1 /* 2 ** 3 ** The author disclaims copyright to this source code. In place of 4 ** a legal notice, here is a blessing: 5 ** 6 ** May you do good and not evil. 7 ** May you find forgiveness for yourself and forgive others. 8 ** May you share freely, never taking more than you give. 9 ** 10 ************************************************************************* 11 ** This file contains code used by the compiler to add foreign key 12 ** support to compiled SQL statements. 13 */ 14 #include "sqliteInt.h" 15 16 #ifndef SQLITE_OMIT_FOREIGN_KEY 17 #ifndef SQLITE_OMIT_TRIGGER 18 19 /* 20 ** Deferred and Immediate FKs 21 ** -------------------------- 22 ** 23 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 24 ** If an immediate foreign key constraint is violated, 25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current 26 ** statement transaction rolled back. If a 27 ** deferred foreign key constraint is violated, no action is taken 28 ** immediately. However if the application attempts to commit the 29 ** transaction before fixing the constraint violation, the attempt fails. 30 ** 31 ** Deferred constraints are implemented using a simple counter associated 32 ** with the database handle. The counter is set to zero each time a 33 ** database transaction is opened. Each time a statement is executed 34 ** that causes a foreign key violation, the counter is incremented. Each 35 ** time a statement is executed that removes an existing violation from 36 ** the database, the counter is decremented. When the transaction is 37 ** committed, the commit fails if the current value of the counter is 38 ** greater than zero. This scheme has two big drawbacks: 39 ** 40 ** * When a commit fails due to a deferred foreign key constraint, 41 ** there is no way to tell which foreign constraint is not satisfied, 42 ** or which row it is not satisfied for. 43 ** 44 ** * If the database contains foreign key violations when the 45 ** transaction is opened, this may cause the mechanism to malfunction. 46 ** 47 ** Despite these problems, this approach is adopted as it seems simpler 48 ** than the alternatives. 49 ** 50 ** INSERT operations: 51 ** 52 ** I.1) For each FK for which the table is the child table, search 53 ** the parent table for a match. If none is found increment the 54 ** constraint counter. 55 ** 56 ** I.2) For each FK for which the table is the parent table, 57 ** search the child table for rows that correspond to the new 58 ** row in the parent table. Decrement the counter for each row 59 ** found (as the constraint is now satisfied). 60 ** 61 ** DELETE operations: 62 ** 63 ** D.1) For each FK for which the table is the child table, 64 ** search the parent table for a row that corresponds to the 65 ** deleted row in the child table. If such a row is not found, 66 ** decrement the counter. 67 ** 68 ** D.2) For each FK for which the table is the parent table, search 69 ** the child table for rows that correspond to the deleted row 70 ** in the parent table. For each found increment the counter. 71 ** 72 ** UPDATE operations: 73 ** 74 ** An UPDATE command requires that all 4 steps above are taken, but only 75 ** for FK constraints for which the affected columns are actually 76 ** modified (values must be compared at runtime). 77 ** 78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 79 ** This simplifies the implementation a bit. 80 ** 81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 82 ** resolution is considered to delete rows before the new row is inserted. 83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 84 ** is thrown, even if the FK constraint would be satisfied after the new 85 ** row is inserted. 86 ** 87 ** Immediate constraints are usually handled similarly. The only difference 88 ** is that the counter used is stored as part of each individual statement 89 ** object (struct Vdbe). If, after the statement has run, its immediate 90 ** constraint counter is greater than zero, 91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY 92 ** and the statement transaction is rolled back. An exception is an INSERT 93 ** statement that inserts a single row only (no triggers). In this case, 94 ** instead of using a counter, an exception is thrown immediately if the 95 ** INSERT violates a foreign key constraint. This is necessary as such 96 ** an INSERT does not open a statement transaction. 97 ** 98 ** TODO: How should dropping a table be handled? How should renaming a 99 ** table be handled? 100 ** 101 ** 102 ** Query API Notes 103 ** --------------- 104 ** 105 ** Before coding an UPDATE or DELETE row operation, the code-generator 106 ** for those two operations needs to know whether or not the operation 107 ** requires any FK processing and, if so, which columns of the original 108 ** row are required by the FK processing VDBE code (i.e. if FKs were 109 ** implemented using triggers, which of the old.* columns would be 110 ** accessed). No information is required by the code-generator before 111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 112 ** generation code to query for this information are: 113 ** 114 ** sqlite3FkRequired() - Test to see if FK processing is required. 115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 116 ** 117 ** 118 ** Externally accessible module functions 119 ** -------------------------------------- 120 ** 121 ** sqlite3FkCheck() - Check for foreign key violations. 122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 123 ** sqlite3FkDelete() - Delete an FKey structure. 124 */ 125 126 /* 127 ** VDBE Calling Convention 128 ** ----------------------- 129 ** 130 ** Example: 131 ** 132 ** For the following INSERT statement: 133 ** 134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 135 ** INSERT INTO t1 VALUES(1, 2, 3.1); 136 ** 137 ** Register (x): 2 (type integer) 138 ** Register (x+1): 1 (type integer) 139 ** Register (x+2): NULL (type NULL) 140 ** Register (x+3): 3.1 (type real) 141 */ 142 143 /* 144 ** A foreign key constraint requires that the key columns in the parent 145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 146 ** Given that pParent is the parent table for foreign key constraint pFKey, 147 ** search the schema for a unique index on the parent key columns. 