1 /* 2 ** 3 ** The author disclaims copyright to this source code. In place of 4 ** a legal notice, here is a blessing: 5 ** 6 ** May you do good and not evil. 7 ** May you find forgiveness for yourself and forgive others. 8 ** May you share freely, never taking more than you give. 9 ** 10 ************************************************************************* 11 ** This file contains code used by the compiler to add foreign key 12 ** support to compiled SQL statements. 13 */ 14 #include "sqliteInt.h" 15 16 #ifndef SQLITE_OMIT_FOREIGN_KEY 17 #ifndef SQLITE_OMIT_TRIGGER 18 19 /* 20 ** Deferred and Immediate FKs 21 ** -------------------------- 22 ** 23 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 24 ** If an immediate foreign key constraint is violated, 25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current 26 ** statement transaction rolled back. If a 27 ** deferred foreign key constraint is violated, no action is taken 28 ** immediately. However if the application attempts to commit the 29 ** transaction before fixing the constraint violation, the attempt fails. 30 ** 31 ** Deferred constraints are implemented using a simple counter associated 32 ** with the database handle. The counter is set to zero each time a 33 ** database transaction is opened. Each time a statement is executed 34 ** that causes a foreign key violation, the counter is incremented. Each 35 ** time a statement is executed that removes an existing violation from 36 ** the database, the counter is decremented. When the transaction is 37 ** committed, the commit fails if the current value of the counter is 38 ** greater than zero. This scheme has two big drawbacks: 39 ** 40 ** * When a commit fails due to a deferred foreign key constraint, 41 ** there is no way to tell which foreign constraint is not satisfied, 42 ** or which row it is not satisfied for. 43 ** 44 ** * If the database contains foreign key violations when the 45 ** transaction is opened, this may cause the mechanism to malfunction. 46 ** 47 ** Despite these problems, this approach is adopted as it seems simpler 48 ** than the alternatives. 49 ** 50 ** INSERT operations: 51 ** 52 ** I.1) For each FK for which the table is the child table, search 53 ** the parent table for a match. If none is found increment the 54 ** constraint counter. 55 ** 56 ** I.2) For each FK for which the table is the parent table, 57 ** search the child table for rows that correspond to the new 58 ** row in the parent table. Decrement the counter for each row 59 ** found (as the constraint is now satisfied). 60 ** 61 ** DELETE operations: 62 ** 63 ** D.1) For each FK for which the table is the child table, 64 ** search the parent table for a row that corresponds to the 65 ** deleted row in the child table. If such a row is not found, 66 ** decrement the counter. 67 ** 68 ** D.2) For each FK for which the table is the parent table, search 69 ** the child table for rows that correspond to the deleted row 70 ** in the parent table. For each found increment the counter. 71 ** 72 ** UPDATE operations: 73 ** 74 ** An UPDATE command requires that all 4 steps above are taken, but only 75 ** for FK constraints for which the affected columns are actually 76 ** modified (values must be compared at runtime). 77 ** 78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 79 ** This simplifies the implementation a bit. 80 ** 81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 82 ** resolution is considered to delete rows before the new row is inserted. 83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 84 ** is thrown, even if the FK constraint would be satisfied after the new 85 ** row is inserted. 86 ** 87 ** Immediate constraints are usually handled similarly. The only difference 88 ** is that the counter used is stored as part of each individual statement 89 ** object (struct Vdbe). If, after the statement has run, its immediate 90 ** constraint counter is greater than zero, 91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY 92 ** and the statement transaction is rolled back. An exception is an INSERT 93 ** statement that inserts a single row only (no triggers). In this case, 94 ** instead of using a counter, an exception is thrown immediately if the 95 ** INSERT violates a foreign key constraint. This is necessary as such 96 ** an INSERT does not open a statement transaction. 97 ** 98 ** TODO: How should dropping a table be handled? How should renaming a 99 ** table be handled? 100 ** 101 ** 102 ** Query API Notes 103 ** --------------- 104 ** 105 ** Before coding an UPDATE or DELETE row operation, the code-generator 106 ** for those two operations needs to know whether or not the operation 107 ** requires any FK processing and, if so, which columns of the original 108 ** row are required by the FK processing VDBE code (i.e. if FKs were 109 ** implemented using triggers, which of the old.* columns would be 110 ** accessed). No information is required by the code-generator before 111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 112 ** generation code to query for this information are: 113 ** 114 ** sqlite3FkRequired() - Test to see if FK processing is required. 115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 116 ** 117 ** 118 ** Externally accessible module functions 119 ** -------------------------------------- 120 ** 121 ** sqlite3FkCheck() - Check for foreign key violations. 122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 123 ** sqlite3FkDelete() - Delete an FKey structure. 124 */ 125 126 /* 127 ** VDBE Calling Convention 128 ** ----------------------- 129 ** 130 ** Example: 131 ** 132 ** For the following INSERT statement: 133 ** 134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 135 ** INSERT INTO t1 VALUES(1, 2, 3.1); 136 ** 137 ** Register (x): 2 (type integer) 138 ** Register (x+1): 1 (type integer) 139 ** Register (x+2): NULL (type NULL) 140 ** Register (x+3): 3.1 (type real) 141 */ 142 143 /* 144 ** A foreign key constraint requires that the key columns in the parent 145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 146 ** Given that pParent is the parent table for foreign key constraint pFKey, 147 ** search the schema for a unique index on the parent key columns. 148 ** 149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 151 ** is set to point to the unique index. 