1, 2, 3.1); 136 ** 137 ** Register (x): 2 (type integer) 138 ** Register (x+1): 1 (type integer) 139 ** Register (x+2): NULL (type NULL) 140 ** Register (x+3): 3.1 (type real) 141 */ 142 143 /* 144 ** A foreign key constraint requires that the key columns in the parent 145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 146 ** Given that pParent is the parent table for foreign key constraint pFKey, 147 ** search the schema for a unique index on the parent key columns. 148 ** 149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 151 ** is set to point to the unique index. 152 ** 153 ** If the parent key consists of a single column (the foreign key constraint 154 ** is not a composite foreign key), output variable *paiCol is set to NULL. 155 ** Otherwise, it is set to point to an allocated array of size N, where 156 ** N is the number of columns in the parent key. The first element of the 157 ** array is the index of the child table column that is mapped by the FK 158 ** constraint to the parent table column stored in the left-most column 159 ** of index *ppIdx. The second element of the array is the index of the 160 ** child table column that corresponds to the second left-most column of 161 ** *ppIdx, and so on. 162 ** 163 ** If the required index cannot be found, either because: 164 ** 165 ** 1) The named parent key columns do not exist, or 166 ** 167 ** 2) The named parent key columns do exist, but are not subject to a 168 ** UNIQUE or PRIMARY KEY constraint, or 169 ** 170 ** 3) No parent key columns were provided explicitly as part of the 171 ** foreign key definition, and the parent table does not have a 172 ** PRIMARY KEY, or 173 ** 174 ** 4) No parent key columns were provided explicitly as part of the 175 ** foreign key definition, and the PRIMARY KEY of the parent table 176 ** consists of a different number of columns to the child key in 177 ** the child table. 178 ** 179 ** then non-zero is returned, and a "foreign key mismatch" error loaded 180 ** into pParse. If an OOM error occurs, non-zero is returned and the 181 ** pParse->db->mallocFailed flag is set. 182 */ 183 int sqlite3FkLocateIndex( 184 Parse *pParse, /* Parse context to store any error in */ 185 Table *pParent, /* Parent table of FK constraint pFKey */ 186 FKey *pFKey, /* Foreign key to find index for */ 187 Index **ppIdx, /* OUT: Unique index on parent table */ 188 int **paiCol /* OUT: Map of index columns in pFKey */ 189 ){ 190 Index *pIdx = 0; /* Value to return via *ppIdx */ 191 int *aiCol = 0; /* Value to return via *paiCol */ 192 int nCol = pFKey->nCol; /* Number of columns in parent key */ 193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 194 195 /* The caller is responsible for zeroing output parameters. */ 196 assert( ppIdx && *ppIdx==0 ); 197 assert( !paiCol || *paiCol==0 ); 198 assert( pParse ); 199 200 /* If this is a non-composite (single column) foreign key, check if it 201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 202 ** and *paiCol set to zero and return early. 203 ** 204 ** Otherwise, for a composite foreign key (more than one column), allocate 205 ** space for the aiCol array (returned via output parameter *paiCol). 206 ** Non-composite foreign keys do not require the aiCol array. 207 */ 208 if( nCol==1 ){ 209 /* The FK maps to the IPK if any of the following are true: 210 ** 211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 212 ** mapped to the primary key of table pParent, or 213 ** 2) The FK is explicitly mapped to a column declared as INTEGER 214 ** PRIMARY KEY. 215 */ 216 if( pParent->iPKey>=0 ){ 217 if( !zKey ) return 0; 218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; 219 } 220 }else if( paiCol ){ 221 assert( nCol>1 ); 222 aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int)); 223 if( !aiCol ) return 1; 224 *paiCol = aiCol; 225 } 226 227 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 228 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){ 229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 230 ** of columns. If each indexed column corresponds to a foreign key 231 ** column of pFKey, then this index is a winner. */ 232 233 if( zKey==0 ){ 234 /* If zKey is NULL, then this foreign key is implicitly mapped to 235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 236 ** identified by the test. */ 237 if( IsPrimaryKeyIndex(pIdx) ){ 238 if( aiCol ){ 239 int i; 240 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 241 } 242 break; 243 } 244 }else{ 245 /* If zKey is non-NULL, then this foreign key was declared to 246 ** map to an explicit list of columns in table pParent. Check if this 247 ** index matches those columns. Also, check that the index uses 248 ** the default collation sequences for each column. */ 249 int i, j; 250 for(i=0; i<nCol; i++){ 251 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 252 const char *zDfltColl; /* Def. collation for column */ 253 char *zIdxCol; /* Name of indexed column */ 254 255 if( iCol<0 ) break; /* No foreign keys against expression indexes */ 256 257 /* If the index uses a collation sequence that is different from 258 ** the default collation sequence for the column, this index is 259 ** unusable. Bail out early in this case. */ 260 zDfltColl = pParent->aCol[iCol].zColl; 261 if( !zDfltColl ) zDfltColl = sqlite3StrBINARY; 262 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 263 264 zIdxCol = pParent->aCol[iCol].zName; 265 for(j=0; j<nCol; j++){ 266 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 267 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 268 break; 269 } 270 } 271 if( j==nCol ) break; 272 } 273 if( i==nCol ) break; /* pIdx is usable */ 274 } 275 } 276 } 277 278 if( !pIdx ){ 279 if( !pParse->disableTriggers ){ 280 sqlite3ErrorMsg(pParse, 281 "foreign key mismatch - \"%w\" referencing \"%w\"", 282 pFKey->pFrom->zName, pFKey->zTo); 283 } 284 sqlite3DbFree(pParse->db, aiCol); 285 return 1; 286 } 287 288 *ppIdx = pIdx; 289 return 0; 290 } 291 292 /* 293 ** This function is called when a row is inserted into or deleted from the 294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 295 ** on the child table of pFKey, this function is invoked twice for each row 296 ** affected - once to "delete" the old row, and then again to "insert" the 297 ** new row. 298 ** 299 ** Each time it is called, this function generates VDBE code to locate the 300 ** row in the parent table that corresponds to the row being inserted into 301 ** or deleted from the child table. If the parent row can be found, no 302 ** special action is taken. Otherwise, if the parent row can *not* be 303 ** found in the parent table: 304 ** 305 ** Operation | FK type | Action taken 306 ** -------------------------------------------------------------------------- 307 ** INSERT immediate Increment the "immediate constraint counter". 