1 /* 2 ** 3 ** The author disclaims copyright to this source code. In place of 4 ** a legal notice, here is a blessing: 5 ** 6 ** May you do good and not evil. 7 ** May you find forgiveness for yourself and forgive others. 8 ** May you share freely, never taking more than you give. 9 ** 10 ************************************************************************* 11 ** This file contains code used by the compiler to add foreign key 12 ** support to compiled SQL statements. 13 */ 14 #include "sqliteInt.h" 15 16 #ifndef SQLITE_OMIT_FOREIGN_KEY 17 #ifndef SQLITE_OMIT_TRIGGER 18 19 /* 20 ** Deferred and Immediate FKs 21 ** -------------------------- 22 ** 23 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 24 ** If an immediate foreign key constraint is violated, 25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current 26 ** statement transaction rolled back. If a 27 ** deferred foreign key constraint is violated, no action is taken 28 ** immediately. However if the application attempts to commit the 29 ** transaction before fixing the constraint violation, the attempt fails. 30 ** 31 ** Deferred constraints are implemented using a simple counter associated 32 ** with the database handle. The counter is set to zero each time a 33 ** database transaction is opened. Each time a statement is executed 34 ** that causes a foreign key violation, the counter is incremented. Each 35 ** time a statement is executed that removes an existing violation from 36 ** the database, the counter is decremented. When the transaction is 37 ** committed, the commit fails if the current value of the counter is 38 ** greater than zero. This scheme has two big drawbacks: 39 ** 40 ** * When a commit fails due to a deferred foreign key constraint, 41 ** there is no way to tell which foreign constraint is not satisfied, 42 ** or which row it is not satisfied for. 43 ** 44 ** * If the database contains foreign key violations when the 45 ** transaction is opened, this may cause the mechanism to malfunction. 46 ** 47 ** Despite these problems, this approach is adopted as it seems simpler 48 ** than the alternatives. 49 ** 50 ** INSERT operations: 51 ** 52 ** I.1) For each FK for which the table is the child table, search 53 ** the parent table for a match. If none is found increment the 54 ** constraint counter. 55 ** 56 ** I.2) For each FK for which the table is the parent table, 57 ** search the child table for rows that correspond to the new 58 ** row in the parent table. Decrement the counter for each row 59 ** found (as the constraint is now satisfied). 60 ** 61 ** DELETE operations: 62 ** 63 ** D.1) For each FK for which the table is the child table, 64 ** search the parent table for a row that corresponds to the 65 ** deleted row in the child table. If such a row is not found, 66 ** decrement the counter. 67 ** 68 ** D.2) For each FK for which the table is the parent table, search 69 ** the child table for rows that correspond to the deleted row 70 ** in the parent table. For each found increment the counter. 71 ** 72 ** UPDATE operations: 73 ** 74 ** An UPDATE command requires that all 4 steps above are taken, but only 75 ** for FK constraints for which the affected columns are actually 76 ** modified (values must be compared at runtime). 77 ** 78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 79 ** This simplifies the implementation a bit. 80 ** 81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 82 ** resolution is considered to delete rows before the new row is inserted. 83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 84 ** is thrown, even if the FK constraint would be satisfied after the new 85 ** row is inserted. 86 ** 87 ** Immediate constraints are usually handled similarly. The only difference 88 ** is that the counter used is stored as part of each individual statement 89 ** object (struct Vdbe). If, after the statement has run, its immediate 90 ** constraint counter is greater than zero, 91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY 92 ** and the statement transaction is rolled back. An exception is an INSERT 93 ** statement that inserts a single row only (no triggers). In this case, 94 ** instead of using a counter, an exception is thrown immediately if the 95 ** INSERT violates a foreign key constraint. This is necessary as such 96 ** an INSERT does not open a statement transaction. 97 ** 98 ** TODO: How should dropping a table be handled? How should renaming a 99 ** table be handled? 100 ** 101 ** 102 ** Query API Notes 103 ** --------------- 104 ** 105 ** Before coding an UPDATE or DELETE row operation, the code-generator 106 ** for those two operations needs to know whether or not the operation 107 ** requires any FK processing and, if so, which columns of the original 108 ** row are required by the FK processing VDBE code (i.e. if FKs were 109 ** implemented using triggers, which of the old.* columns would be 110 ** accessed). No information is required by the code-generator before 111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 112 ** generation code to query for this information are: 113 ** 114 ** sqlite3FkRequired() - Test to see if FK processing is required. 115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 116 ** 117 ** 118 ** Externally accessible module functions 119 ** -------------------------------------- 120 ** 121 ** sqlite3FkCheck() - Check for foreign key violations. 122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 123 ** sqlite3FkDelete() - Delete an FKey structure. 124 */ 125 126 /* 127 ** VDBE Calling Convention 128 ** ----------------------- 129 ** 130 ** Example: 131 ** 132 ** For the following INSERT statement: 133 ** 134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 135 ** INSERT INTO t1 VALUES(1, 2, 3.1); 136 ** 137 ** Register (x): 2 (type integer) 138 ** Register (x+1): 1 (type integer) 139 ** Register (x+2): NULL (type NULL) 140 ** Register (x+3): 3.1 (type real) 141 */ 142 143 /* 144 ** A foreign key constraint requires that the key columns in the parent 145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 146 ** Given that pParent is the parent table for foreign key constraint pFKey, 147 ** search the schema for a unique index on the parent key columns. 148 ** 149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 151 ** is set to point to the unique index. 152 ** 153 ** If the parent key consists of a single column (the foreign key constraint 154 ** is not a composite foreign key), output variable *paiCol is set to NULL. 155 ** Otherwise, it is set to point to an allocated array of size N, where 156 ** N is the number of columns in the parent key. The first element of the 157 ** array is the index of the child table column that is mapped by the FK 158 ** constraint to the parent table column stored in the left-most column 159 ** of index *ppIdx. The second element of the array is the index of the 160 ** child table column that corresponds to the second left-most column of 161 ** *ppIdx, and so on. 162 ** 163 ** If the required index cannot be found, either because: 164 ** 165 ** 1) The named parent key columns do not exist, or 166 ** 167 ** 2) The named parent key columns do exist, but are not subject to a 168 ** UNIQUE or PRIMARY KEY constraint, or 169 ** 170 ** 3) No parent key columns were provided explicitly as part of the 171 ** foreign key definition, and the parent table does not have a 172 ** PRIMARY KEY, or 173 ** 174 ** 4) No parent key columns were provided explicitly as part of the 175 ** foreign key definition, and the PRIMARY KEY of the parent table 176 ** consists of a different number of columns to the child key in 177 ** the child table. 