1 /* 2 ** 3 ** The author disclaims copyright to this source code. In place of 4 ** a legal notice, here is a blessing: 5 ** 6 ** May you do good and not evil. 7 ** May you find forgiveness for yourself and forgive others. 8 ** May you share freely, never taking more than you give. 9 ** 10 ************************************************************************* 11 ** This file contains code used by the compiler to add foreign key 12 ** support to compiled SQL statements. 13 */ 14 #include "sqliteInt.h" 15 16 #ifndef SQLITE_OMIT_FOREIGN_KEY 17 #ifndef SQLITE_OMIT_TRIGGER 18 19 /* 20 ** Deferred and Immediate FKs 21 ** -------------------------- 22 ** 23 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 24 ** If an immediate foreign key constraint is violated, 25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current 26 ** statement transaction rolled back. If a 27 ** deferred foreign key constraint is violated, no action is taken 28 ** immediately. However if the application attempts to commit the 29 ** transaction before fixing the constraint violation, the attempt fails. 30 ** 31 ** Deferred constraints are implemented using a simple counter associated 32 ** with the database handle. The counter is set to zero each time a 33 ** database transaction is opened. Each time a statement is executed 34 ** that causes a foreign key violation, the counter is incremented. Each 35 ** time a statement is executed that removes an existing violation from 36 ** the database, the counter is decremented. When the transaction is 37 ** committed, the commit fails if the current value of the counter is 38 ** greater than zero. This scheme has two big drawbacks: 39 ** 40 ** * When a commit fails due to a deferred foreign key constraint, 41 ** there is no way to tell which foreign constraint is not satisfied, 42 ** or which row it is not satisfied for. 43 ** 44 ** * If the database contains foreign key violations when the 45 ** transaction is opened, this may cause the mechanism to malfunction. 46 ** 47 ** Despite these problems, this approach is adopted as it seems simpler 48 ** than the alternatives. 49 ** 50 ** INSERT operations: 51 ** 52 ** I.1) For each FK for which the table is the child table, search 53 ** the parent table for a match. If none is found increment the 54 ** constraint counter. 55 ** 56 ** I.2) For each FK for which the table is the parent table, 57 ** search the child table for rows that correspond to the new 58 ** row in the parent table. Decrement the counter for each row 59 ** found (as the constraint is now satisfied). 60 ** 61 ** DELETE operations: 62 ** 63 ** D.1) For each FK for which the table is the child table, 64 ** search the parent table for a row that corresponds to the 65 ** deleted row in the child table. If such a row is not found, 66 ** decrement the counter. 67 ** 68 ** D.2) For each FK for which the table is the parent table, search 69 ** the child table for rows that correspond to the deleted row 70 ** in the parent table. For each found increment the counter. 71 ** 72 ** UPDATE operations: 73 ** 74 ** An UPDATE command requires that all 4 steps above are taken, but only 75 ** for FK constraints for which the affected columns are actually 76 ** modified (values must be compared at runtime). 77 ** 78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 79 ** This simplifies the implementation a bit. 80 ** 81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 82 ** resolution is considered to delete rows before the new row is inserted. 83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 84 ** is thrown, even if the FK constraint would be satisfied after the new 85 ** row is inserted. 86 ** 87 ** Immediate constraints are usually handled similarly. The only difference 88 ** is that the counter used is stored as part of each individual statement 89 ** object (struct Vdbe). If, after the statement has run, its immediate 90 ** constraint counter is greater than zero, 91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY 92 ** and the statement transaction is rolled back. An exception is an INSERT 93 ** statement that inserts a single row only (no triggers). In this case, 94 ** instead of using a counter, an exception is thrown immediately if the 95 ** INSERT violates a foreign key constraint. This is necessary as such 96 ** an INSERT does not open a statement transaction. 97 ** 98 ** TODO: How should dropping a table be handled? How should renaming a 99 ** table be handled? 100 ** 101 ** 102 ** Query API Notes 103 ** --------------- 104 ** 105 ** Before coding an UPDATE or DELETE row operation, the code-generator 106 ** for those two operations needs to know whether or not the operation 107 ** requires any FK processing and, if so, which columns of the original 108 ** row are required by the FK processing VDBE code (i.e. if FKs were 109 ** implemented using triggers, which of the old.* columns would be 110 ** accessed). No information is required by the code-generator before 111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 112 ** generation code to query for this information are: 113 ** 114 ** sqlite3FkRequired() - Test to see if FK processing is required. 115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 116 ** 117 ** 118 ** Externally accessible module functions 119 ** -------------------------------------- 120 ** 121 ** sqlite3FkCheck() - Check for foreign key violations. 122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 123 ** sqlite3FkDelete() - Delete an FKey structure. 124 */ 125 126 /* 127 ** VDBE Calling Convention 128 ** ----------------------- 129 ** 130 ** Example: 131 ** 132 ** For the following INSERT statement: 133 ** 134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 135 ** INSERT INTO t1 VALUES(1, 2, 3.1); 136 ** 137 ** Register (x): 2 (type integer) 138 ** Register (x+1): 1 (type integer) 139 ** Register (x+2): NULL (type NULL) 140 ** Register (x+3): 3.1 (type real) 141 */ 142 143 /* 144 ** A foreign key constraint requires that the key columns in the parent 145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 146 ** Given that pParent is the parent table for foreign key constraint pFKey, 147 ** search the schema for a unique index on the parent key columns. 148 ** 149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 151 ** is set to point to the unique index. 