1 /* 2 ** 3 ** The author disclaims copyright to this source code. In place of 4 ** a legal notice, here is a blessing: 5 ** 6 ** May you do good and not evil. 7 ** May you find forgiveness for yourself and forgive others. 8 ** May you share freely, never taking more than you give. 9 ** 10 ************************************************************************* 11 ** This file contains code used by the compiler to add foreign key 12 ** support to compiled SQL statements. 13 */ 14 #include "sqliteInt.h" 15 16 #ifndef SQLITE_OMIT_FOREIGN_KEY 17 #ifndef SQLITE_OMIT_TRIGGER 18 19 /* 20 ** Deferred and Immediate FKs 21 ** -------------------------- 22 ** 23 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 24 ** If an immediate foreign key constraint is violated, 25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current 26 ** statement transaction rolled back. If a 27 ** deferred foreign key constraint is violated, no action is taken 28 ** immediately. However if the application attempts to commit the 29 ** transaction before fixing the constraint violation, the attempt fails. 30 ** 31 ** Deferred constraints are implemented using a simple counter associated 32 ** with the database handle. The counter is set to zero each time a 33 ** database transaction is opened. Each time a statement is executed 34 ** that causes a foreign key violation, the counter is incremented. Each 35 ** time a statement is executed that removes an existing violation from 36 ** the database, the counter is decremented. When the transaction is 37 ** committed, the commit fails if the current value of the counter is 38 ** greater than zero. This scheme has two big drawbacks: 39 ** 40 ** * When a commit fails due to a deferred foreign key constraint, 41 ** there is no way to tell which foreign constraint is not satisfied, 42 ** or which row it is not satisfied for. 43 ** 44 ** * If the database contains foreign key violations when the 45 ** transaction is opened, this may cause the mechanism to malfunction. 46 ** 47 ** Despite these problems, this approach is adopted as it seems simpler 48 ** than the alternatives. 49 ** 50 ** INSERT operations: 51 ** 52 ** I.1) For each FK for which the table is the child table, search 53 ** the parent table for a match. If none is found increment the 54 ** constraint counter. 55 ** 56 ** I.2) For each FK for which the table is the parent table, 57 ** search the child table for rows that correspond to the new 58 ** row in the parent table. Decrement the counter for each row 59 ** found (as the constraint is now satisfied). 60 ** 61 ** DELETE operations: 62 ** 63 ** D.1) For each FK for which the table is the child table, 64 ** search the parent table for a row that corresponds to the 65 ** deleted row in the child table. If such a row is not found, 66 ** decrement the counter. 67 ** 68 ** D.2) For each FK for which the table is the parent table, search 69 ** the child table for rows that correspond to the deleted row 70 ** in the parent table. For each found increment the counter. 71 ** 72 ** UPDATE operations: 73 ** 74 ** An UPDATE command requires that all 4 steps above are taken, but only 75 ** for FK constraints for which the affected columns are actually 76 ** modified (values must be compared at runtime). 77 ** 78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 79 ** This simplifies the implementation a bit. 80 ** 81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 82 ** resolution is considered to delete rows before the new row is inserted. 83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 84 ** is thrown, even if the FK constraint would be satisfied after the new 85 ** row is inserted. 86 ** 87 ** Immediate constraints are usually handled similarly. The only difference 88 ** is that the counter used is stored as part of each individual statement 89 ** object (struct Vdbe). If, after the statement has run, its immediate 90 ** constraint counter is greater than zero, 91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY 92 ** and the statement transaction is rolled back. An exception is an INSERT 93 ** statement that inserts a single row only (no triggers). In this case, 94 ** instead of using a counter, an exception is thrown immediately if the 95 ** INSERT violates a foreign key constraint. This is necessary as such 96 ** an INSERT does not open a statement transaction. 97 ** 98 ** TODO: How should dropping a table be handled? How should renaming a 99 ** table be handled? 100 ** 101 ** 102 ** Query API Notes 103 ** --------------- 104 ** 105 ** Before coding an UPDATE or DELETE row operation, the code-generator 106 ** for those two operations needs to know whether or not the operation 107 ** requires any FK processing and, if so, which columns of the original 108 ** row are required by the FK processing VDBE code (i.e. if FKs were 109 ** implemented using triggers, which of the old.* columns would be 110 ** accessed). No information is required by the code-generator before 111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 112 ** generation code to query for this information are: 113 ** 114 ** sqlite3FkRequired() - Test to see if FK processing is required. 115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 116 ** 117 ** 118 ** Externally accessible module functions 119 ** -------------------------------------- 120 ** 121 ** sqlite3FkCheck() - Check for foreign key violations. 122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 123 ** sqlite3FkDelete() - Delete an FKey structure. 124 */ 125 126 /* 127 ** VDBE Calling Convention 128 ** ----------------------- 129 ** 130 ** Example: 131 ** 132 ** For the following INSERT statement: 133 ** 134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 135 ** INSERT INTO t1 VALUES(1, 2, 3.1); 136 ** 137 ** Register (x): 2 (type integer) 138 ** Register (x+1): 1 (type integer) 139 ** Register (x+2): NULL (type NULL) 140 ** Register (x+3): 3.1 (type real) 141 */ 142 143 /* 144 ** A foreign key constraint requires that the key columns in the parent 145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 146 ** Given that pParent is the parent table for foreign key constraint pFKey, 147 ** search the schema for a unique index on the parent key columns. 148 ** 149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 151 ** is set to point to the unique index. 152 ** 153 ** If the parent key consists of a single column (the foreign key constraint 154 ** is not a composite foreign key), output variable *paiCol is set to NULL. 155 ** Otherwise, it is set to point to an allocated array of size N, where 156 ** N is the number of columns in the parent key. The first element of the 157 ** array is the index of the child table column that is mapped by the FK 158 ** constraint to the parent table column stored in the left-most column 159 ** of index *ppIdx. The second element of the array is the index of the 160 ** child table column that corresponds to the second left-most column of 161 ** *ppIdx, and so on. 162 ** 163 ** If the required index cannot be found, either because: 164 ** 165 ** 1) The named parent key columns do not exist, or 166 ** 167 ** 2) The named parent key columns do exist, but are not subject to a 168 ** UNIQUE or PRIMARY KEY constraint, or 169 ** 170 ** 3) No parent key columns were provided explicitly as part of the 171 ** foreign key definition, and the parent table does not have a 172 ** PRIMARY KEY, or 173 ** 174 ** 4) No parent key columns were provided explicitly as part of the 175 ** foreign key definition, and the PRIMARY KEY of the parent table 176 ** consists of a different number of columns to the child key in 177 ** the child table. 