178 ** 179 ** then non-zero is returned, and a "foreign key mismatch" error loaded 180 ** into pParse. If an OOM error occurs, non-zero is returned and the 181 ** pParse->db->mallocFailed flag is set. 182 */ 183 int sqlite3FkLocateIndex( 184 Parse *pParse, /* Parse context to store any error in */ 185 Table *pParent, /* Parent table of FK constraint pFKey */ 186 FKey *pFKey, /* Foreign key to find index for */ 187 Index **ppIdx, /* OUT: Unique index on parent table */ 188 int **paiCol /* OUT: Map of index columns in pFKey */ 189 ){ 190 Index *pIdx = 0; /* Value to return via *ppIdx */ 191 int *aiCol = 0; /* Value to return via *paiCol */ 192 int nCol = pFKey->nCol; /* Number of columns in parent key */ 193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 194 195 /* The caller is responsible for zeroing output parameters. */ 196 assert( ppIdx && *ppIdx==0 ); 197 assert( !paiCol || *paiCol==0 ); 198 assert( pParse ); 199 200 /* If this is a non-composite (single column) foreign key, check if it 201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 202 ** and *paiCol set to zero and return early. 203 ** 204 ** Otherwise, for a composite foreign key (more than one column), allocate 205 ** space for the aiCol array (returned via output parameter *paiCol). 206 ** Non-composite foreign keys do not require the aiCol array. 207 */ 208 if( nCol==1 ){ 209 /* The FK maps to the IPK if any of the following are true: 210 ** 211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 212 ** mapped to the primary key of table pParent, or 213 ** 2) The FK is explicitly mapped to a column declared as INTEGER 214 ** PRIMARY KEY. 215 */ 216 if( pParent->iPKey>=0 ){ 217 if( !zKey ) return 0; 218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zCnName, zKey) ){ 219 return 0; 220 } 221 } 222 }else if( paiCol ){ 223 assert( nCol>1 ); 224 aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int)); 225 if( !aiCol ) return 1; 226 *paiCol = aiCol; 227 } 228 229 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 230 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){ 231 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 232 ** of columns. If each indexed column corresponds to a foreign key 233 ** column of pFKey, then this index is a winner. */ 234 235 if( zKey==0 ){ 236 /* If zKey is NULL, then this foreign key is implicitly mapped to 237 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 238 ** identified by the test. */ 239 if( IsPrimaryKeyIndex(pIdx) ){ 240 if( aiCol ){ 241 int i; 242 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 243 } 244 break; 245 } 246 }else{ 247 /* If zKey is non-NULL, then this foreign key was declared to 248 ** map to an explicit list of columns in table pParent. Check if this 249 ** index matches those columns. Also, check that the index uses 250 ** the default collation sequences for each column. */ 251 int i, j; 252 for(i=0; i<nCol; i++){ 253 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 254 const char *zDfltColl; /* Def. collation for column */ 255 char *zIdxCol; /* Name of indexed column */ 256 257 if( iCol<0 ) break; /* No foreign keys against expression indexes */ 258 259 /* If the index uses a collation sequence that is different from 260 ** the default collation sequence for the column, this index is 261 ** unusable. Bail out early in this case. */ 262 zDfltColl = sqlite3ColumnColl(&pParent->aCol[iCol]); 263 if( !zDfltColl ) zDfltColl = sqlite3StrBINARY; 264 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 265 266 zIdxCol = pParent->aCol[iCol].zCnName; 267 for(j=0; j<nCol; j++){ 268 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 269 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 270 break; 271 } 272 } 273 if( j==nCol ) break; 274 } 275 if( i==nCol ) break; /* pIdx is usable */ 276 } 277 } 278 } 279 280 if( !pIdx ){ 281 if( !pParse->disableTriggers ){ 282 sqlite3ErrorMsg(pParse, 283 "foreign key mismatch - \"%w\" referencing \"%w\"", 284 pFKey->pFrom->zName, pFKey->zTo); 285 } 286 sqlite3DbFree(pParse->db, aiCol); 287 return 1; 288 } 289 290 *ppIdx = pIdx; 291 return 0; 292 } 293 294 /* 295 ** This function is called when a row is inserted into or deleted from the 296 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 297 ** on the child table of pFKey, this function is invoked twice for each row 298 ** affected - once to "delete" the old row, and then again to "insert" the 299 ** new row. 300 ** 301 ** Each time it is called, this function generates VDBE code to locate the 302 ** row in the parent table that corresponds to the row being inserted into 303 ** or deleted from the child table. If the parent row can be found, no 304 ** special action is taken. Otherwise, if the parent row can *not* be 305 ** found in the parent table: 306 ** 307 ** Operation | FK type | Action taken 308 ** -------------------------------------------------------------------------- 309 ** INSERT immediate Increment the "immediate constraint counter". 310 ** 311 ** DELETE immediate Decrement the "immediate constraint counter". 312 ** 313 ** INSERT deferred Increment the "deferred constraint counter". 314 ** 315 ** DELETE deferred Decrement the "deferred constraint counter". 316 ** 317 ** These operations are identified in the comment at the top of this file 318 ** (fkey.c) as "I.1" and "D.1". 319 */ 320 static void fkLookupParent( 321 Parse *pParse, /* Parse context */ 322 int iDb, /* Index of database housing pTab */ 323 Table *pTab, /* Parent table of FK pFKey */ 324 Index *pIdx, /* Unique index on parent key columns in pTab */ 325 FKey *pFKey, /* Foreign key constraint */ 326 int *aiCol, /* Map from parent key columns to child table columns */ 327 int regData, /* Address of array containing child table row */ 328 int nIncr, /* Increment constraint counter by this */ 329 int isIgnore /* If true, pretend pTab contains all NULL values */ 330 ){ 331 int i; /* Iterator variable */ 332 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 333 int iCur = pParse->nTab - 1; /* Cursor number to use */ 334 int iOk = sqlite3VdbeMakeLabel(pParse); /* jump here if parent key found */ 335 336 sqlite3VdbeVerifyAbortable(v, 337 (!pFKey->isDeferred 338 && !(pParse->db->flags & SQLITE_DeferFKs) 339 && !pParse->pToplevel 340 && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore); 341 342 /* If nIncr is less than zero, then check at runtime if there are any 343 ** outstanding constraints to resolve. If there are not, there is no need 344 ** to check if deleting this row resolves any outstanding violations. 