1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expressions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName, /* Name of collating sequence */ 73 int dequote /* True to dequote pCollName */ 74 ){ 75 if( pCollName->n>0 ){ 76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 77 if( pNew ){ 78 pNew->pLeft = pExpr; 79 pNew->flags |= EP_Collate|EP_Skip; 80 pExpr = pNew; 81 } 82 } 83 return pExpr; 84 } 85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 86 Token s; 87 assert( zC!=0 ); 88 sqlite3TokenInit(&s, (char*)zC); 89 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 90 } 91 92 /* 93 ** Skip over any TK_COLLATE operators and any unlikely() 94 ** or likelihood() function at the root of an expression. 95 */ 96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 97 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 98 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 99 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 100 assert( pExpr->x.pList->nExpr>0 ); 101 assert( pExpr->op==TK_FUNCTION ); 102 pExpr = pExpr->x.pList->a[0].pExpr; 103 }else{ 104 assert( pExpr->op==TK_COLLATE ); 105 pExpr = pExpr->pLeft; 106 } 107 } 108 return pExpr; 109 } 110 111 /* 112 ** Return the collation sequence for the expression pExpr. If 113 ** there is no defined collating sequence, return NULL. 114 ** 115 ** The collating sequence might be determined by a COLLATE operator 116 ** or by the presence of a column with a defined collating sequence. 117 ** COLLATE operators take first precedence. Left operands take 118 ** precedence over right operands. 119 */ 120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 121 sqlite3 *db = pParse->db; 122 CollSeq *pColl = 0; 123 Expr *p = pExpr; 124 while( p ){ 125 int op = p->op; 126 if( p->flags & EP_Generic ) break; 127 if( op==TK_CAST || op==TK_UPLUS ){ 128 p = p->pLeft; 129 continue; 130 } 131 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 132 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 133 break; 134 } 135 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 136 || op==TK_REGISTER || op==TK_TRIGGER) 137 && p->pTab!=0 138 ){ 139 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 140 ** a TK_COLUMN but was previously evaluated and cached in a register */ 141 int j = p->iColumn; 142 if( j>=0 ){ 143 const char *zColl = p->pTab->aCol[j].zColl; 144 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 145 } 146 break; 147 } 148 if( p->flags & EP_Collate ){ 149 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 150 p = p->pLeft; 151 }else{ 152 Expr *pNext = p->pRight; 153 /* The Expr.x union is never used at the same time as Expr.pRight */ 154 assert( p->x.pList==0 || p->pRight==0 ); 155 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 156 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 157 ** least one EP_Collate. Thus the following two ALWAYS. */ 158 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 159 int i; 160 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 161 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 162 pNext = p->x.pList->a[i].pExpr; 163 break; 164 } 165 } 166 } 167 p = pNext; 168 } 169 }else{ 170 break; 171 } 172 } 173 if( sqlite3CheckCollSeq(pParse, pColl) ){ 174 pColl = 0; 175 } 176 return pColl; 177 } 178 179 /* 180 ** pExpr is an operand of a comparison operator. aff2 is the 181 ** type affinity of the other operand. This routine returns the 182 ** type affinity that should be used for the comparison operator. 183 */ 184 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 185 char aff1 = sqlite3ExprAffinity(pExpr); 186 if( aff1 && aff2 ){ 187 /* Both sides of the comparison are columns. If one has numeric 188 ** affinity, use that. Otherwise use no affinity. 189 */ 190 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 191 return SQLITE_AFF_NUMERIC; 192 }else{ 193 return SQLITE_AFF_BLOB; 194 } 195 }else if( !aff1 && !aff2 ){ 196 /* Neither side of the comparison is a column. Compare the 197 ** results directly. 198 */ 199 return SQLITE_AFF_BLOB; 200 }else{ 201 /* One side is a column, the other is not. Use the columns affinity. */ 202 assert( aff1==0 || aff2==0 ); 203 return (aff1 + aff2); 204 } 205 } 206 207 /* 208 ** pExpr is a comparison operator. Return the type affinity that should 209 ** be applied to both operands prior to doing the comparison. 210 */ 211 static char comparisonAffinity(Expr *pExpr){ 212 char aff; 213 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 214 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 215 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 216 assert( pExpr->pLeft ); 217 aff = sqlite3ExprAffinity(pExpr->pLeft); 218 if( pExpr->pRight ){ 219 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 220 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 221 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 222 }else if( !aff ){ 223 aff = SQLITE_AFF_BLOB; 224 } 225 return aff; 226 } 227 228 /* 229 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 230 ** idx_affinity is the affinity of an indexed column. Return true 231 ** if the index with affinity idx_affinity may be used to implement 232 ** the comparison in pExpr. 233 */ 234 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 235 char aff = comparisonAffinity(pExpr); 236 switch( aff ){ 237 case SQLITE_AFF_BLOB: 238 return 1; 239 case SQLITE_AFF_TEXT: 240 return idx_affinity==SQLITE_AFF_TEXT; 241 default: 242 return sqlite3IsNumericAffinity(idx_affinity); 243 } 244 } 245 246 /* 247 ** Return the P5 value that should be used for a binary comparison 248 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 249 */ 250 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 251 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 252 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 253 return aff; 254 } 255 256 /* 257 ** Return a pointer to the collation sequence that should be used by 258 ** a binary comparison operator comparing pLeft and pRight. 259 ** 260 ** If the left hand expression has a collating sequence type, then it is 261 ** used. Otherwise the collation sequence for the right hand expression 262 ** is used, or the default (BINARY) if neither expression has a collating 263 ** type. 264 ** 265 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 266 ** it is not considered. 267 */ 268 CollSeq *sqlite3BinaryCompareCollSeq( 269 Parse *pParse, 270 Expr *pLeft, 271 Expr *pRight 272 ){ 273 CollSeq *pColl; 274 assert( pLeft ); 275 if( pLeft->flags & EP_Collate ){ 276 pColl = sqlite3ExprCollSeq(pParse, pLeft); 277 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 278 pColl = sqlite3ExprCollSeq(pParse, pRight); 279 }else{ 280 pColl = sqlite3ExprCollSeq(pParse, pLeft); 281 if( !pColl ){ 282 pColl = sqlite3ExprCollSeq(pParse, pRight); 283 } 284 } 285 return pColl; 286 } 287 288 /* 289 ** Generate code for a comparison operator. 290 */ 291 static int codeCompare( 292 Parse *pParse, /* The parsing (and code generating) context */ 293 Expr *pLeft, /* The left operand */ 294 Expr *pRight, /* The right operand */ 295 int opcode, /* The comparison opcode */ 296 int in1, int in2, /* Register holding operands */ 297 int dest, /* Jump here if true. */ 298 int jumpIfNull /* If true, jump if either operand is NULL */ 299 ){ 300 int p5; 301 int addr; 302 CollSeq *p4; 303 304 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 305 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 306 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 307 (void*)p4, P4_COLLSEQ); 308 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 309 return addr; 310 } 311 312 #if SQLITE_MAX_EXPR_DEPTH>0 313 /* 314 ** Check that argument nHeight is less than or equal to the maximum 315 ** expression depth allowed. If it is not, leave an error message in 316 ** pParse. 317 */ 318 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 319 int rc = SQLITE_OK; 320 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 321 if( nHeight>mxHeight ){ 322 sqlite3ErrorMsg(pParse, 323 "Expression tree is too large (maximum depth %d)", mxHeight 324 ); 325 rc = SQLITE_ERROR; 326 } 327 return rc; 328 } 329 330 /* The following three functions, heightOfExpr(), heightOfExprList() 331 ** and heightOfSelect(), are used to determine the maximum height 332 ** of any expression tree referenced by the structure passed as the 333 ** first argument. 334 ** 335 ** If this maximum height is greater than the current value pointed 336 ** to by pnHeight, the second parameter, then set *pnHeight to that 337 ** value. 338 */ 339 static void heightOfExpr(Expr *p, int *pnHeight){ 340 if( p ){ 341 if( p->nHeight>*pnHeight ){ 342 *pnHeight = p->nHeight; 343 } 344 } 345 } 346 static void heightOfExprList(ExprList *p, int *pnHeight){ 347 if( p ){ 348 int i; 349 for(i=0; i<p->nExpr; i++){ 350 heightOfExpr(p->a[i].pExpr, pnHeight); 351 } 352 } 353 } 354 static void heightOfSelect(Select *p, int *pnHeight){ 355 if( p ){ 356 heightOfExpr(p->pWhere, pnHeight); 357 heightOfExpr(p->pHaving, pnHeight); 358 heightOfExpr(p->pLimit, pnHeight); 359 heightOfExpr(p->pOffset, pnHeight); 360 heightOfExprList(p->pEList, pnHeight); 361 heightOfExprList(p->pGroupBy, pnHeight); 362 heightOfExprList(p->pOrderBy, pnHeight); 363 heightOfSelect(p->pPrior, pnHeight); 364 } 365 } 366 367 /* 368 ** Set the Expr.nHeight variable in the structure passed as an 369 ** argument. An expression with no children, Expr.pList or 370 ** Expr.pSelect member has a height of 1. Any other expression 371 ** has a height equal to the maximum height of any other 372 ** referenced Expr plus one. 373 ** 374 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 375 ** if appropriate. 376 */ 377 static void exprSetHeight(Expr *p){ 378 int nHeight = 0; 379 heightOfExpr(p->pLeft, &nHeight); 380 heightOfExpr(p->pRight, &nHeight); 381 if( ExprHasProperty(p, EP_xIsSelect) ){ 382 heightOfSelect(p->x.pSelect, &nHeight); 383 }else if( p->x.pList ){ 384 heightOfExprList(p->x.pList, &nHeight); 385 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 386 } 387 p->nHeight = nHeight + 1; 388 } 389 390 /* 391 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 392 ** the height is greater than the maximum allowed expression depth, 393 ** leave an error in pParse. 394 ** 395 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 396 ** Expr.flags. 397 */ 398 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 399 if( pParse->nErr ) return; 400 exprSetHeight(p); 401 sqlite3ExprCheckHeight(pParse, p->nHeight); 402 } 403 404 /* 405 ** Return the maximum height of any expression tree referenced 406 ** by the select statement passed as an argument. 407 */ 408 int sqlite3SelectExprHeight(Select *p){ 409 int nHeight = 0; 410 heightOfSelect(p, &nHeight); 411 return nHeight; 412 } 413 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 414 /* 415 ** Propagate all EP_Propagate flags from the Expr.x.pList into 416 ** Expr.flags. 417 */ 418 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 419 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 420 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 421 } 422 } 423 #define exprSetHeight(y) 424 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 425 426 /* 427 ** This routine is the core allocator for Expr nodes. 428 ** 429 ** Construct a new expression node and return a pointer to it. Memory 430 ** for this node and for the pToken argument is a single allocation 431 ** obtained from sqlite3DbMalloc(). The calling function 432 ** is responsible for making sure the node eventually gets freed. 433 ** 434 ** If dequote is true, then the token (if it exists) is dequoted. 435 ** If dequote is false, no dequoting is performed. The deQuote 436 ** parameter is ignored if pToken is NULL or if the token does not 437 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 438 ** then the EP_DblQuoted flag is set on the expression node. 439 ** 440 ** Special case: If op==TK_INTEGER and pToken points to a string that 441 ** can be translated into a 32-bit integer, then the token is not 442 ** stored in u.zToken. Instead, the integer values is written 443 ** into u.iValue and the EP_IntValue flag is set. No extra storage 444 ** is allocated to hold the integer text and the dequote flag is ignored. 445 */ 446 Expr *sqlite3ExprAlloc( 447 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 448 int op, /* Expression opcode */ 449 const Token *pToken, /* Token argument. Might be NULL */ 450 int dequote /* True to dequote */ 451 ){ 452 Expr *pNew; 453 int nExtra = 0; 454 int iValue = 0; 455 456 if( pToken ){ 457 if( op!=TK_INTEGER || pToken->z==0 458 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 459 nExtra = pToken->n+1; 460 assert( iValue>=0 ); 461 } 462 } 463 pNew = sqlite3DbMallocRaw(db, sizeof(Expr)+nExtra); 464 if( pNew ){ 465 memset(pNew, 0, sizeof(Expr)); 466 pNew->op = (u8)op; 467 pNew->iAgg = -1; 468 if( pToken ){ 469 if( nExtra==0 ){ 470 pNew->flags |= EP_IntValue; 471 pNew->u.iValue = iValue; 472 }else{ 473 int c; 474 pNew->u.zToken = (char*)&pNew[1]; 475 assert( pToken->z!=0 || pToken->n==0 ); 476 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 477 pNew->u.zToken[pToken->n] = 0; 478 if( dequote && nExtra>=3 479 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 480 sqlite3Dequote(pNew->u.zToken); 481 if( c=='"' ) pNew->flags |= EP_DblQuoted; 482 } 483 } 484 } 485 #if SQLITE_MAX_EXPR_DEPTH>0 486 pNew->nHeight = 1; 487 #endif 488 } 489 return pNew; 490 } 491 492 /* 493 ** Allocate a new expression node from a zero-terminated token that has 494 ** already been dequoted. 495 */ 496 Expr *sqlite3Expr( 497 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 498 int op, /* Expression opcode */ 499 const char *zToken /* Token argument. Might be NULL */ 500 ){ 501 Token x; 502 x.z = zToken; 503 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 504 return sqlite3ExprAlloc(db, op, &x, 0); 505 } 506 507 /* 508 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 509 ** 510 ** If pRoot==NULL that means that a memory allocation error has occurred. 