xref: /sqlite-3.40.0/src/fkey.c (revision 78b2fa86)
1 /*
2 **
3 ** The author disclaims copyright to this source code.  In place of
4 ** a legal notice, here is a blessing:
5 **
6 **    May you do good and not evil.
7 **    May you find forgiveness for yourself and forgive others.
8 **    May you share freely, never taking more than you give.
9 **
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
13 */
14 #include "sqliteInt.h"
15 
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
18 
19 /*
20 ** Deferred and Immediate FKs
21 ** --------------------------
22 **
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated,
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
26 ** statement transaction rolled back. If a
27 ** deferred foreign key constraint is violated, no action is taken
28 ** immediately. However if the application attempts to commit the
29 ** transaction before fixing the constraint violation, the attempt fails.
30 **
31 ** Deferred constraints are implemented using a simple counter associated
32 ** with the database handle. The counter is set to zero each time a
33 ** database transaction is opened. Each time a statement is executed
34 ** that causes a foreign key violation, the counter is incremented. Each
35 ** time a statement is executed that removes an existing violation from
36 ** the database, the counter is decremented. When the transaction is
37 ** committed, the commit fails if the current value of the counter is
38 ** greater than zero. This scheme has two big drawbacks:
39 **
40 **   * When a commit fails due to a deferred foreign key constraint,
41 **     there is no way to tell which foreign constraint is not satisfied,
42 **     or which row it is not satisfied for.
43 **
44 **   * If the database contains foreign key violations when the
45 **     transaction is opened, this may cause the mechanism to malfunction.
46 **
47 ** Despite these problems, this approach is adopted as it seems simpler
48 ** than the alternatives.
49 **
50 ** INSERT operations:
51 **
52 **   I.1) For each FK for which the table is the child table, search
53 **        the parent table for a match. If none is found increment the
54 **        constraint counter.
55 **
56 **   I.2) For each FK for which the table is the parent table,
57 **        search the child table for rows that correspond to the new
58 **        row in the parent table. Decrement the counter for each row
59 **        found (as the constraint is now satisfied).
60 **
61 ** DELETE operations:
62 **
63 **   D.1) For each FK for which the table is the child table,
64 **        search the parent table for a row that corresponds to the
65 **        deleted row in the child table. If such a row is not found,
66 **        decrement the counter.
67 **
68 **   D.2) For each FK for which the table is the parent table, search
69 **        the child table for rows that correspond to the deleted row
70 **        in the parent table. For each found increment the counter.
71 **
72 ** UPDATE operations:
73 **
74 **   An UPDATE command requires that all 4 steps above are taken, but only
75 **   for FK constraints for which the affected columns are actually
76 **   modified (values must be compared at runtime).
77 **
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
79 ** This simplifies the implementation a bit.
80 **
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
82 ** resolution is considered to delete rows before the new row is inserted.
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
84 ** is thrown, even if the FK constraint would be satisfied after the new
85 ** row is inserted.
86 **
87 ** Immediate constraints are usually handled similarly. The only difference
88 ** is that the counter used is stored as part of each individual statement
89 ** object (struct Vdbe). If, after the statement has run, its immediate
90 ** constraint counter is greater than zero,
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92 ** and the statement transaction is rolled back. An exception is an INSERT
93 ** statement that inserts a single row only (no triggers). In this case,
94 ** instead of using a counter, an exception is thrown immediately if the
95 ** INSERT violates a foreign key constraint. This is necessary as such
96 ** an INSERT does not open a statement transaction.
97 **
98 ** TODO: How should dropping a table be handled? How should renaming a
99 ** table be handled?
100 **
101 **
102 ** Query API Notes
103 ** ---------------
104 **
105 ** Before coding an UPDATE or DELETE row operation, the code-generator
106 ** for those two operations needs to know whether or not the operation
107 ** requires any FK processing and, if so, which columns of the original
108 ** row are required by the FK processing VDBE code (i.e. if FKs were
109 ** implemented using triggers, which of the old.* columns would be
110 ** accessed). No information is required by the code-generator before
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
112 ** generation code to query for this information are:
113 **
114 **   sqlite3FkRequired() - Test to see if FK processing is required.
115 **   sqlite3FkOldmask()  - Query for the set of required old.* columns.
116 **
117 **
118 ** Externally accessible module functions
119 ** --------------------------------------
120 **
121 **   sqlite3FkCheck()    - Check for foreign key violations.
122 **   sqlite3FkActions()  - Code triggers for ON UPDATE/ON DELETE actions.
123 **   sqlite3FkDelete()   - Delete an FKey structure.
124 */
125 
126 /*
127 ** VDBE Calling Convention
128 ** -----------------------
129 **
130 ** Example:
131 **
132 **   For the following INSERT statement:
133 **
134 **     CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
135 **     INSERT INTO t1 VALUES(1, 2, 3.1);
136 **
137 **   Register (x):        2    (type integer)
138 **   Register (x+1):      1    (type integer)
139 **   Register (x+2):      NULL (type NULL)
140 **   Register (x+3):      3.1  (type real)
141 */
142 
143 /*
144 ** A foreign key constraint requires that the key columns in the parent
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
146 ** Given that pParent is the parent table for foreign key constraint pFKey,
147 ** search the schema for a unique index on the parent key columns.
148 **
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
151 ** is set to point to the unique index.
152 **
153 ** If the parent key consists of a single column (the foreign key constraint
154 ** is not a composite foreign key), output variable *paiCol is set to NULL.
155 ** Otherwise, it is set to point to an allocated array of size N, where
156 ** N is the number of columns in the parent key. The first element of the
157 ** array is the index of the child table column that is mapped by the FK
158 ** constraint to the parent table column stored in the left-most column
159 ** of index *ppIdx. The second element of the array is the index of the
160 ** child table column that corresponds to the second left-most column of
161 ** *ppIdx, and so on.
162 **
163 ** If the required index cannot be found, either because:
164 **
165 **   1) The named parent key columns do not exist, or
166 **
167 **   2) The named parent key columns do exist, but are not subject to a
168 **      UNIQUE or PRIMARY KEY constraint, or
169 **
170 **   3) No parent key columns were provided explicitly as part of the
171 **      foreign key definition, and the parent table does not have a
172 **      PRIMARY KEY, or
173 **
174 **   4) No parent key columns were provided explicitly as part of the
175 **      foreign key definition, and the PRIMARY KEY of the parent table
176 **      consists of a different number of columns to the child key in
177 **      the child table.
178 **
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded
180 ** into pParse. If an OOM error occurs, non-zero is returned and the
181 ** pParse->db->mallocFailed flag is set.
