xref: /sqlite-3.40.0/src/fkey.c (revision a3fdec71)
1 /*
2 **
3 ** The author disclaims copyright to this source code.  In place of
4 ** a legal notice, here is a blessing:
5 **
6 **    May you do good and not evil.
7 **    May you find forgiveness for yourself and forgive others.
8 **    May you share freely, never taking more than you give.
9 **
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
13 */
14 #include "sqliteInt.h"
15 
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
18 
19 /*
20 ** Deferred and Immediate FKs
21 ** --------------------------
22 **
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated,
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
26 ** statement transaction rolled back. If a
27 ** deferred foreign key constraint is violated, no action is taken
28 ** immediately. However if the application attempts to commit the
29 ** transaction before fixing the constraint violation, the attempt fails.
30 **
31 ** Deferred constraints are implemented using a simple counter associated
32 ** with the database handle. The counter is set to zero each time a
33 ** database transaction is opened. Each time a statement is executed
34 ** that causes a foreign key violation, the counter is incremented. Each
35 ** time a statement is executed that removes an existing violation from
36 ** the database, the counter is decremented. When the transaction is
37 ** committed, the commit fails if the current value of the counter is
38 ** greater than zero. This scheme has two big drawbacks:
39 **
40 **   * When a commit fails due to a deferred foreign key constraint,
41 **     there is no way to tell which foreign constraint is not satisfied,
42 **     or which row it is not satisfied for.
43 **
44 **   * If the database contains foreign key violations when the
45 **     transaction is opened, this may cause the mechanism to malfunction.
46 **
47 ** Despite these problems, this approach is adopted as it seems simpler
48 ** than the alternatives.
49 **
50 ** INSERT operations:
51 **
52 **   I.1) For each FK for which the table is the child table, search
53 **        the parent table for a match. If none is found increment the
54 **        constraint counter.
55 **
56 **   I.2) For each FK for which the table is the parent table,
57 **        search the child table for rows that correspond to the new
58 **        row in the parent table. Decrement the counter for each row
59 **        found (as the constraint is now satisfied).
60 **
61 ** DELETE operations:
62 **
63 **   D.1) For each FK for which the table is the child table,
64 **        search the parent table for a row that corresponds to the
65 **        deleted row in the child table. If such a row is not found,
66 **        decrement the counter.
67 **
68 **   D.2) For each FK for which the table is the parent table, search
69 **        the child table for rows that correspond to the deleted row
70 **        in the parent table. For each found increment the counter.
71 **
72 ** UPDATE operations:
73 **
74 **   An UPDATE command requires that all 4 steps above are taken, but only
75 **   for FK constraints for which the affected columns are actually
76 **   modified (values must be compared at runtime).
77 **
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
79 ** This simplifies the implementation a bit.
80 **
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
82 ** resolution is considered to delete rows before the new row is inserted.
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
84 ** is thrown, even if the FK constraint would be satisfied after the new
85 ** row is inserted.
86 **
87 ** Immediate constraints are usually handled similarly. The only difference
88 ** is that the counter used is stored as part of each individual statement
89 ** object (struct Vdbe). If, after the statement has run, its immediate
90 ** constraint counter is greater than zero,
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92 ** and the statement transaction is rolled back. An exception is an INSERT
93 ** statement that inserts a single row only (no triggers). In this case,
94 ** instead of using a counter, an exception is thrown immediately if the
95 ** INSERT violates a foreign key constraint. This is necessary as such
96 ** an INSERT does not open a statement transaction.
97 **
98 ** TODO: How should dropping a table be handled? How should renaming a
99 ** table be handled?
100 **
101 **
102 ** Query API Notes
103 ** ---------------
104 **
105 ** Before coding an UPDATE or DELETE row operation, the code-generator
106 ** for those two operations needs to know whether or not the operation
107 ** requires any FK processing and, if so, which columns of the original
108 ** row are required by the FK processing VDBE code (i.e. if FKs were
109 ** implemented using triggers, which of the old.* columns would be
110 ** accessed). No information is required by the code-generator before
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
112 ** generation code to query for this information are:
113 **
114 **   sqlite3FkRequired() - Test to see if FK processing is required.
115 **   sqlite3FkOldmask()  - Query for the set of required old.* columns.
116 **
117 **
118 ** Externally accessible module functions
119 ** --------------------------------------
120 **
121 **   sqlite3FkCheck()    - Check for foreign key violations.
122 **   sqlite3FkActions()  - Code triggers for ON UPDATE/ON DELETE actions.
123 **   sqlite3FkDelete()   - Delete an FKey structure.
124 */
125 
126 /*
127 ** VDBE Calling Convention
128 ** -----------------------
129 **
130 ** Example:
131 **
132 **   For the following INSERT statement:
133 **
134 **     CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
135 **     INSERT INTO t1 VALUES(1, 2, 3.1);
136 **
137 **   Register (x):        2    (type integer)
138 **   Register (x+1):      1    (type integer)
139 **   Register (x+2):      NULL (type NULL)
140 **   Register (x+3):      3.1  (type real)
141 */
142 
143 /*
144 ** A foreign key constraint requires that the key columns in the parent
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
146 ** Given that pParent is the parent table for foreign key constraint pFKey,
147 ** search the schema for a unique index on the parent key columns.
148 **
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
151 ** is set to point to the unique index.
152 **
153 ** If the parent key consists of a single column (the foreign key constraint
154 ** is not a composite foreign key), output variable *paiCol is set to NULL.
155 ** Otherwise, it is set to point to an allocated array of size N, where
156 ** N is the number of columns in the parent key. The first element of the
157 ** array is the index of the child table column that is mapped by the FK
158 ** constraint to the parent table column stored in the left-most column
159 ** of index *ppIdx. The second element of the array is the index of the
160 ** child table column that corresponds to the second left-most column of
161 ** *ppIdx, and so on.
162 **
163 ** If the required index cannot be found, either because:
164 **
165 **   1) The named parent key columns do not exist, or
166 **
167 **   2) The named parent key columns do exist, but are not subject to a
168 **      UNIQUE or PRIMARY KEY constraint, or
169 **
170 **   3) No parent key columns were provided explicitly as part of the
171 **      foreign key definition, and the parent table does not have a
172 **      PRIMARY KEY, or
173 **
174 **   4) No parent key columns were provided explicitly as part of the
175 **      foreign key definition, and the PRIMARY KEY of the parent table
176 **      consists of a a different number of columns to the child key in
177 **      the child table.