511 ** In that case, delete the subtrees pLeft and pRight. 512 */ 513 void sqlite3ExprAttachSubtrees( 514 sqlite3 *db, 515 Expr *pRoot, 516 Expr *pLeft, 517 Expr *pRight 518 ){ 519 if( pRoot==0 ){ 520 assert( db->mallocFailed ); 521 sqlite3ExprDelete(db, pLeft); 522 sqlite3ExprDelete(db, pRight); 523 }else{ 524 if( pRight ){ 525 pRoot->pRight = pRight; 526 pRoot->flags |= EP_Propagate & pRight->flags; 527 } 528 if( pLeft ){ 529 pRoot->pLeft = pLeft; 530 pRoot->flags |= EP_Propagate & pLeft->flags; 531 } 532 exprSetHeight(pRoot); 533 } 534 } 535 536 /* 537 ** Allocate an Expr node which joins as many as two subtrees. 538 ** 539 ** One or both of the subtrees can be NULL. Return a pointer to the new 540 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 541 ** free the subtrees and return NULL. 542 */ 543 Expr *sqlite3PExpr( 544 Parse *pParse, /* Parsing context */ 545 int op, /* Expression opcode */ 546 Expr *pLeft, /* Left operand */ 547 Expr *pRight, /* Right operand */ 548 const Token *pToken /* Argument token */ 549 ){ 550 Expr *p; 551 if( op==TK_AND && pParse->nErr==0 ){ 552 /* Take advantage of short-circuit false optimization for AND */ 553 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 554 }else{ 555 p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1); 556 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 557 } 558 if( p ) { 559 sqlite3ExprCheckHeight(pParse, p->nHeight); 560 } 561 return p; 562 } 563 564 /* 565 ** If the expression is always either TRUE or FALSE (respectively), 566 ** then return 1. If one cannot determine the truth value of the 567 ** expression at compile-time return 0. 568 ** 569 ** This is an optimization. If is OK to return 0 here even if 570 ** the expression really is always false or false (a false negative). 571 ** But it is a bug to return 1 if the expression might have different 572 ** boolean values in different circumstances (a false positive.) 573 ** 574 ** Note that if the expression is part of conditional for a 575 ** LEFT JOIN, then we cannot determine at compile-time whether or not 576 ** is it true or false, so always return 0. 577 */ 578 static int exprAlwaysTrue(Expr *p){ 579 int v = 0; 580 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 581 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 582 return v!=0; 583 } 584 static int exprAlwaysFalse(Expr *p){ 585 int v = 0; 586 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 587 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 588 return v==0; 589 } 590 591 /* 592 ** Join two expressions using an AND operator. If either expression is 593 ** NULL, then just return the other expression. 594 ** 595 ** If one side or the other of the AND is known to be false, then instead 596 ** of returning an AND expression, just return a constant expression with 597 ** a value of false. 598 */ 599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 600 if( pLeft==0 ){ 601 return pRight; 602 }else if( pRight==0 ){ 603 return pLeft; 604 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 605 sqlite3ExprDelete(db, pLeft); 606 sqlite3ExprDelete(db, pRight); 607 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 608 }else{ 609 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 610 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 611 return pNew; 612 } 613 } 614 615 /* 616 ** Construct a new expression node for a function with multiple 617 ** arguments. 618 */ 619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 620 Expr *pNew; 621 sqlite3 *db = pParse->db; 622 assert( pToken ); 623 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 624 if( pNew==0 ){ 625 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 626 return 0; 627 } 628 pNew->x.pList = pList; 629 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 630 sqlite3ExprSetHeightAndFlags(pParse, pNew); 631 return pNew; 632 } 633 634 /* 635 ** Assign a variable number to an expression that encodes a wildcard 636 ** in the original SQL statement. 637 ** 638 ** Wildcards consisting of a single "?" are assigned the next sequential 639 ** variable number. 640 ** 641 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 642 ** sure "nnn" is not too be to avoid a denial of service attack when 643 ** the SQL statement comes from an external source. 644 ** 645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 646 ** as the previous instance of the same wildcard. Or if this is the first 647 ** instance of the wildcard, the next sequential variable number is 648 ** assigned. 649 */ 650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 651 sqlite3 *db = pParse->db; 652 const char *z; 653 654 if( pExpr==0 ) return; 655 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 656 z = pExpr->u.zToken; 657 assert( z!=0 ); 658 assert( z[0]!=0 ); 659 if( z[1]==0 ){ 660 /* Wildcard of the form "?". Assign the next variable number */ 661 assert( z[0]=='?' ); 662 pExpr->iColumn = (ynVar)(++pParse->nVar); 663 }else{ 664 ynVar x = 0; 665 u32 n = sqlite3Strlen30(z); 666 if( z[0]=='?' ){ 667 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 668 ** use it as the variable number */ 669 i64 i; 670 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 671 pExpr->iColumn = x = (ynVar)i; 672 testcase( i==0 ); 673 testcase( i==1 ); 674 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 675 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 676 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 677 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 678 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 679 x = 0; 680 } 681 if( i>pParse->nVar ){ 682 pParse->nVar = (int)i; 683 } 684 }else{ 685 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 686 ** number as the prior appearance of the same name, or if the name 687 ** has never appeared before, reuse the same variable number 688 */ 689 ynVar i; 690 for(i=0; i<pParse->nzVar; i++){ 691 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 692 pExpr->iColumn = x = (ynVar)i+1; 693 break; 694 } 695 } 696 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 697 } 698 if( x>0 ){ 699 if( x>pParse->nzVar ){ 700 char **a; 701 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 702 if( a==0 ) return; /* Error reported through db->mallocFailed */ 703 pParse->azVar = a; 704 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 705 pParse->nzVar = x; 706 } 707 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 708 sqlite3DbFree(db, pParse->azVar[x-1]); 709 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 710 } 711 } 712 } 713 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 714 sqlite3ErrorMsg(pParse, "too many SQL variables"); 715 } 716 } 717 718 /* 719 ** Recursively delete an expression tree. 720 */ 721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 722 if( p==0 ) return; 723 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 724 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 725 if( !ExprHasProperty(p, EP_TokenOnly) ){ 726 /* The Expr.x union is never used at the same time as Expr.pRight */ 727 assert( p->x.pList==0 || p->pRight==0 ); 728 sqlite3ExprDelete(db, p->pLeft); 729 sqlite3ExprDelete(db, p->pRight); 730 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 731 if( ExprHasProperty(p, EP_xIsSelect) ){ 732 sqlite3SelectDelete(db, p->x.pSelect); 733 }else{ 734 sqlite3ExprListDelete(db, p->x.pList); 735 } 736 } 737 if( !ExprHasProperty(p, EP_Static) ){ 738 sqlite3DbFree(db, p); 739 } 740 } 741 742 /* 743 ** Return the number of bytes allocated for the expression structure 744 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 746 */ 747 static int exprStructSize(Expr *p){ 748 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 749 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 750 return EXPR_FULLSIZE; 751 } 752 753 /* 754 ** The dupedExpr*Size() routines each return the number of bytes required 755 ** to store a copy of an expression or expression tree. They differ in 756 ** how much of the tree is measured. 757 ** 758 ** dupedExprStructSize() Size of only the Expr structure 759 ** dupedExprNodeSize() Size of Expr + space for token 760 ** dupedExprSize() Expr + token + subtree components 761 ** 762 *************************************************************************** 763 ** 764 ** The dupedExprStructSize() function returns two values OR-ed together: 765 ** (1) the space required for a copy of the Expr structure only and 766 ** (2) the EP_xxx flags that indicate what the structure size should be. 767 ** The return values is always one of: 768 ** 769 ** EXPR_FULLSIZE 770 ** EXPR_REDUCEDSIZE | EP_Reduced 771 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 772 ** 773 ** The size of the structure can be found by masking the return value 774 ** of this routine with 0xfff. The flags can be found by masking the 775 ** return value with EP_Reduced|EP_TokenOnly. 776 ** 777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 778 ** (unreduced) Expr objects as they or originally constructed by the parser. 779 ** During expression analysis, extra information is computed and moved into 780 ** later parts of teh Expr object and that extra information might get chopped 781 ** off if the expression is reduced. Note also that it does not work to 782 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 783 ** to reduce a pristine expression tree from the parser. The implementation 784 ** of dupedExprStructSize() contain multiple assert() statements that attempt 785 ** to enforce this constraint. 786 */ 787 static int dupedExprStructSize(Expr *p, int flags){ 788 int nSize; 789 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 790 assert( EXPR_FULLSIZE<=0xfff ); 791 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 792 if( 0==(flags&EXPRDUP_REDUCE) ){ 793 nSize = EXPR_FULLSIZE; 794 }else{ 795 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 796 assert( !ExprHasProperty(p, EP_FromJoin) ); 797 assert( !ExprHasProperty(p, EP_MemToken) ); 798 assert( !ExprHasProperty(p, EP_NoReduce) ); 799 if( p->pLeft || p->x.pList ){ 800 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 801 }else{ 802 assert( p->pRight==0 ); 803 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 804 } 805 } 806 return nSize; 807 } 808 809 /* 810 ** This function returns the space in bytes required to store the copy 811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 812 ** string is defined.) 813 */ 814 static int dupedExprNodeSize(Expr *p, int flags){ 815 int nByte = dupedExprStructSize(p, flags) & 0xfff; 816 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 817 nByte += sqlite3Strlen30(p->u.zToken)+1; 818 } 819 return ROUND8(nByte); 820 } 821 822 /* 823 ** Return the number of bytes required to create a duplicate of the 824 ** expression passed as the first argument. The second argument is a 825 ** mask containing EXPRDUP_XXX flags. 826 ** 827 ** The value returned includes space to create a copy of the Expr struct 828 ** itself and the buffer referred to by Expr.u.zToken, if any. 829 ** 830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 832 ** and Expr.pRight variables (but not for any structures pointed to or 833 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 834 */ 835 static int dupedExprSize(Expr *p, int flags){ 836 int nByte = 0; 837 if( p ){ 838 nByte = dupedExprNodeSize(p, flags); 839 if( flags&EXPRDUP_REDUCE ){ 840 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 841 } 842 } 843 return nByte; 844 } 845 846 /* 847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 849 ** to store the copy of expression p, the copies of p->u.zToken 850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 851 ** if any. Before returning, *pzBuffer is set to the first byte past the 852 ** portion of the buffer copied into by this function. 853 */ 854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 855 Expr *pNew = 0; /* Value to return */ 856 assert( flags==0 || flags==EXPRDUP_REDUCE ); 857 if( p ){ 858 const int isReduced = (flags&EXPRDUP_REDUCE); 859 u8 *zAlloc; 860 u32 staticFlag = 0; 861 862 assert( pzBuffer==0 || isReduced ); 863 864 /* Figure out where to write the new Expr structure. */ 865 if( pzBuffer ){ 866 zAlloc = *pzBuffer; 867 staticFlag = EP_Static; 868 }else{ 869 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 870 } 871 pNew = (Expr *)zAlloc; 872 873 if( pNew ){ 874 /* Set nNewSize to the size allocated for the structure pointed to 875 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 876 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 877 ** by the copy of the p->u.zToken string (if any). 