178 ** 179 ** then non-zero is returned, and a "foreign key mismatch" error loaded 180 ** into pParse. If an OOM error occurs, non-zero is returned and the 181 ** pParse->db->mallocFailed flag is set. 182 */ 183 int sqlite3FkLocateIndex( 184 Parse *pParse, /* Parse context to store any error in */ 185 Table *pParent, /* Parent table of FK constraint pFKey */ 186 FKey *pFKey, /* Foreign key to find index for */ 187 Index **ppIdx, /* OUT: Unique index on parent table */ 188 int **paiCol /* OUT: Map of index columns in pFKey */ 189 ){ 190 Index *pIdx = 0; /* Value to return via *ppIdx */ 191 int *aiCol = 0; /* Value to return via *paiCol */ 192 int nCol = pFKey->nCol; /* Number of columns in parent key */ 193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 194 195 /* The caller is responsible for zeroing output parameters. */ 196 assert( ppIdx && *ppIdx==0 ); 197 assert( !paiCol || *paiCol==0 ); 198 assert( pParse ); 199 200 /* If this is a non-composite (single column) foreign key, check if it 201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 202 ** and *paiCol set to zero and return early. 203 ** 204 ** Otherwise, for a composite foreign key (more than one column), allocate 205 ** space for the aiCol array (returned via output parameter *paiCol). 206 ** Non-composite foreign keys do not require the aiCol array. 207 */ 208 if( nCol==1 ){ 209 /* The FK maps to the IPK if any of the following are true: 210 ** 211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 212 ** mapped to the primary key of table pParent, or 213 ** 2) The FK is explicitly mapped to a column declared as INTEGER 214 ** PRIMARY KEY. 215 */ 216 if( pParent->iPKey>=0 ){ 217 if( !zKey ) return 0; 218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zCnName, zKey) ){ 219 return 0; 220 } 221 } 222 }else if( paiCol ){ 223 assert( nCol>1 ); 224 aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int)); 225 if( !aiCol ) return 1; 226 *paiCol = aiCol; 227 } 228 229 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 230 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){ 231 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 232 ** of columns. If each indexed column corresponds to a foreign key 233 ** column of pFKey, then this index is a winner. */ 234 235 if( zKey==0 ){ 236 /* If zKey is NULL, then this foreign key is implicitly mapped to 237 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 238 ** identified by the test. */ 239 if( IsPrimaryKeyIndex(pIdx) ){ 240 if( aiCol ){ 241 int i; 242 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 243 } 244 break; 245 } 246 }else{ 247 /* If zKey is non-NULL, then this foreign key was declared to 248 ** map to an explicit list of columns in table pParent. Check if this 249 ** index matches those columns. Also, check that the index uses 250 ** the default collation sequences for each column. */ 251 int i, j; 252 for(i=0; i<nCol; i++){ 253 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 254 const char *zDfltColl; /* Def. collation for column */ 255 char *zIdxCol; /* Name of indexed column */ 256 257 if( iCol<0 ) break; /* No foreign keys against expression indexes */ 258 259 /* If the index uses a collation sequence that is different from 260 ** the default collation sequence for the column, this index is 261 ** unusable. Bail out early in this case. */ 262 zDfltColl = sqlite3ColumnColl(&pParent->aCol[iCol]); 263 if( !zDfltColl ) zDfltColl = sqlite3StrBINARY; 264 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 265 266 zIdxCol = pParent->aCol[iCol].zCnName; 267 for(j=0; j<nCol; j++){ 268 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 269 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 270 break; 271 } 272 } 273 if( j==nCol ) break; 274 } 275 if( i==nCol ) break; /* pIdx is usable */ 276 } 277 } 278 } 279 280 if( !pIdx ){ 281 if( !pParse->disableTriggers ){ 282 sqlite3ErrorMsg(pParse, 283 "foreign key mismatch - \"%w\" referencing \"%w\"", 284 pFKey->pFrom->zName, pFKey->zTo); 285 } 286 sqlite3DbFree(pParse->db, aiCol); 287 return 1; 288 } 289 290 *ppIdx = pIdx; 291 return 0; 292 } 293 294 /* 295 ** This function is called when a row is inserted into or deleted from the 296 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 297 ** on the child table of pFKey, this function is invoked twice for each row 298 ** affected - once to "delete" the old row, and then again to "insert" the 299 ** new row. 300 ** 301 ** Each time it is called, this function generates VDBE code to locate the 302 ** row in the parent table that corresponds to the row being inserted into 303 ** or deleted from the child table. If the parent row can be found, no 304 ** special action is taken. Otherwise, if the parent row can *not* be 305 ** found in the parent table: 306 ** 307 ** Operation | FK type | Action taken 308 ** -------------------------------------------------------------------------- 309 ** INSERT immediate Increment the "immediate constraint counter". 310 ** 311 ** DELETE immediate Decrement the "immediate constraint counter". 312 ** 313 ** INSERT deferred Increment the "deferred constraint counter". 314 ** 315 ** DELETE deferred Decrement the "deferred constraint counter". 316 ** 317 ** These operations are identified in the comment at the top of this file 318 ** (fkey.c) as "I.1" and "D.1". 319 */ 320 static void fkLookupParent( 321 Parse *pParse, /* Parse context */ 322 int iDb, /* Index of database housing pTab */ 323 Table *pTab, /* Parent table of FK pFKey */ 324 Index *pIdx, /* Unique index on parent key columns in pTab */ 325 FKey *pFKey, /* Foreign key constraint */ 326 int *aiCol, /* Map from parent key columns to child table columns */ 327 int regData, /* Address of array containing child table row */ 328 int nIncr, /* Increment constraint counter by this */ 329 int isIgnore /* If true, pretend pTab contains all NULL values */ 330 ){ 331 int i; /* Iterator variable */ 332 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 333 int iCur = pParse->nTab - 1; /* Cursor number to use */ 334 int iOk = sqlite3VdbeMakeLabel(pParse); /* jump here if parent key found */ 335 336 sqlite3VdbeVerifyAbortable(v, 337 (!pFKey->isDeferred 338 && !(pParse->db->flags & SQLITE_DeferFKs) 339 && !pParse->pToplevel 340 && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore); 341 342 /* If nIncr is less than zero, then check at runtime if there are any 343 ** outstanding constraints to resolve. If there are not, there is no need 344 ** to check if deleting this row resolves any outstanding violations. 