345 ** 346 ** Check if any of the key columns in the child table row are NULL. If 347 ** any are, then the constraint is considered satisfied. No need to 348 ** search for a matching row in the parent table. */ 349 if( nIncr<0 ){ 350 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 351 VdbeCoverage(v); 352 } 353 for(i=0; i<pFKey->nCol; i++){ 354 int iReg = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) + regData + 1; 355 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); 356 } 357 358 if( isIgnore==0 ){ 359 if( pIdx==0 ){ 360 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 361 ** column of the parent table (table pTab). */ 362 int iMustBeInt; /* Address of MustBeInt instruction */ 363 int regTemp = sqlite3GetTempReg(pParse); 364 365 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 366 ** apply the affinity of the parent key). If this fails, then there 367 ** is no matching parent key. Before using MustBeInt, make a copy of 368 ** the value. Otherwise, the value inserted into the child key column 369 ** will have INTEGER affinity applied to it, which may not be correct. */ 370 sqlite3VdbeAddOp2(v, OP_SCopy, 371 sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[0])+1+regData, regTemp); 372 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 373 VdbeCoverage(v); 374 375 /* If the parent table is the same as the child table, and we are about 376 ** to increment the constraint-counter (i.e. this is an INSERT operation), 377 ** then check if the row being inserted matches itself. If so, do not 378 ** increment the constraint-counter. */ 379 if( pTab==pFKey->pFrom && nIncr==1 ){ 380 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); 381 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 382 } 383 384 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 385 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); 386 sqlite3VdbeGoto(v, iOk); 387 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 388 sqlite3VdbeJumpHere(v, iMustBeInt); 389 sqlite3ReleaseTempReg(pParse, regTemp); 390 }else{ 391 int nCol = pFKey->nCol; 392 int regTemp = sqlite3GetTempRange(pParse, nCol); 393 int regRec = sqlite3GetTempReg(pParse); 394 395 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 396 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 397 for(i=0; i<nCol; i++){ 398 sqlite3VdbeAddOp2(v, OP_Copy, 399 sqlite3TableColumnToStorage(pFKey->pFrom, aiCol[i])+1+regData, 400 regTemp+i); 401 } 402 403 /* If the parent table is the same as the child table, and we are about 404 ** to increment the constraint-counter (i.e. this is an INSERT operation), 405 ** then check if the row being inserted matches itself. If so, do not 406 ** increment the constraint-counter. 407 ** 408 ** If any of the parent-key values are NULL, then the row cannot match 409 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 410 ** of the parent-key values are NULL (at this point it is known that 411 ** none of the child key values are). 412 */ 413 if( pTab==pFKey->pFrom && nIncr==1 ){ 414 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 415 for(i=0; i<nCol; i++){ 416 int iChild = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) 417 +1+regData; 418 int iParent = 1+regData; 419 iParent += sqlite3TableColumnToStorage(pIdx->pTable, 420 pIdx->aiColumn[i]); 421 assert( pIdx->aiColumn[i]>=0 ); 422 assert( aiCol[i]!=pTab->iPKey ); 423 if( pIdx->aiColumn[i]==pTab->iPKey ){ 424 /* The parent key is a composite key that includes the IPK column */ 425 iParent = regData; 426 } 427 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); 428 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 429 } 430 sqlite3VdbeGoto(v, iOk); 431 } 432 433 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec, 434 sqlite3IndexAffinityStr(pParse->db,pIdx), nCol); 435 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v); 436 437 sqlite3ReleaseTempReg(pParse, regRec); 438 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 439 } 440 } 441 442 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) 443 && !pParse->pToplevel 444 && !pParse->isMultiWrite 445 ){ 446 /* Special case: If this is an INSERT statement that will insert exactly 447 ** one row into the table, raise a constraint immediately instead of 448 ** incrementing a counter. This is necessary as the VM code is being 449 ** generated for will not open a statement transaction. */ 450 assert( nIncr==1 ); 451 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 452 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 453 }else{ 454 if( nIncr>0 && pFKey->isDeferred==0 ){ 455 sqlite3MayAbort(pParse); 456 } 457 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 458 } 459 460 sqlite3VdbeResolveLabel(v, iOk); 461 sqlite3VdbeAddOp1(v, OP_Close, iCur); 462 } 463 464 465 /* 466 ** Return an Expr object that refers to a memory register corresponding 467 ** to column iCol of table pTab. 468 ** 469 ** regBase is the first of an array of register that contains the data 470 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first 471 ** column. regBase+2 holds the second column, and so forth. 472 */ 473 static Expr *exprTableRegister( 474 Parse *pParse, /* Parsing and code generating context */ 475 Table *pTab, /* The table whose content is at r[regBase]... */ 476 int regBase, /* Contents of table pTab */ 477 i16 iCol /* Which column of pTab is desired */ 478 ){ 479 Expr *pExpr; 480 Column *pCol; 481 const char *zColl; 482 sqlite3 *db = pParse->db; 483 484 pExpr = sqlite3Expr(db, TK_REGISTER, 0); 485 if( pExpr ){ 486 if( iCol>=0 && iCol!=pTab->iPKey ){ 487 pCol = &pTab->aCol[iCol]; 488 pExpr->iTable = regBase + sqlite3TableColumnToStorage(pTab,iCol) + 1; 489 pExpr->affExpr = pCol->affinity; 490 zColl = sqlite3ColumnColl(pCol); 491 if( zColl==0 ) zColl = db->pDfltColl->zName; 492 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); 493 }else{ 494 pExpr->iTable = regBase; 495 pExpr->affExpr = SQLITE_AFF_INTEGER; 496 } 497 } 498 return pExpr; 499 } 500 501 /* 502 ** Return an Expr object that refers to column iCol of table pTab which 503 ** has cursor iCur. 504 */ 505 static Expr *exprTableColumn( 506 sqlite3 *db, /* The database connection */ 507 Table *pTab, /* The table whose column is desired */ 508 int iCursor, /* The open cursor on the table */ 509 i16 iCol /* The column that is wanted */ 510 ){ 511 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); 512 if( pExpr ){ 513 assert( ExprUseYTab(pExpr) ); 514 pExpr->y.pTab = pTab; 515 pExpr->iTable = iCursor; 516 pExpr->iColumn = iCol; 517 } 518 return pExpr; 519 } 520 521 /* 522 ** This function is called to generate code executed when a row is deleted 523 ** from the parent table of foreign key constraint pFKey and, if pFKey is 524 ** deferred, when a row is inserted into the same table. When generating 525 ** code for an SQL UPDATE operation, this function may be called twice - 526 ** once to "delete" the old row and once to "insert" the new row. 527 ** 528 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease 529 ** the number of FK violations in the db) or +1 when deleting one (as this 530 ** may increase the number of FK constraint problems). 531 ** 532 ** The code generated by this function scans through the rows in the child 533 ** table that correspond to the parent table row being deleted or inserted. 