152 ** 153 ** If the parent key consists of a single column (the foreign key constraint 154 ** is not a composite foreign key), output variable *paiCol is set to NULL. 155 ** Otherwise, it is set to point to an allocated array of size N, where 156 ** N is the number of columns in the parent key. The first element of the 157 ** array is the index of the child table column that is mapped by the FK 158 ** constraint to the parent table column stored in the left-most column 159 ** of index *ppIdx. The second element of the array is the index of the 160 ** child table column that corresponds to the second left-most column of 161 ** *ppIdx, and so on. 162 ** 163 ** If the required index cannot be found, either because: 164 ** 165 ** 1) The named parent key columns do not exist, or 166 ** 167 ** 2) The named parent key columns do exist, but are not subject to a 168 ** UNIQUE or PRIMARY KEY constraint, or 169 ** 170 ** 3) No parent key columns were provided explicitly as part of the 171 ** foreign key definition, and the parent table does not have a 172 ** PRIMARY KEY, or 173 ** 174 ** 4) No parent key columns were provided explicitly as part of the 175 ** foreign key definition, and the PRIMARY KEY of the parent table 176 ** consists of a a different number of columns to the child key in 177 ** the child table. 178 ** 179 ** then non-zero is returned, and a "foreign key mismatch" error loaded 180 ** into pParse. If an OOM error occurs, non-zero is returned and the 181 ** pParse->db->mallocFailed flag is set. 182 */ 183 int sqlite3FkLocateIndex( 184 Parse *pParse, /* Parse context to store any error in */ 185 Table *pParent, /* Parent table of FK constraint pFKey */ 186 FKey *pFKey, /* Foreign key to find index for */ 187 Index **ppIdx, /* OUT: Unique index on parent table */ 188 int **paiCol /* OUT: Map of index columns in pFKey */ 189 ){ 190 Index *pIdx = 0; /* Value to return via *ppIdx */ 191 int *aiCol = 0; /* Value to return via *paiCol */ 192 int nCol = pFKey->nCol; /* Number of columns in parent key */ 193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 194 195 /* The caller is responsible for zeroing output parameters. */ 196 assert( ppIdx && *ppIdx==0 ); 197 assert( !paiCol || *paiCol==0 ); 198 assert( pParse ); 199 200 /* If this is a non-composite (single column) foreign key, check if it 201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 202 ** and *paiCol set to zero and return early. 203 ** 204 ** Otherwise, for a composite foreign key (more than one column), allocate 205 ** space for the aiCol array (returned via output parameter *paiCol). 206 ** Non-composite foreign keys do not require the aiCol array. 207 */ 208 if( nCol==1 ){ 209 /* The FK maps to the IPK if any of the following are true: 210 ** 211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 212 ** mapped to the primary key of table pParent, or 213 ** 2) The FK is explicitly mapped to a column declared as INTEGER 214 ** PRIMARY KEY. 215 */ 216 if( pParent->iPKey>=0 ){ 217 if( !zKey ) return 0; 218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; 219 } 220 }else if( paiCol ){ 221 assert( nCol>1 ); 222 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int)); 223 if( !aiCol ) return 1; 224 *paiCol = aiCol; 225 } 226 227 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 228 if( pIdx->nKeyCol==nCol && pIdx->onError!=OE_None ){ 229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 230 ** of columns. If each indexed column corresponds to a foreign key 231 ** column of pFKey, then this index is a winner. */ 232 233 if( zKey==0 ){ 234 /* If zKey is NULL, then this foreign key is implicitly mapped to 235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 236 ** identified by the test (Index.autoIndex==2). */ 237 if( pIdx->autoIndex==2 ){ 238 if( aiCol ){ 239 int i; 240 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 241 } 242 break; 243 } 244 }else{ 245 /* If zKey is non-NULL, then this foreign key was declared to 246 ** map to an explicit list of columns in table pParent. Check if this 247 ** index matches those columns. Also, check that the index uses 248 ** the default collation sequences for each column. */ 249 int i, j; 250 for(i=0; i<nCol; i++){ 251 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 252 char *zDfltColl; /* Def. collation for column */ 253 char *zIdxCol; /* Name of indexed column */ 254 255 /* If the index uses a collation sequence that is different from 256 ** the default collation sequence for the column, this index is 257 ** unusable. Bail out early in this case. */ 258 zDfltColl = pParent->aCol[iCol].zColl; 259 if( !zDfltColl ){ 260 zDfltColl = "BINARY"; 261 } 262 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 263 264 zIdxCol = pParent->aCol[iCol].zName; 265 for(j=0; j<nCol; j++){ 266 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 267 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 268 break; 269 } 270 } 271 if( j==nCol ) break; 272 } 273 if( i==nCol ) break; /* pIdx is usable */ 274 } 275 } 276 } 277 278 if( !pIdx ){ 279 if( !pParse->disableTriggers ){ 280 sqlite3ErrorMsg(pParse, 281 "foreign key mismatch - \"%w\" referencing \"%w\"", 282 pFKey->pFrom->zName, pFKey->zTo); 283 } 284 sqlite3DbFree(pParse->db, aiCol); 285 return 1; 286 } 287 288 *ppIdx = pIdx; 289 return 0; 290 } 291 292 /* 293 ** This function is called when a row is inserted into or deleted from the 294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 295 ** on the child table of pFKey, this function is invoked twice for each row 296 ** affected - once to "delete" the old row, and then again to "insert" the 297 ** new row. 298 ** 299 ** Each time it is called, this function generates VDBE code to locate the 300 ** row in the parent table that corresponds to the row being inserted into 301 ** or deleted from the child table. If the parent row can be found, no 302 ** special action is taken. Otherwise, if the parent row can *not* be 303 ** found in the parent table: 304 ** 305 ** Operation | FK type | Action taken 306 ** -------------------------------------------------------------------------- 307 ** INSERT immediate Increment the "immediate constraint counter". 308 ** 309 ** DELETE immediate Decrement the "immediate constraint counter". 310 ** 311 ** INSERT deferred Increment the "deferred constraint counter". 312 ** 313 ** DELETE deferred Decrement the "deferred constraint counter". 314 ** 315 ** These operations are identified in the comment at the top of this file 316 ** (fkey.c) as "I.1" and "D.1". 