1 /* 2 ** 3 ** The author disclaims copyright to this source code. In place of 4 ** a legal notice, here is a blessing: 5 ** 6 ** May you do good and not evil. 7 ** May you find forgiveness for yourself and forgive others. 8 ** May you share freely, never taking more than you give. 9 ** 10 ************************************************************************* 11 ** This file contains code used by the compiler to add foreign key 12 ** support to compiled SQL statements. 13 */ 14 #include "sqliteInt.h" 15 16 #ifndef SQLITE_OMIT_FOREIGN_KEY 17 #ifndef SQLITE_OMIT_TRIGGER 18 19 /* 20 ** Deferred and Immediate FKs 21 ** -------------------------- 22 ** 23 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 24 ** If an immediate foreign key constraint is violated, 25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current 26 ** statement transaction rolled back. If a 27 ** deferred foreign key constraint is violated, no action is taken 28 ** immediately. However if the application attempts to commit the 29 ** transaction before fixing the constraint violation, the attempt fails. 30 ** 31 ** Deferred constraints are implemented using a simple counter associated 32 ** with the database handle. The counter is set to zero each time a 33 ** database transaction is opened. Each time a statement is executed 34 ** that causes a foreign key violation, the counter is incremented. Each 35 ** time a statement is executed that removes an existing violation from 36 ** the database, the counter is decremented. When the transaction is 37 ** committed, the commit fails if the current value of the counter is 38 ** greater than zero. This scheme has two big drawbacks: 39 ** 40 ** * When a commit fails due to a deferred foreign key constraint, 41 ** there is no way to tell which foreign constraint is not satisfied, 42 ** or which row it is not satisfied for. 43 ** 44 ** * If the database contains foreign key violations when the 45 ** transaction is opened, this may cause the mechanism to malfunction. 46 ** 47 ** Despite these problems, this approach is adopted as it seems simpler 48 ** than the alternatives. 49 ** 50 ** INSERT operations: 51 ** 52 ** I.1) For each FK for which the table is the child table, search 53 ** the parent table for a match. If none is found increment the 54 ** constraint counter. 55 ** 56 ** I.2) For each FK for which the table is the parent table, 57 ** search the child table for rows that correspond to the new 58 ** row in the parent table. Decrement the counter for each row 59 ** found (as the constraint is now satisfied). 60 ** 61 ** DELETE operations: 62 ** 63 ** D.1) For each FK for which the table is the child table, 64 ** search the parent table for a row that corresponds to the 65 ** deleted row in the child table. If such a row is not found, 66 ** decrement the counter. 67 ** 68 ** D.2) For each FK for which the table is the parent table, search 69 ** the child table for rows that correspond to the deleted row 70 ** in the parent table. For each found increment the counter. 71 ** 72 ** UPDATE operations: 73 ** 74 ** An UPDATE command requires that all 4 steps above are taken, but only 75 ** for FK constraints for which the affected columns are actually 76 ** modified (values must be compared at runtime). 77 ** 78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 79 ** This simplifies the implementation a bit. 80 ** 81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 82 ** resolution is considered to delete rows before the new row is inserted. 83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 84 ** is thrown, even if the FK constraint would be satisfied after the new 85 ** row is inserted. 86 ** 87 ** Immediate constraints are usually handled similarly. The only difference 88 ** is that the counter used is stored as part of each individual statement 89 ** object (struct Vdbe). If, after the statement has run, its immediate 90 ** constraint counter is greater than zero, 91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY 92 ** and the statement transaction is rolled back. An exception is an INSERT 93 ** statement that inserts a single row only (no triggers). In this case, 94 ** instead of using a counter, an exception is thrown immediately if the 95 ** INSERT violates a foreign key constraint. This is necessary as such 96 ** an INSERT does not open a statement transaction. 97 ** 98 ** TODO: How should dropping a table be handled? How should renaming a 99 ** table be handled? 100 ** 101 ** 102 ** Query API Notes 103 ** --------------- 104 ** 105 ** Before coding an UPDATE or DELETE row operation, the code-generator 106 ** for those two operations needs to know whether or not the operation 107 ** requires any FK processing and, if so, which columns of the original 108 ** row are required by the FK processing VDBE code (i.e. if FKs were 109 ** implemented using triggers, which of the old.* columns would be 110 ** accessed). No information is required by the code-generator before 111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 112 ** generation code to query for this information are: 113 ** 114 ** sqlite3FkRequired() - Test to see if FK processing is required. 115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 116 ** 117 ** 118 ** Externally accessible module functions 119 ** -------------------------------------- 120 ** 121 ** sqlite3FkCheck() - Check for foreign key violations. 122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 123 ** sqlite3FkDelete() - Delete an FKey structure. 124 */ 125 126 /* 127 ** VDBE Calling Convention 128 ** ----------------------- 129 ** 130 ** Example: 131 ** 132 ** For the following INSERT statement: 133 ** 134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 135 ** INSERT INTO t1 VALUES(1, 2, 3.1); 136 ** 137 ** Register (x): 2 (type integer) 138 ** Register (x+1): 1 (type integer) 139 ** Register (x+2): NULL (type NULL) 140 ** Register (x+3): 3.1 (type real) 141 */ 142 143 /* 144 ** A foreign key constraint requires that the key columns in the parent 145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 146 ** Given that pParent is the parent table for foreign key constraint pFKey, 147 ** search the schema for a unique index on the parent key columns. 148 ** 149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 151 ** is set to point to the unique index. 152 ** 153 ** If the parent key consists of a single column (the foreign key constraint 154 ** is not a composite foreign key), output variable *paiCol is set to NULL. 155 ** Otherwise, it is set to point to an allocated array of size N, where 156 ** N is the number of columns in the parent key. The first element of the 157 ** array is the index of the child table column that is mapped by the FK 158 ** constraint to the parent table column stored in the left-most column 159 ** of index *ppIdx. The second element of the array is the index of the 160 ** child table column that corresponds to the second left-most column of 161 ** *ppIdx, and so on. 162 ** 163 ** If the required index cannot be found, either because: 164 ** 165 ** 1) The named parent key columns do not exist, or 166 ** 167 ** 2) The named parent key columns do exist, but are not subject to a 168 ** UNIQUE or PRIMARY KEY constraint, or 169 ** 170 ** 3) No parent key columns were provided explicitly as part of the 171 ** foreign key definition, and the parent table does not have a 172 ** PRIMARY KEY, or 173 ** 174 ** 4) No parent key columns were provided explicitly as part of the 175 ** foreign key definition, and the PRIMARY KEY of the parent table 176 ** consists of a different number of columns to the child key in 177 ** the child table. 