878 */ 879 const unsigned nStructSize = dupedExprStructSize(p, flags); 880 const int nNewSize = nStructSize & 0xfff; 881 int nToken; 882 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 883 nToken = sqlite3Strlen30(p->u.zToken) + 1; 884 }else{ 885 nToken = 0; 886 } 887 if( isReduced ){ 888 assert( ExprHasProperty(p, EP_Reduced)==0 ); 889 memcpy(zAlloc, p, nNewSize); 890 }else{ 891 u32 nSize = (u32)exprStructSize(p); 892 memcpy(zAlloc, p, nSize); 893 if( nSize<EXPR_FULLSIZE ){ 894 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 895 } 896 } 897 898 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 899 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 900 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 901 pNew->flags |= staticFlag; 902 903 /* Copy the p->u.zToken string, if any. */ 904 if( nToken ){ 905 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 906 memcpy(zToken, p->u.zToken, nToken); 907 } 908 909 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 910 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 911 if( ExprHasProperty(p, EP_xIsSelect) ){ 912 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 913 }else{ 914 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 915 } 916 } 917 918 /* Fill in pNew->pLeft and pNew->pRight. */ 919 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 920 zAlloc += dupedExprNodeSize(p, flags); 921 if( ExprHasProperty(pNew, EP_Reduced) ){ 922 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 923 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 924 } 925 if( pzBuffer ){ 926 *pzBuffer = zAlloc; 927 } 928 }else{ 929 if( !ExprHasProperty(p, EP_TokenOnly) ){ 930 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 931 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 932 } 933 } 934 935 } 936 } 937 return pNew; 938 } 939 940 /* 941 ** Create and return a deep copy of the object passed as the second 942 ** argument. If an OOM condition is encountered, NULL is returned 943 ** and the db->mallocFailed flag set. 944 */ 945 #ifndef SQLITE_OMIT_CTE 946 static With *withDup(sqlite3 *db, With *p){ 947 With *pRet = 0; 948 if( p ){ 949 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 950 pRet = sqlite3DbMallocZero(db, nByte); 951 if( pRet ){ 952 int i; 953 pRet->nCte = p->nCte; 954 for(i=0; i<p->nCte; i++){ 955 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 956 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 957 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 958 } 959 } 960 } 961 return pRet; 962 } 963 #else 964 # define withDup(x,y) 0 965 #endif 966 967 /* 968 ** The following group of routines make deep copies of expressions, 969 ** expression lists, ID lists, and select statements. The copies can 970 ** be deleted (by being passed to their respective ...Delete() routines) 971 ** without effecting the originals. 972 ** 973 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 974 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 975 ** by subsequent calls to sqlite*ListAppend() routines. 976 ** 977 ** Any tables that the SrcList might point to are not duplicated. 978 ** 979 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 980 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 981 ** truncated version of the usual Expr structure that will be stored as 982 ** part of the in-memory representation of the database schema. 983 */ 984 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 985 assert( flags==0 || flags==EXPRDUP_REDUCE ); 986 return exprDup(db, p, flags, 0); 987 } 988 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 989 ExprList *pNew; 990 struct ExprList_item *pItem, *pOldItem; 991 int i; 992 if( p==0 ) return 0; 993 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 994 if( pNew==0 ) return 0; 995 pNew->nExpr = i = p->nExpr; 996 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 997 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 998 if( pItem==0 ){ 999 sqlite3DbFree(db, pNew); 1000 return 0; 1001 } 1002 pOldItem = p->a; 1003 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1004 Expr *pOldExpr = pOldItem->pExpr; 1005 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1006 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1007 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1008 pItem->sortOrder = pOldItem->sortOrder; 1009 pItem->done = 0; 1010 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1011 pItem->u = pOldItem->u; 1012 } 1013 return pNew; 1014 } 1015 1016 /* 1017 ** If cursors, triggers, views and subqueries are all omitted from 1018 ** the build, then none of the following routines, except for 1019 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1020 ** called with a NULL argument. 1021 */ 1022 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1023 || !defined(SQLITE_OMIT_SUBQUERY) 1024 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1025 SrcList *pNew; 1026 int i; 1027 int nByte; 1028 if( p==0 ) return 0; 1029 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1030 pNew = sqlite3DbMallocRaw(db, nByte ); 1031 if( pNew==0 ) return 0; 1032 pNew->nSrc = pNew->nAlloc = p->nSrc; 1033 for(i=0; i<p->nSrc; i++){ 1034 struct SrcList_item *pNewItem = &pNew->a[i]; 1035 struct SrcList_item *pOldItem = &p->a[i]; 1036 Table *pTab; 1037 pNewItem->pSchema = pOldItem->pSchema; 1038 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1039 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1040 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1041 pNewItem->fg = pOldItem->fg; 1042 pNewItem->iCursor = pOldItem->iCursor; 1043 pNewItem->addrFillSub = pOldItem->addrFillSub; 1044 pNewItem->regReturn = pOldItem->regReturn; 1045 if( pNewItem->fg.isIndexedBy ){ 1046 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1047 } 1048 pNewItem->pIBIndex = pOldItem->pIBIndex; 1049 if( pNewItem->fg.isTabFunc ){ 1050 pNewItem->u1.pFuncArg = 1051 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1052 } 1053 pTab = pNewItem->pTab = pOldItem->pTab; 1054 if( pTab ){ 1055 pTab->nRef++; 1056 } 1057 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1058 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1059 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1060 pNewItem->colUsed = pOldItem->colUsed; 1061 } 1062 return pNew; 1063 } 1064 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1065 IdList *pNew; 1066 int i; 1067 if( p==0 ) return 0; 1068 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1069 if( pNew==0 ) return 0; 1070 pNew->nId = p->nId; 1071 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1072 if( pNew->a==0 ){ 1073 sqlite3DbFree(db, pNew); 1074 return 0; 1075 } 1076 /* Note that because the size of the allocation for p->a[] is not 1077 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1078 ** on the duplicate created by this function. */ 1079 for(i=0; i<p->nId; i++){ 1080 struct IdList_item *pNewItem = &pNew->a[i]; 1081 struct IdList_item *pOldItem = &p->a[i]; 1082 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1083 pNewItem->idx = pOldItem->idx; 1084 } 1085 return pNew; 1086 } 1087 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1088 Select *pNew, *pPrior; 1089 if( p==0 ) return 0; 1090 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1091 if( pNew==0 ) return 0; 1092 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1093 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1094 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1095 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1096 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1097 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1098 pNew->op = p->op; 1099 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1100 if( pPrior ) pPrior->pNext = pNew; 1101 pNew->pNext = 0; 1102 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1103 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1104 pNew->iLimit = 0; 1105 pNew->iOffset = 0; 1106 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1107 pNew->addrOpenEphm[0] = -1; 1108 pNew->addrOpenEphm[1] = -1; 1109 pNew->nSelectRow = p->nSelectRow; 1110 pNew->pWith = withDup(db, p->pWith); 1111 sqlite3SelectSetName(pNew, p->zSelName); 1112 return pNew; 1113 } 1114 #else 1115 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1116 assert( p==0 ); 1117 return 0; 1118 } 1119 #endif 1120 1121 1122 /* 1123 ** Add a new element to the end of an expression list. If pList is 1124 ** initially NULL, then create a new expression list. 1125 ** 1126 ** If a memory allocation error occurs, the entire list is freed and 1127 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1128 ** that the new entry was successfully appended. 1129 */ 1130 ExprList *sqlite3ExprListAppend( 1131 Parse *pParse, /* Parsing context */ 1132 ExprList *pList, /* List to which to append. Might be NULL */ 1133 Expr *pExpr /* Expression to be appended. Might be NULL */ 1134 ){ 1135 sqlite3 *db = pParse->db; 1136 if( pList==0 ){ 1137 pList = sqlite3DbMallocRaw(db, sizeof(ExprList) ); 1138 if( pList==0 ){ 1139 goto no_mem; 1140 } 1141 pList->nExpr = 0; 1142 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1143 if( pList->a==0 ) goto no_mem; 1144 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1145 struct ExprList_item *a; 1146 assert( pList->nExpr>0 ); 1147 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1148 if( a==0 ){ 1149 goto no_mem; 1150 } 1151 pList->a = a; 1152 } 1153 assert( pList->a!=0 ); 1154 if( 1 ){ 1155 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1156 memset(pItem, 0, sizeof(*pItem)); 1157 pItem->pExpr = pExpr; 1158 } 1159 return pList; 1160 1161 no_mem: 1162 /* Avoid leaking memory if malloc has failed. */ 1163 sqlite3ExprDelete(db, pExpr); 1164 sqlite3ExprListDelete(db, pList); 1165 return 0; 1166 } 1167 1168 /* 1169 ** Set the sort order for the last element on the given ExprList. 1170 */ 1171 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1172 if( p==0 ) return; 1173 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1174 assert( p->nExpr>0 ); 1175 if( iSortOrder<0 ){ 1176 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1177 return; 1178 } 1179 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1180 } 1181 1182 /* 1183 ** Set the ExprList.a[].zName element of the most recently added item 1184 ** on the expression list. 1185 ** 1186 ** pList might be NULL following an OOM error. But pName should never be 1187 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1188 ** is set. 1189 */ 1190 void sqlite3ExprListSetName( 1191 Parse *pParse, /* Parsing context */ 1192 ExprList *pList, /* List to which to add the span. */ 1193 Token *pName, /* Name to be added */ 1194 int dequote /* True to cause the name to be dequoted */ 1195 ){ 1196 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1197 if( pList ){ 1198 struct ExprList_item *pItem; 1199 assert( pList->nExpr>0 ); 1200 pItem = &pList->a[pList->nExpr-1]; 1201 assert( pItem->zName==0 ); 1202 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1203 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1204 } 1205 } 1206 1207 /* 1208 ** Set the ExprList.a[].zSpan element of the most recently added item 1209 ** on the expression list. 1210 ** 1211 ** pList might be NULL following an OOM error. But pSpan should never be 1212 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1213 ** is set. 1214 */ 1215 void sqlite3ExprListSetSpan( 1216 Parse *pParse, /* Parsing context */ 1217 ExprList *pList, /* List to which to add the span. */ 1218 ExprSpan *pSpan /* The span to be added */ 1219 ){ 1220 sqlite3 *db = pParse->db; 1221 assert( pList!=0 || db->mallocFailed!=0 ); 1222 if( pList ){ 1223 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1224 assert( pList->nExpr>0 ); 1225 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1226 sqlite3DbFree(db, pItem->zSpan); 1227 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1228 (int)(pSpan->zEnd - pSpan->zStart)); 1229 } 1230 } 1231 1232 /* 1233 ** If the expression list pEList contains more than iLimit elements, 1234 ** leave an error message in pParse. 1235 */ 1236 void sqlite3ExprListCheckLength( 1237 Parse *pParse, 1238 ExprList *pEList, 1239 const char *zObject 1240 ){ 1241 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1242 testcase( pEList && pEList->nExpr==mx ); 1243 testcase( pEList && pEList->nExpr==mx+1 ); 1244 if( pEList && pEList->nExpr>mx ){ 1245 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1246 } 1247 } 1248 1249 /* 1250 ** Delete an entire expression list. 1251 */ 1252 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1253 int i; 1254 struct ExprList_item *pItem; 1255 if( pList==0 ) return; 1256 assert( pList->a!=0 || pList->nExpr==0 ); 1257 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1258 sqlite3ExprDelete(db, pItem->pExpr); 1259 sqlite3DbFree(db, pItem->zName); 1260 sqlite3DbFree(db, pItem->zSpan); 1261 } 1262 sqlite3DbFree(db, pList->a); 1263 sqlite3DbFree(db, pList); 1264 } 1265 1266 /* 1267 ** Return the bitwise-OR of all Expr.flags fields in the given 1268 ** ExprList. 1269 */ 1270 u32 sqlite3ExprListFlags(const ExprList *pList){ 1271 int i; 1272 u32 m = 0; 1273 if( pList ){ 1274 for(i=0; i<pList->nExpr; i++){ 1275 Expr *pExpr = pList->a[i].pExpr; 1276 if( ALWAYS(pExpr) ) m |= pExpr->flags; 1277 } 1278 } 1279 return m; 1280 } 1281 1282 /* 1283 ** These routines are Walker callbacks used to check expressions to 1284 ** see if they are "constant" for some definition of constant. The 1285 ** Walker.eCode value determines the type of "constant" we are looking 1286 ** for. 1287 ** 1288 ** These callback routines are used to implement the following: 1289 ** 1290 ** sqlite3ExprIsConstant() pWalker->eCode==1 1291 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1292 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1293 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1294 ** 1295 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1296 ** is found to not be a constant. 1297 ** 1298 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1299 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1300 ** an existing schema and 4 when processing a new statement. A bound 1301 ** parameter raises an error for new statements, but is silently converted 1302 ** to NULL for existing schemas. This allows sqlite_master tables that 1303 ** contain a bound parameter because they were generated by older versions 1304 ** of SQLite to be parsed by newer versions of SQLite without raising a 1305 ** malformed schema error. 