152 ** 153 ** If the parent key consists of a single column (the foreign key constraint 154 ** is not a composite foreign key), output variable *paiCol is set to NULL. 155 ** Otherwise, it is set to point to an allocated array of size N, where 156 ** N is the number of columns in the parent key. The first element of the 157 ** array is the index of the child table column that is mapped by the FK 158 ** constraint to the parent table column stored in the left-most column 159 ** of index *ppIdx. The second element of the array is the index of the 160 ** child table column that corresponds to the second left-most column of 161 ** *ppIdx, and so on. 162 ** 163 ** If the required index cannot be found, either because: 164 ** 165 ** 1) The named parent key columns do not exist, or 166 ** 167 ** 2) The named parent key columns do exist, but are not subject to a 168 ** UNIQUE or PRIMARY KEY constraint, or 169 ** 170 ** 3) No parent key columns were provided explicitly as part of the 171 ** foreign key definition, and the parent table does not have a 172 ** PRIMARY KEY, or 173 ** 174 ** 4) No parent key columns were provided explicitly as part of the 175 ** foreign key definition, and the PRIMARY KEY of the parent table 176 ** consists of a different number of columns to the child key in 177 ** the child table. 178 ** 179 ** then non-zero is returned, and a "foreign key mismatch" error loaded 180 ** into pParse. If an OOM error occurs, non-zero is returned and the 181 ** pParse->db->mallocFailed flag is set. 182 */ 183 int sqlite3FkLocateIndex( 184 Parse *pParse, /* Parse context to store any error in */ 185 Table *pParent, /* Parent table of FK constraint pFKey */ 186 FKey *pFKey, /* Foreign key to find index for */ 187 Index **ppIdx, /* OUT: Unique index on parent table */ 188 int **paiCol /* OUT: Map of index columns in pFKey */ 189 ){ 190 Index *pIdx = 0; /* Value to return via *ppIdx */ 191 int *aiCol = 0; /* Value to return via *paiCol */ 192 int nCol = pFKey->nCol; /* Number of columns in parent key */ 193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 194 195 /* The caller is responsible for zeroing output parameters. */ 196 assert( ppIdx && *ppIdx==0 ); 197 assert( !paiCol || *paiCol==0 ); 198 assert( pParse ); 199 200 /* If this is a non-composite (single column) foreign key, check if it 201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 202 ** and *paiCol set to zero and return early. 203 ** 204 ** Otherwise, for a composite foreign key (more than one column), allocate 205 ** space for the aiCol array (returned via output parameter *paiCol). 206 ** Non-composite foreign keys do not require the aiCol array. 207 */ 208 if( nCol==1 ){ 209 /* The FK maps to the IPK if any of the following are true: 210 ** 211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 212 ** mapped to the primary key of table pParent, or 213 ** 2) The FK is explicitly mapped to a column declared as INTEGER 214 ** PRIMARY KEY. 215 */ 216 if( pParent->iPKey>=0 ){ 217 if( !zKey ) return 0; 218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; 219 } 220 }else if( paiCol ){ 221 assert( nCol>1 ); 222 aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int)); 223 if( !aiCol ) return 1; 224 *paiCol = aiCol; 225 } 226 227 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 228 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) ){ 229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 230 ** of columns. If each indexed column corresponds to a foreign key 231 ** column of pFKey, then this index is a winner. */ 232 233 if( zKey==0 ){ 234 /* If zKey is NULL, then this foreign key is implicitly mapped to 235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 236 ** identified by the test. */ 237 if( IsPrimaryKeyIndex(pIdx) ){ 238 if( aiCol ){ 239 int i; 240 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 241 } 242 break; 243 } 244 }else{ 245 /* If zKey is non-NULL, then this foreign key was declared to 246 ** map to an explicit list of columns in table pParent. Check if this 247 ** index matches those columns. Also, check that the index uses 248 ** the default collation sequences for each column. */ 249 int i, j; 250 for(i=0; i<nCol; i++){ 251 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 252 const char *zDfltColl; /* Def. collation for column */ 253 char *zIdxCol; /* Name of indexed column */ 254 255 if( iCol<0 ) break; /* No foreign keys against expression indexes */ 256 257 /* If the index uses a collation sequence that is different from 258 ** the default collation sequence for the column, this index is 259 ** unusable. Bail out early in this case. */ 260 zDfltColl = pParent->aCol[iCol].zColl; 261 if( !zDfltColl ) zDfltColl = sqlite3StrBINARY; 262 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 263 264 zIdxCol = pParent->aCol[iCol].zName; 265 for(j=0; j<nCol; j++){ 266 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 267 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 268 break; 269 } 270 } 271 if( j==nCol ) break; 272 } 273 if( i==nCol ) break; /* pIdx is usable */ 274 } 275 } 276 } 277 278 if( !pIdx ){ 279 if( !pParse->disableTriggers ){ 280 sqlite3ErrorMsg(pParse, 281 "foreign key mismatch - \"%w\" referencing \"%w\"", 282 pFKey->pFrom->zName, pFKey->zTo); 283 } 284 sqlite3DbFree(pParse->db, aiCol); 285 return 1; 286 } 287 288 *ppIdx = pIdx; 289 return 0; 290 } 291 292 /* 293 ** This function is called when a row is inserted into or deleted from the 294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 295 ** on the child table of pFKey, this function is invoked twice for each row 296 ** affected - once to "delete" the old row, and then again to "insert" the 297 ** new row. 298 ** 299 ** Each time it is called, this function generates VDBE code to locate the 300 ** row in the parent table that corresponds to the row being inserted into 301 ** or deleted from the child table. If the parent row can be found, no 302 ** special action is taken. Otherwise, if the parent row can *not* be 303 ** found in the parent table: 304 ** 305 ** Operation | FK type | Action taken 306 ** -------------------------------------------------------------------------- 307 ** INSERT immediate Increment the "immediate constraint counter". 308 ** 309 ** DELETE immediate Decrement the "immediate constraint counter". 310 ** 311 ** INSERT deferred Increment the "deferred constraint counter". 312 ** 313 ** DELETE deferred Decrement the "deferred constraint counter". 314 ** 315 ** These operations are identified in the comment at the top of this file 316 ** (fkey.c) as "I.1" and "D.1". 317 */ 318 static void fkLookupParent( 319 Parse *pParse, /* Parse context */ 320 int iDb, /* Index of database housing pTab */ 321 Table *pTab, /* Parent table of FK pFKey */ 322 Index *pIdx, /* Unique index on parent key columns in pTab */ 323 FKey *pFKey, /* Foreign key constraint */ 324 int *aiCol, /* Map from parent key columns to child table columns */ 325 int regData, /* Address of array containing child table row */ 326 int nIncr, /* Increment constraint counter by this */ 327 int isIgnore /* If true, pretend pTab contains all NULL values */ 328 ){ 329 int i; /* Iterator variable */ 330 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 331 int iCur = pParse->nTab - 1; /* Cursor number to use */ 332 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ 333 334 /* If nIncr is less than zero, then check at runtime if there are any 335 ** outstanding constraints to resolve. If there are not, there is no need 336 ** to check if deleting this row resolves any outstanding violations. 