317 */ 318 static void fkLookupParent( 319 Parse *pParse, /* Parse context */ 320 int iDb, /* Index of database housing pTab */ 321 Table *pTab, /* Parent table of FK pFKey */ 322 Index *pIdx, /* Unique index on parent key columns in pTab */ 323 FKey *pFKey, /* Foreign key constraint */ 324 int *aiCol, /* Map from parent key columns to child table columns */ 325 int regData, /* Address of array containing child table row */ 326 int nIncr, /* Increment constraint counter by this */ 327 int isIgnore /* If true, pretend pTab contains all NULL values */ 328 ){ 329 int i; /* Iterator variable */ 330 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 331 int iCur = pParse->nTab - 1; /* Cursor number to use */ 332 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ 333 334 /* If nIncr is less than zero, then check at runtime if there are any 335 ** outstanding constraints to resolve. If there are not, there is no need 336 ** to check if deleting this row resolves any outstanding violations. 337 ** 338 ** Check if any of the key columns in the child table row are NULL. If 339 ** any are, then the constraint is considered satisfied. No need to 340 ** search for a matching row in the parent table. */ 341 if( nIncr<0 ){ 342 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 343 } 344 for(i=0; i<pFKey->nCol; i++){ 345 int iReg = aiCol[i] + regData + 1; 346 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); 347 } 348 349 if( isIgnore==0 ){ 350 if( pIdx==0 ){ 351 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 352 ** column of the parent table (table pTab). */ 353 int iMustBeInt; /* Address of MustBeInt instruction */ 354 int regTemp = sqlite3GetTempReg(pParse); 355 356 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 357 ** apply the affinity of the parent key). If this fails, then there 358 ** is no matching parent key. Before using MustBeInt, make a copy of 359 ** the value. Otherwise, the value inserted into the child key column 360 ** will have INTEGER affinity applied to it, which may not be correct. */ 361 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); 362 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 363 364 /* If the parent table is the same as the child table, and we are about 365 ** to increment the constraint-counter (i.e. this is an INSERT operation), 366 ** then check if the row being inserted matches itself. If so, do not 367 ** increment the constraint-counter. */ 368 if( pTab==pFKey->pFrom && nIncr==1 ){ 369 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); 370 } 371 372 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 373 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); 374 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); 375 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 376 sqlite3VdbeJumpHere(v, iMustBeInt); 377 sqlite3ReleaseTempReg(pParse, regTemp); 378 }else{ 379 int nCol = pFKey->nCol; 380 int regTemp = sqlite3GetTempRange(pParse, nCol); 381 int regRec = sqlite3GetTempReg(pParse); 382 383 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 384 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 385 for(i=0; i<nCol; i++){ 386 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i); 387 } 388 389 /* If the parent table is the same as the child table, and we are about 390 ** to increment the constraint-counter (i.e. this is an INSERT operation), 391 ** then check if the row being inserted matches itself. If so, do not 392 ** increment the constraint-counter. 393 ** 394 ** If any of the parent-key values are NULL, then the row cannot match 395 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 396 ** of the parent-key values are NULL (at this point it is known that 397 ** none of the child key values are). 398 */ 399 if( pTab==pFKey->pFrom && nIncr==1 ){ 400 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 401 for(i=0; i<nCol; i++){ 402 int iChild = aiCol[i]+1+regData; 403 int iParent = pIdx->aiColumn[i]+1+regData; 404 assert( aiCol[i]!=pTab->iPKey ); 405 if( pIdx->aiColumn[i]==pTab->iPKey ){ 406 /* The parent key is a composite key that includes the IPK column */ 407 iParent = regData; 408 } 409 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); 410 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 411 } 412 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); 413 } 414 415 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec); 416 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT); 417 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); 418 419 sqlite3ReleaseTempReg(pParse, regRec); 420 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 421 } 422 } 423 424 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) 425 && !pParse->pToplevel 426 && !pParse->isMultiWrite 427 ){ 428 /* Special case: If this is an INSERT statement that will insert exactly 429 ** one row into the table, raise a constraint immediately instead of 430 ** incrementing a counter. This is necessary as the VM code is being 431 ** generated for will not open a statement transaction. */ 432 assert( nIncr==1 ); 433 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 434 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 435 }else{ 436 if( nIncr>0 && pFKey->isDeferred==0 ){ 437 sqlite3ParseToplevel(pParse)->mayAbort = 1; 438 } 439 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 440 } 441 442 sqlite3VdbeResolveLabel(v, iOk); 443 sqlite3VdbeAddOp1(v, OP_Close, iCur); 444 } 445 446 447 /* 448 ** Return an Expr object that refers to a memory register corresponding 449 ** to column iCol of table pTab. 450 ** 451 ** regBase is the first of an array of register that contains the data 452 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first 453 ** column. regBase+2 holds the second column, and so forth. 454 */ 455 static Expr *exprTableRegister( 456 Parse *pParse, /* Parsing and code generating context */ 457 Table *pTab, /* The table whose content is at r[regBase]... */ 458 int regBase, /* Contents of table pTab */ 459 i16 iCol /* Which column of pTab is desired */ 460 ){ 461 Expr *pExpr; 462 Column *pCol; 463 const char *zColl; 464 sqlite3 *db = pParse->db; 465 466 pExpr = sqlite3Expr(db, TK_REGISTER, 0); 467 if( pExpr ){ 468 if( iCol>=0 && iCol!