xref: /sqlite-3.40.0/src/fkey.c (revision 9bccde3d)
1 /*
2 **
3 ** The author disclaims copyright to this source code.  In place of
4 ** a legal notice, here is a blessing:
5 **
6 **    May you do good and not evil.
7 **    May you find forgiveness for yourself and forgive others.
8 **    May you share freely, never taking more than you give.
9 **
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
13 */
14 #include "sqliteInt.h"
15 
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
18 
19 /*
20 ** Deferred and Immediate FKs
21 ** --------------------------
22 **
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated,
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
26 ** statement transaction rolled back. If a
27 ** deferred foreign key constraint is violated, no action is taken
28 ** immediately. However if the application attempts to commit the
29 ** transaction before fixing the constraint violation, the attempt fails.
30 **
31 ** Deferred constraints are implemented using a simple counter associated
32 ** with the database handle. The counter is set to zero each time a
33 ** database transaction is opened. Each time a statement is executed
34 ** that causes a foreign key violation, the counter is incremented. Each
35 ** time a statement is executed that removes an existing violation from
36 ** the database, the counter is decremented. When the transaction is
37 ** committed, the commit fails if the current value of the counter is
38 ** greater than zero. This scheme has two big drawbacks:
39 **
40 **   * When a commit fails due to a deferred foreign key constraint,
41 **     there is no way to tell which foreign constraint is not satisfied,
42 **     or which row it is not satisfied for.
43 **
44 **   * If the database contains foreign key violations when the
45 **     transaction is opened, this may cause the mechanism to malfunction.
46 **
47 ** Despite these problems, this approach is adopted as it seems simpler
48 ** than the alternatives.
49 **
50 ** INSERT operations:
51 **
52 **   I.1) For each FK for which the table is the child table, search
53 **        the parent table for a match. If none is found increment the
54 **        constraint counter.
55 **
56 **   I.2) For each FK for which the table is the parent table,
57 **        search the child table for rows that correspond to the new
58 **        row in the parent table. Decrement the counter for each row
59 **        found (as the constraint is now satisfied).
60 **
61 ** DELETE operations:
62 **
63 **   D.1) For each FK for which the table is the child table,
64 **        search the parent table for a row that corresponds to the
65 **        deleted row in the child table. If such a row is not found,
66 **        decrement the counter.
67 **
68 **   D.2) For each FK for which the table is the parent table, search
69 **        the child table for rows that correspond to the deleted row
70 **        in the parent table. For each found increment the counter.
71 **
72 ** UPDATE operations:
73 **
74 **   An UPDATE command requires that all 4 steps above are taken, but only
75 **   for FK constraints for which the affected columns are actually
76 **   modified (values must be compared at runtime).
77 **
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
79 ** This simplifies the implementation a bit.
80 **
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
82 ** resolution is considered to delete rows before the new row is inserted.
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
84 ** is thrown, even if the FK constraint would be satisfied after the new
85 ** row is inserted.
86 **
87 ** Immediate constraints are usually handled similarly. The only difference
88 ** is that the counter used is stored as part of each individual statement
89 ** object (struct Vdbe). If, after the statement has run, its immediate
90 ** constraint counter is greater than zero,
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92 ** and the statement transaction is rolled back. An exception is an INSERT
93 ** statement that inserts a single row only (no triggers). In this case,
94 ** instead of using a counter, an exception is thrown immediately if the
95 ** INSERT violates a foreign key constraint. This is necessary as such
96 ** an INSERT does not open a statement transaction.
97 **
98 ** TODO: How should dropping a table be handled? How should renaming a
99 ** table be handled?
100 **
101 **
102 ** Query API Notes
103 ** ---------------
104 **
105 ** Before coding an UPDATE or DELETE row operation, the code-generator
106 ** for those two operations needs to know whether or not the operation
107 ** requires any FK processing and, if so, which columns of the original
108 ** row are required by the FK processing VDBE code (i.e. if FKs were
109 ** implemented using triggers, which of the old.* columns would be
110 ** accessed). No information is required by the code-generator before
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
112 ** generation code to query for this information are:
113 **
114 **   sqlite3FkRequired() - Test to see if FK processing is required.
115 **   sqlite3FkOldmask()  - Query for the set of required old.* columns.
116 **
117 **
118 ** Externally accessible module functions
119 ** --------------------------------------
120 **
121 **   sqlite3FkCheck()    - Check for foreign key violations.
122 **   sqlite3FkActions()  - Code triggers for ON UPDATE/ON DELETE actions.
123 **   sqlite3FkDelete()   - Delete an FKey structure.
124 */
125 
126 /*
127 ** VDBE Calling Convention
128 ** -----------------------
129 **
130 ** Example:
131 **
132 **   For the following INSERT statement:
133 **
134 **     CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
135 **     INSERT INTO t1 VALUES(1, 2, 3.1);
136 **
137 **   Register (x):        2    (type integer)
138 **   Register (x+1):      1    (type integer)
139 **   Register (x+2):      NULL (type NULL)
140 **   Register (x+3):      3.1  (type real)
141 */
142 
143 /*
144 ** A foreign key constraint requires that the key columns in the parent
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
146 ** Given that pParent is the parent table for foreign key constraint pFKey,
147 ** search the schema for a unique index on the parent key columns.
148 **
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
151 ** is set to point to the unique index.
152 **
153 ** If the parent key consists of a single column (the foreign key constraint
154 ** is not a composite foreign key), output variable *paiCol is set to NULL.
155 ** Otherwise, it is set to point to an allocated array of size N, where
156 ** N is the number of columns in the parent key. The first element of the
157 ** array is the index of the child table column that is mapped by the FK
158 ** constraint to the parent table column stored in the left-most column
159 ** of index *ppIdx. The second element of the array is the index of the
160 ** child table column that corresponds to the second left-most column of
161 ** *ppIdx, and so on.
162 **
163 ** If the required index cannot be found, either because:
164 **
165 **   1) The named parent key columns do not exist, or
166 **
167 **   2) The named parent key columns do exist, but are not subject to a
168 **      UNIQUE or PRIMARY KEY constraint, or
169 **
170 **   3) No parent key columns were provided explicitly as part of the
171 **      foreign key definition, and the parent table does not have a
172 **      PRIMARY KEY, or
173 **
174 **   4) No parent key columns were provided explicitly as part of the
175 **      foreign key definition, and the PRIMARY KEY of the parent table
176 **      consists of a different number of columns to the child key in
177 **      the child table.