308 ** 309 ** DELETE immediate Decrement the "immediate constraint counter". 310 ** 311 ** INSERT deferred Increment the "deferred constraint counter". 312 ** 313 ** DELETE deferred Decrement the "deferred constraint counter". 314 ** 315 ** These operations are identified in the comment at the top of this file 316 ** (fkey.c) as "I.1" and "D.1". 317 */ 318 static void fkLookupParent( 319 Parse *pParse, /* Parse context */ 320 int iDb, /* Index of database housing pTab */ 321 Table *pTab, /* Parent table of FK pFKey */ 322 Index *pIdx, /* Unique index on parent key columns in pTab */ 323 FKey *pFKey, /* Foreign key constraint */ 324 int *aiCol, /* Map from parent key columns to child table columns */ 325 int regData, /* Address of array containing child table row */ 326 int nIncr, /* Increment constraint counter by this */ 327 int isIgnore /* If true, pretend pTab contains all NULL values */ 328 ){ 329 int i; /* Iterator variable */ 330 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 331 int iCur = pParse->nTab - 1; /* Cursor number to use */ 332 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ 333 334 sqlite3VdbeVerifyAbortable(v, 335 (!pFKey->isDeferred 336 && !(pParse->db->flags & SQLITE_DeferFKs) 337 && !pParse->pToplevel 338 && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore); 339 340 /* If nIncr is less than zero, then check at runtime if there are any 341 ** outstanding constraints to resolve. If there are not, there is no need 342 ** to check if deleting this row resolves any outstanding violations. 343 ** 344 ** Check if any of the key columns in the child table row are NULL. If 345 ** any are, then the constraint is considered satisfied. No need to 346 ** search for a matching row in the parent table. */ 347 if( nIncr<0 ){ 348 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 349 VdbeCoverage(v); 350 } 351 for(i=0; i<pFKey->nCol; i++){ 352 int iReg = aiCol[i] + regData + 1; 353 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); 354 } 355 356 if( isIgnore==0 ){ 357 if( pIdx==0 ){ 358 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 359 ** column of the parent table (table pTab). */ 360 int iMustBeInt; /* Address of MustBeInt instruction */ 361 int regTemp = sqlite3GetTempReg(pParse); 362 363 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 364 ** apply the affinity of the parent key). If this fails, then there 365 ** is no matching parent key. Before using MustBeInt, make a copy of 366 ** the value. Otherwise, the value inserted into the child key column 367 ** will have INTEGER affinity applied to it, which may not be correct. */ 368 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); 369 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 370 VdbeCoverage(v); 371 372 /* If the parent table is the same as the child table, and we are about 373 ** to increment the constraint-counter (i.e. this is an INSERT operation), 374 ** then check if the row being inserted matches itself. If so, do not 375 ** increment the constraint-counter. */ 376 if( pTab==pFKey->pFrom && nIncr==1 ){ 377 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); 378 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 379 } 380 381 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 382 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); 383 sqlite3VdbeGoto(v, iOk); 384 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 385 sqlite3VdbeJumpHere(v, iMustBeInt); 386 sqlite3ReleaseTempReg(pParse, regTemp); 387 }else{ 388 int nCol = pFKey->nCol; 389 int regTemp = sqlite3GetTempRange(pParse, nCol); 390 int regRec = sqlite3GetTempReg(pParse); 391 392 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 393 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 394 for(i=0; i<nCol; i++){ 395 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i); 396 } 397 398 /* If the parent table is the same as the child table, and we are about 399 ** to increment the constraint-counter (i.e. this is an INSERT operation), 400 ** then check if the row being inserted matches itself. If so, do not 401 ** increment the constraint-counter. 402 ** 403 ** If any of the parent-key values are NULL, then the row cannot match 404 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 405 ** of the parent-key values are NULL (at this point it is known that 406 ** none of the child key values are). 407 */ 408 if( pTab==pFKey->pFrom && nIncr==1 ){ 409 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 410 for(i=0; i<nCol; i++){ 411 int iChild = aiCol[i]+1+regData; 412 int iParent = pIdx->aiColumn[i]+1+regData; 413 assert( pIdx->aiColumn[i]>=0 ); 414 assert( aiCol[i]!=pTab->iPKey ); 415 if( pIdx->aiColumn[i]==pTab->iPKey ){ 416 /* The parent key is a composite key that includes the IPK column */ 417 iParent = regData; 418 } 419 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); 420 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 421 } 422 sqlite3VdbeGoto(v, iOk); 423 } 424 425 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec, 426 sqlite3IndexAffinityStr(pParse->db,pIdx), nCol); 427 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v); 428 429 sqlite3ReleaseTempReg(pParse, regRec); 430 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 431 } 432 } 433 434 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) 435 && !pParse->pToplevel 436 && !pParse->isMultiWrite 437 ){ 438 /* Special case: If this is an INSERT statement that will insert exactly 439 ** one row into the table, raise a constraint immediately instead of 440 ** incrementing a counter. This is necessary as the VM code is being 441 ** generated for will not open a statement transaction. */ 442 assert( nIncr==1 ); 443 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 444 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 445 }else{ 446 if( nIncr>0 && pFKey->isDeferred==0 ){ 447 sqlite3MayAbort(pParse); 448 } 449 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 450 } 451 452 sqlite3VdbeResolveLabel(v, iOk); 453 sqlite3VdbeAddOp1(v, OP_Close, iCur); 454 } 455 456 457 /* 458 ** Return an Expr object that refers to a memory register corresponding 459 ** to column iCol of table pTab. 460 ** 461 ** regBase is the first of an array of register that contains the data 462 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first 463 ** column. regBase+2 holds the second column, and so forth. 