178 **
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded
180 ** into pParse. If an OOM error occurs, non-zero is returned and the
181 ** pParse->db->mallocFailed flag is set.
182 */
183 int sqlite3FkLocateIndex(
184   Parse *pParse,                  /* Parse context to store any error in */
185   Table *pParent,                 /* Parent table of FK constraint pFKey */
186   FKey *pFKey,                    /* Foreign key to find index for */
187   Index **ppIdx,                  /* OUT: Unique index on parent table */
188   int **paiCol                    /* OUT: Map of index columns in pFKey */
189 ){
190   Index *pIdx = 0;                    /* Value to return via *ppIdx */
191   int *aiCol = 0;                     /* Value to return via *paiCol */
192   int nCol = pFKey->nCol;             /* Number of columns in parent key */
193   char *zKey = pFKey->aCol[0].zCol;   /* Name of left-most parent key column */
194 
195   /* The caller is responsible for zeroing output parameters. */
196   assert( ppIdx && *ppIdx==0 );
197   assert( !paiCol || *paiCol==0 );
198   assert( pParse );
199 
200   /* If this is a non-composite (single column) foreign key, check if it
201   ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
202   ** and *paiCol set to zero and return early.
203   **
204   ** Otherwise, for a composite foreign key (more than one column), allocate
205   ** space for the aiCol array (returned via output parameter *paiCol).
206   ** Non-composite foreign keys do not require the aiCol array.
207   */
208   if( nCol==1 ){
209     /* The FK maps to the IPK if any of the following are true:
210     **
211     **   1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
212     **      mapped to the primary key of table pParent, or
213     **   2) The FK is explicitly mapped to a column declared as INTEGER
214     **      PRIMARY KEY.
215     */
216     if( pParent->iPKey>=0 ){
217       if( !zKey ) return 0;
218       if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
219     }
220   }else if( paiCol ){
221     assert( nCol>1 );
222     aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
223     if( !aiCol ) return 1;
224     *paiCol = aiCol;
225   }
226 
227   for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
228     if( pIdx->nKeyCol==nCol && pIdx->onError!=OE_None ){
229       /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
230       ** of columns. If each indexed column corresponds to a foreign key
231       ** column of pFKey, then this index is a winner.  */
232 
233       if( zKey==0 ){
234         /* If zKey is NULL, then this foreign key is implicitly mapped to
235         ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
236         ** identified by the test (Index.autoIndex==2).  */
237         if( pIdx->autoIndex==2 ){
238           if( aiCol ){
239             int i;
240             for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
241           }
242           break;
243         }
244       }else{
245         /* If zKey is non-NULL, then this foreign key was declared to
246         ** map to an explicit list of columns in table pParent. Check if this
247         ** index matches those columns. Also, check that the index uses
248         ** the default collation sequences for each column. */
249         int i, j;
250         for(i=0; i<nCol; i++){
251           i16 iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
252           char *zDfltColl;                  /* Def. collation for column */
253           char *zIdxCol;                    /* Name of indexed column */
254 
255           /* If the index uses a collation sequence that is different from
256           ** the default collation sequence for the column, this index is
257           ** unusable. Bail out early in this case.  */
258           zDfltColl = pParent->aCol[iCol].zColl;
259           if( !zDfltColl ){
260             zDfltColl = "BINARY";
261           }
262           if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
263 
264           zIdxCol = pParent->aCol[iCol].zName;
265           for(j=0; j<nCol; j++){
266             if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
267               if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
268               break;
269             }
270           }
271           if( j==nCol ) break;
272         }
273         if( i==nCol ) break;      /* pIdx is usable */
274       }
275     }
276   }
277 
278   if( !pIdx ){
279     if( !pParse->disableTriggers ){
280       sqlite3ErrorMsg(pParse,
281            "foreign key mismatch - \"%w\" referencing \"%w\"",
282            pFKey->pFrom->zName, pFKey->zTo);
283     }
284     sqlite3DbFree(pParse->db, aiCol);
285     return 1;
286   }
287 
288   *ppIdx = pIdx;
289   return 0;
290 }
291 
292 /*
293 ** This function is called when a row is inserted into or deleted from the
294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
295 ** on the child table of pFKey, this function is invoked twice for each row
296 ** affected - once to "delete" the old row, and then again to "insert" the
297 ** new row.
298 **
299 ** Each time it is called, this function generates VDBE code to locate the
300 ** row in the parent table that corresponds to the row being inserted into
301 ** or deleted from the child table. If the parent row can be found, no
302 ** special action is taken. Otherwise, if the parent row can *not* be
303 ** found in the parent table:
304 **
305 **   Operation | FK type   | Action taken
306 **   --------------------------------------------------------------------------
307 **   INSERT      immediate   Increment the "immediate constraint counter".
308 **
309 **   DELETE      immediate   Decrement the "immediate constraint counter".
310 **
311 **   INSERT      deferred    Increment the "deferred constraint counter".
312 **
313 **   DELETE      deferred    Decrement the "deferred constraint counter".
314 **
315 ** These operations are identified in the comment at the top of this file
316 ** (fkey.c) as "I.1" and "D.1".
317 */
318 static void fkLookupParent(
319   Parse *pParse,        /* Parse context */
320   int iDb,              /* Index of database housing pTab */
321   Table *pTab,          /* Parent table of FK pFKey */
322   Index *pIdx,          /* Unique index on parent key columns in pTab */
323   FKey *pFKey,          /* Foreign key constraint */
324   int *aiCol,           /* Map from parent key columns to child table columns */
325   int regData,          /* Address of array containing child table row */
326   int nIncr,            /* Increment constraint counter by this */
327   int isIgnore          /* If true, pretend pTab contains all NULL values */
328 ){
329   int i;                                    /* Iterator variable */
330   Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
331   int iCur = pParse->nTab - 1;              /* Cursor number to use */
332   int iOk = sqlite3VdbeMakeLabel(v);        /* jump here if parent key found */
333 
334   /* If nIncr is less than zero, then check at runtime if there are any
335   ** outstanding constraints to resolve. If there are not, there is no need
336   ** to check if deleting this row resolves any outstanding violations.
