xref: /sqlite-3.40.0/src/fkey.c (revision 60ce5d31)
1 /*
2 **
3 ** The author disclaims copyright to this source code.  In place of
4 ** a legal notice, here is a blessing:
5 **
6 **    May you do good and not evil.
7 **    May you find forgiveness for yourself and forgive others.
8 **    May you share freely, never taking more than you give.
9 **
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
13 */
14 #include "sqliteInt.h"
15 
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
18 
19 /*
20 ** Deferred and Immediate FKs
21 ** --------------------------
22 **
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated,
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
26 ** statement transaction rolled back. If a
27 ** deferred foreign key constraint is violated, no action is taken
28 ** immediately. However if the application attempts to commit the
29 ** transaction before fixing the constraint violation, the attempt fails.
30 **
31 ** Deferred constraints are implemented using a simple counter associated
32 ** with the database handle. The counter is set to zero each time a
33 ** database transaction is opened. Each time a statement is executed
34 ** that causes a foreign key violation, the counter is incremented. Each
35 ** time a statement is executed that removes an existing violation from
36 ** the database, the counter is decremented. When the transaction is
37 ** committed, the commit fails if the current value of the counter is
38 ** greater than zero. This scheme has two big drawbacks:
39 **
40 **   * When a commit fails due to a deferred foreign key constraint,
41 **     there is no way to tell which foreign constraint is not satisfied,
42 **     or which row it is not satisfied for.
43 **
44 **   * If the database contains foreign key violations when the
45 **     transaction is opened, this may cause the mechanism to malfunction.
46 **
47 ** Despite these problems, this approach is adopted as it seems simpler
48 ** than the alternatives.
49 **
50 ** INSERT operations:
51 **
52 **   I.1) For each FK for which the table is the child table, search
53 **        the parent table for a match. If none is found increment the
54 **        constraint counter.
55 **
56 **   I.2) For each FK for which the table is the parent table,
57 **        search the child table for rows that correspond to the new
58 **        row in the parent table. Decrement the counter for each row
59 **        found (as the constraint is now satisfied).
60 **
61 ** DELETE operations:
62 **
63 **   D.1) For each FK for which the table is the child table,
64 **        search the parent table for a row that corresponds to the
65 **        deleted row in the child table. If such a row is not found,
66 **        decrement the counter.
67 **
68 **   D.2) For each FK for which the table is the parent table, search
69 **        the child table for rows that correspond to the deleted row
70 **        in the parent table. For each found increment the counter.
71 **
72 ** UPDATE operations:
73 **
74 **   An UPDATE command requires that all 4 steps above are taken, but only
75 **   for FK constraints for which the affected columns are actually
76 **   modified (values must be compared at runtime).
77 **
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
79 ** This simplifies the implementation a bit.
80 **
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
82 ** resolution is considered to delete rows before the new row is inserted.
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
84 ** is thrown, even if the FK constraint would be satisfied after the new
85 ** row is inserted.
86 **
87 ** Immediate constraints are usually handled similarly. The only difference
88 ** is that the counter used is stored as part of each individual statement
89 ** object (struct Vdbe). If, after the statement has run, its immediate
90 ** constraint counter is greater than zero,
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92 ** and the statement transaction is rolled back. An exception is an INSERT
93 ** statement that inserts a single row only (no triggers). In this case,
94 ** instead of using a counter, an exception is thrown immediately if the
95 ** INSERT violates a foreign key constraint. This is necessary as such
96 ** an INSERT does not open a statement transaction.
97 **
98 ** TODO: How should dropping a table be handled? How should renaming a
99 ** table be handled?
100 **
101 **
102 ** Query API Notes
103 ** ---------------
104 **
105 ** Before coding an UPDATE or DELETE row operation, the code-generator
106 ** for those two operations needs to know whether or not the operation
107 ** requires any FK processing and, if so, which columns of the original
108 ** row are required by the FK processing VDBE code (i.e. if FKs were
109 ** implemented using triggers, which of the old.* columns would be
110 ** accessed). No information is required by the code-generator before
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
112 ** generation code to query for this information are:
113 **
114 **   sqlite3FkRequired() - Test to see if FK processing is required.
115 **   sqlite3FkOldmask()  - Query for the set of required old.* columns.
116 **
117 **
118 ** Externally accessible module functions
119 ** --------------------------------------
120 **
121 **   sqlite3FkCheck()    - Check for foreign key violations.
122 **   sqlite3FkActions()  - Code triggers for ON UPDATE/ON DELETE actions.
123 **   sqlite3FkDelete()   - Delete an FKey structure.
124 */
125 
126 /*
127 ** VDBE Calling Convention
128 ** -----------------------
129 **
130 ** Example:
131 **
132 **   For the following INSERT statement:
133 **
134 **     CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
135 **     INSERT INTO t1 VALUES(1, 2, 3.1);
136 **
137 **   Register (x):        2    (type integer)
138 **   Register (x+1):      1    (type integer)
139 **   Register (x+2):      NULL (type NULL)
140 **   Register (x+3):      3.1  (type real)
141 */
142 
143 /*
144 ** A foreign key constraint requires that the key columns in the parent
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
146 ** Given that pParent is the parent table for foreign key constraint pFKey,
147 ** search the schema for a unique index on the parent key columns.
148 **
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
151 ** is set to point to the unique index.
152 **
153 ** If the parent key consists of a single column (the foreign key constraint
154 ** is not a composite foreign key), output variable *paiCol is set to NULL.
155 ** Otherwise, it is set to point to an allocated array of size N, where
156 ** N is the number of columns in the parent key. The first element of the
157 ** array is the index of the child table column that is mapped by the FK
158 ** constraint to the parent table column stored in the left-most column
159 ** of index *ppIdx. The second element of the array is the index of the
160 ** child table column that corresponds to the second left-most column of
161 ** *ppIdx, and so on.
162 **
163 ** If the required index cannot be found, either because:
164 **
165 **   1) The named parent key columns do not exist, or
166 **
167 **   2) The named parent key columns do exist, but are not subject to a
168 **      UNIQUE or PRIMARY KEY constraint, or
169 **
170 **   3) No parent key columns were provided explicitly as part of the
171 **      foreign key definition, and the parent table does not have a
172 **      PRIMARY KEY, or
173 **
174 **   4) No parent key columns were provided explicitly as part of the
175 **      foreign key definition, and the PRIMARY KEY of the parent table
176 **      consists of a different number of columns to the child key in
177 **      the child table.
178 **
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded
180 ** into pParse. If an OOM error occurs, non-zero is returned and the
181 ** pParse->db->mallocFailed flag is set.