464 */ 465 static Expr *exprTableRegister( 466 Parse *pParse, /* Parsing and code generating context */ 467 Table *pTab, /* The table whose content is at r[regBase]... */ 468 int regBase, /* Contents of table pTab */ 469 i16 iCol /* Which column of pTab is desired */ 470 ){ 471 Expr *pExpr; 472 Column *pCol; 473 const char *zColl; 474 sqlite3 *db = pParse->db; 475 476 pExpr = sqlite3Expr(db, TK_REGISTER, 0); 477 if( pExpr ){ 478 if( iCol>=0 && iCol!=pTab->iPKey ){ 479 pCol = &pTab->aCol[iCol]; 480 pExpr->iTable = regBase + iCol + 1; 481 pExpr->affinity = pCol->affinity; 482 zColl = pCol->zColl; 483 if( zColl==0 ) zColl = db->pDfltColl->zName; 484 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); 485 }else{ 486 pExpr->iTable = regBase; 487 pExpr->affinity = SQLITE_AFF_INTEGER; 488 } 489 } 490 return pExpr; 491 } 492 493 /* 494 ** Return an Expr object that refers to column iCol of table pTab which 495 ** has cursor iCur. 496 */ 497 static Expr *exprTableColumn( 498 sqlite3 *db, /* The database connection */ 499 Table *pTab, /* The table whose column is desired */ 500 int iCursor, /* The open cursor on the table */ 501 i16 iCol /* The column that is wanted */ 502 ){ 503 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); 504 if( pExpr ){ 505 pExpr->pTab = pTab; 506 pExpr->iTable = iCursor; 507 pExpr->iColumn = iCol; 508 } 509 return pExpr; 510 } 511 512 /* 513 ** This function is called to generate code executed when a row is deleted 514 ** from the parent table of foreign key constraint pFKey and, if pFKey is 515 ** deferred, when a row is inserted into the same table. When generating 516 ** code for an SQL UPDATE operation, this function may be called twice - 517 ** once to "delete" the old row and once to "insert" the new row. 518 ** 519 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease 520 ** the number of FK violations in the db) or +1 when deleting one (as this 521 ** may increase the number of FK constraint problems). 522 ** 523 ** The code generated by this function scans through the rows in the child 524 ** table that correspond to the parent table row being deleted or inserted. 525 ** For each child row found, one of the following actions is taken: 526 ** 527 ** Operation | FK type | Action taken 528 ** -------------------------------------------------------------------------- 529 ** DELETE immediate Increment the "immediate constraint counter". 530 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 531 ** throw a "FOREIGN KEY constraint failed" exception. 532 ** 533 ** INSERT immediate Decrement the "immediate constraint counter". 534 ** 535 ** DELETE deferred Increment the "deferred constraint counter". 536 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 537 ** throw a "FOREIGN KEY constraint failed" exception. 538 ** 539 ** INSERT deferred Decrement the "deferred constraint counter". 540 ** 541 ** These operations are identified in the comment at the top of this file 542 ** (fkey.c) as "I.2" and "D.2". 543 */ 544 static void fkScanChildren( 545 Parse *pParse, /* Parse context */ 546 SrcList *pSrc, /* The child table to be scanned */ 547 Table *pTab, /* The parent table */ 548 Index *pIdx, /* Index on parent covering the foreign key */ 549 FKey *pFKey, /* The foreign key linking pSrc to pTab */ 550 int *aiCol, /* Map from pIdx cols to child table cols */ 551 int regData, /* Parent row data starts here */ 552 int nIncr /* Amount to increment deferred counter by */ 553 ){ 554 sqlite3 *db = pParse->db; /* Database handle */ 555 int i; /* Iterator variable */ 556 Expr *pWhere = 0; /* WHERE clause to scan with */ 557 NameContext sNameContext; /* Context used to resolve WHERE clause */ 558 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 559 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 560 Vdbe *v = sqlite3GetVdbe(pParse); 561 562 assert( pIdx==0 || pIdx->pTable==pTab ); 563 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); 564 assert( pIdx!=0 || pFKey->nCol==1 ); 565 assert( pIdx!=0 || HasRowid(pTab) ); 566 567 if( nIncr<0 ){ 568 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 569 VdbeCoverage(v); 570 } 571 572 /* Create an Expr object representing an SQL expression like: 573 ** 574 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 575 ** 576 ** The collation sequence used for the comparison should be that of 577 ** the parent key columns. The affinity of the parent key column should 578 ** be applied to each child key value before the comparison takes place. 579 */ 580 for(i=0; i<pFKey->nCol; i++){ 581 Expr *pLeft; /* Value from parent table row */ 582 Expr *pRight; /* Column ref to child table */ 583 Expr *pEq; /* Expression (pLeft = pRight) */ 584 i16 iCol; /* Index of column in child table */ 585 const char *zCol; /* Name of column in child table */ 586 587 iCol = pIdx ? pIdx->aiColumn[i] : -1; 588 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 589 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 590 assert( iCol>=0 ); 591 zCol = pFKey->pFrom->aCol[iCol].zName; 592 pRight = sqlite3Expr(db, TK_ID, zCol); 593 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); 594 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 595 } 596 597 /* If the child table is the same as the parent table, then add terms 598 ** to the WHERE clause that prevent this entry from being scanned. 599 ** The added WHERE clause terms are like this: 600 ** 601 ** $current_rowid!