337   **
338   ** Check if any of the key columns in the child table row are NULL. If
339   ** any are, then the constraint is considered satisfied. No need to
340   ** search for a matching row in the parent table.  */
341   if( nIncr<0 ){
342     sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
343   }
344   for(i=0; i<pFKey->nCol; i++){
345     int iReg = aiCol[i] + regData + 1;
346     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
347   }
348 
349   if( isIgnore==0 ){
350     if( pIdx==0 ){
351       /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
352       ** column of the parent table (table pTab).  */
353       int iMustBeInt;               /* Address of MustBeInt instruction */
354       int regTemp = sqlite3GetTempReg(pParse);
355 
356       /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
357       ** apply the affinity of the parent key). If this fails, then there
358       ** is no matching parent key. Before using MustBeInt, make a copy of
359       ** the value. Otherwise, the value inserted into the child key column
360       ** will have INTEGER affinity applied to it, which may not be correct.  */
361       sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
362       iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
363 
364       /* If the parent table is the same as the child table, and we are about
365       ** to increment the constraint-counter (i.e. this is an INSERT operation),
366       ** then check if the row being inserted matches itself. If so, do not
367       ** increment the constraint-counter.  */
368       if( pTab==pFKey->pFrom && nIncr==1 ){
369         sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp);
370       }
371 
372       sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
373       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
374       sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
375       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
376       sqlite3VdbeJumpHere(v, iMustBeInt);
377       sqlite3ReleaseTempReg(pParse, regTemp);
378     }else{
379       int nCol = pFKey->nCol;
380       int regTemp = sqlite3GetTempRange(pParse, nCol);
381       int regRec = sqlite3GetTempReg(pParse);
382 
383       sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
384       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
385       for(i=0; i<nCol; i++){
386         sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
387       }
388 
389       /* If the parent table is the same as the child table, and we are about
390       ** to increment the constraint-counter (i.e. this is an INSERT operation),
391       ** then check if the row being inserted matches itself. If so, do not
392       ** increment the constraint-counter.
393       **
394       ** If any of the parent-key values are NULL, then the row cannot match
395       ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
396       ** of the parent-key values are NULL (at this point it is known that
397       ** none of the child key values are).
398       */
399       if( pTab==pFKey->pFrom && nIncr==1 ){
400         int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
401         for(i=0; i<nCol; i++){
402           int iChild = aiCol[i]+1+regData;
403           int iParent = pIdx->aiColumn[i]+1+regData;
404           assert( aiCol[i]!=pTab->iPKey );
405           if( pIdx->aiColumn[i]==pTab->iPKey ){
406             /* The parent key is a composite key that includes the IPK column */
407             iParent = regData;
408           }
409           sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
410           sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
411         }
412         sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
413       }
414 
415       sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
416       sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
417       sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);
418 
419       sqlite3ReleaseTempReg(pParse, regRec);
420       sqlite3ReleaseTempRange(pParse, regTemp, nCol);
421     }
422   }
423 
424   if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
425    && !pParse->pToplevel
426    && !pParse->isMultiWrite
427   ){
428     /* Special case: If this is an INSERT statement that will insert exactly
429     ** one row into the table, raise a constraint immediately instead of
430     ** incrementing a counter. This is necessary as the VM code is being
431     ** generated for will not open a statement transaction.  */
432     assert( nIncr==1 );
433     sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
434         OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
435   }else{
436     if( nIncr>0 && pFKey->isDeferred==0 ){
437       sqlite3ParseToplevel(pParse)->mayAbort = 1;
438     }
439     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
440   }
441 
442   sqlite3VdbeResolveLabel(v, iOk);
443   sqlite3VdbeAddOp1(v, OP_Close, iCur);
444 }
445 
446 
447 /*
448 ** Return an Expr object that refers to a memory register corresponding
449 ** to column iCol of table pTab.
450 **
451 ** regBase is the first of an array of register that contains the data
452 ** for pTab.  regBase itself holds the rowid.  regBase+1 holds the first
453 ** column.  regBase+2 holds the second column, and so forth.
454 */
455 static Expr *exprTableRegister(
456   Parse *pParse,     /* Parsing and code generating context */
457   Table *pTab,       /* The table whose content is at r[regBase]... */
458   int regBase,       /* Contents of table pTab */
459   i16 iCol           /* Which column of pTab is desired */
460 ){
461   Expr *pExpr;
462   Column *pCol;
463   const char *zColl;
464   sqlite3 *db = pParse->db;
465 
466   pExpr = sqlite3Expr(db, TK_REGISTER, 0);
467   if( pExpr ){
468     if( iCol>=0 && iCol!=pTab->iPKey ){
469       pCol = &pTab->aCol[iCol];
470       pExpr->iTable = regBase + iCol + 1;
471       pExpr->affinity = pCol->affinity;
472       zColl = pCol->zColl;
473       if( zColl==0 ) zColl = db->pDfltColl->zName;
474       pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl);
475     }else{
476       pExpr->iTable = regBase;
477       pExpr->affinity = SQLITE_AFF_INTEGER;
478     }
479   }
480   return pExpr;
481 }
482 
483 /*
484 ** Return an Expr object that refers to column iCol of table pTab which
485 ** has cursor iCur.
486 */
487 static Expr *exprTableColumn(
488   sqlite3 *db,      /* The database connection */
489   Table *pTab,      /* The table whose column is desired */
490   int iCursor,      /* The open cursor on the table */
491   i16 iCol          /* The column that is wanted */
492 ){
493   Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
494   if( pExpr ){
495     pExpr->pTab = pTab;
496     pExpr->iTable = iCursor;
497     pExpr->iColumn = iCol;
498   }
499   return pExpr;
500 }
501 
502 /*
503 ** This function is called to generate code executed when a row is deleted
504 ** from the parent table of foreign key constraint pFKey and, if pFKey is
505 ** deferred, when a row is inserted into the same table. When generating
506 ** code for an SQL UPDATE operation, this function may be called twice -
507 ** once to "delete" the old row and once to "insert" the new row.
508 **
509 ** The code generated by this function scans through the rows in the child
510 ** table that correspond to the parent table row being deleted or inserted.
