xref: /sqlite-3.40.0/src/expr.c (revision fee981e5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName,  /* Name of collating sequence */
73   int dequote              /* True to dequote pCollName */
74 ){
75   if( pCollName->n>0 ){
76     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
77     if( pNew ){
78       pNew->pLeft = pExpr;
79       pNew->flags |= EP_Collate|EP_Skip;
80       pExpr = pNew;
81     }
82   }
83   return pExpr;
84 }
85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
86   Token s;
87   assert( zC!=0 );
88   sqlite3TokenInit(&s, (char*)zC);
89   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
90 }
91 
92 /*
93 ** Skip over any TK_COLLATE operators and any unlikely()
94 ** or likelihood() function at the root of an expression.
95 */
96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
97   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
98     if( ExprHasProperty(pExpr, EP_Unlikely) ){
99       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
100       assert( pExpr->x.pList->nExpr>0 );
101       assert( pExpr->op==TK_FUNCTION );
102       pExpr = pExpr->x.pList->a[0].pExpr;
103     }else{
104       assert( pExpr->op==TK_COLLATE );
105       pExpr = pExpr->pLeft;
106     }
107   }
108   return pExpr;
109 }
110 
111 /*
112 ** Return the collation sequence for the expression pExpr. If
113 ** there is no defined collating sequence, return NULL.
114 **
115 ** The collating sequence might be determined by a COLLATE operator
116 ** or by the presence of a column with a defined collating sequence.
117 ** COLLATE operators take first precedence.  Left operands take
118 ** precedence over right operands.
119 */
120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
121   sqlite3 *db = pParse->db;
122   CollSeq *pColl = 0;
123   Expr *p = pExpr;
124   while( p ){
125     int op = p->op;
126     if( p->flags & EP_Generic ) break;
127     if( op==TK_CAST || op==TK_UPLUS ){
128       p = p->pLeft;
129       continue;
130     }
131     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
132       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
133       break;
134     }
135     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
136           || op==TK_REGISTER || op==TK_TRIGGER)
137      && p->pTab!=0
138     ){
139       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
140       ** a TK_COLUMN but was previously evaluated and cached in a register */
141       int j = p->iColumn;
142       if( j>=0 ){
143         const char *zColl = p->pTab->aCol[j].zColl;
144         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
145       }
146       break;
147     }
148     if( p->flags & EP_Collate ){
149       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
150         p = p->pLeft;
151       }else{
152         Expr *pNext  = p->pRight;
153         /* The Expr.x union is never used at the same time as Expr.pRight */
154         assert( p->x.pList==0 || p->pRight==0 );
155         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
156         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
157         ** least one EP_Collate. Thus the following two ALWAYS. */
158         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
159           int i;
160           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
161             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
162               pNext = p->x.pList->a[i].pExpr;
163               break;
164             }
165           }
166         }
167         p = pNext;
168       }
169     }else{
170       break;
171     }
172   }
173   if( sqlite3CheckCollSeq(pParse, pColl) ){
174     pColl = 0;
175   }
176   return pColl;
177 }
178 
179 /*
180 ** pExpr is an operand of a comparison operator.  aff2 is the
181 ** type affinity of the other operand.  This routine returns the
182 ** type affinity that should be used for the comparison operator.
183 */
184 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
185   char aff1 = sqlite3ExprAffinity(pExpr);
186   if( aff1 && aff2 ){
187     /* Both sides of the comparison are columns. If one has numeric
188     ** affinity, use that. Otherwise use no affinity.
189     */
190     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
191       return SQLITE_AFF_NUMERIC;
192     }else{
193       return SQLITE_AFF_BLOB;
194     }
195   }else if( !aff1 && !aff2 ){
196     /* Neither side of the comparison is a column.  Compare the
197     ** results directly.
198     */
199     return SQLITE_AFF_BLOB;
200   }else{
201     /* One side is a column, the other is not. Use the columns affinity. */
202     assert( aff1==0 || aff2==0 );
203     return (aff1 + aff2);
204   }
205 }
206 
207 /*
208 ** pExpr is a comparison operator.  Return the type affinity that should
209 ** be applied to both operands prior to doing the comparison.
210 */
211 static char comparisonAffinity(Expr *pExpr){
212   char aff;
213   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
214           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
215           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
216   assert( pExpr->pLeft );
217   aff = sqlite3ExprAffinity(pExpr->pLeft);
218   if( pExpr->pRight ){
219     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
220   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
221     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
222   }else if( !aff ){
223     aff = SQLITE_AFF_BLOB;
224   }
225   return aff;
226 }
227 
228 /*
229 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
230 ** idx_affinity is the affinity of an indexed column. Return true
231 ** if the index with affinity idx_affinity may be used to implement
232 ** the comparison in pExpr.
233 */
234 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
235   char aff = comparisonAffinity(pExpr);
236   switch( aff ){
237     case SQLITE_AFF_BLOB:
238       return 1;
239     case SQLITE_AFF_TEXT:
240       return idx_affinity==SQLITE_AFF_TEXT;
241     default:
242       return sqlite3IsNumericAffinity(idx_affinity);
243   }
244 }
245 
246 /*
247 ** Return the P5 value that should be used for a binary comparison
248 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
249 */
250 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
251   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
252   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
253   return aff;
254 }
255 
256 /*
257 ** Return a pointer to the collation sequence that should be used by
258 ** a binary comparison operator comparing pLeft and pRight.
259 **
260 ** If the left hand expression has a collating sequence type, then it is
261 ** used. Otherwise the collation sequence for the right hand expression
262 ** is used, or the default (BINARY) if neither expression has a collating
263 ** type.
264 **
265 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
266 ** it is not considered.
267 */
268 CollSeq *sqlite3BinaryCompareCollSeq(
269   Parse *pParse,
270   Expr *pLeft,
271   Expr *pRight
272 ){
273   CollSeq *pColl;
274   assert( pLeft );
275   if( pLeft->flags & EP_Collate ){
276     pColl = sqlite3ExprCollSeq(pParse, pLeft);
277   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
278     pColl = sqlite3ExprCollSeq(pParse, pRight);
279   }else{
280     pColl = sqlite3ExprCollSeq(pParse, pLeft);
281     if( !pColl ){
282       pColl = sqlite3ExprCollSeq(pParse, pRight);
283     }
284   }
285   return pColl;
286 }
287 
288 /*
289 ** Generate code for a comparison operator.
290 */
291 static int codeCompare(
292   Parse *pParse,    /* The parsing (and code generating) context */
293   Expr *pLeft,      /* The left operand */
294   Expr *pRight,     /* The right operand */
295   int opcode,       /* The comparison opcode */
296   int in1, int in2, /* Register holding operands */
297   int dest,         /* Jump here if true.  */
298   int jumpIfNull    /* If true, jump if either operand is NULL */
299 ){
300   int p5;
301   int addr;
302   CollSeq *p4;
303 
304   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
305   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
306   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
307                            (void*)p4, P4_COLLSEQ);
308   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
309   return addr;
310 }
311 
312 #if SQLITE_MAX_EXPR_DEPTH>0
313 /*
314 ** Check that argument nHeight is less than or equal to the maximum
315 ** expression depth allowed. If it is not, leave an error message in
316 ** pParse.
317 */
318 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
319   int rc = SQLITE_OK;
320   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
321   if( nHeight>mxHeight ){
322     sqlite3ErrorMsg(pParse,
323        "Expression tree is too large (maximum depth %d)", mxHeight
324     );
325     rc = SQLITE_ERROR;
326   }
327   return rc;
328 }
329 
330 /* The following three functions, heightOfExpr(), heightOfExprList()
331 ** and heightOfSelect(), are used to determine the maximum height
332 ** of any expression tree referenced by the structure passed as the
333 ** first argument.
334 **
335 ** If this maximum height is greater than the current value pointed
336 ** to by pnHeight, the second parameter, then set *pnHeight to that
337 ** value.
338 */
339 static void heightOfExpr(Expr *p, int *pnHeight){
340   if( p ){
341     if( p->nHeight>*pnHeight ){
342       *pnHeight = p->nHeight;
343     }
344   }
345 }
346 static void heightOfExprList(ExprList *p, int *pnHeight){
347   if( p ){
348     int i;
349     for(i=0; i<p->nExpr; i++){
350       heightOfExpr(p->a[i].pExpr, pnHeight);
351     }
352   }
353 }
354 static void heightOfSelect(Select *p, int *pnHeight){
355   if( p ){
356     heightOfExpr(p->pWhere, pnHeight);
357     heightOfExpr(p->pHaving, pnHeight);
358     heightOfExpr(p->pLimit, pnHeight);
359     heightOfExpr(p->pOffset, pnHeight);
360     heightOfExprList(p->pEList, pnHeight);
361     heightOfExprList(p->pGroupBy, pnHeight);
362     heightOfExprList(p->pOrderBy, pnHeight);
363     heightOfSelect(p->pPrior, pnHeight);
364   }
365 }
366 
367 /*
368 ** Set the Expr.nHeight variable in the structure passed as an
369 ** argument. An expression with no children, Expr.pList or
370 ** Expr.pSelect member has a height of 1. Any other expression
371 ** has a height equal to the maximum height of any other
372 ** referenced Expr plus one.
373 **
374 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
375 ** if appropriate.
376 */
377 static void exprSetHeight(Expr *p){
378   int nHeight = 0;
379   heightOfExpr(p->pLeft, &nHeight);
380   heightOfExpr(p->pRight, &nHeight);
381   if( ExprHasProperty(p, EP_xIsSelect) ){
382     heightOfSelect(p->x.pSelect, &nHeight);
383   }else if( p->x.pList ){
384     heightOfExprList(p->x.pList, &nHeight);
385     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
386   }
387   p->nHeight = nHeight + 1;
388 }
389 
390 /*
391 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
392 ** the height is greater than the maximum allowed expression depth,
393 ** leave an error in pParse.
394 **
395 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
396 ** Expr.flags.
397 */
398 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
399   if( pParse->nErr ) return;
400   exprSetHeight(p);
401   sqlite3ExprCheckHeight(pParse, p->nHeight);
402 }
403 
404 /*
405 ** Return the maximum height of any expression tree referenced
406 ** by the select statement passed as an argument.
407 */
408 int sqlite3SelectExprHeight(Select *p){
409   int nHeight = 0;
410   heightOfSelect(p, &nHeight);
411   return nHeight;
412 }
413 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
414 /*
415 ** Propagate all EP_Propagate flags from the Expr.x.pList into
416 ** Expr.flags.
417 */
418 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
419   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
420     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
421   }
422 }
423 #define exprSetHeight(y)
424 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
425 
426 /*
427 ** This routine is the core allocator for Expr nodes.
428 **
429 ** Construct a new expression node and return a pointer to it.  Memory
430 ** for this node and for the pToken argument is a single allocation
431 ** obtained from sqlite3DbMalloc().  The calling function
432 ** is responsible for making sure the node eventually gets freed.
433 **
434 ** If dequote is true, then the token (if it exists) is dequoted.
435 ** If dequote is false, no dequoting is performed.  The deQuote
436 ** parameter is ignored if pToken is NULL or if the token does not
437 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
438 ** then the EP_DblQuoted flag is set on the expression node.
439 **
440 ** Special case:  If op==TK_INTEGER and pToken points to a string that
441 ** can be translated into a 32-bit integer, then the token is not
442 ** stored in u.zToken.  Instead, the integer values is written
443 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
444 ** is allocated to hold the integer text and the dequote flag is ignored.
445 */
446 Expr *sqlite3ExprAlloc(
447   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
448   int op,                 /* Expression opcode */
449   const Token *pToken,    /* Token argument.  Might be NULL */
450   int dequote             /* True to dequote */
451 ){
452   Expr *pNew;
453   int nExtra = 0;
454   int iValue = 0;
455 
456   if( pToken ){
457     if( op!=TK_INTEGER || pToken->z==0
458           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
459       nExtra = pToken->n+1;
460       assert( iValue>=0 );
461     }
462   }
463   pNew = sqlite3DbMallocRaw(db, sizeof(Expr)+nExtra);
464   if( pNew ){
465     memset(pNew, 0, sizeof(Expr));
466     pNew->op = (u8)op;
467     pNew->iAgg = -1;
468     if( pToken ){
469       if( nExtra==0 ){
470         pNew->flags |= EP_IntValue;
471         pNew->u.iValue = iValue;
472       }else{
473         int c;
474         pNew->u.zToken = (char*)&pNew[1];
475         assert( pToken->z!=0 || pToken->n==0 );
476         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
477         pNew->u.zToken[pToken->n] = 0;
478         if( dequote && nExtra>=3
479              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
480           sqlite3Dequote(pNew->u.zToken);
481           if( c=='"' ) pNew->flags |= EP_DblQuoted;
482         }
483       }
484     }
485 #if SQLITE_MAX_EXPR_DEPTH>0
486     pNew->nHeight = 1;
487 #endif
488   }
489   return pNew;
490 }
491 
492 /*
493 ** Allocate a new expression node from a zero-terminated token that has
494 ** already been dequoted.
495 */
496 Expr *sqlite3Expr(
497   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
498   int op,                 /* Expression opcode */
499   const char *zToken      /* Token argument.  Might be NULL */
500 ){
501   Token x;
502   x.z = zToken;
503   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
504   return sqlite3ExprAlloc(db, op, &x, 0);
505 }
506 
507 /*
508 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
509 **
510 ** If pRoot==NULL that means that a memory allocation error has occurred.
511 ** In that case, delete the subtrees pLeft and pRight.
512 */
513 void sqlite3ExprAttachSubtrees(
514   sqlite3 *db,
515   Expr *pRoot,
516   Expr *pLeft,
517   Expr *pRight
518 ){
519   if( pRoot==0 ){
520     assert( db->mallocFailed );
521     sqlite3ExprDelete(db, pLeft);
522     sqlite3ExprDelete(db, pRight);
523   }else{
524     if( pRight ){
525       pRoot->pRight = pRight;
526       pRoot->flags |= EP_Propagate & pRight->flags;
527     }
528     if( pLeft ){
529       pRoot->pLeft = pLeft;
530       pRoot->flags |= EP_Propagate & pLeft->flags;
531     }
532     exprSetHeight(pRoot);
533   }
534 }
535 
536 /*
537 ** Allocate an Expr node which joins as many as two subtrees.
538 **
539 ** One or both of the subtrees can be NULL.  Return a pointer to the new
540 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
541 ** free the subtrees and return NULL.
542 */
543 Expr *sqlite3PExpr(
544   Parse *pParse,          /* Parsing context */
545   int op,                 /* Expression opcode */
546   Expr *pLeft,            /* Left operand */
547   Expr *pRight,           /* Right operand */
548   const Token *pToken     /* Argument token */
549 ){
550   Expr *p;
551   if( op==TK_AND && pParse->nErr==0 ){
552     /* Take advantage of short-circuit false optimization for AND */
553     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
554   }else{
555     p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1);
556     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
557   }
558   if( p ) {
559     sqlite3ExprCheckHeight(pParse, p->nHeight);
560   }
561   return p;
562 }
563 
564 /*
565 ** If the expression is always either TRUE or FALSE (respectively),
566 ** then return 1.  If one cannot determine the truth value of the
567 ** expression at compile-time return 0.
568 **
569 ** This is an optimization.  If is OK to return 0 here even if
570 ** the expression really is always false or false (a false negative).
571 ** But it is a bug to return 1 if the expression might have different
572 ** boolean values in different circumstances (a false positive.)
573 **
574 ** Note that if the expression is part of conditional for a
575 ** LEFT JOIN, then we cannot determine at compile-time whether or not
576 ** is it true or false, so always return 0.
577 */
578 static int exprAlwaysTrue(Expr *p){
579   int v = 0;
580   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
581   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
582   return v!=0;
583 }
584 static int exprAlwaysFalse(Expr *p){
585   int v = 0;
586   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
587   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
588   return v==0;
589 }
590 
591 /*
592 ** Join two expressions using an AND operator.  If either expression is
593 ** NULL, then just return the other expression.
594 **
595 ** If one side or the other of the AND is known to be false, then instead
596 ** of returning an AND expression, just return a constant expression with
597 ** a value of false.