182 */
183 int sqlite3FkLocateIndex(
184   Parse *pParse,                  /* Parse context to store any error in */
185   Table *pParent,                 /* Parent table of FK constraint pFKey */
186   FKey *pFKey,                    /* Foreign key to find index for */
187   Index **ppIdx,                  /* OUT: Unique index on parent table */
188   int **paiCol                    /* OUT: Map of index columns in pFKey */
189 ){
190   Index *pIdx = 0;                    /* Value to return via *ppIdx */
191   int *aiCol = 0;                     /* Value to return via *paiCol */
192   int nCol = pFKey->nCol;             /* Number of columns in parent key */
193   char *zKey = pFKey->aCol[0].zCol;   /* Name of left-most parent key column */
194 
195   /* The caller is responsible for zeroing output parameters. */
196   assert( ppIdx && *ppIdx==0 );
197   assert( !paiCol || *paiCol==0 );
198   assert( pParse );
199 
200   /* If this is a non-composite (single column) foreign key, check if it
201   ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
202   ** and *paiCol set to zero and return early.
203   **
204   ** Otherwise, for a composite foreign key (more than one column), allocate
205   ** space for the aiCol array (returned via output parameter *paiCol).
206   ** Non-composite foreign keys do not require the aiCol array.
207   */
208   if( nCol==1 ){
209     /* The FK maps to the IPK if any of the following are true:
210     **
211     **   1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
212     **      mapped to the primary key of table pParent, or
213     **   2) The FK is explicitly mapped to a column declared as INTEGER
214     **      PRIMARY KEY.
215     */
216     if( pParent->iPKey>=0 ){
217       if( !zKey ) return 0;
218       if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
219     }
220   }else if( paiCol ){
221     assert( nCol>1 );
222     aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int));
223     if( !aiCol ) return 1;
224     *paiCol = aiCol;
225   }
226 
227   for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
228     if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){
229       /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
230       ** of columns. If each indexed column corresponds to a foreign key
231       ** column of pFKey, then this index is a winner.  */
232 
233       if( zKey==0 ){
234         /* If zKey is NULL, then this foreign key is implicitly mapped to
235         ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
236         ** identified by the test.  */
237         if( IsPrimaryKeyIndex(pIdx) ){
238           if( aiCol ){
239             int i;
240             for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
241           }
242           break;
243         }
244       }else{
245         /* If zKey is non-NULL, then this foreign key was declared to
246         ** map to an explicit list of columns in table pParent. Check if this
247         ** index matches those columns. Also, check that the index uses
248         ** the default collation sequences for each column. */
249         int i, j;
250         for(i=0; i<nCol; i++){
251           i16 iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
252           const char *zDfltColl;            /* Def. collation for column */
253           char *zIdxCol;                    /* Name of indexed column */
254 
255           if( iCol<0 ) break; /* No foreign keys against expression indexes */
256 
257           /* If the index uses a collation sequence that is different from
258           ** the default collation sequence for the column, this index is
259           ** unusable. Bail out early in this case.  */
260           zDfltColl = pParent->aCol[iCol].zColl;
261           if( !zDfltColl ) zDfltColl = sqlite3StrBINARY;
262           if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
263 
264           zIdxCol = pParent->aCol[iCol].zName;
265           for(j=0; j<nCol; j++){
266             if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
267               if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
268               break;
269             }
270           }
271           if( j==nCol ) break;
272         }
273         if( i==nCol ) break;      /* pIdx is usable */
274       }
275     }
276   }
277 
278   if( !pIdx ){
279     if( !pParse->disableTriggers ){
280       sqlite3ErrorMsg(pParse,
281            "foreign key mismatch - \"%w\" referencing \"%w\"",
282            pFKey->pFrom->zName, pFKey->zTo);
283     }
284     sqlite3DbFree(pParse->db, aiCol);
285     return 1;
286   }
287 
288   *ppIdx = pIdx;
289   return 0;
290 }
291 
292 /*
293 ** This function is called when a row is inserted into or deleted from the
294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
295 ** on the child table of pFKey, this function is invoked twice for each row
296 ** affected - once to "delete" the old row, and then again to "insert" the
297 ** new row.
298 **
299 ** Each time it is called, this function generates VDBE code to locate the
300 ** row in the parent table that corresponds to the row being inserted into
301 ** or deleted from the child table. If the parent row can be found, no
302 ** special action is taken. Otherwise, if the parent row can *not* be
303 ** found in the parent table:
304 **
305 **   Operation | FK type   | Action taken
306 **   --------------------------------------------------------------------------
307 **   INSERT      immediate   Increment the "immediate constraint counter".
308 **
309 **   DELETE      immediate   Decrement the "immediate constraint counter".
310 **
311 **   INSERT      deferred    Increment the "deferred constraint counter".
312 **
313 **   DELETE      deferred    Decrement the "deferred constraint counter".
314 **
315 ** These operations are identified in the comment at the top of this file
316 ** (fkey.c) as "I.1" and "D.1".
317 */
318 static void fkLookupParent(
319   Parse *pParse,        /* Parse context */
320   int iDb,              /* Index of database housing pTab */
321   Table *pTab,          /* Parent table of FK pFKey */
322   Index *pIdx,          /* Unique index on parent key columns in pTab */
323   FKey *pFKey,          /* Foreign key constraint */
324   int *aiCol,           /* Map from parent key columns to child table columns */
325   int regData,          /* Address of array containing child table row */
326   int nIncr,            /* Increment constraint counter by this */
327   int isIgnore          /* If true, pretend pTab contains all NULL values */
328 ){
329   int i;                                    /* Iterator variable */
330   Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
331   int iCur = pParse->nTab - 1;              /* Cursor number to use */
332   int iOk = sqlite3VdbeMakeLabel(v);        /* jump here if parent key found */
333 
334   sqlite3VdbeVerifyAbortable(v,
335     (!pFKey->isDeferred
336       && !(pParse->db->flags & SQLITE_DeferFKs)
337       && !pParse->pToplevel
338       && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore);
339 
340   /* If nIncr is less than zero, then check at runtime if there are any
341   ** outstanding constraints to resolve. If there are not, there is no need
342   ** to check if deleting this row resolves any outstanding violations.