178 **
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded
180 ** into pParse. If an OOM error occurs, non-zero is returned and the
181 ** pParse->db->mallocFailed flag is set.
182 */
183 int sqlite3FkLocateIndex(
184   Parse *pParse,                  /* Parse context to store any error in */
185   Table *pParent,                 /* Parent table of FK constraint pFKey */
186   FKey *pFKey,                    /* Foreign key to find index for */
187   Index **ppIdx,                  /* OUT: Unique index on parent table */
188   int **paiCol                    /* OUT: Map of index columns in pFKey */
189 ){
190   Index *pIdx = 0;                    /* Value to return via *ppIdx */
191   int *aiCol = 0;                     /* Value to return via *paiCol */
192   int nCol = pFKey->nCol;             /* Number of columns in parent key */
193   char *zKey = pFKey->aCol[0].zCol;   /* Name of left-most parent key column */
194 
195   /* The caller is responsible for zeroing output parameters. */
196   assert( ppIdx && *ppIdx==0 );
197   assert( !paiCol || *paiCol==0 );
198   assert( pParse );
199 
200   /* If this is a non-composite (single column) foreign key, check if it
201   ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
202   ** and *paiCol set to zero and return early.
203   **
204   ** Otherwise, for a composite foreign key (more than one column), allocate
205   ** space for the aiCol array (returned via output parameter *paiCol).
206   ** Non-composite foreign keys do not require the aiCol array.
207   */
208   if( nCol==1 ){
209     /* The FK maps to the IPK if any of the following are true:
210     **
211     **   1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
212     **      mapped to the primary key of table pParent, or
213     **   2) The FK is explicitly mapped to a column declared as INTEGER
214     **      PRIMARY KEY.
215     */
216     if( pParent->iPKey>=0 ){
217       if( !zKey ) return 0;
218       if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
219     }
220   }else if( paiCol ){
221     assert( nCol>1 );
222     aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int));
223     if( !aiCol ) return 1;
224     *paiCol = aiCol;
225   }
226 
227   for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
228     if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) ){
229       /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
230       ** of columns. If each indexed column corresponds to a foreign key
231       ** column of pFKey, then this index is a winner.  */
232 
233       if( zKey==0 ){
234         /* If zKey is NULL, then this foreign key is implicitly mapped to
235         ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
236         ** identified by the test.  */
237         if( IsPrimaryKeyIndex(pIdx) ){
238           if( aiCol ){
239             int i;
240             for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
241           }
242           break;
243         }
244       }else{
245         /* If zKey is non-NULL, then this foreign key was declared to
246         ** map to an explicit list of columns in table pParent. Check if this
247         ** index matches those columns. Also, check that the index uses
248         ** the default collation sequences for each column. */
249         int i, j;
250         for(i=0; i<nCol; i++){
251           i16 iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
252           const char *zDfltColl;            /* Def. collation for column */
253           char *zIdxCol;                    /* Name of indexed column */
254 
255           if( iCol<0 ) break; /* No foreign keys against expression indexes */
256 
257           /* If the index uses a collation sequence that is different from
258           ** the default collation sequence for the column, this index is
259           ** unusable. Bail out early in this case.  */
260           zDfltColl = pParent->aCol[iCol].zColl;
261           if( !zDfltColl ) zDfltColl = sqlite3StrBINARY;
262           if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
263 
264           zIdxCol = pParent->aCol[iCol].zName;
265           for(j=0; j<nCol; j++){
266             if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
267               if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
268               break;
269             }
270           }
271           if( j==nCol ) break;
272         }
273         if( i==nCol ) break;      /* pIdx is usable */
274       }
275     }
276   }
277 
278   if( !pIdx ){
279     if( !pParse->disableTriggers ){
280       sqlite3ErrorMsg(pParse,
281            "foreign key mismatch - \"%w\" referencing \"%w\"",
282            pFKey->pFrom->zName, pFKey->zTo);
283     }
284     sqlite3DbFree(pParse->db, aiCol);
285     return 1;
286   }
287 
288   *ppIdx = pIdx;
289   return 0;
290 }
291 
292 /*
293 ** This function is called when a row is inserted into or deleted from the
294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
295 ** on the child table of pFKey, this function is invoked twice for each row
296 ** affected - once to "delete" the old row, and then again to "insert" the
297 ** new row.
298 **
299 ** Each time it is called, this function generates VDBE code to locate the
300 ** row in the parent table that corresponds to the row being inserted into
301 ** or deleted from the child table. If the parent row can be found, no
302 ** special action is taken. Otherwise, if the parent row can *not* be
303 ** found in the parent table:
304 **
305 **   Operation | FK type   | Action taken
306 **   --------------------------------------------------------------------------
307 **   INSERT      immediate   Increment the "immediate constraint counter".
308 **
309 **   DELETE      immediate   Decrement the "immediate constraint counter".
310 **
311 **   INSERT      deferred    Increment the "deferred constraint counter".
312 **
313 **   DELETE      deferred    Decrement the "deferred constraint counter".
314 **
315 ** These operations are identified in the comment at the top of this file
316 ** (fkey.c) as "I.1" and "D.1".
317 */
318 static void fkLookupParent(
319   Parse *pParse,        /* Parse context */
320   int iDb,              /* Index of database housing pTab */
321   Table *pTab,          /* Parent table of FK pFKey */
322   Index *pIdx,          /* Unique index on parent key columns in pTab */
323   FKey *pFKey,          /* Foreign key constraint */
324   int *aiCol,           /* Map from parent key columns to child table columns */
325   int regData,          /* Address of array containing child table row */
326   int nIncr,            /* Increment constraint counter by this */
327   int isIgnore          /* If true, pretend pTab contains all NULL values */
328 ){
329   int i;                                    /* Iterator variable */
330   Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
331   int iCur = pParse->nTab - 1;              /* Cursor number to use */
332   int iOk = sqlite3VdbeMakeLabel(v);        /* jump here if parent key found */
333 
334   /* If nIncr is less than zero, then check at runtime if there are any
335   ** outstanding constraints to resolve. If there are not, there is no need
336   ** to check if deleting this row resolves any outstanding violations.