598 */
599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
600   if( pLeft==0 ){
601     return pRight;
602   }else if( pRight==0 ){
603     return pLeft;
604   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
605     sqlite3ExprDelete(db, pLeft);
606     sqlite3ExprDelete(db, pRight);
607     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
608   }else{
609     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
610     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
611     return pNew;
612   }
613 }
614 
615 /*
616 ** Construct a new expression node for a function with multiple
617 ** arguments.
618 */
619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
620   Expr *pNew;
621   sqlite3 *db = pParse->db;
622   assert( pToken );
623   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
624   if( pNew==0 ){
625     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
626     return 0;
627   }
628   pNew->x.pList = pList;
629   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
630   sqlite3ExprSetHeightAndFlags(pParse, pNew);
631   return pNew;
632 }
633 
634 /*
635 ** Assign a variable number to an expression that encodes a wildcard
636 ** in the original SQL statement.
637 **
638 ** Wildcards consisting of a single "?" are assigned the next sequential
639 ** variable number.
640 **
641 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
642 ** sure "nnn" is not too be to avoid a denial of service attack when
643 ** the SQL statement comes from an external source.
644 **
645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
646 ** as the previous instance of the same wildcard.  Or if this is the first
647 ** instance of the wildcard, the next sequential variable number is
648 ** assigned.
649 */
650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
651   sqlite3 *db = pParse->db;
652   const char *z;
653 
654   if( pExpr==0 ) return;
655   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
656   z = pExpr->u.zToken;
657   assert( z!=0 );
658   assert( z[0]!=0 );
659   if( z[1]==0 ){
660     /* Wildcard of the form "?".  Assign the next variable number */
661     assert( z[0]=='?' );
662     pExpr->iColumn = (ynVar)(++pParse->nVar);
663   }else{
664     ynVar x = 0;
665     u32 n = sqlite3Strlen30(z);
666     if( z[0]=='?' ){
667       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
668       ** use it as the variable number */
669       i64 i;
670       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
671       pExpr->iColumn = x = (ynVar)i;
672       testcase( i==0 );
673       testcase( i==1 );
674       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
675       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
676       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
677         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
678             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
679         x = 0;
680       }
681       if( i>pParse->nVar ){
682         pParse->nVar = (int)i;
683       }
684     }else{
685       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
686       ** number as the prior appearance of the same name, or if the name
687       ** has never appeared before, reuse the same variable number
688       */
689       ynVar i;
690       for(i=0; i<pParse->nzVar; i++){
691         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
692           pExpr->iColumn = x = (ynVar)i+1;
693           break;
694         }
695       }
696       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
697     }
698     if( x>0 ){
699       if( x>pParse->nzVar ){
700         char **a;
701         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
702         if( a==0 ) return;  /* Error reported through db->mallocFailed */
703         pParse->azVar = a;
704         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
705         pParse->nzVar = x;
706       }
707       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
708         sqlite3DbFree(db, pParse->azVar[x-1]);
709         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
710       }
711     }
712   }
713   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
714     sqlite3ErrorMsg(pParse, "too many SQL variables");
715   }
716 }
717 
718 /*
719 ** Recursively delete an expression tree.
720 */
721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
722   if( p==0 ) return;
723   /* Sanity check: Assert that the IntValue is non-negative if it exists */
724   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
725   if( !ExprHasProperty(p, EP_TokenOnly) ){
726     /* The Expr.x union is never used at the same time as Expr.pRight */
727     assert( p->x.pList==0 || p->pRight==0 );
728     sqlite3ExprDelete(db, p->pLeft);
729     sqlite3ExprDelete(db, p->pRight);
730     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
731     if( ExprHasProperty(p, EP_xIsSelect) ){
732       sqlite3SelectDelete(db, p->x.pSelect);
733     }else{
734       sqlite3ExprListDelete(db, p->x.pList);
735     }
736   }
737   if( !ExprHasProperty(p, EP_Static) ){
738     sqlite3DbFree(db, p);
739   }
740 }
741 
742 /*
743 ** Return the number of bytes allocated for the expression structure
744 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
746 */
747 static int exprStructSize(Expr *p){
748   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
749   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
750   return EXPR_FULLSIZE;
751 }
752 
753 /*
754 ** The dupedExpr*Size() routines each return the number of bytes required
755 ** to store a copy of an expression or expression tree.  They differ in
756 ** how much of the tree is measured.
757 **
758 **     dupedExprStructSize()     Size of only the Expr structure
759 **     dupedExprNodeSize()       Size of Expr + space for token
760 **     dupedExprSize()           Expr + token + subtree components
761 **
762 ***************************************************************************
763 **
764 ** The dupedExprStructSize() function returns two values OR-ed together:
765 ** (1) the space required for a copy of the Expr structure only and
766 ** (2) the EP_xxx flags that indicate what the structure size should be.
767 ** The return values is always one of:
768 **
769 **      EXPR_FULLSIZE
770 **      EXPR_REDUCEDSIZE   | EP_Reduced
771 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
772 **
773 ** The size of the structure can be found by masking the return value
774 ** of this routine with 0xfff.  The flags can be found by masking the
775 ** return value with EP_Reduced|EP_TokenOnly.
776 **
777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
778 ** (unreduced) Expr objects as they or originally constructed by the parser.
779 ** During expression analysis, extra information is computed and moved into
780 ** later parts of teh Expr object and that extra information might get chopped
781 ** off if the expression is reduced.  Note also that it does not work to
782 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
783 ** to reduce a pristine expression tree from the parser.  The implementation
784 ** of dupedExprStructSize() contain multiple assert() statements that attempt
785 ** to enforce this constraint.
786 */
787 static int dupedExprStructSize(Expr *p, int flags){
788   int nSize;
789   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
790   assert( EXPR_FULLSIZE<=0xfff );
791   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
792   if( 0==(flags&EXPRDUP_REDUCE) ){
793     nSize = EXPR_FULLSIZE;
794   }else{
795     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
796     assert( !ExprHasProperty(p, EP_FromJoin) );
797     assert( !ExprHasProperty(p, EP_MemToken) );
798     assert( !ExprHasProperty(p, EP_NoReduce) );
799     if( p->pLeft || p->x.pList ){
800       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
801     }else{
802       assert( p->pRight==0 );
803       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
804     }
805   }
806   return nSize;
807 }
808 
809 /*
810 ** This function returns the space in bytes required to store the copy
811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
812 ** string is defined.)
813 */
814 static int dupedExprNodeSize(Expr *p, int flags){
815   int nByte = dupedExprStructSize(p, flags) & 0xfff;
816   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
817     nByte += sqlite3Strlen30(p->u.zToken)+1;
818   }
819   return ROUND8(nByte);
820 }
821 
822 /*
823 ** Return the number of bytes required to create a duplicate of the
824 ** expression passed as the first argument. The second argument is a
825 ** mask containing EXPRDUP_XXX flags.
826 **
827 ** The value returned includes space to create a copy of the Expr struct
828 ** itself and the buffer referred to by Expr.u.zToken, if any.
829 **
830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
832 ** and Expr.pRight variables (but not for any structures pointed to or
833 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
834 */
835 static int dupedExprSize(Expr *p, int flags){
836   int nByte = 0;
837   if( p ){
838     nByte = dupedExprNodeSize(p, flags);
839     if( flags&EXPRDUP_REDUCE ){
840       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
841     }
842   }
843   return nByte;
844 }
845 
846 /*
847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
849 ** to store the copy of expression p, the copies of p->u.zToken
850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
851 ** if any. Before returning, *pzBuffer is set to the first byte past the
852 ** portion of the buffer copied into by this function.
853 */
854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
855   Expr *pNew = 0;                      /* Value to return */
856   assert( flags==0 || flags==EXPRDUP_REDUCE );
857   if( p ){
858     const int isReduced = (flags&EXPRDUP_REDUCE);
859     u8 *zAlloc;
860     u32 staticFlag = 0;
861 
862     assert( pzBuffer==0 || isReduced );
863 
864     /* Figure out where to write the new Expr structure. */
865     if( pzBuffer ){
866       zAlloc = *pzBuffer;
867       staticFlag = EP_Static;
868     }else{
869       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
870     }
871     pNew = (Expr *)zAlloc;
872 
873     if( pNew ){
874       /* Set nNewSize to the size allocated for the structure pointed to
875       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
876       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
877       ** by the copy of the p->u.zToken string (if any).
878       */
879       const unsigned nStructSize = dupedExprStructSize(p, flags);
880       const int nNewSize = nStructSize & 0xfff;
881       int nToken;
882       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
883         nToken = sqlite3Strlen30(p->u.zToken) + 1;
884       }else{
885         nToken = 0;
886       }
887       if( isReduced ){
888         assert( ExprHasProperty(p, EP_Reduced)==0 );
889         memcpy(zAlloc, p, nNewSize);
890       }else{
891         u32 nSize = (u32)exprStructSize(p);
892         memcpy(zAlloc, p, nSize);
893         if( nSize<EXPR_FULLSIZE ){
894           memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
895         }
896       }
897 
898       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
899       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
900       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
901       pNew->flags |= staticFlag;
902 
903       /* Copy the p->u.zToken string, if any. */
904       if( nToken ){
905         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
906         memcpy(zToken, p->u.zToken, nToken);
907       }
908 
909       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
910         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
911         if( ExprHasProperty(p, EP_xIsSelect) ){
912           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
913         }else{
914           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
915         }
916       }
917 
918       /* Fill in pNew->pLeft and pNew->pRight. */
919       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
920         zAlloc += dupedExprNodeSize(p, flags);
921         if( ExprHasProperty(pNew, EP_Reduced) ){
922           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
923           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
924         }
925         if( pzBuffer ){
926           *pzBuffer = zAlloc;
927         }
928       }else{
929         if( !ExprHasProperty(p, EP_TokenOnly) ){
930           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
931           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
932         }
933       }
934 
935     }
936   }
937   return pNew;
938 }
939 
940 /*
941 ** Create and return a deep copy of the object passed as the second
942 ** argument. If an OOM condition is encountered, NULL is returned
943 ** and the db->mallocFailed flag set.
944 */
945 #ifndef SQLITE_OMIT_CTE
946 static With *withDup(sqlite3 *db, With *p){
947   With *pRet = 0;
948   if( p ){
949     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
950     pRet = sqlite3DbMallocZero(db, nByte);
951     if( pRet ){
952       int i;
953       pRet->nCte = p->nCte;
954       for(i=0; i<p->nCte; i++){
955         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
956         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
957         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
958       }
959     }
960   }
961   return pRet;
962 }
963 #else
964 # define withDup(x,y) 0
965 #endif
966 
967 /*
968 ** The following group of routines make deep copies of expressions,
969 ** expression lists, ID lists, and select statements.  The copies can
970 ** be deleted (by being passed to their respective ...Delete() routines)
971 ** without effecting the originals.
972 **
973 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
974 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
975 ** by subsequent calls to sqlite*ListAppend() routines.
976 **
977 ** Any tables that the SrcList might point to are not duplicated.
978 **
979 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
980 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
981 ** truncated version of the usual Expr structure that will be stored as
982 ** part of the in-memory representation of the database schema.
983 */
984 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
985   assert( flags==0 || flags==EXPRDUP_REDUCE );
986   return exprDup(db, p, flags, 0);
987 }
988 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
989   ExprList *pNew;
990   struct ExprList_item *pItem, *pOldItem;
991   int i;
992   if( p==0 ) return 0;
993   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
994   if( pNew==0 ) return 0;
995   pNew->nExpr = i = p->nExpr;
996   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
997   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
998   if( pItem==0 ){
999     sqlite3DbFree(db, pNew);
1000     return 0;
1001   }
1002   pOldItem = p->a;
1003   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1004     Expr *pOldExpr = pOldItem->pExpr;
1005     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1006     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1007     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1008     pItem->sortOrder = pOldItem->sortOrder;
1009     pItem->done = 0;
1010     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1011     pItem->u = pOldItem->u;
1012   }
1013   return pNew;
1014 }
1015 
1016 /*
1017 ** If cursors, triggers, views and subqueries are all omitted from
1018 ** the build, then none of the following routines, except for
1019 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1020 ** called with a NULL argument.
1021 */
1022 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1023  || !defined(SQLITE_OMIT_SUBQUERY)
1024 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1025   SrcList *pNew;
1026   int i;
1027   int nByte;
1028   if( p==0 ) return 0;
1029   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1030   pNew = sqlite3DbMallocRaw(db, nByte );
1031   if( pNew==0 ) return 0;
1032   pNew->nSrc = pNew->nAlloc = p->nSrc;
1033   for(i=0; i<p->nSrc; i++){
1034     struct SrcList_item *pNewItem = &pNew->a[i];
1035     struct SrcList_item *pOldItem = &p->a[i];
1036     Table *pTab;
1037     pNewItem->pSchema = pOldItem->pSchema;
1038     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1039     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1040     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1041     pNewItem->fg = pOldItem->fg;
1042     pNewItem->iCursor = pOldItem->iCursor;
1043     pNewItem->addrFillSub = pOldItem->addrFillSub;
1044     pNewItem->regReturn = pOldItem->regReturn;
1045     if( pNewItem->fg.isIndexedBy ){
1046       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1047     }
1048     pNewItem->pIBIndex = pOldItem->pIBIndex;
1049     if( pNewItem->fg.isTabFunc ){
1050       pNewItem->u1.pFuncArg =
1051           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1052     }
1053     pTab = pNewItem->pTab = pOldItem->pTab;
1054     if( pTab ){
1055       pTab->nRef++;
1056     }
1057     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1058     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1059     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1060     pNewItem->colUsed = pOldItem->colUsed;
1061   }
1062   return pNew;
1063 }
1064 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1065   IdList *pNew;
1066   int i;
1067   if( p==0 ) return 0;
1068   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1069   if( pNew==0 ) return 0;
1070   pNew->nId = p->nId;
1071   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1072   if( pNew->a==0 ){
1073     sqlite3DbFree(db, pNew);
1074     return 0;
1075   }
1076   /* Note that because the size of the allocation for p->a[] is not
1077   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1078   ** on the duplicate created by this function. */
1079   for(i=0; i<p->nId; i++){
1080     struct IdList_item *pNewItem = &pNew->a[i];
1081     struct IdList_item *pOldItem = &p->a[i];
1082     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1083     pNewItem->idx = pOldItem->idx;
1084   }
1085   return pNew;
1086 }
1087 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1088   Select *pNew, *pPrior;
1089   if( p==0 ) return 0;
1090   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1091   if( pNew==0 ) return 0;
1092   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1093   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1094   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1095   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1096   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1097   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1098   pNew->op = p->op;
1099   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1100   if( pPrior ) pPrior->pNext = pNew;
1101   pNew->pNext = 0;
1102   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1103   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1104   pNew->iLimit = 0;
1105   pNew->iOffset = 0;
1106   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1107   pNew->addrOpenEphm[0] = -1;
1108   pNew->addrOpenEphm[1] = -1;
1109   pNew->nSelectRow = p->nSelectRow;
1110   pNew->pWith = withDup(db, p->pWith);
1111   sqlite3SelectSetName(pNew, p->zSelName);
1112   return pNew;
1113 }
1114 #else
1115 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1116   assert( p==0 );
1117   return 0;
1118 }
1119 #endif
1120 
1121 
1122 /*
1123 ** Add a new element to the end of an expression list.  If pList is
1124 ** initially NULL, then create a new expression list.
1125 **
1126 ** If a memory allocation error occurs, the entire list is freed and
1127 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1128 ** that the new entry was successfully appended.