=pTab->iPKey ){ 469 pCol = &pTab->aCol[iCol]; 470 pExpr->iTable = regBase + iCol + 1; 471 pExpr->affinity = pCol->affinity; 472 zColl = pCol->zColl; 473 if( zColl==0 ) zColl = db->pDfltColl->zName; 474 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); 475 }else{ 476 pExpr->iTable = regBase; 477 pExpr->affinity = SQLITE_AFF_INTEGER; 478 } 479 } 480 return pExpr; 481 } 482 483 /* 484 ** Return an Expr object that refers to column iCol of table pTab which 485 ** has cursor iCur. 486 */ 487 static Expr *exprTableColumn( 488 sqlite3 *db, /* The database connection */ 489 Table *pTab, /* The table whose column is desired */ 490 int iCursor, /* The open cursor on the table */ 491 i16 iCol /* The column that is wanted */ 492 ){ 493 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); 494 if( pExpr ){ 495 pExpr->pTab = pTab; 496 pExpr->iTable = iCursor; 497 pExpr->iColumn = iCol; 498 } 499 return pExpr; 500 } 501 502 /* 503 ** This function is called to generate code executed when a row is deleted 504 ** from the parent table of foreign key constraint pFKey and, if pFKey is 505 ** deferred, when a row is inserted into the same table. When generating 506 ** code for an SQL UPDATE operation, this function may be called twice - 507 ** once to "delete" the old row and once to "insert" the new row. 508 ** 509 ** The code generated by this function scans through the rows in the child 510 ** table that correspond to the parent table row being deleted or inserted. 511 ** For each child row found, one of the following actions is taken: 512 ** 513 ** Operation | FK type | Action taken 514 ** -------------------------------------------------------------------------- 515 ** DELETE immediate Increment the "immediate constraint counter". 516 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 517 ** throw a "FOREIGN KEY constraint failed" exception. 518 ** 519 ** INSERT immediate Decrement the "immediate constraint counter". 520 ** 521 ** DELETE deferred Increment the "deferred constraint counter". 522 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 523 ** throw a "FOREIGN KEY constraint failed" exception. 524 ** 525 ** INSERT deferred Decrement the "deferred constraint counter". 526 ** 527 ** These operations are identified in the comment at the top of this file 528 ** (fkey.c) as "I.2" and "D.2". 529 */ 530 static void fkScanChildren( 531 Parse *pParse, /* Parse context */ 532 SrcList *pSrc, /* The child table to be scanned */ 533 Table *pTab, /* The parent table */ 534 Index *pIdx, /* Index on parent covering the foreign key */ 535 FKey *pFKey, /* The foreign key linking pSrc to pTab */ 536 int *aiCol, /* Map from pIdx cols to child table cols */ 537 int regData, /* Parent row data starts here */ 538 int nIncr /* Amount to increment deferred counter by */ 539 ){ 540 sqlite3 *db = pParse->db; /* Database handle */ 541 int i; /* Iterator variable */ 542 Expr *pWhere = 0; /* WHERE clause to scan with */ 543 NameContext sNameContext; /* Context used to resolve WHERE clause */ 544 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 545 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 546 Vdbe *v = sqlite3GetVdbe(pParse); 547 548 assert( pIdx==0 || pIdx->pTable==pTab ); 549 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); 550 assert( pIdx!=0 || pFKey->nCol==1 ); 551 assert( pIdx!=0 || HasRowid(pTab) ); 552 553 if( nIncr<0 ){ 554 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 555 } 556 557 /* Create an Expr object representing an SQL expression like: 558 ** 559 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 560 ** 561 ** The collation sequence used for the comparison should be that of 562 ** the parent key columns. The affinity of the parent key column should 563 ** be applied to each child key value before the comparison takes place. 564 */ 565 for(i=0; i<pFKey->nCol; i++){ 566 Expr *pLeft; /* Value from parent table row */ 567 Expr *pRight; /* Column ref to child table */ 568 Expr *pEq; /* Expression (pLeft = pRight) */ 569 i16 iCol; /* Index of column in child table */ 570 const char *zCol; /* Name of column in child table */ 571 572 iCol = pIdx ? pIdx->aiColumn[i] : -1; 573 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 574 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 575 assert( iCol>=0 ); 576 zCol = pFKey->pFrom->aCol[iCol].zName; 577 pRight = sqlite3Expr(db, TK_ID, zCol); 578 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); 579 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 580 } 581 582 /* If the child table is the same as the parent table, then add terms 583 ** to the WHERE clause that prevent this entry from being scanned. 584 ** The added WHERE clause terms are like this: 585 ** 586 ** $current_rowid!=rowid 587 ** NOT( $current_a==a AND $current_b==b AND ... ) 588 ** 589 ** The first form is used for rowid tables. The second form is used 590 ** for WITHOUT ROWID tables. In the second form, the primary key is 591 ** (a,b,...) 592 */ 593 if( pTab==pFKey->pFrom && nIncr>0 ){ 594 Expr *pNe; /* Expression (pLeft != pRight) */ 595 Expr *pLeft; /* Value from parent table row */ 596 Expr *pRight; /* Column ref to child table */ 597 if( HasRowid(pTab) ){ 598 pLeft = exprTableRegister(pParse, pTab, regData, -1); 599 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); 600 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); 601 }else{ 602 Expr *pEq, *pAll = 0; 603 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 604 assert( pIdx!=0 ); 605 for(i=0; i<pPk->nKeyCol; i++){ 606 i16 iCol = pIdx->aiColumn[i]; 607 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 608 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol); 609 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); 610 pAll = sqlite3ExprAnd(db, pAll, pEq); 611 } 612 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0, 0); 613 } 614 pWhere = sqlite3ExprAnd(db, pWhere, pNe); 615 } 616 617 /* Resolve the references in the WHERE clause. */ 618 memset(&sNameContext, 0, sizeof(NameContext)); 619 sNameContext.pSrcList = pSrc; 620 sNameContext.pParse = pParse; 621 sqlite3ResolveExprNames(&sNameContext, pWhere); 622 623 /* Create VDBE to loop through the entries in pSrc that match the WHERE 624 ** clause. If the constraint is not deferred, throw an exception for 625 ** each row found. Otherwise, for deferred constraints, increment the 626 ** deferred constraint counter by nIncr for each row selected. */ 627 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); 628 if( nIncr>0 && pFKey->isDeferred==0 ){ 629 sqlite3ParseToplevel(pParse)->mayAbort = 1; 630 } 631 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 632 if( pWInfo ){ 633 sqlite3WhereEnd(pWInfo); 634 } 635 636 /* Clean up the WHERE clause constructed above. */ 637 sqlite3ExprDelete(db, pWhere); 638 if( iFkIfZero ){ 639 sqlite3VdbeJumpHere(v, iFkIfZero); 640 } 641 } 642 643 /* 644 ** This function returns a linked list of FKey objects (connected by 645 ** FKey.pNextTo) holding all children of table pTab. For example, 646 ** given the following schema: 647 ** 648 ** CREATE TABLE t1(a PRIMARY KEY); 649 ** CREATE TABLE t2(b REFERENCES t1(a); 650 ** 651 ** Calling this function with table "t1" as an argument returns a pointer 652 ** to the FKey structure representing the foreign key constraint on table 653 ** "t2". Calling this function with "t2" as the argument would return a 654 ** NULL pointer (as there are no FK constraints for which t2 is the parent 655 ** table). 