=rowid 602 ** NOT( $current_a==a AND $current_b==b AND ... ) 603 ** 604 ** The first form is used for rowid tables. The second form is used 605 ** for WITHOUT ROWID tables. In the second form, the primary key is 606 ** (a,b,...) 607 */ 608 if( pTab==pFKey->pFrom && nIncr>0 ){ 609 Expr *pNe; /* Expression (pLeft != pRight) */ 610 Expr *pLeft; /* Value from parent table row */ 611 Expr *pRight; /* Column ref to child table */ 612 if( HasRowid(pTab) ){ 613 pLeft = exprTableRegister(pParse, pTab, regData, -1); 614 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); 615 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight); 616 }else{ 617 Expr *pEq, *pAll = 0; 618 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 619 assert( pIdx!=0 ); 620 for(i=0; i<pPk->nKeyCol; i++){ 621 i16 iCol = pIdx->aiColumn[i]; 622 assert( iCol>=0 ); 623 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 624 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol); 625 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); 626 pAll = sqlite3ExprAnd(db, pAll, pEq); 627 } 628 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0); 629 } 630 pWhere = sqlite3ExprAnd(db, pWhere, pNe); 631 } 632 633 /* Resolve the references in the WHERE clause. */ 634 memset(&sNameContext, 0, sizeof(NameContext)); 635 sNameContext.pSrcList = pSrc; 636 sNameContext.pParse = pParse; 637 sqlite3ResolveExprNames(&sNameContext, pWhere); 638 639 /* Create VDBE to loop through the entries in pSrc that match the WHERE 640 ** clause. For each row found, increment either the deferred or immediate 641 ** foreign key constraint counter. */ 642 if( pParse->nErr==0 ){ 643 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); 644 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 645 if( pWInfo ){ 646 sqlite3WhereEnd(pWInfo); 647 } 648 } 649 650 /* Clean up the WHERE clause constructed above. */ 651 sqlite3ExprDelete(db, pWhere); 652 if( iFkIfZero ){ 653 sqlite3VdbeJumpHere(v, iFkIfZero); 654 } 655 } 656 657 /* 658 ** This function returns a linked list of FKey objects (connected by 659 ** FKey.pNextTo) holding all children of table pTab. For example, 660 ** given the following schema: 661 ** 662 ** CREATE TABLE t1(a PRIMARY KEY); 663 ** CREATE TABLE t2(b REFERENCES t1(a); 664 ** 665 ** Calling this function with table "t1" as an argument returns a pointer 666 ** to the FKey structure representing the foreign key constraint on table 667 ** "t2". Calling this function with "t2" as the argument would return a 668 ** NULL pointer (as there are no FK constraints for which t2 is the parent 669 ** table). 670 */ 671 FKey *sqlite3FkReferences(Table *pTab){ 672 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName); 673 } 674 675 /* 676 ** The second argument is a Trigger structure allocated by the 677 ** fkActionTrigger() routine. This function deletes the Trigger structure 678 ** and all of its sub-components. 679 ** 680 ** The Trigger structure or any of its sub-components may be allocated from 681 ** the lookaside buffer belonging to database handle dbMem. 682 */ 683 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 684 if( p ){ 685 TriggerStep *pStep = p->step_list; 686 sqlite3ExprDelete(dbMem, pStep->pWhere); 687 sqlite3ExprListDelete(dbMem, pStep->pExprList); 688 sqlite3SelectDelete(dbMem, pStep->pSelect); 689 sqlite3ExprDelete(dbMem, p->pWhen); 690 sqlite3DbFree(dbMem, p); 691 } 692 } 693 694 /* 695 ** This function is called to generate code that runs when table pTab is 696 ** being dropped from the database. The SrcList passed as the second argument 697 ** to this function contains a single entry guaranteed to resolve to 698 ** table pTab. 699 ** 700 ** Normally, no code is required. However, if either 701 ** 702 ** (a) The table is the parent table of a FK constraint, or 703 ** (b) The table is the child table of a deferred FK constraint and it is 704 ** determined at runtime that there are outstanding deferred FK 705 ** constraint violations in the database, 706 ** 707 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 708 ** the table from the database. Triggers are disabled while running this 709 ** DELETE, but foreign key actions are not. 710 */ 711 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 712 sqlite3 *db = pParse->db; 713 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ 714 int iSkip = 0; 715 Vdbe *v = sqlite3GetVdbe(pParse); 716 717 assert( v ); /* VDBE has already been allocated */ 718 if( sqlite3FkReferences(pTab)==0 ){ 719 /* Search for a deferred foreign key constraint for which this table 720 ** is the child table. If one cannot be found, return without 721 ** generating any VDBE code. If one can be found, then jump over 722 ** the entire DELETE if there are no outstanding deferred constraints 723 ** when this statement is run. */ 724 FKey *p; 725 for(p=pTab->pFKey; p; p=p->pNextFrom){ 726 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; 727 } 728 if( !p ) return; 729 iSkip = sqlite3VdbeMakeLabel(v); 730 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); 731 } 732 733 pParse->disableTriggers = 1; 734 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0); 735 pParse->disableTriggers = 0; 736 737 /* If the DELETE has generated immediate foreign key constraint 738 ** violations, halt the VDBE and return an error at this point, before 739 ** any modifications to the schema are made. This is because statement 740 ** transactions are not able to rollback schema changes. 741 ** 742 ** If the SQLITE_DeferFKs flag is set, then this is not required, as 743 ** the statement transaction will not be rolled back even if FK 744 ** constraints are violated. 745 */ 746 if( (db->flags & SQLITE_DeferFKs)==0 ){ 747 sqlite3VdbeVerifyAbortable(v, OE_Abort); 748 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 749 VdbeCoverage(v); 750 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 751 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 752 } 753 754 if( iSkip ){ 755 sqlite3VdbeResolveLabel(v, iSkip); 756 } 757 } 758 } 759 760 761 /* 762 ** The second argument points to an FKey object representing a foreign key 763 ** for which pTab is the child table. An UPDATE statement against pTab 764 ** is currently being processed. For each column of the table that is 765 ** actually updated, the corresponding element in the aChange[] array 766 ** is zero or greater (if a column is unmodified the corresponding element 767 ** is set to -1). If the rowid column is modified by the UPDATE statement 768 ** the bChngRowid argument is non-zero. 769 ** 770 ** This function returns true if any of the columns that are part of the 771 ** child key for FK constraint *p are modified. 