337 ** 338 ** Check if any of the key columns in the child table row are NULL. If 339 ** any are, then the constraint is considered satisfied. No need to 340 ** search for a matching row in the parent table. */ 341 if( nIncr<0 ){ 342 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 343 VdbeCoverage(v); 344 } 345 for(i=0; i<pFKey->nCol; i++){ 346 int iReg = aiCol[i] + regData + 1; 347 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); 348 } 349 350 if( isIgnore==0 ){ 351 if( pIdx==0 ){ 352 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 353 ** column of the parent table (table pTab). */ 354 int iMustBeInt; /* Address of MustBeInt instruction */ 355 int regTemp = sqlite3GetTempReg(pParse); 356 357 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 358 ** apply the affinity of the parent key). If this fails, then there 359 ** is no matching parent key. Before using MustBeInt, make a copy of 360 ** the value. Otherwise, the value inserted into the child key column 361 ** will have INTEGER affinity applied to it, which may not be correct. */ 362 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); 363 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 364 VdbeCoverage(v); 365 366 /* If the parent table is the same as the child table, and we are about 367 ** to increment the constraint-counter (i.e. this is an INSERT operation), 368 ** then check if the row being inserted matches itself. If so, do not 369 ** increment the constraint-counter. */ 370 if( pTab==pFKey->pFrom && nIncr==1 ){ 371 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); 372 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 373 } 374 375 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 376 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); 377 sqlite3VdbeGoto(v, iOk); 378 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 379 sqlite3VdbeJumpHere(v, iMustBeInt); 380 sqlite3ReleaseTempReg(pParse, regTemp); 381 }else{ 382 int nCol = pFKey->nCol; 383 int regTemp = sqlite3GetTempRange(pParse, nCol); 384 int regRec = sqlite3GetTempReg(pParse); 385 386 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 387 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 388 for(i=0; i<nCol; i++){ 389 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i); 390 } 391 392 /* If the parent table is the same as the child table, and we are about 393 ** to increment the constraint-counter (i.e. this is an INSERT operation), 394 ** then check if the row being inserted matches itself. If so, do not 395 ** increment the constraint-counter. 396 ** 397 ** If any of the parent-key values are NULL, then the row cannot match 398 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 399 ** of the parent-key values are NULL (at this point it is known that 400 ** none of the child key values are). 401 */ 402 if( pTab==pFKey->pFrom && nIncr==1 ){ 403 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 404 for(i=0; i<nCol; i++){ 405 int iChild = aiCol[i]+1+regData; 406 int iParent = pIdx->aiColumn[i]+1+regData; 407 assert( pIdx->aiColumn[i]>=0 ); 408 assert( aiCol[i]!=pTab->iPKey ); 409 if( pIdx->aiColumn[i]==pTab->iPKey ){ 410 /* The parent key is a composite key that includes the IPK column */ 411 iParent = regData; 412 } 413 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); 414 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 415 } 416 sqlite3VdbeGoto(v, iOk); 417 } 418 419 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec, 420 sqlite3IndexAffinityStr(pParse->db,pIdx), nCol); 421 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v); 422 423 sqlite3ReleaseTempReg(pParse, regRec); 424 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 425 } 426 } 427 428 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) 429 && !pParse->pToplevel 430 && !pParse->isMultiWrite 431 ){ 432 /* Special case: If this is an INSERT statement that will insert exactly 433 ** one row into the table, raise a constraint immediately instead of 434 ** incrementing a counter. This is necessary as the VM code is being 435 ** generated for will not open a statement transaction. */ 436 assert( nIncr==1 ); 437 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 438 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 439 }else{ 440 if( nIncr>0 && pFKey->isDeferred==0 ){ 441 sqlite3MayAbort(pParse); 442 } 443 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 444 } 445 446 sqlite3VdbeResolveLabel(v, iOk); 447 sqlite3VdbeAddOp1(v, OP_Close, iCur); 448 } 449 450 451 /* 452 ** Return an Expr object that refers to a memory register corresponding 453 ** to column iCol of table pTab. 454 ** 455 ** regBase is the first of an array of register that contains the data 456 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first 457 ** column. regBase+2 holds the second column, and so forth. 458 */ 459 static Expr *exprTableRegister( 460 Parse *pParse, /* Parsing and code generating context */ 461 Table *pTab, /* The table whose content is at r[regBase]... */ 462 int regBase, /* Contents of table pTab */ 463 i16 iCol /* Which column of pTab is desired */ 464 ){ 465 Expr *pExpr; 466 Column *pCol; 467 const char *zColl; 468 sqlite3 *db = pParse->db; 469 470 pExpr = sqlite3Expr(db, TK_REGISTER, 0); 471 if( pExpr ){ 472 if( iCol>=0 && iCol!=pTab->iPKey ){ 473 pCol = &pTab->aCol[iCol]; 474 pExpr->iTable = regBase + iCol + 1; 475 pExpr->affinity = pCol->affinity; 476 zColl = pCol->zColl; 477 if( zColl==0 ) zColl = db->pDfltColl->zName; 478 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); 479 }else{ 480 pExpr->iTable = regBase; 481 pExpr->affinity = SQLITE_AFF_INTEGER; 482 } 483 } 484 return pExpr; 485 } 486 487 /* 488 ** Return an Expr object that refers to column iCol of table pTab which 489 ** has cursor iCur. 490 */ 491 static Expr *exprTableColumn( 492 sqlite3 *db, /* The database connection */ 493 Table *pTab, /* The table whose column is desired */ 494 int iCursor, /* The open cursor on the table */ 495 i16 iCol /* The column that is wanted */ 496 ){ 497 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); 498 if( pExpr ){ 499 pExpr->pTab = pTab; 500 pExpr->iTable = iCursor; 501 pExpr->iColumn = iCol; 502 } 503 return pExpr; 504 } 505 506 /* 507 ** This function is called to generate code executed when a row is deleted 508 ** from the parent table of foreign key constraint pFKey and, if pFKey is 509 ** deferred, when a row is inserted into the same table. When generating 510 ** code for an SQL UPDATE operation, this function may be called twice - 511 ** once to "delete" the old row and once to "insert" the new row. 512 ** 513 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease 514 ** the number of FK violations in the db) or +1 when deleting one (as this 515 ** may increase the number of FK constraint problems). 