182 */
183 int sqlite3FkLocateIndex(
184   Parse *pParse,                  /* Parse context to store any error in */
185   Table *pParent,                 /* Parent table of FK constraint pFKey */
186   FKey *pFKey,                    /* Foreign key to find index for */
187   Index **ppIdx,                  /* OUT: Unique index on parent table */
188   int **paiCol                    /* OUT: Map of index columns in pFKey */
189 ){
190   Index *pIdx = 0;                    /* Value to return via *ppIdx */
191   int *aiCol = 0;                     /* Value to return via *paiCol */
192   int nCol = pFKey->nCol;             /* Number of columns in parent key */
193   char *zKey = pFKey->aCol[0].zCol;   /* Name of left-most parent key column */
194 
195   /* The caller is responsible for zeroing output parameters. */
196   assert( ppIdx && *ppIdx==0 );
197   assert( !paiCol || *paiCol==0 );
198   assert( pParse );
199 
200   /* If this is a non-composite (single column) foreign key, check if it
201   ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
202   ** and *paiCol set to zero and return early.
203   **
204   ** Otherwise, for a composite foreign key (more than one column), allocate
205   ** space for the aiCol array (returned via output parameter *paiCol).
206   ** Non-composite foreign keys do not require the aiCol array.
207   */
208   if( nCol==1 ){
209     /* The FK maps to the IPK if any of the following are true:
210     **
211     **   1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
212     **      mapped to the primary key of table pParent, or
213     **   2) The FK is explicitly mapped to a column declared as INTEGER
214     **      PRIMARY KEY.
215     */
216     if( pParent->iPKey>=0 ){
217       if( !zKey ) return 0;
218       if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zCnName, zKey) ){
219         return 0;
220       }
221     }
222   }else if( paiCol ){
223     assert( nCol>1 );
224     aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int));
225     if( !aiCol ) return 1;
226     *paiCol = aiCol;
227   }
228 
229   for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
230     if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){
231       /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
232       ** of columns. If each indexed column corresponds to a foreign key
233       ** column of pFKey, then this index is a winner.  */
234 
235       if( zKey==0 ){
236         /* If zKey is NULL, then this foreign key is implicitly mapped to
237         ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
238         ** identified by the test.  */
239         if( IsPrimaryKeyIndex(pIdx) ){
240           if( aiCol ){
241             int i;
242             for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
243           }
244           break;
245         }
246       }else{
247         /* If zKey is non-NULL, then this foreign key was declared to
248         ** map to an explicit list of columns in table pParent. Check if this
249         ** index matches those columns. Also, check that the index uses
250         ** the default collation sequences for each column. */
251         int i, j;
252         for(i=0; i<nCol; i++){
253           i16 iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
254           const char *zDfltColl;            /* Def. collation for column */
255           char *zIdxCol;                    /* Name of indexed column */
256 
257           if( iCol<0 ) break; /* No foreign keys against expression indexes */
258 
259           /* If the index uses a collation sequence that is different from
260           ** the default collation sequence for the column, this index is
261           ** unusable. Bail out early in this case.  */
262           zDfltColl = sqlite3ColumnColl(&pParent->aCol[iCol]);
263           if( !zDfltColl ) zDfltColl = sqlite3StrBINARY;
264           if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
265 
266           zIdxCol = pParent->aCol[iCol].zCnName;
267           for(j=0; j<nCol; j++){
268             if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
269               if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
270               break;
271             }
272           }
273           if( j==nCol ) break;
274         }
275         if( i==nCol ) break;      /* pIdx is usable */
276       }
277     }
278   }
279 
280   if( !pIdx ){
281     if( !pParse->disableTriggers ){
282       sqlite3ErrorMsg(pParse,
283            "foreign key mismatch - \"%w\" referencing \"%w\"",
284            pFKey->pFrom->zName, pFKey->zTo);
285     }
286     sqlite3DbFree(pParse->db, aiCol);
287     return 1;
288   }
289 
290   *ppIdx = pIdx;
291   return 0;
292 }
293 
294 /*
295 ** This function is called when a row is inserted into or deleted from the
296 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
297 ** on the child table of pFKey, this function is invoked twice for each row
298 ** affected - once to "delete" the old row, and then again to "insert" the
299 ** new row.
300 **
301 ** Each time it is called, this function generates VDBE code to locate the
302 ** row in the parent table that corresponds to the row being inserted into
303 ** or deleted from the child table. If the parent row can be found, no
304 ** special action is taken. Otherwise, if the parent row can *not* be
305 ** found in the parent table:
306 **
307 **   Operation | FK type   | Action taken
308 **   --------------------------------------------------------------------------
309 **   INSERT      immediate   Increment the "immediate constraint counter".
310 **
311 **   DELETE      immediate   Decrement the "immediate constraint counter".
312 **
313 **   INSERT      deferred    Increment the "deferred constraint counter".
314 **
315 **   DELETE      deferred    Decrement the "deferred constraint counter".
316 **
317 ** These operations are identified in the comment at the top of this file
318 ** (fkey.c) as "I.1" and "D.1".
319 */
320 static void fkLookupParent(
321   Parse *pParse,        /* Parse context */
322   int iDb,              /* Index of database housing pTab */
323   Table *pTab,          /* Parent table of FK pFKey */
324   Index *pIdx,          /* Unique index on parent key columns in pTab */
325   FKey *pFKey,          /* Foreign key constraint */
326   int *aiCol,           /* Map from parent key columns to child table columns */
327   int regData,          /* Address of array containing child table row */
328   int nIncr,            /* Increment constraint counter by this */
329   int isIgnore          /* If true, pretend pTab contains all NULL values */
330 ){
331   int i;                                    /* Iterator variable */
332   Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
333   int iCur = pParse->nTab - 1;              /* Cursor number to use */
334   int iOk = sqlite3VdbeMakeLabel(pParse);   /* jump here if parent key found */
335 
336   sqlite3VdbeVerifyAbortable(v,
337     (!pFKey->isDeferred
338       && !(pParse->db->flags & SQLITE_DeferFKs)
339       && !pParse->pToplevel
340       && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore);
341 
342   /* If nIncr is less than zero, then check at runtime if there are any
343   ** outstanding constraints to resolve. If there are not, there is no need
344   ** to check if deleting this row resolves any outstanding violations.