345 ** 346 ** Check if any of the key columns in the child table row are NULL. If 347 ** any are, then the constraint is considered satisfied. No need to 348 ** search for a matching row in the parent table. */ 349 if( nIncr<0 ){ 350 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 351 VdbeCoverage(v); 352 } 353 for(i=0; i<pFKey->nCol; i++){ 354 int iReg = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) + regData + 1; 355 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); 356 } 357 358 if( isIgnore==0 ){ 359 if( pIdx==0 ){ 360 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 361 ** column of the parent table (table pTab). */ 362 int iMustBeInt; /* Address of MustBeInt instruction */ 363 int regTemp = sqlite3GetTempReg(pParse); 364 365 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 366 ** apply the affinity of the parent key). If this fails, then there 367 ** is no matching parent key. Before using MustBeInt, make a copy of 368 ** the value. Otherwise, the value inserted into the child key column 369 ** will have INTEGER affinity applied to it, which may not be correct. */ 370 sqlite3VdbeAddOp2(v, OP_SCopy, 371 sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[0])+1+regData, regTemp); 372 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 373 VdbeCoverage(v); 374 375 /* If the parent table is the same as the child table, and we are about 376 ** to increment the constraint-counter (i.e. this is an INSERT operation), 377 ** then check if the row being inserted matches itself. If so, do not 378 ** increment the constraint-counter. */ 379 if( pTab==pFKey->pFrom && nIncr==1 ){ 380 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); 381 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 382 } 383 384 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 385 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); 386 sqlite3VdbeGoto(v, iOk); 387 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 388 sqlite3VdbeJumpHere(v, iMustBeInt); 389 sqlite3ReleaseTempReg(pParse, regTemp); 390 }else{ 391 int nCol = pFKey->nCol; 392 int regTemp = sqlite3GetTempRange(pParse, nCol); 393 394 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 395 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 396 for(i=0; i<nCol; i++){ 397 sqlite3VdbeAddOp2(v, OP_Copy, 398 sqlite3TableColumnToStorage(pFKey->pFrom, aiCol[i])+1+regData, 399 regTemp+i); 400 } 401 402 /* If the parent table is the same as the child table, and we are about 403 ** to increment the constraint-counter (i.e. this is an INSERT operation), 404 ** then check if the row being inserted matches itself. If so, do not 405 ** increment the constraint-counter. 406 ** 407 ** If any of the parent-key values are NULL, then the row cannot match 408 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 409 ** of the parent-key values are NULL (at this point it is known that 410 ** none of the child key values are). 411 */ 412 if( pTab==pFKey->pFrom && nIncr==1 ){ 413 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 414 for(i=0; i<nCol; i++){ 415 int iChild = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) 416 +1+regData; 417 int iParent = 1+regData; 418 iParent += sqlite3TableColumnToStorage(pIdx->pTable, 419 pIdx->aiColumn[i]); 420 assert( pIdx->aiColumn[i]>=0 ); 421 assert( aiCol[i]!=pTab->iPKey ); 422 if( pIdx->aiColumn[i]==pTab->iPKey ){ 423 /* The parent key is a composite key that includes the IPK column */ 424 iParent = regData; 425 } 426 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); 427 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 428 } 429 sqlite3VdbeGoto(v, iOk); 430 } 431 432 sqlite3VdbeAddOp4(v, OP_Affinity, regTemp, nCol, 0, 433 sqlite3IndexAffinityStr(pParse->db,pIdx), nCol); 434 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regTemp, nCol); 435 VdbeCoverage(v); 436 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 437 } 438 } 439 440 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) 441 && !pParse->pToplevel 442 && !pParse->isMultiWrite 443 ){ 444 /* Special case: If this is an INSERT statement that will insert exactly 445 ** one row into the table, raise a constraint immediately instead of 446 ** incrementing a counter. This is necessary as the VM code is being 447 ** generated for will not open a statement transaction. */ 448 assert( nIncr==1 ); 449 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 450 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 451 }else{ 452 if( nIncr>0 && pFKey->isDeferred==0 ){ 453 sqlite3MayAbort(pParse); 454 } 455 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 456 } 457 458 sqlite3VdbeResolveLabel(v, iOk); 459 sqlite3VdbeAddOp1(v, OP_Close, iCur); 460 } 461 462 463 /* 464 ** Return an Expr object that refers to a memory register corresponding 465 ** to column iCol of table pTab. 466 ** 467 ** regBase is the first of an array of register that contains the data 468 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first 469 ** column. regBase+2 holds the second column, and so forth. 470 */ 471 static Expr *exprTableRegister( 472 Parse *pParse, /* Parsing and code generating context */ 473 Table *pTab, /* The table whose content is at r[regBase]... */ 474 int regBase, /* Contents of table pTab */ 475 i16 iCol /* Which column of pTab is desired */ 476 ){ 477 Expr *pExpr; 478 Column *pCol; 479 const char *zColl; 480 sqlite3 *db = pParse->db; 481 482 pExpr = sqlite3Expr(db, TK_REGISTER, 0); 483 if( pExpr ){ 484 if( iCol>=0 && iCol!=pTab->iPKey ){ 485 pCol = &pTab->aCol[iCol]; 486 pExpr->iTable = regBase + sqlite3TableColumnToStorage(pTab,iCol) + 1; 487 pExpr->affExpr = pCol->affinity; 488 zColl = sqlite3ColumnColl(pCol); 489 if( zColl==0 ) zColl = db->pDfltColl->zName; 490 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); 491 }else{ 492 pExpr->iTable = regBase; 493 pExpr->affExpr = SQLITE_AFF_INTEGER; 494 } 495 } 496 return pExpr; 497 } 498 499 /* 500 ** Return an Expr object that refers to column iCol of table pTab which 501 ** has cursor iCur. 502 */ 503 static Expr *exprTableColumn( 504 sqlite3 *db, /* The database connection */ 505 Table *pTab, /* The table whose column is desired */ 506 int iCursor, /* The open cursor on the table */ 507 i16 iCol /* The column that is wanted */ 508 ){ 509 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); 510 if( pExpr ){ 511 assert( ExprUseYTab(pExpr) ); 512 pExpr->y.pTab = pTab; 513 pExpr->iTable = iCursor; 514 pExpr->iColumn = iCol; 515 } 516 return pExpr; 517 } 518 519 /* 520 ** This function is called to generate code executed when a row is deleted 521 ** from the parent table of foreign key constraint pFKey and, if pFKey is 522 ** deferred, when a row is inserted into the same table. When generating 523 ** code for an SQL UPDATE operation, this function may be called twice - 524 ** once to "delete" the old row and once to "insert" the new row. 525 ** 526 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease 527 ** the number of FK violations in the db) or +1 when deleting one (as this 528 ** may increase the number of FK constraint problems). 529 ** 530 ** The code generated by this function scans through the rows in the child 531 ** table that correspond to the parent table row being deleted or inserted. 