1306 */ 1307 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1308 1309 /* If pWalker->eCode is 2 then any term of the expression that comes from 1310 ** the ON or USING clauses of a left join disqualifies the expression 1311 ** from being considered constant. */ 1312 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1313 pWalker->eCode = 0; 1314 return WRC_Abort; 1315 } 1316 1317 switch( pExpr->op ){ 1318 /* Consider functions to be constant if all their arguments are constant 1319 ** and either pWalker->eCode==4 or 5 or the function has the 1320 ** SQLITE_FUNC_CONST flag. */ 1321 case TK_FUNCTION: 1322 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1323 return WRC_Continue; 1324 }else{ 1325 pWalker->eCode = 0; 1326 return WRC_Abort; 1327 } 1328 case TK_ID: 1329 case TK_COLUMN: 1330 case TK_AGG_FUNCTION: 1331 case TK_AGG_COLUMN: 1332 testcase( pExpr->op==TK_ID ); 1333 testcase( pExpr->op==TK_COLUMN ); 1334 testcase( pExpr->op==TK_AGG_FUNCTION ); 1335 testcase( pExpr->op==TK_AGG_COLUMN ); 1336 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1337 return WRC_Continue; 1338 }else{ 1339 pWalker->eCode = 0; 1340 return WRC_Abort; 1341 } 1342 case TK_VARIABLE: 1343 if( pWalker->eCode==5 ){ 1344 /* Silently convert bound parameters that appear inside of CREATE 1345 ** statements into a NULL when parsing the CREATE statement text out 1346 ** of the sqlite_master table */ 1347 pExpr->op = TK_NULL; 1348 }else if( pWalker->eCode==4 ){ 1349 /* A bound parameter in a CREATE statement that originates from 1350 ** sqlite3_prepare() causes an error */ 1351 pWalker->eCode = 0; 1352 return WRC_Abort; 1353 } 1354 /* Fall through */ 1355 default: 1356 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1357 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1358 return WRC_Continue; 1359 } 1360 } 1361 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1362 UNUSED_PARAMETER(NotUsed); 1363 pWalker->eCode = 0; 1364 return WRC_Abort; 1365 } 1366 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1367 Walker w; 1368 memset(&w, 0, sizeof(w)); 1369 w.eCode = initFlag; 1370 w.xExprCallback = exprNodeIsConstant; 1371 w.xSelectCallback = selectNodeIsConstant; 1372 w.u.iCur = iCur; 1373 sqlite3WalkExpr(&w, p); 1374 return w.eCode; 1375 } 1376 1377 /* 1378 ** Walk an expression tree. Return non-zero if the expression is constant 1379 ** and 0 if it involves variables or function calls. 1380 ** 1381 ** For the purposes of this function, a double-quoted string (ex: "abc") 1382 ** is considered a variable but a single-quoted string (ex: 'abc') is 1383 ** a constant. 1384 */ 1385 int sqlite3ExprIsConstant(Expr *p){ 1386 return exprIsConst(p, 1, 0); 1387 } 1388 1389 /* 1390 ** Walk an expression tree. Return non-zero if the expression is constant 1391 ** that does no originate from the ON or USING clauses of a join. 1392 ** Return 0 if it involves variables or function calls or terms from 1393 ** an ON or USING clause. 1394 */ 1395 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1396 return exprIsConst(p, 2, 0); 1397 } 1398 1399 /* 1400 ** Walk an expression tree. Return non-zero if the expression is constant 1401 ** for any single row of the table with cursor iCur. In other words, the 1402 ** expression must not refer to any non-deterministic function nor any 1403 ** table other than iCur. 1404 */ 1405 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1406 return exprIsConst(p, 3, iCur); 1407 } 1408 1409 /* 1410 ** Walk an expression tree. Return non-zero if the expression is constant 1411 ** or a function call with constant arguments. Return and 0 if there 1412 ** are any variables. 1413 ** 1414 ** For the purposes of this function, a double-quoted string (ex: "abc") 1415 ** is considered a variable but a single-quoted string (ex: 'abc') is 1416 ** a constant. 1417 */ 1418 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1419 assert( isInit==0 || isInit==1 ); 1420 return exprIsConst(p, 4+isInit, 0); 1421 } 1422 1423 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1424 /* 1425 ** Walk an expression tree. Return 1 if the expression contains a 1426 ** subquery of some kind. Return 0 if there are no subqueries. 1427 */ 1428 int sqlite3ExprContainsSubquery(Expr *p){ 1429 Walker w; 1430 memset(&w, 0, sizeof(w)); 1431 w.eCode = 1; 1432 w.xExprCallback = sqlite3ExprWalkNoop; 1433 w.xSelectCallback = selectNodeIsConstant; 1434 sqlite3WalkExpr(&w, p); 1435 return w.eCode==0; 1436 } 1437 #endif 1438 1439 /* 1440 ** If the expression p codes a constant integer that is small enough 1441 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1442 ** in *pValue. If the expression is not an integer or if it is too big 1443 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1444 */ 1445 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1446 int rc = 0; 1447 1448 /* If an expression is an integer literal that fits in a signed 32-bit 1449 ** integer, then the EP_IntValue flag will have already been set */ 1450 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1451 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1452 1453 if( p->flags & EP_IntValue ){ 1454 *pValue = p->u.iValue; 1455 return 1; 1456 } 1457 switch( p->op ){ 1458 case TK_UPLUS: { 1459 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1460 break; 1461 } 1462 case TK_UMINUS: { 1463 int v; 1464 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1465 assert( v!=(-2147483647-1) ); 1466 *pValue = -v; 1467 rc = 1; 1468 } 1469 break; 1470 } 1471 default: break; 1472 } 1473 return rc; 1474 } 1475 1476 /* 1477 ** Return FALSE if there is no chance that the expression can be NULL. 1478 ** 1479 ** If the expression might be NULL or if the expression is too complex 1480 ** to tell return TRUE. 1481 ** 1482 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1483 ** when we know that a value cannot be NULL. Hence, a false positive 1484 ** (returning TRUE when in fact the expression can never be NULL) might 1485 ** be a small performance hit but is otherwise harmless. On the other 1486 ** hand, a false negative (returning FALSE when the result could be NULL) 1487 ** will likely result in an incorrect answer. So when in doubt, return 1488 ** TRUE. 1489 */ 1490 int sqlite3ExprCanBeNull(const Expr *p){ 1491 u8 op; 1492 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1493 op = p->op; 1494 if( op==TK_REGISTER ) op = p->op2; 1495 switch( op ){ 1496 case TK_INTEGER: 1497 case TK_STRING: 1498 case TK_FLOAT: 1499 case TK_BLOB: 1500 return 0; 1501 case TK_COLUMN: 1502 assert( p->pTab!=0 ); 1503 return ExprHasProperty(p, EP_CanBeNull) || 1504 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1505 default: 1506 return 1; 1507 } 1508 } 1509 1510 /* 1511 ** Return TRUE if the given expression is a constant which would be 1512 ** unchanged by OP_Affinity with the affinity given in the second 1513 ** argument. 1514 ** 1515 ** This routine is used to determine if the OP_Affinity operation 1516 ** can be omitted. When in doubt return FALSE. A false negative 1517 ** is harmless. A false positive, however, can result in the wrong 1518 ** answer. 1519 */ 1520 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1521 u8 op; 1522 if( aff==SQLITE_AFF_BLOB ) return 1; 1523 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1524 op = p->op; 1525 if( op==TK_REGISTER ) op = p->op2; 1526 switch( op ){ 1527 case TK_INTEGER: { 1528 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1529 } 1530 case TK_FLOAT: { 1531 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1532 } 1533 case TK_STRING: { 1534 return aff==SQLITE_AFF_TEXT; 1535 } 1536 case TK_BLOB: { 1537 return 1; 1538 } 1539 case TK_COLUMN: { 1540 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1541 return p->iColumn<0 1542 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1543 } 1544 default: { 1545 return 0; 1546 } 1547 } 1548 } 1549 1550 /* 1551 ** Return TRUE if the given string is a row-id column name. 1552 */ 1553 int sqlite3IsRowid(const char *z){ 1554 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1555 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1556 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1557 return 0; 1558 } 1559 1560 /* 1561 ** Return true if we are able to the IN operator optimization on a 1562 ** query of the form 1563 ** 1564 ** x IN (SELECT ...) 1565 ** 1566 ** Where the SELECT... clause is as specified by the parameter to this 1567 ** routine. 1568 ** 1569 ** The Select object passed in has already been preprocessed and no 1570 ** errors have been found. 1571 */ 1572 #ifndef SQLITE_OMIT_SUBQUERY 1573 static int isCandidateForInOpt(Select *p){ 1574 SrcList *pSrc; 1575 ExprList *pEList; 1576 Table *pTab; 1577 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1578 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1579 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1580 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1581 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1582 return 0; /* No DISTINCT keyword and no aggregate functions */ 1583 } 1584 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1585 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1586 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1587 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1588 pSrc = p->pSrc; 1589 assert( pSrc!=0 ); 1590 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1591 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1592 pTab = pSrc->a[0].pTab; 1593 if( NEVER(pTab==0) ) return 0; 1594 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1595 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1596 pEList = p->pEList; 1597 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1598 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1599 return 1; 1600 } 1601 #endif /* SQLITE_OMIT_SUBQUERY */ 1602 1603 /* 1604 ** Code an OP_Once instruction and allocate space for its flag. Return the 1605 ** address of the new instruction. 1606 */ 1607 int sqlite3CodeOnce(Parse *pParse){ 1608 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1609 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1610 } 1611 1612 /* 1613 ** Generate code that checks the left-most column of index table iCur to see if 1614 ** it contains any NULL entries. Cause the register at regHasNull to be set 1615 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1616 ** to be set to NULL if iCur contains one or more NULL values. 1617 */ 1618 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1619 int addr1; 1620 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1621 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1622 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1623 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1624 VdbeComment((v, "first_entry_in(%d)", iCur)); 1625 sqlite3VdbeJumpHere(v, addr1); 1626 } 1627 1628 1629 #ifndef SQLITE_OMIT_SUBQUERY 1630 /* 1631 ** The argument is an IN operator with a list (not a subquery) on the 1632 ** right-hand side. Return TRUE if that list is constant. 1633 */ 1634 static int sqlite3InRhsIsConstant(Expr *pIn){ 1635 Expr *pLHS; 1636 int res; 1637 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1638 pLHS = pIn->pLeft; 1639 pIn->pLeft = 0; 1640 res = sqlite3ExprIsConstant(pIn); 1641 pIn->pLeft = pLHS; 1642 return res; 1643 } 1644 #endif 1645 1646 /* 1647 ** This function is used by the implementation of the IN (...) operator. 1648 ** The pX parameter is the expression on the RHS of the IN operator, which 1649 ** might be either a list of expressions or a subquery. 1650 ** 1651 ** The job of this routine is to find or create a b-tree object that can 1652 ** be used either to test for membership in the RHS set or to iterate through 1653 ** all members of the RHS set, skipping duplicates. 1654 ** 1655 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1656 ** and pX->iTable is set to the index of that cursor. 1657 ** 1658 ** The returned value of this function indicates the b-tree type, as follows: 1659 ** 1660 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1661 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1662 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1663 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1664 ** populated epheremal table. 1665 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1666 ** implemented as a sequence of comparisons. 1667 ** 1668 ** An existing b-tree might be used if the RHS expression pX is a simple 1669 ** subquery such as: 1670 ** 1671 ** SELECT <column> FROM <table> 1672 ** 1673 ** If the RHS of the IN operator is a list or a more complex subquery, then 1674 ** an ephemeral table might need to be generated from the RHS and then 1675 ** pX->iTable made to point to the ephemeral table instead of an 1676 ** existing table. 1677 ** 1678 ** The inFlags parameter must contain exactly one of the bits 1679 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1680 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1681 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1682 ** IN index will be used to loop over all values of the RHS of the 1683 ** IN operator. 1684 ** 1685 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1686 ** through the set members) then the b-tree must not contain duplicates. 1687 ** An epheremal table must be used unless the selected <column> is guaranteed 1688 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1689 ** has a UNIQUE constraint or UNIQUE index. 1690 ** 1691 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1692 ** for fast set membership tests) then an epheremal table must 1693 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1694 ** be found with <column> as its left-most column. 1695 ** 1696 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1697 ** if the RHS of the IN operator is a list (not a subquery) then this 1698 ** routine might decide that creating an ephemeral b-tree for membership 1699 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1700 ** calling routine should implement the IN operator using a sequence 1701 ** of Eq or Ne comparison operations. 1702 ** 1703 ** When the b-tree is being used for membership tests, the calling function 1704 ** might need to know whether or not the RHS side of the IN operator 1705 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1706 ** if there is any chance that the (...) might contain a NULL value at 1707 ** runtime, then a register is allocated and the register number written 1708 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1709 ** NULL value, then *prRhsHasNull is left unchanged. 1710 ** 1711 ** If a register is allocated and its location stored in *prRhsHasNull, then 1712 ** the value in that register will be NULL if the b-tree contains one or more 1713 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1714 ** NULL values. 