511 ** For each child row found, one of the following actions is taken:
512 **
513 **   Operation | FK type   | Action taken
514 **   --------------------------------------------------------------------------
515 **   DELETE      immediate   Increment the "immediate constraint counter".
516 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
517 **                           throw a "FOREIGN KEY constraint failed" exception.
518 **
519 **   INSERT      immediate   Decrement the "immediate constraint counter".
520 **
521 **   DELETE      deferred    Increment the "deferred constraint counter".
522 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
523 **                           throw a "FOREIGN KEY constraint failed" exception.
524 **
525 **   INSERT      deferred    Decrement the "deferred constraint counter".
526 **
527 ** These operations are identified in the comment at the top of this file
528 ** (fkey.c) as "I.2" and "D.2".
529 */
530 static void fkScanChildren(
531   Parse *pParse,                  /* Parse context */
532   SrcList *pSrc,                  /* The child table to be scanned */
533   Table *pTab,                    /* The parent table */
534   Index *pIdx,                    /* Index on parent covering the foreign key */
535   FKey *pFKey,                    /* The foreign key linking pSrc to pTab */
536   int *aiCol,                     /* Map from pIdx cols to child table cols */
537   int regData,                    /* Parent row data starts here */
538   int nIncr                       /* Amount to increment deferred counter by */
539 ){
540   sqlite3 *db = pParse->db;       /* Database handle */
541   int i;                          /* Iterator variable */
542   Expr *pWhere = 0;               /* WHERE clause to scan with */
543   NameContext sNameContext;       /* Context used to resolve WHERE clause */
544   WhereInfo *pWInfo;              /* Context used by sqlite3WhereXXX() */
545   int iFkIfZero = 0;              /* Address of OP_FkIfZero */
546   Vdbe *v = sqlite3GetVdbe(pParse);
547 
548   assert( pIdx==0 || pIdx->pTable==pTab );
549   assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
550   assert( pIdx!=0 || pFKey->nCol==1 );
551   assert( pIdx!=0 || HasRowid(pTab) );
552 
553   if( nIncr<0 ){
554     iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
555   }
556 
557   /* Create an Expr object representing an SQL expression like:
558   **
559   **   <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
560   **
561   ** The collation sequence used for the comparison should be that of
562   ** the parent key columns. The affinity of the parent key column should
563   ** be applied to each child key value before the comparison takes place.
564   */
565   for(i=0; i<pFKey->nCol; i++){
566     Expr *pLeft;                  /* Value from parent table row */
567     Expr *pRight;                 /* Column ref to child table */
568     Expr *pEq;                    /* Expression (pLeft = pRight) */
569     i16 iCol;                     /* Index of column in child table */
570     const char *zCol;             /* Name of column in child table */
571 
572     iCol = pIdx ? pIdx->aiColumn[i] : -1;
573     pLeft = exprTableRegister(pParse, pTab, regData, iCol);
574     iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
575     assert( iCol>=0 );
576     zCol = pFKey->pFrom->aCol[iCol].zName;
577     pRight = sqlite3Expr(db, TK_ID, zCol);
578     pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
579     pWhere = sqlite3ExprAnd(db, pWhere, pEq);
580   }
581 
582   /* If the child table is the same as the parent table, then add terms
583   ** to the WHERE clause that prevent this entry from being scanned.
584   ** The added WHERE clause terms are like this:
585   **
586   **     $current_rowid!=rowid
587   **     NOT( $current_a==a AND $current_b==b AND ... )
588   **
589   ** The first form is used for rowid tables.  The second form is used
590   ** for WITHOUT ROWID tables.  In the second form, the primary key is
591   ** (a,b,...)
592   */
593   if( pTab==pFKey->pFrom && nIncr>0 ){
594     Expr *pNe;                    /* Expression (pLeft != pRight) */
595     Expr *pLeft;                  /* Value from parent table row */
596     Expr *pRight;                 /* Column ref to child table */
597     if( HasRowid(pTab) ){
598       pLeft = exprTableRegister(pParse, pTab, regData, -1);
599       pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1);
600       pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
601     }else{
602       Expr *pEq, *pAll = 0;
603       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
604       assert( pIdx!=0 );
605       for(i=0; i<pPk->nKeyCol; i++){
606         i16 iCol = pIdx->aiColumn[i];
607         pLeft = exprTableRegister(pParse, pTab, regData, iCol);
608         pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol);
609         pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
610         pAll = sqlite3ExprAnd(db, pAll, pEq);
611       }
612       pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0, 0);
613     }
614     pWhere = sqlite3ExprAnd(db, pWhere, pNe);
615   }
616 
617   /* Resolve the references in the WHERE clause. */
618   memset(&sNameContext, 0, sizeof(NameContext));
619   sNameContext.pSrcList = pSrc;
620   sNameContext.pParse = pParse;
621   sqlite3ResolveExprNames(&sNameContext, pWhere);
622 
623   /* Create VDBE to loop through the entries in pSrc that match the WHERE
624   ** clause. If the constraint is not deferred, throw an exception for
625   ** each row found. Otherwise, for deferred constraints, increment the
626   ** deferred constraint counter by nIncr for each row selected.  */
627   pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
628   if( nIncr>0 && pFKey->isDeferred==0 ){
629     sqlite3ParseToplevel(pParse)->mayAbort = 1;
630   }
631   sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
632   if( pWInfo ){
633     sqlite3WhereEnd(pWInfo);
634   }
635 
636   /* Clean up the WHERE clause constructed above. */
637   sqlite3ExprDelete(db, pWhere);
638   if( iFkIfZero ){
639     sqlite3VdbeJumpHere(v, iFkIfZero);
640   }
641 }
642 
643 /*
644 ** This function returns a linked list of FKey objects (connected by
645 ** FKey.pNextTo) holding all children of table pTab.  For example,
646 ** given the following schema:
647 **
648 **   CREATE TABLE t1(a PRIMARY KEY);
649 **   CREATE TABLE t2(b REFERENCES t1(a);
650 **
651 ** Calling this function with table "t1" as an argument returns a pointer
652 ** to the FKey structure representing the foreign key constraint on table
653 ** "t2". Calling this function with "t2" as the argument would return a
654 ** NULL pointer (as there are no FK constraints for which t2 is the parent
655 ** table).