532 ** For each child row found, one of the following actions is taken: 533 ** 534 ** Operation | FK type | Action taken 535 ** -------------------------------------------------------------------------- 536 ** DELETE immediate Increment the "immediate constraint counter". 537 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 538 ** throw a "FOREIGN KEY constraint failed" exception. 539 ** 540 ** INSERT immediate Decrement the "immediate constraint counter". 541 ** 542 ** DELETE deferred Increment the "deferred constraint counter". 543 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, 544 ** throw a "FOREIGN KEY constraint failed" exception. 545 ** 546 ** INSERT deferred Decrement the "deferred constraint counter". 547 ** 548 ** These operations are identified in the comment at the top of this file 549 ** (fkey.c) as "I.2" and "D.2". 550 */ 551 static void fkScanChildren( 552 Parse *pParse, /* Parse context */ 553 SrcList *pSrc, /* The child table to be scanned */ 554 Table *pTab, /* The parent table */ 555 Index *pIdx, /* Index on parent covering the foreign key */ 556 FKey *pFKey, /* The foreign key linking pSrc to pTab */ 557 int *aiCol, /* Map from pIdx cols to child table cols */ 558 int regData, /* Parent row data starts here */ 559 int nIncr /* Amount to increment deferred counter by */ 560 ){ 561 sqlite3 *db = pParse->db; /* Database handle */ 562 int i; /* Iterator variable */ 563 Expr *pWhere = 0; /* WHERE clause to scan with */ 564 NameContext sNameContext; /* Context used to resolve WHERE clause */ 565 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 566 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 567 Vdbe *v = sqlite3GetVdbe(pParse); 568 569 assert( pIdx==0 || pIdx->pTable==pTab ); 570 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); 571 assert( pIdx!=0 || pFKey->nCol==1 ); 572 assert( pIdx!=0 || HasRowid(pTab) ); 573 574 if( nIncr<0 ){ 575 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 576 VdbeCoverage(v); 577 } 578 579 /* Create an Expr object representing an SQL expression like: 580 ** 581 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 582 ** 583 ** The collation sequence used for the comparison should be that of 584 ** the parent key columns. The affinity of the parent key column should 585 ** be applied to each child key value before the comparison takes place. 586 */ 587 for(i=0; i<pFKey->nCol; i++){ 588 Expr *pLeft; /* Value from parent table row */ 589 Expr *pRight; /* Column ref to child table */ 590 Expr *pEq; /* Expression (pLeft = pRight) */ 591 i16 iCol; /* Index of column in child table */ 592 const char *zCol; /* Name of column in child table */ 593 594 iCol = pIdx ? pIdx->aiColumn[i] : -1; 595 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 596 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 597 assert( iCol>=0 ); 598 zCol = pFKey->pFrom->aCol[iCol].zCnName; 599 pRight = sqlite3Expr(db, TK_ID, zCol); 600 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); 601 pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); 602 } 603 604 /* If the child table is the same as the parent table, then add terms 605 ** to the WHERE clause that prevent this entry from being scanned. 606 ** The added WHERE clause terms are like this: 607 ** 608 ** $current_rowid!=rowid 609 ** NOT( $current_a==a AND $current_b==b AND ... ) 610 ** 611 ** The first form is used for rowid tables. The second form is used 612 ** for WITHOUT ROWID tables. In the second form, the *parent* key is 613 ** (a,b,...). Either the parent or primary key could be used to 614 ** uniquely identify the current row, but the parent key is more convenient 615 ** as the required values have already been loaded into registers 616 ** by the caller. 617 */ 618 if( pTab==pFKey->pFrom && nIncr>0 ){ 619 Expr *pNe; /* Expression (pLeft != pRight) */ 620 Expr *pLeft; /* Value from parent table row */ 621 Expr *pRight; /* Column ref to child table */ 622 if( HasRowid(pTab) ){ 623 pLeft = exprTableRegister(pParse, pTab, regData, -1); 624 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); 625 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight); 626 }else{ 627 Expr *pEq, *pAll = 0; 628 assert( pIdx!=0 ); 629 for(i=0; i<pIdx->nKeyCol; i++){ 630 i16 iCol = pIdx->aiColumn[i]; 631 assert( iCol>=0 ); 632 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 633 pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zCnName); 634 pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight); 635 pAll = sqlite3ExprAnd(pParse, pAll, pEq); 636 } 637 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0); 638 } 639 pWhere = sqlite3ExprAnd(pParse, pWhere, pNe); 640 } 641 642 /* Resolve the references in the WHERE clause. */ 643 memset(&sNameContext, 0, sizeof(NameContext)); 644 sNameContext.pSrcList = pSrc; 645 sNameContext.pParse = pParse; 646 sqlite3ResolveExprNames(&sNameContext, pWhere); 647 648 /* Create VDBE to loop through the entries in pSrc that match the WHERE 649 ** clause. For each row found, increment either the deferred or immediate 650 ** foreign key constraint counter. */ 651 if( pParse->nErr==0 ){ 652 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0, 0); 653 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 654 if( pWInfo ){ 655 sqlite3WhereEnd(pWInfo); 656 } 657 } 658 659 /* Clean up the WHERE clause constructed above. */ 660 sqlite3ExprDelete(db, pWhere); 661 if( iFkIfZero ){ 662 sqlite3VdbeJumpHereOrPopInst(v, iFkIfZero); 663 } 664 } 665 666 /* 667 ** This function returns a linked list of FKey objects (connected by 668 ** FKey.pNextTo) holding all children of table pTab. For example, 669 ** given the following schema: 670 ** 671 ** CREATE TABLE t1(a PRIMARY KEY); 672 ** CREATE TABLE t2(b REFERENCES t1(a); 673 ** 674 ** Calling this function with table "t1" as an argument returns a pointer 675 ** to the FKey structure representing the foreign key constraint on table 676 ** "t2". Calling this function with "t2" as the argument would return a 677 ** NULL pointer (as there are no FK constraints for which t2 is the parent 678 ** table). 679 */ 680 FKey *sqlite3FkReferences(Table *pTab){ 681 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName); 682 } 683 684 /* 685 ** The second argument is a Trigger structure allocated by the 686 ** fkActionTrigger() routine. This function deletes the Trigger structure 687 ** and all of its sub-components. 688 ** 689 ** The Trigger structure or any of its sub-components may be allocated from 690 ** the lookaside buffer belonging to database handle dbMem. 691 */ 692 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 693 if( p ){ 694 TriggerStep *pStep = p->step_list; 695 sqlite3ExprDelete(dbMem, pStep->pWhere); 696 sqlite3ExprListDelete(dbMem, pStep->pExprList); 697 sqlite3SelectDelete(dbMem, pStep->pSelect); 698 sqlite3ExprDelete(dbMem, p->pWhen); 699 sqlite3DbFree(dbMem, p); 700 } 701 } 702 703 /* 704 ** Clear the apTrigger[] cache of CASCADE triggers for all foreign keys 705 ** in a particular database. This needs to happen when the schema 706 ** changes. 