345   **
346   ** Check if any of the key columns in the child table row are NULL. If
347   ** any are, then the constraint is considered satisfied. No need to
348   ** search for a matching row in the parent table.  */
349   if( nIncr<0 ){
350     sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
351     VdbeCoverage(v);
352   }
353   for(i=0; i<pFKey->nCol; i++){
354     int iReg = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) + regData + 1;
355     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v);
356   }
357 
358   if( isIgnore==0 ){
359     if( pIdx==0 ){
360       /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
361       ** column of the parent table (table pTab).  */
362       int iMustBeInt;               /* Address of MustBeInt instruction */
363       int regTemp = sqlite3GetTempReg(pParse);
364 
365       /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
366       ** apply the affinity of the parent key). If this fails, then there
367       ** is no matching parent key. Before using MustBeInt, make a copy of
368       ** the value. Otherwise, the value inserted into the child key column
369       ** will have INTEGER affinity applied to it, which may not be correct.  */
370       sqlite3VdbeAddOp2(v, OP_SCopy,
371         sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[0])+1+regData, regTemp);
372       iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
373       VdbeCoverage(v);
374 
375       /* If the parent table is the same as the child table, and we are about
376       ** to increment the constraint-counter (i.e. this is an INSERT operation),
377       ** then check if the row being inserted matches itself. If so, do not
378       ** increment the constraint-counter.  */
379       if( pTab==pFKey->pFrom && nIncr==1 ){
380         sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v);
381         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
382       }
383 
384       sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
385       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v);
386       sqlite3VdbeGoto(v, iOk);
387       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
388       sqlite3VdbeJumpHere(v, iMustBeInt);
389       sqlite3ReleaseTempReg(pParse, regTemp);
390     }else{
391       int nCol = pFKey->nCol;
392       int regTemp = sqlite3GetTempRange(pParse, nCol);
393       int regRec = sqlite3GetTempReg(pParse);
394 
395       sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
396       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
397       for(i=0; i<nCol; i++){
398         sqlite3VdbeAddOp2(v, OP_Copy,
399                sqlite3TableColumnToStorage(pFKey->pFrom, aiCol[i])+1+regData,
400                regTemp+i);
401       }
402 
403       /* If the parent table is the same as the child table, and we are about
404       ** to increment the constraint-counter (i.e. this is an INSERT operation),
405       ** then check if the row being inserted matches itself. If so, do not
406       ** increment the constraint-counter.
407       **
408       ** If any of the parent-key values are NULL, then the row cannot match
409       ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
410       ** of the parent-key values are NULL (at this point it is known that
411       ** none of the child key values are).
412       */
413       if( pTab==pFKey->pFrom && nIncr==1 ){
414         int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
415         for(i=0; i<nCol; i++){
416           int iChild = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i])
417                               +1+regData;
418           int iParent = 1+regData;
419           iParent += sqlite3TableColumnToStorage(pIdx->pTable,
420                                                  pIdx->aiColumn[i]);
421           assert( pIdx->aiColumn[i]>=0 );
422           assert( aiCol[i]!=pTab->iPKey );
423           if( pIdx->aiColumn[i]==pTab->iPKey ){
424             /* The parent key is a composite key that includes the IPK column */
425             iParent = regData;
426           }
427           sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v);
428           sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
429         }
430         sqlite3VdbeGoto(v, iOk);
431       }
432 
433       sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec,
434                         sqlite3IndexAffinityStr(pParse->db,pIdx), nCol);
435       sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v);
436 
437       sqlite3ReleaseTempReg(pParse, regRec);
438       sqlite3ReleaseTempRange(pParse, regTemp, nCol);
439     }
440   }
441 
442   if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
443    && !pParse->pToplevel
444    && !pParse->isMultiWrite
445   ){
446     /* Special case: If this is an INSERT statement that will insert exactly
447     ** one row into the table, raise a constraint immediately instead of
448     ** incrementing a counter. This is necessary as the VM code is being
449     ** generated for will not open a statement transaction.  */
450     assert( nIncr==1 );
451     sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
452         OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
453   }else{
454     if( nIncr>0 && pFKey->isDeferred==0 ){
455       sqlite3MayAbort(pParse);
456     }
457     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
458   }
459 
460   sqlite3VdbeResolveLabel(v, iOk);
461   sqlite3VdbeAddOp1(v, OP_Close, iCur);
462 }
463 
464 
465 /*
466 ** Return an Expr object that refers to a memory register corresponding
467 ** to column iCol of table pTab.
468 **
469 ** regBase is the first of an array of register that contains the data
470 ** for pTab.  regBase itself holds the rowid.  regBase+1 holds the first
471 ** column.  regBase+2 holds the second column, and so forth.
472 */
473 static Expr *exprTableRegister(
474   Parse *pParse,     /* Parsing and code generating context */
475   Table *pTab,       /* The table whose content is at r[regBase]... */
476   int regBase,       /* Contents of table pTab */
477   i16 iCol           /* Which column of pTab is desired */
478 ){
479   Expr *pExpr;
480   Column *pCol;
481   const char *zColl;
482   sqlite3 *db = pParse->db;
483 
484   pExpr = sqlite3Expr(db, TK_REGISTER, 0);
485   if( pExpr ){
486     if( iCol>=0 && iCol!=pTab->iPKey ){
487       pCol = &pTab->aCol[iCol];
488       pExpr->iTable = regBase + sqlite3TableColumnToStorage(pTab,iCol) + 1;
489       pExpr->affExpr = pCol->affinity;
490       zColl = sqlite3ColumnColl(pCol);
491       if( zColl==0 ) zColl = db->pDfltColl->zName;
492       pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl);
493     }else{
494       pExpr->iTable = regBase;
495       pExpr->affExpr = SQLITE_AFF_INTEGER;
496     }
497   }
498   return pExpr;
499 }
500 
501 /*
502 ** Return an Expr object that refers to column iCol of table pTab which
503 ** has cursor iCur.
504 */
505 static Expr *exprTableColumn(
506   sqlite3 *db,      /* The database connection */
507   Table *pTab,      /* The table whose column is desired */
508   int iCursor,      /* The open cursor on the table */
509   i16 iCol          /* The column that is wanted */
510 ){
511   Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
512   if( pExpr ){
513     pExpr->y.pTab = pTab;
514     pExpr->iTable = iCursor;
515     pExpr->iColumn = iCol;
516   }
517   return pExpr;
518 }
519 
520 /*
521 ** This function is called to generate code executed when a row is deleted
522 ** from the parent table of foreign key constraint pFKey and, if pFKey is
523 ** deferred, when a row is inserted into the same table. When generating
524 ** code for an SQL UPDATE operation, this function may be called twice -
525 ** once to "delete" the old row and once to "insert" the new row.
526 **
527 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease
528 ** the number of FK violations in the db) or +1 when deleting one (as this
529 ** may increase the number of FK constraint problems).
530 **
531 ** The code generated by this function scans through the rows in the child
532 ** table that correspond to the parent table row being deleted or inserted.
533 ** For each child row found, one of the following actions is taken:
534 **
535 **   Operation | FK type   | Action taken
536 **   --------------------------------------------------------------------------
537 **   DELETE      immediate   Increment the "immediate constraint counter".
538 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
539 **                           throw a "FOREIGN KEY constraint failed" exception.
540 **
541 **   INSERT      immediate   Decrement the "immediate constraint counter".
542 **
543 **   DELETE      deferred    Increment the "deferred constraint counter".