772 */ 773 static int fkChildIsModified( 774 Table *pTab, /* Table being updated */ 775 FKey *p, /* Foreign key for which pTab is the child */ 776 int *aChange, /* Array indicating modified columns */ 777 int bChngRowid /* True if rowid is modified by this update */ 778 ){ 779 int i; 780 for(i=0; i<p->nCol; i++){ 781 int iChildKey = p->aCol[i].iFrom; 782 if( aChange[iChildKey]>=0 ) return 1; 783 if( iChildKey==pTab->iPKey && bChngRowid ) return 1; 784 } 785 return 0; 786 } 787 788 /* 789 ** The second argument points to an FKey object representing a foreign key 790 ** for which pTab is the parent table. An UPDATE statement against pTab 791 ** is currently being processed. For each column of the table that is 792 ** actually updated, the corresponding element in the aChange[] array 793 ** is zero or greater (if a column is unmodified the corresponding element 794 ** is set to -1). If the rowid column is modified by the UPDATE statement 795 ** the bChngRowid argument is non-zero. 796 ** 797 ** This function returns true if any of the columns that are part of the 798 ** parent key for FK constraint *p are modified. 799 */ 800 static int fkParentIsModified( 801 Table *pTab, 802 FKey *p, 803 int *aChange, 804 int bChngRowid 805 ){ 806 int i; 807 for(i=0; i<p->nCol; i++){ 808 char *zKey = p->aCol[i].zCol; 809 int iKey; 810 for(iKey=0; iKey<pTab->nCol; iKey++){ 811 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ 812 Column *pCol = &pTab->aCol[iKey]; 813 if( zKey ){ 814 if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1; 815 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ 816 return 1; 817 } 818 } 819 } 820 } 821 return 0; 822 } 823 824 /* 825 ** Return true if the parser passed as the first argument is being 826 ** used to code a trigger that is really a "SET NULL" action belonging 827 ** to trigger pFKey. 828 */ 829 static int isSetNullAction(Parse *pParse, FKey *pFKey){ 830 Parse *pTop = sqlite3ParseToplevel(pParse); 831 if( pTop->pTriggerPrg ){ 832 Trigger *p = pTop->pTriggerPrg->pTrigger; 833 if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull) 834 || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull) 835 ){ 836 return 1; 837 } 838 } 839 return 0; 840 } 841 842 /* 843 ** This function is called when inserting, deleting or updating a row of 844 ** table pTab to generate VDBE code to perform foreign key constraint 845 ** processing for the operation. 846 ** 847 ** For a DELETE operation, parameter regOld is passed the index of the 848 ** first register in an array of (pTab->nCol+1) registers containing the 849 ** rowid of the row being deleted, followed by each of the column values 850 ** of the row being deleted, from left to right. Parameter regNew is passed 851 ** zero in this case. 852 ** 853 ** For an INSERT operation, regOld is passed zero and regNew is passed the 854 ** first register of an array of (pTab->nCol+1) registers containing the new 855 ** row data. 856 ** 857 ** For an UPDATE operation, this function is called twice. Once before 858 ** the original record is deleted from the table using the calling convention 859 ** described for DELETE. Then again after the original record is deleted 860 ** but before the new record is inserted using the INSERT convention. 861 */ 862 void sqlite3FkCheck( 863 Parse *pParse, /* Parse context */ 864 Table *pTab, /* Row is being deleted from this table */ 865 int regOld, /* Previous row data is stored here */ 866 int regNew, /* New row data is stored here */ 867 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 868 int bChngRowid /* True if rowid is UPDATEd */ 869 ){ 870 sqlite3 *db = pParse->db; /* Database handle */ 871 FKey *pFKey; /* Used to iterate through FKs */ 872 int iDb; /* Index of database containing pTab */ 873 const char *zDb; /* Name of database containing pTab */ 874 int isIgnoreErrors = pParse->disableTriggers; 875 876 /* Exactly one of regOld and regNew should be non-zero. */ 877 assert( (regOld==0)!=(regNew==0) ); 878 879 /* If foreign-keys are disabled, this function is a no-op. */ 880 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 881 882 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 883 zDb = db->aDb[iDb].zDbSName; 884 885 /* Loop through all the foreign key constraints for which pTab is the 886 ** child table (the table that the foreign key definition is part of). */ 887 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 888 Table *pTo; /* Parent table of foreign key pFKey */ 889 Index *pIdx = 0; /* Index on key columns in pTo */ 890 int *aiFree = 0; 891 int *aiCol; 892 int iCol; 893 int i; 894 int bIgnore = 0; 895 896 if( aChange 897 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 898 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 899 ){ 900 continue; 901 } 902 903 /* Find the parent table of this foreign key. Also find a unique index 904 ** on the parent key columns in the parent table. If either of these 905 ** schema items cannot be located, set an error in pParse and return 906 ** early. */ 907 if( pParse->disableTriggers ){ 908 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 909 }else{ 910 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 911 } 912 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 913 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 914 if( !isIgnoreErrors || db->mallocFailed ) return; 915 if( pTo==0 ){ 916 /* If isIgnoreErrors is true, then a table is being dropped. In this 917 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 918 ** before actually dropping it in order to check FK constraints. 