1 /* 2 ** 3 ** The author disclaims copyright to this source code. In place of 4 ** a legal notice, here is a blessing: 5 ** 6 ** May you do good and not evil. 7 ** May you find forgiveness for yourself and forgive others. 8 ** May you share freely, never taking more than you give. 9 ** 10 ************************************************************************* 11 ** This file contains code used by the compiler to add foreign key 12 ** support to compiled SQL statements. 13 */ 14 #include "sqliteInt.h" 15 16 #ifndef SQLITE_OMIT_FOREIGN_KEY 17 #ifndef SQLITE_OMIT_TRIGGER 18 19 /* 20 ** Deferred and Immediate FKs 21 ** -------------------------- 22 ** 23 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 24 ** If an immediate foreign key constraint is violated, 25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current 26 ** statement transaction rolled back. If a 27 ** deferred foreign key constraint is violated, no action is taken 28 ** immediately. However if the application attempts to commit the 29 ** transaction before fixing the constraint violation, the attempt fails. 30 ** 31 ** Deferred constraints are implemented using a simple counter associated 32 ** with the database handle. The counter is set to zero each time a 33 ** database transaction is opened. Each time a statement is executed 34 ** that causes a foreign key violation, the counter is incremented. Each 35 ** time a statement is executed that removes an existing violation from 36 ** the database, the counter is decremented. When the transaction is 37 ** committed, the commit fails if the current value of the counter is 38 ** greater than zero. This scheme has two big drawbacks: 39 ** 40 ** * When a commit fails due to a deferred foreign key constraint, 41 ** there is no way to tell which foreign constraint is not satisfied, 42 ** or which row it is not satisfied for. 43 ** 44 ** * If the database contains foreign key violations when the 45 ** transaction is opened, this may cause the mechanism to malfunction. 46 ** 47 ** Despite these problems, this approach is adopted as it seems simpler 48 ** than the alternatives. 49 ** 50 ** INSERT operations: 51 ** 52 ** I.1) For each FK for which the table is the child table, search 53 ** the parent table for a match. If none is found increment the 54 ** constraint counter. 55 ** 56 ** I.2) For each FK for which the table is the parent table, 57 ** search the child table for rows that correspond to the new 58 ** row in the parent table. Decrement the counter for each row 59 ** found (as the constraint is now satisfied). 60 ** 61 ** DELETE operations: 62 ** 63 ** D.1) For each FK for which the table is the child table, 64 ** search the parent table for a row that corresponds to the 65 ** deleted row in the child table. If such a row is not found, 66 ** decrement the counter. 67 ** 68 ** D.2) For each FK for which the table is the parent table, search 69 ** the child table for rows that correspond to the deleted row 70 ** in the parent table. For each found increment the counter. 71 ** 72 ** UPDATE operations: 73 ** 74 ** An UPDATE command requires that all 4 steps above are taken, but only 75 ** for FK constraints for which the affected columns are actually 76 ** modified (values must be compared at runtime). 77 ** 78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 79 ** This simplifies the implementation a bit. 80 ** 81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 82 ** resolution is considered to delete rows before the new row is inserted. 83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 84 ** is thrown, even if the FK constraint would be satisfied after the new 85 ** row is inserted. 86 ** 87 ** Immediate constraints are usually handled similarly. The only difference 88 ** is that the counter used is stored as part of each individual statement 89 ** object (struct Vdbe). If, after the statement has run, its immediate 90 ** constraint counter is greater than zero, 91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY 92 ** and the statement transaction is rolled back. An exception is an INSERT 93 ** statement that inserts a single row only (no triggers). In this case, 94 ** instead of using a counter, an exception is thrown immediately if the 95 ** INSERT violates a foreign key constraint. This is necessary as such 96 ** an INSERT does not open a statement transaction. 97 ** 98 ** TODO: How should dropping a table be handled? How should renaming a 99 ** table be handled? 100 ** 101 ** 102 ** Query API Notes 103 ** --------------- 104 ** 105 ** Before coding an UPDATE or DELETE row operation, the code-generator 106 ** for those two operations needs to know whether or not the operation 107 ** requires any FK processing and, if so, which columns of the original 108 ** row are required by the FK processing VDBE code (i.e. if FKs were 109 ** implemented using triggers, which of the old.* columns would be 110 ** accessed). No information is required by the code-generator before 111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 112 ** generation code to query for this information are: 113 ** 114 ** sqlite3FkRequired() - Test to see if FK processing is required. 115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 116 ** 117 ** 118 ** Externally accessible module functions 119 ** -------------------------------------- 120 ** 121 ** sqlite3FkCheck() - Check for foreign key violations. 122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 123 ** sqlite3FkDelete() - Delete an FKey structure. 124 */ 125 126 /* 127 ** VDBE Calling Convention 128 ** ----------------------- 129 ** 130 ** Example: 131 ** 132 ** For the following INSERT statement: 133 ** 134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 135 ** INSERT INTO t1 VALUES(1, 2, 3.1); 136 ** 137 ** Register (x): 2 (type integer) 138 ** Register (x+1): 1 (type integer) 139 ** Register (x+2): NULL (type NULL) 140 ** Register (x+3): 3.1 (type real) 141 */ 142 143 /* 144 ** A foreign key constraint requires that the key columns in the parent 145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 146 ** Given that pParent is the parent table for foreign key constraint pFKey, 147 ** search the schema for a unique index on the parent key columns. 148 ** 149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 151 ** is set to point to the unique index. 