656 */ 657 FKey *sqlite3FkReferences(Table *pTab){ 658 int nName = sqlite3Strlen30(pTab->zName); 659 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName); 660 } 661 662 /* 663 ** The second argument is a Trigger structure allocated by the 664 ** fkActionTrigger() routine. This function deletes the Trigger structure 665 ** and all of its sub-components. 666 ** 667 ** The Trigger structure or any of its sub-components may be allocated from 668 ** the lookaside buffer belonging to database handle dbMem. 669 */ 670 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 671 if( p ){ 672 TriggerStep *pStep = p->step_list; 673 sqlite3ExprDelete(dbMem, pStep->pWhere); 674 sqlite3ExprListDelete(dbMem, pStep->pExprList); 675 sqlite3SelectDelete(dbMem, pStep->pSelect); 676 sqlite3ExprDelete(dbMem, p->pWhen); 677 sqlite3DbFree(dbMem, p); 678 } 679 } 680 681 /* 682 ** This function is called to generate code that runs when table pTab is 683 ** being dropped from the database. The SrcList passed as the second argument 684 ** to this function contains a single entry guaranteed to resolve to 685 ** table pTab. 686 ** 687 ** Normally, no code is required. However, if either 688 ** 689 ** (a) The table is the parent table of a FK constraint, or 690 ** (b) The table is the child table of a deferred FK constraint and it is 691 ** determined at runtime that there are outstanding deferred FK 692 ** constraint violations in the database, 693 ** 694 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 695 ** the table from the database. Triggers are disabled while running this 696 ** DELETE, but foreign key actions are not. 697 */ 698 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 699 sqlite3 *db = pParse->db; 700 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ 701 int iSkip = 0; 702 Vdbe *v = sqlite3GetVdbe(pParse); 703 704 assert( v ); /* VDBE has already been allocated */ 705 if( sqlite3FkReferences(pTab)==0 ){ 706 /* Search for a deferred foreign key constraint for which this table 707 ** is the child table. If one cannot be found, return without 708 ** generating any VDBE code. If one can be found, then jump over 709 ** the entire DELETE if there are no outstanding deferred constraints 710 ** when this statement is run. */ 711 FKey *p; 712 for(p=pTab->pFKey; p; p=p->pNextFrom){ 713 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; 714 } 715 if( !p ) return; 716 iSkip = sqlite3VdbeMakeLabel(v); 717 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); 718 } 719 720 pParse->disableTriggers = 1; 721 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); 722 pParse->disableTriggers = 0; 723 724 /* If the DELETE has generated immediate foreign key constraint 725 ** violations, halt the VDBE and return an error at this point, before 726 ** any modifications to the schema are made. This is because statement 727 ** transactions are not able to rollback schema changes. 728 ** 729 ** If the SQLITE_DeferFKs flag is set, then this is not required, as 730 ** the statement transaction will not be rolled back even if FK 731 ** constraints are violated. 732 */ 733 if( (db->flags & SQLITE_DeferFKs)==0 ){ 734 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 735 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 736 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 737 } 738 739 if( iSkip ){ 740 sqlite3VdbeResolveLabel(v, iSkip); 741 } 742 } 743 } 744 745 746 /* 747 ** The second argument points to an FKey object representing a foreign key 748 ** for which pTab is the child table. An UPDATE statement against pTab 749 ** is currently being processed. For each column of the table that is 750 ** actually updated, the corresponding element in the aChange[] array 751 ** is zero or greater (if a column is unmodified the corresponding element 752 ** is set to -1). If the rowid column is modified by the UPDATE statement 753 ** the bChngRowid argument is non-zero. 754 ** 755 ** This function returns true if any of the columns that are part of the 756 ** child key for FK constraint *p are modified. 757 */ 758 static int fkChildIsModified( 759 Table *pTab, /* Table being updated */ 760 FKey *p, /* Foreign key for which pTab is the child */ 761 int *aChange, /* Array indicating modified columns */ 762 int bChngRowid /* True if rowid is modified by this update */ 763 ){ 764 int i; 765 for(i=0; i<p->nCol; i++){ 766 int iChildKey = p->aCol[i].iFrom; 767 if( aChange[iChildKey]>=0 ) return 1; 768 if( iChildKey==pTab->iPKey && bChngRowid ) return 1; 769 } 770 return 0; 771 } 772 773 /* 774 ** The second argument points to an FKey object representing a foreign key 775 ** for which pTab is the parent table. An UPDATE statement against pTab 776 ** is currently being processed. For each column of the table that is 777 ** actually updated, the corresponding element in the aChange[] array 778 ** is zero or greater (if a column is unmodified the corresponding element 779 ** is set to -1). If the rowid column is modified by the UPDATE statement 780 ** the bChngRowid argument is non-zero. 781 ** 782 ** This function returns true if any of the columns that are part of the 783 ** parent key for FK constraint *p are modified. 784 */ 785 static int fkParentIsModified( 786 Table *pTab, 787 FKey *p, 788 int *aChange, 789 int bChngRowid 790 ){ 791 int i; 792 for(i=0; i<p->nCol; i++){ 793 char *zKey = p->aCol[i].zCol; 794 int iKey; 795 for(iKey=0; iKey<pTab->nCol; iKey++){ 796 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ 797 Column *pCol = &pTab->aCol[iKey]; 798 if( zKey ){ 799 if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1; 800 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ 801 return 1; 802 } 803 } 804 } 805 } 806 return 0; 807 } 808 809 /* 810 ** This function is called when inserting, deleting or updating a row of 811 ** table pTab to generate VDBE code to perform foreign key constraint 812 ** processing for the operation. 