xref: /sqlite-3.40.0/src/fkey.c (revision af94adf0)
1 /*
2 **
3 ** The author disclaims copyright to this source code.  In place of
4 ** a legal notice, here is a blessing:
5 **
6 **    May you do good and not evil.
7 **    May you find forgiveness for yourself and forgive others.
8 **    May you share freely, never taking more than you give.
9 **
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
13 */
14 #include "sqliteInt.h"
15 
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
18 
19 /*
20 ** Deferred and Immediate FKs
21 ** --------------------------
22 **
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated,
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
26 ** statement transaction rolled back. If a
27 ** deferred foreign key constraint is violated, no action is taken
28 ** immediately. However if the application attempts to commit the
29 ** transaction before fixing the constraint violation, the attempt fails.
30 **
31 ** Deferred constraints are implemented using a simple counter associated
32 ** with the database handle. The counter is set to zero each time a
33 ** database transaction is opened. Each time a statement is executed
34 ** that causes a foreign key violation, the counter is incremented. Each
35 ** time a statement is executed that removes an existing violation from
36 ** the database, the counter is decremented. When the transaction is
37 ** committed, the commit fails if the current value of the counter is
38 ** greater than zero. This scheme has two big drawbacks:
39 **
40 **   * When a commit fails due to a deferred foreign key constraint,
41 **     there is no way to tell which foreign constraint is not satisfied,
42 **     or which row it is not satisfied for.
43 **
44 **   * If the database contains foreign key violations when the
45 **     transaction is opened, this may cause the mechanism to malfunction.
46 **
47 ** Despite these problems, this approach is adopted as it seems simpler
48 ** than the alternatives.
49 **
50 ** INSERT operations:
51 **
52 **   I.1) For each FK for which the table is the child table, search
53 **        the parent table for a match. If none is found increment the
54 **        constraint counter.
55 **
56 **   I.2) For each FK for which the table is the parent table,
57 **        search the child table for rows that correspond to the new
58 **        row in the parent table. Decrement the counter for each row
59 **        found (as the constraint is now satisfied).
60 **
61 ** DELETE operations:
62 **
63 **   D.1) For each FK for which the table is the child table,
64 **        search the parent table for a row that corresponds to the
65 **        deleted row in the child table. If such a row is not found,
66 **        decrement the counter.
67 **
68 **   D.2) For each FK for which the table is the parent table, search
69 **        the child table for rows that correspond to the deleted row
70 **        in the parent table. For each found increment the counter.
71 **
72 ** UPDATE operations:
73 **
74 **   An UPDATE command requires that all 4 steps above are taken, but only
75 **   for FK constraints for which the affected columns are actually
76 **   modified (values must be compared at runtime).
77 **
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
79 ** This simplifies the implementation a bit.
80 **
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
82 ** resolution is considered to delete rows before the new row is inserted.
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
84 ** is thrown, even if the FK constraint would be satisfied after the new
85 ** row is inserted.
86 **
87 ** Immediate constraints are usually handled similarly. The only difference
88 ** is that the counter used is stored as part of each individual statement
89 ** object (struct Vdbe). If, after the statement has run, its immediate
90 ** constraint counter is greater than zero,
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92 ** and the statement transaction is rolled back. An exception is an INSERT
93 ** statement that inserts a single row only (no triggers). In this case,
94 ** instead of using a counter, an exception is thrown immediately if the
95 ** INSERT violates a foreign key constraint. This is necessary as such
96 ** an INSERT does not open a statement transaction.
97 **
98 ** TODO: How should dropping a table be handled? How should renaming a
99 ** table be handled?
100 **
101 **
102 ** Query API Notes
103 ** ---------------
104 **
105 ** Before coding an UPDATE or DELETE row operation, the code-generator
106 ** for those two operations needs to know whether or not the operation
107 ** requires any FK processing and, if so, which columns of the original
108 ** row are required by the FK processing VDBE code (i.e. if FKs were
109 ** implemented using triggers, which of the old.* columns would be
110 ** accessed). No information is required by the code-generator before
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
112 ** generation code to query for this information are:
113 **
114 **   sqlite3FkRequired() - Test to see if FK processing is required.
115 **   sqlite3FkOldmask()  - Query for the set of required old.* columns.
116 **
117 **
118 ** Externally accessible module functions
119 ** --------------------------------------
120 **
121 **   sqlite3FkCheck()    - Check for foreign key violations.
122 **   sqlite3FkActions()  - Code triggers for ON UPDATE/ON DELETE actions.
123 **   sqlite3FkDelete()   - Delete an FKey structure.
124 */
125 
126 /*
127 ** VDBE Calling Convention
128 ** -----------------------
129 **
130 ** Example:
131 **
132 **   For the following INSERT statement:
133 **
134 **     CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
135 **     INSERT INTO t1 VALUES(1, 2, 3.1);
136 **
137 **   Register (x):        2    (type integer)
138 **   Register (x+1):      1    (type integer)
139 **   Register (x+2):      NULL (type NULL)
140 **   Register (x+3):      3.1  (type real)
141 */
142 
143 /*
144 ** A foreign key constraint requires that the key columns in the parent
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
146 ** Given that pParent is the parent table for foreign key constraint pFKey,
147 ** search the schema for a unique index on the parent key columns.
148 **
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
151 ** is set to point to the unique index.
152 **
153 ** If the parent key consists of a single column (the foreign key constraint
154 ** is not a composite foreign key), output variable *paiCol is set to NULL.
155 ** Otherwise, it is set to point to an allocated array of size N, where
156 ** N is the number of columns in the parent key. The first element of the
157 ** array is the index of the child table column that is mapped by the FK
158 ** constraint to the parent table column stored in the left-most column
159 ** of index *ppIdx. The second element of the array is the index of the
160 ** child table column that corresponds to the second left-most column of
161 ** *ppIdx, and so on.
162 **
163 ** If the required index cannot be found, either because:
164 **
165 **   1) The named parent key columns do not exist, or
166 **
167 **   2) The named parent key columns do exist, but are not subject to a
168 **      UNIQUE or PRIMARY KEY constraint, or
169 **
170 **   3) No parent key columns were provided explicitly as part of the
171 **      foreign key definition, and the parent table does not have a
172 **      PRIMARY KEY, or
173 **
174 **   4) No parent key columns were provided explicitly as part of the
175 **      foreign key definition, and the PRIMARY KEY of the parent table
176 **      consists of a different number of columns to the child key in
177 **      the child table.
178 **
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded
180 ** into pParse. If an OOM error occurs, non-zero is returned and the
181 ** pParse->db->mallocFailed flag is set.
