xref: /sqlite-3.40.0/src/fkey.c (revision 48864df9)
1 /*
2 **
3 ** The author disclaims copyright to this source code.  In place of
4 ** a legal notice, here is a blessing:
5 **
6 **    May you do good and not evil.
7 **    May you find forgiveness for yourself and forgive others.
8 **    May you share freely, never taking more than you give.
9 **
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
13 */
14 #include "sqliteInt.h"
15 
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
18 
19 /*
20 ** Deferred and Immediate FKs
21 ** --------------------------
22 **
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated,
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
26 ** statement transaction rolled back. If a
27 ** deferred foreign key constraint is violated, no action is taken
28 ** immediately. However if the application attempts to commit the
29 ** transaction before fixing the constraint violation, the attempt fails.
30 **
31 ** Deferred constraints are implemented using a simple counter associated
32 ** with the database handle. The counter is set to zero each time a
33 ** database transaction is opened. Each time a statement is executed
34 ** that causes a foreign key violation, the counter is incremented. Each
35 ** time a statement is executed that removes an existing violation from
36 ** the database, the counter is decremented. When the transaction is
37 ** committed, the commit fails if the current value of the counter is
38 ** greater than zero. This scheme has two big drawbacks:
39 **
40 **   * When a commit fails due to a deferred foreign key constraint,
41 **     there is no way to tell which foreign constraint is not satisfied,
42 **     or which row it is not satisfied for.
43 **
44 **   * If the database contains foreign key violations when the
45 **     transaction is opened, this may cause the mechanism to malfunction.
46 **
47 ** Despite these problems, this approach is adopted as it seems simpler
48 ** than the alternatives.
49 **
50 ** INSERT operations:
51 **
52 **   I.1) For each FK for which the table is the child table, search
53 **        the parent table for a match. If none is found increment the
54 **        constraint counter.
55 **
56 **   I.2) For each FK for which the table is the parent table,
57 **        search the child table for rows that correspond to the new
58 **        row in the parent table. Decrement the counter for each row
59 **        found (as the constraint is now satisfied).
60 **
61 ** DELETE operations:
62 **
63 **   D.1) For each FK for which the table is the child table,
64 **        search the parent table for a row that corresponds to the
65 **        deleted row in the child table. If such a row is not found,
66 **        decrement the counter.
67 **
68 **   D.2) For each FK for which the table is the parent table, search
69 **        the child table for rows that correspond to the deleted row
70 **        in the parent table. For each found increment the counter.
71 **
72 ** UPDATE operations:
73 **
74 **   An UPDATE command requires that all 4 steps above are taken, but only
75 **   for FK constraints for which the affected columns are actually
76 **   modified (values must be compared at runtime).
77 **
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
79 ** This simplifies the implementation a bit.
80 **
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
82 ** resolution is considered to delete rows before the new row is inserted.
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
84 ** is thrown, even if the FK constraint would be satisfied after the new
85 ** row is inserted.
86 **
87 ** Immediate constraints are usually handled similarly. The only difference
88 ** is that the counter used is stored as part of each individual statement
89 ** object (struct Vdbe). If, after the statement has run, its immediate
90 ** constraint counter is greater than zero,
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92 ** and the statement transaction is rolled back. An exception is an INSERT
93 ** statement that inserts a single row only (no triggers). In this case,
94 ** instead of using a counter, an exception is thrown immediately if the
95 ** INSERT violates a foreign key constraint. This is necessary as such
96 ** an INSERT does not open a statement transaction.
97 **
98 ** TODO: How should dropping a table be handled? How should renaming a
99 ** table be handled?
100 **
101 **
102 ** Query API Notes
103 ** ---------------
104 **
105 ** Before coding an UPDATE or DELETE row operation, the code-generator
106 ** for those two operations needs to know whether or not the operation
107 ** requires any FK processing and, if so, which columns of the original
108 ** row are required by the FK processing VDBE code (i.e. if FKs were
109 ** implemented using triggers, which of the old.* columns would be
110 ** accessed). No information is required by the code-generator before
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
112 ** generation code to query for this information are:
113 **
114 **   sqlite3FkRequired() - Test to see if FK processing is required.
115 **   sqlite3FkOldmask()  - Query for the set of required old.* columns.
116 **
117 **
118 ** Externally accessible module functions
119 ** --------------------------------------
120 **
121 **   sqlite3FkCheck()    - Check for foreign key violations.
122 **   sqlite3FkActions()  - Code triggers for ON UPDATE/ON DELETE actions.
123 **   sqlite3FkDelete()   - Delete an FKey structure.
124 */
125 
126 /*
127 ** VDBE Calling Convention
128 ** -----------------------
129 **
130 ** Example:
131 **
132 **   For the following INSERT statement:
133 **
134 **     CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
135 **     INSERT INTO t1 VALUES(1, 2, 3.1);
136 **
137 **   Register (x):        2    (type integer)
138 **   Register (x+1):      1    (type integer)
139 **   Register (x+2):      NULL (type NULL)
140 **   Register (x+3):      3.1  (type real)
141 */
142 
143 /*
144 ** A foreign key constraint requires that the key columns in the parent
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
146 ** Given that pParent is the parent table for foreign key constraint pFKey,
147 ** search the schema for a unique index on the parent key columns.
148 **
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
151 ** is set to point to the unique index.
152 **
153 ** If the parent key consists of a single column (the foreign key constraint
154 ** is not a composite foreign key), output variable *paiCol is set to NULL.
155 ** Otherwise, it is set to point to an allocated array of size N, where
156 ** N is the number of columns in the parent key. The first element of the
157 ** array is the index of the child table column that is mapped by the FK
158 ** constraint to the parent table column stored in the left-most column
159 ** of index *ppIdx. The second element of the array is the index of the
160 ** child table column that corresponds to the second left-most column of
161 ** *ppIdx, and so on.