178 ** 179 ** then non-zero is returned, and a "foreign key mismatch" error loaded 180 ** into pParse. If an OOM error occurs, non-zero is returned and the 181 ** pParse->db->mallocFailed flag is set. 182 */ 183 int sqlite3FkLocateIndex( 184 Parse *pParse, /* Parse context to store any error in */ 185 Table *pParent, /* Parent table of FK constraint pFKey */ 186 FKey *pFKey, /* Foreign key to find index for */ 187 Index **ppIdx, /* OUT: Unique index on parent table */ 188 int **paiCol /* OUT: Map of index columns in pFKey */ 189 ){ 190 Index *pIdx = 0; /* Value to return via *ppIdx */ 191 int *aiCol = 0; /* Value to return via *paiCol */ 192 int nCol = pFKey->nCol; /* Number of columns in parent key */ 193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 194 195 /* The caller is responsible for zeroing output parameters. */ 196 assert( ppIdx && *ppIdx==0 ); 197 assert( !paiCol || *paiCol==0 ); 198 assert( pParse ); 199 200 /* If this is a non-composite (single column) foreign key, check if it 201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 202 ** and *paiCol set to zero and return early. 203 ** 204 ** Otherwise, for a composite foreign key (more than one column), allocate 205 ** space for the aiCol array (returned via output parameter *paiCol). 206 ** Non-composite foreign keys do not require the aiCol array. 207 */ 208 if( nCol==1 ){ 209 /* The FK maps to the IPK if any of the following are true: 210 ** 211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 212 ** mapped to the primary key of table pParent, or 213 ** 2) The FK is explicitly mapped to a column declared as INTEGER 214 ** PRIMARY KEY. 215 */ 216 if( pParent->iPKey>=0 ){ 217 if( !zKey ) return 0; 218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; 219 } 220 }else if( paiCol ){ 221 assert( nCol>1 ); 222 aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int)); 223 if( !aiCol ) return 1; 224 *paiCol = aiCol; 225 } 226 227 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 228 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){ 229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 230 ** of columns. If each indexed column corresponds to a foreign key 231 ** column of pFKey, then this index is a winner. */ 232 233 if( zKey==0 ){ 234 /* If zKey is NULL, then this foreign key is implicitly mapped to 235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 236 ** identified by the test. */ 237 if( IsPrimaryKeyIndex(pIdx) ){ 238 if( aiCol ){ 239 int i; 240 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 241 } 242 break; 243 } 244 }else{ 245 /* If zKey is non-NULL, then this foreign key was declared to 246 ** map to an explicit list of columns in table pParent. Check if this 247 ** index matches those columns. Also, check that the index uses 248 ** the default collation sequences for each column. */ 249 int i, j; 250 for(i=0; i<nCol; i++){ 251 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 252 const char *zDfltColl; /* Def. collation for column */ 253 char *zIdxCol; /* Name of indexed column */ 254 255 if( iCol<0 ) break; /* No foreign keys against expression indexes */ 256 257 /* If the index uses a collation sequence that is different from 258 ** the default collation sequence for the column, this index is 259 ** unusable. Bail out early in this case. */ 260 zDfltColl = pParent->aCol[iCol].zColl; 261 if( !zDfltColl ) zDfltColl = sqlite3StrBINARY; 262 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 263 264 zIdxCol = pParent->aCol[iCol].zName; 265 for(j=0; j<nCol; j++){ 266 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 267 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 268 break; 269 } 270 } 271 if( j==nCol ) break; 272 } 273 if( i==nCol ) break; /* pIdx is usable */ 274 } 275 } 276 } 277 278 if( !pIdx ){ 279 if( !pParse->disableTriggers ){ 280 sqlite3ErrorMsg(pParse, 281 "foreign key mismatch - \"%w\" referencing \"%w\"", 282 pFKey->pFrom->zName, pFKey->zTo); 283 } 284 sqlite3DbFree(pParse->db, aiCol); 285 return 1; 286 } 287 288 *ppIdx = pIdx; 289 return 0; 290 } 291 292 /* 293 ** This function is called when a row is inserted into or deleted from the 294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 295 ** on the child table of pFKey, this function is invoked twice for each row 296 ** affected - once to "delete" the old row, and then again to "insert" the 297 ** new row. 298 ** 299 ** Each time it is called, this function generates VDBE code to locate the 300 ** row in the parent table that corresponds to the row being inserted into 301 ** or deleted from the child table. If the parent row can be found, no 302 ** special action is taken. Otherwise, if the parent row can *not* be 303 ** found in the parent table: 304 ** 305 ** Operation | FK type | Action taken 306 ** -------------------------------------------------------------------------- 307 ** INSERT immediate Increment the "immediate constraint counter". 308 ** 309 ** DELETE immediate Decrement the "immediate constraint counter". 310 ** 311 ** INSERT deferred Increment the "deferred constraint counter". 312 ** 313 ** DELETE deferred Decrement the "deferred constraint counter". 314 ** 315 ** These operations are identified in the comment at the top of this file 316 ** (fkey.c) as "I.1" and "D.1". 317 */ 318 static void fkLookupParent( 319 Parse *pParse, /* Parse context */ 320 int iDb, /* Index of database housing pTab */ 321 Table *pTab, /* Parent table of FK pFKey */ 322 Index *pIdx, /* Unique index on parent key columns in pTab */ 323 FKey *pFKey, /* Foreign key constraint */ 324 int *aiCol, /* Map from parent key columns to child table columns */ 325 int regData, /* Address of array containing child table row */ 326 int nIncr, /* Increment constraint counter by this */ 327 int isIgnore /* If true, pretend pTab contains all NULL values */ 328 ){ 329 int i; /* Iterator variable */ 330 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 331 int iCur = pParse->nTab - 1; /* Cursor number to use */ 332 int iOk = sqlite3VdbeMakeLabel(pParse); /* jump here if parent key found */ 333 334 sqlite3VdbeVerifyAbortable(v, 335 (!pFKey->isDeferred 336 && !(pParse->db->flags & SQLITE_DeferFKs) 337 && !pParse->pToplevel 338 && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore); 339 340 /* If nIncr is less than zero, then check at runtime if there are any 341 ** outstanding constraints to resolve. If there are not, there is no need 342 ** to check if deleting this row resolves any outstanding violations. 