813 ** 814 ** For a DELETE operation, parameter regOld is passed the index of the 815 ** first register in an array of (pTab->nCol+1) registers containing the 816 ** rowid of the row being deleted, followed by each of the column values 817 ** of the row being deleted, from left to right. Parameter regNew is passed 818 ** zero in this case. 819 ** 820 ** For an INSERT operation, regOld is passed zero and regNew is passed the 821 ** first register of an array of (pTab->nCol+1) registers containing the new 822 ** row data. 823 ** 824 ** For an UPDATE operation, this function is called twice. Once before 825 ** the original record is deleted from the table using the calling convention 826 ** described for DELETE. Then again after the original record is deleted 827 ** but before the new record is inserted using the INSERT convention. 828 */ 829 void sqlite3FkCheck( 830 Parse *pParse, /* Parse context */ 831 Table *pTab, /* Row is being deleted from this table */ 832 int regOld, /* Previous row data is stored here */ 833 int regNew, /* New row data is stored here */ 834 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 835 int bChngRowid /* True if rowid is UPDATEd */ 836 ){ 837 sqlite3 *db = pParse->db; /* Database handle */ 838 FKey *pFKey; /* Used to iterate through FKs */ 839 int iDb; /* Index of database containing pTab */ 840 const char *zDb; /* Name of database containing pTab */ 841 int isIgnoreErrors = pParse->disableTriggers; 842 843 /* Exactly one of regOld and regNew should be non-zero. */ 844 assert( (regOld==0)!=(regNew==0) ); 845 846 /* If foreign-keys are disabled, this function is a no-op. */ 847 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 848 849 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 850 zDb = db->aDb[iDb].zName; 851 852 /* Loop through all the foreign key constraints for which pTab is the 853 ** child table (the table that the foreign key definition is part of). */ 854 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 855 Table *pTo; /* Parent table of foreign key pFKey */ 856 Index *pIdx = 0; /* Index on key columns in pTo */ 857 int *aiFree = 0; 858 int *aiCol; 859 int iCol; 860 int i; 861 int isIgnore = 0; 862 863 if( aChange 864 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 865 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 866 ){ 867 continue; 868 } 869 870 /* Find the parent table of this foreign key. Also find a unique index 871 ** on the parent key columns in the parent table. If either of these 872 ** schema items cannot be located, set an error in pParse and return 873 ** early. */ 874 if( pParse->disableTriggers ){ 875 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 876 }else{ 877 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 878 } 879 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 880 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 881 if( !isIgnoreErrors || db->mallocFailed ) return; 882 if( pTo==0 ){ 883 /* If isIgnoreErrors is true, then a table is being dropped. In this 884 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 885 ** before actually dropping it in order to check FK constraints. 886 ** If the parent table of an FK constraint on the current table is 887 ** missing, behave as if it is empty. i.e. decrement the relevant 888 ** FK counter for each row of the current table with non-NULL keys. 889 */ 890 Vdbe *v = sqlite3GetVdbe(pParse); 891 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 892 for(i=0; i<pFKey->nCol; i++){ 893 int iReg = pFKey->aCol[i].iFrom + regOld + 1; 894 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); 895 } 896 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 897 } 898 continue; 899 } 900 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 901 902 if( aiFree ){ 903 aiCol = aiFree; 904 }else{ 905 iCol = pFKey->aCol[0].iFrom; 906 aiCol = &iCol; 907 } 908 for(i=0; i<pFKey->nCol; i++){ 909 if( aiCol[i]==pTab->iPKey ){ 910 aiCol[i] = -1; 911 } 912 #ifndef SQLITE_OMIT_AUTHORIZATION 913 /* Request permission to read the parent key columns. If the 914 ** authorization callback returns SQLITE_IGNORE, behave as if any 915 ** values read from the parent table are NULL. */ 916 if( db->xAuth ){ 917 int rcauth; 918 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; 919 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 920 isIgnore = (rcauth==SQLITE_IGNORE); 921 } 922 #endif 923 } 924 925 /* Take a shared-cache advisory read-lock on the parent table. Allocate 926 ** a cursor to use to search the unique index on the parent key columns 927 ** in the parent table. */ 928 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 929 pParse->nTab++; 930 931 if( regOld!=0 ){ 932 /* A row is being removed from the child table. Search for the parent. 933 ** If the parent does not exist, removing the child row resolves an 934 ** outstanding foreign key constraint violation. */ 935 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore); 936 } 937 if( regNew!=0 ){ 938 /* A row is being added to the child table. If a parent row cannot 939 ** be found, adding the child row has violated the FK constraint. */ 940 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore); 941 } 942 943 sqlite3DbFree(db, aiFree); 944 } 945 946 /* Loop through all the foreign key constraints that refer to this table. 947 ** (the "child" constraints) */ 948 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 949 Index *pIdx = 0; /* Foreign key index for pFKey */ 950 SrcList *pSrc; 951 int *aiCol = 0; 952 953 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ 954 continue; 955 } 956 957 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 958 && !pParse->pToplevel && !pParse->isMultiWrite 959 ){ 960 assert( regOld==0 && regNew!=0 ); 961 /* Inserting a single row into a parent table cannot cause an immediate 962 ** foreign key violation. So do nothing in this case. */ 963 continue; 964 } 965 966 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 967 if( !isIgnoreErrors || db->mallocFailed ) return; 968 continue; 969 } 970 assert( aiCol || pFKey->nCol==1 ); 971 972 /* Create a SrcList structure containing the child table. We need the 973 ** child table as a SrcList for sqlite3WhereBegin() */ 974 pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 975 if( pSrc ){ 976 struct SrcList_item *pItem = pSrc->a; 977 pItem->pTab = pFKey->pFrom; 978 pItem->zName = pFKey->pFrom->zName; 979 pItem->pTab->nRef++; 980 pItem->iCursor = pParse->nTab++; 981 982 if( regNew!=0 ){ 983 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 984 } 985 if( regOld!