152 ** 153 ** If the parent key consists of a single column (the foreign key constraint 154 ** is not a composite foreign key), output variable *paiCol is set to NULL. 155 ** Otherwise, it is set to point to an allocated array of size N, where 156 ** N is the number of columns in the parent key. The first element of the 157 ** array is the index of the child table column that is mapped by the FK 158 ** constraint to the parent table column stored in the left-most column 159 ** of index *ppIdx. The second element of the array is the index of the 160 ** child table column that corresponds to the second left-most column of 161 ** *ppIdx, and so on. 162 ** 163 ** If the required index cannot be found, either because: 164 ** 165 ** 1) The named parent key columns do not exist, or 166 ** 167 ** 2) The named parent key columns do exist, but are not subject to a 168 ** UNIQUE or PRIMARY KEY constraint, or 169 ** 170 ** 3) No parent key columns were provided explicitly as part of the 171 ** foreign key definition, and the parent table does not have a 172 ** PRIMARY KEY, or 173 ** 174 ** 4) No parent key columns were provided explicitly as part of the 175 ** foreign key definition, and the PRIMARY KEY of the parent table 176 ** consists of a different number of columns to the child key in 177 ** the child table. 178 ** 179 ** then non-zero is returned, and a "foreign key mismatch" error loaded 180 ** into pParse. If an OOM error occurs, non-zero is returned and the 181 ** pParse->db->mallocFailed flag is set. 182 */ 183 int sqlite3FkLocateIndex( 184 Parse *pParse, /* Parse context to store any error in */ 185 Table *pParent, /* Parent table of FK constraint pFKey */ 186 FKey *pFKey, /* Foreign key to find index for */ 187 Index **ppIdx, /* OUT: Unique index on parent table */ 188 int **paiCol /* OUT: Map of index columns in pFKey */ 189 ){ 190 Index *pIdx = 0; /* Value to return via *ppIdx */ 191 int *aiCol = 0; /* Value to return via *paiCol */ 192 int nCol = pFKey->nCol; /* Number of columns in parent key */ 193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 194 195 /* The caller is responsible for zeroing output parameters. */ 196 assert( ppIdx && *ppIdx==0 ); 197 assert( !paiCol || *paiCol==0 ); 198 assert( pParse ); 199 200 /* If this is a non-composite (single column) foreign key, check if it 201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 202 ** and *paiCol set to zero and return early. 203 ** 204 ** Otherwise, for a composite foreign key (more than one column), allocate 205 ** space for the aiCol array (returned via output parameter *paiCol). 206 ** Non-composite foreign keys do not require the aiCol array. 207 */ 208 if( nCol==1 ){ 209 /* The FK maps to the IPK if any of the following are true: 210 ** 211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 212 ** mapped to the primary key of table pParent, or 213 ** 2) The FK is explicitly mapped to a column declared as INTEGER 214 ** PRIMARY KEY. 215 */ 216 if( pParent->iPKey>=0 ){ 217 if( !zKey ) return 0; 218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; 219 } 220 }else if( paiCol ){ 221 assert( nCol>1 ); 222 aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int)); 223 if( !aiCol ) return 1; 224 *paiCol = aiCol; 225 } 226 227 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 228 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){ 229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 230 ** of columns. If each indexed column corresponds to a foreign key 231 ** column of pFKey, then this index is a winner. */ 232 233 if( zKey==0 ){ 234 /* If zKey is NULL, then this foreign key is implicitly mapped to 235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 236 ** identified by the test. */ 237 if( IsPrimaryKeyIndex(pIdx) ){ 238 if( aiCol ){ 239 int i; 240 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 241 } 242 break; 243 } 244 }else{ 245 /* If zKey is non-NULL, then this foreign key was declared to 246 ** map to an explicit list of columns in table pParent. Check if this 247 ** index matches those columns. Also, check that the index uses 248 ** the default collation sequences for each column. */ 249 int i, j; 250 for(i=0; i<nCol; i++){ 251 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 252 const char *zDfltColl; /* Def. collation for column */ 253 char *zIdxCol; /* Name of indexed column */ 254 255 if( iCol<0 ) break; /* No foreign keys against expression indexes */ 256 257 /* If the index uses a collation sequence that is different from 258 ** the default collation sequence for the column, this index is 259 ** unusable. Bail out early in this case. */ 260 zDfltColl = pParent->aCol[iCol].zColl; 261 if( !zDfltColl ) zDfltColl = sqlite3StrBINARY; 262 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 263 264 zIdxCol = pParent->aCol[iCol].zName; 265 for(j=0; j<nCol; j++){ 266 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 267 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 268 break; 269 } 270 } 271 if( j==nCol ) break; 272 } 273 if( i==nCol ) break; /* pIdx is usable */ 274 } 275 } 276 } 277 278 if( !pIdx ){ 279 if( !pParse->disableTriggers ){ 280 sqlite3ErrorMsg(pParse, 281 "foreign key mismatch - \"%w\" referencing \"%w\"", 282 pFKey->pFrom->zName, pFKey->zTo); 283 } 284 sqlite3DbFree(pParse->db, aiCol); 285 return 1; 286 } 287 288 *ppIdx = pIdx; 289 return 0; 290 } 291 292 /* 293 ** This function is called when a row is inserted into or deleted from the 294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 295 ** on the child table of pFKey, this function is invoked twice for each row 296 ** affected - once to "delete" the old row, and then again to "insert" the 297 ** new row. 298 ** 299 ** Each time it is called, this function generates VDBE code to locate the 300 ** row in the parent table that corresponds to the row being inserted into 301 ** or deleted from the child table. If the parent row can be found, no 302 ** special action is taken. Otherwise, if the parent row can *not* be 303 ** found in the parent table: 304 ** 305 ** Operation | FK type | Action taken 306 ** -------------------------------------------------------------------------- 307 ** INSERT immediate Increment the "immediate constraint counter". 308 ** 309 ** DELETE immediate Decrement the "immediate constraint counter". 310 ** 311 ** INSERT deferred Increment the "deferred constraint counter". 312 ** 313 ** DELETE deferred Decrement the "deferred constraint counter". 314 ** 315 ** These operations are identified in the comment at the top of this file 316 ** (fkey.c) as "I.1" and "D.1". 317 */ 318 static void fkLookupParent( 319 Parse *pParse, /* Parse context */ 320 int iDb, /* Index of database housing pTab */ 321 Table *pTab, /* Parent table of FK pFKey */ 322 Index *pIdx, /* Unique index on parent key columns in pTab */ 323 FKey *pFKey, /* Foreign key constraint */ 324 int *aiCol, /* Map from parent key columns to child table columns */ 325 int regData, /* Address of array containing child table row */ 326 int nIncr, /* Increment constraint counter by this */ 327 int isIgnore /* If true, pretend pTab contains all NULL values */ 328 ){ 329 int i; /* Iterator variable */ 330 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 331 int iCur = pParse->nTab - 1; /* Cursor number to use */ 332 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ 333 334 /* If nIncr is less than zero, then check at runtime if there are any 335 ** outstanding constraints to resolve. If there are not, there is no need 336 ** to check if deleting this row resolves any outstanding violations. 