1715 */ 1716 #ifndef SQLITE_OMIT_SUBQUERY 1717 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1718 Select *p; /* SELECT to the right of IN operator */ 1719 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1720 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1721 int mustBeUnique; /* True if RHS must be unique */ 1722 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1723 1724 assert( pX->op==TK_IN ); 1725 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1726 1727 /* Check to see if an existing table or index can be used to 1728 ** satisfy the query. This is preferable to generating a new 1729 ** ephemeral table. 1730 */ 1731 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1732 if( pParse->nErr==0 && isCandidateForInOpt(p) ){ 1733 sqlite3 *db = pParse->db; /* Database connection */ 1734 Table *pTab; /* Table <table>. */ 1735 Expr *pExpr; /* Expression <column> */ 1736 i16 iCol; /* Index of column <column> */ 1737 i16 iDb; /* Database idx for pTab */ 1738 1739 assert( p ); /* Because of isCandidateForInOpt(p) */ 1740 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1741 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1742 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1743 pTab = p->pSrc->a[0].pTab; 1744 pExpr = p->pEList->a[0].pExpr; 1745 iCol = (i16)pExpr->iColumn; 1746 1747 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1748 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1749 sqlite3CodeVerifySchema(pParse, iDb); 1750 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1751 1752 /* This function is only called from two places. In both cases the vdbe 1753 ** has already been allocated. So assume sqlite3GetVdbe() is always 1754 ** successful here. 1755 */ 1756 assert(v); 1757 if( iCol<0 ){ 1758 int iAddr = sqlite3CodeOnce(pParse); 1759 VdbeCoverage(v); 1760 1761 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1762 eType = IN_INDEX_ROWID; 1763 1764 sqlite3VdbeJumpHere(v, iAddr); 1765 }else{ 1766 Index *pIdx; /* Iterator variable */ 1767 1768 /* The collation sequence used by the comparison. If an index is to 1769 ** be used in place of a temp-table, it must be ordered according 1770 ** to this collation sequence. */ 1771 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1772 1773 /* Check that the affinity that will be used to perform the 1774 ** comparison is the same as the affinity of the column. If 1775 ** it is not, it is not possible to use any index. 1776 */ 1777 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1778 1779 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1780 if( (pIdx->aiColumn[0]==iCol) 1781 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1782 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1783 ){ 1784 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1785 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1786 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1787 VdbeComment((v, "%s", pIdx->zName)); 1788 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1789 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1790 1791 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1792 *prRhsHasNull = ++pParse->nMem; 1793 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1794 } 1795 sqlite3VdbeJumpHere(v, iAddr); 1796 } 1797 } 1798 } 1799 } 1800 1801 /* If no preexisting index is available for the IN clause 1802 ** and IN_INDEX_NOOP is an allowed reply 1803 ** and the RHS of the IN operator is a list, not a subquery 1804 ** and the RHS is not contant or has two or fewer terms, 1805 ** then it is not worth creating an ephemeral table to evaluate 1806 ** the IN operator so return IN_INDEX_NOOP. 1807 */ 1808 if( eType==0 1809 && (inFlags & IN_INDEX_NOOP_OK) 1810 && !ExprHasProperty(pX, EP_xIsSelect) 1811 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1812 ){ 1813 eType = IN_INDEX_NOOP; 1814 } 1815 1816 1817 if( eType==0 ){ 1818 /* Could not find an existing table or index to use as the RHS b-tree. 1819 ** We will have to generate an ephemeral table to do the job. 1820 */ 1821 u32 savedNQueryLoop = pParse->nQueryLoop; 1822 int rMayHaveNull = 0; 1823 eType = IN_INDEX_EPH; 1824 if( inFlags & IN_INDEX_LOOP ){ 1825 pParse->nQueryLoop = 0; 1826 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1827 eType = IN_INDEX_ROWID; 1828 } 1829 }else if( prRhsHasNull ){ 1830 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1831 } 1832 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1833 pParse->nQueryLoop = savedNQueryLoop; 1834 }else{ 1835 pX->iTable = iTab; 1836 } 1837 return eType; 1838 } 1839 #endif 1840 1841 /* 1842 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1843 ** or IN operators. Examples: 1844 ** 1845 ** (SELECT a FROM b) -- subquery 1846 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1847 ** x IN (4,5,11) -- IN operator with list on right-hand side 1848 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1849 ** 1850 ** The pExpr parameter describes the expression that contains the IN 1851 ** operator or subquery. 1852 ** 1853 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1854 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1855 ** to some integer key column of a table B-Tree. In this case, use an 1856 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1857 ** (slower) variable length keys B-Tree. 1858 ** 1859 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1860 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1861 ** All this routine does is initialize the register given by rMayHaveNull 1862 ** to NULL. Calling routines will take care of changing this register 1863 ** value to non-NULL if the RHS is NULL-free. 1864 ** 1865 ** For a SELECT or EXISTS operator, return the register that holds the 1866 ** result. For IN operators or if an error occurs, the return value is 0. 1867 */ 1868 #ifndef SQLITE_OMIT_SUBQUERY 1869 int sqlite3CodeSubselect( 1870 Parse *pParse, /* Parsing context */ 1871 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1872 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1873 int isRowid /* If true, LHS of IN operator is a rowid */ 1874 ){ 1875 int jmpIfDynamic = -1; /* One-time test address */ 1876 int rReg = 0; /* Register storing resulting */ 1877 Vdbe *v = sqlite3GetVdbe(pParse); 1878 if( NEVER(v==0) ) return 0; 1879 sqlite3ExprCachePush(pParse); 1880 1881 /* This code must be run in its entirety every time it is encountered 1882 ** if any of the following is true: 1883 ** 1884 ** * The right-hand side is a correlated subquery 1885 ** * The right-hand side is an expression list containing variables 1886 ** * We are inside a trigger 1887 ** 1888 ** If all of the above are false, then we can run this code just once 1889 ** save the results, and reuse the same result on subsequent invocations. 1890 */ 1891 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1892 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1893 } 1894 1895 #ifndef SQLITE_OMIT_EXPLAIN 1896 if( pParse->explain==2 ){ 1897 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 1898 jmpIfDynamic>=0?"":"CORRELATED ", 1899 pExpr->op==TK_IN?"LIST":"SCALAR", 1900 pParse->iNextSelectId 1901 ); 1902 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1903 } 1904 #endif 1905 1906 switch( pExpr->op ){ 1907 case TK_IN: { 1908 char affinity; /* Affinity of the LHS of the IN */ 1909 int addr; /* Address of OP_OpenEphemeral instruction */ 1910 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1911 KeyInfo *pKeyInfo = 0; /* Key information */ 1912 1913 affinity = sqlite3ExprAffinity(pLeft); 1914 1915 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1916 ** expression it is handled the same way. An ephemeral table is 1917 ** filled with single-field index keys representing the results 1918 ** from the SELECT or the <exprlist>. 1919 ** 1920 ** If the 'x' expression is a column value, or the SELECT... 1921 ** statement returns a column value, then the affinity of that 1922 ** column is used to build the index keys. If both 'x' and the 1923 ** SELECT... statement are columns, then numeric affinity is used 1924 ** if either column has NUMERIC or INTEGER affinity. If neither 1925 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1926 ** is used. 1927 */ 1928 pExpr->iTable = pParse->nTab++; 1929 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1930 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1931 1932 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1933 /* Case 1: expr IN (SELECT ...) 1934 ** 1935 ** Generate code to write the results of the select into the temporary 1936 ** table allocated and opened above. 1937 */ 1938 Select *pSelect = pExpr->x.pSelect; 1939 SelectDest dest; 1940 ExprList *pEList; 1941 1942 assert( !isRowid ); 1943 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1944 dest.affSdst = (u8)affinity; 1945 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1946 pSelect->iLimit = 0; 1947 testcase( pSelect->selFlags & SF_Distinct ); 1948 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1949 if( sqlite3Select(pParse, pSelect, &dest) ){ 1950 sqlite3KeyInfoUnref(pKeyInfo); 1951 return 0; 1952 } 1953 pEList = pSelect->pEList; 1954 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1955 assert( pEList!=0 ); 1956 assert( pEList->nExpr>0 ); 1957 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1958 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1959 pEList->a[0].pExpr); 1960 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1961 /* Case 2: expr IN (exprlist) 1962 ** 1963 ** For each expression, build an index key from the evaluation and 1964 ** store it in the temporary table. If <expr> is a column, then use 1965 ** that columns affinity when building index keys. If <expr> is not 1966 ** a column, use numeric affinity. 1967 */ 1968 int i; 1969 ExprList *pList = pExpr->x.pList; 1970 struct ExprList_item *pItem; 1971 int r1, r2, r3; 1972 1973 if( !affinity ){ 1974 affinity = SQLITE_AFF_BLOB; 1975 } 1976 if( pKeyInfo ){ 1977 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1978 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1979 } 1980 1981 /* Loop through each expression in <exprlist>. */ 1982 r1 = sqlite3GetTempReg(pParse); 1983 r2 = sqlite3GetTempReg(pParse); 1984 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1985 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1986 Expr *pE2 = pItem->pExpr; 1987 int iValToIns; 1988 1989 /* If the expression is not constant then we will need to 1990 ** disable the test that was generated above that makes sure 1991 ** this code only executes once. Because for a non-constant 1992 ** expression we need to rerun this code each time. 1993 */ 1994 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 1995 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 1996 jmpIfDynamic = -1; 1997 } 1998 1999 /* Evaluate the expression and insert it into the temp table */ 2000 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2001 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2002 }else{ 2003 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2004 if( isRowid ){ 2005 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2006 sqlite3VdbeCurrentAddr(v)+2); 2007 VdbeCoverage(v); 2008 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2009 }else{ 2010 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2011 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2012 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 2013 } 2014 } 2015 } 2016 sqlite3ReleaseTempReg(pParse, r1); 2017 sqlite3ReleaseTempReg(pParse, r2); 2018 } 2019 if( pKeyInfo ){ 2020 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2021 } 2022 break; 2023 } 2024 2025 case TK_EXISTS: 2026 case TK_SELECT: 2027 default: { 2028 /* If this has to be a scalar SELECT. Generate code to put the 2029 ** value of this select in a memory cell and record the number 2030 ** of the memory cell in iColumn. If this is an EXISTS, write 2031 ** an integer 0 (not exists) or 1 (exists) into a memory cell 2032 ** and record that memory cell in iColumn. 2033 */ 2034 Select *pSel; /* SELECT statement to encode */ 2035 SelectDest dest; /* How to deal with SELECt result */ 2036 2037 testcase( pExpr->op==TK_EXISTS ); 2038 testcase( pExpr->op==TK_SELECT ); 2039 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2040 2041 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2042 pSel = pExpr->x.pSelect; 2043 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 2044 if( pExpr->op==TK_SELECT ){ 2045 dest.eDest = SRT_Mem; 2046 dest.iSdst = dest.iSDParm; 2047 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 2048 VdbeComment((v, "Init subquery result")); 2049 }else{ 2050 dest.eDest = SRT_Exists; 2051 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2052 VdbeComment((v, "Init EXISTS result")); 2053 } 2054 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2055 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 2056 &sqlite3IntTokens[1]); 2057 pSel->iLimit = 0; 2058 pSel->selFlags &= ~SF_MultiValue; 2059 if( sqlite3Select(pParse, pSel, &dest) ){ 2060 return 0; 2061 } 2062 rReg = dest.iSDParm; 2063 ExprSetVVAProperty(pExpr, EP_NoReduce); 2064 break; 2065 } 2066 } 2067 2068 if( rHasNullFlag ){ 2069 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2070 } 2071 2072 if( jmpIfDynamic>=0 ){ 2073 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2074 } 2075 sqlite3ExprCachePop(pParse); 2076 2077 return rReg; 2078 } 2079 #endif /* SQLITE_OMIT_SUBQUERY */ 2080 2081 #ifndef SQLITE_OMIT_SUBQUERY 2082 /* 2083 ** Generate code for an IN expression. 2084 ** 2085 ** x IN (SELECT ...) 2086 ** x IN (value, value, ...) 2087 ** 2088 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 2089 ** is an array of zero or more values. The expression is true if the LHS is 2090 ** contained within the RHS. The value of the expression is unknown (NULL) 2091 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 2092 ** RHS contains one or more NULL values. 