534 ** For each child row found, one of the following actions is taken: 535 ** 536 ** Operation | FK type | Action taken 537 ** -------------------------------------------------------------------------- 538 ** DELETE immediate Increment the "immediate constraint counter". 539 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 540 ** throw a "FOREIGN KEY constraint failed" exception. 541 ** 542 ** INSERT immediate Decrement the "immediate constraint counter". 543 ** 544 ** DELETE deferred Increment the "deferred constraint counter". 545 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 546 ** throw a "FOREIGN KEY constraint failed" exception. 547 ** 548 ** INSERT deferred Decrement the "deferred constraint counter". 549 ** 550 ** These operations are identified in the comment at the top of this file 551 ** (fkey.c) as "I.2" and "D.2". 552 */ 553 static void fkScanChildren( 554 Parse *pParse, /* Parse context */ 555 SrcList *pSrc, /* The child table to be scanned */ 556 Table *pTab, /* The parent table */ 557 Index *pIdx, /* Index on parent covering the foreign key */ 558 FKey *pFKey, /* The foreign key linking pSrc to pTab */ 559 int *aiCol, /* Map from pIdx cols to child table cols */ 560 int regData, /* Parent row data starts here */ 561 int nIncr /* Amount to increment deferred counter by */ 562 ){ 563 sqlite3 *db = pParse->db; /* Database handle */ 564 int i; /* Iterator variable */ 565 Expr *pWhere = 0; /* WHERE clause to scan with */ 566 NameContext sNameContext; /* Context used to resolve WHERE clause */ 567 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 568 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 569 Vdbe *v = sqlite3GetVdbe(pParse); 570 571 assert( pIdx==0 || pIdx->pTable==pTab ); 572 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); 573 assert( pIdx!=0 || pFKey->nCol==1 ); 574 assert( pIdx!=0 || HasRowid(pTab) ); 575 576 if( nIncr<0 ){ 577 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 578 VdbeCoverage(v); 579 } 580 581 /* Create an Expr object representing an SQL expression like: 582 ** 583 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 584 ** 585 ** The collation sequence used for the comparison should be that of 586 ** the parent key columns. The affinity of the parent key column should 587 ** be applied to each child key value before the comparison takes place. 588 */ 589 for(i=0; i<pFKey->nCol; i++){ 590 Expr *pLeft; /* Value from parent table row */ 591 Expr *pRight; /* Column ref to child table */ 592 Expr *pEq; /* Expression (pLeft = pRight) */ 593 i16 iCol; /* Index of column in child table */ 594 const char *zCol; /* Name of column in child table */ 595 596 iCol = pIdx ? pIdx->aiColumn[i] : -1; 597 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 598 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 599 assert( iCol>=0 ); 600 zCol = pFKey->pFrom->aCol[iCol].zCnName; 601 pRight = sqlite3Expr(db, TK_ID, zCol); 602 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); 603 pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); 604 } 605 606 /* If the child table is the same as the parent table, then add terms 607 ** to the WHERE clause that prevent this entry from being scanned. 608 ** The added WHERE clause terms are like this: 609 ** 610 ** $current_rowid!=rowid 611 ** NOT( $current_a==a AND $current_b==b AND ... ) 612 ** 613 ** The first form is used for rowid tables. The second form is used 614 ** for WITHOUT ROWID tables. In the second form, the *parent* key is 615 ** (a,b,...). Either the parent or primary key could be used to 616 ** uniquely identify the current row, but the parent key is more convenient 617 ** as the required values have already been loaded into registers 618 ** by the caller. 619 */ 620 if( pTab==pFKey->pFrom && nIncr>0 ){ 621 Expr *pNe; /* Expression (pLeft != pRight) */ 622 Expr *pLeft; /* Value from parent table row */ 623 Expr *pRight; /* Column ref to child table */ 624 if( HasRowid(pTab) ){ 625 pLeft = exprTableRegister(pParse, pTab, regData, -1); 626 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); 627 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight); 628 }else{ 629 Expr *pEq, *pAll = 0; 630 assert( pIdx!=0 ); 631 for(i=0; i<pIdx->nKeyCol; i++){ 632 i16 iCol = pIdx->aiColumn[i]; 633 assert( iCol>=0 ); 634 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 635 pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zCnName); 636 pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight); 637 pAll = sqlite3ExprAnd(pParse, pAll, pEq); 638 } 639 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0); 640 } 641 pWhere = sqlite3ExprAnd(pParse, pWhere, pNe); 642 } 643 644 /* Resolve the references in the WHERE clause. */ 645 memset(&sNameContext, 0, sizeof(NameContext)); 646 sNameContext.pSrcList = pSrc; 647 sNameContext.pParse = pParse; 648 sqlite3ResolveExprNames(&sNameContext, pWhere); 649 650 /* Create VDBE to loop through the entries in pSrc that match the WHERE 651 ** clause. For each row found, increment either the deferred or immediate 652 ** foreign key constraint counter. */ 653 if( pParse->nErr==0 ){ 654 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); 655 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 656 if( pWInfo ){ 657 sqlite3WhereEnd(pWInfo); 658 } 659 } 660 661 /* Clean up the WHERE clause constructed above. */ 662 sqlite3ExprDelete(db, pWhere); 663 if( iFkIfZero ){ 664 sqlite3VdbeJumpHereOrPopInst(v, iFkIfZero); 665 } 666 } 667 668 /* 669 ** This function returns a linked list of FKey objects (connected by 670 ** FKey.pNextTo) holding all children of table pTab. For example, 671 ** given the following schema: 672 ** 673 ** CREATE TABLE t1(a PRIMARY KEY); 674 ** CREATE TABLE t2(b REFERENCES t1(a); 675 ** 676 ** Calling this function with table "t1" as an argument returns a pointer 677 ** to the FKey structure representing the foreign key constraint on table 678 ** "t2". Calling this function with "t2" as the argument would return a 679 ** NULL pointer (as there are no FK constraints for which t2 is the parent 680 ** table). 681 */ 682 FKey *sqlite3FkReferences(Table *pTab){ 683 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName); 684 } 685 686 /* 687 ** The second argument is a Trigger structure allocated by the 688 ** fkActionTrigger() routine. This function deletes the Trigger structure 689 ** and all of its sub-components. 690 ** 691 ** The Trigger structure or any of its sub-components may be allocated from 692 ** the lookaside buffer belonging to database handle dbMem. 693 */ 694 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 695 if( p ){ 696 TriggerStep *pStep = p->step_list; 697 sqlite3ExprDelete(dbMem, pStep->pWhere); 698 sqlite3ExprListDelete(dbMem, pStep->pExprList); 699 sqlite3SelectDelete(dbMem, pStep->pSelect); 700 sqlite3ExprDelete(dbMem, p->pWhen); 701 sqlite3DbFree(dbMem, p); 702 } 703 } 704 705 /* 706 ** Clear the apTrigger[] cache of CASCADE triggers for all foreign keys 707 ** in a particular database. This needs to happen when the schema 708 ** changes. 