919 ** If the parent table of an FK constraint on the current table is 920 ** missing, behave as if it is empty. i.e. decrement the relevant 921 ** FK counter for each row of the current table with non-NULL keys. 922 */ 923 Vdbe *v = sqlite3GetVdbe(pParse); 924 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 925 for(i=0; i<pFKey->nCol; i++){ 926 int iReg = pFKey->aCol[i].iFrom + regOld + 1; 927 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); 928 } 929 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 930 } 931 continue; 932 } 933 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 934 935 if( aiFree ){ 936 aiCol = aiFree; 937 }else{ 938 iCol = pFKey->aCol[0].iFrom; 939 aiCol = &iCol; 940 } 941 for(i=0; i<pFKey->nCol; i++){ 942 if( aiCol[i]==pTab->iPKey ){ 943 aiCol[i] = -1; 944 } 945 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 946 #ifndef SQLITE_OMIT_AUTHORIZATION 947 /* Request permission to read the parent key columns. If the 948 ** authorization callback returns SQLITE_IGNORE, behave as if any 949 ** values read from the parent table are NULL. */ 950 if( db->xAuth ){ 951 int rcauth; 952 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; 953 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 954 bIgnore = (rcauth==SQLITE_IGNORE); 955 } 956 #endif 957 } 958 959 /* Take a shared-cache advisory read-lock on the parent table. Allocate 960 ** a cursor to use to search the unique index on the parent key columns 961 ** in the parent table. */ 962 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 963 pParse->nTab++; 964 965 if( regOld!=0 ){ 966 /* A row is being removed from the child table. Search for the parent. 967 ** If the parent does not exist, removing the child row resolves an 968 ** outstanding foreign key constraint violation. */ 969 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore); 970 } 971 if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){ 972 /* A row is being added to the child table. If a parent row cannot 973 ** be found, adding the child row has violated the FK constraint. 974 ** 975 ** If this operation is being performed as part of a trigger program 976 ** that is actually a "SET NULL" action belonging to this very 977 ** foreign key, then omit this scan altogether. As all child key 978 ** values are guaranteed to be NULL, it is not possible for adding 979 ** this row to cause an FK violation. */ 980 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore); 981 } 982 983 sqlite3DbFree(db, aiFree); 984 } 985 986 /* Loop through all the foreign key constraints that refer to this table. 987 ** (the "child" constraints) */ 988 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 989 Index *pIdx = 0; /* Foreign key index for pFKey */ 990 SrcList *pSrc; 991 int *aiCol = 0; 992 993 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ 994 continue; 995 } 996 997 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 998 && !pParse->pToplevel && !pParse->isMultiWrite 999 ){ 1000 assert( regOld==0 && regNew!=0 ); 1001 /* Inserting a single row into a parent table cannot cause (or fix) 1002 ** an immediate foreign key violation. So do nothing in this case. */ 1003 continue; 1004 } 1005 1006 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 1007 if( !isIgnoreErrors || db->mallocFailed ) return; 1008 continue; 1009 } 1010 assert( aiCol || pFKey->nCol==1 ); 1011 1012 /* Create a SrcList structure containing the child table. We need the 1013 ** child table as a SrcList for sqlite3WhereBegin() */ 1014 pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 1015 if( pSrc ){ 1016 struct SrcList_item *pItem = pSrc->a; 1017 pItem->pTab = pFKey->pFrom; 1018 pItem->zName = pFKey->pFrom->zName; 1019 pItem->pTab->nTabRef++; 1020 pItem->iCursor = pParse->nTab++; 1021 1022 if( regNew!=0 ){ 1023 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 1024 } 1025 if( regOld!=0 ){ 1026 int eAction = pFKey->aAction[aChange!=0]; 1027 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 1028 /* If this is a deferred FK constraint, or a CASCADE or SET NULL 1029 ** action applies, then any foreign key violations caused by 1030 ** removing the parent key will be rectified by the action trigger. 1031 ** So do not set the "may-abort" flag in this case. 1032 ** 1033 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the 1034 ** may-abort flag will eventually be set on this statement anyway 1035 ** (when this function is called as part of processing the UPDATE 1036 ** within the action trigger). 1037 ** 1038 ** Note 2: At first glance it may seem like SQLite could simply omit 1039 ** all OP_FkCounter related scans when either CASCADE or SET NULL 1040 ** applies. The trouble starts if the CASCADE or SET NULL action 1041 ** trigger causes other triggers or action rules attached to the 1042 ** child table to fire. In these cases the fk constraint counters 1043 ** might be set incorrectly if any OP_FkCounter related scans are 1044 ** omitted. */ 1045 if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){ 1046 sqlite3MayAbort(pParse); 1047 } 1048 } 1049 pItem->zName = 0; 1050 sqlite3SrcListDelete(db, pSrc); 1051 } 1052 sqlite3DbFree(db, aiCol); 1053 } 1054 } 1055 1056 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 1057 1058 /* 1059 ** This function is called before generating code to update or delete a 1060 ** row contained in table pTab. 1061 */ 1062 u32 sqlite3FkOldmask( 1063 Parse *pParse, /* Parse context */ 1064 Table *pTab /* Table being modified */ 1065 ){ 1066 u32 mask = 0; 1067 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1068 FKey *p; 1069 int i; 1070 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1071 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 1072 } 1073 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1074 Index *pIdx = 0; 1075 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); 1076 if( pIdx ){ 1077 for(i=0; i<pIdx->nKeyCol; i++){ 1078 assert( pIdx->aiColumn[i]>=0 ); 1079 mask |= COLUMN_MASK(pIdx->aiColumn[i]); 1080 } 1081 } 1082 } 1083 } 1084 return mask; 1085 } 1086 1087 1088 /* 1089 ** This function is called before generating code to update or delete a 1090 ** row contained in table pTab. If the operation is a DELETE, then 1091 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 1092 ** to an array of size N, where N is the number of columns in table pTab. 1093 ** If the i'th column is not modified by the UPDATE, then the corresponding 1094 ** entry in the aChange[] array is set to -1. If the column is modified, 1095 ** the value is 0 or greater. Parameter chngRowid is set to true if the 1096 ** UPDATE statement modifies the rowid fields of the table. 