656 */
657 FKey *sqlite3FkReferences(Table *pTab){
658   int nName = sqlite3Strlen30(pTab->zName);
659   return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
660 }
661 
662 /*
663 ** The second argument is a Trigger structure allocated by the
664 ** fkActionTrigger() routine. This function deletes the Trigger structure
665 ** and all of its sub-components.
666 **
667 ** The Trigger structure or any of its sub-components may be allocated from
668 ** the lookaside buffer belonging to database handle dbMem.
669 */
670 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
671   if( p ){
672     TriggerStep *pStep = p->step_list;
673     sqlite3ExprDelete(dbMem, pStep->pWhere);
674     sqlite3ExprListDelete(dbMem, pStep->pExprList);
675     sqlite3SelectDelete(dbMem, pStep->pSelect);
676     sqlite3ExprDelete(dbMem, p->pWhen);
677     sqlite3DbFree(dbMem, p);
678   }
679 }
680 
681 /*
682 ** This function is called to generate code that runs when table pTab is
683 ** being dropped from the database. The SrcList passed as the second argument
684 ** to this function contains a single entry guaranteed to resolve to
685 ** table pTab.
686 **
687 ** Normally, no code is required. However, if either
688 **
689 **   (a) The table is the parent table of a FK constraint, or
690 **   (b) The table is the child table of a deferred FK constraint and it is
691 **       determined at runtime that there are outstanding deferred FK
692 **       constraint violations in the database,
693 **
694 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
695 ** the table from the database. Triggers are disabled while running this
696 ** DELETE, but foreign key actions are not.
697 */
698 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
699   sqlite3 *db = pParse->db;
700   if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
701     int iSkip = 0;
702     Vdbe *v = sqlite3GetVdbe(pParse);
703 
704     assert( v );                  /* VDBE has already been allocated */
705     if( sqlite3FkReferences(pTab)==0 ){
706       /* Search for a deferred foreign key constraint for which this table
707       ** is the child table. If one cannot be found, return without
708       ** generating any VDBE code. If one can be found, then jump over
709       ** the entire DELETE if there are no outstanding deferred constraints
710       ** when this statement is run.  */
711       FKey *p;
712       for(p=pTab->pFKey; p; p=p->pNextFrom){
713         if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
714       }
715       if( !p ) return;
716       iSkip = sqlite3VdbeMakeLabel(v);
717       sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip);
718     }
719 
720     pParse->disableTriggers = 1;
721     sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
722     pParse->disableTriggers = 0;
723 
724     /* If the DELETE has generated immediate foreign key constraint
725     ** violations, halt the VDBE and return an error at this point, before
726     ** any modifications to the schema are made. This is because statement
727     ** transactions are not able to rollback schema changes.
728     **
729     ** If the SQLITE_DeferFKs flag is set, then this is not required, as
730     ** the statement transaction will not be rolled back even if FK
731     ** constraints are violated.
732     */
733     if( (db->flags & SQLITE_DeferFKs)==0 ){
734       sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
735       sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
736           OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
737     }
738 
739     if( iSkip ){
740       sqlite3VdbeResolveLabel(v, iSkip);
741     }
742   }
743 }
744 
745 
746 /*
747 ** The second argument points to an FKey object representing a foreign key
748 ** for which pTab is the child table. An UPDATE statement against pTab
749 ** is currently being processed. For each column of the table that is
750 ** actually updated, the corresponding element in the aChange[] array
751 ** is zero or greater (if a column is unmodified the corresponding element
752 ** is set to -1). If the rowid column is modified by the UPDATE statement
753 ** the bChngRowid argument is non-zero.
754 **
755 ** This function returns true if any of the columns that are part of the
756 ** child key for FK constraint *p are modified.
757 */
758 static int fkChildIsModified(
759   Table *pTab,                    /* Table being updated */
760   FKey *p,                        /* Foreign key for which pTab is the child */
761   int *aChange,                   /* Array indicating modified columns */
762   int bChngRowid                  /* True if rowid is modified by this update */
763 ){
764   int i;
765   for(i=0; i<p->nCol; i++){
766     int iChildKey = p->aCol[i].iFrom;
767     if( aChange[iChildKey]>=0 ) return 1;
768     if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
769   }
770   return 0;
771 }
772 
773 /*
774 ** The second argument points to an FKey object representing a foreign key
775 ** for which pTab is the parent table. An UPDATE statement against pTab
776 ** is currently being processed. For each column of the table that is
777 ** actually updated, the corresponding element in the aChange[] array
778 ** is zero or greater (if a column is unmodified the corresponding element
779 ** is set to -1). If the rowid column is modified by the UPDATE statement
780 ** the bChngRowid argument is non-zero.
781 **
782 ** This function returns true if any of the columns that are part of the
783 ** parent key for FK constraint *p are modified.
784 */
785 static int fkParentIsModified(
786   Table *pTab,
787   FKey *p,
788   int *aChange,
789   int bChngRowid
790 ){
791   int i;
792   for(i=0; i<p->nCol; i++){
793     char *zKey = p->aCol[i].zCol;
794     int iKey;
795     for(iKey=0; iKey<pTab->nCol; iKey++){
796       if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
797         Column *pCol = &pTab->aCol[iKey];
798         if( zKey ){
799           if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1;
800         }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
801           return 1;
802         }
803       }
804     }
805   }
806   return 0;
807 }
808 
809 /*
810 ** This function is called when inserting, deleting or updating a row of
811 ** table pTab to generate VDBE code to perform foreign key constraint
812 ** processing for the operation.
813 **
814 ** For a DELETE operation, parameter regOld is passed the index of the
815 ** first register in an array of (pTab->nCol+1) registers containing the
816 ** rowid of the row being deleted, followed by each of the column values
817 ** of the row being deleted, from left to right. Parameter regNew is passed
818 ** zero in this case.
819 **
820 ** For an INSERT operation, regOld is passed zero and regNew is passed the
821 ** first register of an array of (pTab->nCol+1) registers containing the new
822 ** row data.
823 **
824 ** For an UPDATE operation, this function is called twice. Once before
825 ** the original record is deleted from the table using the calling convention
826 ** described for DELETE. Then again after the original record is deleted
827 ** but before the new record is inserted using the INSERT convention.