182 */
183 int sqlite3FkLocateIndex(
184   Parse *pParse,                  /* Parse context to store any error in */
185   Table *pParent,                 /* Parent table of FK constraint pFKey */
186   FKey *pFKey,                    /* Foreign key to find index for */
187   Index **ppIdx,                  /* OUT: Unique index on parent table */
188   int **paiCol                    /* OUT: Map of index columns in pFKey */
189 ){
190   Index *pIdx = 0;                    /* Value to return via *ppIdx */
191   int *aiCol = 0;                     /* Value to return via *paiCol */
192   int nCol = pFKey->nCol;             /* Number of columns in parent key */
193   char *zKey = pFKey->aCol[0].zCol;   /* Name of left-most parent key column */
194 
195   /* The caller is responsible for zeroing output parameters. */
196   assert( ppIdx && *ppIdx==0 );
197   assert( !paiCol || *paiCol==0 );
198   assert( pParse );
199 
200   /* If this is a non-composite (single column) foreign key, check if it
201   ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
202   ** and *paiCol set to zero and return early.
203   **
204   ** Otherwise, for a composite foreign key (more than one column), allocate
205   ** space for the aiCol array (returned via output parameter *paiCol).
206   ** Non-composite foreign keys do not require the aiCol array.
207   */
208   if( nCol==1 ){
209     /* The FK maps to the IPK if any of the following are true:
210     **
211     **   1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
212     **      mapped to the primary key of table pParent, or
213     **   2) The FK is explicitly mapped to a column declared as INTEGER
214     **      PRIMARY KEY.
215     */
216     if( pParent->iPKey>=0 ){
217       if( !zKey ) return 0;
218       if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
219     }
220   }else if( paiCol ){
221     assert( nCol>1 );
222     aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int));
223     if( !aiCol ) return 1;
224     *paiCol = aiCol;
225   }
226 
227   for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
228     if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){
229       /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
230       ** of columns. If each indexed column corresponds to a foreign key
231       ** column of pFKey, then this index is a winner.  */
232 
233       if( zKey==0 ){
234         /* If zKey is NULL, then this foreign key is implicitly mapped to
235         ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
236         ** identified by the test.  */
237         if( IsPrimaryKeyIndex(pIdx) ){
238           if( aiCol ){
239             int i;
240             for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
241           }
242           break;
243         }
244       }else{
245         /* If zKey is non-NULL, then this foreign key was declared to
246         ** map to an explicit list of columns in table pParent. Check if this
247         ** index matches those columns. Also, check that the index uses
248         ** the default collation sequences for each column. */
249         int i, j;
250         for(i=0; i<nCol; i++){
251           i16 iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
252           const char *zDfltColl;            /* Def. collation for column */
253           char *zIdxCol;                    /* Name of indexed column */
254 
255           if( iCol<0 ) break; /* No foreign keys against expression indexes */
256 
257           /* If the index uses a collation sequence that is different from
258           ** the default collation sequence for the column, this index is
259           ** unusable. Bail out early in this case.  */
260           zDfltColl = pParent->aCol[iCol].zColl;
261           if( !zDfltColl ) zDfltColl = sqlite3StrBINARY;
262           if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
263 
264           zIdxCol = pParent->aCol[iCol].zName;
265           for(j=0; j<nCol; j++){
266             if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
267               if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
268               break;
269             }
270           }
271           if( j==nCol ) break;
272         }
273         if( i==nCol ) break;      /* pIdx is usable */
274       }
275     }
276   }
277 
278   if( !pIdx ){
279     if( !pParse->disableTriggers ){
280       sqlite3ErrorMsg(pParse,
281            "foreign key mismatch - \"%w\" referencing \"%w\"",
282            pFKey->pFrom->zName, pFKey->zTo);
283     }
284     sqlite3DbFree(pParse->db, aiCol);
285     return 1;
286   }
287 
288   *ppIdx = pIdx;
289   return 0;
290 }
291 
292 /*
293 ** This function is called when a row is inserted into or deleted from the
294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
295 ** on the child table of pFKey, this function is invoked twice for each row
296 ** affected - once to "delete" the old row, and then again to "insert" the
297 ** new row.
298 **
299 ** Each time it is called, this function generates VDBE code to locate the
300 ** row in the parent table that corresponds to the row being inserted into
301 ** or deleted from the child table. If the parent row can be found, no
302 ** special action is taken. Otherwise, if the parent row can *not* be
303 ** found in the parent table:
304 **
305 **   Operation | FK type   | Action taken
306 **   --------------------------------------------------------------------------
307 **   INSERT      immediate   Increment the "immediate constraint counter".
308 **
309 **   DELETE      immediate   Decrement the "immediate constraint counter".
310 **
311 **   INSERT      deferred    Increment the "deferred constraint counter".
312 **
313 **   DELETE      deferred    Decrement the "deferred constraint counter".
314 **
315 ** These operations are identified in the comment at the top of this file
316 ** (fkey.c) as "I.1" and "D.1".
317 */
318 static void fkLookupParent(
319   Parse *pParse,        /* Parse context */
320   int iDb,              /* Index of database housing pTab */
321   Table *pTab,          /* Parent table of FK pFKey */
322   Index *pIdx,          /* Unique index on parent key columns in pTab */
323   FKey *pFKey,          /* Foreign key constraint */
324   int *aiCol,           /* Map from parent key columns to child table columns */
325   int regData,          /* Address of array containing child table row */
326   int nIncr,            /* Increment constraint counter by this */
327   int isIgnore          /* If true, pretend pTab contains all NULL values */
328 ){
329   int i;                                    /* Iterator variable */
330   Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
331   int iCur = pParse->nTab - 1;              /* Cursor number to use */
332   int iOk = sqlite3VdbeMakeLabel(pParse);   /* jump here if parent key found */
333 
334   sqlite3VdbeVerifyAbortable(v,
335     (!pFKey->isDeferred
336       && !(pParse->db->flags & SQLITE_DeferFKs)
337       && !pParse->pToplevel
338       && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore);
339 
340   /* If nIncr is less than zero, then check at runtime if there are any
341   ** outstanding constraints to resolve. If there are not, there is no need
342   ** to check if deleting this row resolves any outstanding violations.