709 */ 710 void sqlite3FkClearTriggerCache(sqlite3 *db, int iDb){ 711 HashElem *k; 712 Hash *pHash = &db->aDb[iDb].pSchema->tblHash; 713 for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k)){ 714 Table *pTab = sqliteHashData(k); 715 FKey *pFKey; 716 if( !IsOrdinaryTable(pTab) ) continue; 717 for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ 718 fkTriggerDelete(db, pFKey->apTrigger[0]); pFKey->apTrigger[0] = 0; 719 fkTriggerDelete(db, pFKey->apTrigger[1]); pFKey->apTrigger[1] = 0; 720 } 721 } 722 } 723 724 /* 725 ** This function is called to generate code that runs when table pTab is 726 ** being dropped from the database. The SrcList passed as the second argument 727 ** to this function contains a single entry guaranteed to resolve to 728 ** table pTab. 729 ** 730 ** Normally, no code is required. However, if either 731 ** 732 ** (a) The table is the parent table of a FK constraint, or 733 ** (b) The table is the child table of a deferred FK constraint and it is 734 ** determined at runtime that there are outstanding deferred FK 735 ** constraint violations in the database, 736 ** 737 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 738 ** the table from the database. Triggers are disabled while running this 739 ** DELETE, but foreign key actions are not. 740 */ 741 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 742 sqlite3 *db = pParse->db; 743 if( (db->flags&SQLITE_ForeignKeys) && IsOrdinaryTable(pTab) ){ 744 int iSkip = 0; 745 Vdbe *v = sqlite3GetVdbe(pParse); 746 747 assert( v ); /* VDBE has already been allocated */ 748 assert( IsOrdinaryTable(pTab) ); 749 if( sqlite3FkReferences(pTab)==0 ){ 750 /* Search for a deferred foreign key constraint for which this table 751 ** is the child table. If one cannot be found, return without 752 ** generating any VDBE code. If one can be found, then jump over 753 ** the entire DELETE if there are no outstanding deferred constraints 754 ** when this statement is run. */ 755 FKey *p; 756 for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ 757 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; 758 } 759 if( !p ) return; 760 iSkip = sqlite3VdbeMakeLabel(pParse); 761 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); 762 } 763 764 pParse->disableTriggers = 1; 765 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0); 766 pParse->disableTriggers = 0; 767 768 /* If the DELETE has generated immediate foreign key constraint 769 ** violations, halt the VDBE and return an error at this point, before 770 ** any modifications to the schema are made. This is because statement 771 ** transactions are not able to rollback schema changes. 772 ** 773 ** If the SQLITE_DeferFKs flag is set, then this is not required, as 774 ** the statement transaction will not be rolled back even if FK 775 ** constraints are violated. 776 */ 777 if( (db->flags & SQLITE_DeferFKs)==0 ){ 778 sqlite3VdbeVerifyAbortable(v, OE_Abort); 779 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 780 VdbeCoverage(v); 781 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 782 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 783 } 784 785 if( iSkip ){ 786 sqlite3VdbeResolveLabel(v, iSkip); 787 } 788 } 789 } 790 791 792 /* 793 ** The second argument points to an FKey object representing a foreign key 794 ** for which pTab is the child table. An UPDATE statement against pTab 795 ** is currently being processed. For each column of the table that is 796 ** actually updated, the corresponding element in the aChange[] array 797 ** is zero or greater (if a column is unmodified the corresponding element 798 ** is set to -1). If the rowid column is modified by the UPDATE statement 799 ** the bChngRowid argument is non-zero. 800 ** 801 ** This function returns true if any of the columns that are part of the 802 ** child key for FK constraint *p are modified. 803 */ 804 static int fkChildIsModified( 805 Table *pTab, /* Table being updated */ 806 FKey *p, /* Foreign key for which pTab is the child */ 807 int *aChange, /* Array indicating modified columns */ 808 int bChngRowid /* True if rowid is modified by this update */ 809 ){ 810 int i; 811 for(i=0; i<p->nCol; i++){ 812 int iChildKey = p->aCol[i].iFrom; 813 if( aChange[iChildKey]>=0 ) return 1; 814 if( iChildKey==pTab->iPKey && bChngRowid ) return 1; 815 } 816 return 0; 817 } 818 819 /* 820 ** The second argument points to an FKey object representing a foreign key 821 ** for which pTab is the parent table. An UPDATE statement against pTab 822 ** is currently being processed. For each column of the table that is 823 ** actually updated, the corresponding element in the aChange[] array 824 ** is zero or greater (if a column is unmodified the corresponding element 825 ** is set to -1). If the rowid column is modified by the UPDATE statement 826 ** the bChngRowid argument is non-zero. 827 ** 828 ** This function returns true if any of the columns that are part of the 829 ** parent key for FK constraint *p are modified. 830 */ 831 static int fkParentIsModified( 832 Table *pTab, 833 FKey *p, 834 int *aChange, 835 int bChngRowid 836 ){ 837 int i; 838 for(i=0; i<p->nCol; i++){ 839 char *zKey = p->aCol[i].zCol; 840 int iKey; 841 for(iKey=0; iKey<pTab->nCol; iKey++){ 842 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ 843 Column *pCol = &pTab->aCol[iKey]; 844 if( zKey ){ 845 if( 0==sqlite3StrICmp(pCol->zCnName, zKey) ) return 1; 846 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ 847 return 1; 848 } 849 } 850 } 851 } 852 return 0; 853 } 854 855 /* 856 ** Return true if the parser passed as the first argument is being 857 ** used to code a trigger that is really a "SET NULL" action belonging 858 ** to trigger pFKey. 859 */ 860 static int isSetNullAction(Parse *pParse, FKey *pFKey){ 861 Parse *pTop = sqlite3ParseToplevel(pParse); 862 if( pTop->pTriggerPrg ){ 863 Trigger *p = pTop->pTriggerPrg->pTrigger; 864 if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull) 865 || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull) 866 ){ 867 return 1; 868 } 869 } 870 return 0; 871 } 872 873 /* 874 ** This function is called when inserting, deleting or updating a row of 875 ** table pTab to generate VDBE code to perform foreign key constraint 876 ** processing for the operation. 877 ** 878 ** For a DELETE operation, parameter regOld is passed the index of the 879 ** first register in an array of (pTab->nCol+1) registers containing the 880 ** rowid of the row being deleted, followed by each of the column values 881 ** of the row being deleted, from left to right. Parameter regNew is passed 882 ** zero in this case. 883 ** 884 ** For an INSERT operation, regOld is passed zero and regNew is passed the 885 ** first register of an array of (pTab->nCol+1) registers containing the new 886 ** row data. 887 ** 888 ** For an UPDATE operation, this function is called twice. Once before 889 ** the original record is deleted from the table using the calling convention 890 ** described for DELETE. Then again after the original record is deleted 891 ** but before the new record is inserted using the INSERT convention. 