162 **
163 ** If the required index cannot be found, either because:
164 **
165 **   1) The named parent key columns do not exist, or
166 **
167 **   2) The named parent key columns do exist, but are not subject to a
168 **      UNIQUE or PRIMARY KEY constraint, or
169 **
170 **   3) No parent key columns were provided explicitly as part of the
171 **      foreign key definition, and the parent table does not have a
172 **      PRIMARY KEY, or
173 **
174 **   4) No parent key columns were provided explicitly as part of the
175 **      foreign key definition, and the PRIMARY KEY of the parent table
176 **      consists of a a different number of columns to the child key in
177 **      the child table.
178 **
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded
180 ** into pParse. If an OOM error occurs, non-zero is returned and the
181 ** pParse->db->mallocFailed flag is set.
182 */
183 int sqlite3FkLocateIndex(
184   Parse *pParse,                  /* Parse context to store any error in */
185   Table *pParent,                 /* Parent table of FK constraint pFKey */
186   FKey *pFKey,                    /* Foreign key to find index for */
187   Index **ppIdx,                  /* OUT: Unique index on parent table */
188   int **paiCol                    /* OUT: Map of index columns in pFKey */
189 ){
190   Index *pIdx = 0;                    /* Value to return via *ppIdx */
191   int *aiCol = 0;                     /* Value to return via *paiCol */
192   int nCol = pFKey->nCol;             /* Number of columns in parent key */
193   char *zKey = pFKey->aCol[0].zCol;   /* Name of left-most parent key column */
194 
195   /* The caller is responsible for zeroing output parameters. */
196   assert( ppIdx && *ppIdx==0 );
197   assert( !paiCol || *paiCol==0 );
198   assert( pParse );
199 
200   /* If this is a non-composite (single column) foreign key, check if it
201   ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
202   ** and *paiCol set to zero and return early.
203   **
204   ** Otherwise, for a composite foreign key (more than one column), allocate
205   ** space for the aiCol array (returned via output parameter *paiCol).
206   ** Non-composite foreign keys do not require the aiCol array.
207   */
208   if( nCol==1 ){
209     /* The FK maps to the IPK if any of the following are true:
210     **
211     **   1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
212     **      mapped to the primary key of table pParent, or
213     **   2) The FK is explicitly mapped to a column declared as INTEGER
214     **      PRIMARY KEY.
215     */
216     if( pParent->iPKey>=0 ){
217       if( !zKey ) return 0;
218       if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
219     }
220   }else if( paiCol ){
221     assert( nCol>1 );
222     aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
223     if( !aiCol ) return 1;
224     *paiCol = aiCol;
225   }
226 
227   for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
228     if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
229       /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
230       ** of columns. If each indexed column corresponds to a foreign key
231       ** column of pFKey, then this index is a winner.  */
232 
233       if( zKey==0 ){
234         /* If zKey is NULL, then this foreign key is implicitly mapped to
235         ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
236         ** identified by the test (Index.autoIndex==2).  */
237         if( pIdx->autoIndex==2 ){
238           if( aiCol ){
239             int i;
240             for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
241           }
242           break;
243         }
244       }else{
245         /* If zKey is non-NULL, then this foreign key was declared to
246         ** map to an explicit list of columns in table pParent. Check if this
247         ** index matches those columns. Also, check that the index uses
248         ** the default collation sequences for each column. */
249         int i, j;
250         for(i=0; i<nCol; i++){
251           int iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
252           char *zDfltColl;                  /* Def. collation for column */
253           char *zIdxCol;                    /* Name of indexed column */
254 
255           /* If the index uses a collation sequence that is different from
256           ** the default collation sequence for the column, this index is
257           ** unusable. Bail out early in this case.  */
258           zDfltColl = pParent->aCol[iCol].zColl;
259           if( !zDfltColl ){
260             zDfltColl = "BINARY";
261           }
262           if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
263 
264           zIdxCol = pParent->aCol[iCol].zName;
265           for(j=0; j<nCol; j++){
266             if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
267               if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
268               break;
269             }
270           }
271           if( j==nCol ) break;
272         }
273         if( i==nCol ) break;      /* pIdx is usable */
274       }
275     }
276   }
277 
278   if( !pIdx ){
279     if( !pParse->disableTriggers ){
280       sqlite3ErrorMsg(pParse,
281            "foreign key mismatch - \"%w\" referencing \"%w\"",
282            pFKey->pFrom->zName, pFKey->zTo);
283     }
284     sqlite3DbFree(pParse->db, aiCol);
285     return 1;
286   }
287 
288   *ppIdx = pIdx;
289   return 0;
290 }
291 
292 /*
293 ** This function is called when a row is inserted into or deleted from the
294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
295 ** on the child table of pFKey, this function is invoked twice for each row
296 ** affected - once to "delete" the old row, and then again to "insert" the
297 ** new row.
298 **
299 ** Each time it is called, this function generates VDBE code to locate the
300 ** row in the parent table that corresponds to the row being inserted into
301 ** or deleted from the child table. If the parent row can be found, no
302 ** special action is taken. Otherwise, if the parent row can *not* be
303 ** found in the parent table:
304 **
305 **   Operation | FK type   | Action taken
306 **   --------------------------------------------------------------------------
307 **   INSERT      immediate   Increment the "immediate constraint counter".
308 **
309 **   DELETE      immediate   Decrement the "immediate constraint counter".
310 **
311 **   INSERT      deferred    Increment the "deferred constraint counter".
312 **
313 **   DELETE      deferred    Decrement the "deferred constraint counter".