148 ** 149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 151 ** is set to point to the unique index. 152 ** 153 ** If the parent key consists of a single column (the foreign key constraint 154 ** is not a composite foreign key), output variable *paiCol is set to NULL. 155 ** Otherwise, it is set to point to an allocated array of size N, where 156 ** N is the number of columns in the parent key. The first element of the 157 ** array is the index of the child table column that is mapped by the FK 158 ** constraint to the parent table column stored in the left-most column 159 ** of index *ppIdx. The second element of the array is the index of the 160 ** child table column that corresponds to the second left-most column of 161 ** *ppIdx, and so on. 162 ** 163 ** If the required index cannot be found, either because: 164 ** 165 ** 1) The named parent key columns do not exist, or 166 ** 167 ** 2) The named parent key columns do exist, but are not subject to a 168 ** UNIQUE or PRIMARY KEY constraint, or 169 ** 170 ** 3) No parent key columns were provided explicitly as part of the 171 ** foreign key definition, and the parent table does not have a 172 ** PRIMARY KEY, or 173 ** 174 ** 4) No parent key columns were provided explicitly as part of the 175 ** foreign key definition, and the PRIMARY KEY of the parent table 176 ** consists of a a different number of columns to the child key in 177 ** the child table. 178 ** 179 ** then non-zero is returned, and a "foreign key mismatch" error loaded 180 ** into pParse. If an OOM error occurs, non-zero is returned and the 181 ** pParse->db->mallocFailed flag is set. 182 */ 183 int sqlite3FkLocateIndex( 184 Parse *pParse, /* Parse context to store any error in */ 185 Table *pParent, /* Parent table of FK constraint pFKey */ 186 FKey *pFKey, /* Foreign key to find index for */ 187 Index **ppIdx, /* OUT: Unique index on parent table */ 188 int **paiCol /* OUT: Map of index columns in pFKey */ 189 ){ 190 Index *pIdx = 0; /* Value to return via *ppIdx */ 191 int *aiCol = 0; /* Value to return via *paiCol */ 192 int nCol = pFKey->nCol; /* Number of columns in parent key */ 193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 194 195 /* The caller is responsible for zeroing output parameters. */ 196 assert( ppIdx && *ppIdx==0 ); 197 assert( !paiCol || *paiCol==0 ); 198 assert( pParse ); 199 200 /* If this is a non-composite (single column) foreign key, check if it 201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 202 ** and *paiCol set to zero and return early. 203 ** 204 ** Otherwise, for a composite foreign key (more than one column), allocate 205 ** space for the aiCol array (returned via output parameter *paiCol). 206 ** Non-composite foreign keys do not require the aiCol array. 207 */ 208 if( nCol==1 ){ 209 /* The FK maps to the IPK if any of the following are true: 210 ** 211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 212 ** mapped to the primary key of table pParent, or 213 ** 2) The FK is explicitly mapped to a column declared as INTEGER 214 ** PRIMARY KEY. 215 */ 216 if( pParent->iPKey>=0 ){ 217 if( !zKey ) return 0; 218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; 219 } 220 }else if( paiCol ){ 221 assert( nCol>1 ); 222 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int)); 223 if( !aiCol ) return 1; 224 *paiCol = aiCol; 225 } 226 227 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 228 if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){ 229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 230 ** of columns. If each indexed column corresponds to a foreign key 231 ** column of pFKey, then this index is a winner. */ 232 233 if( zKey==0 ){ 234 /* If zKey is NULL, then this foreign key is implicitly mapped to 235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 236 ** identified by the test (Index.autoIndex==2). */ 237 if( pIdx->autoIndex==2 ){ 238 if( aiCol ){ 239 int i; 240 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 241 } 242 break; 243 } 244 }else{ 245 /* If zKey is non-NULL, then this foreign key was declared to 246 ** map to an explicit list of columns in table pParent. Check if this 247 ** index matches those columns. Also, check that the index uses 248 ** the default collation sequences for each column. */ 249 int i, j; 250 for(i=0; i<nCol; i++){ 251 int iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 252 char *zDfltColl; /* Def. collation for column */ 253 char *zIdxCol; /* Name of indexed column */ 254 255 /* If the index uses a collation sequence that is different from 256 ** the default collation sequence for the column, this index is 257 ** unusable. Bail out early in this case. */ 258 zDfltColl = pParent->aCol[iCol].zColl; 259 if( !zDfltColl ){ 260 zDfltColl = "BINARY"; 261 } 262 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 263 264 zIdxCol = pParent->aCol[iCol].zName; 265 for(j=0; j<nCol; j++){ 266 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 267 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 268 break; 269 } 270 } 271 if( j==nCol ) break; 272 } 273 if( i==nCol ) break; /* pIdx is usable */ 274 } 275 } 276 } 277 278 if( !pIdx ){ 279 if( !pParse->disableTriggers ){ 280 sqlite3ErrorMsg(pParse, 281 "foreign key mismatch - \"%w\" referencing \"%w\"", 282 pFKey->pFrom->zName, pFKey->zTo); 283 } 284 sqlite3DbFree(pParse->db, aiCol); 285 return 1; 286 } 287 288 *ppIdx = pIdx; 289 return 0; 290 } 291 292 /* 293 ** This function is called when a row is inserted into or deleted from the 294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 295 ** on the child table of pFKey, this function is invoked twice for each row 296 ** affected - once to "delete" the old row, and then again to "insert" the 297 ** new row. 298 ** 299 ** Each time it is called, this function generates VDBE code to locate the 300 ** row in the parent table that corresponds to the row being inserted into 301 ** or deleted from the child table. If the parent row can be found, no 302 ** special action is taken. Otherwise, if the parent row can *not* be 303 ** found in the parent table: 304 ** 305 ** Operation | FK type | Action taken 306 ** -------------------------------------------------------------------------- 307 ** INSERT immediate Increment the "immediate constraint counter". 