892 */ 893 void sqlite3FkCheck( 894 Parse *pParse, /* Parse context */ 895 Table *pTab, /* Row is being deleted from this table */ 896 int regOld, /* Previous row data is stored here */ 897 int regNew, /* New row data is stored here */ 898 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 899 int bChngRowid /* True if rowid is UPDATEd */ 900 ){ 901 sqlite3 *db = pParse->db; /* Database handle */ 902 FKey *pFKey; /* Used to iterate through FKs */ 903 int iDb; /* Index of database containing pTab */ 904 const char *zDb; /* Name of database containing pTab */ 905 int isIgnoreErrors = pParse->disableTriggers; 906 907 /* Exactly one of regOld and regNew should be non-zero. */ 908 assert( (regOld==0)!=(regNew==0) ); 909 910 /* If foreign-keys are disabled, this function is a no-op. */ 911 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 912 if( !IsOrdinaryTable(pTab) ) return; 913 914 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 915 zDb = db->aDb[iDb].zDbSName; 916 917 /* Loop through all the foreign key constraints for which pTab is the 918 ** child table (the table that the foreign key definition is part of). */ 919 for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ 920 Table *pTo; /* Parent table of foreign key pFKey */ 921 Index *pIdx = 0; /* Index on key columns in pTo */ 922 int *aiFree = 0; 923 int *aiCol; 924 int iCol; 925 int i; 926 int bIgnore = 0; 927 928 if( aChange 929 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 930 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 931 ){ 932 continue; 933 } 934 935 /* Find the parent table of this foreign key. Also find a unique index 936 ** on the parent key columns in the parent table. If either of these 937 ** schema items cannot be located, set an error in pParse and return 938 ** early. */ 939 if( pParse->disableTriggers ){ 940 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 941 }else{ 942 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 943 } 944 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 945 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 946 if( !isIgnoreErrors || db->mallocFailed ) return; 947 if( pTo==0 ){ 948 /* If isIgnoreErrors is true, then a table is being dropped. In this 949 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 950 ** before actually dropping it in order to check FK constraints. 951 ** If the parent table of an FK constraint on the current table is 952 ** missing, behave as if it is empty. i.e. decrement the relevant 953 ** FK counter for each row of the current table with non-NULL keys. 954 */ 955 Vdbe *v = sqlite3GetVdbe(pParse); 956 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 957 for(i=0; i<pFKey->nCol; i++){ 958 int iFromCol, iReg; 959 iFromCol = pFKey->aCol[i].iFrom; 960 iReg = sqlite3TableColumnToStorage(pFKey->pFrom,iFromCol) + regOld+1; 961 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); 962 } 963 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 964 } 965 continue; 966 } 967 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 968 969 if( aiFree ){ 970 aiCol = aiFree; 971 }else{ 972 iCol = pFKey->aCol[0].iFrom; 973 aiCol = &iCol; 974 } 975 for(i=0; i<pFKey->nCol; i++){ 976 if( aiCol[i]==pTab->iPKey ){ 977 aiCol[i] = -1; 978 } 979 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 980 #ifndef SQLITE_OMIT_AUTHORIZATION 981 /* Request permission to read the parent key columns. If the 982 ** authorization callback returns SQLITE_IGNORE, behave as if any 983 ** values read from the parent table are NULL. */ 984 if( db->xAuth ){ 985 int rcauth; 986 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zCnName; 987 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 988 bIgnore = (rcauth==SQLITE_IGNORE); 989 } 990 #endif 991 } 992 993 /* Take a shared-cache advisory read-lock on the parent table. Allocate 994 ** a cursor to use to search the unique index on the parent key columns 995 ** in the parent table. */ 996 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 997 pParse->nTab++; 998 999 if( regOld!=0 ){ 1000 /* A row is being removed from the child table. Search for the parent. 1001 ** If the parent does not exist, removing the child row resolves an 1002 ** outstanding foreign key constraint violation. */ 1003 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore); 1004 } 1005 if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){ 1006 /* A row is being added to the child table. If a parent row cannot 1007 ** be found, adding the child row has violated the FK constraint. 1008 ** 1009 ** If this operation is being performed as part of a trigger program 1010 ** that is actually a "SET NULL" action belonging to this very 1011 ** foreign key, then omit this scan altogether. As all child key 1012 ** values are guaranteed to be NULL, it is not possible for adding 1013 ** this row to cause an FK violation. */ 1014 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore); 1015 } 1016 1017 sqlite3DbFree(db, aiFree); 1018 } 1019 1020 /* Loop through all the foreign key constraints that refer to this table. 1021 ** (the "child" constraints) */ 1022 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1023 Index *pIdx = 0; /* Foreign key index for pFKey */ 1024 SrcList *pSrc; 1025 int *aiCol = 0; 1026 1027 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ 1028 continue; 1029 } 1030 1031 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 1032 && !pParse->pToplevel && !pParse->isMultiWrite 1033 ){ 1034 assert( regOld==0 && regNew!=0 ); 1035 /* Inserting a single row into a parent table cannot cause (or fix) 1036 ** an immediate foreign key violation. So do nothing in this case. */ 1037 continue; 1038 } 1039 1040 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 1041 if( !isIgnoreErrors || db->mallocFailed ) return; 1042 continue; 1043 } 1044 assert( aiCol || pFKey->nCol==1 ); 1045 1046 /* Create a SrcList structure containing the child table. We need the 1047 ** child table as a SrcList for sqlite3WhereBegin() */ 1048 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1049 if( pSrc ){ 1050 SrcItem *pItem = pSrc->a; 1051 pItem->pTab = pFKey->pFrom; 1052 pItem->zName = pFKey->pFrom->zName; 1053 pItem->pTab->nTabRef++; 1054 pItem->iCursor = pParse->nTab++; 1055 1056 if( regNew!=0 ){ 1057 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 1058 } 1059 if( regOld!=0 ){ 1060 int eAction = pFKey->aAction[aChange!=0]; 1061 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 1062 /* If this is a deferred FK constraint, or a CASCADE or SET NULL 1063 ** action applies, then any foreign key violations caused by 1064 ** removing the parent key will be rectified by the action trigger. 1065 ** So do not set the "may-abort" flag in this case. 1066 ** 1067 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the 1068 ** may-abort flag will eventually be set on this statement anyway 1069 ** (when this function is called as part of processing the UPDATE 1070 ** within the action trigger). 