1129 */
1130 ExprList *sqlite3ExprListAppend(
1131   Parse *pParse,          /* Parsing context */
1132   ExprList *pList,        /* List to which to append. Might be NULL */
1133   Expr *pExpr             /* Expression to be appended. Might be NULL */
1134 ){
1135   sqlite3 *db = pParse->db;
1136   if( pList==0 ){
1137     pList = sqlite3DbMallocRaw(db, sizeof(ExprList) );
1138     if( pList==0 ){
1139       goto no_mem;
1140     }
1141     pList->nExpr = 0;
1142     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1143     if( pList->a==0 ) goto no_mem;
1144   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1145     struct ExprList_item *a;
1146     assert( pList->nExpr>0 );
1147     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1148     if( a==0 ){
1149       goto no_mem;
1150     }
1151     pList->a = a;
1152   }
1153   assert( pList->a!=0 );
1154   if( 1 ){
1155     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1156     memset(pItem, 0, sizeof(*pItem));
1157     pItem->pExpr = pExpr;
1158   }
1159   return pList;
1160 
1161 no_mem:
1162   /* Avoid leaking memory if malloc has failed. */
1163   sqlite3ExprDelete(db, pExpr);
1164   sqlite3ExprListDelete(db, pList);
1165   return 0;
1166 }
1167 
1168 /*
1169 ** Set the sort order for the last element on the given ExprList.
1170 */
1171 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1172   if( p==0 ) return;
1173   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1174   assert( p->nExpr>0 );
1175   if( iSortOrder<0 ){
1176     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1177     return;
1178   }
1179   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1180 }
1181 
1182 /*
1183 ** Set the ExprList.a[].zName element of the most recently added item
1184 ** on the expression list.
1185 **
1186 ** pList might be NULL following an OOM error.  But pName should never be
1187 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1188 ** is set.
1189 */
1190 void sqlite3ExprListSetName(
1191   Parse *pParse,          /* Parsing context */
1192   ExprList *pList,        /* List to which to add the span. */
1193   Token *pName,           /* Name to be added */
1194   int dequote             /* True to cause the name to be dequoted */
1195 ){
1196   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1197   if( pList ){
1198     struct ExprList_item *pItem;
1199     assert( pList->nExpr>0 );
1200     pItem = &pList->a[pList->nExpr-1];
1201     assert( pItem->zName==0 );
1202     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1203     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1204   }
1205 }
1206 
1207 /*
1208 ** Set the ExprList.a[].zSpan element of the most recently added item
1209 ** on the expression list.
1210 **
1211 ** pList might be NULL following an OOM error.  But pSpan should never be
1212 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1213 ** is set.
1214 */
1215 void sqlite3ExprListSetSpan(
1216   Parse *pParse,          /* Parsing context */
1217   ExprList *pList,        /* List to which to add the span. */
1218   ExprSpan *pSpan         /* The span to be added */
1219 ){
1220   sqlite3 *db = pParse->db;
1221   assert( pList!=0 || db->mallocFailed!=0 );
1222   if( pList ){
1223     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1224     assert( pList->nExpr>0 );
1225     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1226     sqlite3DbFree(db, pItem->zSpan);
1227     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1228                                     (int)(pSpan->zEnd - pSpan->zStart));
1229   }
1230 }
1231 
1232 /*
1233 ** If the expression list pEList contains more than iLimit elements,
1234 ** leave an error message in pParse.
1235 */
1236 void sqlite3ExprListCheckLength(
1237   Parse *pParse,
1238   ExprList *pEList,
1239   const char *zObject
1240 ){
1241   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1242   testcase( pEList && pEList->nExpr==mx );
1243   testcase( pEList && pEList->nExpr==mx+1 );
1244   if( pEList && pEList->nExpr>mx ){
1245     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1246   }
1247 }
1248 
1249 /*
1250 ** Delete an entire expression list.
1251 */
1252 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1253   int i;
1254   struct ExprList_item *pItem;
1255   if( pList==0 ) return;
1256   assert( pList->a!=0 || pList->nExpr==0 );
1257   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1258     sqlite3ExprDelete(db, pItem->pExpr);
1259     sqlite3DbFree(db, pItem->zName);
1260     sqlite3DbFree(db, pItem->zSpan);
1261   }
1262   sqlite3DbFree(db, pList->a);
1263   sqlite3DbFree(db, pList);
1264 }
1265 
1266 /*
1267 ** Return the bitwise-OR of all Expr.flags fields in the given
1268 ** ExprList.
1269 */
1270 u32 sqlite3ExprListFlags(const ExprList *pList){
1271   int i;
1272   u32 m = 0;
1273   if( pList ){
1274     for(i=0; i<pList->nExpr; i++){
1275        Expr *pExpr = pList->a[i].pExpr;
1276        if( ALWAYS(pExpr) ) m |= pExpr->flags;
1277     }
1278   }
1279   return m;
1280 }
1281 
1282 /*
1283 ** These routines are Walker callbacks used to check expressions to
1284 ** see if they are "constant" for some definition of constant.  The
1285 ** Walker.eCode value determines the type of "constant" we are looking
1286 ** for.
1287 **
1288 ** These callback routines are used to implement the following:
1289 **
1290 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1291 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1292 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1293 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1294 **
1295 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1296 ** is found to not be a constant.
1297 **
1298 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1299 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1300 ** an existing schema and 4 when processing a new statement.  A bound
1301 ** parameter raises an error for new statements, but is silently converted
1302 ** to NULL for existing schemas.  This allows sqlite_master tables that
1303 ** contain a bound parameter because they were generated by older versions
1304 ** of SQLite to be parsed by newer versions of SQLite without raising a
1305 ** malformed schema error.
1306 */
1307 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1308 
1309   /* If pWalker->eCode is 2 then any term of the expression that comes from
1310   ** the ON or USING clauses of a left join disqualifies the expression
1311   ** from being considered constant. */
1312   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1313     pWalker->eCode = 0;
1314     return WRC_Abort;
1315   }
1316 
1317   switch( pExpr->op ){
1318     /* Consider functions to be constant if all their arguments are constant
1319     ** and either pWalker->eCode==4 or 5 or the function has the
1320     ** SQLITE_FUNC_CONST flag. */
1321     case TK_FUNCTION:
1322       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1323         return WRC_Continue;
1324       }else{
1325         pWalker->eCode = 0;
1326         return WRC_Abort;
1327       }
1328     case TK_ID:
1329     case TK_COLUMN:
1330     case TK_AGG_FUNCTION:
1331     case TK_AGG_COLUMN:
1332       testcase( pExpr->op==TK_ID );
1333       testcase( pExpr->op==TK_COLUMN );
1334       testcase( pExpr->op==TK_AGG_FUNCTION );
1335       testcase( pExpr->op==TK_AGG_COLUMN );
1336       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1337         return WRC_Continue;
1338       }else{
1339         pWalker->eCode = 0;
1340         return WRC_Abort;
1341       }
1342     case TK_VARIABLE:
1343       if( pWalker->eCode==5 ){
1344         /* Silently convert bound parameters that appear inside of CREATE
1345         ** statements into a NULL when parsing the CREATE statement text out
1346         ** of the sqlite_master table */
1347         pExpr->op = TK_NULL;
1348       }else if( pWalker->eCode==4 ){
1349         /* A bound parameter in a CREATE statement that originates from
1350         ** sqlite3_prepare() causes an error */
1351         pWalker->eCode = 0;
1352         return WRC_Abort;
1353       }
1354       /* Fall through */
1355     default:
1356       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1357       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1358       return WRC_Continue;
1359   }
1360 }
1361 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1362   UNUSED_PARAMETER(NotUsed);
1363   pWalker->eCode = 0;
1364   return WRC_Abort;
1365 }
1366 static int exprIsConst(Expr *p, int initFlag, int iCur){
1367   Walker w;
1368   memset(&w, 0, sizeof(w));
1369   w.eCode = initFlag;
1370   w.xExprCallback = exprNodeIsConstant;
1371   w.xSelectCallback = selectNodeIsConstant;
1372   w.u.iCur = iCur;
1373   sqlite3WalkExpr(&w, p);
1374   return w.eCode;
1375 }
1376 
1377 /*
1378 ** Walk an expression tree.  Return non-zero if the expression is constant
1379 ** and 0 if it involves variables or function calls.
1380 **
1381 ** For the purposes of this function, a double-quoted string (ex: "abc")
1382 ** is considered a variable but a single-quoted string (ex: 'abc') is
1383 ** a constant.
1384 */
1385 int sqlite3ExprIsConstant(Expr *p){
1386   return exprIsConst(p, 1, 0);
1387 }
1388 
1389 /*
1390 ** Walk an expression tree.  Return non-zero if the expression is constant
1391 ** that does no originate from the ON or USING clauses of a join.
1392 ** Return 0 if it involves variables or function calls or terms from
1393 ** an ON or USING clause.
1394 */
1395 int sqlite3ExprIsConstantNotJoin(Expr *p){
1396   return exprIsConst(p, 2, 0);
1397 }
1398 
1399 /*
1400 ** Walk an expression tree.  Return non-zero if the expression is constant
1401 ** for any single row of the table with cursor iCur.  In other words, the
1402 ** expression must not refer to any non-deterministic function nor any
1403 ** table other than iCur.
1404 */
1405 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1406   return exprIsConst(p, 3, iCur);
1407 }
1408 
1409 /*
1410 ** Walk an expression tree.  Return non-zero if the expression is constant
1411 ** or a function call with constant arguments.  Return and 0 if there
1412 ** are any variables.
1413 **
1414 ** For the purposes of this function, a double-quoted string (ex: "abc")
1415 ** is considered a variable but a single-quoted string (ex: 'abc') is
1416 ** a constant.
1417 */
1418 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1419   assert( isInit==0 || isInit==1 );
1420   return exprIsConst(p, 4+isInit, 0);
1421 }
1422 
1423 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1424 /*
1425 ** Walk an expression tree.  Return 1 if the expression contains a
1426 ** subquery of some kind.  Return 0 if there are no subqueries.
1427 */
1428 int sqlite3ExprContainsSubquery(Expr *p){
1429   Walker w;
1430   memset(&w, 0, sizeof(w));
1431   w.eCode = 1;
1432   w.xExprCallback = sqlite3ExprWalkNoop;
1433   w.xSelectCallback = selectNodeIsConstant;
1434   sqlite3WalkExpr(&w, p);
1435   return w.eCode==0;
1436 }
1437 #endif
1438 
1439 /*
1440 ** If the expression p codes a constant integer that is small enough
1441 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1442 ** in *pValue.  If the expression is not an integer or if it is too big
1443 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1444 */
1445 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1446   int rc = 0;
1447 
1448   /* If an expression is an integer literal that fits in a signed 32-bit
1449   ** integer, then the EP_IntValue flag will have already been set */
1450   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1451            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1452 
1453   if( p->flags & EP_IntValue ){
1454     *pValue = p->u.iValue;
1455     return 1;
1456   }
1457   switch( p->op ){
1458     case TK_UPLUS: {
1459       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1460       break;
1461     }
1462     case TK_UMINUS: {
1463       int v;
1464       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1465         assert( v!=(-2147483647-1) );
1466         *pValue = -v;
1467         rc = 1;
1468       }
1469       break;
1470     }
1471     default: break;
1472   }
1473   return rc;
1474 }
1475 
1476 /*
1477 ** Return FALSE if there is no chance that the expression can be NULL.
1478 **
1479 ** If the expression might be NULL or if the expression is too complex
1480 ** to tell return TRUE.
1481 **
1482 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1483 ** when we know that a value cannot be NULL.  Hence, a false positive
1484 ** (returning TRUE when in fact the expression can never be NULL) might
1485 ** be a small performance hit but is otherwise harmless.  On the other
1486 ** hand, a false negative (returning FALSE when the result could be NULL)
1487 ** will likely result in an incorrect answer.  So when in doubt, return
1488 ** TRUE.
1489 */
1490 int sqlite3ExprCanBeNull(const Expr *p){
1491   u8 op;
1492   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1493   op = p->op;
1494   if( op==TK_REGISTER ) op = p->op2;
1495   switch( op ){
1496     case TK_INTEGER:
1497     case TK_STRING:
1498     case TK_FLOAT:
1499     case TK_BLOB:
1500       return 0;
1501     case TK_COLUMN:
1502       assert( p->pTab!=0 );
1503       return ExprHasProperty(p, EP_CanBeNull) ||
1504              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1505     default:
1506       return 1;
1507   }
1508 }
1509 
1510 /*
1511 ** Return TRUE if the given expression is a constant which would be
1512 ** unchanged by OP_Affinity with the affinity given in the second
1513 ** argument.
1514 **
1515 ** This routine is used to determine if the OP_Affinity operation
1516 ** can be omitted.  When in doubt return FALSE.  A false negative
1517 ** is harmless.  A false positive, however, can result in the wrong
1518 ** answer.
1519 */
1520 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1521   u8 op;
1522   if( aff==SQLITE_AFF_BLOB ) return 1;
1523   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1524   op = p->op;
1525   if( op==TK_REGISTER ) op = p->op2;
1526   switch( op ){
1527     case TK_INTEGER: {
1528       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1529     }
1530     case TK_FLOAT: {
1531       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1532     }
1533     case TK_STRING: {
1534       return aff==SQLITE_AFF_TEXT;
1535     }
1536     case TK_BLOB: {
1537       return 1;
1538     }
1539     case TK_COLUMN: {
1540       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1541       return p->iColumn<0
1542           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1543     }
1544     default: {
1545       return 0;
1546     }
1547   }
1548 }
1549 
1550 /*
1551 ** Return TRUE if the given string is a row-id column name.
1552 */
1553 int sqlite3IsRowid(const char *z){
1554   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1555   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1556   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1557   return 0;
1558 }
1559 
1560 /*
1561 ** Return true if we are able to the IN operator optimization on a
1562 ** query of the form
1563 **
1564 **       x IN (SELECT ...)
1565 **
1566 ** Where the SELECT... clause is as specified by the parameter to this
1567 ** routine.
1568 **
1569 ** The Select object passed in has already been preprocessed and no
1570 ** errors have been found.
1571 */
1572 #ifndef SQLITE_OMIT_SUBQUERY
1573 static int isCandidateForInOpt(Select *p){
1574   SrcList *pSrc;
1575   ExprList *pEList;
1576   Table *pTab;
1577   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1578   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1579   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1580     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1581     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1582     return 0; /* No DISTINCT keyword and no aggregate functions */
1583   }
1584   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1585   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1586   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1587   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1588   pSrc = p->pSrc;
1589   assert( pSrc!=0 );
1590   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1591   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1592   pTab = pSrc->a[0].pTab;
1593   if( NEVER(pTab==0) ) return 0;
1594   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1595   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1596   pEList = p->pEList;
1597   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1598   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1599   return 1;
1600 }
1601 #endif /* SQLITE_OMIT_SUBQUERY */
1602 
1603 /*
1604 ** Code an OP_Once instruction and allocate space for its flag. Return the
1605 ** address of the new instruction.
1606 */
1607 int sqlite3CodeOnce(Parse *pParse){
1608   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1609   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1610 }
1611 
1612 /*
1613 ** Generate code that checks the left-most column of index table iCur to see if
1614 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1615 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1616 ** to be set to NULL if iCur contains one or more NULL values.
1617 */
1618 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1619   int addr1;
1620   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1621   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1622   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1623   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1624   VdbeComment((v, "first_entry_in(%d)", iCur));
1625   sqlite3VdbeJumpHere(v, addr1);
1626 }
1627 
1628 
1629 #ifndef SQLITE_OMIT_SUBQUERY
1630 /*
1631 ** The argument is an IN operator with a list (not a subquery) on the
1632 ** right-hand side.  Return TRUE if that list is constant.
1633 */
1634 static int sqlite3InRhsIsConstant(Expr *pIn){
1635   Expr *pLHS;
1636   int res;
1637   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1638   pLHS = pIn->pLeft;
1639   pIn->pLeft = 0;
1640   res = sqlite3ExprIsConstant(pIn);
1641   pIn->pLeft = pLHS;
1642   return res;
1643 }
1644 #endif
1645 
1646 /*
1647 ** This function is used by the implementation of the IN (...) operator.
1648 ** The pX parameter is the expression on the RHS of the IN operator, which
1649 ** might be either a list of expressions or a subquery.
1650 **
1651 ** The job of this routine is to find or create a b-tree object that can
1652 ** be used either to test for membership in the RHS set or to iterate through
1653 ** all members of the RHS set, skipping duplicates.
1654 **
1655 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1656 ** and pX->iTable is set to the index of that cursor.
1657 **
1658 ** The returned value of this function indicates the b-tree type, as follows:
1659 **
1660 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1661 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1662 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1663 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1664 **                         populated epheremal table.