308 ** 309 ** DELETE immediate Decrement the "immediate constraint counter". 310 ** 311 ** INSERT deferred Increment the "deferred constraint counter". 312 ** 313 ** DELETE deferred Decrement the "deferred constraint counter". 314 ** 315 ** These operations are identified in the comment at the top of this file 316 ** (fkey.c) as "I.1" and "D.1". 317 */ 318 static void fkLookupParent( 319 Parse *pParse, /* Parse context */ 320 int iDb, /* Index of database housing pTab */ 321 Table *pTab, /* Parent table of FK pFKey */ 322 Index *pIdx, /* Unique index on parent key columns in pTab */ 323 FKey *pFKey, /* Foreign key constraint */ 324 int *aiCol, /* Map from parent key columns to child table columns */ 325 int regData, /* Address of array containing child table row */ 326 int nIncr, /* Increment constraint counter by this */ 327 int isIgnore /* If true, pretend pTab contains all NULL values */ 328 ){ 329 int i; /* Iterator variable */ 330 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 331 int iCur = pParse->nTab - 1; /* Cursor number to use */ 332 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ 333 334 /* If nIncr is less than zero, then check at runtime if there are any 335 ** outstanding constraints to resolve. If there are not, there is no need 336 ** to check if deleting this row resolves any outstanding violations. 337 ** 338 ** Check if any of the key columns in the child table row are NULL. If 339 ** any are, then the constraint is considered satisfied. No need to 340 ** search for a matching row in the parent table. */ 341 if( nIncr<0 ){ 342 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 343 } 344 for(i=0; i<pFKey->nCol; i++){ 345 int iReg = aiCol[i] + regData + 1; 346 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); 347 } 348 349 if( isIgnore==0 ){ 350 if( pIdx==0 ){ 351 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 352 ** column of the parent table (table pTab). */ 353 int iMustBeInt; /* Address of MustBeInt instruction */ 354 int regTemp = sqlite3GetTempReg(pParse); 355 356 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 357 ** apply the affinity of the parent key). If this fails, then there 358 ** is no matching parent key. Before using MustBeInt, make a copy of 359 ** the value. Otherwise, the value inserted into the child key column 360 ** will have INTEGER affinity applied to it, which may not be correct. */ 361 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); 362 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 363 364 /* If the parent table is the same as the child table, and we are about 365 ** to increment the constraint-counter (i.e. this is an INSERT operation), 366 ** then check if the row being inserted matches itself. If so, do not 367 ** increment the constraint-counter. */ 368 if( pTab==pFKey->pFrom && nIncr==1 ){ 369 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); 370 } 371 372 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 373 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); 374 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); 375 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 376 sqlite3VdbeJumpHere(v, iMustBeInt); 377 sqlite3ReleaseTempReg(pParse, regTemp); 378 }else{ 379 int nCol = pFKey->nCol; 380 int regTemp = sqlite3GetTempRange(pParse, nCol); 381 int regRec = sqlite3GetTempReg(pParse); 382 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 383 384 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 385 sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF); 386 for(i=0; i<nCol; i++){ 387 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i); 388 } 389 390 /* If the parent table is the same as the child table, and we are about 391 ** to increment the constraint-counter (i.e. this is an INSERT operation), 392 ** then check if the row being inserted matches itself. If so, do not 393 ** increment the constraint-counter. 394 ** 395 ** If any of the parent-key values are NULL, then the row cannot match 396 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 397 ** of the parent-key values are NULL (at this point it is known that 398 ** none of the child key values are). 399 */ 400 if( pTab==pFKey->pFrom && nIncr==1 ){ 401 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 402 for(i=0; i<nCol; i++){ 403 int iChild = aiCol[i]+1+regData; 404 int iParent = pIdx->aiColumn[i]+1+regData; 405 assert( aiCol[i]!=pTab->iPKey ); 406 if( pIdx->aiColumn[i]==pTab->iPKey ){ 407 /* The parent key is a composite key that includes the IPK column */ 408 iParent = regData; 409 } 410 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); 411 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 412 } 413 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); 414 } 415 416 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec); 417 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT); 418 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); 419 420 sqlite3ReleaseTempReg(pParse, regRec); 421 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 422 } 423 } 424 425 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ 426 /* Special case: If this is an INSERT statement that will insert exactly 427 ** one row into the table, raise a constraint immediately instead of 428 ** incrementing a counter. This is necessary as the VM code is being 429 ** generated for will not open a statement transaction. */ 430 assert( nIncr==1 ); 431 