337   **
338   ** Check if any of the key columns in the child table row are NULL. If
339   ** any are, then the constraint is considered satisfied. No need to
340   ** search for a matching row in the parent table.  */
341   if( nIncr<0 ){
342     sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
343     VdbeCoverage(v);
344   }
345   for(i=0; i<pFKey->nCol; i++){
346     int iReg = aiCol[i] + regData + 1;
347     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v);
348   }
349 
350   if( isIgnore==0 ){
351     if( pIdx==0 ){
352       /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
353       ** column of the parent table (table pTab).  */
354       int iMustBeInt;               /* Address of MustBeInt instruction */
355       int regTemp = sqlite3GetTempReg(pParse);
356 
357       /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
358       ** apply the affinity of the parent key). If this fails, then there
359       ** is no matching parent key. Before using MustBeInt, make a copy of
360       ** the value. Otherwise, the value inserted into the child key column
361       ** will have INTEGER affinity applied to it, which may not be correct.  */
362       sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
363       iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
364       VdbeCoverage(v);
365 
366       /* If the parent table is the same as the child table, and we are about
367       ** to increment the constraint-counter (i.e. this is an INSERT operation),
368       ** then check if the row being inserted matches itself. If so, do not
369       ** increment the constraint-counter.  */
370       if( pTab==pFKey->pFrom && nIncr==1 ){
371         sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v);
372         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
373       }
374 
375       sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
376       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v);
377       sqlite3VdbeGoto(v, iOk);
378       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
379       sqlite3VdbeJumpHere(v, iMustBeInt);
380       sqlite3ReleaseTempReg(pParse, regTemp);
381     }else{
382       int nCol = pFKey->nCol;
383       int regTemp = sqlite3GetTempRange(pParse, nCol);
384       int regRec = sqlite3GetTempReg(pParse);
385 
386       sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
387       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
388       for(i=0; i<nCol; i++){
389         sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
390       }
391 
392       /* If the parent table is the same as the child table, and we are about
393       ** to increment the constraint-counter (i.e. this is an INSERT operation),
394       ** then check if the row being inserted matches itself. If so, do not
395       ** increment the constraint-counter.
396       **
397       ** If any of the parent-key values are NULL, then the row cannot match
398       ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
399       ** of the parent-key values are NULL (at this point it is known that
400       ** none of the child key values are).
401       */
402       if( pTab==pFKey->pFrom && nIncr==1 ){
403         int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
404         for(i=0; i<nCol; i++){
405           int iChild = aiCol[i]+1+regData;
406           int iParent = pIdx->aiColumn[i]+1+regData;
407           assert( pIdx->aiColumn[i]>=0 );
408           assert( aiCol[i]!=pTab->iPKey );
409           if( pIdx->aiColumn[i]==pTab->iPKey ){
410             /* The parent key is a composite key that includes the IPK column */
411             iParent = regData;
412           }
413           sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v);
414           sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
415         }
416         sqlite3VdbeGoto(v, iOk);
417       }
418 
419       sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec,
420                         sqlite3IndexAffinityStr(pParse->db,pIdx), nCol);
421       sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v);
422 
423       sqlite3ReleaseTempReg(pParse, regRec);
424       sqlite3ReleaseTempRange(pParse, regTemp, nCol);
425     }
426   }
427 
428   if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
429    && !pParse->pToplevel
430    && !pParse->isMultiWrite
431   ){
432     /* Special case: If this is an INSERT statement that will insert exactly
433     ** one row into the table, raise a constraint immediately instead of
434     ** incrementing a counter. This is necessary as the VM code is being
435     ** generated for will not open a statement transaction.  */
436     assert( nIncr==1 );
437     sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
438         OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
439   }else{
440     if( nIncr>0 && pFKey->isDeferred==0 ){
441       sqlite3MayAbort(pParse);
442     }
443     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
444   }
445 
446   sqlite3VdbeResolveLabel(v, iOk);
447   sqlite3VdbeAddOp1(v, OP_Close, iCur);
448 }
449 
450 
451 /*
452 ** Return an Expr object that refers to a memory register corresponding
453 ** to column iCol of table pTab.
454 **
455 ** regBase is the first of an array of register that contains the data
456 ** for pTab.  regBase itself holds the rowid.  regBase+1 holds the first
457 ** column.  regBase+2 holds the second column, and so forth.
458 */
459 static Expr *exprTableRegister(
460   Parse *pParse,     /* Parsing and code generating context */
461   Table *pTab,       /* The table whose content is at r[regBase]... */
462   int regBase,       /* Contents of table pTab */
463   i16 iCol           /* Which column of pTab is desired */
464 ){
465   Expr *pExpr;
466   Column *pCol;
467   const char *zColl;
468   sqlite3 *db = pParse->db;
469 
470   pExpr = sqlite3Expr(db, TK_REGISTER, 0);
471   if( pExpr ){
472     if( iCol>=0 && iCol!=pTab->iPKey ){
473       pCol = &pTab->aCol[iCol];
474       pExpr->iTable = regBase + iCol + 1;
475       pExpr->affinity = pCol->affinity;
476       zColl = pCol->zColl;
477       if( zColl==0 ) zColl = db->pDfltColl->zName;
478       pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl);
479     }else{
480       pExpr->iTable = regBase;
481       pExpr->affinity = SQLITE_AFF_INTEGER;
482     }
483   }
484   return pExpr;
485 }
486 
487 /*
488 ** Return an Expr object that refers to column iCol of table pTab which
489 ** has cursor iCur.
490 */
491 static Expr *exprTableColumn(
492   sqlite3 *db,      /* The database connection */
493   Table *pTab,      /* The table whose column is desired */
494   int iCursor,      /* The open cursor on the table */
495   i16 iCol          /* The column that is wanted */
496 ){
497   Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
498   if( pExpr ){
499     pExpr->pTab = pTab;
500     pExpr->iTable = iCursor;
501     pExpr->iColumn = iCol;
502   }
503   return pExpr;
504 }
505 
506 /*
507 ** This function is called to generate code executed when a row is deleted
508 ** from the parent table of foreign key constraint pFKey and, if pFKey is
509 ** deferred, when a row is inserted into the same table. When generating
510 ** code for an SQL UPDATE operation, this function may be called twice -
511 ** once to "delete" the old row and once to "insert" the new row.
512 **
513 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease
514 ** the number of FK violations in the db) or +1 when deleting one (as this
515 ** may increase the number of FK constraint problems).
516 **
517 ** The code generated by this function scans through the rows in the child
518 ** table that correspond to the parent table row being deleted or inserted.
519 ** For each child row found, one of the following actions is taken:
520 **
521 **   Operation | FK type   | Action taken
522 **   --------------------------------------------------------------------------
523 **   DELETE      immediate   Increment the "immediate constraint counter".
524 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
525 **                           throw a "FOREIGN KEY constraint failed" exception.