707 */ 708 void sqlite3FkClearTriggerCache(sqlite3 *db, int iDb){ 709 HashElem *k; 710 Hash *pHash = &db->aDb[iDb].pSchema->tblHash; 711 for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k)){ 712 Table *pTab = sqliteHashData(k); 713 FKey *pFKey; 714 if( !IsOrdinaryTable(pTab) ) continue; 715 for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ 716 fkTriggerDelete(db, pFKey->apTrigger[0]); pFKey->apTrigger[0] = 0; 717 fkTriggerDelete(db, pFKey->apTrigger[1]); pFKey->apTrigger[1] = 0; 718 } 719 } 720 } 721 722 /* 723 ** This function is called to generate code that runs when table pTab is 724 ** being dropped from the database. The SrcList passed as the second argument 725 ** to this function contains a single entry guaranteed to resolve to 726 ** table pTab. 727 ** 728 ** Normally, no code is required. However, if either 729 ** 730 ** (a) The table is the parent table of a FK constraint, or 731 ** (b) The table is the child table of a deferred FK constraint and it is 732 ** determined at runtime that there are outstanding deferred FK 733 ** constraint violations in the database, 734 ** 735 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 736 ** the table from the database. Triggers are disabled while running this 737 ** DELETE, but foreign key actions are not. 738 */ 739 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 740 sqlite3 *db = pParse->db; 741 if( (db->flags&SQLITE_ForeignKeys) && IsOrdinaryTable(pTab) ){ 742 int iSkip = 0; 743 Vdbe *v = sqlite3GetVdbe(pParse); 744 745 assert( v ); /* VDBE has already been allocated */ 746 assert( IsOrdinaryTable(pTab) ); 747 if( sqlite3FkReferences(pTab)==0 ){ 748 /* Search for a deferred foreign key constraint for which this table 749 ** is the child table. If one cannot be found, return without 750 ** generating any VDBE code. If one can be found, then jump over 751 ** the entire DELETE if there are no outstanding deferred constraints 752 ** when this statement is run. */ 753 FKey *p; 754 for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ 755 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; 756 } 757 if( !p ) return; 758 iSkip = sqlite3VdbeMakeLabel(pParse); 759 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); 760 } 761 762 pParse->disableTriggers = 1; 763 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0); 764 pParse->disableTriggers = 0; 765 766 /* If the DELETE has generated immediate foreign key constraint 767 ** violations, halt the VDBE and return an error at this point, before 768 ** any modifications to the schema are made. This is because statement 769 ** transactions are not able to rollback schema changes. 770 ** 771 ** If the SQLITE_DeferFKs flag is set, then this is not required, as 772 ** the statement transaction will not be rolled back even if FK 773 ** constraints are violated. 774 */ 775 if( (db->flags & SQLITE_DeferFKs)==0 ){ 776 sqlite3VdbeVerifyAbortable(v, OE_Abort); 777 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 778 VdbeCoverage(v); 779 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 780 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 781 } 782 783 if( iSkip ){ 784 sqlite3VdbeResolveLabel(v, iSkip); 785 } 786 } 787 } 788 789 790 /* 791 ** The second argument points to an FKey object representing a foreign key 792 ** for which pTab is the child table. An UPDATE statement against pTab 793 ** is currently being processed. For each column of the table that is 794 ** actually updated, the corresponding element in the aChange[] array 795 ** is zero or greater (if a column is unmodified the corresponding element 796 ** is set to -1). If the rowid column is modified by the UPDATE statement 797 ** the bChngRowid argument is non-zero. 798 ** 799 ** This function returns true if any of the columns that are part of the 800 ** child key for FK constraint *p are modified. 801 */ 802 static int fkChildIsModified( 803 Table *pTab, /* Table being updated */ 804 FKey *p, /* Foreign key for which pTab is the child */ 805 int *aChange, /* Array indicating modified columns */ 806 int bChngRowid /* True if rowid is modified by this update */ 807 ){ 808 int i; 809 for(i=0; i<p->nCol; i++){ 810 int iChildKey = p->aCol[i].iFrom; 811 if( aChange[iChildKey]>=0 ) return 1; 812 if( iChildKey==pTab->iPKey && bChngRowid ) return 1; 813 } 814 return 0; 815 } 816 817 /* 818 ** The second argument points to an FKey object representing a foreign key 819 ** for which pTab is the parent table. An UPDATE statement against pTab 820 ** is currently being processed. For each column of the table that is 821 ** actually updated, the corresponding element in the aChange[] array 822 ** is zero or greater (if a column is unmodified the corresponding element 823 ** is set to -1). If the rowid column is modified by the UPDATE statement 824 ** the bChngRowid argument is non-zero. 825 ** 826 ** This function returns true if any of the columns that are part of the 827 ** parent key for FK constraint *p are modified. 828 */ 829 static int fkParentIsModified( 830 Table *pTab, 831 FKey *p, 832 int *aChange, 833 int bChngRowid 834 ){ 835 int i; 836 for(i=0; i<p->nCol; i++){ 837 char *zKey = p->aCol[i].zCol; 838 int iKey; 839 for(iKey=0; iKey<pTab->nCol; iKey++){ 840 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ 841 Column *pCol = &pTab->aCol[iKey]; 842 if( zKey ){ 843 if( 0==sqlite3StrICmp(pCol->zCnName, zKey) ) return 1; 844 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ 845 return 1; 846 } 847 } 848 } 849 } 850 return 0; 851 } 852 853 /* 854 ** Return true if the parser passed as the first argument is being 855 ** used to code a trigger that is really a "SET NULL" action belonging 856 ** to trigger pFKey. 857 */ 858 static int isSetNullAction(Parse *pParse, FKey *pFKey){ 859 Parse *pTop = sqlite3ParseToplevel(pParse); 860 if( pTop->pTriggerPrg ){ 861 Trigger *p = pTop->pTriggerPrg->pTrigger; 862 if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull) 863 || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull) 864 ){ 865 return 1; 866 } 867 } 868 return 0; 869 } 870 871 /* 872 ** This function is called when inserting, deleting or updating a row of 873 ** table pTab to generate VDBE code to perform foreign key constraint 874 ** processing for the operation. 875 ** 876 ** For a DELETE operation, parameter regOld is passed the index of the 877 ** first register in an array of (pTab->nCol+1) registers containing the 878 ** rowid of the row being deleted, followed by each of the column values 879 ** of the row being deleted, from left to right. Parameter regNew is passed 880 ** zero in this case. 881 ** 882 ** For an INSERT operation, regOld is passed zero and regNew is passed the 883 ** first register of an array of (pTab->nCol+1) registers containing the new 884 ** row data. 885 ** 886 ** For an UPDATE operation, this function is called twice. Once before 887 ** the original record is deleted from the table using the calling convention 888 ** described for DELETE. Then again after the original record is deleted 889 ** but before the new record is inserted using the INSERT convention. 