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 432 OE_Abort, "foreign key constraint failed", P4_STATIC 433 ); 434 }else{ 435 if( nIncr>0 && pFKey->isDeferred==0 ){ 436 sqlite3ParseToplevel(pParse)->mayAbort = 1; 437 } 438 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 439 } 440 441 sqlite3VdbeResolveLabel(v, iOk); 442 sqlite3VdbeAddOp1(v, OP_Close, iCur); 443 } 444 445 /* 446 ** This function is called to generate code executed when a row is deleted 447 ** from the parent table of foreign key constraint pFKey and, if pFKey is 448 ** deferred, when a row is inserted into the same table. When generating 449 ** code for an SQL UPDATE operation, this function may be called twice - 450 ** once to "delete" the old row and once to "insert" the new row. 451 ** 452 ** The code generated by this function scans through the rows in the child 453 ** table that correspond to the parent table row being deleted or inserted. 454 ** For each child row found, one of the following actions is taken: 455 ** 456 ** Operation | FK type | Action taken 457 ** -------------------------------------------------------------------------- 458 ** DELETE immediate Increment the "immediate constraint counter". 459 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 460 ** throw a "foreign key constraint failed" exception. 461 ** 462 ** INSERT immediate Decrement the "immediate constraint counter". 463 ** 464 ** DELETE deferred Increment the "deferred constraint counter". 465 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 466 ** throw a "foreign key constraint failed" exception. 467 ** 468 ** INSERT deferred Decrement the "deferred constraint counter". 469 ** 470 ** These operations are identified in the comment at the top of this file 471 ** (fkey.c) as "I.2" and "D.2". 472 */ 473 static void fkScanChildren( 474 Parse *pParse, /* Parse context */ 475 SrcList *pSrc, /* SrcList containing the table to scan */ 476 Table *pTab, 477 Index *pIdx, /* Foreign key index */ 478 FKey *pFKey, /* Foreign key relationship */ 479 int *aiCol, /* Map from pIdx cols to child table cols */ 480 int regData, /* Referenced table data starts here */ 481 int nIncr /* Amount to increment deferred counter by */ 482 ){ 483 sqlite3 *db = pParse->db; /* Database handle */ 484 int i; /* Iterator variable */ 485 Expr *pWhere = 0; /* WHERE clause to scan with */ 486 NameContext sNameContext; /* Context used to resolve WHERE clause */ 487 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 488 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 489 Vdbe *v = sqlite3GetVdbe(pParse); 490 491 assert( !pIdx || pIdx->pTable==pTab ); 492 493 if( nIncr<0 ){ 494 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 495 } 496 497 /* Create an Expr object representing an SQL expression like: 498 ** 499 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 500 ** 501 ** The collation sequence used for the comparison should be that of 502 ** the parent key columns. The affinity of the parent key column should 503 ** be applied to each child key value before the comparison takes place. 504 */ 505 for(i=0; i<pFKey->nCol; i++){ 506 Expr *pLeft; /* Value from parent table row */ 507 Expr *pRight; /* Column ref to child table */ 508 Expr *pEq; /* Expression (pLeft = pRight) */ 509 int iCol; /* Index of column in child table */ 510 const char *zCol; /* Name of column in child table */ 511 512 pLeft = sqlite3Expr(db, TK_REGISTER, 0); 513 if( pLeft ){ 514 /* Set the collation sequence and affinity of the LHS of each TK_EQ 515 ** expression to the parent key column defaults. */ 516 if( pIdx ){ 517 Column *pCol; 518 const char *zColl; 519 iCol = pIdx->aiColumn[i]; 520 pCol = &pTab->aCol[iCol]; 521 if( pTab->iPKey==iCol ) iCol = -1; 522 pLeft->iTable = regData+iCol+1; 523 pLeft->affinity = pCol->affinity; 524 zColl = pCol->zColl; 525 if( zColl==0 ) zColl = db->pDfltColl->zName; 526 pLeft = sqlite3ExprAddCollateString(pParse, pLeft, zColl); 527 }else{ 528 pLeft->iTable = regData; 529 pLeft->affinity = SQLITE_AFF_INTEGER; 530 } 531 } 532 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 533 assert( iCol>=0 ); 534 zCol = pFKey->pFrom->aCol[iCol].zName; 535 pRight = sqlite3Expr(db, TK_ID, zCol); 536 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); 537 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 538 } 539 540 /* If the child table is the same as the parent table, and this scan 541 ** is taking place as part of a DELETE operation (operation D.2), omit the 542 ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE 543 ** clause, where $rowid is the rowid of the row being deleted. */ 544 if( pTab==pFKey->pFrom && nIncr>0 ){ 545 Expr *pEq; /* Expression (pLeft = pRight) */ 546 Expr *pLeft; /* Value from parent table row */ 547 Expr *pRight; /* Column ref to child table */ 548 pLeft = sqlite3Expr(db, TK_REGISTER, 0); 549 pRight = sqlite3Expr(db, TK_COLUMN, 0); 550 if( pLeft && pRight ){ 551 pLeft->iTable = regData; 552 pLeft->affinity = SQLITE_AFF_INTEGER; 553 pRight->iTable = pSrc->a[0].iCursor; 554 pRight->iColumn = -1; 555 } 556 pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); 557 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 558 } 559 560 /* Resolve the references in the WHERE clause. */ 561 memset(&sNameContext, 0, sizeof(NameContext)); 562 sNameContext.pSrcList = pSrc; 563 sNameContext.pParse = pParse; 564 sqlite3ResolveExprNames(&sNameContext, pWhere); 565 566 /* Create VDBE to loop through the entries in pSrc that match the WHERE 567 ** clause. If the constraint is not deferred, throw an exception for 568 ** each row found. Otherwise, for deferred constraints, increment the 569 ** deferred constraint counter by nIncr for each row selected. */ 570 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); 571 if( nIncr>0 && pFKey->isDeferred==0 ){ 572 sqlite3ParseToplevel(pParse)->mayAbort = 1; 573 } 574 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 575 if( pWInfo ){ 576 sqlite3WhereEnd(pWInfo); 577 } 578 579 /* Clean up the WHERE clause constructed above. */ 580 sqlite3ExprDelete(db, pWhere); 581 if( iFkIfZero ){ 582 sqlite3VdbeJumpHere(v, iFkIfZero); 583 } 584 } 585 586 /* 587 ** This function returns a pointer to the head of a linked list of FK 588 ** constraints for which table pTab is the parent table. For example, 589 ** given the following schema: 590 ** 591 ** CREATE TABLE t1(a PRIMARY KEY); 592 ** CREATE TABLE t2(b REFERENCES t1(a); 593 ** 594 ** Calling this function with table "t1" as an argument returns a pointer 595 ** to the FKey structure representing the foreign key constraint on table 596 ** "t2". Calling this function with "t2" as the argument would return a 597 ** NULL pointer (as there are no FK constraints for which t2 is the parent 598 ** table). 