544 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
545 **                           throw a "FOREIGN KEY constraint failed" exception.
546 **
547 **   INSERT      deferred    Decrement the "deferred constraint counter".
548 **
549 ** These operations are identified in the comment at the top of this file
550 ** (fkey.c) as "I.2" and "D.2".
551 */
552 static void fkScanChildren(
553   Parse *pParse,                  /* Parse context */
554   SrcList *pSrc,                  /* The child table to be scanned */
555   Table *pTab,                    /* The parent table */
556   Index *pIdx,                    /* Index on parent covering the foreign key */
557   FKey *pFKey,                    /* The foreign key linking pSrc to pTab */
558   int *aiCol,                     /* Map from pIdx cols to child table cols */
559   int regData,                    /* Parent row data starts here */
560   int nIncr                       /* Amount to increment deferred counter by */
561 ){
562   sqlite3 *db = pParse->db;       /* Database handle */
563   int i;                          /* Iterator variable */
564   Expr *pWhere = 0;               /* WHERE clause to scan with */
565   NameContext sNameContext;       /* Context used to resolve WHERE clause */
566   WhereInfo *pWInfo;              /* Context used by sqlite3WhereXXX() */
567   int iFkIfZero = 0;              /* Address of OP_FkIfZero */
568   Vdbe *v = sqlite3GetVdbe(pParse);
569 
570   assert( pIdx==0 || pIdx->pTable==pTab );
571   assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
572   assert( pIdx!=0 || pFKey->nCol==1 );
573   assert( pIdx!=0 || HasRowid(pTab) );
574 
575   if( nIncr<0 ){
576     iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
577     VdbeCoverage(v);
578   }
579 
580   /* Create an Expr object representing an SQL expression like:
581   **
582   **   <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
583   **
584   ** The collation sequence used for the comparison should be that of
585   ** the parent key columns. The affinity of the parent key column should
586   ** be applied to each child key value before the comparison takes place.
587   */
588   for(i=0; i<pFKey->nCol; i++){
589     Expr *pLeft;                  /* Value from parent table row */
590     Expr *pRight;                 /* Column ref to child table */
591     Expr *pEq;                    /* Expression (pLeft = pRight) */
592     i16 iCol;                     /* Index of column in child table */
593     const char *zCol;             /* Name of column in child table */
594 
595     iCol = pIdx ? pIdx->aiColumn[i] : -1;
596     pLeft = exprTableRegister(pParse, pTab, regData, iCol);
597     iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
598     assert( iCol>=0 );
599     zCol = pFKey->pFrom->aCol[iCol].zCnName;
600     pRight = sqlite3Expr(db, TK_ID, zCol);
601     pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight);
602     pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
603   }
604 
605   /* If the child table is the same as the parent table, then add terms
606   ** to the WHERE clause that prevent this entry from being scanned.
607   ** The added WHERE clause terms are like this:
608   **
609   **     $current_rowid!=rowid
610   **     NOT( $current_a==a AND $current_b==b AND ... )
611   **
612   ** The first form is used for rowid tables.  The second form is used
613   ** for WITHOUT ROWID tables. In the second form, the *parent* key is
614   ** (a,b,...). Either the parent or primary key could be used to
615   ** uniquely identify the current row, but the parent key is more convenient
616   ** as the required values have already been loaded into registers
617   ** by the caller.
618   */
619   if( pTab==pFKey->pFrom && nIncr>0 ){
620     Expr *pNe;                    /* Expression (pLeft != pRight) */
621     Expr *pLeft;                  /* Value from parent table row */
622     Expr *pRight;                 /* Column ref to child table */
623     if( HasRowid(pTab) ){
624       pLeft = exprTableRegister(pParse, pTab, regData, -1);
625       pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1);
626       pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight);
627     }else{
628       Expr *pEq, *pAll = 0;
629       assert( pIdx!=0 );
630       for(i=0; i<pIdx->nKeyCol; i++){
631         i16 iCol = pIdx->aiColumn[i];
632         assert( iCol>=0 );
633         pLeft = exprTableRegister(pParse, pTab, regData, iCol);
634         pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zCnName);
635         pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight);
636         pAll = sqlite3ExprAnd(pParse, pAll, pEq);
637       }
638       pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0);
639     }
640     pWhere = sqlite3ExprAnd(pParse, pWhere, pNe);
641   }
642 
643   /* Resolve the references in the WHERE clause. */
644   memset(&sNameContext, 0, sizeof(NameContext));
645   sNameContext.pSrcList = pSrc;
646   sNameContext.pParse = pParse;
647   sqlite3ResolveExprNames(&sNameContext, pWhere);
648 
649   /* Create VDBE to loop through the entries in pSrc that match the WHERE
650   ** clause. For each row found, increment either the deferred or immediate
651   ** foreign key constraint counter. */
652   if( pParse->nErr==0 ){
653     pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
654     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
655     if( pWInfo ){
656       sqlite3WhereEnd(pWInfo);
657     }
658   }
659 
660   /* Clean up the WHERE clause constructed above. */
661   sqlite3ExprDelete(db, pWhere);
662   if( iFkIfZero ){
663     sqlite3VdbeJumpHereOrPopInst(v, iFkIfZero);
664   }
665 }
666 
667 /*
668 ** This function returns a linked list of FKey objects (connected by
669 ** FKey.pNextTo) holding all children of table pTab.  For example,
670 ** given the following schema:
671 **
672 **   CREATE TABLE t1(a PRIMARY KEY);
673 **   CREATE TABLE t2(b REFERENCES t1(a);
674 **
675 ** Calling this function with table "t1" as an argument returns a pointer
676 ** to the FKey structure representing the foreign key constraint on table
677 ** "t2". Calling this function with "t2" as the argument would return a
678 ** NULL pointer (as there are no FK constraints for which t2 is the parent
679 ** table).
680 */
681 FKey *sqlite3FkReferences(Table *pTab){
682   return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName);
683 }
684 
685 /*
686 ** The second argument is a Trigger structure allocated by the
687 ** fkActionTrigger() routine. This function deletes the Trigger structure
688 ** and all of its sub-components.
689 **
690 ** The Trigger structure or any of its sub-components may be allocated from
691 ** the lookaside buffer belonging to database handle dbMem.
692 */
693 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
694   if( p ){
695     TriggerStep *pStep = p->step_list;
696     sqlite3ExprDelete(dbMem, pStep->pWhere);
697     sqlite3ExprListDelete(dbMem, pStep->pExprList);
698     sqlite3SelectDelete(dbMem, pStep->pSelect);
699     sqlite3ExprDelete(dbMem, p->pWhen);
700     sqlite3DbFree(dbMem, p);
701   }
702 }
703 
704 /*
705 ** This function is called to generate code that runs when table pTab is
706 ** being dropped from the database. The SrcList passed as the second argument
707 ** to this function contains a single entry guaranteed to resolve to
708 ** table pTab.