890 */ 891 void sqlite3FkCheck( 892 Parse *pParse, /* Parse context */ 893 Table *pTab, /* Row is being deleted from this table */ 894 int regOld, /* Previous row data is stored here */ 895 int regNew, /* New row data is stored here */ 896 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 897 int bChngRowid /* True if rowid is UPDATEd */ 898 ){ 899 sqlite3 *db = pParse->db; /* Database handle */ 900 FKey *pFKey; /* Used to iterate through FKs */ 901 int iDb; /* Index of database containing pTab */ 902 const char *zDb; /* Name of database containing pTab */ 903 int isIgnoreErrors = pParse->disableTriggers; 904 905 /* Exactly one of regOld and regNew should be non-zero. */ 906 assert( (regOld==0)!=(regNew==0) ); 907 908 /* If foreign-keys are disabled, this function is a no-op. */ 909 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 910 if( !IsOrdinaryTable(pTab) ) return; 911 912 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 913 zDb = db->aDb[iDb].zDbSName; 914 915 /* Loop through all the foreign key constraints for which pTab is the 916 ** child table (the table that the foreign key definition is part of). */ 917 for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ 918 Table *pTo; /* Parent table of foreign key pFKey */ 919 Index *pIdx = 0; /* Index on key columns in pTo */ 920 int *aiFree = 0; 921 int *aiCol; 922 int iCol; 923 int i; 924 int bIgnore = 0; 925 926 if( aChange 927 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 928 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 929 ){ 930 continue; 931 } 932 933 /* Find the parent table of this foreign key. Also find a unique index 934 ** on the parent key columns in the parent table. If either of these 935 ** schema items cannot be located, set an error in pParse and return 936 ** early. */ 937 if( pParse->disableTriggers ){ 938 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 939 }else{ 940 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 941 } 942 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 943 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 944 if( !isIgnoreErrors || db->mallocFailed ) return; 945 if( pTo==0 ){ 946 /* If isIgnoreErrors is true, then a table is being dropped. In this 947 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 948 ** before actually dropping it in order to check FK constraints. 949 ** If the parent table of an FK constraint on the current table is 950 ** missing, behave as if it is empty. i.e. decrement the relevant 951 ** FK counter for each row of the current table with non-NULL keys. 952 */ 953 Vdbe *v = sqlite3GetVdbe(pParse); 954 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 955 for(i=0; i<pFKey->nCol; i++){ 956 int iFromCol, iReg; 957 iFromCol = pFKey->aCol[i].iFrom; 958 iReg = sqlite3TableColumnToStorage(pFKey->pFrom,iFromCol) + regOld+1; 959 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); 960 } 961 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 962 } 963 continue; 964 } 965 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 966 967 if( aiFree ){ 968 aiCol = aiFree; 969 }else{ 970 iCol = pFKey->aCol[0].iFrom; 971 aiCol = &iCol; 972 } 973 for(i=0; i<pFKey->nCol; i++){ 974 if( aiCol[i]==pTab->iPKey ){ 975 aiCol[i] = -1; 976 } 977 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 978 #ifndef SQLITE_OMIT_AUTHORIZATION 979 /* Request permission to read the parent key columns. If the 980 ** authorization callback returns SQLITE_IGNORE, behave as if any 981 ** values read from the parent table are NULL. */ 982 if( db->xAuth ){ 983 int rcauth; 984 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zCnName; 985 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 986 bIgnore = (rcauth==SQLITE_IGNORE); 987 } 988 #endif 989 } 990 991 /* Take a shared-cache advisory read-lock on the parent table. Allocate 992 ** a cursor to use to search the unique index on the parent key columns 993 ** in the parent table. */ 994 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 995 pParse->nTab++; 996 997 if( regOld!=0 ){ 998 /* A row is being removed from the child table. Search for the parent. 999 ** If the parent does not exist, removing the child row resolves an 1000 ** outstanding foreign key constraint violation. */ 1001 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore); 1002 } 1003 if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){ 1004 /* A row is being added to the child table. If a parent row cannot 1005 ** be found, adding the child row has violated the FK constraint. 1006 ** 1007 ** If this operation is being performed as part of a trigger program 1008 ** that is actually a "SET NULL" action belonging to this very 1009 ** foreign key, then omit this scan altogether. As all child key 1010 ** values are guaranteed to be NULL, it is not possible for adding 1011 ** this row to cause an FK violation. */ 1012 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore); 1013 } 1014 1015 sqlite3DbFree(db, aiFree); 1016 } 1017 1018 /* Loop through all the foreign key constraints that refer to this table. 1019 ** (the "child" constraints) */ 1020 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1021 Index *pIdx = 0; /* Foreign key index for pFKey */ 1022 SrcList *pSrc; 1023 int *aiCol = 0; 1024 1025 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ 1026 continue; 1027 } 1028 1029 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 1030 && !pParse->pToplevel && !pParse->isMultiWrite 1031 ){ 1032 assert( regOld==0 && regNew!=0 ); 1033 /* Inserting a single row into a parent table cannot cause (or fix) 1034 ** an immediate foreign key violation. So do nothing in this case. */ 1035 continue; 1036 } 1037 1038 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 1039 if( !isIgnoreErrors || db->mallocFailed ) return; 1040 continue; 1041 } 1042 assert( aiCol || pFKey->nCol==1 ); 1043 1044 /* Create a SrcList structure containing the child table. We need the 1045 ** child table as a SrcList for sqlite3WhereBegin() */ 1046 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1047 if( pSrc ){ 1048 SrcItem *pItem = pSrc->a; 1049 pItem->pTab = pFKey->pFrom; 1050 pItem->zName = pFKey->pFrom->zName; 1051 pItem->pTab->nTabRef++; 1052 pItem->iCursor = pParse->nTab++; 1053 1054 if( regNew!=0 ){ 1055 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 1056 } 1057 if( regOld!=0 ){ 1058 int eAction = pFKey->aAction[aChange!=0]; 1059 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 1060 /* If this is a deferred FK constraint, or a CASCADE or SET NULL 1061 ** action applies, then any foreign key violations caused by 1062 ** removing the parent key will be rectified by the action trigger. 1063 ** So do not set the "may-abort" flag in this case. 1064 ** 1065 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the 1066 ** may-abort flag will eventually be set on this statement anyway 1067 ** (when this function is called as part of processing the UPDATE 1068 ** within the action trigger). 