337 ** 338 ** Check if any of the key columns in the child table row are NULL. If 339 ** any are, then the constraint is considered satisfied. No need to 340 ** search for a matching row in the parent table. */ 341 if( nIncr<0 ){ 342 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 343 VdbeCoverage(v); 344 } 345 for(i=0; i<pFKey->nCol; i++){ 346 int iReg = aiCol[i] + regData + 1; 347 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); 348 } 349 350 if( isIgnore==0 ){ 351 if( pIdx==0 ){ 352 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 353 ** column of the parent table (table pTab). */ 354 int iMustBeInt; /* Address of MustBeInt instruction */ 355 int regTemp = sqlite3GetTempReg(pParse); 356 357 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 358 ** apply the affinity of the parent key). If this fails, then there 359 ** is no matching parent key. Before using MustBeInt, make a copy of 360 ** the value. Otherwise, the value inserted into the child key column 361 ** will have INTEGER affinity applied to it, which may not be correct. */ 362 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); 363 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 364 VdbeCoverage(v); 365 366 /* If the parent table is the same as the child table, and we are about 367 ** to increment the constraint-counter (i.e. this is an INSERT operation), 368 ** then check if the row being inserted matches itself. If so, do not 369 ** increment the constraint-counter. */ 370 if( pTab==pFKey->pFrom && nIncr==1 ){ 371 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); 372 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 373 } 374 375 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 376 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); 377 sqlite3VdbeGoto(v, iOk); 378 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 379 sqlite3VdbeJumpHere(v, iMustBeInt); 380 sqlite3ReleaseTempReg(pParse, regTemp); 381 }else{ 382 int nCol = pFKey->nCol; 383 int regTemp = sqlite3GetTempRange(pParse, nCol); 384 int regRec = sqlite3GetTempReg(pParse); 385 386 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 387 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 388 for(i=0; i<nCol; i++){ 389 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i); 390 } 391 392 /* If the parent table is the same as the child table, and we are about 393 ** to increment the constraint-counter (i.e. this is an INSERT operation), 394 ** then check if the row being inserted matches itself. If so, do not 395 ** increment the constraint-counter. 396 ** 397 ** If any of the parent-key values are NULL, then the row cannot match 398 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 399 ** of the parent-key values are NULL (at this point it is known that 400 ** none of the child key values are). 401 */ 402 if( pTab==pFKey->pFrom && nIncr==1 ){ 403 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 404 for(i=0; i<nCol; i++){ 405 int iChild = aiCol[i]+1+regData; 406 int iParent = pIdx->aiColumn[i]+1+regData; 407 assert( pIdx->aiColumn[i]>=0 ); 408 assert( aiCol[i]!=pTab->iPKey ); 409 if( pIdx->aiColumn[i]==pTab->iPKey ){ 410 /* The parent key is a composite key that includes the IPK column */ 411 iParent = regData; 412 } 413 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); 414 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 415 } 416 sqlite3VdbeGoto(v, iOk); 417 } 418 419 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec, 420 sqlite3IndexAffinityStr(pParse->db,pIdx), nCol); 421 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v); 422 423 sqlite3ReleaseTempReg(pParse, regRec); 424 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 425 } 426 } 427 428 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) 429 && !pParse->pToplevel 430 && !pParse->isMultiWrite 431 ){ 432 /* Special case: If this is an INSERT statement that will insert exactly 433 ** one row into the table, raise a constraint immediately instead of 434 ** incrementing a counter. This is necessary as the VM code is being 435 ** generated for will not open a statement transaction. */ 436 assert( nIncr==1 ); 437 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 438 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 439 }else{ 440 if( nIncr>0 && pFKey->isDeferred==0 ){ 441 sqlite3MayAbort(pParse); 442 } 443 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 444 } 445 446 sqlite3VdbeResolveLabel(v, iOk); 447 sqlite3VdbeAddOp1(v, OP_Close, iCur); 448 } 449 450 451 /* 452 ** Return an Expr object that refers to a memory register corresponding 453 ** to column iCol of table pTab. 454 ** 455 ** regBase is the first of an array of register that contains the data 456 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first 457 ** column. regBase+2 holds the second column, and so forth. 458 */ 459 static Expr *exprTableRegister( 460 Parse *pParse, /* Parsing and code generating context */ 461 Table *pTab, /* The table whose content is at r[regBase]... */ 462 int regBase, /* Contents of table pTab */ 463 i16 iCol /* Which column of pTab is desired */ 464 ){ 465 Expr *pExpr; 466 Column *pCol; 467 const char *zColl; 468 sqlite3 *db = pParse->db; 469 470 pExpr = sqlite3Expr(db, TK_REGISTER, 0); 471 if( pExpr ){ 472 if( iCol>=0 && iCol!=pTab->iPKey ){ 473 pCol = &pTab->aCol[iCol]; 474 pExpr->iTable = regBase + iCol + 1; 475 pExpr->affinity = pCol->affinity; 476 zColl = pCol->zColl; 477 if( zColl==0 ) zColl = db->pDfltColl->zName; 478 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); 479 }else{ 480 pExpr->iTable = regBase; 481 pExpr->affinity = SQLITE_AFF_INTEGER; 482 } 483 } 484 return pExpr; 485 } 486 487 /* 488 ** Return an Expr object that refers to column iCol of table pTab which 489 ** has cursor iCur. 490 */ 491 static Expr *exprTableColumn( 492 sqlite3 *db, /* The database connection */ 493 Table *pTab, /* The table whose column is desired */ 494 int iCursor, /* The open cursor on the table */ 495 i16 iCol /* The column that is wanted */ 496 ){ 497 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); 498 if( pExpr ){ 499 pExpr->pTab = pTab; 500 pExpr->iTable = iCursor; 501 pExpr->iColumn = iCol; 502 } 503 return pExpr; 504 } 505 506 /* 507 ** This function is called to generate code executed when a row is deleted 508 ** from the parent table of foreign key constraint pFKey and, if pFKey is 509 ** deferred, when a row is inserted into the same table. When generating 510 ** code for an SQL UPDATE operation, this function may be called twice - 511 ** once to "delete" the old row and once to "insert" the new row. 512 ** 513 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease 514 ** the number of FK violations in the db) or +1 when deleting one (as this 515 ** may increase the number of FK constraint problems). 