526 **
527 **   INSERT      immediate   Decrement the "immediate constraint counter".
528 **
529 **   DELETE      deferred    Increment the "deferred constraint counter".
530 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
531 **                           throw a "FOREIGN KEY constraint failed" exception.
532 **
533 **   INSERT      deferred    Decrement the "deferred constraint counter".
534 **
535 ** These operations are identified in the comment at the top of this file
536 ** (fkey.c) as "I.2" and "D.2".
537 */
538 static void fkScanChildren(
539   Parse *pParse,                  /* Parse context */
540   SrcList *pSrc,                  /* The child table to be scanned */
541   Table *pTab,                    /* The parent table */
542   Index *pIdx,                    /* Index on parent covering the foreign key */
543   FKey *pFKey,                    /* The foreign key linking pSrc to pTab */
544   int *aiCol,                     /* Map from pIdx cols to child table cols */
545   int regData,                    /* Parent row data starts here */
546   int nIncr                       /* Amount to increment deferred counter by */
547 ){
548   sqlite3 *db = pParse->db;       /* Database handle */
549   int i;                          /* Iterator variable */
550   Expr *pWhere = 0;               /* WHERE clause to scan with */
551   NameContext sNameContext;       /* Context used to resolve WHERE clause */
552   WhereInfo *pWInfo;              /* Context used by sqlite3WhereXXX() */
553   int iFkIfZero = 0;              /* Address of OP_FkIfZero */
554   Vdbe *v = sqlite3GetVdbe(pParse);
555 
556   assert( pIdx==0 || pIdx->pTable==pTab );
557   assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
558   assert( pIdx!=0 || pFKey->nCol==1 );
559   assert( pIdx!=0 || HasRowid(pTab) );
560 
561   if( nIncr<0 ){
562     iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
563     VdbeCoverage(v);
564   }
565 
566   /* Create an Expr object representing an SQL expression like:
567   **
568   **   <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
569   **
570   ** The collation sequence used for the comparison should be that of
571   ** the parent key columns. The affinity of the parent key column should
572   ** be applied to each child key value before the comparison takes place.
573   */
574   for(i=0; i<pFKey->nCol; i++){
575     Expr *pLeft;                  /* Value from parent table row */
576     Expr *pRight;                 /* Column ref to child table */
577     Expr *pEq;                    /* Expression (pLeft = pRight) */
578     i16 iCol;                     /* Index of column in child table */
579     const char *zCol;             /* Name of column in child table */
580 
581     iCol = pIdx ? pIdx->aiColumn[i] : -1;
582     pLeft = exprTableRegister(pParse, pTab, regData, iCol);
583     iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
584     assert( iCol>=0 );
585     zCol = pFKey->pFrom->aCol[iCol].zName;
586     pRight = sqlite3Expr(db, TK_ID, zCol);
587     pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
588     pWhere = sqlite3ExprAnd(db, pWhere, pEq);
589   }
590 
591   /* If the child table is the same as the parent table, then add terms
592   ** to the WHERE clause that prevent this entry from being scanned.
593   ** The added WHERE clause terms are like this:
594   **
595   **     $current_rowid!=rowid
596   **     NOT( $current_a==a AND $current_b==b AND ... )
597   **
598   ** The first form is used for rowid tables.  The second form is used
599   ** for WITHOUT ROWID tables.  In the second form, the primary key is
600   ** (a,b,...)
601   */
602   if( pTab==pFKey->pFrom && nIncr>0 ){
603     Expr *pNe;                    /* Expression (pLeft != pRight) */
604     Expr *pLeft;                  /* Value from parent table row */
605     Expr *pRight;                 /* Column ref to child table */
606     if( HasRowid(pTab) ){
607       pLeft = exprTableRegister(pParse, pTab, regData, -1);
608       pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1);
609       pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
610     }else{
611       Expr *pEq, *pAll = 0;
612       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
613       assert( pIdx!=0 );
614       for(i=0; i<pPk->nKeyCol; i++){
615         i16 iCol = pIdx->aiColumn[i];
616         assert( iCol>=0 );
617         pLeft = exprTableRegister(pParse, pTab, regData, iCol);
618         pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol);
619         pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
620         pAll = sqlite3ExprAnd(db, pAll, pEq);
621       }
622       pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0, 0);
623     }
624     pWhere = sqlite3ExprAnd(db, pWhere, pNe);
625   }
626 
627   /* Resolve the references in the WHERE clause. */
628   memset(&sNameContext, 0, sizeof(NameContext));
629   sNameContext.pSrcList = pSrc;
630   sNameContext.pParse = pParse;
631   sqlite3ResolveExprNames(&sNameContext, pWhere);
632 
633   /* Create VDBE to loop through the entries in pSrc that match the WHERE
634   ** clause. For each row found, increment either the deferred or immediate
635   ** foreign key constraint counter. */
636   pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
637   sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
638   if( pWInfo ){
639     sqlite3WhereEnd(pWInfo);
640   }
641 
642   /* Clean up the WHERE clause constructed above. */
643   sqlite3ExprDelete(db, pWhere);
644   if( iFkIfZero ){
645     sqlite3VdbeJumpHere(v, iFkIfZero);
646   }
647 }
648 
649 /*
650 ** This function returns a linked list of FKey objects (connected by
651 ** FKey.pNextTo) holding all children of table pTab.  For example,
652 ** given the following schema:
653 **
654 **   CREATE TABLE t1(a PRIMARY KEY);
655 **   CREATE TABLE t2(b REFERENCES t1(a);
656 **
657 ** Calling this function with table "t1" as an argument returns a pointer
658 ** to the FKey structure representing the foreign key constraint on table
659 ** "t2". Calling this function with "t2" as the argument would return a
660 ** NULL pointer (as there are no FK constraints for which t2 is the parent
661 ** table).
662 */
663 FKey *sqlite3FkReferences(Table *pTab){
664   return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName);
665 }
666 
667 /*
668 ** The second argument is a Trigger structure allocated by the
669 ** fkActionTrigger() routine. This function deletes the Trigger structure
670 ** and all of its sub-components.
671 **
672 ** The Trigger structure or any of its sub-components may be allocated from
673 ** the lookaside buffer belonging to database handle dbMem.