516 ** 517 ** The code generated by this function scans through the rows in the child 518 ** table that correspond to the parent table row being deleted or inserted. 519 ** For each child row found, one of the following actions is taken: 520 ** 521 ** Operation | FK type | Action taken 522 ** -------------------------------------------------------------------------- 523 ** DELETE immediate Increment the "immediate constraint counter". 524 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 525 ** throw a "FOREIGN KEY constraint failed" exception. 526 ** 527 ** INSERT immediate Decrement the "immediate constraint counter". 528 ** 529 ** DELETE deferred Increment the "deferred constraint counter". 530 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 531 ** throw a "FOREIGN KEY constraint failed" exception. 532 ** 533 ** INSERT deferred Decrement the "deferred constraint counter". 534 ** 535 ** These operations are identified in the comment at the top of this file 536 ** (fkey.c) as "I.2" and "D.2". 537 */ 538 static void fkScanChildren( 539 Parse *pParse, /* Parse context */ 540 SrcList *pSrc, /* The child table to be scanned */ 541 Table *pTab, /* The parent table */ 542 Index *pIdx, /* Index on parent covering the foreign key */ 543 FKey *pFKey, /* The foreign key linking pSrc to pTab */ 544 int *aiCol, /* Map from pIdx cols to child table cols */ 545 int regData, /* Parent row data starts here */ 546 int nIncr /* Amount to increment deferred counter by */ 547 ){ 548 sqlite3 *db = pParse->db; /* Database handle */ 549 int i; /* Iterator variable */ 550 Expr *pWhere = 0; /* WHERE clause to scan with */ 551 NameContext sNameContext; /* Context used to resolve WHERE clause */ 552 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 553 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 554 Vdbe *v = sqlite3GetVdbe(pParse); 555 556 assert( pIdx==0 || pIdx->pTable==pTab ); 557 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); 558 assert( pIdx!=0 || pFKey->nCol==1 ); 559 assert( pIdx!=0 || HasRowid(pTab) ); 560 561 if( nIncr<0 ){ 562 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 563 VdbeCoverage(v); 564 } 565 566 /* Create an Expr object representing an SQL expression like: 567 ** 568 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 569 ** 570 ** The collation sequence used for the comparison should be that of 571 ** the parent key columns. The affinity of the parent key column should 572 ** be applied to each child key value before the comparison takes place. 573 */ 574 for(i=0; i<pFKey->nCol; i++){ 575 Expr *pLeft; /* Value from parent table row */ 576 Expr *pRight; /* Column ref to child table */ 577 Expr *pEq; /* Expression (pLeft = pRight) */ 578 i16 iCol; /* Index of column in child table */ 579 const char *zCol; /* Name of column in child table */ 580 581 iCol = pIdx ? pIdx->aiColumn[i] : -1; 582 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 583 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 584 assert( iCol>=0 ); 585 zCol = pFKey->pFrom->aCol[iCol].zName; 586 pRight = sqlite3Expr(db, TK_ID, zCol); 587 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); 588 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 589 } 590 591 /* If the child table is the same as the parent table, then add terms 592 ** to the WHERE clause that prevent this entry from being scanned. 593 ** The added WHERE clause terms are like this: 594 ** 595 ** $current_rowid!=rowid 596 ** NOT( $current_a==a AND $current_b==b AND ... ) 597 ** 598 ** The first form is used for rowid tables. The second form is used 599 ** for WITHOUT ROWID tables. In the second form, the primary key is 600 ** (a,b,...) 601 */ 602 if( pTab==pFKey->pFrom && nIncr>0 ){ 603 Expr *pNe; /* Expression (pLeft != pRight) */ 604 Expr *pLeft; /* Value from parent table row */ 605 Expr *pRight; /* Column ref to child table */ 606 if( HasRowid(pTab) ){ 607 pLeft = exprTableRegister(pParse, pTab, regData, -1); 608 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); 609 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); 610 }else{ 611 Expr *pEq, *pAll = 0; 612 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 613 assert( pIdx!=0 ); 614 for(i=0; i<pPk->nKeyCol; i++){ 615 i16 iCol = pIdx->aiColumn[i]; 616 assert( iCol>=0 ); 617 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 618 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol); 619 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); 620 pAll = sqlite3ExprAnd(db, pAll, pEq); 621 } 622 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0, 0); 623 } 624 pWhere = sqlite3ExprAnd(db, pWhere, pNe); 625 } 626 627 /* Resolve the references in the WHERE clause. */ 628 memset(&sNameContext, 0, sizeof(NameContext)); 629 sNameContext.pSrcList = pSrc; 630 sNameContext.pParse = pParse; 631 sqlite3ResolveExprNames(&sNameContext, pWhere); 632 633 /* Create VDBE to loop through the entries in pSrc that match the WHERE 634 ** clause. For each row found, increment either the deferred or immediate 635 ** foreign key constraint counter. */ 636 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); 637 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 638 if( pWInfo ){ 639 sqlite3WhereEnd(pWInfo); 640 } 641 642 /* Clean up the WHERE clause constructed above. */ 643 sqlite3ExprDelete(db, pWhere); 644 if( iFkIfZero ){ 645 sqlite3VdbeJumpHere(v, iFkIfZero); 646 } 647 } 648 649 /* 650 ** This function returns a linked list of FKey objects (connected by 651 ** FKey.pNextTo) holding all children of table pTab. For example, 652 ** given the following schema: 653 ** 654 ** CREATE TABLE t1(a PRIMARY KEY); 655 ** CREATE TABLE t2(b REFERENCES t1(a); 656 ** 657 ** Calling this function with table "t1" as an argument returns a pointer 658 ** to the FKey structure representing the foreign key constraint on table 659 ** "t2". Calling this function with "t2" as the argument would return a 660 ** NULL pointer (as there are no FK constraints for which t2 is the parent 661 ** table). 662 */ 663 FKey *sqlite3FkReferences(Table *pTab){ 664 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName); 665 } 666 667 /* 668 ** The second argument is a Trigger structure allocated by the 669 ** fkActionTrigger() routine. This function deletes the Trigger structure 670 ** and all of its sub-components. 671 ** 672 ** The Trigger structure or any of its sub-components may be allocated from 673 ** the lookaside buffer belonging to database handle dbMem. 