516 ** 517 ** The code generated by this function scans through the rows in the child 518 ** table that correspond to the parent table row being deleted or inserted. 519 ** For each child row found, one of the following actions is taken: 520 ** 521 ** Operation | FK type | Action taken 522 ** -------------------------------------------------------------------------- 523 ** DELETE immediate Increment the "immediate constraint counter". 524 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 525 ** throw a "FOREIGN KEY constraint failed" exception. 526 ** 527 ** INSERT immediate Decrement the "immediate constraint counter". 528 ** 529 ** DELETE deferred Increment the "deferred constraint counter". 530 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 531 ** throw a "FOREIGN KEY constraint failed" exception. 532 ** 533 ** INSERT deferred Decrement the "deferred constraint counter". 534 ** 535 ** These operations are identified in the comment at the top of this file 536 ** (fkey.c) as "I.2" and "D.2". 537 */ 538 static void fkScanChildren( 539 Parse *pParse, /* Parse context */ 540 SrcList *pSrc, /* The child table to be scanned */ 541 Table *pTab, /* The parent table */ 542 Index *pIdx, /* Index on parent covering the foreign key */ 543 FKey *pFKey, /* The foreign key linking pSrc to pTab */ 544 int *aiCol, /* Map from pIdx cols to child table cols */ 545 int regData, /* Parent row data starts here */ 546 int nIncr /* Amount to increment deferred counter by */ 547 ){ 548 sqlite3 *db = pParse->db; /* Database handle */ 549 int i; /* Iterator variable */ 550 Expr *pWhere = 0; /* WHERE clause to scan with */ 551 NameContext sNameContext; /* Context used to resolve WHERE clause */ 552 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 553 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 554 Vdbe *v = sqlite3GetVdbe(pParse); 555 556 assert( pIdx==0 || pIdx->pTable==pTab ); 557 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); 558 assert( pIdx!=0 || pFKey->nCol==1 ); 559 assert( pIdx!=0 || HasRowid(pTab) ); 560 561 if( nIncr<0 ){ 562 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 563 VdbeCoverage(v); 564 } 565 566 /* Create an Expr object representing an SQL expression like: 567 ** 568 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 569 ** 570 ** The collation sequence used for the comparison should be that of 571 ** the parent key columns. The affinity of the parent key column should 572 ** be applied to each child key value before the comparison takes place. 573 */ 574 for(i=0; i<pFKey->nCol; i++){ 575 Expr *pLeft; /* Value from parent table row */ 576 Expr *pRight; /* Column ref to child table */ 577 Expr *pEq; /* Expression (pLeft = pRight) */ 578 i16 iCol; /* Index of column in child table */ 579 const char *zCol; /* Name of column in child table */ 580 581 iCol = pIdx ? pIdx->aiColumn[i] : -1; 582 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 583 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 584 assert( iCol>=0 ); 585 zCol = pFKey->pFrom->aCol[iCol].zName; 586 pRight = sqlite3Expr(db, TK_ID, zCol); 587 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); 588 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 589 } 590 591 /* If the child table is the same as the parent table, then add terms 592 ** to the WHERE clause that prevent this entry from being scanned. 593 ** The added WHERE clause terms are like this: 594 ** 595 ** $current_rowid!=rowid 596 ** NOT( $current_a==a AND $current_b==b AND ... ) 597 ** 598 ** The first form is used for rowid tables. The second form is used 599 ** for WITHOUT ROWID tables. In the second form, the primary key is 600 ** (a,b,...) 601 */ 602 if( pTab==pFKey->pFrom && nIncr>0 ){ 603 Expr *pNe; /* Expression (pLeft != pRight) */ 604 Expr *pLeft; /* Value from parent table row */ 605 Expr *pRight; /* Column ref to child table */ 606 if( HasRowid(pTab) ){ 607 pLeft = exprTableRegister(pParse, pTab, regData, -1); 608 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); 609 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight); 610 }else{ 611 Expr *pEq, *pAll = 0; 612 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 613 assert( pIdx!=0 ); 614 for(i=0; i<pPk->nKeyCol; i++){ 615 i16 iCol = pIdx->aiColumn[i]; 616 assert( iCol>=0 ); 617 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 618 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol); 619 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); 620 pAll = sqlite3ExprAnd(db, pAll, pEq); 621 } 622 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0); 623 } 624 pWhere = sqlite3ExprAnd(db, pWhere, pNe); 625 } 626 627 /* Resolve the references in the WHERE clause. */ 628 memset(&sNameContext, 0, sizeof(NameContext)); 629 sNameContext.pSrcList = pSrc; 630 sNameContext.pParse = pParse; 631 sqlite3ResolveExprNames(&sNameContext, pWhere); 632 633 /* Create VDBE to loop through the entries in pSrc that match the WHERE 634 ** clause. For each row found, increment either the deferred or immediate 635 ** foreign key constraint counter. */ 636 if( pParse->nErr==0 ){ 637 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); 638 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 639 if( pWInfo ){ 640 sqlite3WhereEnd(pWInfo); 641 } 642 } 643 644 /* Clean up the WHERE clause constructed above. */ 645 sqlite3ExprDelete(db, pWhere); 646 if( iFkIfZero ){ 647 sqlite3VdbeJumpHere(v, iFkIfZero); 648 } 649 } 650 651 /* 652 ** This function returns a linked list of FKey objects (connected by 653 ** FKey.pNextTo) holding all children of table pTab. For example, 654 ** given the following schema: 655 ** 656 ** CREATE TABLE t1(a PRIMARY KEY); 657 ** CREATE TABLE t2(b REFERENCES t1(a); 658 ** 659 ** Calling this function with table "t1" as an argument returns a pointer 660 ** to the FKey structure representing the foreign key constraint on table 661 ** "t2". Calling this function with "t2" as the argument would return a 662 ** NULL pointer (as there are no FK constraints for which t2 is the parent 663 ** table). 664 */ 665 FKey *sqlite3FkReferences(Table *pTab){ 666 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName); 667 } 668 669 /* 670 ** The second argument is a Trigger structure allocated by the 671 ** fkActionTrigger() routine. This function deletes the Trigger structure 672 ** and all of its sub-components. 673 ** 674 ** The Trigger structure or any of its sub-components may be allocated from 675 ** the lookaside buffer belonging to database handle dbMem. 