709 **
710 ** Normally, no code is required. However, if either
711 **
712 **   (a) The table is the parent table of a FK constraint, or
713 **   (b) The table is the child table of a deferred FK constraint and it is
714 **       determined at runtime that there are outstanding deferred FK
715 **       constraint violations in the database,
716 **
717 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
718 ** the table from the database. Triggers are disabled while running this
719 ** DELETE, but foreign key actions are not.
720 */
721 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
722   sqlite3 *db = pParse->db;
723   if( (db->flags&SQLITE_ForeignKeys) && IsOrdinaryTable(pTab) ){
724     int iSkip = 0;
725     Vdbe *v = sqlite3GetVdbe(pParse);
726 
727     assert( v );                  /* VDBE has already been allocated */
728     assert( IsOrdinaryTable(pTab) );
729     if( sqlite3FkReferences(pTab)==0 ){
730       /* Search for a deferred foreign key constraint for which this table
731       ** is the child table. If one cannot be found, return without
732       ** generating any VDBE code. If one can be found, then jump over
733       ** the entire DELETE if there are no outstanding deferred constraints
734       ** when this statement is run.  */
735       FKey *p;
736       for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){
737         if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
738       }
739       if( !p ) return;
740       iSkip = sqlite3VdbeMakeLabel(pParse);
741       sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v);
742     }
743 
744     pParse->disableTriggers = 1;
745     sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0);
746     pParse->disableTriggers = 0;
747 
748     /* If the DELETE has generated immediate foreign key constraint
749     ** violations, halt the VDBE and return an error at this point, before
750     ** any modifications to the schema are made. This is because statement
751     ** transactions are not able to rollback schema changes.
752     **
753     ** If the SQLITE_DeferFKs flag is set, then this is not required, as
754     ** the statement transaction will not be rolled back even if FK
755     ** constraints are violated.
756     */
757     if( (db->flags & SQLITE_DeferFKs)==0 ){
758       sqlite3VdbeVerifyAbortable(v, OE_Abort);
759       sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
760       VdbeCoverage(v);
761       sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
762           OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
763     }
764 
765     if( iSkip ){
766       sqlite3VdbeResolveLabel(v, iSkip);
767     }
768   }
769 }
770 
771 
772 /*
773 ** The second argument points to an FKey object representing a foreign key
774 ** for which pTab is the child table. An UPDATE statement against pTab
775 ** is currently being processed. For each column of the table that is
776 ** actually updated, the corresponding element in the aChange[] array
777 ** is zero or greater (if a column is unmodified the corresponding element
778 ** is set to -1). If the rowid column is modified by the UPDATE statement
779 ** the bChngRowid argument is non-zero.
780 **
781 ** This function returns true if any of the columns that are part of the
782 ** child key for FK constraint *p are modified.
783 */
784 static int fkChildIsModified(
785   Table *pTab,                    /* Table being updated */
786   FKey *p,                        /* Foreign key for which pTab is the child */
787   int *aChange,                   /* Array indicating modified columns */
788   int bChngRowid                  /* True if rowid is modified by this update */
789 ){
790   int i;
791   for(i=0; i<p->nCol; i++){
792     int iChildKey = p->aCol[i].iFrom;
793     if( aChange[iChildKey]>=0 ) return 1;
794     if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
795   }
796   return 0;
797 }
798 
799 /*
800 ** The second argument points to an FKey object representing a foreign key
801 ** for which pTab is the parent table. An UPDATE statement against pTab
802 ** is currently being processed. For each column of the table that is
803 ** actually updated, the corresponding element in the aChange[] array
804 ** is zero or greater (if a column is unmodified the corresponding element
805 ** is set to -1). If the rowid column is modified by the UPDATE statement
806 ** the bChngRowid argument is non-zero.
807 **
808 ** This function returns true if any of the columns that are part of the
809 ** parent key for FK constraint *p are modified.
810 */
811 static int fkParentIsModified(
812   Table *pTab,
813   FKey *p,
814   int *aChange,
815   int bChngRowid
816 ){
817   int i;
818   for(i=0; i<p->nCol; i++){
819     char *zKey = p->aCol[i].zCol;
820     int iKey;
821     for(iKey=0; iKey<pTab->nCol; iKey++){
822       if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
823         Column *pCol = &pTab->aCol[iKey];
824         if( zKey ){
825           if( 0==sqlite3StrICmp(pCol->zCnName, zKey) ) return 1;
826         }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
827           return 1;
828         }
829       }
830     }
831   }
832   return 0;
833 }
834 
835 /*
836 ** Return true if the parser passed as the first argument is being
837 ** used to code a trigger that is really a "SET NULL" action belonging
838 ** to trigger pFKey.
839 */
840 static int isSetNullAction(Parse *pParse, FKey *pFKey){
841   Parse *pTop = sqlite3ParseToplevel(pParse);
842   if( pTop->pTriggerPrg ){
843     Trigger *p = pTop->pTriggerPrg->pTrigger;
844     if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull)
845      || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull)
846     ){
847       return 1;
848     }
849   }
850   return 0;
851 }
852 
853 /*
854 ** This function is called when inserting, deleting or updating a row of
855 ** table pTab to generate VDBE code to perform foreign key constraint
856 ** processing for the operation.
857 **
858 ** For a DELETE operation, parameter regOld is passed the index of the
859 ** first register in an array of (pTab->nCol+1) registers containing the
860 ** rowid of the row being deleted, followed by each of the column values
861 ** of the row being deleted, from left to right. Parameter regNew is passed
862 ** zero in this case.
863 **
864 ** For an INSERT operation, regOld is passed zero and regNew is passed the
865 ** first register of an array of (pTab->nCol+1) registers containing the new
866 ** row data.
867 **
868 ** For an UPDATE operation, this function is called twice. Once before
869 ** the original record is deleted from the table using the calling convention
870 ** described for DELETE. Then again after the original record is deleted
871 ** but before the new record is inserted using the INSERT convention.