314 **
315 ** These operations are identified in the comment at the top of this file
316 ** (fkey.c) as "I.1" and "D.1".
317 */
318 static void fkLookupParent(
319   Parse *pParse,        /* Parse context */
320   int iDb,              /* Index of database housing pTab */
321   Table *pTab,          /* Parent table of FK pFKey */
322   Index *pIdx,          /* Unique index on parent key columns in pTab */
323   FKey *pFKey,          /* Foreign key constraint */
324   int *aiCol,           /* Map from parent key columns to child table columns */
325   int regData,          /* Address of array containing child table row */
326   int nIncr,            /* Increment constraint counter by this */
327   int isIgnore          /* If true, pretend pTab contains all NULL values */
328 ){
329   int i;                                    /* Iterator variable */
330   Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
331   int iCur = pParse->nTab - 1;              /* Cursor number to use */
332   int iOk = sqlite3VdbeMakeLabel(v);        /* jump here if parent key found */
333 
334   /* If nIncr is less than zero, then check at runtime if there are any
335   ** outstanding constraints to resolve. If there are not, there is no need
336   ** to check if deleting this row resolves any outstanding violations.
337   **
338   ** Check if any of the key columns in the child table row are NULL. If
339   ** any are, then the constraint is considered satisfied. No need to
340   ** search for a matching row in the parent table.  */
341   if( nIncr<0 ){
342     sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
343   }
344   for(i=0; i<pFKey->nCol; i++){
345     int iReg = aiCol[i] + regData + 1;
346     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
347   }
348 
349   if( isIgnore==0 ){
350     if( pIdx==0 ){
351       /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
352       ** column of the parent table (table pTab).  */
353       int iMustBeInt;               /* Address of MustBeInt instruction */
354       int regTemp = sqlite3GetTempReg(pParse);
355 
356       /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
357       ** apply the affinity of the parent key). If this fails, then there
358       ** is no matching parent key. Before using MustBeInt, make a copy of
359       ** the value. Otherwise, the value inserted into the child key column
360       ** will have INTEGER affinity applied to it, which may not be correct.  */
361       sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
362       iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
363 
364       /* If the parent table is the same as the child table, and we are about
365       ** to increment the constraint-counter (i.e. this is an INSERT operation),
366       ** then check if the row being inserted matches itself. If so, do not
367       ** increment the constraint-counter.  */
368       if( pTab==pFKey->pFrom && nIncr==1 ){
369         sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp);
370       }
371 
372       sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
373       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
374       sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
375       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
376       sqlite3VdbeJumpHere(v, iMustBeInt);
377       sqlite3ReleaseTempReg(pParse, regTemp);
378     }else{
379       int nCol = pFKey->nCol;
380       int regTemp = sqlite3GetTempRange(pParse, nCol);
381       int regRec = sqlite3GetTempReg(pParse);
382       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
383 
384       sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
385       sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
386       for(i=0; i<nCol; i++){
387         sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
388       }
389 
390       /* If the parent table is the same as the child table, and we are about
391       ** to increment the constraint-counter (i.e. this is an INSERT operation),
392       ** then check if the row being inserted matches itself. If so, do not
393       ** increment the constraint-counter.
394       **
395       ** If any of the parent-key values are NULL, then the row cannot match
396       ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
397       ** of the parent-key values are NULL (at this point it is known that
398       ** none of the child key values are).
399       */
400       if( pTab==pFKey->pFrom && nIncr==1 ){
401         int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
402         for(i=0; i<nCol; i++){
403           int iChild = aiCol[i]+1+regData;
404           int iParent = pIdx->aiColumn[i]+1+regData;
405           assert( aiCol[i]!=pTab->iPKey );
406           if( pIdx->aiColumn[i]==pTab->iPKey ){
407             /* The parent key is a composite key that includes the IPK column */
408             iParent = regData;
409           }
410           sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
411           sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
412         }
413         sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
414       }
415 
416       sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
417       sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
418       sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);
419 
420       sqlite3ReleaseTempReg(pParse, regRec);
421       sqlite3ReleaseTempRange(pParse, regTemp, nCol);
422     }
423   }
424 
425   if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
426     /* Special case: If this is an INSERT statement that will insert exactly
427     ** one row into the table, raise a constraint immediately instead of
428     ** incrementing a counter. This is necessary as the VM code is being
429     ** generated for will not open a statement transaction.  */
430     assert( nIncr==1 );
431     sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
432         OE_Abort, "foreign key constraint failed", P4_STATIC
433     );
434   }else{
435     if( nIncr>0 && pFKey->isDeferred==0 ){
436       sqlite3ParseToplevel(pParse)->mayAbort = 1;
437     }
438     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
439   }
440 
441   sqlite3VdbeResolveLabel(v, iOk);
442   sqlite3VdbeAddOp1(v, OP_Close, iCur);
443 }
444 
445 /*
446 ** This function is called to generate code executed when a row is deleted
447 ** from the parent table of foreign key constraint pFKey and, if pFKey is
448 ** deferred, when a row is inserted into the same table. When generating
449 ** code for an SQL UPDATE operation, this function may be called twice -
450 ** once to "delete" the old row and once to "insert" the new row.
451 **
452 ** The code generated by this function scans through the rows in the child
453 ** table that correspond to the parent table row being deleted or inserted.
454 ** For each child row found, one of the following actions is taken:
455 **
456 **   Operation | FK type   | Action taken
457 **   --------------------------------------------------------------------------
458 **   DELETE      immediate   Increment the "immediate constraint counter".
459 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
460 **                           throw a "foreign key constraint failed" exception.
461 **
462 **   INSERT      immediate   Decrement the "immediate constraint counter".