343   **
344   ** Check if any of the key columns in the child table row are NULL. If
345   ** any are, then the constraint is considered satisfied. No need to
346   ** search for a matching row in the parent table.  */
347   if( nIncr<0 ){
348     sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
349     VdbeCoverage(v);
350   }
351   for(i=0; i<pFKey->nCol; i++){
352     int iReg = aiCol[i] + regData + 1;
353     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v);
354   }
355 
356   if( isIgnore==0 ){
357     if( pIdx==0 ){
358       /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
359       ** column of the parent table (table pTab).  */
360       int iMustBeInt;               /* Address of MustBeInt instruction */
361       int regTemp = sqlite3GetTempReg(pParse);
362 
363       /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
364       ** apply the affinity of the parent key). If this fails, then there
365       ** is no matching parent key. Before using MustBeInt, make a copy of
366       ** the value. Otherwise, the value inserted into the child key column
367       ** will have INTEGER affinity applied to it, which may not be correct.  */
368       sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
369       iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
370       VdbeCoverage(v);
371 
372       /* If the parent table is the same as the child table, and we are about
373       ** to increment the constraint-counter (i.e. this is an INSERT operation),
374       ** then check if the row being inserted matches itself. If so, do not
375       ** increment the constraint-counter.  */
376       if( pTab==pFKey->pFrom && nIncr==1 ){
377         sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v);
378         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
379       }
380 
381       sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
382       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v);
383       sqlite3VdbeGoto(v, iOk);
384       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
385       sqlite3VdbeJumpHere(v, iMustBeInt);
386       sqlite3ReleaseTempReg(pParse, regTemp);
387     }else{
388       int nCol = pFKey->nCol;
389       int regTemp = sqlite3GetTempRange(pParse, nCol);
390       int regRec = sqlite3GetTempReg(pParse);
391 
392       sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
393       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
394       for(i=0; i<nCol; i++){
395         sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
396       }
397 
398       /* If the parent table is the same as the child table, and we are about
399       ** to increment the constraint-counter (i.e. this is an INSERT operation),
400       ** then check if the row being inserted matches itself. If so, do not
401       ** increment the constraint-counter.
402       **
403       ** If any of the parent-key values are NULL, then the row cannot match
404       ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
405       ** of the parent-key values are NULL (at this point it is known that
406       ** none of the child key values are).
407       */
408       if( pTab==pFKey->pFrom && nIncr==1 ){
409         int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
410         for(i=0; i<nCol; i++){
411           int iChild = aiCol[i]+1+regData;
412           int iParent = pIdx->aiColumn[i]+1+regData;
413           assert( pIdx->aiColumn[i]>=0 );
414           assert( aiCol[i]!=pTab->iPKey );
415           if( pIdx->aiColumn[i]==pTab->iPKey ){
416             /* The parent key is a composite key that includes the IPK column */
417             iParent = regData;
418           }
419           sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v);
420           sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
421         }
422         sqlite3VdbeGoto(v, iOk);
423       }
424 
425       sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec,
426                         sqlite3IndexAffinityStr(pParse->db,pIdx), nCol);
427       sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v);
428 
429       sqlite3ReleaseTempReg(pParse, regRec);
430       sqlite3ReleaseTempRange(pParse, regTemp, nCol);
431     }
432   }
433 
434   if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
435    && !pParse->pToplevel
436    && !pParse->isMultiWrite
437   ){
438     /* Special case: If this is an INSERT statement that will insert exactly
439     ** one row into the table, raise a constraint immediately instead of
440     ** incrementing a counter. This is necessary as the VM code is being
441     ** generated for will not open a statement transaction.  */
442     assert( nIncr==1 );
443     sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
444         OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
445   }else{
446     if( nIncr>0 && pFKey->isDeferred==0 ){
447       sqlite3MayAbort(pParse);
448     }
449     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
450   }
451 
452   sqlite3VdbeResolveLabel(v, iOk);
453   sqlite3VdbeAddOp1(v, OP_Close, iCur);
454 }
455 
456 
457 /*
458 ** Return an Expr object that refers to a memory register corresponding
459 ** to column iCol of table pTab.
460 **
461 ** regBase is the first of an array of register that contains the data
462 ** for pTab.  regBase itself holds the rowid.  regBase+1 holds the first
463 ** column.  regBase+2 holds the second column, and so forth.
464 */
465 static Expr *exprTableRegister(
466   Parse *pParse,     /* Parsing and code generating context */
467   Table *pTab,       /* The table whose content is at r[regBase]... */
468   int regBase,       /* Contents of table pTab */
469   i16 iCol           /* Which column of pTab is desired */
470 ){
471   Expr *pExpr;
472   Column *pCol;
473   const char *zColl;
474   sqlite3 *db = pParse->db;
475 
476   pExpr = sqlite3Expr(db, TK_REGISTER, 0);
477   if( pExpr ){
478     if( iCol>=0 && iCol!=pTab->iPKey ){
479       pCol = &pTab->aCol[iCol];
480       pExpr->iTable = regBase + iCol + 1;
481       pExpr->affinity = pCol->affinity;
482       zColl = pCol->zColl;
483       if( zColl==0 ) zColl = db->pDfltColl->zName;
484       pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl);
485     }else{
486       pExpr->iTable = regBase;
487       pExpr->affinity = SQLITE_AFF_INTEGER;
488     }
489   }
490   return pExpr;
491 }
492 
493 /*
494 ** Return an Expr object that refers to column iCol of table pTab which
495 ** has cursor iCur.
496 */
497 static Expr *exprTableColumn(
498   sqlite3 *db,      /* The database connection */
499   Table *pTab,      /* The table whose column is desired */
500   int iCursor,      /* The open cursor on the table */
501   i16 iCol          /* The column that is wanted */
502 ){
503   Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
504   if( pExpr ){
505     pExpr->y.pTab = pTab;
506     pExpr->iTable = iCursor;
507     pExpr->iColumn = iCol;
508   }
509   return pExpr;
510 }
511 
512 /*
513 ** This function is called to generate code executed when a row is deleted
514 ** from the parent table of foreign key constraint pFKey and, if pFKey is
515 ** deferred, when a row is inserted into the same table. When generating
516 ** code for an SQL UPDATE operation, this function may be called twice -
517 ** once to "delete" the old row and once to "insert" the new row.
518 **
519 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease
520 ** the number of FK violations in the db) or +1 when deleting one (as this
521 ** may increase the number of FK constraint problems).
522 **
523 ** The code generated by this function scans through the rows in the child
524 ** table that correspond to the parent table row being deleted or inserted.
525 ** For each child row found, one of the following actions is taken:
526 **
527 **   Operation | FK type   | Action taken
528 **   --------------------------------------------------------------------------
529 **   DELETE      immediate   Increment the "immediate constraint counter".
530 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
531 **                           throw a "FOREIGN KEY constraint failed" exception.
532 **
533 **   INSERT      immediate   Decrement the "immediate constraint counter".
534 **
535 **   DELETE      deferred    Increment the "deferred constraint counter".