872 */
873 void sqlite3FkCheck(
874   Parse *pParse,                  /* Parse context */
875   Table *pTab,                    /* Row is being deleted from this table */
876   int regOld,                     /* Previous row data is stored here */
877   int regNew,                     /* New row data is stored here */
878   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
879   int bChngRowid                  /* True if rowid is UPDATEd */
880 ){
881   sqlite3 *db = pParse->db;       /* Database handle */
882   FKey *pFKey;                    /* Used to iterate through FKs */
883   int iDb;                        /* Index of database containing pTab */
884   const char *zDb;                /* Name of database containing pTab */
885   int isIgnoreErrors = pParse->disableTriggers;
886 
887   /* Exactly one of regOld and regNew should be non-zero. */
888   assert( (regOld==0)!=(regNew==0) );
889 
890   /* If foreign-keys are disabled, this function is a no-op. */
891   if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
892   if( !IsOrdinaryTable(pTab) ) return;
893 
894   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
895   zDb = db->aDb[iDb].zDbSName;
896 
897   /* Loop through all the foreign key constraints for which pTab is the
898   ** child table (the table that the foreign key definition is part of).  */
899   for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
900     Table *pTo;                   /* Parent table of foreign key pFKey */
901     Index *pIdx = 0;              /* Index on key columns in pTo */
902     int *aiFree = 0;
903     int *aiCol;
904     int iCol;
905     int i;
906     int bIgnore = 0;
907 
908     if( aChange
909      && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
910      && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0
911     ){
912       continue;
913     }
914 
915     /* Find the parent table of this foreign key. Also find a unique index
916     ** on the parent key columns in the parent table. If either of these
917     ** schema items cannot be located, set an error in pParse and return
918     ** early.  */
919     if( pParse->disableTriggers ){
920       pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
921     }else{
922       pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
923     }
924     if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
925       assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
926       if( !isIgnoreErrors || db->mallocFailed ) return;
927       if( pTo==0 ){
928         /* If isIgnoreErrors is true, then a table is being dropped. In this
929         ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
930         ** before actually dropping it in order to check FK constraints.
931         ** If the parent table of an FK constraint on the current table is
932         ** missing, behave as if it is empty. i.e. decrement the relevant
933         ** FK counter for each row of the current table with non-NULL keys.
934         */
935         Vdbe *v = sqlite3GetVdbe(pParse);
936         int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
937         for(i=0; i<pFKey->nCol; i++){
938           int iFromCol, iReg;
939           iFromCol = pFKey->aCol[i].iFrom;
940           iReg = sqlite3TableColumnToStorage(pFKey->pFrom,iFromCol) + regOld+1;
941           sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v);
942         }
943         sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
944       }
945       continue;
946     }
947     assert( pFKey->nCol==1 || (aiFree && pIdx) );
948 
949     if( aiFree ){
950       aiCol = aiFree;
951     }else{
952       iCol = pFKey->aCol[0].iFrom;
953       aiCol = &iCol;
954     }
955     for(i=0; i<pFKey->nCol; i++){
956       if( aiCol[i]==pTab->iPKey ){
957         aiCol[i] = -1;
958       }
959       assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
960 #ifndef SQLITE_OMIT_AUTHORIZATION
961       /* Request permission to read the parent key columns. If the
962       ** authorization callback returns SQLITE_IGNORE, behave as if any
963       ** values read from the parent table are NULL. */
964       if( db->xAuth ){
965         int rcauth;
966         char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zCnName;
967         rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
968         bIgnore = (rcauth==SQLITE_IGNORE);
969       }
970 #endif
971     }
972 
973     /* Take a shared-cache advisory read-lock on the parent table. Allocate
974     ** a cursor to use to search the unique index on the parent key columns
975     ** in the parent table.  */
976     sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
977     pParse->nTab++;
978 
979     if( regOld!=0 ){
980       /* A row is being removed from the child table. Search for the parent.
981       ** If the parent does not exist, removing the child row resolves an
982       ** outstanding foreign key constraint violation. */
983       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore);
984     }
985     if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){
986       /* A row is being added to the child table. If a parent row cannot
987       ** be found, adding the child row has violated the FK constraint.
988       **
989       ** If this operation is being performed as part of a trigger program
990       ** that is actually a "SET NULL" action belonging to this very
991       ** foreign key, then omit this scan altogether. As all child key
992       ** values are guaranteed to be NULL, it is not possible for adding
993       ** this row to cause an FK violation.  */
994       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore);
995     }
996 
997     sqlite3DbFree(db, aiFree);
998   }
999 
1000   /* Loop through all the foreign key constraints that refer to this table.
1001   ** (the "child" constraints) */
1002   for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1003     Index *pIdx = 0;              /* Foreign key index for pFKey */
1004     SrcList *pSrc;
1005     int *aiCol = 0;
1006 
1007     if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
1008       continue;
1009     }
1010 
1011     if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs)
1012      && !pParse->pToplevel && !pParse->isMultiWrite
1013     ){
1014       assert( regOld==0 && regNew!=0 );
1015       /* Inserting a single row into a parent table cannot cause (or fix)
1016       ** an immediate foreign key violation. So do nothing in this case.  */
1017       continue;
1018     }
1019 
1020     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
1021       if( !isIgnoreErrors || db->mallocFailed ) return;
1022       continue;
1023     }
1024     assert( aiCol || pFKey->nCol==1 );
1025 
1026     /* Create a SrcList structure containing the child table.  We need the
1027     ** child table as a SrcList for sqlite3WhereBegin() */
1028     pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1029     if( pSrc ){
1030       SrcItem *pItem = pSrc->a;
1031       pItem->pTab = pFKey->pFrom;
1032       pItem->zName = pFKey->pFrom->zName;
1033       pItem->pTab->nTabRef++;
1034       pItem->iCursor = pParse->nTab++;
1035 
1036       if( regNew!=0 ){
1037         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
1038       }
1039       if( regOld!=0 ){
1040         int eAction = pFKey->aAction[aChange!=0];
1041         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
1042         /* If this is a deferred FK constraint, or a CASCADE or SET NULL
1043         ** action applies, then any foreign key violations caused by
1044         ** removing the parent key will be rectified by the action trigger.
1045         ** So do not set the "may-abort" flag in this case.
1046         **
1047         ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the
1048         ** may-abort flag will eventually be set on this statement anyway
1049         ** (when this function is called as part of processing the UPDATE
1050         ** within the action trigger).
1051         **
1052         ** Note 2: At first glance it may seem like SQLite could simply omit
1053         ** all OP_FkCounter related scans when either CASCADE or SET NULL
1054         ** applies. The trouble starts if the CASCADE or SET NULL action
1055         ** trigger causes other triggers or action rules attached to the
1056         ** child table to fire. In these cases the fk constraint counters
1057         ** might be set incorrectly if any OP_FkCounter related scans are
1058         ** omitted.  */
1059         if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){
1060           sqlite3MayAbort(pParse);
1061         }
1062       }
1063       pItem->zName = 0;
1064       sqlite3SrcListDelete(db, pSrc);
1065     }
1066     sqlite3DbFree(db, aiCol);
1067   }
1068 }
1069 
1070 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
1071 
1072 /*
1073 ** This function is called before generating code to update or delete a
1074 ** row contained in table pTab.