599 */ 600 FKey *sqlite3FkReferences(Table *pTab){ 601 int nName = sqlite3Strlen30(pTab->zName); 602 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName); 603 } 604 605 /* 606 ** The second argument is a Trigger structure allocated by the 607 ** fkActionTrigger() routine. This function deletes the Trigger structure 608 ** and all of its sub-components. 609 ** 610 ** The Trigger structure or any of its sub-components may be allocated from 611 ** the lookaside buffer belonging to database handle dbMem. 612 */ 613 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 614 if( p ){ 615 TriggerStep *pStep = p->step_list; 616 sqlite3ExprDelete(dbMem, pStep->pWhere); 617 sqlite3ExprListDelete(dbMem, pStep->pExprList); 618 sqlite3SelectDelete(dbMem, pStep->pSelect); 619 sqlite3ExprDelete(dbMem, p->pWhen); 620 sqlite3DbFree(dbMem, p); 621 } 622 } 623 624 /* 625 ** This function is called to generate code that runs when table pTab is 626 ** being dropped from the database. The SrcList passed as the second argument 627 ** to this function contains a single entry guaranteed to resolve to 628 ** table pTab. 629 ** 630 ** Normally, no code is required. However, if either 631 ** 632 ** (a) The table is the parent table of a FK constraint, or 633 ** (b) The table is the child table of a deferred FK constraint and it is 634 ** determined at runtime that there are outstanding deferred FK 635 ** constraint violations in the database, 636 ** 637 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 638 ** the table from the database. Triggers are disabled while running this 639 ** DELETE, but foreign key actions are not. 640 */ 641 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 642 sqlite3 *db = pParse->db; 643 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ 644 int iSkip = 0; 645 Vdbe *v = sqlite3GetVdbe(pParse); 646 647 assert( v ); /* VDBE has already been allocated */ 648 if( sqlite3FkReferences(pTab)==0 ){ 649 /* Search for a deferred foreign key constraint for which this table 650 ** is the child table. If one cannot be found, return without 651 ** generating any VDBE code. If one can be found, then jump over 652 ** the entire DELETE if there are no outstanding deferred constraints 653 ** when this statement is run. */ 654 FKey *p; 655 for(p=pTab->pFKey; p; p=p->pNextFrom){ 656 if( p->isDeferred ) break; 657 } 658 if( !p ) return; 659 iSkip = sqlite3VdbeMakeLabel(v); 660 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); 661 } 662 663 pParse->disableTriggers = 1; 664 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); 665 pParse->disableTriggers = 0; 666 667 /* If the DELETE has generated immediate foreign key constraint 668 ** violations, halt the VDBE and return an error at this point, before 669 ** any modifications to the schema are made. This is because statement 670 ** transactions are not able to rollback schema changes. */ 671 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 672 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 673 OE_Abort, "foreign key constraint failed", P4_STATIC 674 ); 675 676 if( iSkip ){ 677 sqlite3VdbeResolveLabel(v, iSkip); 678 } 679 } 680 } 681 682 /* 683 ** This function is called when inserting, deleting or updating a row of 684 ** table pTab to generate VDBE code to perform foreign key constraint 685 ** processing for the operation. 686 ** 687 ** For a DELETE operation, parameter regOld is passed the index of the 688 ** first register in an array of (pTab->nCol+1) registers containing the 689 ** rowid of the row being deleted, followed by each of the column values 690 ** of the row being deleted, from left to right. Parameter regNew is passed 691 ** zero in this case. 692 ** 693 ** For an INSERT operation, regOld is passed zero and regNew is passed the 694 ** first register of an array of (pTab->nCol+1) registers containing the new 695 ** row data. 696 ** 697 ** For an UPDATE operation, this function is called twice. Once before 698 ** the original record is deleted from the table using the calling convention 699 ** described for DELETE. Then again after the original record is deleted 700 ** but before the new record is inserted using the INSERT convention. 701 */ 702 void sqlite3FkCheck( 703 Parse *pParse, /* Parse context */ 704 Table *pTab, /* Row is being deleted from this table */ 705 int regOld, /* Previous row data is stored here */ 706 int regNew /* New row data is stored here */ 707 ){ 708 sqlite3 *db = pParse->db; /* Database handle */ 709 FKey *pFKey; /* Used to iterate through FKs */ 710 int iDb; /* Index of database containing pTab */ 711 const char *zDb; /* Name of database containing pTab */ 712 int isIgnoreErrors = pParse->disableTriggers; 713 714 /* Exactly one of regOld and regNew should be non-zero. */ 715 assert( (regOld==0)!