343 ** 344 ** Check if any of the key columns in the child table row are NULL. If 345 ** any are, then the constraint is considered satisfied. No need to 346 ** search for a matching row in the parent table. */ 347 if( nIncr<0 ){ 348 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 349 VdbeCoverage(v); 350 } 351 for(i=0; i<pFKey->nCol; i++){ 352 int iReg = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) + regData + 1; 353 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); 354 } 355 356 if( isIgnore==0 ){ 357 if( pIdx==0 ){ 358 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 359 ** column of the parent table (table pTab). */ 360 int iMustBeInt; /* Address of MustBeInt instruction */ 361 int regTemp = sqlite3GetTempReg(pParse); 362 363 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 364 ** apply the affinity of the parent key). If this fails, then there 365 ** is no matching parent key. Before using MustBeInt, make a copy of 366 ** the value. Otherwise, the value inserted into the child key column 367 ** will have INTEGER affinity applied to it, which may not be correct. */ 368 sqlite3VdbeAddOp2(v, OP_SCopy, 369 sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[0])+1+regData, regTemp); 370 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 371 VdbeCoverage(v); 372 373 /* If the parent table is the same as the child table, and we are about 374 ** to increment the constraint-counter (i.e. this is an INSERT operation), 375 ** then check if the row being inserted matches itself. If so, do not 376 ** increment the constraint-counter. */ 377 if( pTab==pFKey->pFrom && nIncr==1 ){ 378 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); 379 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 380 } 381 382 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 383 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); 384 sqlite3VdbeGoto(v, iOk); 385 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 386 sqlite3VdbeJumpHere(v, iMustBeInt); 387 sqlite3ReleaseTempReg(pParse, regTemp); 388 }else{ 389 int nCol = pFKey->nCol; 390 int regTemp = sqlite3GetTempRange(pParse, nCol); 391 int regRec = sqlite3GetTempReg(pParse); 392 393 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 394 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 395 for(i=0; i<nCol; i++){ 396 sqlite3VdbeAddOp2(v, OP_Copy, 397 sqlite3TableColumnToStorage(pFKey->pFrom, aiCol[i])+1+regData, 398 regTemp+i); 399 } 400 401 /* If the parent table is the same as the child table, and we are about 402 ** to increment the constraint-counter (i.e. this is an INSERT operation), 403 ** then check if the row being inserted matches itself. If so, do not 404 ** increment the constraint-counter. 405 ** 406 ** If any of the parent-key values are NULL, then the row cannot match 407 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 408 ** of the parent-key values are NULL (at this point it is known that 409 ** none of the child key values are). 410 */ 411 if( pTab==pFKey->pFrom && nIncr==1 ){ 412 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 413 for(i=0; i<nCol; i++){ 414 int iChild = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) 415 +1+regData; 416 int iParent = 1+regData; 417 iParent += sqlite3TableColumnToStorage(pIdx->pTable, 418 pIdx->aiColumn[i]); 419 assert( pIdx->aiColumn[i]>=0 ); 420 assert( aiCol[i]!=pTab->iPKey ); 421 if( pIdx->aiColumn[i]==pTab->iPKey ){ 422 /* The parent key is a composite key that includes the IPK column */ 423 iParent = regData; 424 } 425 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); 426 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 427 } 428 sqlite3VdbeGoto(v, iOk); 429 } 430 431 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec, 432 sqlite3IndexAffinityStr(pParse->db,pIdx), nCol); 433 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v); 434 435 sqlite3ReleaseTempReg(pParse, regRec); 436 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 437 } 438 } 439 440 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) 441 && !pParse->pToplevel 442 && !pParse->isMultiWrite 443 ){ 444 /* Special case: If this is an INSERT statement that will insert exactly 445 ** one row into the table, raise a constraint immediately instead of 446 ** incrementing a counter. This is necessary as the VM code is being 447 ** generated for will not open a statement transaction. */ 448 assert( nIncr==1 ); 449 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 450 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 451 }else{ 452 if( nIncr>0 && pFKey->isDeferred==0 ){ 453 sqlite3MayAbort(pParse); 454 } 455 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 456 } 457 458 sqlite3VdbeResolveLabel(v, iOk); 459 sqlite3VdbeAddOp1(v, OP_Close, iCur); 460 } 461 462 463 /* 464 ** Return an Expr object that refers to a memory register corresponding 465 ** to column iCol of table pTab. 466 ** 467 ** regBase is the first of an array of register that contains the data 468 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first 469 ** column. regBase+2 holds the second column, and so forth. 470 */ 471 static Expr *exprTableRegister( 472 Parse *pParse, /* Parsing and code generating context */ 473 Table *pTab, /* The table whose content is at r[regBase]... */ 474 int regBase, /* Contents of table pTab */ 475 i16 iCol /* Which column of pTab is desired */ 476 ){ 477 Expr *pExpr; 478 Column *pCol; 479 const char *zColl; 480 sqlite3 *db = pParse->db; 481 482 pExpr = sqlite3Expr(db, TK_REGISTER, 0); 483 if( pExpr ){ 484 if( iCol>=0 && iCol!=pTab->iPKey ){ 485 pCol = &pTab->aCol[iCol]; 486 pExpr->iTable = regBase + sqlite3TableColumnToStorage(pTab,iCol) + 1; 487 pExpr->affExpr = pCol->affinity; 488 zColl = pCol->zColl; 489 if( zColl==0 ) zColl = db->pDfltColl->zName; 490 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); 491 }else{ 492 pExpr->iTable = regBase; 493 pExpr->affExpr = SQLITE_AFF_INTEGER; 494 } 495 } 496 return pExpr; 497 } 498 499 /* 500 ** Return an Expr object that refers to column iCol of table pTab which 501 ** has cursor iCur. 502 */ 503 static Expr *exprTableColumn( 504 sqlite3 *db, /* The database connection */ 505 Table *pTab, /* The table whose column is desired */ 506 int iCursor, /* The open cursor on the table */ 507 i16 iCol /* The column that is wanted */ 508 ){ 509 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); 510 if( pExpr ){ 511 pExpr->y.pTab = pTab; 512 pExpr->iTable = iCursor; 513 pExpr->iColumn = iCol; 514 } 515 return pExpr; 516 } 517 518 /* 519 ** This function is called to generate code executed when a row is deleted 520 ** from the parent table of foreign key constraint pFKey and, if pFKey is 521 ** deferred, when a row is inserted into the same table. When generating 522 ** code for an SQL UPDATE operation, this function may be called twice - 523 ** once to "delete" the old row and once to "insert" the new row. 524 ** 525 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease 526 ** the number of FK violations in the db) or +1 when deleting one (as this 527 ** may increase the number of FK constraint problems). 