463 **
464 **   DELETE      deferred    Increment the "deferred constraint counter".
465 **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
466 **                           throw a "foreign key constraint failed" exception.
467 **
468 **   INSERT      deferred    Decrement the "deferred constraint counter".
469 **
470 ** These operations are identified in the comment at the top of this file
471 ** (fkey.c) as "I.2" and "D.2".
472 */
473 static void fkScanChildren(
474   Parse *pParse,                  /* Parse context */
475   SrcList *pSrc,                  /* SrcList containing the table to scan */
476   Table *pTab,
477   Index *pIdx,                    /* Foreign key index */
478   FKey *pFKey,                    /* Foreign key relationship */
479   int *aiCol,                     /* Map from pIdx cols to child table cols */
480   int regData,                    /* Referenced table data starts here */
481   int nIncr                       /* Amount to increment deferred counter by */
482 ){
483   sqlite3 *db = pParse->db;       /* Database handle */
484   int i;                          /* Iterator variable */
485   Expr *pWhere = 0;               /* WHERE clause to scan with */
486   NameContext sNameContext;       /* Context used to resolve WHERE clause */
487   WhereInfo *pWInfo;              /* Context used by sqlite3WhereXXX() */
488   int iFkIfZero = 0;              /* Address of OP_FkIfZero */
489   Vdbe *v = sqlite3GetVdbe(pParse);
490 
491   assert( !pIdx || pIdx->pTable==pTab );
492 
493   if( nIncr<0 ){
494     iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
495   }
496 
497   /* Create an Expr object representing an SQL expression like:
498   **
499   **   <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
500   **
501   ** The collation sequence used for the comparison should be that of
502   ** the parent key columns. The affinity of the parent key column should
503   ** be applied to each child key value before the comparison takes place.
504   */
505   for(i=0; i<pFKey->nCol; i++){
506     Expr *pLeft;                  /* Value from parent table row */
507     Expr *pRight;                 /* Column ref to child table */
508     Expr *pEq;                    /* Expression (pLeft = pRight) */
509     int iCol;                     /* Index of column in child table */
510     const char *zCol;             /* Name of column in child table */
511 
512     pLeft = sqlite3Expr(db, TK_REGISTER, 0);
513     if( pLeft ){
514       /* Set the collation sequence and affinity of the LHS of each TK_EQ
515       ** expression to the parent key column defaults.  */
516       if( pIdx ){
517         Column *pCol;
518         const char *zColl;
519         iCol = pIdx->aiColumn[i];
520         pCol = &pTab->aCol[iCol];
521         if( pTab->iPKey==iCol ) iCol = -1;
522         pLeft->iTable = regData+iCol+1;
523         pLeft->affinity = pCol->affinity;
524         zColl = pCol->zColl;
525         if( zColl==0 ) zColl = db->pDfltColl->zName;
526         pLeft = sqlite3ExprAddCollateString(pParse, pLeft, zColl);
527       }else{
528         pLeft->iTable = regData;
529         pLeft->affinity = SQLITE_AFF_INTEGER;
530       }
531     }
532     iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
533     assert( iCol>=0 );
534     zCol = pFKey->pFrom->aCol[iCol].zName;
535     pRight = sqlite3Expr(db, TK_ID, zCol);
536     pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
537     pWhere = sqlite3ExprAnd(db, pWhere, pEq);
538   }
539 
540   /* If the child table is the same as the parent table, and this scan
541   ** is taking place as part of a DELETE operation (operation D.2), omit the
542   ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE
543   ** clause, where $rowid is the rowid of the row being deleted.  */
544   if( pTab==pFKey->pFrom && nIncr>0 ){
545     Expr *pEq;                    /* Expression (pLeft = pRight) */
546     Expr *pLeft;                  /* Value from parent table row */
547     Expr *pRight;                 /* Column ref to child table */
548     pLeft = sqlite3Expr(db, TK_REGISTER, 0);
549     pRight = sqlite3Expr(db, TK_COLUMN, 0);
550     if( pLeft && pRight ){
551       pLeft->iTable = regData;
552       pLeft->affinity = SQLITE_AFF_INTEGER;
553       pRight->iTable = pSrc->a[0].iCursor;
554       pRight->iColumn = -1;
555     }
556     pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
557     pWhere = sqlite3ExprAnd(db, pWhere, pEq);
558   }
559 
560   /* Resolve the references in the WHERE clause. */
561   memset(&sNameContext, 0, sizeof(NameContext));
562   sNameContext.pSrcList = pSrc;
563   sNameContext.pParse = pParse;
564   sqlite3ResolveExprNames(&sNameContext, pWhere);
565 
566   /* Create VDBE to loop through the entries in pSrc that match the WHERE
567   ** clause. If the constraint is not deferred, throw an exception for
568   ** each row found. Otherwise, for deferred constraints, increment the
569   ** deferred constraint counter by nIncr for each row selected.  */
570   pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
571   if( nIncr>0 && pFKey->isDeferred==0 ){
572     sqlite3ParseToplevel(pParse)->mayAbort = 1;
573   }
574   sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
575   if( pWInfo ){
576     sqlite3WhereEnd(pWInfo);
577   }
578 
579   /* Clean up the WHERE clause constructed above. */
580   sqlite3ExprDelete(db, pWhere);
581   if( iFkIfZero ){
582     sqlite3VdbeJumpHere(v, iFkIfZero);
583   }
584 }
585 
586 /*
587 ** This function returns a pointer to the head of a linked list of FK
588 ** constraints for which table pTab is the parent table. For example,
589 ** given the following schema:
590 **
591 **   CREATE TABLE t1(a PRIMARY KEY);
592 **   CREATE TABLE t2(b REFERENCES t1(a);
593 **
594 ** Calling this function with table "t1" as an argument returns a pointer
595 ** to the FKey structure representing the foreign key constraint on table
596 ** "t2". Calling this function with "t2" as the argument would return a
597 ** NULL pointer (as there are no FK constraints for which t2 is the parent
598 ** table).