674 */ 675 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 676 if( p ){ 677 TriggerStep *pStep = p->step_list; 678 sqlite3ExprDelete(dbMem, pStep->pWhere); 679 sqlite3ExprListDelete(dbMem, pStep->pExprList); 680 sqlite3SelectDelete(dbMem, pStep->pSelect); 681 sqlite3ExprDelete(dbMem, p->pWhen); 682 sqlite3DbFree(dbMem, p); 683 } 684 } 685 686 /* 687 ** This function is called to generate code that runs when table pTab is 688 ** being dropped from the database. The SrcList passed as the second argument 689 ** to this function contains a single entry guaranteed to resolve to 690 ** table pTab. 691 ** 692 ** Normally, no code is required. However, if either 693 ** 694 ** (a) The table is the parent table of a FK constraint, or 695 ** (b) The table is the child table of a deferred FK constraint and it is 696 ** determined at runtime that there are outstanding deferred FK 697 ** constraint violations in the database, 698 ** 699 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 700 ** the table from the database. Triggers are disabled while running this 701 ** DELETE, but foreign key actions are not. 702 */ 703 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 704 sqlite3 *db = pParse->db; 705 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ 706 int iSkip = 0; 707 Vdbe *v = sqlite3GetVdbe(pParse); 708 709 assert( v ); /* VDBE has already been allocated */ 710 if( sqlite3FkReferences(pTab)==0 ){ 711 /* Search for a deferred foreign key constraint for which this table 712 ** is the child table. If one cannot be found, return without 713 ** generating any VDBE code. If one can be found, then jump over 714 ** the entire DELETE if there are no outstanding deferred constraints 715 ** when this statement is run. */ 716 FKey *p; 717 for(p=pTab->pFKey; p; p=p->pNextFrom){ 718 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; 719 } 720 if( !p ) return; 721 iSkip = sqlite3VdbeMakeLabel(v); 722 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); 723 } 724 725 pParse->disableTriggers = 1; 726 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); 727 pParse->disableTriggers = 0; 728 729 /* If the DELETE has generated immediate foreign key constraint 730 ** violations, halt the VDBE and return an error at this point, before 731 ** any modifications to the schema are made. This is because statement 732 ** transactions are not able to rollback schema changes. 733 ** 734 ** If the SQLITE_DeferFKs flag is set, then this is not required, as 735 ** the statement transaction will not be rolled back even if FK 736 ** constraints are violated. 737 */ 738 if( (db->flags & SQLITE_DeferFKs)==0 ){ 739 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 740 VdbeCoverage(v); 741 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 742 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 743 } 744 745 if( iSkip ){ 746 sqlite3VdbeResolveLabel(v, iSkip); 747 } 748 } 749 } 750 751 752 /* 753 ** The second argument points to an FKey object representing a foreign key 754 ** for which pTab is the child table. An UPDATE statement against pTab 755 ** is currently being processed. For each column of the table that is 756 ** actually updated, the corresponding element in the aChange[] array 757 ** is zero or greater (if a column is unmodified the corresponding element 758 ** is set to -1). If the rowid column is modified by the UPDATE statement 759 ** the bChngRowid argument is non-zero. 760 ** 761 ** This function returns true if any of the columns that are part of the 762 ** child key for FK constraint *p are modified. 763 */ 764 static int fkChildIsModified( 765 Table *pTab, /* Table being updated */ 766 FKey *p, /* Foreign key for which pTab is the child */ 767 int *aChange, /* Array indicating modified columns */ 768 int bChngRowid /* True if rowid is modified by this update */ 769 ){ 770 int i; 771 for(i=0; i<p->nCol; i++){ 772 int iChildKey = p->aCol[i].iFrom; 773 if( aChange[iChildKey]>=0 ) return 1; 774 if( iChildKey==pTab->iPKey && bChngRowid ) return 1; 775 } 776 return 0; 777 } 778 779 /* 780 ** The second argument points to an FKey object representing a foreign key 781 ** for which pTab is the parent table. An UPDATE statement against pTab 782 ** is currently being processed. For each column of the table that is 783 ** actually updated, the corresponding element in the aChange[] array 784 ** is zero or greater (if a column is unmodified the corresponding element 785 ** is set to -1). If the rowid column is modified by the UPDATE statement 786 ** the bChngRowid argument is non-zero. 787 ** 788 ** This function returns true if any of the columns that are part of the 789 ** parent key for FK constraint *p are modified. 790 */ 791 static int fkParentIsModified( 792 Table *pTab, 793 FKey *p, 794 int *aChange, 795 int bChngRowid 796 ){ 797 int i; 798 for(i=0; i<p->nCol; i++){ 799 char *zKey = p->aCol[i].zCol; 800 int iKey; 801 for(iKey=0; iKey<pTab->nCol; iKey++){ 802 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ 803 Column *pCol = &pTab->aCol[iKey]; 804 if( zKey ){ 805 if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1; 806 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ 807 return 1; 808 } 809 } 810 } 811 } 812 return 0; 813 } 814 815 /* 816 ** Return true if the parser passed as the first argument is being 817 ** used to code a trigger that is really a "SET NULL" action belonging 818 ** to trigger pFKey. 819 */ 820 static int isSetNullAction(Parse *pParse, FKey *pFKey){ 821 Parse *pTop = sqlite3ParseToplevel(pParse); 822 if( pTop->pTriggerPrg ){ 823 Trigger *p = pTop->pTriggerPrg->pTrigger; 824 if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull) 825 || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull) 826 ){ 827 return 1; 828 } 829 } 830 return 0; 831 } 832 833 /* 834 ** This function is called when inserting, deleting or updating a row of 835 ** table pTab to generate VDBE code to perform foreign key constraint 836 ** processing for the operation. 837 ** 838 ** For a DELETE operation, parameter regOld is passed the index of the 839 ** first register in an array of (pTab->nCol+1) registers containing the 840 ** rowid of the row being deleted, followed by each of the column values 841 ** of the row being deleted, from left to right. Parameter regNew is passed 842 ** zero in this case. 843 ** 844 ** For an INSERT operation, regOld is passed zero and regNew is passed the 845 ** first register of an array of (pTab->nCol+1) registers containing the new 846 ** row data. 847 ** 848 ** For an UPDATE operation, this function is called twice. Once before 849 ** the original record is deleted from the table using the calling convention 850 ** described for DELETE. Then again after the original record is deleted 851 ** but before the new record is inserted using the INSERT convention. 