528 ** 529 ** The code generated by this function scans through the rows in the child 530 ** table that correspond to the parent table row being deleted or inserted. 531 ** For each child row found, one of the following actions is taken: 532 ** 533 ** Operation | FK type | Action taken 534 ** -------------------------------------------------------------------------- 535 ** DELETE immediate Increment the "immediate constraint counter". 536 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 537 ** throw a "FOREIGN KEY constraint failed" exception. 538 ** 539 ** INSERT immediate Decrement the "immediate constraint counter". 540 ** 541 ** DELETE deferred Increment the "deferred constraint counter". 542 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 543 ** throw a "FOREIGN KEY constraint failed" exception. 544 ** 545 ** INSERT deferred Decrement the "deferred constraint counter". 546 ** 547 ** These operations are identified in the comment at the top of this file 548 ** (fkey.c) as "I.2" and "D.2". 549 */ 550 static void fkScanChildren( 551 Parse *pParse, /* Parse context */ 552 SrcList *pSrc, /* The child table to be scanned */ 553 Table *pTab, /* The parent table */ 554 Index *pIdx, /* Index on parent covering the foreign key */ 555 FKey *pFKey, /* The foreign key linking pSrc to pTab */ 556 int *aiCol, /* Map from pIdx cols to child table cols */ 557 int regData, /* Parent row data starts here */ 558 int nIncr /* Amount to increment deferred counter by */ 559 ){ 560 sqlite3 *db = pParse->db; /* Database handle */ 561 int i; /* Iterator variable */ 562 Expr *pWhere = 0; /* WHERE clause to scan with */ 563 NameContext sNameContext; /* Context used to resolve WHERE clause */ 564 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 565 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 566 Vdbe *v = sqlite3GetVdbe(pParse); 567 568 assert( pIdx==0 || pIdx->pTable==pTab ); 569 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); 570 assert( pIdx!=0 || pFKey->nCol==1 ); 571 assert( pIdx!=0 || HasRowid(pTab) ); 572 573 if( nIncr<0 ){ 574 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 575 VdbeCoverage(v); 576 } 577 578 /* Create an Expr object representing an SQL expression like: 579 ** 580 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 581 ** 582 ** The collation sequence used for the comparison should be that of 583 ** the parent key columns. The affinity of the parent key column should 584 ** be applied to each child key value before the comparison takes place. 585 */ 586 for(i=0; i<pFKey->nCol; i++){ 587 Expr *pLeft; /* Value from parent table row */ 588 Expr *pRight; /* Column ref to child table */ 589 Expr *pEq; /* Expression (pLeft = pRight) */ 590 i16 iCol; /* Index of column in child table */ 591 const char *zCol; /* Name of column in child table */ 592 593 iCol = pIdx ? pIdx->aiColumn[i] : -1; 594 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 595 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 596 assert( iCol>=0 ); 597 zCol = pFKey->pFrom->aCol[iCol].zName; 598 pRight = sqlite3Expr(db, TK_ID, zCol); 599 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); 600 pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); 601 } 602 603 /* If the child table is the same as the parent table, then add terms 604 ** to the WHERE clause that prevent this entry from being scanned. 605 ** The added WHERE clause terms are like this: 606 ** 607 ** $current_rowid!=rowid 608 ** NOT( $current_a==a AND $current_b==b AND ... ) 609 ** 610 ** The first form is used for rowid tables. The second form is used 611 ** for WITHOUT ROWID tables. In the second form, the *parent* key is 612 ** (a,b,...). Either the parent or primary key could be used to 613 ** uniquely identify the current row, but the parent key is more convenient 614 ** as the required values have already been loaded into registers 615 ** by the caller. 616 */ 617 if( pTab==pFKey->pFrom && nIncr>0 ){ 618 Expr *pNe; /* Expression (pLeft != pRight) */ 619 Expr *pLeft; /* Value from parent table row */ 620 Expr *pRight; /* Column ref to child table */ 621 if( HasRowid(pTab) ){ 622 pLeft = exprTableRegister(pParse, pTab, regData, -1); 623 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); 624 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight); 625 }else{ 626 Expr *pEq, *pAll = 0; 627 assert( pIdx!=0 ); 628 for(i=0; i<pIdx->nKeyCol; i++){ 629 i16 iCol = pIdx->aiColumn[i]; 630 assert( iCol>=0 ); 631 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 632 pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zName); 633 pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight); 634 pAll = sqlite3ExprAnd(pParse, pAll, pEq); 635 } 636 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0); 637 } 638 pWhere = sqlite3ExprAnd(pParse, pWhere, pNe); 639 } 640 641 /* Resolve the references in the WHERE clause. */ 642 memset(&sNameContext, 0, sizeof(NameContext)); 643 sNameContext.pSrcList = pSrc; 644 sNameContext.pParse = pParse; 645 sqlite3ResolveExprNames(&sNameContext, pWhere); 646 647 /* Create VDBE to loop through the entries in pSrc that match the WHERE 648 ** clause. For each row found, increment either the deferred or immediate 649 ** foreign key constraint counter. */ 650 if( pParse->nErr==0 ){ 651 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); 652 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 653 if( pWInfo ){ 654 sqlite3WhereEnd(pWInfo); 655 } 656 } 657 658 /* Clean up the WHERE clause constructed above. */ 659 sqlite3ExprDelete(db, pWhere); 660 if( iFkIfZero ){ 661 sqlite3VdbeJumpHereOrPopInst(v, iFkIfZero); 662 } 663 } 664 665 /* 666 ** This function returns a linked list of FKey objects (connected by 667 ** FKey.pNextTo) holding all children of table pTab. For example, 668 ** given the following schema: 669 ** 670 ** CREATE TABLE t1(a PRIMARY KEY); 671 ** CREATE TABLE t2(b REFERENCES t1(a); 672 ** 673 ** Calling this function with table "t1" as an argument returns a pointer 674 ** to the FKey structure representing the foreign key constraint on table 675 ** "t2". Calling this function with "t2" as the argument would return a 676 ** NULL pointer (as there are no FK constraints for which t2 is the parent 677 ** table). 678 */ 679 FKey *sqlite3FkReferences(Table *pTab){ 680 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName); 681 } 682 683 /* 684 ** The second argument is a Trigger structure allocated by the 685 ** fkActionTrigger() routine. This function deletes the Trigger structure 686 ** and all of its sub-components. 687 ** 688 ** The Trigger structure or any of its sub-components may be allocated from 689 ** the lookaside buffer belonging to database handle dbMem. 