1097 ** 1098 ** If any foreign key processing will be required, this function returns 1099 ** non-zero. If there is no foreign key related processing, this function 1100 ** returns zero. 1101 ** 1102 ** For an UPDATE, this function returns 2 if: 1103 ** 1104 ** * There are any FKs for which pTab is the child and the parent table, or 1105 ** * the UPDATE modifies one or more parent keys for which the action is 1106 ** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL). 1107 ** 1108 ** Or, assuming some other foreign key processing is required, 1. 1109 */ 1110 int sqlite3FkRequired( 1111 Parse *pParse, /* Parse context */ 1112 Table *pTab, /* Table being modified */ 1113 int *aChange, /* Non-NULL for UPDATE operations */ 1114 int chngRowid /* True for UPDATE that affects rowid */ 1115 ){ 1116 int eRet = 0; 1117 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1118 if( !aChange ){ 1119 /* A DELETE operation. Foreign key processing is required if the 1120 ** table in question is either the child or parent table for any 1121 ** foreign key constraint. */ 1122 eRet = (sqlite3FkReferences(pTab) || pTab->pFKey); 1123 }else{ 1124 /* This is an UPDATE. Foreign key processing is only required if the 1125 ** operation modifies one or more child or parent key columns. */ 1126 FKey *p; 1127 1128 /* Check if any child key columns are being modified. */ 1129 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1130 if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) return 2; 1131 if( fkChildIsModified(pTab, p, aChange, chngRowid) ){ 1132 eRet = 1; 1133 } 1134 } 1135 1136 /* Check if any parent key columns are being modified. */ 1137 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1138 if( fkParentIsModified(pTab, p, aChange, chngRowid) ){ 1139 if( p->aAction[1]!=OE_None ) return 2; 1140 eRet = 1; 1141 } 1142 } 1143 } 1144 } 1145 return eRet; 1146 } 1147 1148 /* 1149 ** This function is called when an UPDATE or DELETE operation is being 1150 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 1151 ** If the current operation is an UPDATE, then the pChanges parameter is 1152 ** passed a pointer to the list of columns being modified. If it is a 1153 ** DELETE, pChanges is passed a NULL pointer. 1154 ** 1155 ** It returns a pointer to a Trigger structure containing a trigger 1156 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 1157 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is 1158 ** returned (these actions require no special handling by the triggers 1159 ** sub-system, code for them is created by fkScanChildren()). 1160 ** 1161 ** For example, if pFKey is the foreign key and pTab is table "p" in 1162 ** the following schema: 1163 ** 1164 ** CREATE TABLE p(pk PRIMARY KEY); 1165 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 1166 ** 1167 ** then the returned trigger structure is equivalent to: 1168 ** 1169 ** CREATE TRIGGER ... DELETE ON p BEGIN 1170 ** DELETE FROM c WHERE ck = old.pk; 1171 ** END; 1172 ** 1173 ** The returned pointer is cached as part of the foreign key object. It 1174 ** is eventually freed along with the rest of the foreign key object by 1175 ** sqlite3FkDelete(). 1176 */ 1177 static Trigger *fkActionTrigger( 1178 Parse *pParse, /* Parse context */ 1179 Table *pTab, /* Table being updated or deleted from */ 1180 FKey *pFKey, /* Foreign key to get action for */ 1181 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 1182 ){ 1183 sqlite3 *db = pParse->db; /* Database handle */ 1184 int action; /* One of OE_None, OE_Cascade etc. */ 1185 Trigger *pTrigger; /* Trigger definition to return */ 1186 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 1187 1188 action = pFKey->aAction[iAction]; 1189 if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){ 1190 return 0; 1191 } 1192 pTrigger = pFKey->apTrigger[iAction]; 1193 1194 if( action!=OE_None && !pTrigger ){ 1195 char const *zFrom; /* Name of child table */ 1196 int nFrom; /* Length in bytes of zFrom */ 1197 Index *pIdx = 0; /* Parent key index for this FK */ 1198 int *aiCol = 0; /* child table cols -> parent key cols */ 1199 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 1200 Expr *pWhere = 0; /* WHERE clause of trigger step */ 1201 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 1202 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 1203 int i; /* Iterator variable */ 1204 Expr *pWhen = 0; /* WHEN clause for the trigger */ 1205 1206 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 1207 assert( aiCol || pFKey->nCol==1 ); 1208 1209 for(i=0; i<pFKey->nCol; i++){ 1210 Token tOld = { "old", 3 }; /* Literal "old" token */ 1211 Token tNew = { "new", 3 }; /* Literal "new" token */ 1212 Token tFromCol; /* Name of column in child table */ 1213 Token tToCol; /* Name of column in parent table */ 1214 int iFromCol; /* Idx of column in child table */ 1215 Expr *pEq; /* tFromCol = OLD.tToCol */ 1216 1217 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 1218 assert( iFromCol>=0 ); 1219 assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) ); 1220 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 1221 sqlite3TokenInit(&tToCol, 1222 pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName); 1223 sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zName); 1224 1225 /* Create the expression "OLD.zToCol = zFromCol". It is important 1226 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 1227 ** that the affinity and collation sequence associated with the 1228 ** parent table are used for the comparison. */ 1229 pEq = sqlite3PExpr(pParse, TK_EQ, 1230 sqlite3PExpr(pParse, TK_DOT, 1231 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1232 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 1233 sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) 1234 ); 1235 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 1236 1237 /* For ON UPDATE, construct the next term of the WHEN clause. 