1665 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1666 **                         implemented as a sequence of comparisons.
1667 **
1668 ** An existing b-tree might be used if the RHS expression pX is a simple
1669 ** subquery such as:
1670 **
1671 **     SELECT <column> FROM <table>
1672 **
1673 ** If the RHS of the IN operator is a list or a more complex subquery, then
1674 ** an ephemeral table might need to be generated from the RHS and then
1675 ** pX->iTable made to point to the ephemeral table instead of an
1676 ** existing table.
1677 **
1678 ** The inFlags parameter must contain exactly one of the bits
1679 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1680 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1681 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1682 ** IN index will be used to loop over all values of the RHS of the
1683 ** IN operator.
1684 **
1685 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1686 ** through the set members) then the b-tree must not contain duplicates.
1687 ** An epheremal table must be used unless the selected <column> is guaranteed
1688 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1689 ** has a UNIQUE constraint or UNIQUE index.
1690 **
1691 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1692 ** for fast set membership tests) then an epheremal table must
1693 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1694 ** be found with <column> as its left-most column.
1695 **
1696 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1697 ** if the RHS of the IN operator is a list (not a subquery) then this
1698 ** routine might decide that creating an ephemeral b-tree for membership
1699 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1700 ** calling routine should implement the IN operator using a sequence
1701 ** of Eq or Ne comparison operations.
1702 **
1703 ** When the b-tree is being used for membership tests, the calling function
1704 ** might need to know whether or not the RHS side of the IN operator
1705 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1706 ** if there is any chance that the (...) might contain a NULL value at
1707 ** runtime, then a register is allocated and the register number written
1708 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1709 ** NULL value, then *prRhsHasNull is left unchanged.
1710 **
1711 ** If a register is allocated and its location stored in *prRhsHasNull, then
1712 ** the value in that register will be NULL if the b-tree contains one or more
1713 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1714 ** NULL values.
1715 */
1716 #ifndef SQLITE_OMIT_SUBQUERY
1717 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1718   Select *p;                            /* SELECT to the right of IN operator */
1719   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1720   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1721   int mustBeUnique;                     /* True if RHS must be unique */
1722   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1723 
1724   assert( pX->op==TK_IN );
1725   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1726 
1727   /* Check to see if an existing table or index can be used to
1728   ** satisfy the query.  This is preferable to generating a new
1729   ** ephemeral table.
1730   */
1731   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1732   if( pParse->nErr==0 && isCandidateForInOpt(p) ){
1733     sqlite3 *db = pParse->db;              /* Database connection */
1734     Table *pTab;                           /* Table <table>. */
1735     Expr *pExpr;                           /* Expression <column> */
1736     i16 iCol;                              /* Index of column <column> */
1737     i16 iDb;                               /* Database idx for pTab */
1738 
1739     assert( p );                        /* Because of isCandidateForInOpt(p) */
1740     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1741     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1742     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1743     pTab = p->pSrc->a[0].pTab;
1744     pExpr = p->pEList->a[0].pExpr;
1745     iCol = (i16)pExpr->iColumn;
1746 
1747     /* Code an OP_Transaction and OP_TableLock for <table>. */
1748     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1749     sqlite3CodeVerifySchema(pParse, iDb);
1750     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1751 
1752     /* This function is only called from two places. In both cases the vdbe
1753     ** has already been allocated. So assume sqlite3GetVdbe() is always
1754     ** successful here.
1755     */
1756     assert(v);
1757     if( iCol<0 ){
1758       int iAddr = sqlite3CodeOnce(pParse);
1759       VdbeCoverage(v);
1760 
1761       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1762       eType = IN_INDEX_ROWID;
1763 
1764       sqlite3VdbeJumpHere(v, iAddr);
1765     }else{
1766       Index *pIdx;                         /* Iterator variable */
1767 
1768       /* The collation sequence used by the comparison. If an index is to
1769       ** be used in place of a temp-table, it must be ordered according
1770       ** to this collation sequence.  */
1771       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1772 
1773       /* Check that the affinity that will be used to perform the
1774       ** comparison is the same as the affinity of the column. If
1775       ** it is not, it is not possible to use any index.
1776       */
1777       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1778 
1779       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1780         if( (pIdx->aiColumn[0]==iCol)
1781          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1782          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1783         ){
1784           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1785           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1786           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1787           VdbeComment((v, "%s", pIdx->zName));
1788           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1789           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1790 
1791           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1792             *prRhsHasNull = ++pParse->nMem;
1793             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1794           }
1795           sqlite3VdbeJumpHere(v, iAddr);
1796         }
1797       }
1798     }
1799   }
1800 
1801   /* If no preexisting index is available for the IN clause
1802   ** and IN_INDEX_NOOP is an allowed reply
1803   ** and the RHS of the IN operator is a list, not a subquery
1804   ** and the RHS is not contant or has two or fewer terms,
1805   ** then it is not worth creating an ephemeral table to evaluate
1806   ** the IN operator so return IN_INDEX_NOOP.
1807   */
1808   if( eType==0
1809    && (inFlags & IN_INDEX_NOOP_OK)
1810    && !ExprHasProperty(pX, EP_xIsSelect)
1811    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1812   ){
1813     eType = IN_INDEX_NOOP;
1814   }
1815 
1816 
1817   if( eType==0 ){
1818     /* Could not find an existing table or index to use as the RHS b-tree.
1819     ** We will have to generate an ephemeral table to do the job.
1820     */
1821     u32 savedNQueryLoop = pParse->nQueryLoop;
1822     int rMayHaveNull = 0;
1823     eType = IN_INDEX_EPH;
1824     if( inFlags & IN_INDEX_LOOP ){
1825       pParse->nQueryLoop = 0;
1826       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1827         eType = IN_INDEX_ROWID;
1828       }
1829     }else if( prRhsHasNull ){
1830       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1831     }
1832     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1833     pParse->nQueryLoop = savedNQueryLoop;
1834   }else{
1835     pX->iTable = iTab;
1836   }
1837   return eType;
1838 }
1839 #endif
1840 
1841 /*
1842 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1843 ** or IN operators.  Examples:
1844 **
1845 **     (SELECT a FROM b)          -- subquery
1846 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1847 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1848 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1849 **
1850 ** The pExpr parameter describes the expression that contains the IN
1851 ** operator or subquery.
1852 **
1853 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1854 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1855 ** to some integer key column of a table B-Tree. In this case, use an
1856 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1857 ** (slower) variable length keys B-Tree.
1858 **
1859 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1860 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1861 ** All this routine does is initialize the register given by rMayHaveNull
1862 ** to NULL.  Calling routines will take care of changing this register
1863 ** value to non-NULL if the RHS is NULL-free.
1864 **
1865 ** For a SELECT or EXISTS operator, return the register that holds the
1866 ** result.  For IN operators or if an error occurs, the return value is 0.
1867 */
1868 #ifndef SQLITE_OMIT_SUBQUERY
1869 int sqlite3CodeSubselect(
1870   Parse *pParse,          /* Parsing context */
1871   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1872   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1873   int isRowid             /* If true, LHS of IN operator is a rowid */
1874 ){
1875   int jmpIfDynamic = -1;                      /* One-time test address */
1876   int rReg = 0;                           /* Register storing resulting */
1877   Vdbe *v = sqlite3GetVdbe(pParse);
1878   if( NEVER(v==0) ) return 0;
1879   sqlite3ExprCachePush(pParse);
1880 
1881   /* This code must be run in its entirety every time it is encountered
1882   ** if any of the following is true:
1883   **
1884   **    *  The right-hand side is a correlated subquery
1885   **    *  The right-hand side is an expression list containing variables
1886   **    *  We are inside a trigger
1887   **
1888   ** If all of the above are false, then we can run this code just once
1889   ** save the results, and reuse the same result on subsequent invocations.
1890   */
1891   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1892     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1893   }
1894 
1895 #ifndef SQLITE_OMIT_EXPLAIN
1896   if( pParse->explain==2 ){
1897     char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
1898         jmpIfDynamic>=0?"":"CORRELATED ",
1899         pExpr->op==TK_IN?"LIST":"SCALAR",
1900         pParse->iNextSelectId
1901     );
1902     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1903   }
1904 #endif
1905 
1906   switch( pExpr->op ){
1907     case TK_IN: {
1908       char affinity;              /* Affinity of the LHS of the IN */
1909       int addr;                   /* Address of OP_OpenEphemeral instruction */
1910       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1911       KeyInfo *pKeyInfo = 0;      /* Key information */
1912 
1913       affinity = sqlite3ExprAffinity(pLeft);
1914 
1915       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1916       ** expression it is handled the same way.  An ephemeral table is
1917       ** filled with single-field index keys representing the results
1918       ** from the SELECT or the <exprlist>.
1919       **
1920       ** If the 'x' expression is a column value, or the SELECT...
1921       ** statement returns a column value, then the affinity of that
1922       ** column is used to build the index keys. If both 'x' and the
1923       ** SELECT... statement are columns, then numeric affinity is used
1924       ** if either column has NUMERIC or INTEGER affinity. If neither
1925       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1926       ** is used.
1927       */
1928       pExpr->iTable = pParse->nTab++;
1929       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1930       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1931 
1932       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1933         /* Case 1:     expr IN (SELECT ...)
1934         **
1935         ** Generate code to write the results of the select into the temporary
1936         ** table allocated and opened above.
1937         */
1938         Select *pSelect = pExpr->x.pSelect;
1939         SelectDest dest;
1940         ExprList *pEList;
1941 
1942         assert( !isRowid );
1943         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1944         dest.affSdst = (u8)affinity;
1945         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1946         pSelect->iLimit = 0;
1947         testcase( pSelect->selFlags & SF_Distinct );
1948         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1949         if( sqlite3Select(pParse, pSelect, &dest) ){
1950           sqlite3KeyInfoUnref(pKeyInfo);
1951           return 0;
1952         }
1953         pEList = pSelect->pEList;
1954         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1955         assert( pEList!=0 );
1956         assert( pEList->nExpr>0 );
1957         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1958         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1959                                                          pEList->a[0].pExpr);
1960       }else if( ALWAYS(pExpr->x.pList!=0) ){
1961         /* Case 2:     expr IN (exprlist)
1962         **
1963         ** For each expression, build an index key from the evaluation and
1964         ** store it in the temporary table. If <expr> is a column, then use
1965         ** that columns affinity when building index keys. If <expr> is not
1966         ** a column, use numeric affinity.
1967         */
1968         int i;
1969         ExprList *pList = pExpr->x.pList;
1970         struct ExprList_item *pItem;
1971         int r1, r2, r3;
1972 
1973         if( !affinity ){
1974           affinity = SQLITE_AFF_BLOB;
1975         }
1976         if( pKeyInfo ){
1977           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1978           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1979         }
1980 
1981         /* Loop through each expression in <exprlist>. */
1982         r1 = sqlite3GetTempReg(pParse);
1983         r2 = sqlite3GetTempReg(pParse);
1984         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1985         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1986           Expr *pE2 = pItem->pExpr;
1987           int iValToIns;
1988 
1989           /* If the expression is not constant then we will need to
1990           ** disable the test that was generated above that makes sure
1991           ** this code only executes once.  Because for a non-constant
1992           ** expression we need to rerun this code each time.
1993           */
1994           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1995             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1996             jmpIfDynamic = -1;
1997           }
1998 
1999           /* Evaluate the expression and insert it into the temp table */
2000           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2001             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2002           }else{
2003             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2004             if( isRowid ){
2005               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2006                                 sqlite3VdbeCurrentAddr(v)+2);
2007               VdbeCoverage(v);
2008               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2009             }else{
2010               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2011               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2012               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
2013             }
2014           }
2015         }
2016         sqlite3ReleaseTempReg(pParse, r1);
2017         sqlite3ReleaseTempReg(pParse, r2);
2018       }
2019       if( pKeyInfo ){
2020         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2021       }
2022       break;
2023     }
2024 
2025     case TK_EXISTS:
2026     case TK_SELECT:
2027     default: {
2028       /* If this has to be a scalar SELECT.  Generate code to put the
2029       ** value of this select in a memory cell and record the number
2030       ** of the memory cell in iColumn.  If this is an EXISTS, write
2031       ** an integer 0 (not exists) or 1 (exists) into a memory cell
2032       ** and record that memory cell in iColumn.
2033       */
2034       Select *pSel;                         /* SELECT statement to encode */
2035       SelectDest dest;                      /* How to deal with SELECt result */
2036 
2037       testcase( pExpr->op==TK_EXISTS );
2038       testcase( pExpr->op==TK_SELECT );
2039       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2040 
2041       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2042       pSel = pExpr->x.pSelect;
2043       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
2044       if( pExpr->op==TK_SELECT ){
2045         dest.eDest = SRT_Mem;
2046         dest.iSdst = dest.iSDParm;
2047         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
2048         VdbeComment((v, "Init subquery result"));
2049       }else{
2050         dest.eDest = SRT_Exists;
2051         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2052         VdbeComment((v, "Init EXISTS result"));
2053       }
2054       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2055       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
2056                                   &sqlite3IntTokens[1]);
2057       pSel->iLimit = 0;
2058       pSel->selFlags &= ~SF_MultiValue;
2059       if( sqlite3Select(pParse, pSel, &dest) ){
2060         return 0;
2061       }
2062       rReg = dest.iSDParm;
2063       ExprSetVVAProperty(pExpr, EP_NoReduce);
2064       break;
2065     }
2066   }
2067 
2068   if( rHasNullFlag ){
2069     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2070   }
2071 
2072   if( jmpIfDynamic>=0 ){
2073     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2074   }
2075   sqlite3ExprCachePop(pParse);
2076 
2077   return rReg;
2078 }
2079 #endif /* SQLITE_OMIT_SUBQUERY */
2080 
2081 #ifndef SQLITE_OMIT_SUBQUERY
2082 /*
2083 ** Generate code for an IN expression.
2084 **
2085 **      x IN (SELECT ...)
2086 **      x IN (value, value, ...)
2087 **
2088 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
2089 ** is an array of zero or more values.  The expression is true if the LHS is
2090 ** contained within the RHS.  The value of the expression is unknown (NULL)
2091 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2092 ** RHS contains one or more NULL values.
2093 **
2094 ** This routine generates code that jumps to destIfFalse if the LHS is not
2095 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2096 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2097 ** within the RHS then fall through.
2098 */
2099 static void sqlite3ExprCodeIN(
2100   Parse *pParse,        /* Parsing and code generating context */
2101   Expr *pExpr,          /* The IN expression */
2102   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2103   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2104 ){
2105   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2106   char affinity;        /* Comparison affinity to use */
2107   int eType;            /* Type of the RHS */
2108   int r1;               /* Temporary use register */
2109   Vdbe *v;              /* Statement under construction */
2110 
2111   /* Compute the RHS.   After this step, the table with cursor
2112   ** pExpr->iTable will contains the values that make up the RHS.
2113   */
2114   v = pParse->pVdbe;
2115   assert( v!=0 );       /* OOM detected prior to this routine */
2116   VdbeNoopComment((v, "begin IN expr"));
2117   eType = sqlite3FindInIndex(pParse, pExpr,
2118                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2119                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2120 
2121   /* Figure out the affinity to use to create a key from the results
2122   ** of the expression. affinityStr stores a static string suitable for
2123   ** P4 of OP_MakeRecord.
2124   */
2125   affinity = comparisonAffinity(pExpr);
2126 
2127   /* Code the LHS, the <expr> from "<expr> IN (...)".
2128   */
2129   sqlite3ExprCachePush(pParse);
2130   r1 = sqlite3GetTempReg(pParse);
2131   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2132 
2133   /* If sqlite3FindInIndex() did not find or create an index that is
2134   ** suitable for evaluating the IN operator, then evaluate using a
2135   ** sequence of comparisons.