690 */ 691 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 692 if( p ){ 693 TriggerStep *pStep = p->step_list; 694 sqlite3ExprDelete(dbMem, pStep->pWhere); 695 sqlite3ExprListDelete(dbMem, pStep->pExprList); 696 sqlite3SelectDelete(dbMem, pStep->pSelect); 697 sqlite3ExprDelete(dbMem, p->pWhen); 698 sqlite3DbFree(dbMem, p); 699 } 700 } 701 702 /* 703 ** This function is called to generate code that runs when table pTab is 704 ** being dropped from the database. The SrcList passed as the second argument 705 ** to this function contains a single entry guaranteed to resolve to 706 ** table pTab. 707 ** 708 ** Normally, no code is required. However, if either 709 ** 710 ** (a) The table is the parent table of a FK constraint, or 711 ** (b) The table is the child table of a deferred FK constraint and it is 712 ** determined at runtime that there are outstanding deferred FK 713 ** constraint violations in the database, 714 ** 715 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 716 ** the table from the database. Triggers are disabled while running this 717 ** DELETE, but foreign key actions are not. 718 */ 719 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 720 sqlite3 *db = pParse->db; 721 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) ){ 722 int iSkip = 0; 723 Vdbe *v = sqlite3GetVdbe(pParse); 724 725 assert( v ); /* VDBE has already been allocated */ 726 assert( pTab->pSelect==0 ); /* Not a view */ 727 if( sqlite3FkReferences(pTab)==0 ){ 728 /* Search for a deferred foreign key constraint for which this table 729 ** is the child table. If one cannot be found, return without 730 ** generating any VDBE code. If one can be found, then jump over 731 ** the entire DELETE if there are no outstanding deferred constraints 732 ** when this statement is run. */ 733 FKey *p; 734 for(p=pTab->pFKey; p; p=p->pNextFrom){ 735 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; 736 } 737 if( !p ) return; 738 iSkip = sqlite3VdbeMakeLabel(pParse); 739 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); 740 } 741 742 pParse->disableTriggers = 1; 743 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0); 744 pParse->disableTriggers = 0; 745 746 /* If the DELETE has generated immediate foreign key constraint 747 ** violations, halt the VDBE and return an error at this point, before 748 ** any modifications to the schema are made. This is because statement 749 ** transactions are not able to rollback schema changes. 750 ** 751 ** If the SQLITE_DeferFKs flag is set, then this is not required, as 752 ** the statement transaction will not be rolled back even if FK 753 ** constraints are violated. 754 */ 755 if( (db->flags & SQLITE_DeferFKs)==0 ){ 756 sqlite3VdbeVerifyAbortable(v, OE_Abort); 757 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 758 VdbeCoverage(v); 759 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 760 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 761 } 762 763 if( iSkip ){ 764 sqlite3VdbeResolveLabel(v, iSkip); 765 } 766 } 767 } 768 769 770 /* 771 ** The second argument points to an FKey object representing a foreign key 772 ** for which pTab is the child table. An UPDATE statement against pTab 773 ** is currently being processed. For each column of the table that is 774 ** actually updated, the corresponding element in the aChange[] array 775 ** is zero or greater (if a column is unmodified the corresponding element 776 ** is set to -1). If the rowid column is modified by the UPDATE statement 777 ** the bChngRowid argument is non-zero. 778 ** 779 ** This function returns true if any of the columns that are part of the 780 ** child key for FK constraint *p are modified. 781 */ 782 static int fkChildIsModified( 783 Table *pTab, /* Table being updated */ 784 FKey *p, /* Foreign key for which pTab is the child */ 785 int *aChange, /* Array indicating modified columns */ 786 int bChngRowid /* True if rowid is modified by this update */ 787 ){ 788 int i; 789 for(i=0; i<p->nCol; i++){ 790 int iChildKey = p->aCol[i].iFrom; 791 if( aChange[iChildKey]>=0 ) return 1; 792 if( iChildKey==pTab->iPKey && bChngRowid ) return 1; 793 } 794 return 0; 795 } 796 797 /* 798 ** The second argument points to an FKey object representing a foreign key 799 ** for which pTab is the parent table. An UPDATE statement against pTab 800 ** is currently being processed. For each column of the table that is 801 ** actually updated, the corresponding element in the aChange[] array 802 ** is zero or greater (if a column is unmodified the corresponding element 803 ** is set to -1). If the rowid column is modified by the UPDATE statement 804 ** the bChngRowid argument is non-zero. 805 ** 806 ** This function returns true if any of the columns that are part of the 807 ** parent key for FK constraint *p are modified. 808 */ 809 static int fkParentIsModified( 810 Table *pTab, 811 FKey *p, 812 int *aChange, 813 int bChngRowid 814 ){ 815 int i; 816 for(i=0; i<p->nCol; i++){ 817 char *zKey = p->aCol[i].zCol; 818 int iKey; 819 for(iKey=0; iKey<pTab->nCol; iKey++){ 820 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ 821 Column *pCol = &pTab->aCol[iKey]; 822 if( zKey ){ 823 if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1; 824 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ 825 return 1; 826 } 827 } 828 } 829 } 830 return 0; 831 } 832 833 /* 834 ** Return true if the parser passed as the first argument is being 835 ** used to code a trigger that is really a "SET NULL" action belonging 836 ** to trigger pFKey. 837 */ 838 static int isSetNullAction(Parse *pParse, FKey *pFKey){ 839 Parse *pTop = sqlite3ParseToplevel(pParse); 840 if( pTop->pTriggerPrg ){ 841 Trigger *p = pTop->pTriggerPrg->pTrigger; 842 if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull) 843 || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull) 844 ){ 845 return 1; 846 } 847 } 848 return 0; 849 } 850 851 /* 852 ** This function is called when inserting, deleting or updating a row of 853 ** table pTab to generate VDBE code to perform foreign key constraint 854 ** processing for the operation. 855 ** 856 ** For a DELETE operation, parameter regOld is passed the index of the 857 ** first register in an array of (pTab->nCol+1) registers containing the 858 ** rowid of the row being deleted, followed by each of the column values 859 ** of the row being deleted, from left to right. Parameter regNew is passed 860 ** zero in this case. 861 ** 862 ** For an INSERT operation, regOld is passed zero and regNew is passed the 863 ** first register of an array of (pTab->nCol+1) registers containing the new 864 ** row data. 865 ** 866 ** For an UPDATE operation, this function is called twice. Once before 867 ** the original record is deleted from the table using the calling convention 868 ** described for DELETE. Then again after the original record is deleted 869 ** but before the new record is inserted using the INSERT convention. 870 */ 871 void sqlite3FkCheck( 872 Parse *pParse, /* Parse context */ 873 Table *pTab, /* Row is being deleted from this table */ 874 int regOld, /* Previous row data is stored here */ 875 int regNew, /* New row data is stored here */ 876 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 877 int bChngRowid /* True if rowid is UPDATEd */ 878 ){ 879 sqlite3 *db = pParse->db; /* Database handle */ 880 FKey *pFKey; /* Used to iterate through FKs */ 881 int iDb; /* Index of database containing pTab */ 882 const char *zDb; /* Name of database containing pTab */ 883 int isIgnoreErrors = pParse->disableTriggers; 884 885 /* Exactly one of regOld and regNew should be non-zero. */ 886 assert( (regOld==0)!