536 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
537 **                           throw a "FOREIGN KEY constraint failed" exception.
538 **
539 **   INSERT      deferred    Decrement the "deferred constraint counter".
540 **
541 ** These operations are identified in the comment at the top of this file
542 ** (fkey.c) as "I.2" and "D.2".
543 */
544 static void fkScanChildren(
545   Parse *pParse,                  /* Parse context */
546   SrcList *pSrc,                  /* The child table to be scanned */
547   Table *pTab,                    /* The parent table */
548   Index *pIdx,                    /* Index on parent covering the foreign key */
549   FKey *pFKey,                    /* The foreign key linking pSrc to pTab */
550   int *aiCol,                     /* Map from pIdx cols to child table cols */
551   int regData,                    /* Parent row data starts here */
552   int nIncr                       /* Amount to increment deferred counter by */
553 ){
554   sqlite3 *db = pParse->db;       /* Database handle */
555   int i;                          /* Iterator variable */
556   Expr *pWhere = 0;               /* WHERE clause to scan with */
557   NameContext sNameContext;       /* Context used to resolve WHERE clause */
558   WhereInfo *pWInfo;              /* Context used by sqlite3WhereXXX() */
559   int iFkIfZero = 0;              /* Address of OP_FkIfZero */
560   Vdbe *v = sqlite3GetVdbe(pParse);
561 
562   assert( pIdx==0 || pIdx->pTable==pTab );
563   assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
564   assert( pIdx!=0 || pFKey->nCol==1 );
565   assert( pIdx!=0 || HasRowid(pTab) );
566 
567   if( nIncr<0 ){
568     iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
569     VdbeCoverage(v);
570   }
571 
572   /* Create an Expr object representing an SQL expression like:
573   **
574   **   <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
575   **
576   ** The collation sequence used for the comparison should be that of
577   ** the parent key columns. The affinity of the parent key column should
578   ** be applied to each child key value before the comparison takes place.
579   */
580   for(i=0; i<pFKey->nCol; i++){
581     Expr *pLeft;                  /* Value from parent table row */
582     Expr *pRight;                 /* Column ref to child table */
583     Expr *pEq;                    /* Expression (pLeft = pRight) */
584     i16 iCol;                     /* Index of column in child table */
585     const char *zCol;             /* Name of column in child table */
586 
587     iCol = pIdx ? pIdx->aiColumn[i] : -1;
588     pLeft = exprTableRegister(pParse, pTab, regData, iCol);
589     iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
590     assert( iCol>=0 );
591     zCol = pFKey->pFrom->aCol[iCol].zName;
592     pRight = sqlite3Expr(db, TK_ID, zCol);
593     pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight);
594     pWhere = sqlite3ExprAnd(db, pWhere, pEq);
595   }
596 
597   /* If the child table is the same as the parent table, then add terms
598   ** to the WHERE clause that prevent this entry from being scanned.
599   ** The added WHERE clause terms are like this:
600   **
601   **     $current_rowid!=rowid
602   **     NOT( $current_a==a AND $current_b==b AND ... )
603   **
604   ** The first form is used for rowid tables.  The second form is used
605   ** for WITHOUT ROWID tables.  In the second form, the primary key is
606   ** (a,b,...)
607   */
608   if( pTab==pFKey->pFrom && nIncr>0 ){
609     Expr *pNe;                    /* Expression (pLeft != pRight) */
610     Expr *pLeft;                  /* Value from parent table row */
611     Expr *pRight;                 /* Column ref to child table */
612     if( HasRowid(pTab) ){
613       pLeft = exprTableRegister(pParse, pTab, regData, -1);
614       pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1);
615       pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight);
616     }else{
617       Expr *pEq, *pAll = 0;
618       Index *pPk = sqlite3PrimaryKeyIndex(pTab);
619       assert( pIdx!=0 );
620       for(i=0; i<pPk->nKeyCol; i++){
621         i16 iCol = pIdx->aiColumn[i];
622         assert( iCol>=0 );
623         pLeft = exprTableRegister(pParse, pTab, regData, iCol);
624         pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol);
625         pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight);
626         pAll = sqlite3ExprAnd(db, pAll, pEq);
627       }
628       pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0);
629     }
630     pWhere = sqlite3ExprAnd(db, pWhere, pNe);
631   }
632 
633   /* Resolve the references in the WHERE clause. */
634   memset(&sNameContext, 0, sizeof(NameContext));
635   sNameContext.pSrcList = pSrc;
636   sNameContext.pParse = pParse;
637   sqlite3ResolveExprNames(&sNameContext, pWhere);
638 
639   /* Create VDBE to loop through the entries in pSrc that match the WHERE
640   ** clause. For each row found, increment either the deferred or immediate
641   ** foreign key constraint counter. */
642   if( pParse->nErr==0 ){
643     pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
644     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
645     if( pWInfo ){
646       sqlite3WhereEnd(pWInfo);
647     }
648   }
649 
650   /* Clean up the WHERE clause constructed above. */
651   sqlite3ExprDelete(db, pWhere);
652   if( iFkIfZero ){
653     sqlite3VdbeJumpHere(v, iFkIfZero);
654   }
655 }
656 
657 /*
658 ** This function returns a linked list of FKey objects (connected by
659 ** FKey.pNextTo) holding all children of table pTab.  For example,
660 ** given the following schema:
661 **
662 **   CREATE TABLE t1(a PRIMARY KEY);
663 **   CREATE TABLE t2(b REFERENCES t1(a);
664 **
665 ** Calling this function with table "t1" as an argument returns a pointer
666 ** to the FKey structure representing the foreign key constraint on table
667 ** "t2". Calling this function with "t2" as the argument would return a
668 ** NULL pointer (as there are no FK constraints for which t2 is the parent
669 ** table).
670 */
671 FKey *sqlite3FkReferences(Table *pTab){
672   return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName);
673 }
674 
675 /*
676 ** The second argument is a Trigger structure allocated by the
677 ** fkActionTrigger() routine. This function deletes the Trigger structure
678 ** and all of its sub-components.
679 **
680 ** The Trigger structure or any of its sub-components may be allocated from
681 ** the lookaside buffer belonging to database handle dbMem.
682 */
683 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
684   if( p ){
685     TriggerStep *pStep = p->step_list;
686     sqlite3ExprDelete(dbMem, pStep->pWhere);
687     sqlite3ExprListDelete(dbMem, pStep->pExprList);
688     sqlite3SelectDelete(dbMem, pStep->pSelect);
689     sqlite3ExprDelete(dbMem, p->pWhen);
690     sqlite3DbFree(dbMem, p);
691   }
692 }
693 
694 /*
695 ** This function is called to generate code that runs when table pTab is
696 ** being dropped from the database. The SrcList passed as the second argument
697 ** to this function contains a single entry guaranteed to resolve to
698 ** table pTab.