599 */
600 FKey *sqlite3FkReferences(Table *pTab){
601   int nName = sqlite3Strlen30(pTab->zName);
602   return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
603 }
604 
605 /*
606 ** The second argument is a Trigger structure allocated by the
607 ** fkActionTrigger() routine. This function deletes the Trigger structure
608 ** and all of its sub-components.
609 **
610 ** The Trigger structure or any of its sub-components may be allocated from
611 ** the lookaside buffer belonging to database handle dbMem.
612 */
613 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
614   if( p ){
615     TriggerStep *pStep = p->step_list;
616     sqlite3ExprDelete(dbMem, pStep->pWhere);
617     sqlite3ExprListDelete(dbMem, pStep->pExprList);
618     sqlite3SelectDelete(dbMem, pStep->pSelect);
619     sqlite3ExprDelete(dbMem, p->pWhen);
620     sqlite3DbFree(dbMem, p);
621   }
622 }
623 
624 /*
625 ** This function is called to generate code that runs when table pTab is
626 ** being dropped from the database. The SrcList passed as the second argument
627 ** to this function contains a single entry guaranteed to resolve to
628 ** table pTab.
629 **
630 ** Normally, no code is required. However, if either
631 **
632 **   (a) The table is the parent table of a FK constraint, or
633 **   (b) The table is the child table of a deferred FK constraint and it is
634 **       determined at runtime that there are outstanding deferred FK
635 **       constraint violations in the database,
636 **
637 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
638 ** the table from the database. Triggers are disabled while running this
639 ** DELETE, but foreign key actions are not.
640 */
641 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
642   sqlite3 *db = pParse->db;
643   if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
644     int iSkip = 0;
645     Vdbe *v = sqlite3GetVdbe(pParse);
646 
647     assert( v );                  /* VDBE has already been allocated */
648     if( sqlite3FkReferences(pTab)==0 ){
649       /* Search for a deferred foreign key constraint for which this table
650       ** is the child table. If one cannot be found, return without
651       ** generating any VDBE code. If one can be found, then jump over
652       ** the entire DELETE if there are no outstanding deferred constraints
653       ** when this statement is run.  */
654       FKey *p;
655       for(p=pTab->pFKey; p; p=p->pNextFrom){
656         if( p->isDeferred ) break;
657       }
658       if( !p ) return;
659       iSkip = sqlite3VdbeMakeLabel(v);
660       sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip);
661     }
662 
663     pParse->disableTriggers = 1;
664     sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
665     pParse->disableTriggers = 0;
666 
667     /* If the DELETE has generated immediate foreign key constraint
668     ** violations, halt the VDBE and return an error at this point, before
669     ** any modifications to the schema are made. This is because statement
670     ** transactions are not able to rollback schema changes.  */
671     sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
672     sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
673         OE_Abort, "foreign key constraint failed", P4_STATIC
674     );
675 
676     if( iSkip ){
677       sqlite3VdbeResolveLabel(v, iSkip);
678     }
679   }
680 }
681 
682 /*
683 ** This function is called when inserting, deleting or updating a row of
684 ** table pTab to generate VDBE code to perform foreign key constraint
685 ** processing for the operation.
686 **
687 ** For a DELETE operation, parameter regOld is passed the index of the
688 ** first register in an array of (pTab->nCol+1) registers containing the
689 ** rowid of the row being deleted, followed by each of the column values
690 ** of the row being deleted, from left to right. Parameter regNew is passed
691 ** zero in this case.
692 **
693 ** For an INSERT operation, regOld is passed zero and regNew is passed the
694 ** first register of an array of (pTab->nCol+1) registers containing the new
695 ** row data.
696 **
697 ** For an UPDATE operation, this function is called twice. Once before
698 ** the original record is deleted from the table using the calling convention
699 ** described for DELETE. Then again after the original record is deleted
700 ** but before the new record is inserted using the INSERT convention.
701 */
702 void sqlite3FkCheck(
703   Parse *pParse,                  /* Parse context */
704   Table *pTab,                    /* Row is being deleted from this table */
705   int regOld,                     /* Previous row data is stored here */
706   int regNew                      /* New row data is stored here */
707 ){
708   sqlite3 *db = pParse->db;       /* Database handle */
709   FKey *pFKey;                    /* Used to iterate through FKs */
710   int iDb;                        /* Index of database containing pTab */
711   const char *zDb;                /* Name of database containing pTab */
712   int isIgnoreErrors = pParse->disableTriggers;
713 
714   /* Exactly one of regOld and regNew should be non-zero. */
715   assert( (regOld==0)!=(regNew==0) );
716 
717   /* If foreign-keys are disabled, this function is a no-op. */
718   if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
719 
720   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
721   zDb = db->aDb[iDb].zName;
722 
723   /* Loop through all the foreign key constraints for which pTab is the
724   ** child table (the table that the foreign key definition is part of).  */
725   for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
726     Table *pTo;                   /* Parent table of foreign key pFKey */
727     Index *pIdx = 0;              /* Index on key columns in pTo */
728     int *aiFree = 0;
729     int *aiCol;
730     int iCol;
731     int i;
732     int isIgnore = 0;
733 
734     /* Find the parent table of this foreign key. Also find a unique index
735     ** on the parent key columns in the parent table. If either of these
736     ** schema items cannot be located, set an error in pParse and return
737     ** early.  */
738     if( pParse->disableTriggers ){
739       pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
740     }else{
741       pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
742     }
743     if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
744       assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
745       if( !isIgnoreErrors || db->mallocFailed ) return;
746       if( pTo==0 ){
747         /* If isIgnoreErrors is true, then a table is being dropped. In this
748         ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
749         ** before actually dropping it in order to check FK constraints.