1071 ** 1072 ** Note 2: At first glance it may seem like SQLite could simply omit 1073 ** all OP_FkCounter related scans when either CASCADE or SET NULL 1074 ** applies. The trouble starts if the CASCADE or SET NULL action 1075 ** trigger causes other triggers or action rules attached to the 1076 ** child table to fire. In these cases the fk constraint counters 1077 ** might be set incorrectly if any OP_FkCounter related scans are 1078 ** omitted. */ 1079 if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){ 1080 sqlite3MayAbort(pParse); 1081 } 1082 } 1083 pItem->zName = 0; 1084 sqlite3SrcListDelete(db, pSrc); 1085 } 1086 sqlite3DbFree(db, aiCol); 1087 } 1088 } 1089 1090 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 1091 1092 /* 1093 ** This function is called before generating code to update or delete a 1094 ** row contained in table pTab. 1095 */ 1096 u32 sqlite3FkOldmask( 1097 Parse *pParse, /* Parse context */ 1098 Table *pTab /* Table being modified */ 1099 ){ 1100 u32 mask = 0; 1101 if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){ 1102 FKey *p; 1103 int i; 1104 for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ 1105 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 1106 } 1107 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1108 Index *pIdx = 0; 1109 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); 1110 if( pIdx ){ 1111 for(i=0; i<pIdx->nKeyCol; i++){ 1112 assert( pIdx->aiColumn[i]>=0 ); 1113 mask |= COLUMN_MASK(pIdx->aiColumn[i]); 1114 } 1115 } 1116 } 1117 } 1118 return mask; 1119 } 1120 1121 1122 /* 1123 ** This function is called before generating code to update or delete a 1124 ** row contained in table pTab. If the operation is a DELETE, then 1125 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 1126 ** to an array of size N, where N is the number of columns in table pTab. 1127 ** If the i'th column is not modified by the UPDATE, then the corresponding 1128 ** entry in the aChange[] array is set to -1. If the column is modified, 1129 ** the value is 0 or greater. Parameter chngRowid is set to true if the 1130 ** UPDATE statement modifies the rowid fields of the table. 1131 ** 1132 ** If any foreign key processing will be required, this function returns 1133 ** non-zero. If there is no foreign key related processing, this function 1134 ** returns zero. 1135 ** 1136 ** For an UPDATE, this function returns 2 if: 1137 ** 1138 ** * There are any FKs for which pTab is the child and the parent table 1139 ** and any FK processing at all is required (even of a different FK), or 1140 ** 1141 ** * the UPDATE modifies one or more parent keys for which the action is 1142 ** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL). 1143 ** 1144 ** Or, assuming some other foreign key processing is required, 1. 1145 */ 1146 int sqlite3FkRequired( 1147 Parse *pParse, /* Parse context */ 1148 Table *pTab, /* Table being modified */ 1149 int *aChange, /* Non-NULL for UPDATE operations */ 1150 int chngRowid /* True for UPDATE that affects rowid */ 1151 ){ 1152 int eRet = 1; /* Value to return if bHaveFK is true */ 1153 int bHaveFK = 0; /* If FK processing is required */ 1154 if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){ 1155 if( !aChange ){ 1156 /* A DELETE operation. Foreign key processing is required if the 1157 ** table in question is either the child or parent table for any 1158 ** foreign key constraint. */ 1159 bHaveFK = (sqlite3FkReferences(pTab) || pTab->u.tab.pFKey); 1160 }else{ 1161 /* This is an UPDATE. Foreign key processing is only required if the 1162 ** operation modifies one or more child or parent key columns. */ 1163 FKey *p; 1164 1165 /* Check if any child key columns are being modified. */ 1166 for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ 1167 if( fkChildIsModified(pTab, p, aChange, chngRowid) ){ 1168 if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) eRet = 2; 1169 bHaveFK = 1; 1170 } 1171 } 1172 1173 /* Check if any parent key columns are being modified. */ 1174 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1175 if( fkParentIsModified(pTab, p, aChange, chngRowid) ){ 1176 if( p->aAction[1]!=OE_None ) return 2; 1177 bHaveFK = 1; 1178 } 1179 } 1180 } 1181 } 1182 return bHaveFK ? eRet : 0; 1183 } 1184 1185 /* 1186 ** This function is called when an UPDATE or DELETE operation is being 1187 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 1188 ** If the current operation is an UPDATE, then the pChanges parameter is 1189 ** passed a pointer to the list of columns being modified. If it is a 1190 ** DELETE, pChanges is passed a NULL pointer. 1191 ** 1192 ** It returns a pointer to a Trigger structure containing a trigger 1193 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 1194 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is 1195 ** returned (these actions require no special handling by the triggers 1196 ** sub-system, code for them is created by fkScanChildren()). 1197 ** 1198 ** For example, if pFKey is the foreign key and pTab is table "p" in 1199 ** the following schema: 1200 ** 1201 ** CREATE TABLE p(pk PRIMARY KEY); 1202 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 1203 ** 1204 ** then the returned trigger structure is equivalent to: 1205 ** 1206 ** CREATE TRIGGER ... DELETE ON p BEGIN 1207 ** DELETE FROM c WHERE ck = old.pk; 1208 ** END; 1209 ** 1210 ** The returned pointer is cached as part of the foreign key object. It 1211 ** is eventually freed along with the rest of the foreign key object by 1212 ** sqlite3FkDelete(). 1213 */ 1214 static Trigger *fkActionTrigger( 1215 Parse *pParse, /* Parse context */ 1216 Table *pTab, /* Table being updated or deleted from */ 1217 FKey *pFKey, /* Foreign key to get action for */ 1218 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 1219 ){ 1220 sqlite3 *db = pParse->db; /* Database handle */ 1221 int action; /* One of OE_None, OE_Cascade etc. */ 1222 Trigger *pTrigger; /* Trigger definition to return */ 1223 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 1224 1225 action = pFKey->aAction[iAction]; 1226 if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){ 1227 return 0; 1228 } 1229 pTrigger = pFKey->apTrigger[iAction]; 1230 1231 if( action!=OE_None && !pTrigger ){ 1232 char const *zFrom; /* Name of child table */ 1233 int nFrom; /* Length in bytes of zFrom */ 1234 Index *pIdx = 0; /* Parent key index for this FK */ 1235 int *aiCol = 0; /* child table cols -> parent key cols */ 1236 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 1237 Expr *pWhere = 0; /* WHERE clause of trigger step */ 1238 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 1239 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 1240 int i; /* Iterator variable */ 1241 Expr *pWhen = 0; /* WHEN clause for the trigger */ 1242 1243 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 1244 assert( aiCol || pFKey->nCol==1 ); 1245 1246 for(i=0; i<pFKey->nCol; i++){ 1247 Token tOld = { "old", 3 }; /* Literal "old" token */ 1248 Token tNew = { "new", 3 }; /* Literal "new" token */ 1249 Token tFromCol; /* Name of column in child table */ 1250 Token tToCol; /* Name of column in parent table */ 1251 int iFromCol; /* Idx of column in child table */ 1252 Expr *pEq; /* tFromCol = OLD.tToCol */ 1253 1254 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 1255 assert( iFromCol>=0 ); 1256 assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) ); 1257 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 1258 sqlite3TokenInit(&tToCol, 1259 pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zCnName); 1260 sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zCnName); 1261 1262 /* Create the expression "OLD.zToCol = zFromCol". It is important 1263 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 1264 ** that the affinity and collation sequence associated with the 1265 ** parent table are used for the comparison. */ 1266 pEq = sqlite3PExpr(pParse, TK_EQ, 1267 sqlite3PExpr(pParse, TK_DOT, 1268 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1269 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 1270 sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) 1271 ); 1272 pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); 1273 1274 /* For ON UPDATE, construct the next term of the WHEN clause. 