852 */ 853 void sqlite3FkCheck( 854 Parse *pParse, /* Parse context */ 855 Table *pTab, /* Row is being deleted from this table */ 856 int regOld, /* Previous row data is stored here */ 857 int regNew, /* New row data is stored here */ 858 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 859 int bChngRowid /* True if rowid is UPDATEd */ 860 ){ 861 sqlite3 *db = pParse->db; /* Database handle */ 862 FKey *pFKey; /* Used to iterate through FKs */ 863 int iDb; /* Index of database containing pTab */ 864 const char *zDb; /* Name of database containing pTab */ 865 int isIgnoreErrors = pParse->disableTriggers; 866 867 /* Exactly one of regOld and regNew should be non-zero. */ 868 assert( (regOld==0)!=(regNew==0) ); 869 870 /* If foreign-keys are disabled, this function is a no-op. */ 871 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 872 873 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 874 zDb = db->aDb[iDb].zName; 875 876 /* Loop through all the foreign key constraints for which pTab is the 877 ** child table (the table that the foreign key definition is part of). */ 878 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 879 Table *pTo; /* Parent table of foreign key pFKey */ 880 Index *pIdx = 0; /* Index on key columns in pTo */ 881 int *aiFree = 0; 882 int *aiCol; 883 int iCol; 884 int i; 885 int bIgnore = 0; 886 887 if( aChange 888 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 889 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 890 ){ 891 continue; 892 } 893 894 /* Find the parent table of this foreign key. Also find a unique index 895 ** on the parent key columns in the parent table. If either of these 896 ** schema items cannot be located, set an error in pParse and return 897 ** early. */ 898 if( pParse->disableTriggers ){ 899 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 900 }else{ 901 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 902 } 903 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 904 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 905 if( !isIgnoreErrors || db->mallocFailed ) return; 906 if( pTo==0 ){ 907 /* If isIgnoreErrors is true, then a table is being dropped. In this 908 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 909 ** before actually dropping it in order to check FK constraints. 910 ** If the parent table of an FK constraint on the current table is 911 ** missing, behave as if it is empty. i.e. decrement the relevant 912 ** FK counter for each row of the current table with non-NULL keys. 913 */ 914 Vdbe *v = sqlite3GetVdbe(pParse); 915 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 916 for(i=0; i<pFKey->nCol; i++){ 917 int iReg = pFKey->aCol[i].iFrom + regOld + 1; 918 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); 919 } 920 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 921 } 922 continue; 923 } 924 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 925 926 if( aiFree ){ 927 aiCol = aiFree; 928 }else{ 929 iCol = pFKey->aCol[0].iFrom; 930 aiCol = &iCol; 931 } 932 for(i=0; i<pFKey->nCol; i++){ 933 if( aiCol[i]==pTab->iPKey ){ 934 aiCol[i] = -1; 935 } 936 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 937 #ifndef SQLITE_OMIT_AUTHORIZATION 938 /* Request permission to read the parent key columns. If the 939 ** authorization callback returns SQLITE_IGNORE, behave as if any 940 ** values read from the parent table are NULL. */ 941 if( db->xAuth ){ 942 int rcauth; 943 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; 944 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 945 bIgnore = (rcauth==SQLITE_IGNORE); 946 } 947 #endif 948 } 949 950 /* Take a shared-cache advisory read-lock on the parent table. Allocate 951 ** a cursor to use to search the unique index on the parent key columns 952 ** in the parent table. */ 953 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 954 pParse->nTab++; 955 956 if( regOld!=0 ){ 957 /* A row is being removed from the child table. Search for the parent. 958 ** If the parent does not exist, removing the child row resolves an 959 ** outstanding foreign key constraint violation. */ 960 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore); 961 } 962 if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){ 963 /* A row is being added to the child table. If a parent row cannot 964 ** be found, adding the child row has violated the FK constraint. 965 ** 966 ** If this operation is being performed as part of a trigger program 967 ** that is actually a "SET NULL" action belonging to this very 968 ** foreign key, then omit this scan altogether. As all child key 969 ** values are guaranteed to be NULL, it is not possible for adding 970 ** this row to cause an FK violation. */ 971 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore); 972 } 973 974 sqlite3DbFree(db, aiFree); 975 } 976 977 /* Loop through all the foreign key constraints that refer to this table. 978 ** (the "child" constraints) */ 979 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 980 Index *pIdx = 0; /* Foreign key index for pFKey */ 981 SrcList *pSrc; 982 int *aiCol = 0; 983 984 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ 985 continue; 986 } 987 988 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 989 && !pParse->pToplevel && !pParse->isMultiWrite 990 ){ 991 assert( regOld==0 && regNew!=0 ); 992 /* Inserting a single row into a parent table cannot cause (or fix) 993 ** an immediate foreign key violation. So do nothing in this case. */ 994 continue; 995 } 996 997 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 998 if( !isIgnoreErrors || db->mallocFailed ) return; 999 continue; 1000 } 1001 assert( aiCol || pFKey->nCol==1 ); 1002 1003 /* Create a SrcList structure containing the child table. We need the 1004 ** child table as a SrcList for sqlite3WhereBegin() */ 1005 pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 1006 if( pSrc ){ 1007 struct SrcList_item *pItem = pSrc->a; 1008 pItem->pTab = pFKey->pFrom; 1009 pItem->zName = pFKey->pFrom->zName; 1010 pItem->pTab->nRef++; 1011 pItem->iCursor = pParse->nTab++; 1012 1013 if( regNew!=0 ){ 1014 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 1015 } 1016 if( regOld!=0 ){ 1017 int eAction = pFKey->aAction[aChange!=0]; 1018 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 1019 /* If this is a deferred FK constraint, or a CASCADE or SET NULL 1020 ** action applies, then any foreign key violations caused by 1021 ** removing the parent key will be rectified by the action trigger. 1022 ** So do not set the "may-abort" flag in this case. 1023 ** 1024 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the 1025 ** may-abort flag will eventually be set on this statement anyway 1026 ** (when this function is called as part of processing the UPDATE 1027 ** within the action trigger). 