1075 */
1076 u32 sqlite3FkOldmask(
1077   Parse *pParse,                  /* Parse context */
1078   Table *pTab                     /* Table being modified */
1079 ){
1080   u32 mask = 0;
1081   if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){
1082     FKey *p;
1083     int i;
1084     for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){
1085       for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
1086     }
1087     for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1088       Index *pIdx = 0;
1089       sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
1090       if( pIdx ){
1091         for(i=0; i<pIdx->nKeyCol; i++){
1092           assert( pIdx->aiColumn[i]>=0 );
1093           mask |= COLUMN_MASK(pIdx->aiColumn[i]);
1094         }
1095       }
1096     }
1097   }
1098   return mask;
1099 }
1100 
1101 
1102 /*
1103 ** This function is called before generating code to update or delete a
1104 ** row contained in table pTab. If the operation is a DELETE, then
1105 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
1106 ** to an array of size N, where N is the number of columns in table pTab.
1107 ** If the i'th column is not modified by the UPDATE, then the corresponding
1108 ** entry in the aChange[] array is set to -1. If the column is modified,
1109 ** the value is 0 or greater. Parameter chngRowid is set to true if the
1110 ** UPDATE statement modifies the rowid fields of the table.
1111 **
1112 ** If any foreign key processing will be required, this function returns
1113 ** non-zero. If there is no foreign key related processing, this function
1114 ** returns zero.
1115 **
1116 ** For an UPDATE, this function returns 2 if:
1117 **
1118 **   * There are any FKs for which pTab is the child and the parent table
1119 **     and any FK processing at all is required (even of a different FK), or
1120 **
1121 **   * the UPDATE modifies one or more parent keys for which the action is
1122 **     not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL).
1123 **
1124 ** Or, assuming some other foreign key processing is required, 1.
1125 */
1126 int sqlite3FkRequired(
1127   Parse *pParse,                  /* Parse context */
1128   Table *pTab,                    /* Table being modified */
1129   int *aChange,                   /* Non-NULL for UPDATE operations */
1130   int chngRowid                   /* True for UPDATE that affects rowid */
1131 ){
1132   int eRet = 1;                   /* Value to return if bHaveFK is true */
1133   int bHaveFK = 0;                /* If FK processing is required */
1134   if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){
1135     if( !aChange ){
1136       /* A DELETE operation. Foreign key processing is required if the
1137       ** table in question is either the child or parent table for any
1138       ** foreign key constraint.  */
1139       bHaveFK = (sqlite3FkReferences(pTab) || pTab->u.tab.pFKey);
1140     }else{
1141       /* This is an UPDATE. Foreign key processing is only required if the
1142       ** operation modifies one or more child or parent key columns. */
1143       FKey *p;
1144 
1145       /* Check if any child key columns are being modified. */
1146       for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){
1147         if( fkChildIsModified(pTab, p, aChange, chngRowid) ){
1148           if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) eRet = 2;
1149           bHaveFK = 1;
1150         }
1151       }
1152 
1153       /* Check if any parent key columns are being modified. */
1154       for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1155         if( fkParentIsModified(pTab, p, aChange, chngRowid) ){
1156           if( p->aAction[1]!=OE_None ) return 2;
1157           bHaveFK = 1;
1158         }
1159       }
1160     }
1161   }
1162   return bHaveFK ? eRet : 0;
1163 }
1164 
1165 /*
1166 ** This function is called when an UPDATE or DELETE operation is being
1167 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
1168 ** If the current operation is an UPDATE, then the pChanges parameter is
1169 ** passed a pointer to the list of columns being modified. If it is a
1170 ** DELETE, pChanges is passed a NULL pointer.
1171 **
1172 ** It returns a pointer to a Trigger structure containing a trigger
1173 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
1174 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
1175 ** returned (these actions require no special handling by the triggers
1176 ** sub-system, code for them is created by fkScanChildren()).
1177 **
1178 ** For example, if pFKey is the foreign key and pTab is table "p" in
1179 ** the following schema:
1180 **
1181 **   CREATE TABLE p(pk PRIMARY KEY);
1182 **   CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
1183 **
1184 ** then the returned trigger structure is equivalent to:
1185 **
1186 **   CREATE TRIGGER ... DELETE ON p BEGIN
1187 **     DELETE FROM c WHERE ck = old.pk;
1188 **   END;
1189 **
1190 ** The returned pointer is cached as part of the foreign key object. It
1191 ** is eventually freed along with the rest of the foreign key object by
1192 ** sqlite3FkDelete().
1193 */
1194 static Trigger *fkActionTrigger(
1195   Parse *pParse,                  /* Parse context */
1196   Table *pTab,                    /* Table being updated or deleted from */
1197   FKey *pFKey,                    /* Foreign key to get action for */
1198   ExprList *pChanges              /* Change-list for UPDATE, NULL for DELETE */
1199 ){
1200   sqlite3 *db = pParse->db;       /* Database handle */
1201   int action;                     /* One of OE_None, OE_Cascade etc. */
1202   Trigger *pTrigger;              /* Trigger definition to return */
1203   int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */
1204 
1205   action = pFKey->aAction[iAction];
1206   if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){
1207     return 0;
1208   }
1209   pTrigger = pFKey->apTrigger[iAction];
1210 
1211   if( action!=OE_None && !pTrigger ){
1212     char const *zFrom;            /* Name of child table */
1213     int nFrom;                    /* Length in bytes of zFrom */
1214     Index *pIdx = 0;              /* Parent key index for this FK */
1215     int *aiCol = 0;               /* child table cols -> parent key cols */
1216     TriggerStep *pStep = 0;        /* First (only) step of trigger program */
1217     Expr *pWhere = 0;             /* WHERE clause of trigger step */
1218     ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
1219     Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
1220     int i;                        /* Iterator variable */
1221     Expr *pWhen = 0;              /* WHEN clause for the trigger */
1222 
1223     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
1224     assert( aiCol || pFKey->nCol==1 );
1225 
1226     for(i=0; i<pFKey->nCol; i++){
1227       Token tOld = { "old", 3 };  /* Literal "old" token */
1228       Token tNew = { "new", 3 };  /* Literal "new" token */
1229       Token tFromCol;             /* Name of column in child table */
1230       Token tToCol;               /* Name of column in parent table */
1231       int iFromCol;               /* Idx of column in child table */
1232       Expr *pEq;                  /* tFromCol = OLD.tToCol */
1233 
1234       iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
1235       assert( iFromCol>=0 );
1236       assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) );
1237       assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
1238       sqlite3TokenInit(&tToCol,
1239                    pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zCnName);
1240       sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zCnName);
1241 
1242       /* Create the expression "OLD.zToCol = zFromCol". It is important
1243       ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1244       ** that the affinity and collation sequence associated with the
1245       ** parent table are used for the comparison. */
1246       pEq = sqlite3PExpr(pParse, TK_EQ,
1247           sqlite3PExpr(pParse, TK_DOT,
1248             sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1249             sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1250           sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0)
1251       );
1252       pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
1253 
1254       /* For ON UPDATE, construct the next term of the WHEN clause.