674 */
675 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
676   if( p ){
677     TriggerStep *pStep = p->step_list;
678     sqlite3ExprDelete(dbMem, pStep->pWhere);
679     sqlite3ExprListDelete(dbMem, pStep->pExprList);
680     sqlite3SelectDelete(dbMem, pStep->pSelect);
681     sqlite3ExprDelete(dbMem, p->pWhen);
682     sqlite3DbFree(dbMem, p);
683   }
684 }
685 
686 /*
687 ** This function is called to generate code that runs when table pTab is
688 ** being dropped from the database. The SrcList passed as the second argument
689 ** to this function contains a single entry guaranteed to resolve to
690 ** table pTab.
691 **
692 ** Normally, no code is required. However, if either
693 **
694 **   (a) The table is the parent table of a FK constraint, or
695 **   (b) The table is the child table of a deferred FK constraint and it is
696 **       determined at runtime that there are outstanding deferred FK
697 **       constraint violations in the database,
698 **
699 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
700 ** the table from the database. Triggers are disabled while running this
701 ** DELETE, but foreign key actions are not.
702 */
703 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
704   sqlite3 *db = pParse->db;
705   if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
706     int iSkip = 0;
707     Vdbe *v = sqlite3GetVdbe(pParse);
708 
709     assert( v );                  /* VDBE has already been allocated */
710     if( sqlite3FkReferences(pTab)==0 ){
711       /* Search for a deferred foreign key constraint for which this table
712       ** is the child table. If one cannot be found, return without
713       ** generating any VDBE code. If one can be found, then jump over
714       ** the entire DELETE if there are no outstanding deferred constraints
715       ** when this statement is run.  */
716       FKey *p;
717       for(p=pTab->pFKey; p; p=p->pNextFrom){
718         if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
719       }
720       if( !p ) return;
721       iSkip = sqlite3VdbeMakeLabel(v);
722       sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v);
723     }
724 
725     pParse->disableTriggers = 1;
726     sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
727     pParse->disableTriggers = 0;
728 
729     /* If the DELETE has generated immediate foreign key constraint
730     ** violations, halt the VDBE and return an error at this point, before
731     ** any modifications to the schema are made. This is because statement
732     ** transactions are not able to rollback schema changes.
733     **
734     ** If the SQLITE_DeferFKs flag is set, then this is not required, as
735     ** the statement transaction will not be rolled back even if FK
736     ** constraints are violated.
737     */
738     if( (db->flags & SQLITE_DeferFKs)==0 ){
739       sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
740       VdbeCoverage(v);
741       sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
742           OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
743     }
744 
745     if( iSkip ){
746       sqlite3VdbeResolveLabel(v, iSkip);
747     }
748   }
749 }
750 
751 
752 /*
753 ** The second argument points to an FKey object representing a foreign key
754 ** for which pTab is the child table. An UPDATE statement against pTab
755 ** is currently being processed. For each column of the table that is
756 ** actually updated, the corresponding element in the aChange[] array
757 ** is zero or greater (if a column is unmodified the corresponding element
758 ** is set to -1). If the rowid column is modified by the UPDATE statement
759 ** the bChngRowid argument is non-zero.
760 **
761 ** This function returns true if any of the columns that are part of the
762 ** child key for FK constraint *p are modified.
763 */
764 static int fkChildIsModified(
765   Table *pTab,                    /* Table being updated */
766   FKey *p,                        /* Foreign key for which pTab is the child */
767   int *aChange,                   /* Array indicating modified columns */
768   int bChngRowid                  /* True if rowid is modified by this update */
769 ){
770   int i;
771   for(i=0; i<p->nCol; i++){
772     int iChildKey = p->aCol[i].iFrom;
773     if( aChange[iChildKey]>=0 ) return 1;
774     if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
775   }
776   return 0;
777 }
778 
779 /*
780 ** The second argument points to an FKey object representing a foreign key
781 ** for which pTab is the parent table. An UPDATE statement against pTab
782 ** is currently being processed. For each column of the table that is
783 ** actually updated, the corresponding element in the aChange[] array
784 ** is zero or greater (if a column is unmodified the corresponding element
785 ** is set to -1). If the rowid column is modified by the UPDATE statement
786 ** the bChngRowid argument is non-zero.
787 **
788 ** This function returns true if any of the columns that are part of the
789 ** parent key for FK constraint *p are modified.
790 */
791 static int fkParentIsModified(
792   Table *pTab,
793   FKey *p,
794   int *aChange,
795   int bChngRowid
796 ){
797   int i;
798   for(i=0; i<p->nCol; i++){
799     char *zKey = p->aCol[i].zCol;
800     int iKey;
801     for(iKey=0; iKey<pTab->nCol; iKey++){
802       if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
803         Column *pCol = &pTab->aCol[iKey];
804         if( zKey ){
805           if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1;
806         }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
807           return 1;
808         }
809       }
810     }
811   }
812   return 0;
813 }
814 
815 /*
816 ** Return true if the parser passed as the first argument is being
817 ** used to code a trigger that is really a "SET NULL" action belonging
818 ** to trigger pFKey.
819 */
820 static int isSetNullAction(Parse *pParse, FKey *pFKey){
821   Parse *pTop = sqlite3ParseToplevel(pParse);
822   if( pTop->pTriggerPrg ){
823     Trigger *p = pTop->pTriggerPrg->pTrigger;
824     if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull)
825      || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull)
826     ){
827       return 1;
828     }
829   }
830   return 0;
831 }
832 
833 /*
834 ** This function is called when inserting, deleting or updating a row of
835 ** table pTab to generate VDBE code to perform foreign key constraint
836 ** processing for the operation.
837 **
838 ** For a DELETE operation, parameter regOld is passed the index of the
839 ** first register in an array of (pTab->nCol+1) registers containing the
840 ** rowid of the row being deleted, followed by each of the column values
841 ** of the row being deleted, from left to right. Parameter regNew is passed
842 ** zero in this case.
843 **
844 ** For an INSERT operation, regOld is passed zero and regNew is passed the
845 ** first register of an array of (pTab->nCol+1) registers containing the new
846 ** row data.
847 **
848 ** For an UPDATE operation, this function is called twice. Once before
849 ** the original record is deleted from the table using the calling convention
850 ** described for DELETE. Then again after the original record is deleted
851 ** but before the new record is inserted using the INSERT convention.