676 */ 677 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 678 if( p ){ 679 TriggerStep *pStep = p->step_list; 680 sqlite3ExprDelete(dbMem, pStep->pWhere); 681 sqlite3ExprListDelete(dbMem, pStep->pExprList); 682 sqlite3SelectDelete(dbMem, pStep->pSelect); 683 sqlite3ExprDelete(dbMem, p->pWhen); 684 sqlite3DbFree(dbMem, p); 685 } 686 } 687 688 /* 689 ** This function is called to generate code that runs when table pTab is 690 ** being dropped from the database. The SrcList passed as the second argument 691 ** to this function contains a single entry guaranteed to resolve to 692 ** table pTab. 693 ** 694 ** Normally, no code is required. However, if either 695 ** 696 ** (a) The table is the parent table of a FK constraint, or 697 ** (b) The table is the child table of a deferred FK constraint and it is 698 ** determined at runtime that there are outstanding deferred FK 699 ** constraint violations in the database, 700 ** 701 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 702 ** the table from the database. Triggers are disabled while running this 703 ** DELETE, but foreign key actions are not. 704 */ 705 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 706 sqlite3 *db = pParse->db; 707 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ 708 int iSkip = 0; 709 Vdbe *v = sqlite3GetVdbe(pParse); 710 711 assert( v ); /* VDBE has already been allocated */ 712 if( sqlite3FkReferences(pTab)==0 ){ 713 /* Search for a deferred foreign key constraint for which this table 714 ** is the child table. If one cannot be found, return without 715 ** generating any VDBE code. If one can be found, then jump over 716 ** the entire DELETE if there are no outstanding deferred constraints 717 ** when this statement is run. */ 718 FKey *p; 719 for(p=pTab->pFKey; p; p=p->pNextFrom){ 720 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; 721 } 722 if( !p ) return; 723 iSkip = sqlite3VdbeMakeLabel(v); 724 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); 725 } 726 727 pParse->disableTriggers = 1; 728 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); 729 pParse->disableTriggers = 0; 730 731 /* If the DELETE has generated immediate foreign key constraint 732 ** violations, halt the VDBE and return an error at this point, before 733 ** any modifications to the schema are made. This is because statement 734 ** transactions are not able to rollback schema changes. 735 ** 736 ** If the SQLITE_DeferFKs flag is set, then this is not required, as 737 ** the statement transaction will not be rolled back even if FK 738 ** constraints are violated. 739 */ 740 if( (db->flags & SQLITE_DeferFKs)==0 ){ 741 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 742 VdbeCoverage(v); 743 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 744 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 745 } 746 747 if( iSkip ){ 748 sqlite3VdbeResolveLabel(v, iSkip); 749 } 750 } 751 } 752 753 754 /* 755 ** The second argument points to an FKey object representing a foreign key 756 ** for which pTab is the child table. An UPDATE statement against pTab 757 ** is currently being processed. For each column of the table that is 758 ** actually updated, the corresponding element in the aChange[] array 759 ** is zero or greater (if a column is unmodified the corresponding element 760 ** is set to -1). If the rowid column is modified by the UPDATE statement 761 ** the bChngRowid argument is non-zero. 762 ** 763 ** This function returns true if any of the columns that are part of the 764 ** child key for FK constraint *p are modified. 765 */ 766 static int fkChildIsModified( 767 Table *pTab, /* Table being updated */ 768 FKey *p, /* Foreign key for which pTab is the child */ 769 int *aChange, /* Array indicating modified columns */ 770 int bChngRowid /* True if rowid is modified by this update */ 771 ){ 772 int i; 773 for(i=0; i<p->nCol; i++){ 774 int iChildKey = p->aCol[i].iFrom; 775 if( aChange[iChildKey]>=0 ) return 1; 776 if( iChildKey==pTab->iPKey && bChngRowid ) return 1; 777 } 778 return 0; 779 } 780 781 /* 782 ** The second argument points to an FKey object representing a foreign key 783 ** for which pTab is the parent table. An UPDATE statement against pTab 784 ** is currently being processed. For each column of the table that is 785 ** actually updated, the corresponding element in the aChange[] array 786 ** is zero or greater (if a column is unmodified the corresponding element 787 ** is set to -1). If the rowid column is modified by the UPDATE statement 788 ** the bChngRowid argument is non-zero. 789 ** 790 ** This function returns true if any of the columns that are part of the 791 ** parent key for FK constraint *p are modified. 792 */ 793 static int fkParentIsModified( 794 Table *pTab, 795 FKey *p, 796 int *aChange, 797 int bChngRowid 798 ){ 799 int i; 800 for(i=0; i<p->nCol; i++){ 801 char *zKey = p->aCol[i].zCol; 802 int iKey; 803 for(iKey=0; iKey<pTab->nCol; iKey++){ 804 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ 805 Column *pCol = &pTab->aCol[iKey]; 806 if( zKey ){ 807 if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1; 808 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ 809 return 1; 810 } 811 } 812 } 813 } 814 return 0; 815 } 816 817 /* 818 ** Return true if the parser passed as the first argument is being 819 ** used to code a trigger that is really a "SET NULL" action belonging 820 ** to trigger pFKey. 821 */ 822 static int isSetNullAction(Parse *pParse, FKey *pFKey){ 823 Parse *pTop = sqlite3ParseToplevel(pParse); 824 if( pTop->pTriggerPrg ){ 825 Trigger *p = pTop->pTriggerPrg->pTrigger; 826 if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull) 827 || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull) 828 ){ 829 return 1; 830 } 831 } 832 return 0; 833 } 834 835 /* 836 ** This function is called when inserting, deleting or updating a row of 837 ** table pTab to generate VDBE code to perform foreign key constraint 838 ** processing for the operation. 839 ** 840 ** For a DELETE operation, parameter regOld is passed the index of the 841 ** first register in an array of (pTab->nCol+1) registers containing the 842 ** rowid of the row being deleted, followed by each of the column values 843 ** of the row being deleted, from left to right. Parameter regNew is passed 844 ** zero in this case. 845 ** 846 ** For an INSERT operation, regOld is passed zero and regNew is passed the 847 ** first register of an array of (pTab->nCol+1) registers containing the new 848 ** row data. 849 ** 850 ** For an UPDATE operation, this function is called twice. Once before 851 ** the original record is deleted from the table using the calling convention 852 ** described for DELETE. Then again after the original record is deleted 853 ** but before the new record is inserted using the INSERT convention. 854 */ 855 void sqlite3FkCheck( 856 Parse *pParse, /* Parse context */ 857 Table *pTab, /* Row is being deleted from this table */ 858 int regOld, /* Previous row data is stored here */ 859 int regNew, /* New row data is stored here */ 860 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 861 int bChngRowid /* True if rowid is UPDATEd */ 862 ){ 863 sqlite3 *db = pParse->db; /* Database handle */ 864 FKey *pFKey; /* Used to iterate through FKs */ 865 int iDb; /* Index of database containing pTab */ 866 const char *zDb; /* Name of database containing pTab */ 867 int isIgnoreErrors = pParse->disableTriggers; 868 869 /* Exactly one of regOld and regNew should be non-zero. */ 870 assert( (regOld==0)!