2093 ** 2094 ** This routine generates code that jumps to destIfFalse if the LHS is not 2095 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2096 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2097 ** within the RHS then fall through. 2098 */ 2099 static void sqlite3ExprCodeIN( 2100 Parse *pParse, /* Parsing and code generating context */ 2101 Expr *pExpr, /* The IN expression */ 2102 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2103 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2104 ){ 2105 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2106 char affinity; /* Comparison affinity to use */ 2107 int eType; /* Type of the RHS */ 2108 int r1; /* Temporary use register */ 2109 Vdbe *v; /* Statement under construction */ 2110 2111 /* Compute the RHS. After this step, the table with cursor 2112 ** pExpr->iTable will contains the values that make up the RHS. 2113 */ 2114 v = pParse->pVdbe; 2115 assert( v!=0 ); /* OOM detected prior to this routine */ 2116 VdbeNoopComment((v, "begin IN expr")); 2117 eType = sqlite3FindInIndex(pParse, pExpr, 2118 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2119 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 2120 2121 /* Figure out the affinity to use to create a key from the results 2122 ** of the expression. affinityStr stores a static string suitable for 2123 ** P4 of OP_MakeRecord. 2124 */ 2125 affinity = comparisonAffinity(pExpr); 2126 2127 /* Code the LHS, the <expr> from "<expr> IN (...)". 2128 */ 2129 sqlite3ExprCachePush(pParse); 2130 r1 = sqlite3GetTempReg(pParse); 2131 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2132 2133 /* If sqlite3FindInIndex() did not find or create an index that is 2134 ** suitable for evaluating the IN operator, then evaluate using a 2135 ** sequence of comparisons. 2136 */ 2137 if( eType==IN_INDEX_NOOP ){ 2138 ExprList *pList = pExpr->x.pList; 2139 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2140 int labelOk = sqlite3VdbeMakeLabel(v); 2141 int r2, regToFree; 2142 int regCkNull = 0; 2143 int ii; 2144 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2145 if( destIfNull!=destIfFalse ){ 2146 regCkNull = sqlite3GetTempReg(pParse); 2147 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2148 } 2149 for(ii=0; ii<pList->nExpr; ii++){ 2150 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2151 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2152 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2153 } 2154 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2155 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2156 (void*)pColl, P4_COLLSEQ); 2157 VdbeCoverageIf(v, ii<pList->nExpr-1); 2158 VdbeCoverageIf(v, ii==pList->nExpr-1); 2159 sqlite3VdbeChangeP5(v, affinity); 2160 }else{ 2161 assert( destIfNull==destIfFalse ); 2162 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2163 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2164 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2165 } 2166 sqlite3ReleaseTempReg(pParse, regToFree); 2167 } 2168 if( regCkNull ){ 2169 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2170 sqlite3VdbeGoto(v, destIfFalse); 2171 } 2172 sqlite3VdbeResolveLabel(v, labelOk); 2173 sqlite3ReleaseTempReg(pParse, regCkNull); 2174 }else{ 2175 2176 /* If the LHS is NULL, then the result is either false or NULL depending 2177 ** on whether the RHS is empty or not, respectively. 2178 */ 2179 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2180 if( destIfNull==destIfFalse ){ 2181 /* Shortcut for the common case where the false and NULL outcomes are 2182 ** the same. */ 2183 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2184 }else{ 2185 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2186 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2187 VdbeCoverage(v); 2188 sqlite3VdbeGoto(v, destIfNull); 2189 sqlite3VdbeJumpHere(v, addr1); 2190 } 2191 } 2192 2193 if( eType==IN_INDEX_ROWID ){ 2194 /* In this case, the RHS is the ROWID of table b-tree 2195 */ 2196 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 2197 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2198 VdbeCoverage(v); 2199 }else{ 2200 /* In this case, the RHS is an index b-tree. 2201 */ 2202 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2203 2204 /* If the set membership test fails, then the result of the 2205 ** "x IN (...)" expression must be either 0 or NULL. If the set 2206 ** contains no NULL values, then the result is 0. If the set 2207 ** contains one or more NULL values, then the result of the 2208 ** expression is also NULL. 2209 */ 2210 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2211 if( rRhsHasNull==0 ){ 2212 /* This branch runs if it is known at compile time that the RHS 2213 ** cannot contain NULL values. This happens as the result 2214 ** of a "NOT NULL" constraint in the database schema. 2215 ** 2216 ** Also run this branch if NULL is equivalent to FALSE 2217 ** for this particular IN operator. 2218 */ 2219 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2220 VdbeCoverage(v); 2221 }else{ 2222 /* In this branch, the RHS of the IN might contain a NULL and 2223 ** the presence of a NULL on the RHS makes a difference in the 2224 ** outcome. 2225 */ 2226 int addr1; 2227 2228 /* First check to see if the LHS is contained in the RHS. If so, 2229 ** then the answer is TRUE the presence of NULLs in the RHS does 2230 ** not matter. If the LHS is not contained in the RHS, then the 2231 ** answer is NULL if the RHS contains NULLs and the answer is 2232 ** FALSE if the RHS is NULL-free. 2233 */ 2234 addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2235 VdbeCoverage(v); 2236 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2237 VdbeCoverage(v); 2238 sqlite3VdbeGoto(v, destIfFalse); 2239 sqlite3VdbeJumpHere(v, addr1); 2240 } 2241 } 2242 } 2243 sqlite3ReleaseTempReg(pParse, r1); 2244 sqlite3ExprCachePop(pParse); 2245 VdbeComment((v, "end IN expr")); 2246 } 2247 #endif /* SQLITE_OMIT_SUBQUERY */ 2248 2249 #ifndef SQLITE_OMIT_FLOATING_POINT 2250 /* 2251 ** Generate an instruction that will put the floating point 2252 ** value described by z[0..n-1] into register iMem. 2253 ** 2254 ** The z[] string will probably not be zero-terminated. But the 2255 ** z[n] character is guaranteed to be something that does not look 2256 ** like the continuation of the number. 2257 */ 2258 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2259 if( ALWAYS(z!=0) ){ 2260 double value; 2261 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2262 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2263 if( negateFlag ) value = -value; 2264 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 2265 } 2266 } 2267 #endif 2268 2269 2270 /* 2271 ** Generate an instruction that will put the integer describe by 2272 ** text z[0..n-1] into register iMem. 2273 ** 2274 ** Expr.u.zToken is always UTF8 and zero-terminated. 2275 */ 2276 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2277 Vdbe *v = pParse->pVdbe; 2278 if( pExpr->flags & EP_IntValue ){ 2279 int i = pExpr->u.iValue; 2280 assert( i>=0 ); 2281 if( negFlag ) i = -i; 2282 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2283 }else{ 2284 int c; 2285 i64 value; 2286 const char *z = pExpr->u.zToken; 2287 assert( z!=0 ); 2288 c = sqlite3DecOrHexToI64(z, &value); 2289 if( c==0 || (c==2 && negFlag) ){ 2290 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2291 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 2292 }else{ 2293 #ifdef SQLITE_OMIT_FLOATING_POINT 2294 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2295 #else 2296 #ifndef SQLITE_OMIT_HEX_INTEGER 2297 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2298 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2299 }else 2300 #endif 2301 { 2302 codeReal(v, z, negFlag, iMem); 2303 } 2304 #endif 2305 } 2306 } 2307 } 2308 2309 /* 2310 ** Clear a cache entry. 2311 */ 2312 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2313 if( p->tempReg ){ 2314 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2315 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2316 } 2317 p->tempReg = 0; 2318 } 2319 } 2320 2321 2322 /* 2323 ** Record in the column cache that a particular column from a 2324 ** particular table is stored in a particular register. 2325 */ 2326 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2327 int i; 2328 int minLru; 2329 int idxLru; 2330 struct yColCache *p; 2331 2332 /* Unless an error has occurred, register numbers are always positive. */ 2333 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 2334 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2335 2336 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2337 ** for testing only - to verify that SQLite always gets the same answer 2338 ** with and without the column cache. 2339 */ 2340 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2341 2342 /* First replace any existing entry. 2343 ** 2344 ** Actually, the way the column cache is currently used, we are guaranteed 2345 ** that the object will never already be in cache. Verify this guarantee. 2346 */ 2347 #ifndef NDEBUG 2348 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2349 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2350 } 2351 #endif 2352 2353 /* Find an empty slot and replace it */ 2354 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2355 if( p->iReg==0 ){ 2356 p->iLevel = pParse->iCacheLevel; 2357 p->iTable = iTab; 2358 p->iColumn = iCol; 2359 p->iReg = iReg; 2360 p->tempReg = 0; 2361 p->lru = pParse->iCacheCnt++; 2362 return; 2363 } 2364 } 2365 2366 /* Replace the last recently used */ 2367 minLru = 0x7fffffff; 2368 idxLru = -1; 2369 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2370 if( p->lru<minLru ){ 2371 idxLru = i; 2372 minLru = p->lru; 2373 } 2374 } 2375 if( ALWAYS(idxLru>=0) ){ 2376 p = &pParse->aColCache[idxLru]; 2377 p->iLevel = pParse->iCacheLevel; 2378 p->iTable = iTab; 2379 p->iColumn = iCol; 2380 p->iReg = iReg; 2381 p->tempReg = 0; 2382 p->lru = pParse->iCacheCnt++; 2383 return; 2384 } 2385 } 2386 2387 /* 2388 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2389 ** Purge the range of registers from the column cache. 2390 */ 2391 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2392 int i; 2393 int iLast = iReg + nReg - 1; 2394 struct yColCache *p; 2395 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2396 int r = p->iReg; 2397 if( r>=iReg && r<=iLast ){ 2398 cacheEntryClear(pParse, p); 2399 p->iReg = 0; 2400 } 2401 } 2402 } 2403 2404 /* 2405 ** Remember the current column cache context. Any new entries added 2406 ** added to the column cache after this call are removed when the 2407 ** corresponding pop occurs. 2408 */ 2409 void sqlite3ExprCachePush(Parse *pParse){ 2410 pParse->iCacheLevel++; 2411 #ifdef SQLITE_DEBUG 2412 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2413 printf("PUSH to %d\n", pParse->iCacheLevel); 2414 } 2415 #endif 2416 } 2417 2418 /* 2419 ** Remove from the column cache any entries that were added since the 2420 ** the previous sqlite3ExprCachePush operation. In other words, restore 2421 ** the cache to the state it was in prior the most recent Push. 2422 */ 2423 void sqlite3ExprCachePop(Parse *pParse){ 2424 int i; 2425 struct yColCache *p; 2426 assert( pParse->iCacheLevel>=1 ); 2427 pParse->iCacheLevel--; 2428 #ifdef SQLITE_DEBUG 2429 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2430 printf("POP to %d\n", pParse->iCacheLevel); 2431 } 2432 #endif 2433 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2434 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2435 cacheEntryClear(pParse, p); 2436 p->iReg = 0; 2437 } 2438 } 2439 } 2440 2441 /* 2442 ** When a cached column is reused, make sure that its register is 2443 ** no longer available as a temp register. ticket #3879: that same 2444 ** register might be in the cache in multiple places, so be sure to 2445 ** get them all. 2446 */ 2447 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2448 int i; 2449 struct yColCache *p; 2450 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2451 if( p->iReg==iReg ){ 2452 p->tempReg = 0; 2453 } 2454 } 2455 } 2456 2457 /* Generate code that will load into register regOut a value that is 2458 ** appropriate for the iIdxCol-th column of index pIdx. 2459 */ 2460 void sqlite3ExprCodeLoadIndexColumn( 2461 Parse *pParse, /* The parsing context */ 2462 Index *pIdx, /* The index whose column is to be loaded */ 2463 int iTabCur, /* Cursor pointing to a table row */ 2464 int iIdxCol, /* The column of the index to be loaded */ 2465 int regOut /* Store the index column value in this register */ 2466 ){ 2467 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 2468 if( iTabCol==XN_EXPR ){ 2469 assert( pIdx->aColExpr ); 2470 assert( pIdx->aColExpr->nExpr>iIdxCol ); 2471 pParse->iSelfTab = iTabCur; 2472 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 2473 }else{ 2474 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 2475 iTabCol, regOut); 2476 } 2477 } 2478 2479 /* 2480 ** Generate code to extract the value of the iCol-th column of a table. 2481 */ 2482 void sqlite3ExprCodeGetColumnOfTable( 2483 Vdbe *v, /* The VDBE under construction */ 2484 Table *pTab, /* The table containing the value */ 2485 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2486 int iCol, /* Index of the column to extract */ 2487 int regOut /* Extract the value into this register */ 2488 ){ 2489 if( iCol<0 || iCol==pTab->iPKey ){ 2490 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2491 }else{ 2492 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2493 int x = iCol; 2494 if( !HasRowid(pTab) ){ 2495 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2496 } 2497 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2498 } 2499 if( iCol>=0 ){ 2500 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2501 } 2502 } 2503 2504 /* 2505 ** Generate code that will extract the iColumn-th column from 2506 ** table pTab and store the column value in a register. 