1275 ** The final WHEN clause will be like this: 1276 ** 1277 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 1278 */ 1279 if( pChanges ){ 1280 pEq = sqlite3PExpr(pParse, TK_IS, 1281 sqlite3PExpr(pParse, TK_DOT, 1282 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1283 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 1284 sqlite3PExpr(pParse, TK_DOT, 1285 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1286 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)) 1287 ); 1288 pWhen = sqlite3ExprAnd(pParse, pWhen, pEq); 1289 } 1290 1291 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 1292 Expr *pNew; 1293 if( action==OE_Cascade ){ 1294 pNew = sqlite3PExpr(pParse, TK_DOT, 1295 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1296 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)); 1297 }else if( action==OE_SetDflt ){ 1298 Column *pCol = pFKey->pFrom->aCol + iFromCol; 1299 Expr *pDflt; 1300 if( pCol->colFlags & COLFLAG_GENERATED ){ 1301 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1302 testcase( pCol->colFlags & COLFLAG_STORED ); 1303 pDflt = 0; 1304 }else{ 1305 pDflt = sqlite3ColumnExpr(pFKey->pFrom, pCol); 1306 } 1307 if( pDflt ){ 1308 pNew = sqlite3ExprDup(db, pDflt, 0); 1309 }else{ 1310 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 1311 } 1312 }else{ 1313 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 1314 } 1315 pList = sqlite3ExprListAppend(pParse, pList, pNew); 1316 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 1317 } 1318 } 1319 sqlite3DbFree(db, aiCol); 1320 1321 zFrom = pFKey->pFrom->zName; 1322 nFrom = sqlite3Strlen30(zFrom); 1323 1324 if( action==OE_Restrict ){ 1325 Token tFrom; 1326 Expr *pRaise; 1327 1328 tFrom.z = zFrom; 1329 tFrom.n = nFrom; 1330 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); 1331 if( pRaise ){ 1332 pRaise->affExpr = OE_Abort; 1333 } 1334 pSelect = sqlite3SelectNew(pParse, 1335 sqlite3ExprListAppend(pParse, 0, pRaise), 1336 sqlite3SrcListAppend(pParse, 0, &tFrom, 0), 1337 pWhere, 1338 0, 0, 0, 0, 0 1339 ); 1340 pWhere = 0; 1341 } 1342 1343 /* Disable lookaside memory allocation */ 1344 DisableLookaside; 1345 1346 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 1347 sizeof(Trigger) + /* struct Trigger */ 1348 sizeof(TriggerStep) + /* Single step in trigger program */ 1349 nFrom + 1 /* Space for pStep->zTarget */ 1350 ); 1351 if( pTrigger ){ 1352 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 1353 pStep->zTarget = (char *)&pStep[1]; 1354 memcpy((char *)pStep->zTarget, zFrom, nFrom); 1355 1356 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 1357 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 1358 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1359 if( pWhen ){ 1360 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0); 1361 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 1362 } 1363 } 1364 1365 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 1366 EnableLookaside; 1367 1368 sqlite3ExprDelete(db, pWhere); 1369 sqlite3ExprDelete(db, pWhen); 1370 sqlite3ExprListDelete(db, pList); 1371 sqlite3SelectDelete(db, pSelect); 1372 if( db->mallocFailed==1 ){ 1373 fkTriggerDelete(db, pTrigger); 1374 return 0; 1375 } 1376 assert( pStep!=0 ); 1377 assert( pTrigger!=0 ); 1378 1379 switch( action ){ 1380 case OE_Restrict: 1381 pStep->op = TK_SELECT; 1382 break; 1383 case OE_Cascade: 1384 if( !pChanges ){ 1385 pStep->op = TK_DELETE; 1386 break; 1387 } 1388 /* no break */ deliberate_fall_through 1389 default: 1390 pStep->op = TK_UPDATE; 1391 } 1392 pStep->pTrig = pTrigger; 1393 pTrigger->pSchema = pTab->pSchema; 1394 pTrigger->pTabSchema = pTab->pSchema; 1395 pFKey->apTrigger[iAction] = pTrigger; 1396 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 1397 } 1398 1399 return pTrigger; 1400 } 1401 1402 /* 1403 ** This function is called when deleting or updating a row to implement 1404 ** any required CASCADE, SET NULL or SET DEFAULT actions. 1405 */ 1406 void sqlite3FkActions( 1407 Parse *pParse, /* Parse context */ 1408 Table *pTab, /* Table being updated or deleted from */ 1409 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 1410 int regOld, /* Address of array containing old row */ 1411 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 1412 int bChngRowid /* True if rowid is UPDATEd */ 1413 ){ 1414 /* If foreign-key support is enabled, iterate through all FKs that 1415 ** refer to table pTab. If there is an action associated with the FK 1416 ** for this operation (either update or delete), invoke the associated 1417 ** trigger sub-program. */ 1418 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1419 FKey *pFKey; /* Iterator variable */ 1420 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1421 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ 1422 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); 1423 if( pAct ){ 1424 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); 1425 } 1426 } 1427 } 1428 } 1429 } 1430 1431 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 1432 1433 /* 1434 ** Free all memory associated with foreign key definitions attached to 1435 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 1436 ** hash table. 1437 */ 1438 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 1439 FKey *pFKey; /* Iterator variable */ 1440 FKey *pNext; /* Copy of pFKey->pNextFrom */ 1441 1442 assert( IsOrdinaryTable(pTab) ); 1443 for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pNext){ 1444 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 1445 1446 /* Remove the FK from the fkeyHash hash table. */ 1447 if( !db || db->pnBytesFreed==0 ){ 1448 if( pFKey->pPrevTo ){ 1449 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 1450 }else{ 1451 void *p = (void *)pFKey->pNextTo; 1452 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); 1453 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p); 1454 } 1455 if( pFKey->pNextTo ){ 1456 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 1457 } 1458 } 1459 1460 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 1461 ** classified as either immediate or deferred. 1462 */ 1463 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 1464 1465 /* Delete any triggers created to implement actions for this FK. */ 1466 #ifndef SQLITE_OMIT_TRIGGER 1467 fkTriggerDelete(db, pFKey->apTrigger[0]); 1468 fkTriggerDelete(db, pFKey->apTrigger[1]); 1469 #endif 1470 1471 pNext = pFKey->pNextFrom; 1472 sqlite3DbFree(db, pFKey); 1473 } 1474 } 1475 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ 1476