=(regNew==0) ); 887 888 /* If foreign-keys are disabled, this function is a no-op. */ 889 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 890 891 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 892 zDb = db->aDb[iDb].zDbSName; 893 894 /* Loop through all the foreign key constraints for which pTab is the 895 ** child table (the table that the foreign key definition is part of). */ 896 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 897 Table *pTo; /* Parent table of foreign key pFKey */ 898 Index *pIdx = 0; /* Index on key columns in pTo */ 899 int *aiFree = 0; 900 int *aiCol; 901 int iCol; 902 int i; 903 int bIgnore = 0; 904 905 if( aChange 906 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 907 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 908 ){ 909 continue; 910 } 911 912 /* Find the parent table of this foreign key. Also find a unique index 913 ** on the parent key columns in the parent table. If either of these 914 ** schema items cannot be located, set an error in pParse and return 915 ** early. */ 916 if( pParse->disableTriggers ){ 917 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 918 }else{ 919 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 920 } 921 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 922 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 923 if( !isIgnoreErrors || db->mallocFailed ) return; 924 if( pTo==0 ){ 925 /* If isIgnoreErrors is true, then a table is being dropped. In this 926 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 927 ** before actually dropping it in order to check FK constraints. 928 ** If the parent table of an FK constraint on the current table is 929 ** missing, behave as if it is empty. i.e. decrement the relevant 930 ** FK counter for each row of the current table with non-NULL keys. 931 */ 932 Vdbe *v = sqlite3GetVdbe(pParse); 933 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 934 for(i=0; i<pFKey->nCol; i++){ 935 int iFromCol, iReg; 936 iFromCol = pFKey->aCol[i].iFrom; 937 iReg = sqlite3TableColumnToStorage(pFKey->pFrom,iFromCol) + regOld+1; 938 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); 939 } 940 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 941 } 942 continue; 943 } 944 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 945 946 if( aiFree ){ 947 aiCol = aiFree; 948 }else{ 949 iCol = pFKey->aCol[0].iFrom; 950 aiCol = &iCol; 951 } 952 for(i=0; i<pFKey->nCol; i++){ 953 if( aiCol[i]==pTab->iPKey ){ 954 aiCol[i] = -1; 955 } 956 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 957 #ifndef SQLITE_OMIT_AUTHORIZATION 958 /* Request permission to read the parent key columns. If the 959 ** authorization callback returns SQLITE_IGNORE, behave as if any 960 ** values read from the parent table are NULL. */ 961 if( db->xAuth ){ 962 int rcauth; 963 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; 964 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 965 bIgnore = (rcauth==SQLITE_IGNORE); 966 } 967 #endif 968 } 969 970 /* Take a shared-cache advisory read-lock on the parent table. Allocate 971 ** a cursor to use to search the unique index on the parent key columns 972 ** in the parent table. */ 973 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 974 pParse->nTab++; 975 976 if( regOld!=0 ){ 977 /* A row is being removed from the child table. Search for the parent. 978 ** If the parent does not exist, removing the child row resolves an 979 ** outstanding foreign key constraint violation. */ 980 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore); 981 } 982 if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){ 983 /* A row is being added to the child table. If a parent row cannot 984 ** be found, adding the child row has violated the FK constraint. 985 ** 986 ** If this operation is being performed as part of a trigger program 987 ** that is actually a "SET NULL" action belonging to this very 988 ** foreign key, then omit this scan altogether. As all child key 989 ** values are guaranteed to be NULL, it is not possible for adding 990 ** this row to cause an FK violation. */ 991 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore); 992 } 993 994 sqlite3DbFree(db, aiFree); 995 } 996 997 /* Loop through all the foreign key constraints that refer to this table. 998 ** (the "child" constraints) */ 999 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1000 Index *pIdx = 0; /* Foreign key index for pFKey */ 1001 SrcList *pSrc; 1002 int *aiCol = 0; 1003 1004 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ 1005 continue; 1006 } 1007 1008 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 1009 && !pParse->pToplevel && !pParse->isMultiWrite 1010 ){ 1011 assert( regOld==0 && regNew!=0 ); 1012 /* Inserting a single row into a parent table cannot cause (or fix) 1013 ** an immediate foreign key violation. So do nothing in this case. */ 1014 continue; 1015 } 1016 1017 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 1018 if( !isIgnoreErrors || db->mallocFailed ) return; 1019 continue; 1020 } 1021 assert( aiCol || pFKey->nCol==1 ); 1022 1023 /* Create a SrcList structure containing the child table. We need the 1024 ** child table as a SrcList for sqlite3WhereBegin() */ 1025 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1026 if( pSrc ){ 1027 SrcItem *pItem = pSrc->a; 1028 pItem->pTab = pFKey->pFrom; 1029 pItem->zName = pFKey->pFrom->zName; 1030 pItem->pTab->nTabRef++; 1031 pItem->iCursor = pParse->nTab++; 1032 1033 if( regNew!=0 ){ 1034 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 1035 } 1036 if( regOld!=0 ){ 1037 int eAction = pFKey->aAction[aChange!=0]; 1038 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 1039 /* If this is a deferred FK constraint, or a CASCADE or SET NULL 1040 ** action applies, then any foreign key violations caused by 1041 ** removing the parent key will be rectified by the action trigger. 1042 ** So do not set the "may-abort" flag in this case. 1043 ** 1044 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the 1045 ** may-abort flag will eventually be set on this statement anyway 1046 ** (when this function is called as part of processing the UPDATE 1047 ** within the action trigger). 