852 */
853 void sqlite3FkCheck(
854   Parse *pParse,                  /* Parse context */
855   Table *pTab,                    /* Row is being deleted from this table */
856   int regOld,                     /* Previous row data is stored here */
857   int regNew,                     /* New row data is stored here */
858   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
859   int bChngRowid                  /* True if rowid is UPDATEd */
860 ){
861   sqlite3 *db = pParse->db;       /* Database handle */
862   FKey *pFKey;                    /* Used to iterate through FKs */
863   int iDb;                        /* Index of database containing pTab */
864   const char *zDb;                /* Name of database containing pTab */
865   int isIgnoreErrors = pParse->disableTriggers;
866 
867   /* Exactly one of regOld and regNew should be non-zero. */
868   assert( (regOld==0)!=(regNew==0) );
869 
870   /* If foreign-keys are disabled, this function is a no-op. */
871   if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
872 
873   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
874   zDb = db->aDb[iDb].zName;
875 
876   /* Loop through all the foreign key constraints for which pTab is the
877   ** child table (the table that the foreign key definition is part of).  */
878   for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
879     Table *pTo;                   /* Parent table of foreign key pFKey */
880     Index *pIdx = 0;              /* Index on key columns in pTo */
881     int *aiFree = 0;
882     int *aiCol;
883     int iCol;
884     int i;
885     int bIgnore = 0;
886 
887     if( aChange
888      && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
889      && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0
890     ){
891       continue;
892     }
893 
894     /* Find the parent table of this foreign key. Also find a unique index
895     ** on the parent key columns in the parent table. If either of these
896     ** schema items cannot be located, set an error in pParse and return
897     ** early.  */
898     if( pParse->disableTriggers ){
899       pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
900     }else{
901       pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
902     }
903     if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
904       assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
905       if( !isIgnoreErrors || db->mallocFailed ) return;
906       if( pTo==0 ){
907         /* If isIgnoreErrors is true, then a table is being dropped. In this
908         ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
909         ** before actually dropping it in order to check FK constraints.
910         ** If the parent table of an FK constraint on the current table is
911         ** missing, behave as if it is empty. i.e. decrement the relevant
912         ** FK counter for each row of the current table with non-NULL keys.
913         */
914         Vdbe *v = sqlite3GetVdbe(pParse);
915         int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
916         for(i=0; i<pFKey->nCol; i++){
917           int iReg = pFKey->aCol[i].iFrom + regOld + 1;
918           sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v);
919         }
920         sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
921       }
922       continue;
923     }
924     assert( pFKey->nCol==1 || (aiFree && pIdx) );
925 
926     if( aiFree ){
927       aiCol = aiFree;
928     }else{
929       iCol = pFKey->aCol[0].iFrom;
930       aiCol = &iCol;
931     }
932     for(i=0; i<pFKey->nCol; i++){
933       if( aiCol[i]==pTab->iPKey ){
934         aiCol[i] = -1;
935       }
936       assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
937 #ifndef SQLITE_OMIT_AUTHORIZATION
938       /* Request permission to read the parent key columns. If the
939       ** authorization callback returns SQLITE_IGNORE, behave as if any
940       ** values read from the parent table are NULL. */
941       if( db->xAuth ){
942         int rcauth;
943         char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
944         rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
945         bIgnore = (rcauth==SQLITE_IGNORE);
946       }
947 #endif
948     }
949 
950     /* Take a shared-cache advisory read-lock on the parent table. Allocate
951     ** a cursor to use to search the unique index on the parent key columns
952     ** in the parent table.  */
953     sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
954     pParse->nTab++;
955 
956     if( regOld!=0 ){
957       /* A row is being removed from the child table. Search for the parent.
958       ** If the parent does not exist, removing the child row resolves an
959       ** outstanding foreign key constraint violation. */
960       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore);
961     }
962     if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){
963       /* A row is being added to the child table. If a parent row cannot
964       ** be found, adding the child row has violated the FK constraint.
965       **
966       ** If this operation is being performed as part of a trigger program
967       ** that is actually a "SET NULL" action belonging to this very
968       ** foreign key, then omit this scan altogether. As all child key
969       ** values are guaranteed to be NULL, it is not possible for adding
970       ** this row to cause an FK violation.  */
971       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore);
972     }
973 
974     sqlite3DbFree(db, aiFree);
975   }
976 
977   /* Loop through all the foreign key constraints that refer to this table.
978   ** (the "child" constraints) */
979   for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
980     Index *pIdx = 0;              /* Foreign key index for pFKey */
981     SrcList *pSrc;
982     int *aiCol = 0;
983 
984     if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
985       continue;
986     }
987 
988     if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs)
989      && !pParse->pToplevel && !pParse->isMultiWrite
990     ){
991       assert( regOld==0 && regNew!=0 );
992       /* Inserting a single row into a parent table cannot cause (or fix)
993       ** an immediate foreign key violation. So do nothing in this case.  */
994       continue;
995     }
996 
997     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
998       if( !isIgnoreErrors || db->mallocFailed ) return;
999       continue;
1000     }
1001     assert( aiCol || pFKey->nCol==1 );
1002 
1003     /* Create a SrcList structure containing the child table.  We need the
1004     ** child table as a SrcList for sqlite3WhereBegin() */
1005     pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
1006     if( pSrc ){
1007       struct SrcList_item *pItem = pSrc->a;
1008       pItem->pTab = pFKey->pFrom;
1009       pItem->zName = pFKey->pFrom->zName;
1010       pItem->pTab->nRef++;
1011       pItem->iCursor = pParse->nTab++;
1012 
1013       if( regNew!=0 ){
1014         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
1015       }
1016       if( regOld!=0 ){
1017         int eAction = pFKey->aAction[aChange!=0];
1018         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
1019         /* If this is a deferred FK constraint, or a CASCADE or SET NULL
1020         ** action applies, then any foreign key violations caused by
1021         ** removing the parent key will be rectified by the action trigger.
1022         ** So do not set the "may-abort" flag in this case.
1023         **
1024         ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the
1025         ** may-abort flag will eventually be set on this statement anyway
1026         ** (when this function is called as part of processing the UPDATE
1027         ** within the action trigger).
1028         **
1029         ** Note 2: At first glance it may seem like SQLite could simply omit
1030         ** all OP_FkCounter related scans when either CASCADE or SET NULL
1031         ** applies. The trouble starts if the CASCADE or SET NULL action
1032         ** trigger causes other triggers or action rules attached to the
1033         ** child table to fire. In these cases the fk constraint counters
1034         ** might be set incorrectly if any OP_FkCounter related scans are
1035         ** omitted.  */
1036         if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){
1037           sqlite3MayAbort(pParse);
1038         }
1039       }
1040       pItem->zName = 0;
1041       sqlite3SrcListDelete(db, pSrc);
1042     }
1043     sqlite3DbFree(db, aiCol);
1044   }
1045 }
1046 
1047 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
1048 
1049 /*
1050 ** This function is called before generating code to update or delete a
1051 ** row contained in table pTab.