343   **
344   ** Check if any of the key columns in the child table row are NULL. If
345   ** any are, then the constraint is considered satisfied. No need to
346   ** search for a matching row in the parent table.  */
347   if( nIncr<0 ){
348     sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
349     VdbeCoverage(v);
350   }
351   for(i=0; i<pFKey->nCol; i++){
352     int iReg = aiCol[i] + regData + 1;
353     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v);
354   }
355 
356   if( isIgnore==0 ){
357     if( pIdx==0 ){
358       /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
359       ** column of the parent table (table pTab).  */
360       int iMustBeInt;               /* Address of MustBeInt instruction */
361       int regTemp = sqlite3GetTempReg(pParse);
362 
363       /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
364       ** apply the affinity of the parent key). If this fails, then there
365       ** is no matching parent key. Before using MustBeInt, make a copy of
366       ** the value. Otherwise, the value inserted into the child key column
367       ** will have INTEGER affinity applied to it, which may not be correct.  */
368       sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
369       iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
370       VdbeCoverage(v);
371 
372       /* If the parent table is the same as the child table, and we are about
373       ** to increment the constraint-counter (i.e. this is an INSERT operation),
374       ** then check if the row being inserted matches itself. If so, do not
375       ** increment the constraint-counter.  */
376       if( pTab==pFKey->pFrom && nIncr==1 ){
377         sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v);
378         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
379       }
380 
381       sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
382       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v);
383       sqlite3VdbeGoto(v, iOk);
384       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
385       sqlite3VdbeJumpHere(v, iMustBeInt);
386       sqlite3ReleaseTempReg(pParse, regTemp);
387     }else{
388       int nCol = pFKey->nCol;
389       int regTemp = sqlite3GetTempRange(pParse, nCol);
390       int regRec = sqlite3GetTempReg(pParse);
391 
392       sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
393       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
394       for(i=0; i<nCol; i++){
395         sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
396       }
397 
398       /* If the parent table is the same as the child table, and we are about
399       ** to increment the constraint-counter (i.e. this is an INSERT operation),
400       ** then check if the row being inserted matches itself. If so, do not
401       ** increment the constraint-counter.
402       **
403       ** If any of the parent-key values are NULL, then the row cannot match
404       ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
405       ** of the parent-key values are NULL (at this point it is known that
406       ** none of the child key values are).
407       */
408       if( pTab==pFKey->pFrom && nIncr==1 ){
409         int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
410         for(i=0; i<nCol; i++){
411           int iChild = aiCol[i]+1+regData;
412           int iParent = pIdx->aiColumn[i]+1+regData;
413           assert( pIdx->aiColumn[i]>=0 );
414           assert( aiCol[i]!=pTab->iPKey );
415           if( pIdx->aiColumn[i]==pTab->iPKey ){
416             /* The parent key is a composite key that includes the IPK column */
417             iParent = regData;
418           }
419           sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v);
420           sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
421         }
422         sqlite3VdbeGoto(v, iOk);
423       }
424 
425       sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec,
426                         sqlite3IndexAffinityStr(pParse->db,pIdx), nCol);
427       sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v);
428 
429       sqlite3ReleaseTempReg(pParse, regRec);
430       sqlite3ReleaseTempRange(pParse, regTemp, nCol);
431     }
432   }
433 
434   if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
435    && !pParse->pToplevel
436    && !pParse->isMultiWrite
437   ){
438     /* Special case: If this is an INSERT statement that will insert exactly
439     ** one row into the table, raise a constraint immediately instead of
440     ** incrementing a counter. This is necessary as the VM code is being
441     ** generated for will not open a statement transaction.  */
442     assert( nIncr==1 );
443     sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
444         OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
445   }else{
446     if( nIncr>0 && pFKey->isDeferred==0 ){
447       sqlite3MayAbort(pParse);
448     }
449     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
450   }
451 
452   sqlite3VdbeResolveLabel(v, iOk);
453   sqlite3VdbeAddOp1(v, OP_Close, iCur);
454 }
455 
456 
457 /*
458 ** Return an Expr object that refers to a memory register corresponding
459 ** to column iCol of table pTab.
460 **
461 ** regBase is the first of an array of register that contains the data
462 ** for pTab.  regBase itself holds the rowid.  regBase+1 holds the first
463 ** column.  regBase+2 holds the second column, and so forth.
464 */
465 static Expr *exprTableRegister(
466   Parse *pParse,     /* Parsing and code generating context */
467   Table *pTab,       /* The table whose content is at r[regBase]... */
468   int regBase,       /* Contents of table pTab */
469   i16 iCol           /* Which column of pTab is desired */
470 ){
471   Expr *pExpr;
472   Column *pCol;
473   const char *zColl;
474   sqlite3 *db = pParse->db;
475 
476   pExpr = sqlite3Expr(db, TK_REGISTER, 0);
477   if( pExpr ){
478     if( iCol>=0 && iCol!=pTab->iPKey ){
479       pCol = &pTab->aCol[iCol];
480       pExpr->iTable = regBase + iCol + 1;
481       pExpr->affExpr = pCol->affinity;
482       zColl = pCol->zColl;
483       if( zColl==0 ) zColl = db->pDfltColl->zName;
484       pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl);
485     }else{
486       pExpr->iTable = regBase;
487       pExpr->affExpr = SQLITE_AFF_INTEGER;
488     }
489   }
490   return pExpr;
491 }
492 
493 /*
494 ** Return an Expr object that refers to column iCol of table pTab which
495 ** has cursor iCur.
496 */
497 static Expr *exprTableColumn(
498   sqlite3 *db,      /* The database connection */
499   Table *pTab,      /* The table whose column is desired */
500   int iCursor,      /* The open cursor on the table */
501   i16 iCol          /* The column that is wanted */
502 ){
503   Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
504   if( pExpr ){
505     pExpr->y.pTab = pTab;
506     pExpr->iTable = iCursor;
507     pExpr->iColumn = iCol;
508   }
509   return pExpr;
510 }
511 
512 /*
513 ** This function is called to generate code executed when a row is deleted
514 ** from the parent table of foreign key constraint pFKey and, if pFKey is
515 ** deferred, when a row is inserted into the same table. When generating
516 ** code for an SQL UPDATE operation, this function may be called twice -
517 ** once to "delete" the old row and once to "insert" the new row.
518 **
519 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease
520 ** the number of FK violations in the db) or +1 when deleting one (as this
521 ** may increase the number of FK constraint problems).
522 **
523 ** The code generated by this function scans through the rows in the child
524 ** table that correspond to the parent table row being deleted or inserted.
525 ** For each child row found, one of the following actions is taken:
526 **
527 **   Operation | FK type   | Action taken
528 **   --------------------------------------------------------------------------
529 **   DELETE      immediate   Increment the "immediate constraint counter".
530 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
531 **                           throw a "FOREIGN KEY constraint failed" exception.
532 **
533 **   INSERT      immediate   Decrement the "immediate constraint counter".
534 **
535 **   DELETE      deferred    Increment the "deferred constraint counter".