699 **
700 ** Normally, no code is required. However, if either
701 **
702 **   (a) The table is the parent table of a FK constraint, or
703 **   (b) The table is the child table of a deferred FK constraint and it is
704 **       determined at runtime that there are outstanding deferred FK
705 **       constraint violations in the database,
706 **
707 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
708 ** the table from the database. Triggers are disabled while running this
709 ** DELETE, but foreign key actions are not.
710 */
711 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
712   sqlite3 *db = pParse->db;
713   if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) ){
714     int iSkip = 0;
715     Vdbe *v = sqlite3GetVdbe(pParse);
716 
717     assert( v );                  /* VDBE has already been allocated */
718     assert( pTab->pSelect==0 );   /* Not a view */
719     if( sqlite3FkReferences(pTab)==0 ){
720       /* Search for a deferred foreign key constraint for which this table
721       ** is the child table. If one cannot be found, return without
722       ** generating any VDBE code. If one can be found, then jump over
723       ** the entire DELETE if there are no outstanding deferred constraints
724       ** when this statement is run.  */
725       FKey *p;
726       for(p=pTab->pFKey; p; p=p->pNextFrom){
727         if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
728       }
729       if( !p ) return;
730       iSkip = sqlite3VdbeMakeLabel(v);
731       sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v);
732     }
733 
734     pParse->disableTriggers = 1;
735     sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0);
736     pParse->disableTriggers = 0;
737 
738     /* If the DELETE has generated immediate foreign key constraint
739     ** violations, halt the VDBE and return an error at this point, before
740     ** any modifications to the schema are made. This is because statement
741     ** transactions are not able to rollback schema changes.
742     **
743     ** If the SQLITE_DeferFKs flag is set, then this is not required, as
744     ** the statement transaction will not be rolled back even if FK
745     ** constraints are violated.
746     */
747     if( (db->flags & SQLITE_DeferFKs)==0 ){
748       sqlite3VdbeVerifyAbortable(v, OE_Abort);
749       sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
750       VdbeCoverage(v);
751       sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
752           OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
753     }
754 
755     if( iSkip ){
756       sqlite3VdbeResolveLabel(v, iSkip);
757     }
758   }
759 }
760 
761 
762 /*
763 ** The second argument points to an FKey object representing a foreign key
764 ** for which pTab is the child table. An UPDATE statement against pTab
765 ** is currently being processed. For each column of the table that is
766 ** actually updated, the corresponding element in the aChange[] array
767 ** is zero or greater (if a column is unmodified the corresponding element
768 ** is set to -1). If the rowid column is modified by the UPDATE statement
769 ** the bChngRowid argument is non-zero.
770 **
771 ** This function returns true if any of the columns that are part of the
772 ** child key for FK constraint *p are modified.
773 */
774 static int fkChildIsModified(
775   Table *pTab,                    /* Table being updated */
776   FKey *p,                        /* Foreign key for which pTab is the child */
777   int *aChange,                   /* Array indicating modified columns */
778   int bChngRowid                  /* True if rowid is modified by this update */
779 ){
780   int i;
781   for(i=0; i<p->nCol; i++){
782     int iChildKey = p->aCol[i].iFrom;
783     if( aChange[iChildKey]>=0 ) return 1;
784     if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
785   }
786   return 0;
787 }
788 
789 /*
790 ** The second argument points to an FKey object representing a foreign key
791 ** for which pTab is the parent table. An UPDATE statement against pTab
792 ** is currently being processed. For each column of the table that is
793 ** actually updated, the corresponding element in the aChange[] array
794 ** is zero or greater (if a column is unmodified the corresponding element
795 ** is set to -1). If the rowid column is modified by the UPDATE statement
796 ** the bChngRowid argument is non-zero.
797 **
798 ** This function returns true if any of the columns that are part of the
799 ** parent key for FK constraint *p are modified.
800 */
801 static int fkParentIsModified(
802   Table *pTab,
803   FKey *p,
804   int *aChange,
805   int bChngRowid
806 ){
807   int i;
808   for(i=0; i<p->nCol; i++){
809     char *zKey = p->aCol[i].zCol;
810     int iKey;
811     for(iKey=0; iKey<pTab->nCol; iKey++){
812       if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
813         Column *pCol = &pTab->aCol[iKey];
814         if( zKey ){
815           if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1;
816         }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
817           return 1;
818         }
819       }
820     }
821   }
822   return 0;
823 }
824 
825 /*
826 ** Return true if the parser passed as the first argument is being
827 ** used to code a trigger that is really a "SET NULL" action belonging
828 ** to trigger pFKey.
829 */
830 static int isSetNullAction(Parse *pParse, FKey *pFKey){
831   Parse *pTop = sqlite3ParseToplevel(pParse);
832   if( pTop->pTriggerPrg ){
833     Trigger *p = pTop->pTriggerPrg->pTrigger;
834     if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull)
835      || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull)
836     ){
837       return 1;
838     }
839   }
840   return 0;
841 }
842 
843 /*
844 ** This function is called when inserting, deleting or updating a row of
845 ** table pTab to generate VDBE code to perform foreign key constraint
846 ** processing for the operation.
847 **
848 ** For a DELETE operation, parameter regOld is passed the index of the
849 ** first register in an array of (pTab->nCol+1) registers containing the
850 ** rowid of the row being deleted, followed by each of the column values
851 ** of the row being deleted, from left to right. Parameter regNew is passed
852 ** zero in this case.
853 **
854 ** For an INSERT operation, regOld is passed zero and regNew is passed the
855 ** first register of an array of (pTab->nCol+1) registers containing the new
856 ** row data.
857 **
858 ** For an UPDATE operation, this function is called twice. Once before
859 ** the original record is deleted from the table using the calling convention
860 ** described for DELETE. Then again after the original record is deleted
861 ** but before the new record is inserted using the INSERT convention.