750         ** If the parent table of an FK constraint on the current table is
751         ** missing, behave as if it is empty. i.e. decrement the relevant
752         ** FK counter for each row of the current table with non-NULL keys.
753         */
754         Vdbe *v = sqlite3GetVdbe(pParse);
755         int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
756         for(i=0; i<pFKey->nCol; i++){
757           int iReg = pFKey->aCol[i].iFrom + regOld + 1;
758           sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump);
759         }
760         sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
761       }
762       continue;
763     }
764     assert( pFKey->nCol==1 || (aiFree && pIdx) );
765 
766     if( aiFree ){
767       aiCol = aiFree;
768     }else{
769       iCol = pFKey->aCol[0].iFrom;
770       aiCol = &iCol;
771     }
772     for(i=0; i<pFKey->nCol; i++){
773       if( aiCol[i]==pTab->iPKey ){
774         aiCol[i] = -1;
775       }
776 #ifndef SQLITE_OMIT_AUTHORIZATION
777       /* Request permission to read the parent key columns. If the
778       ** authorization callback returns SQLITE_IGNORE, behave as if any
779       ** values read from the parent table are NULL. */
780       if( db->xAuth ){
781         int rcauth;
782         char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
783         rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
784         isIgnore = (rcauth==SQLITE_IGNORE);
785       }
786 #endif
787     }
788 
789     /* Take a shared-cache advisory read-lock on the parent table. Allocate
790     ** a cursor to use to search the unique index on the parent key columns
791     ** in the parent table.  */
792     sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
793     pParse->nTab++;
794 
795     if( regOld!=0 ){
796       /* A row is being removed from the child table. Search for the parent.
797       ** If the parent does not exist, removing the child row resolves an
798       ** outstanding foreign key constraint violation. */
799       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
800     }
801     if( regNew!=0 ){
802       /* A row is being added to the child table. If a parent row cannot
803       ** be found, adding the child row has violated the FK constraint. */
804       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
805     }
806 
807     sqlite3DbFree(db, aiFree);
808   }
809 
810   /* Loop through all the foreign key constraints that refer to this table */
811   for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
812     Index *pIdx = 0;              /* Foreign key index for pFKey */
813     SrcList *pSrc;
814     int *aiCol = 0;
815 
816     if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
817       assert( regOld==0 && regNew!=0 );
818       /* Inserting a single row into a parent table cannot cause an immediate
819       ** foreign key violation. So do nothing in this case.  */
820       continue;
821     }
822 
823     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
824       if( !isIgnoreErrors || db->mallocFailed ) return;
825       continue;
826     }
827     assert( aiCol || pFKey->nCol==1 );
828 
829     /* Create a SrcList structure containing a single table (the table
830     ** the foreign key that refers to this table is attached to). This
831     ** is required for the sqlite3WhereXXX() interface.  */
832     pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
833     if( pSrc ){
834       struct SrcList_item *pItem = pSrc->a;
835       pItem->pTab = pFKey->pFrom;
836       pItem->zName = pFKey->pFrom->zName;
837       pItem->pTab->nRef++;
838       pItem->iCursor = pParse->nTab++;
839 
840       if( regNew!=0 ){
841         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
842       }
843       if( regOld!=0 ){
844         /* If there is a RESTRICT action configured for the current operation
845         ** on the parent table of this FK, then throw an exception
846         ** immediately if the FK constraint is violated, even if this is a
847         ** deferred trigger. That's what RESTRICT means. To defer checking
848         ** the constraint, the FK should specify NO ACTION (represented
849         ** using OE_None). NO ACTION is the default.  */
850         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
851       }
852       pItem->zName = 0;
853       sqlite3SrcListDelete(db, pSrc);
854     }
855     sqlite3DbFree(db, aiCol);
856   }
857 }
858 
859 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
860 
861 /*
862 ** This function is called before generating code to update or delete a
863 ** row contained in table pTab.
864 */
865 u32 sqlite3FkOldmask(
866   Parse *pParse,                  /* Parse context */
867   Table *pTab                     /* Table being modified */
868 ){
869   u32 mask = 0;
870   if( pParse->db->flags&SQLITE_ForeignKeys ){
871     FKey *p;
872     int i;
873     for(p=pTab->pFKey; p; p=p->pNextFrom){
874       for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
875     }
876     for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
877       Index *pIdx = 0;
878       sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
879       if( pIdx ){
880         for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
881       }
882     }
883   }
884   return mask;
885 }
886 
887 /*
888 ** This function is called before generating code to update or delete a
889 ** row contained in table pTab. If the operation is a DELETE, then
890 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
891 ** to an array of size N, where N is the number of columns in table pTab.
892 ** If the i'th column is not modified by the UPDATE, then the corresponding
893 ** entry in the aChange[] array is set to -1. If the column is modified,
894 ** the value is 0 or greater. Parameter chngRowid is set to true if the
895 ** UPDATE statement modifies the rowid fields of the table.
896 **
897 ** If any foreign key processing will be required, this function returns
898 ** true. If there is no foreign key related processing, this function
899 ** returns false.