1048 ** 1049 ** Note 2: At first glance it may seem like SQLite could simply omit 1050 ** all OP_FkCounter related scans when either CASCADE or SET NULL 1051 ** applies. The trouble starts if the CASCADE or SET NULL action 1052 ** trigger causes other triggers or action rules attached to the 1053 ** child table to fire. In these cases the fk constraint counters 1054 ** might be set incorrectly if any OP_FkCounter related scans are 1055 ** omitted. */ 1056 if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){ 1057 sqlite3MayAbort(pParse); 1058 } 1059 } 1060 pItem->zName = 0; 1061 sqlite3SrcListDelete(db, pSrc); 1062 } 1063 sqlite3DbFree(db, aiCol); 1064 } 1065 } 1066 1067 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 1068 1069 /* 1070 ** This function is called before generating code to update or delete a 1071 ** row contained in table pTab. 1072 */ 1073 u32 sqlite3FkOldmask( 1074 Parse *pParse, /* Parse context */ 1075 Table *pTab /* Table being modified */ 1076 ){ 1077 u32 mask = 0; 1078 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1079 FKey *p; 1080 int i; 1081 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1082 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 1083 } 1084 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1085 Index *pIdx = 0; 1086 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); 1087 if( pIdx ){ 1088 for(i=0; i<pIdx->nKeyCol; i++){ 1089 assert( pIdx->aiColumn[i]>=0 ); 1090 mask |= COLUMN_MASK(pIdx->aiColumn[i]); 1091 } 1092 } 1093 } 1094 } 1095 return mask; 1096 } 1097 1098 1099 /* 1100 ** This function is called before generating code to update or delete a 1101 ** row contained in table pTab. If the operation is a DELETE, then 1102 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 1103 ** to an array of size N, where N is the number of columns in table pTab. 1104 ** If the i'th column is not modified by the UPDATE, then the corresponding 1105 ** entry in the aChange[] array is set to -1. If the column is modified, 1106 ** the value is 0 or greater. Parameter chngRowid is set to true if the 1107 ** UPDATE statement modifies the rowid fields of the table. 1108 ** 1109 ** If any foreign key processing will be required, this function returns 1110 ** non-zero. If there is no foreign key related processing, this function 1111 ** returns zero. 1112 ** 1113 ** For an UPDATE, this function returns 2 if: 1114 ** 1115 ** * There are any FKs for which pTab is the child and the parent table 1116 ** and any FK processing at all is required (even of a different FK), or 1117 ** 1118 ** * the UPDATE modifies one or more parent keys for which the action is 1119 ** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL). 1120 ** 1121 ** Or, assuming some other foreign key processing is required, 1. 1122 */ 1123 int sqlite3FkRequired( 1124 Parse *pParse, /* Parse context */ 1125 Table *pTab, /* Table being modified */ 1126 int *aChange, /* Non-NULL for UPDATE operations */ 1127 int chngRowid /* True for UPDATE that affects rowid */ 1128 ){ 1129 int eRet = 1; /* Value to return if bHaveFK is true */ 1130 int bHaveFK = 0; /* If FK processing is required */ 1131 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1132 if( !aChange ){ 1133 /* A DELETE operation. Foreign key processing is required if the 1134 ** table in question is either the child or parent table for any 1135 ** foreign key constraint. */ 1136 bHaveFK = (sqlite3FkReferences(pTab) || pTab->pFKey); 1137 }else{ 1138 /* This is an UPDATE. Foreign key processing is only required if the 1139 ** operation modifies one or more child or parent key columns. */ 1140 FKey *p; 1141 1142 /* Check if any child key columns are being modified. */ 1143 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1144 if( fkChildIsModified(pTab, p, aChange, chngRowid) ){ 1145 if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) eRet = 2; 1146 bHaveFK = 1; 1147 } 1148 } 1149 1150 /* Check if any parent key columns are being modified. */ 1151 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1152 if( fkParentIsModified(pTab, p, aChange, chngRowid) ){ 1153 if( p->aAction[1]!=OE_None ) return 2; 1154 bHaveFK = 1; 1155 } 1156 } 1157 } 1158 } 1159 return bHaveFK ? eRet : 0; 1160 } 1161 1162 /* 1163 ** This function is called when an UPDATE or DELETE operation is being 1164 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 1165 ** If the current operation is an UPDATE, then the pChanges parameter is 1166 ** passed a pointer to the list of columns being modified. If it is a 1167 ** DELETE, pChanges is passed a NULL pointer. 1168 ** 1169 ** It returns a pointer to a Trigger structure containing a trigger 1170 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 1171 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is 1172 ** returned (these actions require no special handling by the triggers 1173 ** sub-system, code for them is created by fkScanChildren()). 1174 ** 1175 ** For example, if pFKey is the foreign key and pTab is table "p" in 1176 ** the following schema: 1177 ** 1178 ** CREATE TABLE p(pk PRIMARY KEY); 1179 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 1180 ** 1181 ** then the returned trigger structure is equivalent to: 1182 ** 1183 ** CREATE TRIGGER ... DELETE ON p BEGIN 1184 ** DELETE FROM c WHERE ck = old.pk; 1185 ** END; 1186 ** 1187 ** The returned pointer is cached as part of the foreign key object. It 1188 ** is eventually freed along with the rest of the foreign key object by 1189 ** sqlite3FkDelete(). 1190 */ 1191 static Trigger *fkActionTrigger( 1192 Parse *pParse, /* Parse context */ 1193 Table *pTab, /* Table being updated or deleted from */ 1194 FKey *pFKey, /* Foreign key to get action for */ 1195 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 1196 ){ 1197 sqlite3 *db = pParse->db; /* Database handle */ 1198 int action; /* One of OE_None, OE_Cascade etc. */ 1199 Trigger *pTrigger; /* Trigger definition to return */ 1200 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 1201 1202 action = pFKey->aAction[iAction]; 1203 if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){ 1204 return 0; 1205 } 1206 pTrigger = pFKey->apTrigger[iAction]; 1207 1208 if( action!=OE_None && !pTrigger ){ 1209 char const *zFrom; /* Name of child table */ 1210 int nFrom; /* Length in bytes of zFrom */ 1211 Index *pIdx = 0; /* Parent key index for this FK */ 1212 int *aiCol = 0; /* child table cols -> parent key cols */ 1213 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 1214 Expr *pWhere = 0; /* WHERE clause of trigger step */ 1215 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 1216 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 1217 int i; /* Iterator variable */ 1218 Expr *pWhen = 0; /* WHEN clause for the trigger */ 1219 1220 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 1221 assert( aiCol || pFKey->nCol==1 ); 1222 1223 for(i=0; i<pFKey->nCol; i++){ 1224 Token tOld = { "old", 3 }; /* Literal "old" token */ 1225 Token tNew = { "new", 3 }; /* Literal "new" token */ 1226 Token tFromCol; /* Name of column in child table */ 1227 Token tToCol; /* Name of column in parent table */ 1228 int iFromCol; /* Idx of column in child table */ 1229 Expr *pEq; /* tFromCol = OLD.tToCol */ 1230 1231 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 1232 assert( iFromCol>=0 ); 1233 assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) ); 1234 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 1235 sqlite3TokenInit(&tToCol, 1236 pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName); 1237 sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zName); 1238 1239 /* Create the expression "OLD.zToCol = zFromCol". It is important 1240 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 1241 ** that the affinity and collation sequence associated with the 1242 ** parent table are used for the comparison. */ 1243 pEq = sqlite3PExpr(pParse, TK_EQ, 1244 sqlite3PExpr(pParse, TK_DOT, 1245 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1246 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 1247 sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) 1248 ); 1249 pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); 1250 1251 /* For ON UPDATE, construct the next term of the WHEN clause. 