1255       ** The final WHEN clause will be like this:
1256       **
1257       **    WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1258       */
1259       if( pChanges ){
1260         pEq = sqlite3PExpr(pParse, TK_IS,
1261             sqlite3PExpr(pParse, TK_DOT,
1262               sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1263               sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1264             sqlite3PExpr(pParse, TK_DOT,
1265               sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1266               sqlite3ExprAlloc(db, TK_ID, &tToCol, 0))
1267             );
1268         pWhen = sqlite3ExprAnd(pParse, pWhen, pEq);
1269       }
1270 
1271       if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1272         Expr *pNew;
1273         if( action==OE_Cascade ){
1274           pNew = sqlite3PExpr(pParse, TK_DOT,
1275             sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1276             sqlite3ExprAlloc(db, TK_ID, &tToCol, 0));
1277         }else if( action==OE_SetDflt ){
1278           Column *pCol = pFKey->pFrom->aCol + iFromCol;
1279           Expr *pDflt;
1280           if( pCol->colFlags & COLFLAG_GENERATED ){
1281             testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1282             testcase( pCol->colFlags & COLFLAG_STORED );
1283             pDflt = 0;
1284           }else{
1285             pDflt = sqlite3ColumnExpr(pFKey->pFrom, pCol);
1286           }
1287           if( pDflt ){
1288             pNew = sqlite3ExprDup(db, pDflt, 0);
1289           }else{
1290             pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1291           }
1292         }else{
1293           pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1294         }
1295         pList = sqlite3ExprListAppend(pParse, pList, pNew);
1296         sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1297       }
1298     }
1299     sqlite3DbFree(db, aiCol);
1300 
1301     zFrom = pFKey->pFrom->zName;
1302     nFrom = sqlite3Strlen30(zFrom);
1303 
1304     if( action==OE_Restrict ){
1305       Token tFrom;
1306       Expr *pRaise;
1307 
1308       tFrom.z = zFrom;
1309       tFrom.n = nFrom;
1310       pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed");
1311       if( pRaise ){
1312         pRaise->affExpr = OE_Abort;
1313       }
1314       pSelect = sqlite3SelectNew(pParse,
1315           sqlite3ExprListAppend(pParse, 0, pRaise),
1316           sqlite3SrcListAppend(pParse, 0, &tFrom, 0),
1317           pWhere,
1318           0, 0, 0, 0, 0
1319       );
1320       pWhere = 0;
1321     }
1322 
1323     /* Disable lookaside memory allocation */
1324     DisableLookaside;
1325 
1326     pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1327         sizeof(Trigger) +         /* struct Trigger */
1328         sizeof(TriggerStep) +     /* Single step in trigger program */
1329         nFrom + 1                 /* Space for pStep->zTarget */
1330     );
1331     if( pTrigger ){
1332       pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1333       pStep->zTarget = (char *)&pStep[1];
1334       memcpy((char *)pStep->zTarget, zFrom, nFrom);
1335 
1336       pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1337       pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1338       pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1339       if( pWhen ){
1340         pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0);
1341         pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1342       }
1343     }
1344 
1345     /* Re-enable the lookaside buffer, if it was disabled earlier. */
1346     EnableLookaside;
1347 
1348     sqlite3ExprDelete(db, pWhere);
1349     sqlite3ExprDelete(db, pWhen);
1350     sqlite3ExprListDelete(db, pList);
1351     sqlite3SelectDelete(db, pSelect);
1352     if( db->mallocFailed==1 ){
1353       fkTriggerDelete(db, pTrigger);
1354       return 0;
1355     }
1356     assert( pStep!=0 );
1357     assert( pTrigger!=0 );
1358 
1359     switch( action ){
1360       case OE_Restrict:
1361         pStep->op = TK_SELECT;
1362         break;
1363       case OE_Cascade:
1364         if( !pChanges ){
1365           pStep->op = TK_DELETE;
1366           break;
1367         }
1368         /* no break */ deliberate_fall_through
1369       default:
1370         pStep->op = TK_UPDATE;
1371     }
1372     pStep->pTrig = pTrigger;
1373     pTrigger->pSchema = pTab->pSchema;
1374     pTrigger->pTabSchema = pTab->pSchema;
1375     pFKey->apTrigger[iAction] = pTrigger;
1376     pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1377   }
1378 
1379   return pTrigger;
1380 }
1381 
1382 /*
1383 ** This function is called when deleting or updating a row to implement
1384 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1385 */
1386 void sqlite3FkActions(
1387   Parse *pParse,                  /* Parse context */
1388   Table *pTab,                    /* Table being updated or deleted from */
1389   ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
1390   int regOld,                     /* Address of array containing old row */
1391   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
1392   int bChngRowid                  /* True if rowid is UPDATEd */
1393 ){
1394   /* If foreign-key support is enabled, iterate through all FKs that
1395   ** refer to table pTab. If there is an action associated with the FK
1396   ** for this operation (either update or delete), invoke the associated
1397   ** trigger sub-program.  */
1398   if( pParse->db->flags&SQLITE_ForeignKeys ){
1399     FKey *pFKey;                  /* Iterator variable */
1400     for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1401       if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
1402         Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1403         if( pAct ){
1404           sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
1405         }
1406       }
1407     }
1408   }
1409 }
1410 
1411 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1412 
1413 /*
1414 ** Free all memory associated with foreign key definitions attached to
1415 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1416 ** hash table.
1417 */
1418 void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1419   FKey *pFKey;                    /* Iterator variable */
1420   FKey *pNext;                    /* Copy of pFKey->pNextFrom */
1421 
1422   assert( IsOrdinaryTable(pTab) );
1423   for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pNext){
1424     assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1425 
1426     /* Remove the FK from the fkeyHash hash table. */
1427     if( !db || db->pnBytesFreed==0 ){
1428       if( pFKey->pPrevTo ){
1429         pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1430       }else{
1431         void *p = (void *)pFKey->pNextTo;
1432         const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1433         sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p);
1434       }
1435       if( pFKey->pNextTo ){
1436         pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1437       }
1438     }
1439 
1440     /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1441     ** classified as either immediate or deferred.
1442     */
1443     assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1444 
1445     /* Delete any triggers created to implement actions for this FK. */
1446 #ifndef SQLITE_OMIT_TRIGGER
1447     fkTriggerDelete(db, pFKey->apTrigger[0]);
1448     fkTriggerDelete(db, pFKey->apTrigger[1]);
1449 #endif
1450 
1451     pNext = pFKey->pNextFrom;
1452     sqlite3DbFree(db, pFKey);
1453   }
1454 }
1455 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
1456