=0 ){ 986 /* If there is a RESTRICT action configured for the current operation 987 ** on the parent table of this FK, then throw an exception 988 ** immediately if the FK constraint is violated, even if this is a 989 ** deferred trigger. That's what RESTRICT means. To defer checking 990 ** the constraint, the FK should specify NO ACTION (represented 991 ** using OE_None). NO ACTION is the default. */ 992 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 993 } 994 pItem->zName = 0; 995 sqlite3SrcListDelete(db, pSrc); 996 } 997 sqlite3DbFree(db, aiCol); 998 } 999 } 1000 1001 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 1002 1003 /* 1004 ** This function is called before generating code to update or delete a 1005 ** row contained in table pTab. 1006 */ 1007 u32 sqlite3FkOldmask( 1008 Parse *pParse, /* Parse context */ 1009 Table *pTab /* Table being modified */ 1010 ){ 1011 u32 mask = 0; 1012 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1013 FKey *p; 1014 int i; 1015 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1016 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 1017 } 1018 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1019 Index *pIdx = 0; 1020 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); 1021 if( pIdx ){ 1022 for(i=0; i<pIdx->nKeyCol; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]); 1023 } 1024 } 1025 } 1026 return mask; 1027 } 1028 1029 1030 /* 1031 ** This function is called before generating code to update or delete a 1032 ** row contained in table pTab. If the operation is a DELETE, then 1033 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 1034 ** to an array of size N, where N is the number of columns in table pTab. 1035 ** If the i'th column is not modified by the UPDATE, then the corresponding 1036 ** entry in the aChange[] array is set to -1. If the column is modified, 1037 ** the value is 0 or greater. Parameter chngRowid is set to true if the 1038 ** UPDATE statement modifies the rowid fields of the table. 1039 ** 1040 ** If any foreign key processing will be required, this function returns 1041 ** true. If there is no foreign key related processing, this function 1042 ** returns false. 1043 */ 1044 int sqlite3FkRequired( 1045 Parse *pParse, /* Parse context */ 1046 Table *pTab, /* Table being modified */ 1047 int *aChange, /* Non-NULL for UPDATE operations */ 1048 int chngRowid /* True for UPDATE that affects rowid */ 1049 ){ 1050 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1051 if( !aChange ){ 1052 /* A DELETE operation. Foreign key processing is required if the 1053 ** table in question is either the child or parent table for any 1054 ** foreign key constraint. */ 1055 return (sqlite3FkReferences(pTab) || pTab->pFKey); 1056 }else{ 1057 /* This is an UPDATE. Foreign key processing is only required if the 1058 ** operation modifies one or more child or parent key columns. */ 1059 FKey *p; 1060 1061 /* Check if any child key columns are being modified. */ 1062 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1063 if( fkChildIsModified(pTab, p, aChange, chngRowid) ) return 1; 1064 } 1065 1066 /* Check if any parent key columns are being modified. */ 1067 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1068 if( fkParentIsModified(pTab, p, aChange, chngRowid) ) return 1; 1069 } 1070 } 1071 } 1072 return 0; 1073 } 1074 1075 /* 1076 ** This function is called when an UPDATE or DELETE operation is being 1077 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 1078 ** If the current operation is an UPDATE, then the pChanges parameter is 1079 ** passed a pointer to the list of columns being modified. If it is a 1080 ** DELETE, pChanges is passed a NULL pointer. 1081 ** 1082 ** It returns a pointer to a Trigger structure containing a trigger 1083 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 1084 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is 1085 ** returned (these actions require no special handling by the triggers 1086 ** sub-system, code for them is created by fkScanChildren()). 1087 ** 1088 ** For example, if pFKey is the foreign key and pTab is table "p" in 1089 ** the following schema: 1090 ** 1091 ** CREATE TABLE p(pk PRIMARY KEY); 1092 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 1093 ** 1094 ** then the returned trigger structure is equivalent to: 1095 ** 1096 ** CREATE TRIGGER ... DELETE ON p BEGIN 1097 ** DELETE FROM c WHERE ck = old.pk; 1098 ** END; 1099 ** 1100 ** The returned pointer is cached as part of the foreign key object. It 1101 ** is eventually freed along with the rest of the foreign key object by 1102 ** sqlite3FkDelete(). 1103 */ 1104 static Trigger *fkActionTrigger( 1105 Parse *pParse, /* Parse context */ 1106 Table *pTab, /* Table being updated or deleted from */ 1107 FKey *pFKey, /* Foreign key to get action for */ 1108 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 1109 ){ 1110 sqlite3 *db = pParse->db; /* Database handle */ 1111 int action; /* One of OE_None, OE_Cascade etc. */ 1112 Trigger *pTrigger; /* Trigger definition to return */ 1113 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 1114 1115 action = pFKey->aAction[iAction]; 1116 pTrigger = pFKey->apTrigger[iAction]; 1117 1118 if( action!=OE_None && !pTrigger ){ 1119 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */ 1120 char const *zFrom; /* Name of child table */ 1121 int nFrom; /* Length in bytes of zFrom */ 1122 Index *pIdx = 0; /* Parent key index for this FK */ 1123 int *aiCol = 0; /* child table cols -> parent key cols */ 1124 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 1125 Expr *pWhere = 0; /* WHERE clause of trigger step */ 1126 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 1127 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 1128 int i; /* Iterator variable */ 1129 Expr *pWhen = 0; /* WHEN clause for the trigger */ 1130 1131 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 1132 assert( aiCol || pFKey->nCol==1 ); 1133 1134 for(i=0; i<pFKey->nCol; i++){ 1135 Token tOld = { "old", 3 }; /* Literal "old" token */ 1136 Token tNew = { "new", 3 }; /* Literal "new" token */ 1137 Token tFromCol; /* Name of column in child table */ 1138 Token tToCol; /* Name of column in parent table */ 1139 int iFromCol; /* Idx of column in child table */ 1140 Expr *pEq; /* tFromCol = OLD.tToCol */ 1141 1142 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 1143 assert( iFromCol>=0 ); 1144 tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid"; 1145 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName; 1146 1147 tToCol.n = sqlite3Strlen30(tToCol.z); 1148 tFromCol.n = sqlite3Strlen30(tFromCol.z); 1149 1150 /* Create the expression "OLD.zToCol = zFromCol". It is important 1151 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 1152 ** that the affinity and collation sequence associated with the 1153 ** parent table are used for the comparison. */ 1154 pEq = sqlite3PExpr(pParse, TK_EQ, 1155 sqlite3PExpr(pParse, TK_DOT, 1156 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), 1157 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) 1158 , 0), 1159 sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol) 1160 , 0); 1161 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 1162 1163 /* For ON UPDATE, construct the next term of the WHEN clause. 