1052 */
1053 u32 sqlite3FkOldmask(
1054   Parse *pParse,                  /* Parse context */
1055   Table *pTab                     /* Table being modified */
1056 ){
1057   u32 mask = 0;
1058   if( pParse->db->flags&SQLITE_ForeignKeys ){
1059     FKey *p;
1060     int i;
1061     for(p=pTab->pFKey; p; p=p->pNextFrom){
1062       for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
1063     }
1064     for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1065       Index *pIdx = 0;
1066       sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
1067       if( pIdx ){
1068         for(i=0; i<pIdx->nKeyCol; i++){
1069           assert( pIdx->aiColumn[i]>=0 );
1070           mask |= COLUMN_MASK(pIdx->aiColumn[i]);
1071         }
1072       }
1073     }
1074   }
1075   return mask;
1076 }
1077 
1078 
1079 /*
1080 ** This function is called before generating code to update or delete a
1081 ** row contained in table pTab. If the operation is a DELETE, then
1082 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
1083 ** to an array of size N, where N is the number of columns in table pTab.
1084 ** If the i'th column is not modified by the UPDATE, then the corresponding
1085 ** entry in the aChange[] array is set to -1. If the column is modified,
1086 ** the value is 0 or greater. Parameter chngRowid is set to true if the
1087 ** UPDATE statement modifies the rowid fields of the table.
1088 **
1089 ** If any foreign key processing will be required, this function returns
1090 ** true. If there is no foreign key related processing, this function
1091 ** returns false.
1092 */
1093 int sqlite3FkRequired(
1094   Parse *pParse,                  /* Parse context */
1095   Table *pTab,                    /* Table being modified */
1096   int *aChange,                   /* Non-NULL for UPDATE operations */
1097   int chngRowid                   /* True for UPDATE that affects rowid */
1098 ){
1099   if( pParse->db->flags&SQLITE_ForeignKeys ){
1100     if( !aChange ){
1101       /* A DELETE operation. Foreign key processing is required if the
1102       ** table in question is either the child or parent table for any
1103       ** foreign key constraint.  */
1104       return (sqlite3FkReferences(pTab) || pTab->pFKey);
1105     }else{
1106       /* This is an UPDATE. Foreign key processing is only required if the
1107       ** operation modifies one or more child or parent key columns. */
1108       FKey *p;
1109 
1110       /* Check if any child key columns are being modified. */
1111       for(p=pTab->pFKey; p; p=p->pNextFrom){
1112         if( fkChildIsModified(pTab, p, aChange, chngRowid) ) return 1;
1113       }
1114 
1115       /* Check if any parent key columns are being modified. */
1116       for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1117         if( fkParentIsModified(pTab, p, aChange, chngRowid) ) return 1;
1118       }
1119     }
1120   }
1121   return 0;
1122 }
1123 
1124 /*
1125 ** This function is called when an UPDATE or DELETE operation is being
1126 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
1127 ** If the current operation is an UPDATE, then the pChanges parameter is
1128 ** passed a pointer to the list of columns being modified. If it is a
1129 ** DELETE, pChanges is passed a NULL pointer.
1130 **
1131 ** It returns a pointer to a Trigger structure containing a trigger
1132 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
1133 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
1134 ** returned (these actions require no special handling by the triggers
1135 ** sub-system, code for them is created by fkScanChildren()).
1136 **
1137 ** For example, if pFKey is the foreign key and pTab is table "p" in
1138 ** the following schema:
1139 **
1140 **   CREATE TABLE p(pk PRIMARY KEY);
1141 **   CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
1142 **
1143 ** then the returned trigger structure is equivalent to:
1144 **
1145 **   CREATE TRIGGER ... DELETE ON p BEGIN
1146 **     DELETE FROM c WHERE ck = old.pk;
1147 **   END;
1148 **
1149 ** The returned pointer is cached as part of the foreign key object. It
1150 ** is eventually freed along with the rest of the foreign key object by
1151 ** sqlite3FkDelete().
1152 */
1153 static Trigger *fkActionTrigger(
1154   Parse *pParse,                  /* Parse context */
1155   Table *pTab,                    /* Table being updated or deleted from */
1156   FKey *pFKey,                    /* Foreign key to get action for */
1157   ExprList *pChanges              /* Change-list for UPDATE, NULL for DELETE */
1158 ){
1159   sqlite3 *db = pParse->db;       /* Database handle */
1160   int action;                     /* One of OE_None, OE_Cascade etc. */
1161   Trigger *pTrigger;              /* Trigger definition to return */
1162   int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */
1163 
1164   action = pFKey->aAction[iAction];
1165   if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){
1166     return 0;
1167   }
1168 
1169   pTrigger = pFKey->apTrigger[iAction];
1170 
1171   if( action!=OE_None && !pTrigger ){
1172     char const *zFrom;            /* Name of child table */
1173     int nFrom;                    /* Length in bytes of zFrom */
1174     Index *pIdx = 0;              /* Parent key index for this FK */
1175     int *aiCol = 0;               /* child table cols -> parent key cols */
1176     TriggerStep *pStep = 0;        /* First (only) step of trigger program */
1177     Expr *pWhere = 0;             /* WHERE clause of trigger step */
1178     ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
1179     Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
1180     int i;                        /* Iterator variable */
1181     Expr *pWhen = 0;              /* WHEN clause for the trigger */
1182 
1183     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
1184     assert( aiCol || pFKey->nCol==1 );
1185 
1186     for(i=0; i<pFKey->nCol; i++){
1187       Token tOld = { "old", 3 };  /* Literal "old" token */
1188       Token tNew = { "new", 3 };  /* Literal "new" token */
1189       Token tFromCol;             /* Name of column in child table */
1190       Token tToCol;               /* Name of column in parent table */
1191       int iFromCol;               /* Idx of column in child table */
1192       Expr *pEq;                  /* tFromCol = OLD.tToCol */
1193 
1194       iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
1195       assert( iFromCol>=0 );
1196       assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) );
1197       assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
1198       sqlite3TokenInit(&tToCol,
1199                    pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName);
1200       sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zName);
1201 
1202       /* Create the expression "OLD.zToCol = zFromCol". It is important
1203       ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1204       ** that the affinity and collation sequence associated with the
1205       ** parent table are used for the comparison. */
1206       pEq = sqlite3PExpr(pParse, TK_EQ,
1207           sqlite3PExpr(pParse, TK_DOT,
1208             sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1209             sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)
1210           , 0),
1211           sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0)
1212       , 0);
1213       pWhere = sqlite3ExprAnd(db, pWhere, pEq);
1214 
1215       /* For ON UPDATE, construct the next term of the WHEN clause.