2136   */
2137   if( eType==IN_INDEX_NOOP ){
2138     ExprList *pList = pExpr->x.pList;
2139     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2140     int labelOk = sqlite3VdbeMakeLabel(v);
2141     int r2, regToFree;
2142     int regCkNull = 0;
2143     int ii;
2144     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2145     if( destIfNull!=destIfFalse ){
2146       regCkNull = sqlite3GetTempReg(pParse);
2147       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2148     }
2149     for(ii=0; ii<pList->nExpr; ii++){
2150       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2151       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2152         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2153       }
2154       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2155         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2156                           (void*)pColl, P4_COLLSEQ);
2157         VdbeCoverageIf(v, ii<pList->nExpr-1);
2158         VdbeCoverageIf(v, ii==pList->nExpr-1);
2159         sqlite3VdbeChangeP5(v, affinity);
2160       }else{
2161         assert( destIfNull==destIfFalse );
2162         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2163                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2164         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2165       }
2166       sqlite3ReleaseTempReg(pParse, regToFree);
2167     }
2168     if( regCkNull ){
2169       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2170       sqlite3VdbeGoto(v, destIfFalse);
2171     }
2172     sqlite3VdbeResolveLabel(v, labelOk);
2173     sqlite3ReleaseTempReg(pParse, regCkNull);
2174   }else{
2175 
2176     /* If the LHS is NULL, then the result is either false or NULL depending
2177     ** on whether the RHS is empty or not, respectively.
2178     */
2179     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2180       if( destIfNull==destIfFalse ){
2181         /* Shortcut for the common case where the false and NULL outcomes are
2182         ** the same. */
2183         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2184       }else{
2185         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2186         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2187         VdbeCoverage(v);
2188         sqlite3VdbeGoto(v, destIfNull);
2189         sqlite3VdbeJumpHere(v, addr1);
2190       }
2191     }
2192 
2193     if( eType==IN_INDEX_ROWID ){
2194       /* In this case, the RHS is the ROWID of table b-tree
2195       */
2196       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2197       sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2198       VdbeCoverage(v);
2199     }else{
2200       /* In this case, the RHS is an index b-tree.
2201       */
2202       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2203 
2204       /* If the set membership test fails, then the result of the
2205       ** "x IN (...)" expression must be either 0 or NULL. If the set
2206       ** contains no NULL values, then the result is 0. If the set
2207       ** contains one or more NULL values, then the result of the
2208       ** expression is also NULL.
2209       */
2210       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2211       if( rRhsHasNull==0 ){
2212         /* This branch runs if it is known at compile time that the RHS
2213         ** cannot contain NULL values. This happens as the result
2214         ** of a "NOT NULL" constraint in the database schema.
2215         **
2216         ** Also run this branch if NULL is equivalent to FALSE
2217         ** for this particular IN operator.
2218         */
2219         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2220         VdbeCoverage(v);
2221       }else{
2222         /* In this branch, the RHS of the IN might contain a NULL and
2223         ** the presence of a NULL on the RHS makes a difference in the
2224         ** outcome.
2225         */
2226         int addr1;
2227 
2228         /* First check to see if the LHS is contained in the RHS.  If so,
2229         ** then the answer is TRUE the presence of NULLs in the RHS does
2230         ** not matter.  If the LHS is not contained in the RHS, then the
2231         ** answer is NULL if the RHS contains NULLs and the answer is
2232         ** FALSE if the RHS is NULL-free.
2233         */
2234         addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2235         VdbeCoverage(v);
2236         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2237         VdbeCoverage(v);
2238         sqlite3VdbeGoto(v, destIfFalse);
2239         sqlite3VdbeJumpHere(v, addr1);
2240       }
2241     }
2242   }
2243   sqlite3ReleaseTempReg(pParse, r1);
2244   sqlite3ExprCachePop(pParse);
2245   VdbeComment((v, "end IN expr"));
2246 }
2247 #endif /* SQLITE_OMIT_SUBQUERY */
2248 
2249 #ifndef SQLITE_OMIT_FLOATING_POINT
2250 /*
2251 ** Generate an instruction that will put the floating point
2252 ** value described by z[0..n-1] into register iMem.
2253 **
2254 ** The z[] string will probably not be zero-terminated.  But the
2255 ** z[n] character is guaranteed to be something that does not look
2256 ** like the continuation of the number.
2257 */
2258 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2259   if( ALWAYS(z!=0) ){
2260     double value;
2261     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2262     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2263     if( negateFlag ) value = -value;
2264     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
2265   }
2266 }
2267 #endif
2268 
2269 
2270 /*
2271 ** Generate an instruction that will put the integer describe by
2272 ** text z[0..n-1] into register iMem.
2273 **
2274 ** Expr.u.zToken is always UTF8 and zero-terminated.
2275 */
2276 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2277   Vdbe *v = pParse->pVdbe;
2278   if( pExpr->flags & EP_IntValue ){
2279     int i = pExpr->u.iValue;
2280     assert( i>=0 );
2281     if( negFlag ) i = -i;
2282     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2283   }else{
2284     int c;
2285     i64 value;
2286     const char *z = pExpr->u.zToken;
2287     assert( z!=0 );
2288     c = sqlite3DecOrHexToI64(z, &value);
2289     if( c==0 || (c==2 && negFlag) ){
2290       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2291       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
2292     }else{
2293 #ifdef SQLITE_OMIT_FLOATING_POINT
2294       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2295 #else
2296 #ifndef SQLITE_OMIT_HEX_INTEGER
2297       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2298         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2299       }else
2300 #endif
2301       {
2302         codeReal(v, z, negFlag, iMem);
2303       }
2304 #endif
2305     }
2306   }
2307 }
2308 
2309 /*
2310 ** Clear a cache entry.
2311 */
2312 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2313   if( p->tempReg ){
2314     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2315       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2316     }
2317     p->tempReg = 0;
2318   }
2319 }
2320 
2321 
2322 /*
2323 ** Record in the column cache that a particular column from a
2324 ** particular table is stored in a particular register.
2325 */
2326 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2327   int i;
2328   int minLru;
2329   int idxLru;
2330   struct yColCache *p;
2331 
2332   /* Unless an error has occurred, register numbers are always positive. */
2333   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2334   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2335 
2336   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2337   ** for testing only - to verify that SQLite always gets the same answer
2338   ** with and without the column cache.
2339   */
2340   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2341 
2342   /* First replace any existing entry.
2343   **
2344   ** Actually, the way the column cache is currently used, we are guaranteed
2345   ** that the object will never already be in cache.  Verify this guarantee.
2346   */
2347 #ifndef NDEBUG
2348   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2349     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2350   }
2351 #endif
2352 
2353   /* Find an empty slot and replace it */
2354   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2355     if( p->iReg==0 ){
2356       p->iLevel = pParse->iCacheLevel;
2357       p->iTable = iTab;
2358       p->iColumn = iCol;
2359       p->iReg = iReg;
2360       p->tempReg = 0;
2361       p->lru = pParse->iCacheCnt++;
2362       return;
2363     }
2364   }
2365 
2366   /* Replace the last recently used */
2367   minLru = 0x7fffffff;
2368   idxLru = -1;
2369   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2370     if( p->lru<minLru ){
2371       idxLru = i;
2372       minLru = p->lru;
2373     }
2374   }
2375   if( ALWAYS(idxLru>=0) ){
2376     p = &pParse->aColCache[idxLru];
2377     p->iLevel = pParse->iCacheLevel;
2378     p->iTable = iTab;
2379     p->iColumn = iCol;
2380     p->iReg = iReg;
2381     p->tempReg = 0;
2382     p->lru = pParse->iCacheCnt++;
2383     return;
2384   }
2385 }
2386 
2387 /*
2388 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2389 ** Purge the range of registers from the column cache.
2390 */
2391 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2392   int i;
2393   int iLast = iReg + nReg - 1;
2394   struct yColCache *p;
2395   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2396     int r = p->iReg;
2397     if( r>=iReg && r<=iLast ){
2398       cacheEntryClear(pParse, p);
2399       p->iReg = 0;
2400     }
2401   }
2402 }
2403 
2404 /*
2405 ** Remember the current column cache context.  Any new entries added
2406 ** added to the column cache after this call are removed when the
2407 ** corresponding pop occurs.
2408 */
2409 void sqlite3ExprCachePush(Parse *pParse){
2410   pParse->iCacheLevel++;
2411 #ifdef SQLITE_DEBUG
2412   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2413     printf("PUSH to %d\n", pParse->iCacheLevel);
2414   }
2415 #endif
2416 }
2417 
2418 /*
2419 ** Remove from the column cache any entries that were added since the
2420 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2421 ** the cache to the state it was in prior the most recent Push.
2422 */
2423 void sqlite3ExprCachePop(Parse *pParse){
2424   int i;
2425   struct yColCache *p;
2426   assert( pParse->iCacheLevel>=1 );
2427   pParse->iCacheLevel--;
2428 #ifdef SQLITE_DEBUG
2429   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2430     printf("POP  to %d\n", pParse->iCacheLevel);
2431   }
2432 #endif
2433   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2434     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2435       cacheEntryClear(pParse, p);
2436       p->iReg = 0;
2437     }
2438   }
2439 }
2440 
2441 /*
2442 ** When a cached column is reused, make sure that its register is
2443 ** no longer available as a temp register.  ticket #3879:  that same
2444 ** register might be in the cache in multiple places, so be sure to
2445 ** get them all.
2446 */
2447 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2448   int i;
2449   struct yColCache *p;
2450   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2451     if( p->iReg==iReg ){
2452       p->tempReg = 0;
2453     }
2454   }
2455 }
2456 
2457 /* Generate code that will load into register regOut a value that is
2458 ** appropriate for the iIdxCol-th column of index pIdx.
2459 */
2460 void sqlite3ExprCodeLoadIndexColumn(
2461   Parse *pParse,  /* The parsing context */
2462   Index *pIdx,    /* The index whose column is to be loaded */
2463   int iTabCur,    /* Cursor pointing to a table row */
2464   int iIdxCol,    /* The column of the index to be loaded */
2465   int regOut      /* Store the index column value in this register */
2466 ){
2467   i16 iTabCol = pIdx->aiColumn[iIdxCol];
2468   if( iTabCol==XN_EXPR ){
2469     assert( pIdx->aColExpr );
2470     assert( pIdx->aColExpr->nExpr>iIdxCol );
2471     pParse->iSelfTab = iTabCur;
2472     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
2473   }else{
2474     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
2475                                     iTabCol, regOut);
2476   }
2477 }
2478 
2479 /*
2480 ** Generate code to extract the value of the iCol-th column of a table.
2481 */
2482 void sqlite3ExprCodeGetColumnOfTable(
2483   Vdbe *v,        /* The VDBE under construction */
2484   Table *pTab,    /* The table containing the value */
2485   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2486   int iCol,       /* Index of the column to extract */
2487   int regOut      /* Extract the value into this register */
2488 ){
2489   if( iCol<0 || iCol==pTab->iPKey ){
2490     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2491   }else{
2492     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2493     int x = iCol;
2494     if( !HasRowid(pTab) ){
2495       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2496     }
2497     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2498   }
2499   if( iCol>=0 ){
2500     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2501   }
2502 }
2503 
2504 /*
2505 ** Generate code that will extract the iColumn-th column from
2506 ** table pTab and store the column value in a register.
2507 **
2508 ** An effort is made to store the column value in register iReg.  This
2509 ** is not garanteeed for GetColumn() - the result can be stored in
2510 ** any register.  But the result is guaranteed to land in register iReg
2511 ** for GetColumnToReg().
2512 **
2513 ** There must be an open cursor to pTab in iTable when this routine
2514 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2515 */
2516 int sqlite3ExprCodeGetColumn(
2517   Parse *pParse,   /* Parsing and code generating context */
2518   Table *pTab,     /* Description of the table we are reading from */
2519   int iColumn,     /* Index of the table column */
2520   int iTable,      /* The cursor pointing to the table */
2521   int iReg,        /* Store results here */
2522   u8 p5            /* P5 value for OP_Column + FLAGS */
2523 ){
2524   Vdbe *v = pParse->pVdbe;
2525   int i;
2526   struct yColCache *p;
2527 
2528   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2529     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2530       p->lru = pParse->iCacheCnt++;
2531       sqlite3ExprCachePinRegister(pParse, p->iReg);
2532       return p->iReg;
2533     }
2534   }
2535   assert( v!=0 );
2536   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2537   if( p5 ){
2538     sqlite3VdbeChangeP5(v, p5);
2539   }else{
2540     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2541   }
2542   return iReg;
2543 }
2544 void sqlite3ExprCodeGetColumnToReg(
2545   Parse *pParse,   /* Parsing and code generating context */
2546   Table *pTab,     /* Description of the table we are reading from */
2547   int iColumn,     /* Index of the table column */
2548   int iTable,      /* The cursor pointing to the table */
2549   int iReg         /* Store results here */
2550 ){
2551   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
2552   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
2553 }
2554 
2555 
2556 /*
2557 ** Clear all column cache entries.
2558 */
2559 void sqlite3ExprCacheClear(Parse *pParse){
2560   int i;
2561   struct yColCache *p;
2562 
2563 #if SQLITE_DEBUG
2564   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2565     printf("CLEAR\n");
2566   }
2567 #endif
2568   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2569     if( p->iReg ){
2570       cacheEntryClear(pParse, p);
2571       p->iReg = 0;
2572     }
2573   }
2574 }
2575 
2576 /*
2577 ** Record the fact that an affinity change has occurred on iCount
2578 ** registers starting with iStart.
2579 */
2580 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2581   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2582 }
2583 
2584 /*
2585 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2586 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2587 */
2588 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2589   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2590   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2591   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2592 }
2593 
2594 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2595 /*
2596 ** Return true if any register in the range iFrom..iTo (inclusive)
2597 ** is used as part of the column cache.
2598 **
2599 ** This routine is used within assert() and testcase() macros only
2600 ** and does not appear in a normal build.
2601 */
2602 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2603   int i;
2604   struct yColCache *p;
2605   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2606     int r = p->iReg;
2607     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2608   }
2609   return 0;
2610 }
2611 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2612 
2613 /*
2614 ** Convert an expression node to a TK_REGISTER
2615 */
2616 static void exprToRegister(Expr *p, int iReg){
2617   p->op2 = p->op;
2618   p->op = TK_REGISTER;
2619   p->iTable = iReg;
2620   ExprClearProperty(p, EP_Skip);
2621 }
2622 
2623 /*
2624 ** Generate code into the current Vdbe to evaluate the given
2625 ** expression.  Attempt to store the results in register "target".
2626 ** Return the register where results are stored.
2627 **
2628 ** With this routine, there is no guarantee that results will
2629 ** be stored in target.  The result might be stored in some other
2630 ** register if it is convenient to do so.  The calling function
2631 ** must check the return code and move the results to the desired
2632 ** register.
2633 */
2634 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2635   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2636   int op;                   /* The opcode being coded */
2637   int inReg = target;       /* Results stored in register inReg */
2638   int regFree1 = 0;         /* If non-zero free this temporary register */
2639   int regFree2 = 0;         /* If non-zero free this temporary register */
2640   int r1, r2, r3, r4;       /* Various register numbers */
2641   sqlite3 *db = pParse->db; /* The database connection */
2642   Expr tempX;               /* Temporary expression node */
2643 
2644   assert( target>0 && target<=pParse->nMem );
2645   if( v==0 ){
2646     assert( pParse->db->mallocFailed );
2647     return 0;
2648   }
2649 
2650   if( pExpr==0 ){
2651     op = TK_NULL;
2652   }else{
2653     op = pExpr->op;
2654   }
2655   switch( op ){
2656     case TK_AGG_COLUMN: {
2657       AggInfo *pAggInfo = pExpr->pAggInfo;
2658       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2659       if( !pAggInfo->directMode ){
2660         assert( pCol->iMem>0 );
2661         inReg = pCol->iMem;
2662         break;
2663       }else if( pAggInfo->useSortingIdx ){
2664         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2665                               pCol->iSorterColumn, target);
2666         break;
2667       }
2668       /* Otherwise, fall thru into the TK_COLUMN case */
2669     }
2670     case TK_COLUMN: {
2671       int iTab = pExpr->iTable;
2672       if( iTab<0 ){
2673         if( pParse->ckBase>0 ){
2674           /* Generating CHECK constraints or inserting into partial index */
2675           inReg = pExpr->iColumn + pParse->ckBase;
2676           break;
2677         }else{
2678           /* Coding an expression that is part of an index where column names
2679           ** in the index refer to the table to which the index belongs */
2680           iTab = pParse->iSelfTab;
2681         }
2682       }
2683       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2684                                pExpr->iColumn, iTab, target,
2685                                pExpr->op2);
2686       break;
2687     }
2688     case TK_INTEGER: {
2689       codeInteger(pParse, pExpr, 0, target);
2690       break;
2691     }
2692 #ifndef SQLITE_OMIT_FLOATING_POINT
2693     case TK_FLOAT: {
2694       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2695       codeReal(v, pExpr->u.zToken, 0, target);
2696       break;
2697     }
2698 #endif
2699     case TK_STRING: {
2700       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2701       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
2702       break;
2703     }
2704     case TK_NULL: {
2705       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2706       break;
2707     }
2708 #ifndef SQLITE_OMIT_BLOB_LITERAL
2709     case TK_BLOB: {
2710       int n;
2711       const char *z;
2712       char *zBlob;
2713       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2714       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2715       assert( pExpr->u.zToken[1]=='\'' );
2716       z = &pExpr->u.zToken[2];
2717       n = sqlite3Strlen30(z) - 1;
2718       assert( z[n]=='\'' );
2719       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2720       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2721       break;
2722     }
2723 #endif
2724     case TK_VARIABLE: {
2725       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2726       assert( pExpr->u.zToken!=0 );
2727       assert( pExpr->u.zToken[0]!=0 );
2728       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2729       if( pExpr->u.zToken[1]!=0 ){
2730         assert( pExpr->u.zToken[0]=='?'