536 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
537 **                           throw a "FOREIGN KEY constraint failed" exception.
538 **
539 **   INSERT      deferred    Decrement the "deferred constraint counter".
540 **
541 ** These operations are identified in the comment at the top of this file
542 ** (fkey.c) as "I.2" and "D.2".
543 */
544 static void fkScanChildren(
545   Parse *pParse,                  /* Parse context */
546   SrcList *pSrc,                  /* The child table to be scanned */
547   Table *pTab,                    /* The parent table */
548   Index *pIdx,                    /* Index on parent covering the foreign key */
549   FKey *pFKey,                    /* The foreign key linking pSrc to pTab */
550   int *aiCol,                     /* Map from pIdx cols to child table cols */
551   int regData,                    /* Parent row data starts here */
552   int nIncr                       /* Amount to increment deferred counter by */
553 ){
554   sqlite3 *db = pParse->db;       /* Database handle */
555   int i;                          /* Iterator variable */
556   Expr *pWhere = 0;               /* WHERE clause to scan with */
557   NameContext sNameContext;       /* Context used to resolve WHERE clause */
558   WhereInfo *pWInfo;              /* Context used by sqlite3WhereXXX() */
559   int iFkIfZero = 0;              /* Address of OP_FkIfZero */
560   Vdbe *v = sqlite3GetVdbe(pParse);
561 
562   assert( pIdx==0 || pIdx->pTable==pTab );
563   assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
564   assert( pIdx!=0 || pFKey->nCol==1 );
565   assert( pIdx!=0 || HasRowid(pTab) );
566 
567   if( nIncr<0 ){
568     iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
569     VdbeCoverage(v);
570   }
571 
572   /* Create an Expr object representing an SQL expression like:
573   **
574   **   <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
575   **
576   ** The collation sequence used for the comparison should be that of
577   ** the parent key columns. The affinity of the parent key column should
578   ** be applied to each child key value before the comparison takes place.
579   */
580   for(i=0; i<pFKey->nCol; i++){
581     Expr *pLeft;                  /* Value from parent table row */
582     Expr *pRight;                 /* Column ref to child table */
583     Expr *pEq;                    /* Expression (pLeft = pRight) */
584     i16 iCol;                     /* Index of column in child table */
585     const char *zCol;             /* Name of column in child table */
586 
587     iCol = pIdx ? pIdx->aiColumn[i] : -1;
588     pLeft = exprTableRegister(pParse, pTab, regData, iCol);
589     iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
590     assert( iCol>=0 );
591     zCol = pFKey->pFrom->aCol[iCol].zName;
592     pRight = sqlite3Expr(db, TK_ID, zCol);
593     pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight);
594     pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
595   }
596 
597   /* If the child table is the same as the parent table, then add terms
598   ** to the WHERE clause that prevent this entry from being scanned.
599   ** The added WHERE clause terms are like this:
600   **
601   **     $current_rowid!=rowid
602   **     NOT( $current_a==a AND $current_b==b AND ... )
603   **
604   ** The first form is used for rowid tables.  The second form is used
605   ** for WITHOUT ROWID tables. In the second form, the *parent* key is
606   ** (a,b,...). Either the parent or primary key could be used to
607   ** uniquely identify the current row, but the parent key is more convenient
608   ** as the required values have already been loaded into registers
609   ** by the caller.
610   */
611   if( pTab==pFKey->pFrom && nIncr>0 ){
612     Expr *pNe;                    /* Expression (pLeft != pRight) */
613     Expr *pLeft;                  /* Value from parent table row */
614     Expr *pRight;                 /* Column ref to child table */
615     if( HasRowid(pTab) ){
616       pLeft = exprTableRegister(pParse, pTab, regData, -1);
617       pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1);
618       pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight);
619     }else{
620       Expr *pEq, *pAll = 0;
621       assert( pIdx!=0 );
622       for(i=0; i<pIdx->nKeyCol; i++){
623         i16 iCol = pIdx->aiColumn[i];
624         assert( iCol>=0 );
625         pLeft = exprTableRegister(pParse, pTab, regData, iCol);
626         pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zName);
627         pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight);
628         pAll = sqlite3ExprAnd(pParse, pAll, pEq);
629       }
630       pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0);
631     }
632     pWhere = sqlite3ExprAnd(pParse, pWhere, pNe);
633   }
634 
635   /* Resolve the references in the WHERE clause. */
636   memset(&sNameContext, 0, sizeof(NameContext));
637   sNameContext.pSrcList = pSrc;
638   sNameContext.pParse = pParse;
639   sqlite3ResolveExprNames(&sNameContext, pWhere);
640 
641   /* Create VDBE to loop through the entries in pSrc that match the WHERE
642   ** clause. For each row found, increment either the deferred or immediate
643   ** foreign key constraint counter. */
644   if( pParse->nErr==0 ){
645     pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
646     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
647     if( pWInfo ){
648       sqlite3WhereEnd(pWInfo);
649     }
650   }
651 
652   /* Clean up the WHERE clause constructed above. */
653   sqlite3ExprDelete(db, pWhere);
654   if( iFkIfZero ){
655     sqlite3VdbeJumpHere(v, iFkIfZero);
656   }
657 }
658 
659 /*
660 ** This function returns a linked list of FKey objects (connected by
661 ** FKey.pNextTo) holding all children of table pTab.  For example,
662 ** given the following schema:
663 **
664 **   CREATE TABLE t1(a PRIMARY KEY);
665 **   CREATE TABLE t2(b REFERENCES t1(a);
666 **
667 ** Calling this function with table "t1" as an argument returns a pointer
668 ** to the FKey structure representing the foreign key constraint on table
669 ** "t2". Calling this function with "t2" as the argument would return a
670 ** NULL pointer (as there are no FK constraints for which t2 is the parent
671 ** table).
672 */
673 FKey *sqlite3FkReferences(Table *pTab){
674   return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName);
675 }
676 
677 /*
678 ** The second argument is a Trigger structure allocated by the
679 ** fkActionTrigger() routine. This function deletes the Trigger structure
680 ** and all of its sub-components.
681 **
682 ** The Trigger structure or any of its sub-components may be allocated from
683 ** the lookaside buffer belonging to database handle dbMem.
684 */
685 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
686   if( p ){
687     TriggerStep *pStep = p->step_list;
688     sqlite3ExprDelete(dbMem, pStep->pWhere);
689     sqlite3ExprListDelete(dbMem, pStep->pExprList);
690     sqlite3SelectDelete(dbMem, pStep->pSelect);
691     sqlite3ExprDelete(dbMem, p->pWhen);
692     sqlite3DbFree(dbMem, p);
693   }
694 }
695 
696 /*
697 ** This function is called to generate code that runs when table pTab is
698 ** being dropped from the database. The SrcList passed as the second argument
699 ** to this function contains a single entry guaranteed to resolve to
700 ** table pTab.