2507 ** 2508 ** An effort is made to store the column value in register iReg. This 2509 ** is not garanteeed for GetColumn() - the result can be stored in 2510 ** any register. But the result is guaranteed to land in register iReg 2511 ** for GetColumnToReg(). 2512 ** 2513 ** There must be an open cursor to pTab in iTable when this routine 2514 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2515 */ 2516 int sqlite3ExprCodeGetColumn( 2517 Parse *pParse, /* Parsing and code generating context */ 2518 Table *pTab, /* Description of the table we are reading from */ 2519 int iColumn, /* Index of the table column */ 2520 int iTable, /* The cursor pointing to the table */ 2521 int iReg, /* Store results here */ 2522 u8 p5 /* P5 value for OP_Column + FLAGS */ 2523 ){ 2524 Vdbe *v = pParse->pVdbe; 2525 int i; 2526 struct yColCache *p; 2527 2528 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2529 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2530 p->lru = pParse->iCacheCnt++; 2531 sqlite3ExprCachePinRegister(pParse, p->iReg); 2532 return p->iReg; 2533 } 2534 } 2535 assert( v!=0 ); 2536 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2537 if( p5 ){ 2538 sqlite3VdbeChangeP5(v, p5); 2539 }else{ 2540 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2541 } 2542 return iReg; 2543 } 2544 void sqlite3ExprCodeGetColumnToReg( 2545 Parse *pParse, /* Parsing and code generating context */ 2546 Table *pTab, /* Description of the table we are reading from */ 2547 int iColumn, /* Index of the table column */ 2548 int iTable, /* The cursor pointing to the table */ 2549 int iReg /* Store results here */ 2550 ){ 2551 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 2552 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 2553 } 2554 2555 2556 /* 2557 ** Clear all column cache entries. 2558 */ 2559 void sqlite3ExprCacheClear(Parse *pParse){ 2560 int i; 2561 struct yColCache *p; 2562 2563 #if SQLITE_DEBUG 2564 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2565 printf("CLEAR\n"); 2566 } 2567 #endif 2568 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2569 if( p->iReg ){ 2570 cacheEntryClear(pParse, p); 2571 p->iReg = 0; 2572 } 2573 } 2574 } 2575 2576 /* 2577 ** Record the fact that an affinity change has occurred on iCount 2578 ** registers starting with iStart. 2579 */ 2580 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2581 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2582 } 2583 2584 /* 2585 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2586 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2587 */ 2588 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2589 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2590 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2591 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 2592 } 2593 2594 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2595 /* 2596 ** Return true if any register in the range iFrom..iTo (inclusive) 2597 ** is used as part of the column cache. 2598 ** 2599 ** This routine is used within assert() and testcase() macros only 2600 ** and does not appear in a normal build. 2601 */ 2602 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2603 int i; 2604 struct yColCache *p; 2605 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2606 int r = p->iReg; 2607 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2608 } 2609 return 0; 2610 } 2611 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2612 2613 /* 2614 ** Convert an expression node to a TK_REGISTER 2615 */ 2616 static void exprToRegister(Expr *p, int iReg){ 2617 p->op2 = p->op; 2618 p->op = TK_REGISTER; 2619 p->iTable = iReg; 2620 ExprClearProperty(p, EP_Skip); 2621 } 2622 2623 /* 2624 ** Generate code into the current Vdbe to evaluate the given 2625 ** expression. Attempt to store the results in register "target". 2626 ** Return the register where results are stored. 2627 ** 2628 ** With this routine, there is no guarantee that results will 2629 ** be stored in target. The result might be stored in some other 2630 ** register if it is convenient to do so. The calling function 2631 ** must check the return code and move the results to the desired 2632 ** register. 2633 */ 2634 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2635 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2636 int op; /* The opcode being coded */ 2637 int inReg = target; /* Results stored in register inReg */ 2638 int regFree1 = 0; /* If non-zero free this temporary register */ 2639 int regFree2 = 0; /* If non-zero free this temporary register */ 2640 int r1, r2, r3, r4; /* Various register numbers */ 2641 sqlite3 *db = pParse->db; /* The database connection */ 2642 Expr tempX; /* Temporary expression node */ 2643 2644 assert( target>0 && target<=pParse->nMem ); 2645 if( v==0 ){ 2646 assert( pParse->db->mallocFailed ); 2647 return 0; 2648 } 2649 2650 if( pExpr==0 ){ 2651 op = TK_NULL; 2652 }else{ 2653 op = pExpr->op; 2654 } 2655 switch( op ){ 2656 case TK_AGG_COLUMN: { 2657 AggInfo *pAggInfo = pExpr->pAggInfo; 2658 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2659 if( !pAggInfo->directMode ){ 2660 assert( pCol->iMem>0 ); 2661 inReg = pCol->iMem; 2662 break; 2663 }else if( pAggInfo->useSortingIdx ){ 2664 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2665 pCol->iSorterColumn, target); 2666 break; 2667 } 2668 /* Otherwise, fall thru into the TK_COLUMN case */ 2669 } 2670 case TK_COLUMN: { 2671 int iTab = pExpr->iTable; 2672 if( iTab<0 ){ 2673 if( pParse->ckBase>0 ){ 2674 /* Generating CHECK constraints or inserting into partial index */ 2675 inReg = pExpr->iColumn + pParse->ckBase; 2676 break; 2677 }else{ 2678 /* Coding an expression that is part of an index where column names 2679 ** in the index refer to the table to which the index belongs */ 2680 iTab = pParse->iSelfTab; 2681 } 2682 } 2683 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2684 pExpr->iColumn, iTab, target, 2685 pExpr->op2); 2686 break; 2687 } 2688 case TK_INTEGER: { 2689 codeInteger(pParse, pExpr, 0, target); 2690 break; 2691 } 2692 #ifndef SQLITE_OMIT_FLOATING_POINT 2693 case TK_FLOAT: { 2694 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2695 codeReal(v, pExpr->u.zToken, 0, target); 2696 break; 2697 } 2698 #endif 2699 case TK_STRING: { 2700 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2701 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 2702 break; 2703 } 2704 case TK_NULL: { 2705 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2706 break; 2707 } 2708 #ifndef SQLITE_OMIT_BLOB_LITERAL 2709 case TK_BLOB: { 2710 int n; 2711 const char *z; 2712 char *zBlob; 2713 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2714 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2715 assert( pExpr->u.zToken[1]=='\'' ); 2716 z = &pExpr->u.zToken[2]; 2717 n = sqlite3Strlen30(z) - 1; 2718 assert( z[n]=='\'' ); 2719 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2720 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2721 break; 2722 } 2723 #endif 2724 case TK_VARIABLE: { 2725 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2726 assert( pExpr->u.zToken!=0 ); 2727 assert( pExpr->u.zToken[0]!=0 ); 2728 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2729 if( pExpr->u.zToken[1]!=0 ){ 2730 assert( pExpr->u.zToken[0]=='?' 2731 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2732 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2733 } 2734 break; 2735 } 2736 case TK_REGISTER: { 2737 inReg = pExpr->iTable; 2738 break; 2739 } 2740 #ifndef SQLITE_OMIT_CAST 2741 case TK_CAST: { 2742 /* Expressions of the form: CAST(pLeft AS token) */ 2743 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2744 if( inReg!=target ){ 2745 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2746 inReg = target; 2747 } 2748 sqlite3VdbeAddOp2(v, OP_Cast, target, 2749 sqlite3AffinityType(pExpr->u.zToken, 0)); 2750 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2751 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2752 break; 2753 } 2754 #endif /* SQLITE_OMIT_CAST */ 2755 case TK_LT: 2756 case TK_LE: 2757 case TK_GT: 2758 case TK_GE: 2759 case TK_NE: 2760 case TK_EQ: { 2761 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2762 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2763 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2764 r1, r2, inReg, SQLITE_STOREP2); 2765 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2766 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2767 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2768 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2769 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2770 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2771 testcase( regFree1==0 ); 2772 testcase( regFree2==0 ); 2773 break; 2774 } 2775 case TK_IS: 2776 case TK_ISNOT: { 2777 testcase( op==TK_IS ); 2778 testcase( op==TK_ISNOT ); 2779 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2780 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2781 op = (op==TK_IS) ? TK_EQ : TK_NE; 2782 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2783 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2784 VdbeCoverageIf(v, op==TK_EQ); 2785 VdbeCoverageIf(v, op==TK_NE); 2786 testcase( regFree1==0 ); 2787 testcase( regFree2==0 ); 2788 break; 2789 } 2790 case TK_AND: 2791 case TK_OR: 2792 case TK_PLUS: 2793 case TK_STAR: 2794 case TK_MINUS: 2795 case TK_REM: 2796 case TK_BITAND: 2797 case TK_BITOR: 2798 case TK_SLASH: 2799 case TK_LSHIFT: 2800 case TK_RSHIFT: 2801 case TK_CONCAT: { 2802 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2803 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2804 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2805 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2806 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2807 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2808 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2809 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2810 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2811 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2812 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2813 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2814 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2815 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2816 testcase( regFree1==0 ); 2817 testcase( regFree2==0 ); 2818 break; 2819 } 2820 case TK_UMINUS: { 2821 Expr *pLeft = pExpr->pLeft; 2822 assert( pLeft ); 2823 if( pLeft->op==TK_INTEGER ){ 2824 codeInteger(pParse, pLeft, 1, target); 2825 #ifndef SQLITE_OMIT_FLOATING_POINT 2826 }else if( pLeft->op==TK_FLOAT ){ 2827 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2828 codeReal(v, pLeft->u.zToken, 1, target); 2829 #endif 2830 }else{ 2831 tempX.op = TK_INTEGER; 2832 tempX.flags = EP_IntValue|EP_TokenOnly; 2833 tempX.u.iValue = 0; 2834 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2835 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2836 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2837 testcase( regFree2==0 ); 2838 } 2839 inReg = target; 2840 break; 2841 } 2842 case TK_BITNOT: 2843 case TK_NOT: { 2844 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2845 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2846 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2847 testcase( regFree1==0 ); 2848 inReg = target; 2849 sqlite3VdbeAddOp2(v, op, r1, inReg); 2850 break; 2851 } 2852 case TK_ISNULL: 2853 case TK_NOTNULL: { 2854 int addr; 2855 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2856 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2857 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2858 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2859 testcase( regFree1==0 ); 2860 addr = sqlite3VdbeAddOp1(v, op, r1); 2861 VdbeCoverageIf(v, op==TK_ISNULL); 2862 VdbeCoverageIf(v, op==TK_NOTNULL); 2863 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2864 sqlite3VdbeJumpHere(v, addr); 2865 break; 2866 } 2867 case TK_AGG_FUNCTION: { 2868 AggInfo *pInfo = pExpr->pAggInfo; 2869 if( pInfo==0 ){ 2870 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2871 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2872 }else{ 2873 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2874 } 2875 break; 2876 } 2877 case TK_FUNCTION: { 2878 ExprList *pFarg; /* List of function arguments */ 2879 int nFarg; /* Number of function arguments */ 2880 FuncDef *pDef; /* The function definition object */ 2881 int nId; /* Length of the function name in bytes */ 2882 const char *zId; /* The function name */ 2883 u32 constMask = 0; /* Mask of function arguments that are constant */ 2884 int i; /* Loop counter */ 2885 u8 enc = ENC(db); /* The text encoding used by this database */ 2886 CollSeq *pColl = 0; /* A collating sequence */ 2887 2888 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2889 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2890 pFarg = 0; 2891 }else{ 2892 pFarg = pExpr->x.pList; 2893 } 2894 nFarg = pFarg ? pFarg->nExpr : 0; 2895 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2896 zId = pExpr->u.zToken; 2897 nId = sqlite3Strlen30(zId); 2898 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2899 if( pDef==0 || pDef->xFinalize!=0 ){ 2900 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2901 break; 2902 } 2903 2904 /* Attempt a direct implementation of the built-in COALESCE() and 2905 ** IFNULL() functions. This avoids unnecessary evaluation of 2906 ** arguments past the first non-NULL argument. 2907 */ 2908 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2909 int endCoalesce = sqlite3VdbeMakeLabel(v); 2910 assert( nFarg>=2 ); 2911 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2912 for(i=1; i<nFarg; i++){ 2913 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2914 VdbeCoverage(v); 2915 sqlite3ExprCacheRemove(pParse, target, 1); 2916 sqlite3ExprCachePush(pParse); 2917 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2918 sqlite3ExprCachePop(pParse); 2919 } 2920 sqlite3VdbeResolveLabel(v, endCoalesce); 2921 break; 2922 } 2923 2924 /* The UNLIKELY() function is a no-op. The result is the value 2925 ** of the first argument. 