=(regNew==0) ); 716 717 /* If foreign-keys are disabled, this function is a no-op. */ 718 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 719 720 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 721 zDb = db->aDb[iDb].zName; 722 723 /* Loop through all the foreign key constraints for which pTab is the 724 ** child table (the table that the foreign key definition is part of). */ 725 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ 726 Table *pTo; /* Parent table of foreign key pFKey */ 727 Index *pIdx = 0; /* Index on key columns in pTo */ 728 int *aiFree = 0; 729 int *aiCol; 730 int iCol; 731 int i; 732 int isIgnore = 0; 733 734 /* Find the parent table of this foreign key. Also find a unique index 735 ** on the parent key columns in the parent table. If either of these 736 ** schema items cannot be located, set an error in pParse and return 737 ** early. */ 738 if( pParse->disableTriggers ){ 739 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 740 }else{ 741 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 742 } 743 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 744 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 745 if( !isIgnoreErrors || db->mallocFailed ) return; 746 if( pTo==0 ){ 747 /* If isIgnoreErrors is true, then a table is being dropped. In this 748 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 749 ** before actually dropping it in order to check FK constraints. 750 ** If the parent table of an FK constraint on the current table is 751 ** missing, behave as if it is empty. i.e. decrement the relevant 752 ** FK counter for each row of the current table with non-NULL keys. 753 */ 754 Vdbe *v = sqlite3GetVdbe(pParse); 755 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 756 for(i=0; i<pFKey->nCol; i++){ 757 int iReg = pFKey->aCol[i].iFrom + regOld + 1; 758 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); 759 } 760 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 761 } 762 continue; 763 } 764 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 765 766 if( aiFree ){ 767 aiCol = aiFree; 768 }else{ 769 iCol = pFKey->aCol[0].iFrom; 770 aiCol = &iCol; 771 } 772 for(i=0; i<pFKey->nCol; i++){ 773 if( aiCol[i]==pTab->iPKey ){ 774 aiCol[i] = -1; 775 } 776 #ifndef SQLITE_OMIT_AUTHORIZATION 777 /* Request permission to read the parent key columns. If the 778 ** authorization callback returns SQLITE_IGNORE, behave as if any 779 ** values read from the parent table are NULL. */ 780 if( db->xAuth ){ 781 int rcauth; 782 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; 783 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 784 isIgnore = (rcauth==SQLITE_IGNORE); 785 } 786 #endif 787 } 788 789 /* Take a shared-cache advisory read-lock on the parent table. Allocate 790 ** a cursor to use to search the unique index on the parent key columns 791 ** in the parent table. */ 792 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 793 pParse->nTab++; 794 795 if( regOld!=0 ){ 796 /* A row is being removed from the child table. Search for the parent. 797 ** If the parent does not exist, removing the child row resolves an 798 ** outstanding foreign key constraint violation. */ 799 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore); 800 } 801 if( regNew!=0 ){ 802 /* A row is being added to the child table. If a parent row cannot 803 ** be found, adding the child row has violated the FK constraint. */ 804 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore); 805 } 806 807 sqlite3DbFree(db, aiFree); 808 } 809 810 /* Loop through all the foreign key constraints that refer to this table */ 811 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 812 Index *pIdx = 0; /* Foreign key index for pFKey */ 813 SrcList *pSrc; 814 int *aiCol = 0; 815 816 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ 817 assert( regOld==0 && regNew!=0 ); 818 /* Inserting a single row into a parent table cannot cause an immediate 819 ** foreign key violation. So do nothing in this case. */ 820 continue; 821 } 822 823 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 824 if( !isIgnoreErrors || db->mallocFailed ) return; 825 continue; 826 } 827 assert( aiCol || pFKey->nCol==1 ); 828 829 /* Create a SrcList structure containing a single table (the table 830 ** the foreign key that refers to this table is attached to). This 831 ** is required for the sqlite3WhereXXX() interface. */ 832 pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 833 if( pSrc ){ 834 struct SrcList_item *pItem = pSrc->a; 835 pItem->pTab = pFKey->pFrom; 836 pItem->zName = pFKey->pFrom->zName; 837 pItem->pTab->nRef++; 838 pItem->iCursor = pParse->nTab++; 839 840 if( regNew!=0 ){ 841 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 842 } 843 if( regOld!=0 ){ 844 /* If there is a RESTRICT action configured for the current operation 845 ** on the parent table of this FK, then throw an exception 846 ** immediately if the FK constraint is violated, even if this is a 847 ** deferred trigger. That's what RESTRICT means. To defer checking 848 ** the constraint, the FK should specify NO ACTION (represented 849 ** using OE_None). NO ACTION is the default. */ 850 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 851 } 852 pItem->zName = 0; 853 sqlite3SrcListDelete(db, pSrc); 854 } 855 sqlite3DbFree(db, aiCol); 856 } 857 } 858 859 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 860 861 /* 862 ** This function is called before generating code to update or delete a 863 ** row contained in table pTab. 864 */ 865 u32 sqlite3FkOldmask( 866 Parse *pParse, /* Parse context */ 867 Table *pTab /* Table being modified */ 868 ){ 869 u32 mask = 0; 870 if( pParse->db->flags&SQLITE_ForeignKeys ){ 871 FKey *p; 872 int i; 873 for(p=pTab->pFKey; p; p=p->pNextFrom){ 874 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 875 } 876 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 877 Index *pIdx = 0; 878 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); 879 if( pIdx ){ 880 for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]); 881 } 882 } 883 } 884 return mask; 885 } 886 887 /* 888 ** This function is called before generating code to update or delete a 889 ** row contained in table pTab. If the operation is a DELETE, then 890 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 891 ** to an array of size N, where N is the number of columns in table pTab. 892 ** If the i'th column is not modified by the UPDATE, then the corresponding 893 ** entry in the aChange[] array is set to -1. If the column is modified, 894 ** the value is 0 or greater. Parameter chngRowid is set to true if the 895 ** UPDATE statement modifies the rowid fields of the table. 