828 */
829 void sqlite3FkCheck(
830   Parse *pParse,                  /* Parse context */
831   Table *pTab,                    /* Row is being deleted from this table */
832   int regOld,                     /* Previous row data is stored here */
833   int regNew,                     /* New row data is stored here */
834   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
835   int bChngRowid                  /* True if rowid is UPDATEd */
836 ){
837   sqlite3 *db = pParse->db;       /* Database handle */
838   FKey *pFKey;                    /* Used to iterate through FKs */
839   int iDb;                        /* Index of database containing pTab */
840   const char *zDb;                /* Name of database containing pTab */
841   int isIgnoreErrors = pParse->disableTriggers;
842 
843   /* Exactly one of regOld and regNew should be non-zero. */
844   assert( (regOld==0)!=(regNew==0) );
845 
846   /* If foreign-keys are disabled, this function is a no-op. */
847   if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
848 
849   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
850   zDb = db->aDb[iDb].zName;
851 
852   /* Loop through all the foreign key constraints for which pTab is the
853   ** child table (the table that the foreign key definition is part of).  */
854   for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
855     Table *pTo;                   /* Parent table of foreign key pFKey */
856     Index *pIdx = 0;              /* Index on key columns in pTo */
857     int *aiFree = 0;
858     int *aiCol;
859     int iCol;
860     int i;
861     int isIgnore = 0;
862 
863     if( aChange
864      && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
865      && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0
866     ){
867       continue;
868     }
869 
870     /* Find the parent table of this foreign key. Also find a unique index
871     ** on the parent key columns in the parent table. If either of these
872     ** schema items cannot be located, set an error in pParse and return
873     ** early.  */
874     if( pParse->disableTriggers ){
875       pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
876     }else{
877       pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
878     }
879     if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
880       assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
881       if( !isIgnoreErrors || db->mallocFailed ) return;
882       if( pTo==0 ){
883         /* If isIgnoreErrors is true, then a table is being dropped. In this
884         ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
885         ** before actually dropping it in order to check FK constraints.
886         ** If the parent table of an FK constraint on the current table is
887         ** missing, behave as if it is empty. i.e. decrement the relevant
888         ** FK counter for each row of the current table with non-NULL keys.
889         */
890         Vdbe *v = sqlite3GetVdbe(pParse);
891         int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
892         for(i=0; i<pFKey->nCol; i++){
893           int iReg = pFKey->aCol[i].iFrom + regOld + 1;
894           sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump);
895         }
896         sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
897       }
898       continue;
899     }
900     assert( pFKey->nCol==1 || (aiFree && pIdx) );
901 
902     if( aiFree ){
903       aiCol = aiFree;
904     }else{
905       iCol = pFKey->aCol[0].iFrom;
906       aiCol = &iCol;
907     }
908     for(i=0; i<pFKey->nCol; i++){
909       if( aiCol[i]==pTab->iPKey ){
910         aiCol[i] = -1;
911       }
912 #ifndef SQLITE_OMIT_AUTHORIZATION
913       /* Request permission to read the parent key columns. If the
914       ** authorization callback returns SQLITE_IGNORE, behave as if any
915       ** values read from the parent table are NULL. */
916       if( db->xAuth ){
917         int rcauth;
918         char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
919         rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
920         isIgnore = (rcauth==SQLITE_IGNORE);
921       }
922 #endif
923     }
924 
925     /* Take a shared-cache advisory read-lock on the parent table. Allocate
926     ** a cursor to use to search the unique index on the parent key columns
927     ** in the parent table.  */
928     sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
929     pParse->nTab++;
930 
931     if( regOld!=0 ){
932       /* A row is being removed from the child table. Search for the parent.
933       ** If the parent does not exist, removing the child row resolves an
934       ** outstanding foreign key constraint violation. */
935       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
936     }
937     if( regNew!=0 ){
938       /* A row is being added to the child table. If a parent row cannot
939       ** be found, adding the child row has violated the FK constraint. */
940       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
941     }
942 
943     sqlite3DbFree(db, aiFree);
944   }
945 
946   /* Loop through all the foreign key constraints that refer to this table.
947   ** (the "child" constraints) */
948   for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
949     Index *pIdx = 0;              /* Foreign key index for pFKey */
950     SrcList *pSrc;
951     int *aiCol = 0;
952 
953     if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
954       continue;
955     }
956 
957     if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs)
958      && !pParse->pToplevel && !pParse->isMultiWrite
959     ){
960       assert( regOld==0 && regNew!=0 );
961       /* Inserting a single row into a parent table cannot cause an immediate
962       ** foreign key violation. So do nothing in this case.  */
963       continue;
964     }
965 
966     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
967       if( !isIgnoreErrors || db->mallocFailed ) return;
968       continue;
969     }
970     assert( aiCol || pFKey->nCol==1 );
971 
972     /* Create a SrcList structure containing the child table.  We need the
973     ** child table as a SrcList for sqlite3WhereBegin() */
974     pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
975     if( pSrc ){
976       struct SrcList_item *pItem = pSrc->a;
977       pItem->pTab = pFKey->pFrom;
978       pItem->zName = pFKey->pFrom->zName;
979       pItem->pTab->nRef++;
980       pItem->iCursor = pParse->nTab++;
981 
982       if( regNew!=0 ){
983         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
984       }
985       if( regOld!=0 ){
986         /* If there is a RESTRICT action configured for the current operation
987         ** on the parent table of this FK, then throw an exception
988         ** immediately if the FK constraint is violated, even if this is a
989         ** deferred trigger. That's what RESTRICT means. To defer checking
990         ** the constraint, the FK should specify NO ACTION (represented
991         ** using OE_None). NO ACTION is the default.  */
992         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
993       }
994       pItem->zName = 0;
995       sqlite3SrcListDelete(db, pSrc);
996     }
997     sqlite3DbFree(db, aiCol);
998   }
999 }
1000 
1001 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
1002 
1003 /*
1004 ** This function is called before generating code to update or delete a
1005 ** row contained in table pTab.