1028 ** 1029 ** Note 2: At first glance it may seem like SQLite could simply omit 1030 ** all OP_FkCounter related scans when either CASCADE or SET NULL 1031 ** applies. The trouble starts if the CASCADE or SET NULL action 1032 ** trigger causes other triggers or action rules attached to the 1033 ** child table to fire. In these cases the fk constraint counters 1034 ** might be set incorrectly if any OP_FkCounter related scans are 1035 ** omitted. */ 1036 if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){ 1037 sqlite3MayAbort(pParse); 1038 } 1039 } 1040 pItem->zName = 0; 1041 sqlite3SrcListDelete(db, pSrc); 1042 } 1043 sqlite3DbFree(db, aiCol); 1044 } 1045 } 1046 1047 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 1048 1049 /* 1050 ** This function is called before generating code to update or delete a 1051 ** row contained in table pTab. 1052 */ 1053 u32 sqlite3FkOldmask( 1054 Parse *pParse, /* Parse context */ 1055 Table *pTab /* Table being modified */ 1056 ){ 1057 u32 mask = 0; 1058 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1059 FKey *p; 1060 int i; 1061 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1062 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 1063 } 1064 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1065 Index *pIdx = 0; 1066 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); 1067 if( pIdx ){ 1068 for(i=0; i<pIdx->nKeyCol; i++){ 1069 assert( pIdx->aiColumn[i]>=0 ); 1070 mask |= COLUMN_MASK(pIdx->aiColumn[i]); 1071 } 1072 } 1073 } 1074 } 1075 return mask; 1076 } 1077 1078 1079 /* 1080 ** This function is called before generating code to update or delete a 1081 ** row contained in table pTab. If the operation is a DELETE, then 1082 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 1083 ** to an array of size N, where N is the number of columns in table pTab. 1084 ** If the i'th column is not modified by the UPDATE, then the corresponding 1085 ** entry in the aChange[] array is set to -1. If the column is modified, 1086 ** the value is 0 or greater. Parameter chngRowid is set to true if the 1087 ** UPDATE statement modifies the rowid fields of the table. 1088 ** 1089 ** If any foreign key processing will be required, this function returns 1090 ** true. If there is no foreign key related processing, this function 1091 ** returns false. 1092 */ 1093 int sqlite3FkRequired( 1094 Parse *pParse, /* Parse context */ 1095 Table *pTab, /* Table being modified */ 1096 int *aChange, /* Non-NULL for UPDATE operations */ 1097 int chngRowid /* True for UPDATE that affects rowid */ 1098 ){ 1099 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1100 if( !aChange ){ 1101 /* A DELETE operation. Foreign key processing is required if the 1102 ** table in question is either the child or parent table for any 1103 ** foreign key constraint. */ 1104 return (sqlite3FkReferences(pTab) || pTab->pFKey); 1105 }else{ 1106 /* This is an UPDATE. Foreign key processing is only required if the 1107 ** operation modifies one or more child or parent key columns. */ 1108 FKey *p; 1109 1110 /* Check if any child key columns are being modified. */ 1111 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1112 if( fkChildIsModified(pTab, p, aChange, chngRowid) ) return 1; 1113 } 1114 1115 /* Check if any parent key columns are being modified. */ 1116 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1117 if( fkParentIsModified(pTab, p, aChange, chngRowid) ) return 1; 1118 } 1119 } 1120 } 1121 return 0; 1122 } 1123 1124 /* 1125 ** This function is called when an UPDATE or DELETE operation is being 1126 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 1127 ** If the current operation is an UPDATE, then the pChanges parameter is 1128 ** passed a pointer to the list of columns being modified. If it is a 1129 ** DELETE, pChanges is passed a NULL pointer. 1130 ** 1131 ** It returns a pointer to a Trigger structure containing a trigger 1132 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 1133 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is 1134 ** returned (these actions require no special handling by the triggers 1135 ** sub-system, code for them is created by fkScanChildren()). 1136 ** 1137 ** For example, if pFKey is the foreign key and pTab is table "p" in 1138 ** the following schema: 1139 ** 1140 ** CREATE TABLE p(pk PRIMARY KEY); 1141 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 1142 ** 1143 ** then the returned trigger structure is equivalent to: 1144 ** 1145 ** CREATE TRIGGER ... DELETE ON p BEGIN 1146 ** DELETE FROM c WHERE ck = old.pk; 1147 ** END; 1148 ** 1149 ** The returned pointer is cached as part of the foreign key object. It 1150 ** is eventually freed along with the rest of the foreign key object by 1151 ** sqlite3FkDelete(). 1152 */ 1153 static Trigger *fkActionTrigger( 1154 Parse *pParse, /* Parse context */ 1155 Table *pTab, /* Table being updated or deleted from */ 1156 FKey *pFKey, /* Foreign key to get action for */ 1157 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 1158 ){ 1159 sqlite3 *db = pParse->db; /* Database handle */ 1160 int action; /* One of OE_None, OE_Cascade etc. */ 1161 Trigger *pTrigger; /* Trigger definition to return */ 1162 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 1163 1164 action = pFKey->aAction[iAction]; 1165 if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){ 1166 return 0; 1167 } 1168 1169 pTrigger = pFKey->apTrigger[iAction]; 1170 1171 if( action!=OE_None && !pTrigger ){ 1172 char const *zFrom; /* Name of child table */ 1173 int nFrom; /* Length in bytes of zFrom */ 1174 Index *pIdx = 0; /* Parent key index for this FK */ 1175 int *aiCol = 0; /* child table cols -> parent key cols */ 1176 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 1177 Expr *pWhere = 0; /* WHERE clause of trigger step */ 1178 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 1179 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 1180 int i; /* Iterator variable */ 1181 Expr *pWhen = 0; /* WHEN clause for the trigger */ 1182 1183 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 1184 assert( aiCol || pFKey->nCol==1 ); 1185 1186 for(i=0; i<pFKey->nCol; i++){ 1187 Token tOld = { "old", 3 }; /* Literal "old" token */ 1188 Token tNew = { "new", 3 }; /* Literal "new" token */ 1189 Token tFromCol; /* Name of column in child table */ 1190 Token tToCol; /* Name of column in parent table */ 1191 int iFromCol; /* Idx of column in child table */ 1192 Expr *pEq; /* tFromCol = OLD.tToCol */ 1193 1194 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 1195 assert( iFromCol>=0 ); 1196 assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) ); 1197 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 1198 sqlite3TokenInit(&tToCol, 1199 pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName); 1200 sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zName); 1201 1202 /* Create the expression "OLD.zToCol = zFromCol". It is important 1203 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 1204 ** that the affinity and collation sequence associated with the 1205 ** parent table are used for the comparison. */ 1206 pEq = sqlite3PExpr(pParse, TK_EQ, 1207 sqlite3PExpr(pParse, TK_DOT, 1208 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1209 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0) 1210 , 0), 1211 sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) 1212 , 0); 1213 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 1214 1215 /* For ON UPDATE, construct the next term of the WHEN clause. 