2731              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2732         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2733       }
2734       break;
2735     }
2736     case TK_REGISTER: {
2737       inReg = pExpr->iTable;
2738       break;
2739     }
2740 #ifndef SQLITE_OMIT_CAST
2741     case TK_CAST: {
2742       /* Expressions of the form:   CAST(pLeft AS token) */
2743       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2744       if( inReg!=target ){
2745         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2746         inReg = target;
2747       }
2748       sqlite3VdbeAddOp2(v, OP_Cast, target,
2749                         sqlite3AffinityType(pExpr->u.zToken, 0));
2750       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2751       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2752       break;
2753     }
2754 #endif /* SQLITE_OMIT_CAST */
2755     case TK_LT:
2756     case TK_LE:
2757     case TK_GT:
2758     case TK_GE:
2759     case TK_NE:
2760     case TK_EQ: {
2761       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2762       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2763       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2764                   r1, r2, inReg, SQLITE_STOREP2);
2765       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2766       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2767       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2768       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2769       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2770       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2771       testcase( regFree1==0 );
2772       testcase( regFree2==0 );
2773       break;
2774     }
2775     case TK_IS:
2776     case TK_ISNOT: {
2777       testcase( op==TK_IS );
2778       testcase( op==TK_ISNOT );
2779       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2780       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2781       op = (op==TK_IS) ? TK_EQ : TK_NE;
2782       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2783                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2784       VdbeCoverageIf(v, op==TK_EQ);
2785       VdbeCoverageIf(v, op==TK_NE);
2786       testcase( regFree1==0 );
2787       testcase( regFree2==0 );
2788       break;
2789     }
2790     case TK_AND:
2791     case TK_OR:
2792     case TK_PLUS:
2793     case TK_STAR:
2794     case TK_MINUS:
2795     case TK_REM:
2796     case TK_BITAND:
2797     case TK_BITOR:
2798     case TK_SLASH:
2799     case TK_LSHIFT:
2800     case TK_RSHIFT:
2801     case TK_CONCAT: {
2802       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2803       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2804       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2805       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2806       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2807       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2808       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2809       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2810       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2811       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2812       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2813       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2814       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2815       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2816       testcase( regFree1==0 );
2817       testcase( regFree2==0 );
2818       break;
2819     }
2820     case TK_UMINUS: {
2821       Expr *pLeft = pExpr->pLeft;
2822       assert( pLeft );
2823       if( pLeft->op==TK_INTEGER ){
2824         codeInteger(pParse, pLeft, 1, target);
2825 #ifndef SQLITE_OMIT_FLOATING_POINT
2826       }else if( pLeft->op==TK_FLOAT ){
2827         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2828         codeReal(v, pLeft->u.zToken, 1, target);
2829 #endif
2830       }else{
2831         tempX.op = TK_INTEGER;
2832         tempX.flags = EP_IntValue|EP_TokenOnly;
2833         tempX.u.iValue = 0;
2834         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2835         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2836         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2837         testcase( regFree2==0 );
2838       }
2839       inReg = target;
2840       break;
2841     }
2842     case TK_BITNOT:
2843     case TK_NOT: {
2844       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2845       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2846       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2847       testcase( regFree1==0 );
2848       inReg = target;
2849       sqlite3VdbeAddOp2(v, op, r1, inReg);
2850       break;
2851     }
2852     case TK_ISNULL:
2853     case TK_NOTNULL: {
2854       int addr;
2855       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2856       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2857       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2858       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2859       testcase( regFree1==0 );
2860       addr = sqlite3VdbeAddOp1(v, op, r1);
2861       VdbeCoverageIf(v, op==TK_ISNULL);
2862       VdbeCoverageIf(v, op==TK_NOTNULL);
2863       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2864       sqlite3VdbeJumpHere(v, addr);
2865       break;
2866     }
2867     case TK_AGG_FUNCTION: {
2868       AggInfo *pInfo = pExpr->pAggInfo;
2869       if( pInfo==0 ){
2870         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2871         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2872       }else{
2873         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2874       }
2875       break;
2876     }
2877     case TK_FUNCTION: {
2878       ExprList *pFarg;       /* List of function arguments */
2879       int nFarg;             /* Number of function arguments */
2880       FuncDef *pDef;         /* The function definition object */
2881       int nId;               /* Length of the function name in bytes */
2882       const char *zId;       /* The function name */
2883       u32 constMask = 0;     /* Mask of function arguments that are constant */
2884       int i;                 /* Loop counter */
2885       u8 enc = ENC(db);      /* The text encoding used by this database */
2886       CollSeq *pColl = 0;    /* A collating sequence */
2887 
2888       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2889       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2890         pFarg = 0;
2891       }else{
2892         pFarg = pExpr->x.pList;
2893       }
2894       nFarg = pFarg ? pFarg->nExpr : 0;
2895       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2896       zId = pExpr->u.zToken;
2897       nId = sqlite3Strlen30(zId);
2898       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2899       if( pDef==0 || pDef->xFinalize!=0 ){
2900         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2901         break;
2902       }
2903 
2904       /* Attempt a direct implementation of the built-in COALESCE() and
2905       ** IFNULL() functions.  This avoids unnecessary evaluation of
2906       ** arguments past the first non-NULL argument.
2907       */
2908       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2909         int endCoalesce = sqlite3VdbeMakeLabel(v);
2910         assert( nFarg>=2 );
2911         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2912         for(i=1; i<nFarg; i++){
2913           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2914           VdbeCoverage(v);
2915           sqlite3ExprCacheRemove(pParse, target, 1);
2916           sqlite3ExprCachePush(pParse);
2917           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2918           sqlite3ExprCachePop(pParse);
2919         }
2920         sqlite3VdbeResolveLabel(v, endCoalesce);
2921         break;
2922       }
2923 
2924       /* The UNLIKELY() function is a no-op.  The result is the value
2925       ** of the first argument.
2926       */
2927       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2928         assert( nFarg>=1 );
2929         inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
2930         break;
2931       }
2932 
2933       for(i=0; i<nFarg; i++){
2934         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2935           testcase( i==31 );
2936           constMask |= MASKBIT32(i);
2937         }
2938         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2939           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2940         }
2941       }
2942       if( pFarg ){
2943         if( constMask ){
2944           r1 = pParse->nMem+1;
2945           pParse->nMem += nFarg;
2946         }else{
2947           r1 = sqlite3GetTempRange(pParse, nFarg);
2948         }
2949 
2950         /* For length() and typeof() functions with a column argument,
2951         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2952         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2953         ** loading.
2954         */
2955         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2956           u8 exprOp;
2957           assert( nFarg==1 );
2958           assert( pFarg->a[0].pExpr!=0 );
2959           exprOp = pFarg->a[0].pExpr->op;
2960           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2961             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2962             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2963             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2964             pFarg->a[0].pExpr->op2 =
2965                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2966           }
2967         }
2968 
2969         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2970         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
2971                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2972         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
2973       }else{
2974         r1 = 0;
2975       }
2976 #ifndef SQLITE_OMIT_VIRTUALTABLE
2977       /* Possibly overload the function if the first argument is
2978       ** a virtual table column.
2979       **
2980       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2981       ** second argument, not the first, as the argument to test to
2982       ** see if it is a column in a virtual table.  This is done because
2983       ** the left operand of infix functions (the operand we want to
2984       ** control overloading) ends up as the second argument to the
2985       ** function.  The expression "A glob B" is equivalent to
2986       ** "glob(B,A).  We want to use the A in "A glob B" to test
2987       ** for function overloading.  But we use the B term in "glob(B,A)".
2988       */
2989       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2990         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2991       }else if( nFarg>0 ){
2992         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2993       }
2994 #endif
2995       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2996         if( !pColl ) pColl = db->pDfltColl;
2997         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2998       }
2999       sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
3000                         (char*)pDef, P4_FUNCDEF);
3001       sqlite3VdbeChangeP5(v, (u8)nFarg);
3002       if( nFarg && constMask==0 ){
3003         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3004       }
3005       break;
3006     }
3007 #ifndef SQLITE_OMIT_SUBQUERY
3008     case TK_EXISTS:
3009     case TK_SELECT: {
3010       testcase( op==TK_EXISTS );
3011       testcase( op==TK_SELECT );
3012       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3013       break;
3014     }
3015     case TK_IN: {
3016       int destIfFalse = sqlite3VdbeMakeLabel(v);
3017       int destIfNull = sqlite3VdbeMakeLabel(v);
3018       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3019       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3020       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3021       sqlite3VdbeResolveLabel(v, destIfFalse);
3022       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3023       sqlite3VdbeResolveLabel(v, destIfNull);
3024       break;
3025     }
3026 #endif /* SQLITE_OMIT_SUBQUERY */
3027 
3028 
3029     /*
3030     **    x BETWEEN y AND z
3031     **
3032     ** This is equivalent to
3033     **
3034     **    x>=y AND x<=z
3035     **
3036     ** X is stored in pExpr->pLeft.
3037     ** Y is stored in pExpr->pList->a[0].pExpr.
3038     ** Z is stored in pExpr->pList->a[1].pExpr.
3039     */
3040     case TK_BETWEEN: {
3041       Expr *pLeft = pExpr->pLeft;
3042       struct ExprList_item *pLItem = pExpr->x.pList->a;
3043       Expr *pRight = pLItem->pExpr;
3044 
3045       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3046       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3047       testcase( regFree1==0 );
3048       testcase( regFree2==0 );
3049       r3 = sqlite3GetTempReg(pParse);
3050       r4 = sqlite3GetTempReg(pParse);
3051       codeCompare(pParse, pLeft, pRight, OP_Ge,
3052                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
3053       pLItem++;
3054       pRight = pLItem->pExpr;
3055       sqlite3ReleaseTempReg(pParse, regFree2);
3056       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3057       testcase( regFree2==0 );
3058       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
3059       VdbeCoverage(v);
3060       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
3061       sqlite3ReleaseTempReg(pParse, r3);
3062       sqlite3ReleaseTempReg(pParse, r4);
3063       break;
3064     }
3065     case TK_COLLATE:
3066     case TK_UPLUS: {
3067       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3068       break;
3069     }
3070 
3071     case TK_TRIGGER: {
3072       /* If the opcode is TK_TRIGGER, then the expression is a reference
3073       ** to a column in the new.* or old.* pseudo-tables available to
3074       ** trigger programs. In this case Expr.iTable is set to 1 for the
3075       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3076       ** is set to the column of the pseudo-table to read, or to -1 to
3077       ** read the rowid field.
3078       **
3079       ** The expression is implemented using an OP_Param opcode. The p1
3080       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3081       ** to reference another column of the old.* pseudo-table, where
3082       ** i is the index of the column. For a new.rowid reference, p1 is
3083       ** set to (n+1), where n is the number of columns in each pseudo-table.
3084       ** For a reference to any other column in the new.* pseudo-table, p1
3085       ** is set to (n+2+i), where n and i are as defined previously. For
3086       ** example, if the table on which triggers are being fired is
3087       ** declared as:
3088       **
3089       **   CREATE TABLE t1(a, b);
3090       **
3091       ** Then p1 is interpreted as follows:
3092       **
3093       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3094       **   p1==1   ->    old.a         p1==4   ->    new.a
3095       **   p1==2   ->    old.b         p1==5   ->    new.b
3096       */
3097       Table *pTab = pExpr->pTab;
3098       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3099 
3100       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3101       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3102       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3103       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3104 
3105       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3106       VdbeComment((v, "%s.%s -> $%d",
3107         (pExpr->iTable ? "new" : "old"),
3108         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3109         target
3110       ));
3111 
3112 #ifndef SQLITE_OMIT_FLOATING_POINT
3113       /* If the column has REAL affinity, it may currently be stored as an
3114       ** integer. Use OP_RealAffinity to make sure it is really real.
3115       **
3116       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3117       ** floating point when extracting it from the record.  */
3118       if( pExpr->iColumn>=0
3119        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3120       ){
3121         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3122       }
3123 #endif
3124       break;
3125     }
3126 
3127 
3128     /*
3129     ** Form A:
3130     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3131     **
3132     ** Form B:
3133     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3134     **
3135     ** Form A is can be transformed into the equivalent form B as follows:
3136     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3137     **        WHEN x=eN THEN rN ELSE y END
3138     **
3139     ** X (if it exists) is in pExpr->pLeft.
3140     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3141     ** odd.  The Y is also optional.  If the number of elements in x.pList
3142     ** is even, then Y is omitted and the "otherwise" result is NULL.
3143     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3144     **
3145     ** The result of the expression is the Ri for the first matching Ei,
3146     ** or if there is no matching Ei, the ELSE term Y, or if there is
3147     ** no ELSE term, NULL.
3148     */
3149     default: assert( op==TK_CASE ); {
3150       int endLabel;                     /* GOTO label for end of CASE stmt */
3151       int nextCase;                     /* GOTO label for next WHEN clause */
3152       int nExpr;                        /* 2x number of WHEN terms */
3153       int i;                            /* Loop counter */
3154       ExprList *pEList;                 /* List of WHEN terms */
3155       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3156       Expr opCompare;                   /* The X==Ei expression */
3157       Expr *pX;                         /* The X expression */
3158       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3159       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3160 
3161       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3162       assert(pExpr->x.pList->nExpr > 0);
3163       pEList = pExpr->x.pList;
3164       aListelem = pEList->a;
3165       nExpr = pEList->nExpr;
3166       endLabel = sqlite3VdbeMakeLabel(v);
3167       if( (pX = pExpr->pLeft)!=0 ){
3168         tempX = *pX;
3169         testcase( pX->op==TK_COLUMN );
3170         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3171         testcase( regFree1==0 );
3172         opCompare.op = TK_EQ;
3173         opCompare.pLeft = &tempX;
3174         pTest = &opCompare;
3175         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3176         ** The value in regFree1 might get SCopy-ed into the file result.