1006 */
1007 u32 sqlite3FkOldmask(
1008   Parse *pParse,                  /* Parse context */
1009   Table *pTab                     /* Table being modified */
1010 ){
1011   u32 mask = 0;
1012   if( pParse->db->flags&SQLITE_ForeignKeys ){
1013     FKey *p;
1014     int i;
1015     for(p=pTab->pFKey; p; p=p->pNextFrom){
1016       for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
1017     }
1018     for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1019       Index *pIdx = 0;
1020       sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
1021       if( pIdx ){
1022         for(i=0; i<pIdx->nKeyCol; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
1023       }
1024     }
1025   }
1026   return mask;
1027 }
1028 
1029 
1030 /*
1031 ** This function is called before generating code to update or delete a
1032 ** row contained in table pTab. If the operation is a DELETE, then
1033 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
1034 ** to an array of size N, where N is the number of columns in table pTab.
1035 ** If the i'th column is not modified by the UPDATE, then the corresponding
1036 ** entry in the aChange[] array is set to -1. If the column is modified,
1037 ** the value is 0 or greater. Parameter chngRowid is set to true if the
1038 ** UPDATE statement modifies the rowid fields of the table.
1039 **
1040 ** If any foreign key processing will be required, this function returns
1041 ** true. If there is no foreign key related processing, this function
1042 ** returns false.
1043 */
1044 int sqlite3FkRequired(
1045   Parse *pParse,                  /* Parse context */
1046   Table *pTab,                    /* Table being modified */
1047   int *aChange,                   /* Non-NULL for UPDATE operations */
1048   int chngRowid                   /* True for UPDATE that affects rowid */
1049 ){
1050   if( pParse->db->flags&SQLITE_ForeignKeys ){
1051     if( !aChange ){
1052       /* A DELETE operation. Foreign key processing is required if the
1053       ** table in question is either the child or parent table for any
1054       ** foreign key constraint.  */
1055       return (sqlite3FkReferences(pTab) || pTab->pFKey);
1056     }else{
1057       /* This is an UPDATE. Foreign key processing is only required if the
1058       ** operation modifies one or more child or parent key columns. */
1059       FKey *p;
1060 
1061       /* Check if any child key columns are being modified. */
1062       for(p=pTab->pFKey; p; p=p->pNextFrom){
1063         if( fkChildIsModified(pTab, p, aChange, chngRowid) ) return 1;
1064       }
1065 
1066       /* Check if any parent key columns are being modified. */
1067       for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1068         if( fkParentIsModified(pTab, p, aChange, chngRowid) ) return 1;
1069       }
1070     }
1071   }
1072   return 0;
1073 }
1074 
1075 /*
1076 ** This function is called when an UPDATE or DELETE operation is being
1077 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
1078 ** If the current operation is an UPDATE, then the pChanges parameter is
1079 ** passed a pointer to the list of columns being modified. If it is a
1080 ** DELETE, pChanges is passed a NULL pointer.
1081 **
1082 ** It returns a pointer to a Trigger structure containing a trigger
1083 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
1084 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
1085 ** returned (these actions require no special handling by the triggers
1086 ** sub-system, code for them is created by fkScanChildren()).
1087 **
1088 ** For example, if pFKey is the foreign key and pTab is table "p" in
1089 ** the following schema:
1090 **
1091 **   CREATE TABLE p(pk PRIMARY KEY);
1092 **   CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
1093 **
1094 ** then the returned trigger structure is equivalent to:
1095 **
1096 **   CREATE TRIGGER ... DELETE ON p BEGIN
1097 **     DELETE FROM c WHERE ck = old.pk;
1098 **   END;
1099 **
1100 ** The returned pointer is cached as part of the foreign key object. It
1101 ** is eventually freed along with the rest of the foreign key object by
1102 ** sqlite3FkDelete().
1103 */
1104 static Trigger *fkActionTrigger(
1105   Parse *pParse,                  /* Parse context */
1106   Table *pTab,                    /* Table being updated or deleted from */
1107   FKey *pFKey,                    /* Foreign key to get action for */
1108   ExprList *pChanges              /* Change-list for UPDATE, NULL for DELETE */
1109 ){
1110   sqlite3 *db = pParse->db;       /* Database handle */
1111   int action;                     /* One of OE_None, OE_Cascade etc. */
1112   Trigger *pTrigger;              /* Trigger definition to return */
1113   int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */
1114 
1115   action = pFKey->aAction[iAction];
1116   pTrigger = pFKey->apTrigger[iAction];
1117 
1118   if( action!=OE_None && !pTrigger ){
1119     u8 enableLookaside;           /* Copy of db->lookaside.bEnabled */
1120     char const *zFrom;            /* Name of child table */
1121     int nFrom;                    /* Length in bytes of zFrom */
1122     Index *pIdx = 0;              /* Parent key index for this FK */
1123     int *aiCol = 0;               /* child table cols -> parent key cols */
1124     TriggerStep *pStep = 0;        /* First (only) step of trigger program */
1125     Expr *pWhere = 0;             /* WHERE clause of trigger step */
1126     ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
1127     Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
1128     int i;                        /* Iterator variable */
1129     Expr *pWhen = 0;              /* WHEN clause for the trigger */
1130 
1131     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
1132     assert( aiCol || pFKey->nCol==1 );
1133 
1134     for(i=0; i<pFKey->nCol; i++){
1135       Token tOld = { "old", 3 };  /* Literal "old" token */
1136       Token tNew = { "new", 3 };  /* Literal "new" token */
1137       Token tFromCol;             /* Name of column in child table */
1138       Token tToCol;               /* Name of column in parent table */
1139       int iFromCol;               /* Idx of column in child table */
1140       Expr *pEq;                  /* tFromCol = OLD.tToCol */
1141 
1142       iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
1143       assert( iFromCol>=0 );
1144       tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
1145       tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
1146 
1147       tToCol.n = sqlite3Strlen30(tToCol.z);
1148       tFromCol.n = sqlite3Strlen30(tFromCol.z);
1149 
1150       /* Create the expression "OLD.zToCol = zFromCol". It is important
1151       ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1152       ** that the affinity and collation sequence associated with the
1153       ** parent table are used for the comparison. */
1154       pEq = sqlite3PExpr(pParse, TK_EQ,
1155           sqlite3PExpr(pParse, TK_DOT,
1156             sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
1157             sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
1158           , 0),
1159           sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
1160       , 0);
1161       pWhere = sqlite3ExprAnd(db, pWhere, pEq);
1162 
1163       /* For ON UPDATE, construct the next term of the WHEN clause.