862 */
863 void sqlite3FkCheck(
864   Parse *pParse,                  /* Parse context */
865   Table *pTab,                    /* Row is being deleted from this table */
866   int regOld,                     /* Previous row data is stored here */
867   int regNew,                     /* New row data is stored here */
868   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
869   int bChngRowid                  /* True if rowid is UPDATEd */
870 ){
871   sqlite3 *db = pParse->db;       /* Database handle */
872   FKey *pFKey;                    /* Used to iterate through FKs */
873   int iDb;                        /* Index of database containing pTab */
874   const char *zDb;                /* Name of database containing pTab */
875   int isIgnoreErrors = pParse->disableTriggers;
876 
877   /* Exactly one of regOld and regNew should be non-zero. */
878   assert( (regOld==0)!=(regNew==0) );
879 
880   /* If foreign-keys are disabled, this function is a no-op. */
881   if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
882 
883   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
884   zDb = db->aDb[iDb].zDbSName;
885 
886   /* Loop through all the foreign key constraints for which pTab is the
887   ** child table (the table that the foreign key definition is part of).  */
888   for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
889     Table *pTo;                   /* Parent table of foreign key pFKey */
890     Index *pIdx = 0;              /* Index on key columns in pTo */
891     int *aiFree = 0;
892     int *aiCol;
893     int iCol;
894     int i;
895     int bIgnore = 0;
896 
897     if( aChange
898      && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
899      && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0
900     ){
901       continue;
902     }
903 
904     /* Find the parent table of this foreign key. Also find a unique index
905     ** on the parent key columns in the parent table. If either of these
906     ** schema items cannot be located, set an error in pParse and return
907     ** early.  */
908     if( pParse->disableTriggers ){
909       pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
910     }else{
911       pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
912     }
913     if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
914       assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
915       if( !isIgnoreErrors || db->mallocFailed ) return;
916       if( pTo==0 ){
917         /* If isIgnoreErrors is true, then a table is being dropped. In this
918         ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
919         ** before actually dropping it in order to check FK constraints.
920         ** If the parent table of an FK constraint on the current table is
921         ** missing, behave as if it is empty. i.e. decrement the relevant
922         ** FK counter for each row of the current table with non-NULL keys.
923         */
924         Vdbe *v = sqlite3GetVdbe(pParse);
925         int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
926         for(i=0; i<pFKey->nCol; i++){
927           int iReg = pFKey->aCol[i].iFrom + regOld + 1;
928           sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v);
929         }
930         sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
931       }
932       continue;
933     }
934     assert( pFKey->nCol==1 || (aiFree && pIdx) );
935 
936     if( aiFree ){
937       aiCol = aiFree;
938     }else{
939       iCol = pFKey->aCol[0].iFrom;
940       aiCol = &iCol;
941     }
942     for(i=0; i<pFKey->nCol; i++){
943       if( aiCol[i]==pTab->iPKey ){
944         aiCol[i] = -1;
945       }
946       assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
947 #ifndef SQLITE_OMIT_AUTHORIZATION
948       /* Request permission to read the parent key columns. If the
949       ** authorization callback returns SQLITE_IGNORE, behave as if any
950       ** values read from the parent table are NULL. */
951       if( db->xAuth ){
952         int rcauth;
953         char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
954         rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
955         bIgnore = (rcauth==SQLITE_IGNORE);
956       }
957 #endif
958     }
959 
960     /* Take a shared-cache advisory read-lock on the parent table. Allocate
961     ** a cursor to use to search the unique index on the parent key columns
962     ** in the parent table.  */
963     sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
964     pParse->nTab++;
965 
966     if( regOld!=0 ){
967       /* A row is being removed from the child table. Search for the parent.
968       ** If the parent does not exist, removing the child row resolves an
969       ** outstanding foreign key constraint violation. */
970       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore);
971     }
972     if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){
973       /* A row is being added to the child table. If a parent row cannot
974       ** be found, adding the child row has violated the FK constraint.
975       **
976       ** If this operation is being performed as part of a trigger program
977       ** that is actually a "SET NULL" action belonging to this very
978       ** foreign key, then omit this scan altogether. As all child key
979       ** values are guaranteed to be NULL, it is not possible for adding
980       ** this row to cause an FK violation.  */
981       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore);
982     }
983 
984     sqlite3DbFree(db, aiFree);
985   }
986 
987   /* Loop through all the foreign key constraints that refer to this table.
988   ** (the "child" constraints) */
989   for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
990     Index *pIdx = 0;              /* Foreign key index for pFKey */
991     SrcList *pSrc;
992     int *aiCol = 0;
993 
994     if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
995       continue;
996     }
997 
998     if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs)
999      && !pParse->pToplevel && !pParse->isMultiWrite
1000     ){
1001       assert( regOld==0 && regNew!=0 );
1002       /* Inserting a single row into a parent table cannot cause (or fix)
1003       ** an immediate foreign key violation. So do nothing in this case.  */
1004       continue;
1005     }
1006 
1007     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
1008       if( !isIgnoreErrors || db->mallocFailed ) return;
1009       continue;
1010     }
1011     assert( aiCol || pFKey->nCol==1 );
1012 
1013     /* Create a SrcList structure containing the child table.  We need the
1014     ** child table as a SrcList for sqlite3WhereBegin() */
1015     pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
1016     if( pSrc ){
1017       struct SrcList_item *pItem = pSrc->a;
1018       pItem->pTab = pFKey->pFrom;
1019       pItem->zName = pFKey->pFrom->zName;
1020       pItem->pTab->nTabRef++;
1021       pItem->iCursor = pParse->nTab++;
1022 
1023       if( regNew!=0 ){
1024         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
1025       }
1026       if( regOld!=0 ){
1027         int eAction = pFKey->aAction[aChange!=0];
1028         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
1029         /* If this is a deferred FK constraint, or a CASCADE or SET NULL
1030         ** action applies, then any foreign key violations caused by
1031         ** removing the parent key will be rectified by the action trigger.
1032         ** So do not set the "may-abort" flag in this case.
1033         **
1034         ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the
1035         ** may-abort flag will eventually be set on this statement anyway
1036         ** (when this function is called as part of processing the UPDATE
1037         ** within the action trigger).
1038         **
1039         ** Note 2: At first glance it may seem like SQLite could simply omit
1040         ** all OP_FkCounter related scans when either CASCADE or SET NULL
1041         ** applies. The trouble starts if the CASCADE or SET NULL action
1042         ** trigger causes other triggers or action rules attached to the
1043         ** child table to fire. In these cases the fk constraint counters
1044         ** might be set incorrectly if any OP_FkCounter related scans are
1045         ** omitted.  */
1046         if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){
1047           sqlite3MayAbort(pParse);
1048         }
1049       }
1050       pItem->zName = 0;
1051       sqlite3SrcListDelete(db, pSrc);
1052     }
1053     sqlite3DbFree(db, aiCol);
1054   }
1055 }
1056 
1057 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
1058 
1059 /*
1060 ** This function is called before generating code to update or delete a
1061 ** row contained in table pTab.