3177         ** So make sure that the regFree1 register is not reused for other
3178         ** purposes and possibly overwritten.  */
3179         regFree1 = 0;
3180       }
3181       for(i=0; i<nExpr-1; i=i+2){
3182         sqlite3ExprCachePush(pParse);
3183         if( pX ){
3184           assert( pTest!=0 );
3185           opCompare.pRight = aListelem[i].pExpr;
3186         }else{
3187           pTest = aListelem[i].pExpr;
3188         }
3189         nextCase = sqlite3VdbeMakeLabel(v);
3190         testcase( pTest->op==TK_COLUMN );
3191         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3192         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3193         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3194         sqlite3VdbeGoto(v, endLabel);
3195         sqlite3ExprCachePop(pParse);
3196         sqlite3VdbeResolveLabel(v, nextCase);
3197       }
3198       if( (nExpr&1)!=0 ){
3199         sqlite3ExprCachePush(pParse);
3200         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3201         sqlite3ExprCachePop(pParse);
3202       }else{
3203         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3204       }
3205       assert( db->mallocFailed || pParse->nErr>0
3206            || pParse->iCacheLevel==iCacheLevel );
3207       sqlite3VdbeResolveLabel(v, endLabel);
3208       break;
3209     }
3210 #ifndef SQLITE_OMIT_TRIGGER
3211     case TK_RAISE: {
3212       assert( pExpr->affinity==OE_Rollback
3213            || pExpr->affinity==OE_Abort
3214            || pExpr->affinity==OE_Fail
3215            || pExpr->affinity==OE_Ignore
3216       );
3217       if( !pParse->pTriggerTab ){
3218         sqlite3ErrorMsg(pParse,
3219                        "RAISE() may only be used within a trigger-program");
3220         return 0;
3221       }
3222       if( pExpr->affinity==OE_Abort ){
3223         sqlite3MayAbort(pParse);
3224       }
3225       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3226       if( pExpr->affinity==OE_Ignore ){
3227         sqlite3VdbeAddOp4(
3228             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3229         VdbeCoverage(v);
3230       }else{
3231         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3232                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3233       }
3234 
3235       break;
3236     }
3237 #endif
3238   }
3239   sqlite3ReleaseTempReg(pParse, regFree1);
3240   sqlite3ReleaseTempReg(pParse, regFree2);
3241   return inReg;
3242 }
3243 
3244 /*
3245 ** Factor out the code of the given expression to initialization time.
3246 */
3247 void sqlite3ExprCodeAtInit(
3248   Parse *pParse,    /* Parsing context */
3249   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3250   int regDest,      /* Store the value in this register */
3251   u8 reusable       /* True if this expression is reusable */
3252 ){
3253   ExprList *p;
3254   assert( ConstFactorOk(pParse) );
3255   p = pParse->pConstExpr;
3256   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3257   p = sqlite3ExprListAppend(pParse, p, pExpr);
3258   if( p ){
3259      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3260      pItem->u.iConstExprReg = regDest;
3261      pItem->reusable = reusable;
3262   }
3263   pParse->pConstExpr = p;
3264 }
3265 
3266 /*
3267 ** Generate code to evaluate an expression and store the results
3268 ** into a register.  Return the register number where the results
3269 ** are stored.
3270 **
3271 ** If the register is a temporary register that can be deallocated,
3272 ** then write its number into *pReg.  If the result register is not
3273 ** a temporary, then set *pReg to zero.
3274 **
3275 ** If pExpr is a constant, then this routine might generate this
3276 ** code to fill the register in the initialization section of the
3277 ** VDBE program, in order to factor it out of the evaluation loop.
3278 */
3279 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3280   int r2;
3281   pExpr = sqlite3ExprSkipCollate(pExpr);
3282   if( ConstFactorOk(pParse)
3283    && pExpr->op!=TK_REGISTER
3284    && sqlite3ExprIsConstantNotJoin(pExpr)
3285   ){
3286     ExprList *p = pParse->pConstExpr;
3287     int i;
3288     *pReg  = 0;
3289     if( p ){
3290       struct ExprList_item *pItem;
3291       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3292         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3293           return pItem->u.iConstExprReg;
3294         }
3295       }
3296     }
3297     r2 = ++pParse->nMem;
3298     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3299   }else{
3300     int r1 = sqlite3GetTempReg(pParse);
3301     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3302     if( r2==r1 ){
3303       *pReg = r1;
3304     }else{
3305       sqlite3ReleaseTempReg(pParse, r1);
3306       *pReg = 0;
3307     }
3308   }
3309   return r2;
3310 }
3311 
3312 /*
3313 ** Generate code that will evaluate expression pExpr and store the
3314 ** results in register target.  The results are guaranteed to appear
3315 ** in register target.
3316 */
3317 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3318   int inReg;
3319 
3320   assert( target>0 && target<=pParse->nMem );
3321   if( pExpr && pExpr->op==TK_REGISTER ){
3322     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3323   }else{
3324     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3325     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
3326     if( inReg!=target && pParse->pVdbe ){
3327       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3328     }
3329   }
3330 }
3331 
3332 /*
3333 ** Make a transient copy of expression pExpr and then code it using
3334 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
3335 ** except that the input expression is guaranteed to be unchanged.
3336 */
3337 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
3338   sqlite3 *db = pParse->db;
3339   pExpr = sqlite3ExprDup(db, pExpr, 0);
3340   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
3341   sqlite3ExprDelete(db, pExpr);
3342 }
3343 
3344 /*
3345 ** Generate code that will evaluate expression pExpr and store the
3346 ** results in register target.  The results are guaranteed to appear
3347 ** in register target.  If the expression is constant, then this routine
3348 ** might choose to code the expression at initialization time.
3349 */
3350 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3351   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3352     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3353   }else{
3354     sqlite3ExprCode(pParse, pExpr, target);
3355   }
3356 }
3357 
3358 /*
3359 ** Generate code that evaluates the given expression and puts the result
3360 ** in register target.
3361 **
3362 ** Also make a copy of the expression results into another "cache" register
3363 ** and modify the expression so that the next time it is evaluated,
3364 ** the result is a copy of the cache register.
3365 **
3366 ** This routine is used for expressions that are used multiple
3367 ** times.  They are evaluated once and the results of the expression
3368 ** are reused.
3369 */
3370 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3371   Vdbe *v = pParse->pVdbe;
3372   int iMem;
3373 
3374   assert( target>0 );
3375   assert( pExpr->op!=TK_REGISTER );
3376   sqlite3ExprCode(pParse, pExpr, target);
3377   iMem = ++pParse->nMem;
3378   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3379   exprToRegister(pExpr, iMem);
3380 }
3381 
3382 /*
3383 ** Generate code that pushes the value of every element of the given
3384 ** expression list into a sequence of registers beginning at target.
3385 **
3386 ** Return the number of elements evaluated.
3387 **
3388 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3389 ** filled using OP_SCopy.  OP_Copy must be used instead.
3390 **
3391 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3392 ** factored out into initialization code.
3393 **
3394 ** The SQLITE_ECEL_REF flag means that expressions in the list with
3395 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
3396 ** in registers at srcReg, and so the value can be copied from there.
3397 */
3398 int sqlite3ExprCodeExprList(
3399   Parse *pParse,     /* Parsing context */
3400   ExprList *pList,   /* The expression list to be coded */
3401   int target,        /* Where to write results */
3402   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
3403   u8 flags           /* SQLITE_ECEL_* flags */
3404 ){
3405   struct ExprList_item *pItem;
3406   int i, j, n;
3407   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3408   Vdbe *v = pParse->pVdbe;
3409   assert( pList!=0 );
3410   assert( target>0 );
3411   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3412   n = pList->nExpr;
3413   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3414   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3415     Expr *pExpr = pItem->pExpr;
3416     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){
3417       sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
3418     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3419       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3420     }else{
3421       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3422       if( inReg!=target+i ){
3423         VdbeOp *pOp;
3424         if( copyOp==OP_Copy
3425          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3426          && pOp->p1+pOp->p3+1==inReg
3427          && pOp->p2+pOp->p3+1==target+i
3428         ){
3429           pOp->p3++;
3430         }else{
3431           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3432         }
3433       }
3434     }
3435   }
3436   return n;
3437 }
3438 
3439 /*
3440 ** Generate code for a BETWEEN operator.
3441 **
3442 **    x BETWEEN y AND z
3443 **
3444 ** The above is equivalent to
3445 **
3446 **    x>=y AND x<=z
3447 **
3448 ** Code it as such, taking care to do the common subexpression
3449 ** elimination of x.
3450 */
3451 static void exprCodeBetween(
3452   Parse *pParse,    /* Parsing and code generating context */
3453   Expr *pExpr,      /* The BETWEEN expression */
3454   int dest,         /* Jump here if the jump is taken */
3455   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3456   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3457 ){
3458   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3459   Expr compLeft;    /* The  x>=y  term */
3460   Expr compRight;   /* The  x<=z  term */
3461   Expr exprX;       /* The  x  subexpression */
3462   int regFree1 = 0; /* Temporary use register */
3463 
3464   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3465   exprX = *pExpr->pLeft;
3466   exprAnd.op = TK_AND;
3467   exprAnd.pLeft = &compLeft;
3468   exprAnd.pRight = &compRight;
3469   compLeft.op = TK_GE;
3470   compLeft.pLeft = &exprX;
3471   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3472   compRight.op = TK_LE;
3473   compRight.pLeft = &exprX;
3474   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3475   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3476   if( jumpIfTrue ){
3477     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3478   }else{
3479     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3480   }
3481   sqlite3ReleaseTempReg(pParse, regFree1);
3482 
3483   /* Ensure adequate test coverage */
3484   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3485   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3486   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3487   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3488   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3489   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3490   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3491   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3492 }
3493 
3494 /*
3495 ** Generate code for a boolean expression such that a jump is made
3496 ** to the label "dest" if the expression is true but execution
3497 ** continues straight thru if the expression is false.
3498 **
3499 ** If the expression evaluates to NULL (neither true nor false), then
3500 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3501 **
3502 ** This code depends on the fact that certain token values (ex: TK_EQ)
3503 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3504 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3505 ** the make process cause these values to align.  Assert()s in the code
3506 ** below verify that the numbers are aligned correctly.
3507 */
3508 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3509   Vdbe *v = pParse->pVdbe;
3510   int op = 0;
3511   int regFree1 = 0;
3512   int regFree2 = 0;
3513   int r1, r2;
3514 
3515   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3516   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3517   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3518   op = pExpr->op;
3519   switch( op ){
3520     case TK_AND: {
3521       int d2 = sqlite3VdbeMakeLabel(v);
3522       testcase( jumpIfNull==0 );
3523       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3524       sqlite3ExprCachePush(pParse);
3525       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3526       sqlite3VdbeResolveLabel(v, d2);
3527       sqlite3ExprCachePop(pParse);
3528       break;
3529     }
3530     case TK_OR: {
3531       testcase( jumpIfNull==0 );
3532       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3533       sqlite3ExprCachePush(pParse);
3534       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3535       sqlite3ExprCachePop(pParse);
3536       break;
3537     }
3538     case TK_NOT: {
3539       testcase( jumpIfNull==0 );
3540       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3541       break;
3542     }
3543     case TK_LT:
3544     case TK_LE:
3545     case TK_GT:
3546     case TK_GE:
3547     case TK_NE:
3548     case TK_EQ: {
3549       testcase( jumpIfNull==0 );
3550       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3551       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3552       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3553                   r1, r2, dest, jumpIfNull);
3554       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3555       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3556       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3557       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3558       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3559       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3560       testcase( regFree1==0 );
3561       testcase( regFree2==0 );
3562       break;
3563     }
3564     case TK_IS:
3565     case TK_ISNOT: {
3566       testcase( op==TK_IS );
3567       testcase( op==TK_ISNOT );
3568       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3569       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3570       op = (op==TK_IS) ? TK_EQ : TK_NE;
3571       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3572                   r1, r2, dest, SQLITE_NULLEQ);
3573       VdbeCoverageIf(v, op==TK_EQ);
3574       VdbeCoverageIf(v, op==TK_NE);
3575       testcase( regFree1==0 );
3576       testcase( regFree2==0 );
3577       break;
3578     }
3579     case TK_ISNULL:
3580     case TK_NOTNULL: {
3581       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3582       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3583       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3584       sqlite3VdbeAddOp2(v, op, r1, dest);
3585       VdbeCoverageIf(v, op==TK_ISNULL);
3586       VdbeCoverageIf(v, op==TK_NOTNULL);
3587       testcase( regFree1==0 );
3588       break;
3589     }
3590     case TK_BETWEEN: {
3591       testcase( jumpIfNull==0 );
3592       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3593       break;
3594     }
3595 #ifndef SQLITE_OMIT_SUBQUERY
3596     case TK_IN: {
3597       int destIfFalse = sqlite3VdbeMakeLabel(v);
3598       int destIfNull = jumpIfNull ? dest : destIfFalse;
3599       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3600       sqlite3VdbeGoto(v, dest);
3601       sqlite3VdbeResolveLabel(v, destIfFalse);
3602       break;
3603     }
3604 #endif
3605     default: {
3606       if( exprAlwaysTrue(pExpr) ){
3607         sqlite3VdbeGoto(v, dest);
3608       }else if( exprAlwaysFalse(pExpr) ){
3609         /* No-op */
3610       }else{
3611         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3612         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3613         VdbeCoverage(v);
3614         testcase( regFree1==0 );
3615         testcase( jumpIfNull==0 );
3616       }
3617       break;
3618     }
3619   }
3620   sqlite3ReleaseTempReg(pParse, regFree1);
3621   sqlite3ReleaseTempReg(pParse, regFree2);
3622 }
3623 
3624 /*
3625 ** Generate code for a boolean expression such that a jump is made
3626 ** to the label "dest" if the expression is false but execution
3627 ** continues straight thru if the expression is true.
3628 **
3629 ** If the expression evaluates to NULL (neither true nor false) then
3630 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3631 ** is 0.
3632 */
3633 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3634   Vdbe *v = pParse->pVdbe;
3635   int op = 0;
3636   int regFree1 = 0;
3637   int regFree2 = 0;
3638   int r1, r2;
3639 
3640   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3641   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3642   if( pExpr==0 )    return;
3643 
3644   /* The value of pExpr->op and op are related as follows:
3645   **
3646   **       pExpr->op            op
3647   **       ---------          ----------
3648   **       TK_ISNULL          OP_NotNull
3649   **       TK_NOTNULL         OP_IsNull
3650   **       TK_NE              OP_Eq
3651   **       TK_EQ              OP_Ne
3652   **       TK_GT              OP_Le
3653   **       TK_LE              OP_Gt
3654   **       TK_GE              OP_Lt
3655   **       TK_LT              OP_Ge
3656   **
3657   ** For other values of pExpr->op, op is undefined and unused.
3658   ** The value of TK_ and OP_ constants are arranged such that we
3659   ** can compute the mapping above using the following expression.
3660   ** Assert()s verify that the computation is correct.
3661   */
3662   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3663 
3664   /* Verify correct alignment of TK_ and OP_ constants
3665   */
3666   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3667   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3668   assert( pExpr->op!=TK_NE || op==OP_Eq );
3669   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3670   assert( pExpr->op!=TK_LT || op==OP_Ge );
3671   assert( pExpr->op!=TK_LE || op==OP_Gt );
3672   assert( pExpr->op!=TK_GT || op==OP_Le );
3673   assert( pExpr->op!=TK_GE || op==OP_Lt );
3674 
3675   switch( pExpr->op ){
3676     case TK_AND: {
3677       testcase( jumpIfNull==0 );
3678       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3679       sqlite3ExprCachePush(pParse);
3680       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3681       sqlite3ExprCachePop(pParse);
3682       break;
3683     }
3684     case TK_OR: {
3685       int d2 = sqlite3VdbeMakeLabel(v);
3686       testcase( jumpIfNull==0 );
3687       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3688       sqlite3ExprCachePush(pParse);
3689       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3690       sqlite3VdbeResolveLabel(v, d2);
3691       sqlite3ExprCachePop(pParse);
3692       break;
3693     }
3694     case TK_NOT: {
3695       testcase( jumpIfNull==0 );
3696       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3697       break;
3698     }
3699     case TK_LT:
3700     case TK_LE:
3701     case TK_GT:
3702     case TK_GE:
3703     case TK_NE:
3704     case TK_EQ: {
3705       testcase( jumpIfNull==0 );
3706       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3707       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3708       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3709                   r1, r2, dest, jumpIfNull);
3710       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3711       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3712       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3713       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3714       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3715       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3716       testcase( regFree1==0 );
3717       testcase( regFree2==0 );
3718       break;
3719     }
3720     case TK_IS:
3721     case TK_ISNOT: {
3722       testcase( pExpr->op==TK_IS );
3723       testcase( pExpr->op==TK_ISNOT );
3724       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3725       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3726       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3727       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3728                   r1, r2, dest, SQLITE_NULLEQ);
3729       VdbeCoverageIf(v, op==TK_EQ);
3730       VdbeCoverageIf(v, op==TK_NE);
3731       testcase( regFree1==0 );
3732       testcase( regFree2==0 );
3733       break;
3734     }
3735     case TK_ISNULL:
3736     case TK_NOTNULL: {
3737       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3738       sqlite3VdbeAddOp2(v, op, r1, dest);
3739       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3740       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3741       testcase( regFree1==0 );
3742       break;
3743     }
3744     case TK_BETWEEN: {
3745       testcase( jumpIfNull==0 );
3746       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3747       break;
3748     }
3749 #ifndef SQLITE_OMIT_SUBQUERY
3750     case TK_IN: {
3751       if( jumpIfNull ){
3752         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3753       }else{
3754         int destIfNull = sqlite3VdbeMakeLabel(v);
3755         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3756         sqlite3VdbeResolveLabel(v, destIfNull);
3757       }
3758       break;
3759     }
3760 #endif
3761     default: {
3762       if( exprAlwaysFalse(pExpr) ){
3763         sqlite3VdbeGoto(v, dest);
3764       }else if( exprAlwaysTrue(pExpr) ){
3765         /* no-op */
3766       }else{
3767         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3768         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3769         VdbeCoverage(v);
3770         testcase( regFree1==0 );
3771         testcase( jumpIfNull==0 );
3772       }
3773       break;
3774     }
3775   }
3776   sqlite3ReleaseTempReg(pParse, regFree1);
3777   sqlite3ReleaseTempReg(pParse, regFree2);
3778 }
3779 
3780 /*
3781 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
3782 ** code generation, and that copy is deleted after code generation. This
3783 ** ensures that the original pExpr is unchanged.