1216       ** The final WHEN clause will be like this:
1217       **
1218       **    WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1219       */
1220       if( pChanges ){
1221         pEq = sqlite3PExpr(pParse, TK_IS,
1222             sqlite3PExpr(pParse, TK_DOT,
1223               sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1224               sqlite3ExprAlloc(db, TK_ID, &tToCol, 0),
1225               0),
1226             sqlite3PExpr(pParse, TK_DOT,
1227               sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1228               sqlite3ExprAlloc(db, TK_ID, &tToCol, 0),
1229               0),
1230             0);
1231         pWhen = sqlite3ExprAnd(db, pWhen, pEq);
1232       }
1233 
1234       if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1235         Expr *pNew;
1236         if( action==OE_Cascade ){
1237           pNew = sqlite3PExpr(pParse, TK_DOT,
1238             sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1239             sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)
1240           , 0);
1241         }else if( action==OE_SetDflt ){
1242           Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
1243           if( pDflt ){
1244             pNew = sqlite3ExprDup(db, pDflt, 0);
1245           }else{
1246             pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1247           }
1248         }else{
1249           pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1250         }
1251         pList = sqlite3ExprListAppend(pParse, pList, pNew);
1252         sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1253       }
1254     }
1255     sqlite3DbFree(db, aiCol);
1256 
1257     zFrom = pFKey->pFrom->zName;
1258     nFrom = sqlite3Strlen30(zFrom);
1259 
1260     if( action==OE_Restrict ){
1261       Token tFrom;
1262       Expr *pRaise;
1263 
1264       tFrom.z = zFrom;
1265       tFrom.n = nFrom;
1266       pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed");
1267       if( pRaise ){
1268         pRaise->affinity = OE_Abort;
1269       }
1270       pSelect = sqlite3SelectNew(pParse,
1271           sqlite3ExprListAppend(pParse, 0, pRaise),
1272           sqlite3SrcListAppend(db, 0, &tFrom, 0),
1273           pWhere,
1274           0, 0, 0, 0, 0, 0
1275       );
1276       pWhere = 0;
1277     }
1278 
1279     /* Disable lookaside memory allocation */
1280     db->lookaside.bDisable++;
1281 
1282     pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1283         sizeof(Trigger) +         /* struct Trigger */
1284         sizeof(TriggerStep) +     /* Single step in trigger program */
1285         nFrom + 1                 /* Space for pStep->zTarget */
1286     );
1287     if( pTrigger ){
1288       pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1289       pStep->zTarget = (char *)&pStep[1];
1290       memcpy((char *)pStep->zTarget, zFrom, nFrom);
1291 
1292       pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1293       pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1294       pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1295       if( pWhen ){
1296         pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
1297         pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1298       }
1299     }
1300 
1301     /* Re-enable the lookaside buffer, if it was disabled earlier. */
1302     db->lookaside.bDisable--;
1303 
1304     sqlite3ExprDelete(db, pWhere);
1305     sqlite3ExprDelete(db, pWhen);
1306     sqlite3ExprListDelete(db, pList);
1307     sqlite3SelectDelete(db, pSelect);
1308     if( db->mallocFailed==1 ){
1309       fkTriggerDelete(db, pTrigger);
1310       return 0;
1311     }
1312     assert( pStep!=0 );
1313 
1314     switch( action ){
1315       case OE_Restrict:
1316         pStep->op = TK_SELECT;
1317         break;
1318       case OE_Cascade:
1319         if( !pChanges ){
1320           pStep->op = TK_DELETE;
1321           break;
1322         }
1323       default:
1324         pStep->op = TK_UPDATE;
1325     }
1326     pStep->pTrig = pTrigger;
1327     pTrigger->pSchema = pTab->pSchema;
1328     pTrigger->pTabSchema = pTab->pSchema;
1329     pFKey->apTrigger[iAction] = pTrigger;
1330     pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1331   }
1332 
1333   return pTrigger;
1334 }
1335 
1336 /*
1337 ** This function is called when deleting or updating a row to implement
1338 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1339 */
1340 void sqlite3FkActions(
1341   Parse *pParse,                  /* Parse context */
1342   Table *pTab,                    /* Table being updated or deleted from */
1343   ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
1344   int regOld,                     /* Address of array containing old row */
1345   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
1346   int bChngRowid                  /* True if rowid is UPDATEd */
1347 ){
1348   /* If foreign-key support is enabled, iterate through all FKs that
1349   ** refer to table pTab. If there is an action associated with the FK
1350   ** for this operation (either update or delete), invoke the associated
1351   ** trigger sub-program.  */
1352   if( pParse->db->flags&SQLITE_ForeignKeys ){
1353     FKey *pFKey;                  /* Iterator variable */
1354     for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1355       if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
1356         Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1357         if( pAct ){
1358           sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
1359         }
1360       }
1361     }
1362   }
1363 }
1364 
1365 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1366 
1367 /*
1368 ** Free all memory associated with foreign key definitions attached to
1369 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1370 ** hash table.
1371 */
1372 void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1373   FKey *pFKey;                    /* Iterator variable */
1374   FKey *pNext;                    /* Copy of pFKey->pNextFrom */
1375 
1376   assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1377   for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1378 
1379     /* Remove the FK from the fkeyHash hash table. */
1380     if( !db || db->pnBytesFreed==0 ){
1381       if( pFKey->pPrevTo ){
1382         pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1383       }else{
1384         void *p = (void *)pFKey->pNextTo;
1385         const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1386         sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p);
1387       }
1388       if( pFKey->pNextTo ){
1389         pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1390       }
1391     }
1392 
1393     /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1394     ** classified as either immediate or deferred.
1395     */
1396     assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1397 
1398     /* Delete any triggers created to implement actions for this FK. */
1399 #ifndef SQLITE_OMIT_TRIGGER
1400     fkTriggerDelete(db, pFKey->apTrigger[0]);
1401     fkTriggerDelete(db, pFKey->apTrigger[1]);
1402 #endif
1403 
1404     pNext = pFKey->pNextFrom;
1405     sqlite3DbFree(db, pFKey);
1406   }
1407 }
1408 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
1409