1238 ** The final WHEN clause will be like this: 1239 ** 1240 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 1241 */ 1242 if( pChanges ){ 1243 pEq = sqlite3PExpr(pParse, TK_IS, 1244 sqlite3PExpr(pParse, TK_DOT, 1245 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1246 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 1247 sqlite3PExpr(pParse, TK_DOT, 1248 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1249 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)) 1250 ); 1251 pWhen = sqlite3ExprAnd(db, pWhen, pEq); 1252 } 1253 1254 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 1255 Expr *pNew; 1256 if( action==OE_Cascade ){ 1257 pNew = sqlite3PExpr(pParse, TK_DOT, 1258 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1259 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)); 1260 }else if( action==OE_SetDflt ){ 1261 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; 1262 if( pDflt ){ 1263 pNew = sqlite3ExprDup(db, pDflt, 0); 1264 }else{ 1265 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 1266 } 1267 }else{ 1268 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 1269 } 1270 pList = sqlite3ExprListAppend(pParse, pList, pNew); 1271 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 1272 } 1273 } 1274 sqlite3DbFree(db, aiCol); 1275 1276 zFrom = pFKey->pFrom->zName; 1277 nFrom = sqlite3Strlen30(zFrom); 1278 1279 if( action==OE_Restrict ){ 1280 Token tFrom; 1281 Expr *pRaise; 1282 1283 tFrom.z = zFrom; 1284 tFrom.n = nFrom; 1285 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); 1286 if( pRaise ){ 1287 pRaise->affinity = OE_Abort; 1288 } 1289 pSelect = sqlite3SelectNew(pParse, 1290 sqlite3ExprListAppend(pParse, 0, pRaise), 1291 sqlite3SrcListAppend(db, 0, &tFrom, 0), 1292 pWhere, 1293 0, 0, 0, 0, 0 1294 ); 1295 pWhere = 0; 1296 } 1297 1298 /* Disable lookaside memory allocation */ 1299 db->lookaside.bDisable++; 1300 1301 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 1302 sizeof(Trigger) + /* struct Trigger */ 1303 sizeof(TriggerStep) + /* Single step in trigger program */ 1304 nFrom + 1 /* Space for pStep->zTarget */ 1305 ); 1306 if( pTrigger ){ 1307 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 1308 pStep->zTarget = (char *)&pStep[1]; 1309 memcpy((char *)pStep->zTarget, zFrom, nFrom); 1310 1311 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 1312 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 1313 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1314 if( pWhen ){ 1315 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0); 1316 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 1317 } 1318 } 1319 1320 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 1321 db->lookaside.bDisable--; 1322 1323 sqlite3ExprDelete(db, pWhere); 1324 sqlite3ExprDelete(db, pWhen); 1325 sqlite3ExprListDelete(db, pList); 1326 sqlite3SelectDelete(db, pSelect); 1327 if( db->mallocFailed==1 ){ 1328 fkTriggerDelete(db, pTrigger); 1329 return 0; 1330 } 1331 assert( pStep!=0 ); 1332 1333 switch( action ){ 1334 case OE_Restrict: 1335 pStep->op = TK_SELECT; 1336 break; 1337 case OE_Cascade: 1338 if( !pChanges ){ 1339 pStep->op = TK_DELETE; 1340 break; 1341 } 1342 default: 1343 pStep->op = TK_UPDATE; 1344 } 1345 pStep->pTrig = pTrigger; 1346 pTrigger->pSchema = pTab->pSchema; 1347 pTrigger->pTabSchema = pTab->pSchema; 1348 pFKey->apTrigger[iAction] = pTrigger; 1349 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 1350 } 1351 1352 return pTrigger; 1353 } 1354 1355 /* 1356 ** This function is called when deleting or updating a row to implement 1357 ** any required CASCADE, SET NULL or SET DEFAULT actions. 1358 */ 1359 void sqlite3FkActions( 1360 Parse *pParse, /* Parse context */ 1361 Table *pTab, /* Table being updated or deleted from */ 1362 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 1363 int regOld, /* Address of array containing old row */ 1364 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 1365 int bChngRowid /* True if rowid is UPDATEd */ 1366 ){ 1367 /* If foreign-key support is enabled, iterate through all FKs that 1368 ** refer to table pTab. If there is an action associated with the FK 1369 ** for this operation (either update or delete), invoke the associated 1370 ** trigger sub-program. */ 1371 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1372 FKey *pFKey; /* Iterator variable */ 1373 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1374 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ 1375 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); 1376 if( pAct ){ 1377 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); 1378 } 1379 } 1380 } 1381 } 1382 } 1383 1384 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 1385 1386 /* 1387 ** Free all memory associated with foreign key definitions attached to 1388 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 1389 ** hash table. 1390 */ 1391 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 1392 FKey *pFKey; /* Iterator variable */ 1393 FKey *pNext; /* Copy of pFKey->pNextFrom */ 1394 1395 assert( db==0 || IsVirtual(pTab) 1396 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 1397 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ 1398 1399 /* Remove the FK from the fkeyHash hash table. */ 1400 if( !db || db->pnBytesFreed==0 ){ 1401 if( pFKey->pPrevTo ){ 1402 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 1403 }else{ 1404 void *p = (void *)pFKey->pNextTo; 1405 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); 1406 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p); 1407 } 1408 if( pFKey->pNextTo ){ 1409 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 1410 } 1411 } 1412 1413 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 1414 ** classified as either immediate or deferred. 1415 */ 1416 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 1417 1418 /* Delete any triggers created to implement actions for this FK. */ 1419 #ifndef SQLITE_OMIT_TRIGGER 1420 fkTriggerDelete(db, pFKey->apTrigger[0]); 1421 fkTriggerDelete(db, pFKey->apTrigger[1]); 1422 #endif 1423 1424 pNext = pFKey->pNextFrom; 1425 sqlite3DbFree(db, pFKey); 1426 } 1427 } 1428 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ 1429