1069 ** 1070 ** Note 2: At first glance it may seem like SQLite could simply omit 1071 ** all OP_FkCounter related scans when either CASCADE or SET NULL 1072 ** applies. The trouble starts if the CASCADE or SET NULL action 1073 ** trigger causes other triggers or action rules attached to the 1074 ** child table to fire. In these cases the fk constraint counters 1075 ** might be set incorrectly if any OP_FkCounter related scans are 1076 ** omitted. */ 1077 if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){ 1078 sqlite3MayAbort(pParse); 1079 } 1080 } 1081 pItem->zName = 0; 1082 sqlite3SrcListDelete(db, pSrc); 1083 } 1084 sqlite3DbFree(db, aiCol); 1085 } 1086 } 1087 1088 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 1089 1090 /* 1091 ** This function is called before generating code to update or delete a 1092 ** row contained in table pTab. 1093 */ 1094 u32 sqlite3FkOldmask( 1095 Parse *pParse, /* Parse context */ 1096 Table *pTab /* Table being modified */ 1097 ){ 1098 u32 mask = 0; 1099 if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){ 1100 FKey *p; 1101 int i; 1102 for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ 1103 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 1104 } 1105 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1106 Index *pIdx = 0; 1107 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); 1108 if( pIdx ){ 1109 for(i=0; i<pIdx->nKeyCol; i++){ 1110 assert( pIdx->aiColumn[i]>=0 ); 1111 mask |= COLUMN_MASK(pIdx->aiColumn[i]); 1112 } 1113 } 1114 } 1115 } 1116 return mask; 1117 } 1118 1119 1120 /* 1121 ** This function is called before generating code to update or delete a 1122 ** row contained in table pTab. If the operation is a DELETE, then 1123 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 1124 ** to an array of size N, where N is the number of columns in table pTab. 1125 ** If the i'th column is not modified by the UPDATE, then the corresponding 1126 ** entry in the aChange[] array is set to -1. If the column is modified, 1127 ** the value is 0 or greater. Parameter chngRowid is set to true if the 1128 ** UPDATE statement modifies the rowid fields of the table. 1129 ** 1130 ** If any foreign key processing will be required, this function returns 1131 ** non-zero. If there is no foreign key related processing, this function 1132 ** returns zero. 1133 ** 1134 ** For an UPDATE, this function returns 2 if: 1135 ** 1136 ** * There are any FKs for which pTab is the child and the parent table 1137 ** and any FK processing at all is required (even of a different FK), or 1138 ** 1139 ** * the UPDATE modifies one or more parent keys for which the action is 1140 ** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL). 1141 ** 1142 ** Or, assuming some other foreign key processing is required, 1. 1143 */ 1144 int sqlite3FkRequired( 1145 Parse *pParse, /* Parse context */ 1146 Table *pTab, /* Table being modified */ 1147 int *aChange, /* Non-NULL for UPDATE operations */ 1148 int chngRowid /* True for UPDATE that affects rowid */ 1149 ){ 1150 int eRet = 1; /* Value to return if bHaveFK is true */ 1151 int bHaveFK = 0; /* If FK processing is required */ 1152 if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){ 1153 if( !aChange ){ 1154 /* A DELETE operation. Foreign key processing is required if the 1155 ** table in question is either the child or parent table for any 1156 ** foreign key constraint. */ 1157 bHaveFK = (sqlite3FkReferences(pTab) || pTab->u.tab.pFKey); 1158 }else{ 1159 /* This is an UPDATE. Foreign key processing is only required if the 1160 ** operation modifies one or more child or parent key columns. */ 1161 FKey *p; 1162 1163 /* Check if any child key columns are being modified. */ 1164 for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ 1165 if( fkChildIsModified(pTab, p, aChange, chngRowid) ){ 1166 if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) eRet = 2; 1167 bHaveFK = 1; 1168 } 1169 } 1170 1171 /* Check if any parent key columns are being modified. */ 1172 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 1173 if( fkParentIsModified(pTab, p, aChange, chngRowid) ){ 1174 if( p->aAction[1]!=OE_None ) return 2; 1175 bHaveFK = 1; 1176 } 1177 } 1178 } 1179 } 1180 return bHaveFK ? eRet : 0; 1181 } 1182 1183 /* 1184 ** This function is called when an UPDATE or DELETE operation is being 1185 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 1186 ** If the current operation is an UPDATE, then the pChanges parameter is 1187 ** passed a pointer to the list of columns being modified. If it is a 1188 ** DELETE, pChanges is passed a NULL pointer. 1189 ** 1190 ** It returns a pointer to a Trigger structure containing a trigger 1191 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 1192 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is 1193 ** returned (these actions require no special handling by the triggers 1194 ** sub-system, code for them is created by fkScanChildren()). 1195 ** 1196 ** For example, if pFKey is the foreign key and pTab is table "p" in 1197 ** the following schema: 1198 ** 1199 ** CREATE TABLE p(pk PRIMARY KEY); 1200 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 1201 ** 1202 ** then the returned trigger structure is equivalent to: 1203 ** 1204 ** CREATE TRIGGER ... DELETE ON p BEGIN 1205 ** DELETE FROM c WHERE ck = old.pk; 1206 ** END; 1207 ** 1208 ** The returned pointer is cached as part of the foreign key object. It 1209 ** is eventually freed along with the rest of the foreign key object by 1210 ** sqlite3FkDelete(). 1211 */ 1212 static Trigger *fkActionTrigger( 1213 Parse *pParse, /* Parse context */ 1214 Table *pTab, /* Table being updated or deleted from */ 1215 FKey *pFKey, /* Foreign key to get action for */ 1216 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 1217 ){ 1218 sqlite3 *db = pParse->db; /* Database handle */ 1219 int action; /* One of OE_None, OE_Cascade etc. */ 1220 Trigger *pTrigger; /* Trigger definition to return */ 1221 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 1222 1223 action = pFKey->aAction[iAction]; 1224 if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){ 1225 return 0; 1226 } 1227 pTrigger = pFKey->apTrigger[iAction]; 1228 1229 if( action!=OE_None && !pTrigger ){ 1230 char const *zFrom; /* Name of child table */ 1231 int nFrom; /* Length in bytes of zFrom */ 1232 Index *pIdx = 0; /* Parent key index for this FK */ 1233 int *aiCol = 0; /* child table cols -> parent key cols */ 1234 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 1235 Expr *pWhere = 0; /* WHERE clause of trigger step */ 1236 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 1237 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 1238 int i; /* Iterator variable */ 1239 Expr *pWhen = 0; /* WHEN clause for the trigger */ 1240 1241 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 1242 assert( aiCol || pFKey->nCol==1 ); 1243 1244 for(i=0; i<pFKey->nCol; i++){ 1245 Token tOld = { "old", 3 }; /* Literal "old" token */ 1246 Token tNew = { "new", 3 }; /* Literal "new" token */ 1247 Token tFromCol; /* Name of column in child table */ 1248 Token tToCol; /* Name of column in parent table */ 1249 int iFromCol; /* Idx of column in child table */ 1250 Expr *pEq; /* tFromCol = OLD.tToCol */ 1251 1252 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 1253 assert( iFromCol>=0 ); 1254 assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) ); 1255 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 1256 sqlite3TokenInit(&tToCol, 1257 pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zCnName); 1258 sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zCnName); 1259 1260 /* Create the expression "OLD.zToCol = zFromCol". It is important 1261 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 1262 ** that the affinity and collation sequence associated with the 1263 ** parent table are used for the comparison. */ 1264 pEq = sqlite3PExpr(pParse, TK_EQ, 1265 sqlite3PExpr(pParse, TK_DOT, 1266 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1267 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 1268 sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) 1269 ); 1270 pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); 1271 1272 /* For ON UPDATE, construct the next term of the WHEN clause. 