900 */
901 int sqlite3FkRequired(
902   Parse *pParse,                  /* Parse context */
903   Table *pTab,                    /* Table being modified */
904   int *aChange,                   /* Non-NULL for UPDATE operations */
905   int chngRowid                   /* True for UPDATE that affects rowid */
906 ){
907   if( pParse->db->flags&SQLITE_ForeignKeys ){
908     if( !aChange ){
909       /* A DELETE operation. Foreign key processing is required if the
910       ** table in question is either the child or parent table for any
911       ** foreign key constraint.  */
912       return (sqlite3FkReferences(pTab) || pTab->pFKey);
913     }else{
914       /* This is an UPDATE. Foreign key processing is only required if the
915       ** operation modifies one or more child or parent key columns. */
916       int i;
917       FKey *p;
918 
919       /* Check if any child key columns are being modified. */
920       for(p=pTab->pFKey; p; p=p->pNextFrom){
921         for(i=0; i<p->nCol; i++){
922           int iChildKey = p->aCol[i].iFrom;
923           if( aChange[iChildKey]>=0 ) return 1;
924           if( iChildKey==pTab->iPKey && chngRowid ) return 1;
925         }
926       }
927 
928       /* Check if any parent key columns are being modified. */
929       for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
930         for(i=0; i<p->nCol; i++){
931           char *zKey = p->aCol[i].zCol;
932           int iKey;
933           for(iKey=0; iKey<pTab->nCol; iKey++){
934             Column *pCol = &pTab->aCol[iKey];
935             if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey)
936                       : (pCol->colFlags & COLFLAG_PRIMKEY)!=0) ){
937               if( aChange[iKey]>=0 ) return 1;
938               if( iKey==pTab->iPKey && chngRowid ) return 1;
939             }
940           }
941         }
942       }
943     }
944   }
945   return 0;
946 }
947 
948 /*
949 ** This function is called when an UPDATE or DELETE operation is being
950 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
951 ** If the current operation is an UPDATE, then the pChanges parameter is
952 ** passed a pointer to the list of columns being modified. If it is a
953 ** DELETE, pChanges is passed a NULL pointer.
954 **
955 ** It returns a pointer to a Trigger structure containing a trigger
956 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
957 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
958 ** returned (these actions require no special handling by the triggers
959 ** sub-system, code for them is created by fkScanChildren()).
960 **
961 ** For example, if pFKey is the foreign key and pTab is table "p" in
962 ** the following schema:
963 **
964 **   CREATE TABLE p(pk PRIMARY KEY);
965 **   CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
966 **
967 ** then the returned trigger structure is equivalent to:
968 **
969 **   CREATE TRIGGER ... DELETE ON p BEGIN
970 **     DELETE FROM c WHERE ck = old.pk;
971 **   END;
972 **
973 ** The returned pointer is cached as part of the foreign key object. It
974 ** is eventually freed along with the rest of the foreign key object by
975 ** sqlite3FkDelete().
976 */
977 static Trigger *fkActionTrigger(
978   Parse *pParse,                  /* Parse context */
979   Table *pTab,                    /* Table being updated or deleted from */
980   FKey *pFKey,                    /* Foreign key to get action for */
981   ExprList *pChanges              /* Change-list for UPDATE, NULL for DELETE */
982 ){
983   sqlite3 *db = pParse->db;       /* Database handle */
984   int action;                     /* One of OE_None, OE_Cascade etc. */
985   Trigger *pTrigger;              /* Trigger definition to return */
986   int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */
987 
988   action = pFKey->aAction[iAction];
989   pTrigger = pFKey->apTrigger[iAction];
990 
991   if( action!=OE_None && !pTrigger ){
992     u8 enableLookaside;           /* Copy of db->lookaside.bEnabled */
993     char const *zFrom;            /* Name of child table */
994     int nFrom;                    /* Length in bytes of zFrom */
995     Index *pIdx = 0;              /* Parent key index for this FK */
996     int *aiCol = 0;               /* child table cols -> parent key cols */
997     TriggerStep *pStep = 0;        /* First (only) step of trigger program */
998     Expr *pWhere = 0;             /* WHERE clause of trigger step */
999     ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
1000     Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
1001     int i;                        /* Iterator variable */
1002     Expr *pWhen = 0;              /* WHEN clause for the trigger */
1003 
1004     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
1005     assert( aiCol || pFKey->nCol==1 );
1006 
1007     for(i=0; i<pFKey->nCol; i++){
1008       Token tOld = { "old", 3 };  /* Literal "old" token */
1009       Token tNew = { "new", 3 };  /* Literal "new" token */
1010       Token tFromCol;             /* Name of column in child table */
1011       Token tToCol;               /* Name of column in parent table */
1012       int iFromCol;               /* Idx of column in child table */
1013       Expr *pEq;                  /* tFromCol = OLD.tToCol */
1014 
1015       iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
1016       assert( iFromCol>=0 );
1017       tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
1018       tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
1019 
1020       tToCol.n = sqlite3Strlen30(tToCol.z);
1021       tFromCol.n = sqlite3Strlen30(tFromCol.z);
1022 
1023       /* Create the expression "OLD.zToCol = zFromCol". It is important
1024       ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1025       ** that the affinity and collation sequence associated with the
1026       ** parent table are used for the comparison. */
1027       pEq = sqlite3PExpr(pParse, TK_EQ,
1028           sqlite3PExpr(pParse, TK_DOT,
1029             sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
1030             sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
1031           , 0),
1032           sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
1033       , 0);
1034       pWhere = sqlite3ExprAnd(db, pWhere, pEq);
1035 
1036       /* For ON UPDATE, construct the next term of the WHEN clause.