896 ** 897 ** If any foreign key processing will be required, this function returns 898 ** true. If there is no foreign key related processing, this function 899 ** returns false. 900 */ 901 int sqlite3FkRequired( 902 Parse *pParse, /* Parse context */ 903 Table *pTab, /* Table being modified */ 904 int *aChange, /* Non-NULL for UPDATE operations */ 905 int chngRowid /* True for UPDATE that affects rowid */ 906 ){ 907 if( pParse->db->flags&SQLITE_ForeignKeys ){ 908 if( !aChange ){ 909 /* A DELETE operation. Foreign key processing is required if the 910 ** table in question is either the child or parent table for any 911 ** foreign key constraint. */ 912 return (sqlite3FkReferences(pTab) || pTab->pFKey); 913 }else{ 914 /* This is an UPDATE. Foreign key processing is only required if the 915 ** operation modifies one or more child or parent key columns. */ 916 int i; 917 FKey *p; 918 919 /* Check if any child key columns are being modified. */ 920 for(p=pTab->pFKey; p; p=p->pNextFrom){ 921 for(i=0; i<p->nCol; i++){ 922 int iChildKey = p->aCol[i].iFrom; 923 if( aChange[iChildKey]>=0 ) return 1; 924 if( iChildKey==pTab->iPKey && chngRowid ) return 1; 925 } 926 } 927 928 /* Check if any parent key columns are being modified. */ 929 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 930 for(i=0; i<p->nCol; i++){ 931 char *zKey = p->aCol[i].zCol; 932 int iKey; 933 for(iKey=0; iKey<pTab->nCol; iKey++){ 934 Column *pCol = &pTab->aCol[iKey]; 935 if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) 936 : (pCol->colFlags & COLFLAG_PRIMKEY)!=0) ){ 937 if( aChange[iKey]>=0 ) return 1; 938 if( iKey==pTab->iPKey && chngRowid ) return 1; 939 } 940 } 941 } 942 } 943 } 944 } 945 return 0; 946 } 947 948 /* 949 ** This function is called when an UPDATE or DELETE operation is being 950 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 951 ** If the current operation is an UPDATE, then the pChanges parameter is 952 ** passed a pointer to the list of columns being modified. If it is a 953 ** DELETE, pChanges is passed a NULL pointer. 954 ** 955 ** It returns a pointer to a Trigger structure containing a trigger 956 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 957 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is 958 ** returned (these actions require no special handling by the triggers 959 ** sub-system, code for them is created by fkScanChildren()). 960 ** 961 ** For example, if pFKey is the foreign key and pTab is table "p" in 962 ** the following schema: 963 ** 964 ** CREATE TABLE p(pk PRIMARY KEY); 965 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 966 ** 967 ** then the returned trigger structure is equivalent to: 968 ** 969 ** CREATE TRIGGER ... DELETE ON p BEGIN 970 ** DELETE FROM c WHERE ck = old.pk; 971 ** END; 972 ** 973 ** The returned pointer is cached as part of the foreign key object. It 974 ** is eventually freed along with the rest of the foreign key object by 975 ** sqlite3FkDelete(). 976 */ 977 static Trigger *fkActionTrigger( 978 Parse *pParse, /* Parse context */ 979 Table *pTab, /* Table being updated or deleted from */ 980 FKey *pFKey, /* Foreign key to get action for */ 981 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 982 ){ 983 sqlite3 *db = pParse->db; /* Database handle */ 984 int action; /* One of OE_None, OE_Cascade etc. */ 985 Trigger *pTrigger; /* Trigger definition to return */ 986 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 987 988 action = pFKey->aAction[iAction]; 989 pTrigger = pFKey->apTrigger[iAction]; 990 991 if( action!=OE_None && !pTrigger ){ 992 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */ 993 char const *zFrom; /* Name of child table */ 994 int nFrom; /* Length in bytes of zFrom */ 995 Index *pIdx = 0; /* Parent key index for this FK */ 996 int *aiCol = 0; /* child table cols -> parent key cols */ 997 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 998 Expr *pWhere = 0; /* WHERE clause of trigger step */ 999 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 1000 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 1001 int i; /* Iterator variable */ 1002 Expr *pWhen = 0; /* WHEN clause for the trigger */ 1003 1004 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 1005 assert( aiCol || pFKey->nCol==1 ); 1006 1007 for(i=0; i<pFKey->nCol; i++){ 1008 Token tOld = { "old", 3 }; /* Literal "old" token */ 1009 Token tNew = { "new", 3 }; /* Literal "new" token */ 1010 Token tFromCol; /* Name of column in child table */ 1011 Token tToCol; /* Name of column in parent table */ 1012 int iFromCol; /* Idx of column in child table */ 1013 Expr *pEq; /* tFromCol = OLD.tToCol */ 1014 1015 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 1016 assert( iFromCol>=0 ); 1017 tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid"; 1018 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName; 1019 1020 tToCol.n = sqlite3Strlen30(tToCol.z); 1021 tFromCol.n = sqlite3Strlen30(tFromCol.z); 1022 1023 /* Create the expression "OLD.zToCol = zFromCol". It is important 1024 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 1025 ** that the affinity and collation sequence associated with the 1026 ** parent table are used for the comparison. */ 1027 pEq = sqlite3PExpr(pParse, TK_EQ, 1028 sqlite3PExpr(pParse, TK_DOT, 1029 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), 1030 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) 1031 , 0), 1032 sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol) 1033 , 0); 1034 pWhere = sqlite3ExprAnd(db, pWhere, pEq); 1035 1036 /* For ON UPDATE, construct the next term of the WHEN clause. 