3784 */
3785 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
3786   sqlite3 *db = pParse->db;
3787   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
3788   if( db->mallocFailed==0 ){
3789     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
3790   }
3791   sqlite3ExprDelete(db, pCopy);
3792 }
3793 
3794 
3795 /*
3796 ** Do a deep comparison of two expression trees.  Return 0 if the two
3797 ** expressions are completely identical.  Return 1 if they differ only
3798 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3799 ** other than the top-level COLLATE operator.
3800 **
3801 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3802 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3803 **
3804 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3805 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3806 **
3807 ** Sometimes this routine will return 2 even if the two expressions
3808 ** really are equivalent.  If we cannot prove that the expressions are
3809 ** identical, we return 2 just to be safe.  So if this routine
3810 ** returns 2, then you do not really know for certain if the two
3811 ** expressions are the same.  But if you get a 0 or 1 return, then you
3812 ** can be sure the expressions are the same.  In the places where
3813 ** this routine is used, it does not hurt to get an extra 2 - that
3814 ** just might result in some slightly slower code.  But returning
3815 ** an incorrect 0 or 1 could lead to a malfunction.
3816 */
3817 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3818   u32 combinedFlags;
3819   if( pA==0 || pB==0 ){
3820     return pB==pA ? 0 : 2;
3821   }
3822   combinedFlags = pA->flags | pB->flags;
3823   if( combinedFlags & EP_IntValue ){
3824     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3825       return 0;
3826     }
3827     return 2;
3828   }
3829   if( pA->op!=pB->op ){
3830     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3831       return 1;
3832     }
3833     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3834       return 1;
3835     }
3836     return 2;
3837   }
3838   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
3839     if( pA->op==TK_FUNCTION ){
3840       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
3841     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3842       return pA->op==TK_COLLATE ? 1 : 2;
3843     }
3844   }
3845   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3846   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3847     if( combinedFlags & EP_xIsSelect ) return 2;
3848     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3849     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3850     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3851     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
3852       if( pA->iColumn!=pB->iColumn ) return 2;
3853       if( pA->iTable!=pB->iTable
3854        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3855     }
3856   }
3857   return 0;
3858 }
3859 
3860 /*
3861 ** Compare two ExprList objects.  Return 0 if they are identical and
3862 ** non-zero if they differ in any way.
3863 **
3864 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3865 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3866 **
3867 ** This routine might return non-zero for equivalent ExprLists.  The
3868 ** only consequence will be disabled optimizations.  But this routine
3869 ** must never return 0 if the two ExprList objects are different, or
3870 ** a malfunction will result.
3871 **
3872 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3873 ** always differs from a non-NULL pointer.
3874 */
3875 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3876   int i;
3877   if( pA==0 && pB==0 ) return 0;
3878   if( pA==0 || pB==0 ) return 1;
3879   if( pA->nExpr!=pB->nExpr ) return 1;
3880   for(i=0; i<pA->nExpr; i++){
3881     Expr *pExprA = pA->a[i].pExpr;
3882     Expr *pExprB = pB->a[i].pExpr;
3883     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3884     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3885   }
3886   return 0;
3887 }
3888 
3889 /*
3890 ** Return true if we can prove the pE2 will always be true if pE1 is
3891 ** true.  Return false if we cannot complete the proof or if pE2 might
3892 ** be false.  Examples:
3893 **
3894 **     pE1: x==5       pE2: x==5             Result: true
3895 **     pE1: x>0        pE2: x==5             Result: false
3896 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
3897 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
3898 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
3899 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
3900 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
3901 **
3902 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3903 ** Expr.iTable<0 then assume a table number given by iTab.
3904 **
3905 ** When in doubt, return false.  Returning true might give a performance
3906 ** improvement.  Returning false might cause a performance reduction, but
3907 ** it will always give the correct answer and is hence always safe.
3908 */
3909 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
3910   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
3911     return 1;
3912   }
3913   if( pE2->op==TK_OR
3914    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
3915              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
3916   ){
3917     return 1;
3918   }
3919   if( pE2->op==TK_NOTNULL
3920    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
3921    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
3922   ){
3923     return 1;
3924   }
3925   return 0;
3926 }
3927 
3928 /*
3929 ** An instance of the following structure is used by the tree walker
3930 ** to count references to table columns in the arguments of an
3931 ** aggregate function, in order to implement the
3932 ** sqlite3FunctionThisSrc() routine.
3933 */
3934 struct SrcCount {
3935   SrcList *pSrc;   /* One particular FROM clause in a nested query */
3936   int nThis;       /* Number of references to columns in pSrcList */
3937   int nOther;      /* Number of references to columns in other FROM clauses */
3938 };
3939 
3940 /*
3941 ** Count the number of references to columns.
3942 */
3943 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3944   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3945   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3946   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
3947   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3948   ** NEVER() will need to be removed. */
3949   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3950     int i;
3951     struct SrcCount *p = pWalker->u.pSrcCount;
3952     SrcList *pSrc = p->pSrc;
3953     int nSrc = pSrc ? pSrc->nSrc : 0;
3954     for(i=0; i<nSrc; i++){
3955       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3956     }
3957     if( i<nSrc ){
3958       p->nThis++;
3959     }else{
3960       p->nOther++;
3961     }
3962   }
3963   return WRC_Continue;
3964 }
3965 
3966 /*
3967 ** Determine if any of the arguments to the pExpr Function reference
3968 ** pSrcList.  Return true if they do.  Also return true if the function
3969 ** has no arguments or has only constant arguments.  Return false if pExpr
3970 ** references columns but not columns of tables found in pSrcList.
3971 */
3972 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
3973   Walker w;
3974   struct SrcCount cnt;
3975   assert( pExpr->op==TK_AGG_FUNCTION );
3976   memset(&w, 0, sizeof(w));
3977   w.xExprCallback = exprSrcCount;
3978   w.u.pSrcCount = &cnt;
3979   cnt.pSrc = pSrcList;
3980   cnt.nThis = 0;
3981   cnt.nOther = 0;
3982   sqlite3WalkExprList(&w, pExpr->x.pList);
3983   return cnt.nThis>0 || cnt.nOther==0;
3984 }
3985 
3986 /*
3987 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3988 ** the new element.  Return a negative number if malloc fails.
3989 */
3990 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3991   int i;
3992   pInfo->aCol = sqlite3ArrayAllocate(
3993        db,
3994        pInfo->aCol,
3995        sizeof(pInfo->aCol[0]),
3996        &pInfo->nColumn,
3997        &i
3998   );
3999   return i;
4000 }
4001 
4002 /*
4003 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4004 ** the new element.  Return a negative number if malloc fails.
4005 */
4006 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4007   int i;
4008   pInfo->aFunc = sqlite3ArrayAllocate(
4009        db,
4010        pInfo->aFunc,
4011        sizeof(pInfo->aFunc[0]),
4012        &pInfo->nFunc,
4013        &i
4014   );
4015   return i;
4016 }
4017 
4018 /*
4019 ** This is the xExprCallback for a tree walker.  It is used to
4020 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4021 ** for additional information.
4022 */
4023 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4024   int i;
4025   NameContext *pNC = pWalker->u.pNC;
4026   Parse *pParse = pNC->pParse;
4027   SrcList *pSrcList = pNC->pSrcList;
4028   AggInfo *pAggInfo = pNC->pAggInfo;
4029 
4030   switch( pExpr->op ){
4031     case TK_AGG_COLUMN:
4032     case TK_COLUMN: {
4033       testcase( pExpr->op==TK_AGG_COLUMN );
4034       testcase( pExpr->op==TK_COLUMN );
4035       /* Check to see if the column is in one of the tables in the FROM
4036       ** clause of the aggregate query */
4037       if( ALWAYS(pSrcList!=0) ){
4038         struct SrcList_item *pItem = pSrcList->a;
4039         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4040           struct AggInfo_col *pCol;
4041           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4042           if( pExpr->iTable==pItem->iCursor ){
4043             /* If we reach this point, it means that pExpr refers to a table
4044             ** that is in the FROM clause of the aggregate query.
4045             **
4046             ** Make an entry for the column in pAggInfo->aCol[] if there
4047             ** is not an entry there already.
4048             */
4049             int k;
4050             pCol = pAggInfo->aCol;
4051             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4052               if( pCol->iTable==pExpr->iTable &&
4053                   pCol->iColumn==pExpr->iColumn ){
4054                 break;
4055               }
4056             }
4057             if( (k>=pAggInfo->nColumn)
4058              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4059             ){
4060               pCol = &pAggInfo->aCol[k];
4061               pCol->pTab = pExpr->pTab;
4062               pCol->iTable = pExpr->iTable;
4063               pCol->iColumn = pExpr->iColumn;
4064               pCol->iMem = ++pParse->nMem;
4065               pCol->iSorterColumn = -1;
4066               pCol->pExpr = pExpr;
4067               if( pAggInfo->pGroupBy ){
4068                 int j, n;
4069                 ExprList *pGB = pAggInfo->pGroupBy;
4070                 struct ExprList_item *pTerm = pGB->a;
4071                 n = pGB->nExpr;
4072                 for(j=0; j<n; j++, pTerm++){
4073                   Expr *pE = pTerm->pExpr;
4074                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4075                       pE->iColumn==pExpr->iColumn ){
4076                     pCol->iSorterColumn = j;
4077                     break;
4078                   }
4079                 }
4080               }
4081               if( pCol->iSorterColumn<0 ){
4082                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4083               }
4084             }
4085             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4086             ** because it was there before or because we just created it).
4087             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4088             ** pAggInfo->aCol[] entry.
4089             */
4090             ExprSetVVAProperty(pExpr, EP_NoReduce);
4091             pExpr->pAggInfo = pAggInfo;
4092             pExpr->op = TK_AGG_COLUMN;
4093             pExpr->iAgg = (i16)k;
4094             break;
4095           } /* endif pExpr->iTable==pItem->iCursor */
4096         } /* end loop over pSrcList */
4097       }
4098       return WRC_Prune;
4099     }
4100     case TK_AGG_FUNCTION: {
4101       if( (pNC->ncFlags & NC_InAggFunc)==0
4102        && pWalker->walkerDepth==pExpr->op2
4103       ){
4104         /* Check to see if pExpr is a duplicate of another aggregate
4105         ** function that is already in the pAggInfo structure
4106         */
4107         struct AggInfo_func *pItem = pAggInfo->aFunc;
4108         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4109           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4110             break;
4111           }
4112         }
4113         if( i>=pAggInfo->nFunc ){
4114           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4115           */
4116           u8 enc = ENC(pParse->db);
4117           i = addAggInfoFunc(pParse->db, pAggInfo);
4118           if( i>=0 ){
4119             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4120             pItem = &pAggInfo->aFunc[i];
4121             pItem->pExpr = pExpr;
4122             pItem->iMem = ++pParse->nMem;
4123             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4124             pItem->pFunc = sqlite3FindFunction(pParse->db,
4125                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4126                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4127             if( pExpr->flags & EP_Distinct ){
4128               pItem->iDistinct = pParse->nTab++;
4129             }else{
4130               pItem->iDistinct = -1;
4131             }
4132           }
4133         }
4134         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4135         */
4136         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4137         ExprSetVVAProperty(pExpr, EP_NoReduce);
4138         pExpr->iAgg = (i16)i;
4139         pExpr->pAggInfo = pAggInfo;
4140         return WRC_Prune;
4141       }else{
4142         return WRC_Continue;
4143       }
4144     }
4145   }
4146   return WRC_Continue;
4147 }
4148 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4149   UNUSED_PARAMETER(pWalker);
4150   UNUSED_PARAMETER(pSelect);
4151   return WRC_Continue;
4152 }
4153 
4154 /*
4155 ** Analyze the pExpr expression looking for aggregate functions and
4156 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4157 ** points to.  Additional entries are made on the AggInfo object as
4158 ** necessary.
4159 **
4160 ** This routine should only be called after the expression has been
4161 ** analyzed by sqlite3ResolveExprNames().
4162 */
4163 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4164   Walker w;
4165   memset(&w, 0, sizeof(w));
4166   w.xExprCallback = analyzeAggregate;
4167   w.xSelectCallback = analyzeAggregatesInSelect;
4168   w.u.pNC = pNC;
4169   assert( pNC->pSrcList!=0 );
4170   sqlite3WalkExpr(&w, pExpr);
4171 }
4172 
4173 /*
4174 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4175 ** expression list.  Return the number of errors.
4176 **
4177 ** If an error is found, the analysis is cut short.
4178 */
4179 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4180   struct ExprList_item *pItem;
4181   int i;
4182   if( pList ){
4183     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4184       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4185     }
4186   }
4187 }
4188 
4189 /*
4190 ** Allocate a single new register for use to hold some intermediate result.
4191 */
4192 int sqlite3GetTempReg(Parse *pParse){
4193   if( pParse->nTempReg==0 ){
4194     return ++pParse->nMem;
4195   }
4196   return pParse->aTempReg[--pParse->nTempReg];
4197 }
4198 
4199 /*
4200 ** Deallocate a register, making available for reuse for some other
4201 ** purpose.
4202 **
4203 ** If a register is currently being used by the column cache, then
4204 ** the deallocation is deferred until the column cache line that uses
4205 ** the register becomes stale.
4206 */
4207 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4208   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4209     int i;
4210     struct yColCache *p;
4211     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4212       if( p->iReg==iReg ){
4213         p->tempReg = 1;
4214         return;
4215       }
4216     }
4217     pParse->aTempReg[pParse->nTempReg++] = iReg;
4218   }
4219 }
4220 
4221 /*
4222 ** Allocate or deallocate a block of nReg consecutive registers
4223 */
4224 int sqlite3GetTempRange(Parse *pParse, int nReg){
4225   int i, n;
4226   i = pParse->iRangeReg;
4227   n = pParse->nRangeReg;
4228   if( nReg<=n ){
4229     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4230     pParse->iRangeReg += nReg;
4231     pParse->nRangeReg -= nReg;
4232   }else{
4233     i = pParse->nMem+1;
4234     pParse->nMem += nReg;
4235   }
4236   return i;
4237 }
4238 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4239   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4240   if( nReg>pParse->nRangeReg ){
4241     pParse->nRangeReg = nReg;
4242     pParse->iRangeReg = iReg;
4243   }
4244 }
4245 
4246 /*
4247 ** Mark all temporary registers as being unavailable for reuse.
4248 */
4249 void sqlite3ClearTempRegCache(Parse *pParse){
4250   pParse->nTempReg = 0;
4251   pParse->nRangeReg = 0;
4252 }
4253