1252 ** The final WHEN clause will be like this: 1253 ** 1254 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 1255 */ 1256 if( pChanges ){ 1257 pEq = sqlite3PExpr(pParse, TK_IS, 1258 sqlite3PExpr(pParse, TK_DOT, 1259 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1260 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 1261 sqlite3PExpr(pParse, TK_DOT, 1262 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1263 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)) 1264 ); 1265 pWhen = sqlite3ExprAnd(pParse, pWhen, pEq); 1266 } 1267 1268 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 1269 Expr *pNew; 1270 if( action==OE_Cascade ){ 1271 pNew = sqlite3PExpr(pParse, TK_DOT, 1272 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1273 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)); 1274 }else if( action==OE_SetDflt ){ 1275 Column *pCol = pFKey->pFrom->aCol + iFromCol; 1276 Expr *pDflt; 1277 if( pCol->colFlags & COLFLAG_GENERATED ){ 1278 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1279 testcase( pCol->colFlags & COLFLAG_STORED ); 1280 pDflt = 0; 1281 }else{ 1282 pDflt = pCol->pDflt; 1283 } 1284 if( pDflt ){ 1285 pNew = sqlite3ExprDup(db, pDflt, 0); 1286 }else{ 1287 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 1288 } 1289 }else{ 1290 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 1291 } 1292 pList = sqlite3ExprListAppend(pParse, pList, pNew); 1293 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 1294 } 1295 } 1296 sqlite3DbFree(db, aiCol); 1297 1298 zFrom = pFKey->pFrom->zName; 1299 nFrom = sqlite3Strlen30(zFrom); 1300 1301 if( action==OE_Restrict ){ 1302 Token tFrom; 1303 Expr *pRaise; 1304 1305 tFrom.z = zFrom; 1306 tFrom.n = nFrom; 1307 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); 1308 if( pRaise ){ 1309 pRaise->affExpr = OE_Abort; 1310 } 1311 pSelect = sqlite3SelectNew(pParse, 1312 sqlite3ExprListAppend(pParse, 0, pRaise), 1313 sqlite3SrcListAppend(pParse, 0, &tFrom, 0), 1314 pWhere, 1315 0, 0, 0, 0, 0 1316 ); 1317 pWhere = 0; 1318 } 1319 1320 /* Disable lookaside memory allocation */ 1321 DisableLookaside; 1322 1323 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 1324 sizeof(Trigger) + /* struct Trigger */ 1325 sizeof(TriggerStep) + /* Single step in trigger program */ 1326 nFrom + 1 /* Space for pStep->zTarget */ 1327 ); 1328 if( pTrigger ){ 1329 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 1330 pStep->zTarget = (char *)&pStep[1]; 1331 memcpy((char *)pStep->zTarget, zFrom, nFrom); 1332 1333 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 1334 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 1335 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1336 if( pWhen ){ 1337 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0); 1338 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 1339 } 1340 } 1341 1342 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 1343 EnableLookaside; 1344 1345 sqlite3ExprDelete(db, pWhere); 1346 sqlite3ExprDelete(db, pWhen); 1347 sqlite3ExprListDelete(db, pList); 1348 sqlite3SelectDelete(db, pSelect); 1349 if( db->mallocFailed==1 ){ 1350 fkTriggerDelete(db, pTrigger); 1351 return 0; 1352 } 1353 assert( pStep!=0 ); 1354 assert( pTrigger!=0 ); 1355 1356 switch( action ){ 1357 case OE_Restrict: 1358 pStep->op = TK_SELECT; 1359 break; 1360 case OE_Cascade: 1361 if( !pChanges ){ 1362 pStep->op = TK_DELETE; 1363 break; 1364 } 1365 /* no break */ deliberate_fall_through 1366 default: 1367 pStep->op = TK_UPDATE; 1368 } 1369 pStep->pTrig = pTrigger; 1370 pTrigger->pSchema = pTab->pSchema; 1371 pTrigger->pTabSchema = pTab->pSchema; 1372 pFKey->apTrigger[iAction] = pTrigger; 1373 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 1374 } 1375 1376 return pTrigger; 1377 } 1378 1379 /* 1380 ** This function is called when deleting or updating a row to implement 1381 ** any required CASCADE, SET NULL or SET DEFAULT actions. 1382 */ 1383 void sqlite3FkActions( 1384 Parse *pParse, /* Parse context */ 1385 Table *pTab, /* Table being updated or deleted from */ 1386 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 1387 int regOld, /* Address of array containing old row */ 1388 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 1389 int bChngRowid /* True if rowid is UPDATEd */ 1390 ){ 1391 /* If foreign-key support is enabled, iterate through all FKs that 1392 ** refer to table pTab. If there is an action associated with the FK 1393 ** for this operation (either update or delete), invoke the associated 1394 ** trigger sub-program. */ 1395 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1396 FKey *pFKey; /* Iterator variable */ 1397 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1398 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ 1399 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); 1400 if( pAct ){ 1401 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); 1402 } 1403 } 1404 } 1405 } 1406 } 1407 1408 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 1409 1410 /* 1411 ** Free all memory associated with foreign key definitions attached to 1412 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 1413 ** hash table. 1414 */ 1415 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 1416 FKey *pFKey; /* Iterator variable */ 1417 FKey *pNext; /* Copy of pFKey->pNextFrom */ 1418 1419 assert( db==0 || IsVirtual(pTab) 1420 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 1421 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ 1422 1423 /* Remove the FK from the fkeyHash hash table. */ 1424 if( !db || db->pnBytesFreed==0 ){ 1425 if( pFKey->pPrevTo ){ 1426 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 1427 }else{ 1428 void *p = (void *)pFKey->pNextTo; 1429 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); 1430 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p); 1431 } 1432 if( pFKey->pNextTo ){ 1433 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 1434 } 1435 } 1436 1437 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 1438 ** classified as either immediate or deferred. 1439 */ 1440 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 1441 1442 /* Delete any triggers created to implement actions for this FK. */ 1443 #ifndef SQLITE_OMIT_TRIGGER 1444 fkTriggerDelete(db, pFKey->apTrigger[0]); 1445 fkTriggerDelete(db, pFKey->apTrigger[1]); 1446 #endif 1447 1448 pNext = pFKey->pNextFrom; 1449 sqlite3DbFree(db, pFKey); 1450 } 1451 } 1452 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ 1453