1062 */
1063 u32 sqlite3FkOldmask(
1064   Parse *pParse,                  /* Parse context */
1065   Table *pTab                     /* Table being modified */
1066 ){
1067   u32 mask = 0;
1068   if( pParse->db->flags&SQLITE_ForeignKeys ){
1069     FKey *p;
1070     int i;
1071     for(p=pTab->pFKey; p; p=p->pNextFrom){
1072       for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
1073     }
1074     for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1075       Index *pIdx = 0;
1076       sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
1077       if( pIdx ){
1078         for(i=0; i<pIdx->nKeyCol; i++){
1079           assert( pIdx->aiColumn[i]>=0 );
1080           mask |= COLUMN_MASK(pIdx->aiColumn[i]);
1081         }
1082       }
1083     }
1084   }
1085   return mask;
1086 }
1087 
1088 
1089 /*
1090 ** This function is called before generating code to update or delete a
1091 ** row contained in table pTab. If the operation is a DELETE, then
1092 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
1093 ** to an array of size N, where N is the number of columns in table pTab.
1094 ** If the i'th column is not modified by the UPDATE, then the corresponding
1095 ** entry in the aChange[] array is set to -1. If the column is modified,
1096 ** the value is 0 or greater. Parameter chngRowid is set to true if the
1097 ** UPDATE statement modifies the rowid fields of the table.
1098 **
1099 ** If any foreign key processing will be required, this function returns
1100 ** non-zero. If there is no foreign key related processing, this function
1101 ** returns zero.
1102 **
1103 ** For an UPDATE, this function returns 2 if:
1104 **
1105 **   * There are any FKs for which pTab is the child and the parent table, or
1106 **   * the UPDATE modifies one or more parent keys for which the action is
1107 **     not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL).
1108 **
1109 ** Or, assuming some other foreign key processing is required, 1.
1110 */
1111 int sqlite3FkRequired(
1112   Parse *pParse,                  /* Parse context */
1113   Table *pTab,                    /* Table being modified */
1114   int *aChange,                   /* Non-NULL for UPDATE operations */
1115   int chngRowid                   /* True for UPDATE that affects rowid */
1116 ){
1117   int eRet = 0;
1118   if( pParse->db->flags&SQLITE_ForeignKeys ){
1119     if( !aChange ){
1120       /* A DELETE operation. Foreign key processing is required if the
1121       ** table in question is either the child or parent table for any
1122       ** foreign key constraint.  */
1123       eRet = (sqlite3FkReferences(pTab) || pTab->pFKey);
1124     }else{
1125       /* This is an UPDATE. Foreign key processing is only required if the
1126       ** operation modifies one or more child or parent key columns. */
1127       FKey *p;
1128 
1129       /* Check if any child key columns are being modified. */
1130       for(p=pTab->pFKey; p; p=p->pNextFrom){
1131         if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) return 2;
1132         if( fkChildIsModified(pTab, p, aChange, chngRowid) ){
1133           eRet = 1;
1134         }
1135       }
1136 
1137       /* Check if any parent key columns are being modified. */
1138       for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1139         if( fkParentIsModified(pTab, p, aChange, chngRowid) ){
1140           if( p->aAction[1]!=OE_None ) return 2;
1141           eRet = 1;
1142         }
1143       }
1144     }
1145   }
1146   return eRet;
1147 }
1148 
1149 /*
1150 ** This function is called when an UPDATE or DELETE operation is being
1151 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
1152 ** If the current operation is an UPDATE, then the pChanges parameter is
1153 ** passed a pointer to the list of columns being modified. If it is a
1154 ** DELETE, pChanges is passed a NULL pointer.
1155 **
1156 ** It returns a pointer to a Trigger structure containing a trigger
1157 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
1158 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
1159 ** returned (these actions require no special handling by the triggers
1160 ** sub-system, code for them is created by fkScanChildren()).
1161 **
1162 ** For example, if pFKey is the foreign key and pTab is table "p" in
1163 ** the following schema:
1164 **
1165 **   CREATE TABLE p(pk PRIMARY KEY);
1166 **   CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
1167 **
1168 ** then the returned trigger structure is equivalent to:
1169 **
1170 **   CREATE TRIGGER ... DELETE ON p BEGIN
1171 **     DELETE FROM c WHERE ck = old.pk;
1172 **   END;
1173 **
1174 ** The returned pointer is cached as part of the foreign key object. It
1175 ** is eventually freed along with the rest of the foreign key object by
1176 ** sqlite3FkDelete().
1177 */
1178 static Trigger *fkActionTrigger(
1179   Parse *pParse,                  /* Parse context */
1180   Table *pTab,                    /* Table being updated or deleted from */
1181   FKey *pFKey,                    /* Foreign key to get action for */
1182   ExprList *pChanges              /* Change-list for UPDATE, NULL for DELETE */
1183 ){
1184   sqlite3 *db = pParse->db;       /* Database handle */
1185   int action;                     /* One of OE_None, OE_Cascade etc. */
1186   Trigger *pTrigger;              /* Trigger definition to return */
1187   int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */
1188 
1189   action = pFKey->aAction[iAction];
1190   if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){
1191     return 0;
1192   }
1193   pTrigger = pFKey->apTrigger[iAction];
1194 
1195   if( action!=OE_None && !pTrigger ){
1196     char const *zFrom;            /* Name of child table */
1197     int nFrom;                    /* Length in bytes of zFrom */
1198     Index *pIdx = 0;              /* Parent key index for this FK */
1199     int *aiCol = 0;               /* child table cols -> parent key cols */
1200     TriggerStep *pStep = 0;        /* First (only) step of trigger program */
1201     Expr *pWhere = 0;             /* WHERE clause of trigger step */
1202     ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
1203     Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
1204     int i;                        /* Iterator variable */
1205     Expr *pWhen = 0;              /* WHEN clause for the trigger */
1206 
1207     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
1208     assert( aiCol || pFKey->nCol==1 );
1209 
1210     for(i=0; i<pFKey->nCol; i++){
1211       Token tOld = { "old", 3 };  /* Literal "old" token */
1212       Token tNew = { "new", 3 };  /* Literal "new" token */
1213       Token tFromCol;             /* Name of column in child table */
1214       Token tToCol;               /* Name of column in parent table */
1215       int iFromCol;               /* Idx of column in child table */
1216       Expr *pEq;                  /* tFromCol = OLD.tToCol */
1217 
1218       iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
1219       assert( iFromCol>=0 );
1220       assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) );
1221       assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
1222       sqlite3TokenInit(&tToCol,
1223                    pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName);
1224       sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zName);
1225 
1226       /* Create the expression "OLD.zToCol = zFromCol". It is important
1227       ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1228       ** that the affinity and collation sequence associated with the
1229       ** parent table are used for the comparison. */
1230       pEq = sqlite3PExpr(pParse, TK_EQ,
1231           sqlite3PExpr(pParse, TK_DOT,
1232             sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1233             sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1234           sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0)
1235       );
1236       pWhere = sqlite3ExprAnd(db, pWhere, pEq);
1237 
1238       /* For ON UPDATE, construct the next term of the WHEN clause.