1164 ** The final WHEN clause will be like this: 1165 ** 1166 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 1167 */ 1168 if( pChanges ){ 1169 pEq = sqlite3PExpr(pParse, TK_IS, 1170 sqlite3PExpr(pParse, TK_DOT, 1171 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), 1172 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), 1173 0), 1174 sqlite3PExpr(pParse, TK_DOT, 1175 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), 1176 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), 1177 0), 1178 0); 1179 pWhen = sqlite3ExprAnd(db, pWhen, pEq); 1180 } 1181 1182 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 1183 Expr *pNew; 1184 if( action==OE_Cascade ){ 1185 pNew = sqlite3PExpr(pParse, TK_DOT, 1186 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), 1187 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) 1188 , 0); 1189 }else if( action==OE_SetDflt ){ 1190 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; 1191 if( pDflt ){ 1192 pNew = sqlite3ExprDup(db, pDflt, 0); 1193 }else{ 1194 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 1195 } 1196 }else{ 1197 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 1198 } 1199 pList = sqlite3ExprListAppend(pParse, pList, pNew); 1200 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 1201 } 1202 } 1203 sqlite3DbFree(db, aiCol); 1204 1205 zFrom = pFKey->pFrom->zName; 1206 nFrom = sqlite3Strlen30(zFrom); 1207 1208 if( action==OE_Restrict ){ 1209 Token tFrom; 1210 Expr *pRaise; 1211 1212 tFrom.z = zFrom; 1213 tFrom.n = nFrom; 1214 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); 1215 if( pRaise ){ 1216 pRaise->affinity = OE_Abort; 1217 } 1218 pSelect = sqlite3SelectNew(pParse, 1219 sqlite3ExprListAppend(pParse, 0, pRaise), 1220 sqlite3SrcListAppend(db, 0, &tFrom, 0), 1221 pWhere, 1222 0, 0, 0, 0, 0, 0 1223 ); 1224 pWhere = 0; 1225 } 1226 1227 /* Disable lookaside memory allocation */ 1228 enableLookaside = db->lookaside.bEnabled; 1229 db->lookaside.bEnabled = 0; 1230 1231 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 1232 sizeof(Trigger) + /* struct Trigger */ 1233 sizeof(TriggerStep) + /* Single step in trigger program */ 1234 nFrom + 1 /* Space for pStep->target.z */ 1235 ); 1236 if( pTrigger ){ 1237 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 1238 pStep->target.z = (char *)&pStep[1]; 1239 pStep->target.n = nFrom; 1240 memcpy((char *)pStep->target.z, zFrom, nFrom); 1241 1242 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 1243 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 1244 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1245 if( pWhen ){ 1246 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0); 1247 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 1248 } 1249 } 1250 1251 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 1252 db->lookaside.bEnabled = enableLookaside; 1253 1254 sqlite3ExprDelete(db, pWhere); 1255 sqlite3ExprDelete(db, pWhen); 1256 sqlite3ExprListDelete(db, pList); 1257 sqlite3SelectDelete(db, pSelect); 1258 if( db->mallocFailed==1 ){ 1259 fkTriggerDelete(db, pTrigger); 1260 return 0; 1261 } 1262 assert( pStep!=0 ); 1263 1264 switch( action ){ 1265 case OE_Restrict: 1266 pStep->op = TK_SELECT; 1267 break; 1268 case OE_Cascade: 1269 if( !pChanges ){ 1270 pStep->op = TK_DELETE; 1271 break; 1272 } 1273 default: 1274 pStep->op = TK_UPDATE; 1275 } 1276 pStep->pTrig = pTrigger; 1277 pTrigger->pSchema = pTab->pSchema; 1278 pTrigger->pTabSchema = pTab->pSchema; 1279 pFKey->apTrigger[iAction] = pTrigger; 1280 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 1281 } 1282 1283 return pTrigger; 1284 } 1285 1286 /* 1287 ** This function is called when deleting or updating a row to implement 1288 ** any required CASCADE, SET NULL or SET DEFAULT actions. 1289 */ 1290 void sqlite3FkActions( 1291 Parse *pParse, /* Parse context */ 1292 Table *pTab, /* Table being updated or deleted from */ 1293 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 1294 int regOld, /* Address of array containing old row */ 1295 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 1296 int bChngRowid /* True if rowid is UPDATEd */ 1297 ){ 1298 /* If foreign-key support is enabled, iterate through all FKs that 1299 ** refer to table pTab. If there is an action associated with the FK 1300 ** for this operation (either update or delete), invoke the associated 1301 ** trigger sub-program. */ 1302 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1303 FKey *pFKey; /* Iterator variable */ 1304 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1305 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ 1306 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); 1307 if( pAct ){ 1308 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); 1309 } 1310 } 1311 } 1312 } 1313 } 1314 1315 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 1316 1317 /* 1318 ** Free all memory associated with foreign key definitions attached to 1319 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 1320 ** hash table. 1321 */ 1322 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 1323 FKey *pFKey; /* Iterator variable */ 1324 FKey *pNext; /* Copy of pFKey->pNextFrom */ 1325 1326 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 1327 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ 1328 1329 /* Remove the FK from the fkeyHash hash table. */ 1330 if( !db || db->pnBytesFreed==0 ){ 1331 if( pFKey->pPrevTo ){ 1332 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 1333 }else{ 1334 void *p = (void *)pFKey->pNextTo; 1335 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); 1336 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p); 1337 } 1338 if( pFKey->pNextTo ){ 1339 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 1340 } 1341 } 1342 1343 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 1344 ** classified as either immediate or deferred. 1345 */ 1346 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 1347 1348 /* Delete any triggers created to implement actions for this FK. */ 1349 #ifndef SQLITE_OMIT_TRIGGER 1350 fkTriggerDelete(db, pFKey->apTrigger[0]); 1351 fkTriggerDelete(db, pFKey->apTrigger[1]); 1352 #endif 1353 1354 pNext = pFKey->pNextFrom; 1355 sqlite3DbFree(db, pFKey); 1356 } 1357 } 1358 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ 1359