701 **
702 ** Normally, no code is required. However, if either
703 **
704 **   (a) The table is the parent table of a FK constraint, or
705 **   (b) The table is the child table of a deferred FK constraint and it is
706 **       determined at runtime that there are outstanding deferred FK
707 **       constraint violations in the database,
708 **
709 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
710 ** the table from the database. Triggers are disabled while running this
711 ** DELETE, but foreign key actions are not.
712 */
713 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
714   sqlite3 *db = pParse->db;
715   if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) ){
716     int iSkip = 0;
717     Vdbe *v = sqlite3GetVdbe(pParse);
718 
719     assert( v );                  /* VDBE has already been allocated */
720     assert( pTab->pSelect==0 );   /* Not a view */
721     if( sqlite3FkReferences(pTab)==0 ){
722       /* Search for a deferred foreign key constraint for which this table
723       ** is the child table. If one cannot be found, return without
724       ** generating any VDBE code. If one can be found, then jump over
725       ** the entire DELETE if there are no outstanding deferred constraints
726       ** when this statement is run.  */
727       FKey *p;
728       for(p=pTab->pFKey; p; p=p->pNextFrom){
729         if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
730       }
731       if( !p ) return;
732       iSkip = sqlite3VdbeMakeLabel(pParse);
733       sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v);
734     }
735 
736     pParse->disableTriggers = 1;
737     sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0);
738     pParse->disableTriggers = 0;
739 
740     /* If the DELETE has generated immediate foreign key constraint
741     ** violations, halt the VDBE and return an error at this point, before
742     ** any modifications to the schema are made. This is because statement
743     ** transactions are not able to rollback schema changes.
744     **
745     ** If the SQLITE_DeferFKs flag is set, then this is not required, as
746     ** the statement transaction will not be rolled back even if FK
747     ** constraints are violated.
748     */
749     if( (db->flags & SQLITE_DeferFKs)==0 ){
750       sqlite3VdbeVerifyAbortable(v, OE_Abort);
751       sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
752       VdbeCoverage(v);
753       sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
754           OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
755     }
756 
757     if( iSkip ){
758       sqlite3VdbeResolveLabel(v, iSkip);
759     }
760   }
761 }
762 
763 
764 /*
765 ** The second argument points to an FKey object representing a foreign key
766 ** for which pTab is the child table. An UPDATE statement against pTab
767 ** is currently being processed. For each column of the table that is
768 ** actually updated, the corresponding element in the aChange[] array
769 ** is zero or greater (if a column is unmodified the corresponding element
770 ** is set to -1). If the rowid column is modified by the UPDATE statement
771 ** the bChngRowid argument is non-zero.
772 **
773 ** This function returns true if any of the columns that are part of the
774 ** child key for FK constraint *p are modified.
775 */
776 static int fkChildIsModified(
777   Table *pTab,                    /* Table being updated */
778   FKey *p,                        /* Foreign key for which pTab is the child */
779   int *aChange,                   /* Array indicating modified columns */
780   int bChngRowid                  /* True if rowid is modified by this update */
781 ){
782   int i;
783   for(i=0; i<p->nCol; i++){
784     int iChildKey = p->aCol[i].iFrom;
785     if( aChange[iChildKey]>=0 ) return 1;
786     if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
787   }
788   return 0;
789 }
790 
791 /*
792 ** The second argument points to an FKey object representing a foreign key
793 ** for which pTab is the parent table. An UPDATE statement against pTab
794 ** is currently being processed. For each column of the table that is
795 ** actually updated, the corresponding element in the aChange[] array
796 ** is zero or greater (if a column is unmodified the corresponding element
797 ** is set to -1). If the rowid column is modified by the UPDATE statement
798 ** the bChngRowid argument is non-zero.
799 **
800 ** This function returns true if any of the columns that are part of the
801 ** parent key for FK constraint *p are modified.
802 */
803 static int fkParentIsModified(
804   Table *pTab,
805   FKey *p,
806   int *aChange,
807   int bChngRowid
808 ){
809   int i;
810   for(i=0; i<p->nCol; i++){
811     char *zKey = p->aCol[i].zCol;
812     int iKey;
813     for(iKey=0; iKey<pTab->nCol; iKey++){
814       if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
815         Column *pCol = &pTab->aCol[iKey];
816         if( zKey ){
817           if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1;
818         }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
819           return 1;
820         }
821       }
822     }
823   }
824   return 0;
825 }
826 
827 /*
828 ** Return true if the parser passed as the first argument is being
829 ** used to code a trigger that is really a "SET NULL" action belonging
830 ** to trigger pFKey.
831 */
832 static int isSetNullAction(Parse *pParse, FKey *pFKey){
833   Parse *pTop = sqlite3ParseToplevel(pParse);
834   if( pTop->pTriggerPrg ){
835     Trigger *p = pTop->pTriggerPrg->pTrigger;
836     if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull)
837      || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull)
838     ){
839       return 1;
840     }
841   }
842   return 0;
843 }
844 
845 /*
846 ** This function is called when inserting, deleting or updating a row of
847 ** table pTab to generate VDBE code to perform foreign key constraint
848 ** processing for the operation.
849 **
850 ** For a DELETE operation, parameter regOld is passed the index of the
851 ** first register in an array of (pTab->nCol+1) registers containing the
852 ** rowid of the row being deleted, followed by each of the column values
853 ** of the row being deleted, from left to right. Parameter regNew is passed
854 ** zero in this case.
855 **
856 ** For an INSERT operation, regOld is passed zero and regNew is passed the
857 ** first register of an array of (pTab->nCol+1) registers containing the new
858 ** row data.
859 **
860 ** For an UPDATE operation, this function is called twice. Once before
861 ** the original record is deleted from the table using the calling convention
862 ** described for DELETE. Then again after the original record is deleted
863 ** but before the new record is inserted using the INSERT convention.