1037       ** The final WHEN clause will be like this:
1038       **
1039       **    WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1040       */
1041       if( pChanges ){
1042         pEq = sqlite3PExpr(pParse, TK_IS,
1043             sqlite3PExpr(pParse, TK_DOT,
1044               sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
1045               sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1046               0),
1047             sqlite3PExpr(pParse, TK_DOT,
1048               sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1049               sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1050               0),
1051             0);
1052         pWhen = sqlite3ExprAnd(db, pWhen, pEq);
1053       }
1054 
1055       if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1056         Expr *pNew;
1057         if( action==OE_Cascade ){
1058           pNew = sqlite3PExpr(pParse, TK_DOT,
1059             sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1060             sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
1061           , 0);
1062         }else if( action==OE_SetDflt ){
1063           Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
1064           if( pDflt ){
1065             pNew = sqlite3ExprDup(db, pDflt, 0);
1066           }else{
1067             pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1068           }
1069         }else{
1070           pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1071         }
1072         pList = sqlite3ExprListAppend(pParse, pList, pNew);
1073         sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1074       }
1075     }
1076     sqlite3DbFree(db, aiCol);
1077 
1078     zFrom = pFKey->pFrom->zName;
1079     nFrom = sqlite3Strlen30(zFrom);
1080 
1081     if( action==OE_Restrict ){
1082       Token tFrom;
1083       Expr *pRaise;
1084 
1085       tFrom.z = zFrom;
1086       tFrom.n = nFrom;
1087       pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed");
1088       if( pRaise ){
1089         pRaise->affinity = OE_Abort;
1090       }
1091       pSelect = sqlite3SelectNew(pParse,
1092           sqlite3ExprListAppend(pParse, 0, pRaise),
1093           sqlite3SrcListAppend(db, 0, &tFrom, 0),
1094           pWhere,
1095           0, 0, 0, 0, 0, 0
1096       );
1097       pWhere = 0;
1098     }
1099 
1100     /* Disable lookaside memory allocation */
1101     enableLookaside = db->lookaside.bEnabled;
1102     db->lookaside.bEnabled = 0;
1103 
1104     pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1105         sizeof(Trigger) +         /* struct Trigger */
1106         sizeof(TriggerStep) +     /* Single step in trigger program */
1107         nFrom + 1                 /* Space for pStep->target.z */
1108     );
1109     if( pTrigger ){
1110       pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1111       pStep->target.z = (char *)&pStep[1];
1112       pStep->target.n = nFrom;
1113       memcpy((char *)pStep->target.z, zFrom, nFrom);
1114 
1115       pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1116       pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1117       pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1118       if( pWhen ){
1119         pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
1120         pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1121       }
1122     }
1123 
1124     /* Re-enable the lookaside buffer, if it was disabled earlier. */
1125     db->lookaside.bEnabled = enableLookaside;
1126 
1127     sqlite3ExprDelete(db, pWhere);
1128     sqlite3ExprDelete(db, pWhen);
1129     sqlite3ExprListDelete(db, pList);
1130     sqlite3SelectDelete(db, pSelect);
1131     if( db->mallocFailed==1 ){
1132       fkTriggerDelete(db, pTrigger);
1133       return 0;
1134     }
1135     assert( pStep!=0 );
1136 
1137     switch( action ){
1138       case OE_Restrict:
1139         pStep->op = TK_SELECT;
1140         break;
1141       case OE_Cascade:
1142         if( !pChanges ){
1143           pStep->op = TK_DELETE;
1144           break;
1145         }
1146       default:
1147         pStep->op = TK_UPDATE;
1148     }
1149     pStep->pTrig = pTrigger;
1150     pTrigger->pSchema = pTab->pSchema;
1151     pTrigger->pTabSchema = pTab->pSchema;
1152     pFKey->apTrigger[iAction] = pTrigger;
1153     pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1154   }
1155 
1156   return pTrigger;
1157 }
1158 
1159 /*
1160 ** This function is called when deleting or updating a row to implement
1161 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1162 */
1163 void sqlite3FkActions(
1164   Parse *pParse,                  /* Parse context */
1165   Table *pTab,                    /* Table being updated or deleted from */
1166   ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
1167   int regOld                      /* Address of array containing old row */
1168 ){
1169   /* If foreign-key support is enabled, iterate through all FKs that
1170   ** refer to table pTab. If there is an action associated with the FK
1171   ** for this operation (either update or delete), invoke the associated
1172   ** trigger sub-program.  */
1173   if( pParse->db->flags&SQLITE_ForeignKeys ){
1174     FKey *pFKey;                  /* Iterator variable */
1175     for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1176       Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1177       if( pAction ){
1178         sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
1179       }
1180     }
1181   }
1182 }
1183 
1184 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1185 
1186 /*
1187 ** Free all memory associated with foreign key definitions attached to
1188 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1189 ** hash table.
1190 */
1191 void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1192   FKey *pFKey;                    /* Iterator variable */
1193   FKey *pNext;                    /* Copy of pFKey->pNextFrom */
1194 
1195   assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1196   for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1197 
1198     /* Remove the FK from the fkeyHash hash table. */
1199     if( !db || db->pnBytesFreed==0 ){
1200       if( pFKey->pPrevTo ){
1201         pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1202       }else{
1203         void *p = (void *)pFKey->pNextTo;
1204         const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1205         sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p);
1206       }
1207       if( pFKey->pNextTo ){
1208         pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1209       }
1210     }
1211 
1212     /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1213     ** classified as either immediate or deferred.
1214     */
1215     assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1216 
1217     /* Delete any triggers created to implement actions for this FK. */
1218 #ifndef SQLITE_OMIT_TRIGGER
1219     fkTriggerDelete(db, pFKey->apTrigger[0]);
1220     fkTriggerDelete(db, pFKey->apTrigger[1]);
1221 #endif
1222 
1223     pNext = pFKey->pNextFrom;
1224     sqlite3DbFree(db, pFKey);
1225   }
1226 }
1227 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
1228