=(regNew==0) ); 871 872 /* If foreign-keys are disabled, this function is a no-op. */ 873 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 874 875 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 876 zDb = db->aDb[iDb].zDbSName; 877 878 /* Loop through all the foreign key constraints for which pTab is the 879 ** child table (the table that the foreign key definition is part of). */ 880 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 881 Table *pTo; /* Parent table of foreign key pFKey */ 882 Index *pIdx = 0; /* Index on key columns in pTo */ 883 int *aiFree = 0; 884 int *aiCol; 885 int iCol; 886 int i; 887 int bIgnore = 0; 888 889 if( aChange 890 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 891 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 892 ){ 893 continue; 894 } 895 896 /* Find the parent table of this foreign key. Also find a unique index 897 ** on the parent key columns in the parent table. If either of these 898 ** schema items cannot be located, set an error in pParse and return 899 ** early. */ 900 if( pParse->disableTriggers ){ 901 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 902 }else{ 903 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 904 } 905 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 906 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 907 if( !isIgnoreErrors || db->mallocFailed ) return; 908 if( pTo==0 ){ 909 /* If isIgnoreErrors is true, then a table is being dropped. In this 910 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 911 ** before actually dropping it in order to check FK constraints. 912 ** If the parent table of an FK constraint on the current table is 913 ** missing, behave as if it is empty. i.e. decrement the relevant 914 ** FK counter for each row of the current table with non-NULL keys. 915 */ 916 Vdbe *v = sqlite3GetVdbe(pParse); 917 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 918 for(i=0; i<pFKey->nCol; i++){ 919 int iReg = pFKey->aCol[i].iFrom + regOld + 1; 920 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); 921 } 922 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 923 } 924 continue; 925 } 926 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 927 928 if( aiFree ){ 929 aiCol = aiFree; 930 }else{ 931 iCol = pFKey->aCol[0].iFrom; 932 aiCol = &iCol; 933 } 934 for(i=0; i<pFKey->nCol; i++){ 935 if( aiCol[i]==pTab->iPKey ){ 936 aiCol[i] = -1; 937 } 938 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 939 #ifndef SQLITE_OMIT_AUTHORIZATION 940 /* Request permission to read the parent key columns. If the 941 ** authorization callback returns SQLITE_IGNORE, behave as if any 942 ** values read from the parent table are NULL. */ 943 if( db->xAuth ){ 944 int rcauth; 945 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; 946 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 947 bIgnore = (rcauth==SQLITE_IGNORE); 948 } 949 #endif 950 } 951 952 /* Take a shared-cache advisory read-lock on the parent table. Allocate 953 ** a cursor to use to search the unique index on the parent key columns 954 ** in the parent table. */ 955 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 956 pParse->nTab++; 957 958 if( regOld!=0 ){ 959 /* A row is being removed from the child table. Search for the parent. 960 ** If the parent does not exist, removing the child row resolves an 961 ** outstanding foreign key constraint violation. */ 962 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore); 963 } 964 if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){ 965 /* A row is being added to the child table. If a parent row cannot 966 ** be found, adding the child row has violated the FK constraint. 967 ** 968 ** If this operation is being performed as part of a trigger program 969 ** that is actually a "SET NULL" action belonging to this very 970 ** foreign key, then omit this scan altogether. As all child key 971 ** values are guaranteed to be NULL, it is not possible for adding 972 ** this row to cause an FK violation. */ 973 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore); 974 } 975 976 sqlite3DbFree(db, aiFree); 977 } 978 979 /* Loop through all the foreign key constraints that refer to this table. 980 ** (the "child" constraints) */ 981 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 982 Index *pIdx = 0; /* Foreign key index for pFKey */ 983 SrcList *pSrc; 984 int *aiCol = 0; 985 986 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ 987 continue; 988 } 989 990 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 991 && !pParse->pToplevel && !pParse->isMultiWrite 992 ){ 993 assert( regOld==0 && regNew!=0 ); 994 /* Inserting a single row into a parent table cannot cause (or fix) 995 ** an immediate foreign key violation. So do nothing in this case. */ 996 continue; 997 } 998 999 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 1000 if( !isIgnoreErrors || db->mallocFailed ) return; 1001 continue; 1002 } 1003 assert( aiCol || pFKey->nCol==1 ); 1004 1005 /* Create a SrcList structure containing the child table. We need the 1006 ** child table as a SrcList for sqlite3WhereBegin() */ 1007 pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 1008 if( pSrc ){ 1009 struct SrcList_item *pItem = pSrc->a; 1010 pItem->pTab = pFKey->pFrom; 1011 pItem->zName = pFKey->pFrom->zName; 1012 pItem->pTab->nTabRef++; 1013 pItem->iCursor = pParse->nTab++; 1014 1015 if( regNew!=0 ){ 1016 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 1017 } 1018 if( regOld!=0 ){ 1019 int eAction = pFKey->aAction[aChange!=0]; 1020 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 1021 /* If this is a deferred FK constraint, or a CASCADE or SET NULL 1022 ** action applies, then any foreign key violations caused by 1023 ** removing the parent key will be rectified by the action trigger. 1024 ** So do not set the "may-abort" flag in this case. 1025 ** 1026 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the 1027 ** may-abort flag will eventually be set on this statement anyway 1028 ** (when this function is called as part of processing the UPDATE 1029 ** within the action trigger). 