864 */
865 void sqlite3FkCheck(
866   Parse *pParse,                  /* Parse context */
867   Table *pTab,                    /* Row is being deleted from this table */
868   int regOld,                     /* Previous row data is stored here */
869   int regNew,                     /* New row data is stored here */
870   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
871   int bChngRowid                  /* True if rowid is UPDATEd */
872 ){
873   sqlite3 *db = pParse->db;       /* Database handle */
874   FKey *pFKey;                    /* Used to iterate through FKs */
875   int iDb;                        /* Index of database containing pTab */
876   const char *zDb;                /* Name of database containing pTab */
877   int isIgnoreErrors = pParse->disableTriggers;
878 
879   /* Exactly one of regOld and regNew should be non-zero. */
880   assert( (regOld==0)!=(regNew==0) );
881 
882   /* If foreign-keys are disabled, this function is a no-op. */
883   if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
884 
885   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
886   zDb = db->aDb[iDb].zDbSName;
887 
888   /* Loop through all the foreign key constraints for which pTab is the
889   ** child table (the table that the foreign key definition is part of).  */
890   for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
891     Table *pTo;                   /* Parent table of foreign key pFKey */
892     Index *pIdx = 0;              /* Index on key columns in pTo */
893     int *aiFree = 0;
894     int *aiCol;
895     int iCol;
896     int i;
897     int bIgnore = 0;
898 
899     if( aChange
900      && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
901      && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0
902     ){
903       continue;
904     }
905 
906     /* Find the parent table of this foreign key. Also find a unique index
907     ** on the parent key columns in the parent table. If either of these
908     ** schema items cannot be located, set an error in pParse and return
909     ** early.  */
910     if( pParse->disableTriggers ){
911       pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
912     }else{
913       pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
914     }
915     if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
916       assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
917       if( !isIgnoreErrors || db->mallocFailed ) return;
918       if( pTo==0 ){
919         /* If isIgnoreErrors is true, then a table is being dropped. In this
920         ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
921         ** before actually dropping it in order to check FK constraints.
922         ** If the parent table of an FK constraint on the current table is
923         ** missing, behave as if it is empty. i.e. decrement the relevant
924         ** FK counter for each row of the current table with non-NULL keys.
925         */
926         Vdbe *v = sqlite3GetVdbe(pParse);
927         int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
928         for(i=0; i<pFKey->nCol; i++){
929           int iReg = pFKey->aCol[i].iFrom + regOld + 1;
930           sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v);
931         }
932         sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
933       }
934       continue;
935     }
936     assert( pFKey->nCol==1 || (aiFree && pIdx) );
937 
938     if( aiFree ){
939       aiCol = aiFree;
940     }else{
941       iCol = pFKey->aCol[0].iFrom;
942       aiCol = &iCol;
943     }
944     for(i=0; i<pFKey->nCol; i++){
945       if( aiCol[i]==pTab->iPKey ){
946         aiCol[i] = -1;
947       }
948       assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
949 #ifndef SQLITE_OMIT_AUTHORIZATION
950       /* Request permission to read the parent key columns. If the
951       ** authorization callback returns SQLITE_IGNORE, behave as if any
952       ** values read from the parent table are NULL. */
953       if( db->xAuth ){
954         int rcauth;
955         char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
956         rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
957         bIgnore = (rcauth==SQLITE_IGNORE);
958       }
959 #endif
960     }
961 
962     /* Take a shared-cache advisory read-lock on the parent table. Allocate
963     ** a cursor to use to search the unique index on the parent key columns
964     ** in the parent table.  */
965     sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
966     pParse->nTab++;
967 
968     if( regOld!=0 ){
969       /* A row is being removed from the child table. Search for the parent.
970       ** If the parent does not exist, removing the child row resolves an
971       ** outstanding foreign key constraint violation. */
972       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore);
973     }
974     if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){
975       /* A row is being added to the child table. If a parent row cannot
976       ** be found, adding the child row has violated the FK constraint.
977       **
978       ** If this operation is being performed as part of a trigger program
979       ** that is actually a "SET NULL" action belonging to this very
980       ** foreign key, then omit this scan altogether. As all child key
981       ** values are guaranteed to be NULL, it is not possible for adding
982       ** this row to cause an FK violation.  */
983       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore);
984     }
985 
986     sqlite3DbFree(db, aiFree);
987   }
988 
989   /* Loop through all the foreign key constraints that refer to this table.
990   ** (the "child" constraints) */
991   for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
992     Index *pIdx = 0;              /* Foreign key index for pFKey */
993     SrcList *pSrc;
994     int *aiCol = 0;
995 
996     if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
997       continue;
998     }
999 
1000     if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs)
1001      && !pParse->pToplevel && !pParse->isMultiWrite
1002     ){
1003       assert( regOld==0 && regNew!=0 );
1004       /* Inserting a single row into a parent table cannot cause (or fix)
1005       ** an immediate foreign key violation. So do nothing in this case.  */
1006       continue;
1007     }
1008 
1009     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
1010       if( !isIgnoreErrors || db->mallocFailed ) return;
1011       continue;
1012     }
1013     assert( aiCol || pFKey->nCol==1 );
1014 
1015     /* Create a SrcList structure containing the child table.  We need the
1016     ** child table as a SrcList for sqlite3WhereBegin() */
1017     pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1018     if( pSrc ){
1019       struct SrcList_item *pItem = pSrc->a;
1020       pItem->pTab = pFKey->pFrom;
1021       pItem->zName = pFKey->pFrom->zName;
1022       pItem->pTab->nTabRef++;
1023       pItem->iCursor = pParse->nTab++;
1024 
1025       if( regNew!=0 ){
1026         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
1027       }
1028       if( regOld!=0 ){
1029         int eAction = pFKey->aAction[aChange!=0];
1030         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
1031         /* If this is a deferred FK constraint, or a CASCADE or SET NULL
1032         ** action applies, then any foreign key violations caused by
1033         ** removing the parent key will be rectified by the action trigger.
1034         ** So do not set the "may-abort" flag in this case.
1035         **
1036         ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the
1037         ** may-abort flag will eventually be set on this statement anyway
1038         ** (when this function is called as part of processing the UPDATE
1039         ** within the action trigger).
1040         **
1041         ** Note 2: At first glance it may seem like SQLite could simply omit
1042         ** all OP_FkCounter related scans when either CASCADE or SET NULL
1043         ** applies. The trouble starts if the CASCADE or SET NULL action
1044         ** trigger causes other triggers or action rules attached to the
1045         ** child table to fire. In these cases the fk constraint counters
1046         ** might be set incorrectly if any OP_FkCounter related scans are
1047         ** omitted.  */
1048         if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){
1049           sqlite3MayAbort(pParse);
1050         }
1051       }
1052       pItem->zName = 0;
1053       sqlite3SrcListDelete(db, pSrc);
1054     }
1055     sqlite3DbFree(db, aiCol);
1056   }
1057 }
1058 
1059 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
1060 
1061 /*
1062 ** This function is called before generating code to update or delete a
1063 ** row contained in table pTab.