1216 ** The final WHEN clause will be like this: 1217 ** 1218 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 1219 */ 1220 if( pChanges ){ 1221 pEq = sqlite3PExpr(pParse, TK_IS, 1222 sqlite3PExpr(pParse, TK_DOT, 1223 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1224 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0), 1225 0), 1226 sqlite3PExpr(pParse, TK_DOT, 1227 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1228 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0), 1229 0), 1230 0); 1231 pWhen = sqlite3ExprAnd(db, pWhen, pEq); 1232 } 1233 1234 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 1235 Expr *pNew; 1236 if( action==OE_Cascade ){ 1237 pNew = sqlite3PExpr(pParse, TK_DOT, 1238 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1239 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0) 1240 , 0); 1241 }else if( action==OE_SetDflt ){ 1242 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; 1243 if( pDflt ){ 1244 pNew = sqlite3ExprDup(db, pDflt, 0); 1245 }else{ 1246 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 1247 } 1248 }else{ 1249 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 1250 } 1251 pList = sqlite3ExprListAppend(pParse, pList, pNew); 1252 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 1253 } 1254 } 1255 sqlite3DbFree(db, aiCol); 1256 1257 zFrom = pFKey->pFrom->zName; 1258 nFrom = sqlite3Strlen30(zFrom); 1259 1260 if( action==OE_Restrict ){ 1261 Token tFrom; 1262 Expr *pRaise; 1263 1264 tFrom.z = zFrom; 1265 tFrom.n = nFrom; 1266 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); 1267 if( pRaise ){ 1268 pRaise->affinity = OE_Abort; 1269 } 1270 pSelect = sqlite3SelectNew(pParse, 1271 sqlite3ExprListAppend(pParse, 0, pRaise), 1272 sqlite3SrcListAppend(db, 0, &tFrom, 0), 1273 pWhere, 1274 0, 0, 0, 0, 0, 0 1275 ); 1276 pWhere = 0; 1277 } 1278 1279 /* Disable lookaside memory allocation */ 1280 db->lookaside.bDisable++; 1281 1282 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 1283 sizeof(Trigger) + /* struct Trigger */ 1284 sizeof(TriggerStep) + /* Single step in trigger program */ 1285 nFrom + 1 /* Space for pStep->zTarget */ 1286 ); 1287 if( pTrigger ){ 1288 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 1289 pStep->zTarget = (char *)&pStep[1]; 1290 memcpy((char *)pStep->zTarget, zFrom, nFrom); 1291 1292 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 1293 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 1294 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1295 if( pWhen ){ 1296 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0); 1297 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 1298 } 1299 } 1300 1301 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 1302 db->lookaside.bDisable--; 1303 1304 sqlite3ExprDelete(db, pWhere); 1305 sqlite3ExprDelete(db, pWhen); 1306 sqlite3ExprListDelete(db, pList); 1307 sqlite3SelectDelete(db, pSelect); 1308 if( db->mallocFailed==1 ){ 1309 fkTriggerDelete(db, pTrigger); 1310 return 0; 1311 } 1312 assert( pStep!=0 ); 1313 1314 switch( action ){ 1315 case OE_Restrict: 1316 pStep->op = TK_SELECT; 1317 break; 1318 case OE_Cascade: 1319 if( !pChanges ){ 1320 pStep->op = TK_DELETE; 1321 break; 1322 } 1323 default: 1324 pStep->op = TK_UPDATE; 1325 } 1326 pStep->pTrig = pTrigger; 1327 pTrigger->pSchema = pTab->pSchema; 1328 pTrigger->pTabSchema = pTab->pSchema; 1329 pFKey->apTrigger[iAction] = pTrigger; 1330 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 1331 } 1332 1333 return pTrigger; 1334 } 1335 1336 /* 1337 ** This function is called when deleting or updating a row to implement 1338 ** any required CASCADE, SET NULL or SET DEFAULT actions. 1339 */ 1340 void sqlite3FkActions( 1341 Parse *pParse, /* Parse context */ 1342 Table *pTab, /* Table being updated or deleted from */ 1343 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 1344 int regOld, /* Address of array containing old row */ 1345 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 1346 int bChngRowid /* True if rowid is UPDATEd */ 1347 ){ 1348 /* If foreign-key support is enabled, iterate through all FKs that 1349 ** refer to table pTab. If there is an action associated with the FK 1350 ** for this operation (either update or delete), invoke the associated 1351 ** trigger sub-program. */ 1352 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1353 FKey *pFKey; /* Iterator variable */ 1354 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1355 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ 1356 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); 1357 if( pAct ){ 1358 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); 1359 } 1360 } 1361 } 1362 } 1363 } 1364 1365 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 1366 1367 /* 1368 ** Free all memory associated with foreign key definitions attached to 1369 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 1370 ** hash table. 1371 */ 1372 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 1373 FKey *pFKey; /* Iterator variable */ 1374 FKey *pNext; /* Copy of pFKey->pNextFrom */ 1375 1376 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 1377 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ 1378 1379 /* Remove the FK from the fkeyHash hash table. */ 1380 if( !db || db->pnBytesFreed==0 ){ 1381 if( pFKey->pPrevTo ){ 1382 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 1383 }else{ 1384 void *p = (void *)pFKey->pNextTo; 1385 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); 1386 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p); 1387 } 1388 if( pFKey->pNextTo ){ 1389 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 1390 } 1391 } 1392 1393 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 1394 ** classified as either immediate or deferred. 1395 */ 1396 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 1397 1398 /* Delete any triggers created to implement actions for this FK. */ 1399 #ifndef SQLITE_OMIT_TRIGGER 1400 fkTriggerDelete(db, pFKey->apTrigger[0]); 1401 fkTriggerDelete(db, pFKey->apTrigger[1]); 1402 #endif 1403 1404 pNext = pFKey->pNextFrom; 1405 sqlite3DbFree(db, pFKey); 1406 } 1407 } 1408 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ 1409