1239       ** The final WHEN clause will be like this:
1240       **
1241       **    WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1242       */
1243       if( pChanges ){
1244         pEq = sqlite3PExpr(pParse, TK_IS,
1245             sqlite3PExpr(pParse, TK_DOT,
1246               sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1247               sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1248             sqlite3PExpr(pParse, TK_DOT,
1249               sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1250               sqlite3ExprAlloc(db, TK_ID, &tToCol, 0))
1251             );
1252         pWhen = sqlite3ExprAnd(db, pWhen, pEq);
1253       }
1254 
1255       if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1256         Expr *pNew;
1257         if( action==OE_Cascade ){
1258           pNew = sqlite3PExpr(pParse, TK_DOT,
1259             sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1260             sqlite3ExprAlloc(db, TK_ID, &tToCol, 0));
1261         }else if( action==OE_SetDflt ){
1262           Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
1263           if( pDflt ){
1264             pNew = sqlite3ExprDup(db, pDflt, 0);
1265           }else{
1266             pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1267           }
1268         }else{
1269           pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1270         }
1271         pList = sqlite3ExprListAppend(pParse, pList, pNew);
1272         sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1273       }
1274     }
1275     sqlite3DbFree(db, aiCol);
1276 
1277     zFrom = pFKey->pFrom->zName;
1278     nFrom = sqlite3Strlen30(zFrom);
1279 
1280     if( action==OE_Restrict ){
1281       Token tFrom;
1282       Expr *pRaise;
1283 
1284       tFrom.z = zFrom;
1285       tFrom.n = nFrom;
1286       pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed");
1287       if( pRaise ){
1288         pRaise->affinity = OE_Abort;
1289       }
1290       pSelect = sqlite3SelectNew(pParse,
1291           sqlite3ExprListAppend(pParse, 0, pRaise),
1292           sqlite3SrcListAppend(db, 0, &tFrom, 0),
1293           pWhere,
1294           0, 0, 0, 0, 0
1295       );
1296       pWhere = 0;
1297     }
1298 
1299     /* Disable lookaside memory allocation */
1300     db->lookaside.bDisable++;
1301 
1302     pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1303         sizeof(Trigger) +         /* struct Trigger */
1304         sizeof(TriggerStep) +     /* Single step in trigger program */
1305         nFrom + 1                 /* Space for pStep->zTarget */
1306     );
1307     if( pTrigger ){
1308       pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1309       pStep->zTarget = (char *)&pStep[1];
1310       memcpy((char *)pStep->zTarget, zFrom, nFrom);
1311 
1312       pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1313       pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1314       pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1315       if( pWhen ){
1316         pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0);
1317         pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1318       }
1319     }
1320 
1321     /* Re-enable the lookaside buffer, if it was disabled earlier. */
1322     db->lookaside.bDisable--;
1323 
1324     sqlite3ExprDelete(db, pWhere);
1325     sqlite3ExprDelete(db, pWhen);
1326     sqlite3ExprListDelete(db, pList);
1327     sqlite3SelectDelete(db, pSelect);
1328     if( db->mallocFailed==1 ){
1329       fkTriggerDelete(db, pTrigger);
1330       return 0;
1331     }
1332     assert( pStep!=0 );
1333 
1334     switch( action ){
1335       case OE_Restrict:
1336         pStep->op = TK_SELECT;
1337         break;
1338       case OE_Cascade:
1339         if( !pChanges ){
1340           pStep->op = TK_DELETE;
1341           break;
1342         }
1343       default:
1344         pStep->op = TK_UPDATE;
1345     }
1346     pStep->pTrig = pTrigger;
1347     pTrigger->pSchema = pTab->pSchema;
1348     pTrigger->pTabSchema = pTab->pSchema;
1349     pFKey->apTrigger[iAction] = pTrigger;
1350     pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1351   }
1352 
1353   return pTrigger;
1354 }
1355 
1356 /*
1357 ** This function is called when deleting or updating a row to implement
1358 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1359 */
1360 void sqlite3FkActions(
1361   Parse *pParse,                  /* Parse context */
1362   Table *pTab,                    /* Table being updated or deleted from */
1363   ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
1364   int regOld,                     /* Address of array containing old row */
1365   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
1366   int bChngRowid                  /* True if rowid is UPDATEd */
1367 ){
1368   /* If foreign-key support is enabled, iterate through all FKs that
1369   ** refer to table pTab. If there is an action associated with the FK
1370   ** for this operation (either update or delete), invoke the associated
1371   ** trigger sub-program.  */
1372   if( pParse->db->flags&SQLITE_ForeignKeys ){
1373     FKey *pFKey;                  /* Iterator variable */
1374     for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1375       if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
1376         Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1377         if( pAct ){
1378           sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
1379         }
1380       }
1381     }
1382   }
1383 }
1384 
1385 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1386 
1387 /*
1388 ** Free all memory associated with foreign key definitions attached to
1389 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1390 ** hash table.
1391 */
1392 void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1393   FKey *pFKey;                    /* Iterator variable */
1394   FKey *pNext;                    /* Copy of pFKey->pNextFrom */
1395 
1396   assert( db==0 || IsVirtual(pTab)
1397          || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1398   for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1399 
1400     /* Remove the FK from the fkeyHash hash table. */
1401     if( !db || db->pnBytesFreed==0 ){
1402       if( pFKey->pPrevTo ){
1403         pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1404       }else{
1405         void *p = (void *)pFKey->pNextTo;
1406         const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1407         sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p);
1408       }
1409       if( pFKey->pNextTo ){
1410         pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1411       }
1412     }
1413 
1414     /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1415     ** classified as either immediate or deferred.
1416     */
1417     assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1418 
1419     /* Delete any triggers created to implement actions for this FK. */
1420 #ifndef SQLITE_OMIT_TRIGGER
1421     fkTriggerDelete(db, pFKey->apTrigger[0]);
1422     fkTriggerDelete(db, pFKey->apTrigger[1]);
1423 #endif
1424 
1425     pNext = pFKey->pNextFrom;
1426     sqlite3DbFree(db, pFKey);
1427   }
1428 }
1429 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
1430