1030 ** 1031 ** Note 2: At first glance it may seem like SQLite could simply omit 1032 ** all OP_FkCounter related scans when either CASCADE or SET NULL 1033 ** applies. The trouble starts if the CASCADE or SET NULL action 1034 ** trigger causes other triggers or action rules attached to the 1035 ** child table to fire. In these cases the fk constraint counters 1036 ** might be set incorrectly if any OP_FkCounter related scans are 1037 ** omitted. */ 1038 if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){ 1039 sqlite3MayAbort(pParse); 1040 } 1041 } 1042 pItem->zName = 0; 1043 sqlite3SrcListDelete(db, pSrc); 1044 } 1045 sqlite3DbFree(db, aiCol); 1046 } 1047 } 1048 1049 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 1050 1051 /* 1052 ** This function is called before generating code to update or delete a 1053 ** row contained in table pTab. 1054 */ 1055 u32 sqlite3FkOldmask( 1056 Parse *pParse, /* Parse context */ 1057 Table *pTab /* Table being modified */ 1058 ){ 1059 u32 mask = 0; 1060 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1061 FKey *p; 1062 int i; 1063 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1064 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 1065 } 1066 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1067 Index *pIdx = 0; 1068 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); 1069 if( pIdx ){ 1070 for(i=0; i<pIdx->nKeyCol; i++){ 1071 assert( pIdx->aiColumn[i]>=0 ); 1072 mask |= COLUMN_MASK(pIdx->aiColumn[i]); 1073 } 1074 } 1075 } 1076 } 1077 return mask; 1078 } 1079 1080 1081 /* 1082 ** This function is called before generating code to update or delete a 1083 ** row contained in table pTab. If the operation is a DELETE, then 1084 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 1085 ** to an array of size N, where N is the number of columns in table pTab. 1086 ** If the i'th column is not modified by the UPDATE, then the corresponding 1087 ** entry in the aChange[] array is set to -1. If the column is modified, 1088 ** the value is 0 or greater. Parameter chngRowid is set to true if the 1089 ** UPDATE statement modifies the rowid fields of the table. 1090 ** 1091 ** If any foreign key processing will be required, this function returns 1092 ** non-zero. If there is no foreign key related processing, this function 1093 ** returns zero. 1094 ** 1095 ** For an UPDATE, this function returns 2 if: 1096 ** 1097 ** * There are any FKs for which pTab is the child and the parent table, or 1098 ** * the UPDATE modifies one or more parent keys for which the action is 1099 ** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL). 1100 ** 1101 ** Or, assuming some other foreign key processing is required, 1. 1102 */ 1103 int sqlite3FkRequired( 1104 Parse *pParse, /* Parse context */ 1105 Table *pTab, /* Table being modified */ 1106 int *aChange, /* Non-NULL for UPDATE operations */ 1107 int chngRowid /* True for UPDATE that affects rowid */ 1108 ){ 1109 int eRet = 0; 1110 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1111 if( !aChange ){ 1112 /* A DELETE operation. Foreign key processing is required if the 1113 ** table in question is either the child or parent table for any 1114 ** foreign key constraint. */ 1115 eRet = (sqlite3FkReferences(pTab) || pTab->pFKey); 1116 }else{ 1117 /* This is an UPDATE. Foreign key processing is only required if the 1118 ** operation modifies one or more child or parent key columns. */ 1119 FKey *p; 1120 1121 /* Check if any child key columns are being modified. */ 1122 for(p=pTab->pFKey; p; p=p->pNextFrom){ 1123 if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) return 2; 1124 if( fkChildIsModified(pTab, p, aChange, chngRowid) ){ 1125 eRet = 1; 1126 } 1127 } 1128 1129 /* Check if any parent key columns are being modified. */ 1130 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1131 if( fkParentIsModified(pTab, p, aChange, chngRowid) ){ 1132 if( p->aAction[1]!=OE_None ) return 2; 1133 eRet = 1; 1134 } 1135 } 1136 } 1137 } 1138 return eRet; 1139 } 1140 1141 /* 1142 ** This function is called when an UPDATE or DELETE operation is being 1143 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 1144 ** If the current operation is an UPDATE, then the pChanges parameter is 1145 ** passed a pointer to the list of columns being modified. If it is a 1146 ** DELETE, pChanges is passed a NULL pointer. 1147 ** 1148 ** It returns a pointer to a Trigger structure containing a trigger 1149 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 1150 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is 1151 ** returned (these actions require no special handling by the triggers 1152 ** sub-system, code for them is created by fkScanChildren()). 1153 ** 1154 ** For example, if pFKey is the foreign key and pTab is table "p" in 1155 ** the following schema: 1156 ** 1157 ** CREATE TABLE p(pk PRIMARY KEY); 1158 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 1159 ** 1160 ** then the returned trigger structure is equivalent to: 1161 ** 1162 ** CREATE TRIGGER ... DELETE ON p BEGIN 1163 ** DELETE FROM c WHERE ck = old.pk; 1164 ** END; 1165 ** 1166 ** The returned pointer is cached as part of the foreign key object. It 1167 ** is eventually freed along with the rest of the foreign key object by 1168 ** sqlite3FkDelete(). 1169 */ 1170 static Trigger *fkActionTrigger( 1171 Parse *pParse, /* Parse context */ 1172 Table *pTab, /* Table being updated or deleted from */ 1173 FKey *pFKey, /* Foreign key to get action for */ 1174 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 1175 ){ 1176 sqlite3 *db = pParse->db; /* Database handle */ 1177 int action; /* One of OE_None, OE_Cascade etc. */ 1178 Trigger *pTrigger; /* Trigger definition to return */ 1179 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 1180 1181 action = pFKey->aAction[iAction]; 1182 if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){ 1183 return 0; 1184 } 1185 pTrigger = pFKey->apTrigger[iAction]; 1186 1187 if( action!=OE_None && !pTrigger ){ 1188 char const *zFrom; /* Name of child table */ 1189 int nFrom; /* Length in bytes of zFrom */ 1190 Index *pIdx = 0; /* Parent key index for this FK */ 1191 int *aiCol = 0; /* child table cols -> parent key cols */ 1192 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 1193 Expr *pWhere = 0; /* WHERE clause of trigger step */ 1194 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 1195 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 1196 int i; /* Iterator variable */ 1197 Expr *pWhen = 0; /* WHEN clause for the trigger */ 1198 1199 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 1200 assert( aiCol || pFKey->nCol==1 ); 1201 1202 for(i=0; i<pFKey->nCol; i++){ 1203 Token tOld = { "old", 3 }; /* Literal "old" token */ 1204 Token tNew = { "new", 3 }; /* Literal "new" token */ 1205 Token tFromCol; /* Name of column in child table */ 1206 Token tToCol; /* Name of column in parent table */ 1207 int iFromCol; /* Idx of column in child table */ 1208 Expr *pEq; /* tFromCol = OLD.tToCol */ 1209 1210 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 1211 assert( iFromCol>=0 ); 1212 assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) ); 1213 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 1214 sqlite3TokenInit(&tToCol, 1215 pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName); 1216 sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zName); 1217 1218 /* Create the expression "OLD.zToCol = zFromCol". It is important 1219 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 1220 ** that the affinity and collation sequence associated with the 1221 ** parent table are used for the comparison. */ 1222 pEq = sqlite3PExpr(pParse, TK_EQ, 1223 sqlite3PExpr(pParse, TK_DOT, 1224 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1225 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 1226 sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) 1227 ); 1228 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 1229 1230 /* For ON UPDATE, construct the next term of the WHEN clause. 