1037 ** The final WHEN clause will be like this: 1038 ** 1039 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 1040 */ 1041 if( pChanges ){ 1042 pEq = sqlite3PExpr(pParse, TK_IS, 1043 sqlite3PExpr(pParse, TK_DOT, 1044 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), 1045 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), 1046 0), 1047 sqlite3PExpr(pParse, TK_DOT, 1048 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), 1049 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), 1050 0), 1051 0); 1052 pWhen = sqlite3ExprAnd(db, pWhen, pEq); 1053 } 1054 1055 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 1056 Expr *pNew; 1057 if( action==OE_Cascade ){ 1058 pNew = sqlite3PExpr(pParse, TK_DOT, 1059 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), 1060 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) 1061 , 0); 1062 }else if( action==OE_SetDflt ){ 1063 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; 1064 if( pDflt ){ 1065 pNew = sqlite3ExprDup(db, pDflt, 0); 1066 }else{ 1067 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 1068 } 1069 }else{ 1070 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 1071 } 1072 pList = sqlite3ExprListAppend(pParse, pList, pNew); 1073 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 1074 } 1075 } 1076 sqlite3DbFree(db, aiCol); 1077 1078 zFrom = pFKey->pFrom->zName; 1079 nFrom = sqlite3Strlen30(zFrom); 1080 1081 if( action==OE_Restrict ){ 1082 Token tFrom; 1083 Expr *pRaise; 1084 1085 tFrom.z = zFrom; 1086 tFrom.n = nFrom; 1087 pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed"); 1088 if( pRaise ){ 1089 pRaise->affinity = OE_Abort; 1090 } 1091 pSelect = sqlite3SelectNew(pParse, 1092 sqlite3ExprListAppend(pParse, 0, pRaise), 1093 sqlite3SrcListAppend(db, 0, &tFrom, 0), 1094 pWhere, 1095 0, 0, 0, 0, 0, 0 1096 ); 1097 pWhere = 0; 1098 } 1099 1100 /* Disable lookaside memory allocation */ 1101 enableLookaside = db->lookaside.bEnabled; 1102 db->lookaside.bEnabled = 0; 1103 1104 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 1105 sizeof(Trigger) + /* struct Trigger */ 1106 sizeof(TriggerStep) + /* Single step in trigger program */ 1107 nFrom + 1 /* Space for pStep->target.z */ 1108 ); 1109 if( pTrigger ){ 1110 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 1111 pStep->target.z = (char *)&pStep[1]; 1112 pStep->target.n = nFrom; 1113 memcpy((char *)pStep->target.z, zFrom, nFrom); 1114 1115 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 1116 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 1117 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1118 if( pWhen ){ 1119 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0); 1120 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 1121 } 1122 } 1123 1124 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 1125 db->lookaside.bEnabled = enableLookaside; 1126 1127 sqlite3ExprDelete(db, pWhere); 1128 sqlite3ExprDelete(db, pWhen); 1129 sqlite3ExprListDelete(db, pList); 1130 sqlite3SelectDelete(db, pSelect); 1131 if( db->mallocFailed==1 ){ 1132 fkTriggerDelete(db, pTrigger); 1133 return 0; 1134 } 1135 assert( pStep!=0 ); 1136 1137 switch( action ){ 1138 case OE_Restrict: 1139 pStep->op = TK_SELECT; 1140 break; 1141 case OE_Cascade: 1142 if( !pChanges ){ 1143 pStep->op = TK_DELETE; 1144 break; 1145 } 1146 default: 1147 pStep->op = TK_UPDATE; 1148 } 1149 pStep->pTrig = pTrigger; 1150 pTrigger->pSchema = pTab->pSchema; 1151 pTrigger->pTabSchema = pTab->pSchema; 1152 pFKey->apTrigger[iAction] = pTrigger; 1153 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 1154 } 1155 1156 return pTrigger; 1157 } 1158 1159 /* 1160 ** This function is called when deleting or updating a row to implement 1161 ** any required CASCADE, SET NULL or SET DEFAULT actions. 1162 */ 1163 void sqlite3FkActions( 1164 Parse *pParse, /* Parse context */ 1165 Table *pTab, /* Table being updated or deleted from */ 1166 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 1167 int regOld /* Address of array containing old row */ 1168 ){ 1169 /* If foreign-key support is enabled, iterate through all FKs that 1170 ** refer to table pTab. If there is an action associated with the FK 1171 ** for this operation (either update or delete), invoke the associated 1172 ** trigger sub-program. */ 1173 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1174 FKey *pFKey; /* Iterator variable */ 1175 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1176 Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges); 1177 if( pAction ){ 1178 sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0); 1179 } 1180 } 1181 } 1182 } 1183 1184 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 1185 1186 /* 1187 ** Free all memory associated with foreign key definitions attached to 1188 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 1189 ** hash table. 1190 */ 1191 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 1192 FKey *pFKey; /* Iterator variable */ 1193 FKey *pNext; /* Copy of pFKey->pNextFrom */ 1194 1195 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 1196 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ 1197 1198 /* Remove the FK from the fkeyHash hash table. */ 1199 if( !db || db->pnBytesFreed==0 ){ 1200 if( pFKey->pPrevTo ){ 1201 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 1202 }else{ 1203 void *p = (void *)pFKey->pNextTo; 1204 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); 1205 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p); 1206 } 1207 if( pFKey->pNextTo ){ 1208 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 1209 } 1210 } 1211 1212 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 1213 ** classified as either immediate or deferred. 1214 */ 1215 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 1216 1217 /* Delete any triggers created to implement actions for this FK. */ 1218 #ifndef SQLITE_OMIT_TRIGGER 1219 fkTriggerDelete(db, pFKey->apTrigger[0]); 1220 fkTriggerDelete(db, pFKey->apTrigger[1]); 1221 #endif 1222 1223 pNext = pFKey->pNextFrom; 1224 sqlite3DbFree(db, pFKey); 1225 } 1226 } 1227 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ 1228