1064 */
1065 u32 sqlite3FkOldmask(
1066   Parse *pParse,                  /* Parse context */
1067   Table *pTab                     /* Table being modified */
1068 ){
1069   u32 mask = 0;
1070   if( pParse->db->flags&SQLITE_ForeignKeys ){
1071     FKey *p;
1072     int i;
1073     for(p=pTab->pFKey; p; p=p->pNextFrom){
1074       for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
1075     }
1076     for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1077       Index *pIdx = 0;
1078       sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
1079       if( pIdx ){
1080         for(i=0; i<pIdx->nKeyCol; i++){
1081           assert( pIdx->aiColumn[i]>=0 );
1082           mask |= COLUMN_MASK(pIdx->aiColumn[i]);
1083         }
1084       }
1085     }
1086   }
1087   return mask;
1088 }
1089 
1090 
1091 /*
1092 ** This function is called before generating code to update or delete a
1093 ** row contained in table pTab. If the operation is a DELETE, then
1094 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
1095 ** to an array of size N, where N is the number of columns in table pTab.
1096 ** If the i'th column is not modified by the UPDATE, then the corresponding
1097 ** entry in the aChange[] array is set to -1. If the column is modified,
1098 ** the value is 0 or greater. Parameter chngRowid is set to true if the
1099 ** UPDATE statement modifies the rowid fields of the table.
1100 **
1101 ** If any foreign key processing will be required, this function returns
1102 ** non-zero. If there is no foreign key related processing, this function
1103 ** returns zero.
1104 **
1105 ** For an UPDATE, this function returns 2 if:
1106 **
1107 **   * There are any FKs for which pTab is the child and the parent table, or
1108 **   * the UPDATE modifies one or more parent keys for which the action is
1109 **     not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL).
1110 **
1111 ** Or, assuming some other foreign key processing is required, 1.
1112 */
1113 int sqlite3FkRequired(
1114   Parse *pParse,                  /* Parse context */
1115   Table *pTab,                    /* Table being modified */
1116   int *aChange,                   /* Non-NULL for UPDATE operations */
1117   int chngRowid                   /* True for UPDATE that affects rowid */
1118 ){
1119   int eRet = 0;
1120   if( pParse->db->flags&SQLITE_ForeignKeys ){
1121     if( !aChange ){
1122       /* A DELETE operation. Foreign key processing is required if the
1123       ** table in question is either the child or parent table for any
1124       ** foreign key constraint.  */
1125       eRet = (sqlite3FkReferences(pTab) || pTab->pFKey);
1126     }else{
1127       /* This is an UPDATE. Foreign key processing is only required if the
1128       ** operation modifies one or more child or parent key columns. */
1129       FKey *p;
1130 
1131       /* Check if any child key columns are being modified. */
1132       for(p=pTab->pFKey; p; p=p->pNextFrom){
1133         if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) return 2;
1134         if( fkChildIsModified(pTab, p, aChange, chngRowid) ){
1135           eRet = 1;
1136         }
1137       }
1138 
1139       /* Check if any parent key columns are being modified. */
1140       for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1141         if( fkParentIsModified(pTab, p, aChange, chngRowid) ){
1142           if( p->aAction[1]!=OE_None ) return 2;
1143           eRet = 1;
1144         }
1145       }
1146     }
1147   }
1148   return eRet;
1149 }
1150 
1151 /*
1152 ** This function is called when an UPDATE or DELETE operation is being
1153 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
1154 ** If the current operation is an UPDATE, then the pChanges parameter is
1155 ** passed a pointer to the list of columns being modified. If it is a
1156 ** DELETE, pChanges is passed a NULL pointer.
1157 **
1158 ** It returns a pointer to a Trigger structure containing a trigger
1159 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
1160 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
1161 ** returned (these actions require no special handling by the triggers
1162 ** sub-system, code for them is created by fkScanChildren()).
1163 **
1164 ** For example, if pFKey is the foreign key and pTab is table "p" in
1165 ** the following schema:
1166 **
1167 **   CREATE TABLE p(pk PRIMARY KEY);
1168 **   CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
1169 **
1170 ** then the returned trigger structure is equivalent to:
1171 **
1172 **   CREATE TRIGGER ... DELETE ON p BEGIN
1173 **     DELETE FROM c WHERE ck = old.pk;
1174 **   END;
1175 **
1176 ** The returned pointer is cached as part of the foreign key object. It
1177 ** is eventually freed along with the rest of the foreign key object by
1178 ** sqlite3FkDelete().
1179 */
1180 static Trigger *fkActionTrigger(
1181   Parse *pParse,                  /* Parse context */
1182   Table *pTab,                    /* Table being updated or deleted from */
1183   FKey *pFKey,                    /* Foreign key to get action for */
1184   ExprList *pChanges              /* Change-list for UPDATE, NULL for DELETE */
1185 ){
1186   sqlite3 *db = pParse->db;       /* Database handle */
1187   int action;                     /* One of OE_None, OE_Cascade etc. */
1188   Trigger *pTrigger;              /* Trigger definition to return */
1189   int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */
1190 
1191   action = pFKey->aAction[iAction];
1192   if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){
1193     return 0;
1194   }
1195   pTrigger = pFKey->apTrigger[iAction];
1196 
1197   if( action!=OE_None && !pTrigger ){
1198     char const *zFrom;            /* Name of child table */
1199     int nFrom;                    /* Length in bytes of zFrom */
1200     Index *pIdx = 0;              /* Parent key index for this FK */
1201     int *aiCol = 0;               /* child table cols -> parent key cols */
1202     TriggerStep *pStep = 0;        /* First (only) step of trigger program */
1203     Expr *pWhere = 0;             /* WHERE clause of trigger step */
1204     ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
1205     Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
1206     int i;                        /* Iterator variable */
1207     Expr *pWhen = 0;              /* WHEN clause for the trigger */
1208 
1209     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
1210     assert( aiCol || pFKey->nCol==1 );
1211 
1212     for(i=0; i<pFKey->nCol; i++){
1213       Token tOld = { "old", 3 };  /* Literal "old" token */
1214       Token tNew = { "new", 3 };  /* Literal "new" token */
1215       Token tFromCol;             /* Name of column in child table */
1216       Token tToCol;               /* Name of column in parent table */
1217       int iFromCol;               /* Idx of column in child table */
1218       Expr *pEq;                  /* tFromCol = OLD.tToCol */
1219 
1220       iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
1221       assert( iFromCol>=0 );
1222       assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) );
1223       assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
1224       sqlite3TokenInit(&tToCol,
1225                    pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName);
1226       sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zName);
1227 
1228       /* Create the expression "OLD.zToCol = zFromCol". It is important
1229       ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1230       ** that the affinity and collation sequence associated with the
1231       ** parent table are used for the comparison. */
1232       pEq = sqlite3PExpr(pParse, TK_EQ,
1233           sqlite3PExpr(pParse, TK_DOT,
1234             sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1235             sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1236           sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0)
1237       );
1238       pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
1239 
1240       /* For ON UPDATE, construct the next term of the WHEN clause.