1164       ** The final WHEN clause will be like this:
1165       **
1166       **    WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1167       */
1168       if( pChanges ){
1169         pEq = sqlite3PExpr(pParse, TK_IS,
1170             sqlite3PExpr(pParse, TK_DOT,
1171               sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
1172               sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1173               0),
1174             sqlite3PExpr(pParse, TK_DOT,
1175               sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1176               sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1177               0),
1178             0);
1179         pWhen = sqlite3ExprAnd(db, pWhen, pEq);
1180       }
1181 
1182       if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1183         Expr *pNew;
1184         if( action==OE_Cascade ){
1185           pNew = sqlite3PExpr(pParse, TK_DOT,
1186             sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1187             sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
1188           , 0);
1189         }else if( action==OE_SetDflt ){
1190           Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
1191           if( pDflt ){
1192             pNew = sqlite3ExprDup(db, pDflt, 0);
1193           }else{
1194             pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1195           }
1196         }else{
1197           pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1198         }
1199         pList = sqlite3ExprListAppend(pParse, pList, pNew);
1200         sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1201       }
1202     }
1203     sqlite3DbFree(db, aiCol);
1204 
1205     zFrom = pFKey->pFrom->zName;
1206     nFrom = sqlite3Strlen30(zFrom);
1207 
1208     if( action==OE_Restrict ){
1209       Token tFrom;
1210       Expr *pRaise;
1211 
1212       tFrom.z = zFrom;
1213       tFrom.n = nFrom;
1214       pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed");
1215       if( pRaise ){
1216         pRaise->affinity = OE_Abort;
1217       }
1218       pSelect = sqlite3SelectNew(pParse,
1219           sqlite3ExprListAppend(pParse, 0, pRaise),
1220           sqlite3SrcListAppend(db, 0, &tFrom, 0),
1221           pWhere,
1222           0, 0, 0, 0, 0, 0
1223       );
1224       pWhere = 0;
1225     }
1226 
1227     /* Disable lookaside memory allocation */
1228     enableLookaside = db->lookaside.bEnabled;
1229     db->lookaside.bEnabled = 0;
1230 
1231     pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1232         sizeof(Trigger) +         /* struct Trigger */
1233         sizeof(TriggerStep) +     /* Single step in trigger program */
1234         nFrom + 1                 /* Space for pStep->target.z */
1235     );
1236     if( pTrigger ){
1237       pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1238       pStep->target.z = (char *)&pStep[1];
1239       pStep->target.n = nFrom;
1240       memcpy((char *)pStep->target.z, zFrom, nFrom);
1241 
1242       pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1243       pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1244       pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1245       if( pWhen ){
1246         pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
1247         pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1248       }
1249     }
1250 
1251     /* Re-enable the lookaside buffer, if it was disabled earlier. */
1252     db->lookaside.bEnabled = enableLookaside;
1253 
1254     sqlite3ExprDelete(db, pWhere);
1255     sqlite3ExprDelete(db, pWhen);
1256     sqlite3ExprListDelete(db, pList);
1257     sqlite3SelectDelete(db, pSelect);
1258     if( db->mallocFailed==1 ){
1259       fkTriggerDelete(db, pTrigger);
1260       return 0;
1261     }
1262     assert( pStep!=0 );
1263 
1264     switch( action ){
1265       case OE_Restrict:
1266         pStep->op = TK_SELECT;
1267         break;
1268       case OE_Cascade:
1269         if( !pChanges ){
1270           pStep->op = TK_DELETE;
1271           break;
1272         }
1273       default:
1274         pStep->op = TK_UPDATE;
1275     }
1276     pStep->pTrig = pTrigger;
1277     pTrigger->pSchema = pTab->pSchema;
1278     pTrigger->pTabSchema = pTab->pSchema;
1279     pFKey->apTrigger[iAction] = pTrigger;
1280     pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1281   }
1282 
1283   return pTrigger;
1284 }
1285 
1286 /*
1287 ** This function is called when deleting or updating a row to implement
1288 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1289 */
1290 void sqlite3FkActions(
1291   Parse *pParse,                  /* Parse context */
1292   Table *pTab,                    /* Table being updated or deleted from */
1293   ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
1294   int regOld,                     /* Address of array containing old row */
1295   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
1296   int bChngRowid                  /* True if rowid is UPDATEd */
1297 ){
1298   /* If foreign-key support is enabled, iterate through all FKs that
1299   ** refer to table pTab. If there is an action associated with the FK
1300   ** for this operation (either update or delete), invoke the associated
1301   ** trigger sub-program.  */
1302   if( pParse->db->flags&SQLITE_ForeignKeys ){
1303     FKey *pFKey;                  /* Iterator variable */
1304     for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1305       if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
1306         Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1307         if( pAct ){
1308           sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
1309         }
1310       }
1311     }
1312   }
1313 }
1314 
1315 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1316 
1317 /*
1318 ** Free all memory associated with foreign key definitions attached to
1319 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1320 ** hash table.
1321 */
1322 void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1323   FKey *pFKey;                    /* Iterator variable */
1324   FKey *pNext;                    /* Copy of pFKey->pNextFrom */
1325 
1326   assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1327   for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1328 
1329     /* Remove the FK from the fkeyHash hash table. */
1330     if( !db || db->pnBytesFreed==0 ){
1331       if( pFKey->pPrevTo ){
1332         pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1333       }else{
1334         void *p = (void *)pFKey->pNextTo;
1335         const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1336         sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p);
1337       }
1338       if( pFKey->pNextTo ){
1339         pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1340       }
1341     }
1342 
1343     /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1344     ** classified as either immediate or deferred.
1345     */
1346     assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1347 
1348     /* Delete any triggers created to implement actions for this FK. */
1349 #ifndef SQLITE_OMIT_TRIGGER
1350     fkTriggerDelete(db, pFKey->apTrigger[0]);
1351     fkTriggerDelete(db, pFKey->apTrigger[1]);
1352 #endif
1353 
1354     pNext = pFKey->pNextFrom;
1355     sqlite3DbFree(db, pFKey);
1356   }
1357 }
1358 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
1359