1231 ** The final WHEN clause will be like this: 1232 ** 1233 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 1234 */ 1235 if( pChanges ){ 1236 pEq = sqlite3PExpr(pParse, TK_IS, 1237 sqlite3PExpr(pParse, TK_DOT, 1238 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1239 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 1240 sqlite3PExpr(pParse, TK_DOT, 1241 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1242 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)) 1243 ); 1244 pWhen = sqlite3ExprAnd(db, pWhen, pEq); 1245 } 1246 1247 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 1248 Expr *pNew; 1249 if( action==OE_Cascade ){ 1250 pNew = sqlite3PExpr(pParse, TK_DOT, 1251 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1252 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)); 1253 }else if( action==OE_SetDflt ){ 1254 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; 1255 if( pDflt ){ 1256 pNew = sqlite3ExprDup(db, pDflt, 0); 1257 }else{ 1258 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 1259 } 1260 }else{ 1261 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 1262 } 1263 pList = sqlite3ExprListAppend(pParse, pList, pNew); 1264 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 1265 } 1266 } 1267 sqlite3DbFree(db, aiCol); 1268 1269 zFrom = pFKey->pFrom->zName; 1270 nFrom = sqlite3Strlen30(zFrom); 1271 1272 if( action==OE_Restrict ){ 1273 Token tFrom; 1274 Expr *pRaise; 1275 1276 tFrom.z = zFrom; 1277 tFrom.n = nFrom; 1278 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); 1279 if( pRaise ){ 1280 pRaise->affinity = OE_Abort; 1281 } 1282 pSelect = sqlite3SelectNew(pParse, 1283 sqlite3ExprListAppend(pParse, 0, pRaise), 1284 sqlite3SrcListAppend(db, 0, &tFrom, 0), 1285 pWhere, 1286 0, 0, 0, 0, 0, 0 1287 ); 1288 pWhere = 0; 1289 } 1290 1291 /* Disable lookaside memory allocation */ 1292 db->lookaside.bDisable++; 1293 1294 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 1295 sizeof(Trigger) + /* struct Trigger */ 1296 sizeof(TriggerStep) + /* Single step in trigger program */ 1297 nFrom + 1 /* Space for pStep->zTarget */ 1298 ); 1299 if( pTrigger ){ 1300 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 1301 pStep->zTarget = (char *)&pStep[1]; 1302 memcpy((char *)pStep->zTarget, zFrom, nFrom); 1303 1304 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 1305 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 1306 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1307 if( pWhen ){ 1308 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0); 1309 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 1310 } 1311 } 1312 1313 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 1314 db->lookaside.bDisable--; 1315 1316 sqlite3ExprDelete(db, pWhere); 1317 sqlite3ExprDelete(db, pWhen); 1318 sqlite3ExprListDelete(db, pList); 1319 sqlite3SelectDelete(db, pSelect); 1320 if( db->mallocFailed==1 ){ 1321 fkTriggerDelete(db, pTrigger); 1322 return 0; 1323 } 1324 assert( pStep!=0 ); 1325 1326 switch( action ){ 1327 case OE_Restrict: 1328 pStep->op = TK_SELECT; 1329 break; 1330 case OE_Cascade: 1331 if( !pChanges ){ 1332 pStep->op = TK_DELETE; 1333 break; 1334 } 1335 default: 1336 pStep->op = TK_UPDATE; 1337 } 1338 pStep->pTrig = pTrigger; 1339 pTrigger->pSchema = pTab->pSchema; 1340 pTrigger->pTabSchema = pTab->pSchema; 1341 pFKey->apTrigger[iAction] = pTrigger; 1342 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 1343 } 1344 1345 return pTrigger; 1346 } 1347 1348 /* 1349 ** This function is called when deleting or updating a row to implement 1350 ** any required CASCADE, SET NULL or SET DEFAULT actions. 1351 */ 1352 void sqlite3FkActions( 1353 Parse *pParse, /* Parse context */ 1354 Table *pTab, /* Table being updated or deleted from */ 1355 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 1356 int regOld, /* Address of array containing old row */ 1357 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 1358 int bChngRowid /* True if rowid is UPDATEd */ 1359 ){ 1360 /* If foreign-key support is enabled, iterate through all FKs that 1361 ** refer to table pTab. If there is an action associated with the FK 1362 ** for this operation (either update or delete), invoke the associated 1363 ** trigger sub-program. */ 1364 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1365 FKey *pFKey; /* Iterator variable */ 1366 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1367 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ 1368 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); 1369 if( pAct ){ 1370 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); 1371 } 1372 } 1373 } 1374 } 1375 } 1376 1377 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 1378 1379 /* 1380 ** Free all memory associated with foreign key definitions attached to 1381 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 1382 ** hash table. 1383 */ 1384 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 1385 FKey *pFKey; /* Iterator variable */ 1386 FKey *pNext; /* Copy of pFKey->pNextFrom */ 1387 1388 assert( db==0 || IsVirtual(pTab) 1389 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 1390 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ 1391 1392 /* Remove the FK from the fkeyHash hash table. */ 1393 if( !db || db->pnBytesFreed==0 ){ 1394 if( pFKey->pPrevTo ){ 1395 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 1396 }else{ 1397 void *p = (void *)pFKey->pNextTo; 1398 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); 1399 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p); 1400 } 1401 if( pFKey->pNextTo ){ 1402 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 1403 } 1404 } 1405 1406 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 1407 ** classified as either immediate or deferred. 1408 */ 1409 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 1410 1411 /* Delete any triggers created to implement actions for this FK. */ 1412 #ifndef SQLITE_OMIT_TRIGGER 1413 fkTriggerDelete(db, pFKey->apTrigger[0]); 1414 fkTriggerDelete(db, pFKey->apTrigger[1]); 1415 #endif 1416 1417 pNext = pFKey->pNextFrom; 1418 sqlite3DbFree(db, pFKey); 1419 } 1420 } 1421 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ 1422