1241       ** The final WHEN clause will be like this:
1242       **
1243       **    WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1244       */
1245       if( pChanges ){
1246         pEq = sqlite3PExpr(pParse, TK_IS,
1247             sqlite3PExpr(pParse, TK_DOT,
1248               sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1249               sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1250             sqlite3PExpr(pParse, TK_DOT,
1251               sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1252               sqlite3ExprAlloc(db, TK_ID, &tToCol, 0))
1253             );
1254         pWhen = sqlite3ExprAnd(pParse, pWhen, pEq);
1255       }
1256 
1257       if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1258         Expr *pNew;
1259         if( action==OE_Cascade ){
1260           pNew = sqlite3PExpr(pParse, TK_DOT,
1261             sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1262             sqlite3ExprAlloc(db, TK_ID, &tToCol, 0));
1263         }else if( action==OE_SetDflt ){
1264           Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
1265           if( pDflt ){
1266             pNew = sqlite3ExprDup(db, pDflt, 0);
1267           }else{
1268             pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1269           }
1270         }else{
1271           pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1272         }
1273         pList = sqlite3ExprListAppend(pParse, pList, pNew);
1274         sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1275       }
1276     }
1277     sqlite3DbFree(db, aiCol);
1278 
1279     zFrom = pFKey->pFrom->zName;
1280     nFrom = sqlite3Strlen30(zFrom);
1281 
1282     if( action==OE_Restrict ){
1283       Token tFrom;
1284       Expr *pRaise;
1285 
1286       tFrom.z = zFrom;
1287       tFrom.n = nFrom;
1288       pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed");
1289       if( pRaise ){
1290         pRaise->affExpr = OE_Abort;
1291       }
1292       pSelect = sqlite3SelectNew(pParse,
1293           sqlite3ExprListAppend(pParse, 0, pRaise),
1294           sqlite3SrcListAppend(pParse, 0, &tFrom, 0),
1295           pWhere,
1296           0, 0, 0, 0, 0
1297       );
1298       pWhere = 0;
1299     }
1300 
1301     /* Disable lookaside memory allocation */
1302     DisableLookaside;
1303 
1304     pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1305         sizeof(Trigger) +         /* struct Trigger */
1306         sizeof(TriggerStep) +     /* Single step in trigger program */
1307         nFrom + 1                 /* Space for pStep->zTarget */
1308     );
1309     if( pTrigger ){
1310       pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1311       pStep->zTarget = (char *)&pStep[1];
1312       memcpy((char *)pStep->zTarget, zFrom, nFrom);
1313 
1314       pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1315       pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1316       pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1317       if( pWhen ){
1318         pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0);
1319         pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1320       }
1321     }
1322 
1323     /* Re-enable the lookaside buffer, if it was disabled earlier. */
1324     EnableLookaside;
1325 
1326     sqlite3ExprDelete(db, pWhere);
1327     sqlite3ExprDelete(db, pWhen);
1328     sqlite3ExprListDelete(db, pList);
1329     sqlite3SelectDelete(db, pSelect);
1330     if( db->mallocFailed==1 ){
1331       fkTriggerDelete(db, pTrigger);
1332       return 0;
1333     }
1334     assert( pStep!=0 );
1335     assert( pTrigger!=0 );
1336 
1337     switch( action ){
1338       case OE_Restrict:
1339         pStep->op = TK_SELECT;
1340         break;
1341       case OE_Cascade:
1342         if( !pChanges ){
1343           pStep->op = TK_DELETE;
1344           break;
1345         }
1346       default:
1347         pStep->op = TK_UPDATE;
1348     }
1349     pStep->pTrig = pTrigger;
1350     pTrigger->pSchema = pTab->pSchema;
1351     pTrigger->pTabSchema = pTab->pSchema;
1352     pFKey->apTrigger[iAction] = pTrigger;
1353     pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1354   }
1355 
1356   return pTrigger;
1357 }
1358 
1359 /*
1360 ** This function is called when deleting or updating a row to implement
1361 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1362 */
1363 void sqlite3FkActions(
1364   Parse *pParse,                  /* Parse context */
1365   Table *pTab,                    /* Table being updated or deleted from */
1366   ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
1367   int regOld,                     /* Address of array containing old row */
1368   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
1369   int bChngRowid                  /* True if rowid is UPDATEd */
1370 ){
1371   /* If foreign-key support is enabled, iterate through all FKs that
1372   ** refer to table pTab. If there is an action associated with the FK
1373   ** for this operation (either update or delete), invoke the associated
1374   ** trigger sub-program.  */
1375   if( pParse->db->flags&SQLITE_ForeignKeys ){
1376     FKey *pFKey;                  /* Iterator variable */
1377     for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1378       if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
1379         Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1380         if( pAct ){
1381           sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
1382         }
1383       }
1384     }
1385   }
1386 }
1387 
1388 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1389 
1390 /*
1391 ** Free all memory associated with foreign key definitions attached to
1392 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1393 ** hash table.
1394 */
1395 void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1396   FKey *pFKey;                    /* Iterator variable */
1397   FKey *pNext;                    /* Copy of pFKey->pNextFrom */
1398 
1399   assert( db==0 || IsVirtual(pTab)
1400          || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1401   for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1402 
1403     /* Remove the FK from the fkeyHash hash table. */
1404     if( !db || db->pnBytesFreed==0 ){
1405       if( pFKey->pPrevTo ){
1406         pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1407       }else{
1408         void *p = (void *)pFKey->pNextTo;
1409         const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1410         sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p);
1411       }
1412       if( pFKey->pNextTo ){
1413         pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1414       }
1415     }
1416 
1417     /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1418     ** classified as either immediate or deferred.
1419     */
1420     assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1421 
1422     /* Delete any triggers created to implement actions for this FK. */
1423 #ifndef SQLITE_OMIT_TRIGGER
1424     fkTriggerDelete(db, pFKey->apTrigger[0]);
1425     fkTriggerDelete(db, pFKey->apTrigger[1]);
1426 #endif
1427 
1428     pNext = pFKey->pNextFrom;
1429     sqlite3DbFree(db, pFKey);
1430   }
1431 }
1432 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
1433