1273 ** The final WHEN clause will be like this: 1274 ** 1275 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 1276 */ 1277 if( pChanges ){ 1278 pEq = sqlite3PExpr(pParse, TK_IS, 1279 sqlite3PExpr(pParse, TK_DOT, 1280 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 1281 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 1282 sqlite3PExpr(pParse, TK_DOT, 1283 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1284 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)) 1285 ); 1286 pWhen = sqlite3ExprAnd(pParse, pWhen, pEq); 1287 } 1288 1289 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 1290 Expr *pNew; 1291 if( action==OE_Cascade ){ 1292 pNew = sqlite3PExpr(pParse, TK_DOT, 1293 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 1294 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)); 1295 }else if( action==OE_SetDflt ){ 1296 Column *pCol = pFKey->pFrom->aCol + iFromCol; 1297 Expr *pDflt; 1298 if( pCol->colFlags & COLFLAG_GENERATED ){ 1299 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1300 testcase( pCol->colFlags & COLFLAG_STORED ); 1301 pDflt = 0; 1302 }else{ 1303 pDflt = sqlite3ColumnExpr(pFKey->pFrom, pCol); 1304 } 1305 if( pDflt ){ 1306 pNew = sqlite3ExprDup(db, pDflt, 0); 1307 }else{ 1308 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 1309 } 1310 }else{ 1311 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 1312 } 1313 pList = sqlite3ExprListAppend(pParse, pList, pNew); 1314 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 1315 } 1316 } 1317 sqlite3DbFree(db, aiCol); 1318 1319 zFrom = pFKey->pFrom->zName; 1320 nFrom = sqlite3Strlen30(zFrom); 1321 1322 if( action==OE_Restrict ){ 1323 Token tFrom; 1324 Expr *pRaise; 1325 1326 tFrom.z = zFrom; 1327 tFrom.n = nFrom; 1328 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); 1329 if( pRaise ){ 1330 pRaise->affExpr = OE_Abort; 1331 } 1332 pSelect = sqlite3SelectNew(pParse, 1333 sqlite3ExprListAppend(pParse, 0, pRaise), 1334 sqlite3SrcListAppend(pParse, 0, &tFrom, 0), 1335 pWhere, 1336 0, 0, 0, 0, 0 1337 ); 1338 pWhere = 0; 1339 } 1340 1341 /* Disable lookaside memory allocation */ 1342 DisableLookaside; 1343 1344 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 1345 sizeof(Trigger) + /* struct Trigger */ 1346 sizeof(TriggerStep) + /* Single step in trigger program */ 1347 nFrom + 1 /* Space for pStep->zTarget */ 1348 ); 1349 if( pTrigger ){ 1350 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 1351 pStep->zTarget = (char *)&pStep[1]; 1352 memcpy((char *)pStep->zTarget, zFrom, nFrom); 1353 1354 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 1355 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 1356 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1357 if( pWhen ){ 1358 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0); 1359 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 1360 } 1361 } 1362 1363 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 1364 EnableLookaside; 1365 1366 sqlite3ExprDelete(db, pWhere); 1367 sqlite3ExprDelete(db, pWhen); 1368 sqlite3ExprListDelete(db, pList); 1369 sqlite3SelectDelete(db, pSelect); 1370 if( db->mallocFailed==1 ){ 1371 fkTriggerDelete(db, pTrigger); 1372 return 0; 1373 } 1374 assert( pStep!=0 ); 1375 assert( pTrigger!=0 ); 1376 1377 switch( action ){ 1378 case OE_Restrict: 1379 pStep->op = TK_SELECT; 1380 break; 1381 case OE_Cascade: 1382 if( !pChanges ){ 1383 pStep->op = TK_DELETE; 1384 break; 1385 } 1386 /* no break */ deliberate_fall_through 1387 default: 1388 pStep->op = TK_UPDATE; 1389 } 1390 pStep->pTrig = pTrigger; 1391 pTrigger->pSchema = pTab->pSchema; 1392 pTrigger->pTabSchema = pTab->pSchema; 1393 pFKey->apTrigger[iAction] = pTrigger; 1394 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 1395 } 1396 1397 return pTrigger; 1398 } 1399 1400 /* 1401 ** This function is called when deleting or updating a row to implement 1402 ** any required CASCADE, SET NULL or SET DEFAULT actions. 1403 */ 1404 void sqlite3FkActions( 1405 Parse *pParse, /* Parse context */ 1406 Table *pTab, /* Table being updated or deleted from */ 1407 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 1408 int regOld, /* Address of array containing old row */ 1409 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 1410 int bChngRowid /* True if rowid is UPDATEd */ 1411 ){ 1412 /* If foreign-key support is enabled, iterate through all FKs that 1413 ** refer to table pTab. If there is an action associated with the FK 1414 ** for this operation (either update or delete), invoke the associated 1415 ** trigger sub-program. */ 1416 if( pParse->db->flags&SQLITE_ForeignKeys ){ 1417 FKey *pFKey; /* Iterator variable */ 1418 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 1419 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ 1420 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); 1421 if( pAct ){ 1422 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); 1423 } 1424 } 1425 } 1426 } 1427 } 1428 1429 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 1430 1431 /* 1432 ** Free all memory associated with foreign key definitions attached to 1433 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 1434 ** hash table. 1435 */ 1436 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 1437 FKey *pFKey; /* Iterator variable */ 1438 FKey *pNext; /* Copy of pFKey->pNextFrom */ 1439 1440 assert( IsOrdinaryTable(pTab) ); 1441 for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pNext){ 1442 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 1443 1444 /* Remove the FK from the fkeyHash hash table. */ 1445 if( !db || db->pnBytesFreed==0 ){ 1446 if( pFKey->pPrevTo ){ 1447 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 1448 }else{ 1449 void *p = (void *)pFKey->pNextTo; 1450 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); 1451 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p); 1452 } 1453 if( pFKey->pNextTo ){ 1454 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 1455 } 1456 } 1457 1458 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 1459 ** classified as either immediate or deferred. 1460 */ 1461 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 1462 1463 /* Delete any triggers created to implement actions for this FK. */ 1464 #ifndef SQLITE_OMIT_TRIGGER 1465 fkTriggerDelete(db, pFKey->apTrigger[0]); 1466 fkTriggerDelete(db, pFKey->apTrigger[1]); 1467 #endif 1468 1469 pNext = pFKey->pNextFrom; 1470 sqlite3DbFree(db, pFKey); 1471 } 1472 } 1473 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ 1474