2926 */ 2927 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2928 assert( nFarg>=1 ); 2929 inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 2930 break; 2931 } 2932 2933 for(i=0; i<nFarg; i++){ 2934 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2935 testcase( i==31 ); 2936 constMask |= MASKBIT32(i); 2937 } 2938 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2939 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2940 } 2941 } 2942 if( pFarg ){ 2943 if( constMask ){ 2944 r1 = pParse->nMem+1; 2945 pParse->nMem += nFarg; 2946 }else{ 2947 r1 = sqlite3GetTempRange(pParse, nFarg); 2948 } 2949 2950 /* For length() and typeof() functions with a column argument, 2951 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2952 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2953 ** loading. 2954 */ 2955 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2956 u8 exprOp; 2957 assert( nFarg==1 ); 2958 assert( pFarg->a[0].pExpr!=0 ); 2959 exprOp = pFarg->a[0].pExpr->op; 2960 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2961 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2962 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2963 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2964 pFarg->a[0].pExpr->op2 = 2965 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2966 } 2967 } 2968 2969 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2970 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 2971 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2972 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 2973 }else{ 2974 r1 = 0; 2975 } 2976 #ifndef SQLITE_OMIT_VIRTUALTABLE 2977 /* Possibly overload the function if the first argument is 2978 ** a virtual table column. 2979 ** 2980 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2981 ** second argument, not the first, as the argument to test to 2982 ** see if it is a column in a virtual table. This is done because 2983 ** the left operand of infix functions (the operand we want to 2984 ** control overloading) ends up as the second argument to the 2985 ** function. The expression "A glob B" is equivalent to 2986 ** "glob(B,A). We want to use the A in "A glob B" to test 2987 ** for function overloading. But we use the B term in "glob(B,A)". 2988 */ 2989 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2990 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2991 }else if( nFarg>0 ){ 2992 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2993 } 2994 #endif 2995 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2996 if( !pColl ) pColl = db->pDfltColl; 2997 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2998 } 2999 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, 3000 (char*)pDef, P4_FUNCDEF); 3001 sqlite3VdbeChangeP5(v, (u8)nFarg); 3002 if( nFarg && constMask==0 ){ 3003 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3004 } 3005 break; 3006 } 3007 #ifndef SQLITE_OMIT_SUBQUERY 3008 case TK_EXISTS: 3009 case TK_SELECT: { 3010 testcase( op==TK_EXISTS ); 3011 testcase( op==TK_SELECT ); 3012 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3013 break; 3014 } 3015 case TK_IN: { 3016 int destIfFalse = sqlite3VdbeMakeLabel(v); 3017 int destIfNull = sqlite3VdbeMakeLabel(v); 3018 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3019 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3020 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3021 sqlite3VdbeResolveLabel(v, destIfFalse); 3022 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3023 sqlite3VdbeResolveLabel(v, destIfNull); 3024 break; 3025 } 3026 #endif /* SQLITE_OMIT_SUBQUERY */ 3027 3028 3029 /* 3030 ** x BETWEEN y AND z 3031 ** 3032 ** This is equivalent to 3033 ** 3034 ** x>=y AND x<=z 3035 ** 3036 ** X is stored in pExpr->pLeft. 3037 ** Y is stored in pExpr->pList->a[0].pExpr. 3038 ** Z is stored in pExpr->pList->a[1].pExpr. 3039 */ 3040 case TK_BETWEEN: { 3041 Expr *pLeft = pExpr->pLeft; 3042 struct ExprList_item *pLItem = pExpr->x.pList->a; 3043 Expr *pRight = pLItem->pExpr; 3044 3045 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3046 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3047 testcase( regFree1==0 ); 3048 testcase( regFree2==0 ); 3049 r3 = sqlite3GetTempReg(pParse); 3050 r4 = sqlite3GetTempReg(pParse); 3051 codeCompare(pParse, pLeft, pRight, OP_Ge, 3052 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 3053 pLItem++; 3054 pRight = pLItem->pExpr; 3055 sqlite3ReleaseTempReg(pParse, regFree2); 3056 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3057 testcase( regFree2==0 ); 3058 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 3059 VdbeCoverage(v); 3060 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 3061 sqlite3ReleaseTempReg(pParse, r3); 3062 sqlite3ReleaseTempReg(pParse, r4); 3063 break; 3064 } 3065 case TK_COLLATE: 3066 case TK_UPLUS: { 3067 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3068 break; 3069 } 3070 3071 case TK_TRIGGER: { 3072 /* If the opcode is TK_TRIGGER, then the expression is a reference 3073 ** to a column in the new.* or old.* pseudo-tables available to 3074 ** trigger programs. In this case Expr.iTable is set to 1 for the 3075 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3076 ** is set to the column of the pseudo-table to read, or to -1 to 3077 ** read the rowid field. 3078 ** 3079 ** The expression is implemented using an OP_Param opcode. The p1 3080 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3081 ** to reference another column of the old.* pseudo-table, where 3082 ** i is the index of the column. For a new.rowid reference, p1 is 3083 ** set to (n+1), where n is the number of columns in each pseudo-table. 3084 ** For a reference to any other column in the new.* pseudo-table, p1 3085 ** is set to (n+2+i), where n and i are as defined previously. For 3086 ** example, if the table on which triggers are being fired is 3087 ** declared as: 3088 ** 3089 ** CREATE TABLE t1(a, b); 3090 ** 3091 ** Then p1 is interpreted as follows: 3092 ** 3093 ** p1==0 -> old.rowid p1==3 -> new.rowid 3094 ** p1==1 -> old.a p1==4 -> new.a 3095 ** p1==2 -> old.b p1==5 -> new.b 3096 */ 3097 Table *pTab = pExpr->pTab; 3098 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3099 3100 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3101 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3102 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3103 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3104 3105 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3106 VdbeComment((v, "%s.%s -> $%d", 3107 (pExpr->iTable ? "new" : "old"), 3108 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3109 target 3110 )); 3111 3112 #ifndef SQLITE_OMIT_FLOATING_POINT 3113 /* If the column has REAL affinity, it may currently be stored as an 3114 ** integer. Use OP_RealAffinity to make sure it is really real. 3115 ** 3116 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3117 ** floating point when extracting it from the record. */ 3118 if( pExpr->iColumn>=0 3119 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3120 ){ 3121 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3122 } 3123 #endif 3124 break; 3125 } 3126 3127 3128 /* 3129 ** Form A: 3130 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3131 ** 3132 ** Form B: 3133 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3134 ** 3135 ** Form A is can be transformed into the equivalent form B as follows: 3136 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3137 ** WHEN x=eN THEN rN ELSE y END 3138 ** 3139 ** X (if it exists) is in pExpr->pLeft. 3140 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3141 ** odd. The Y is also optional. If the number of elements in x.pList 3142 ** is even, then Y is omitted and the "otherwise" result is NULL. 3143 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3144 ** 3145 ** The result of the expression is the Ri for the first matching Ei, 3146 ** or if there is no matching Ei, the ELSE term Y, or if there is 3147 ** no ELSE term, NULL. 3148 */ 3149 default: assert( op==TK_CASE ); { 3150 int endLabel; /* GOTO label for end of CASE stmt */ 3151 int nextCase; /* GOTO label for next WHEN clause */ 3152 int nExpr; /* 2x number of WHEN terms */ 3153 int i; /* Loop counter */ 3154 ExprList *pEList; /* List of WHEN terms */ 3155 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3156 Expr opCompare; /* The X==Ei expression */ 3157 Expr *pX; /* The X expression */ 3158 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3159 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3160 3161 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3162 assert(pExpr->x.pList->nExpr > 0); 3163 pEList = pExpr->x.pList; 3164 aListelem = pEList->a; 3165 nExpr = pEList->nExpr; 3166 endLabel = sqlite3VdbeMakeLabel(v); 3167 if( (pX = pExpr->pLeft)!=0 ){ 3168 tempX = *pX; 3169 testcase( pX->op==TK_COLUMN ); 3170 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3171 testcase( regFree1==0 ); 3172 opCompare.op = TK_EQ; 3173 opCompare.pLeft = &tempX; 3174 pTest = &opCompare; 3175 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3176 ** The value in regFree1 might get SCopy-ed into the file result. 3177 ** So make sure that the regFree1 register is not reused for other 3178 ** purposes and possibly overwritten. */ 3179 regFree1 = 0; 3180 } 3181 for(i=0; i<nExpr-1; i=i+2){ 3182 sqlite3ExprCachePush(pParse); 3183 if( pX ){ 3184 assert( pTest!=0 ); 3185 opCompare.pRight = aListelem[i].pExpr; 3186 }else{ 3187 pTest = aListelem[i].pExpr; 3188 } 3189 nextCase = sqlite3VdbeMakeLabel(v); 3190 testcase( pTest->op==TK_COLUMN ); 3191 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3192 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3193 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3194 sqlite3VdbeGoto(v, endLabel); 3195 sqlite3ExprCachePop(pParse); 3196 sqlite3VdbeResolveLabel(v, nextCase); 3197 } 3198 if( (nExpr&1)!=0 ){ 3199 sqlite3ExprCachePush(pParse); 3200 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3201 sqlite3ExprCachePop(pParse); 3202 }else{ 3203 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3204 } 3205 assert( db->mallocFailed || pParse->nErr>0 3206 || pParse->iCacheLevel==iCacheLevel ); 3207 sqlite3VdbeResolveLabel(v, endLabel); 3208 break; 3209 } 3210 #ifndef SQLITE_OMIT_TRIGGER 3211 case TK_RAISE: { 3212 assert( pExpr->affinity==OE_Rollback 3213 || pExpr->affinity==OE_Abort 3214 || pExpr->affinity==OE_Fail 3215 || pExpr->affinity==OE_Ignore 3216 ); 3217 if( !pParse->pTriggerTab ){ 3218 sqlite3ErrorMsg(pParse, 3219 "RAISE() may only be used within a trigger-program"); 3220 return 0; 3221 } 3222 if( pExpr->affinity==OE_Abort ){ 3223 sqlite3MayAbort(pParse); 3224 } 3225 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3226 if( pExpr->affinity==OE_Ignore ){ 3227 sqlite3VdbeAddOp4( 3228 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3229 VdbeCoverage(v); 3230 }else{ 3231 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3232 pExpr->affinity, pExpr->u.zToken, 0, 0); 3233 } 3234 3235 break; 3236 } 3237 #endif 3238 } 3239 sqlite3ReleaseTempReg(pParse, regFree1); 3240 sqlite3ReleaseTempReg(pParse, regFree2); 3241 return inReg; 3242 } 3243 3244 /* 3245 ** Factor out the code of the given expression to initialization time. 3246 */ 3247 void sqlite3ExprCodeAtInit( 3248 Parse *pParse, /* Parsing context */ 3249 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3250 int regDest, /* Store the value in this register */ 3251 u8 reusable /* True if this expression is reusable */ 3252 ){ 3253 ExprList *p; 3254 assert( ConstFactorOk(pParse) ); 3255 p = pParse->pConstExpr; 3256 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3257 p = sqlite3ExprListAppend(pParse, p, pExpr); 3258 if( p ){ 3259 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3260 pItem->u.iConstExprReg = regDest; 3261 pItem->reusable = reusable; 3262 } 3263 pParse->pConstExpr = p; 3264 } 3265 3266 /* 3267 ** Generate code to evaluate an expression and store the results 3268 ** into a register. Return the register number where the results 3269 ** are stored. 3270 ** 3271 ** If the register is a temporary register that can be deallocated, 3272 ** then write its number into *pReg. If the result register is not 3273 ** a temporary, then set *pReg to zero. 3274 ** 3275 ** If pExpr is a constant, then this routine might generate this 3276 ** code to fill the register in the initialization section of the 3277 ** VDBE program, in order to factor it out of the evaluation loop. 3278 */ 3279 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3280 int r2; 3281 pExpr = sqlite3ExprSkipCollate(pExpr); 3282 if( ConstFactorOk(pParse) 3283 && pExpr->op!=TK_REGISTER 3284 && sqlite3ExprIsConstantNotJoin(pExpr) 3285 ){ 3286 ExprList *p = pParse->pConstExpr; 3287 int i; 3288 *pReg = 0; 3289 if( p ){ 3290 struct ExprList_item *pItem; 3291 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3292 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3293 return pItem->u.iConstExprReg; 3294 } 3295 } 3296 } 3297 r2 = ++pParse->nMem; 3298 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3299 }else{ 3300 int r1 = sqlite3GetTempReg(pParse); 3301 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3302 if( r2==r1 ){ 3303 *pReg = r1; 3304 }else{ 3305 sqlite3ReleaseTempReg(pParse, r1); 3306 *pReg = 0; 3307 } 3308 } 3309 return r2; 3310 } 3311 3312 /* 3313 ** Generate code that will evaluate expression pExpr and store the 3314 ** results in register target. The results are guaranteed to appear 3315 ** in register target. 3316 */ 3317 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3318 int inReg; 3319 3320 assert( target>0 && target<=pParse->nMem ); 3321 if( pExpr && pExpr->op==TK_REGISTER ){ 3322 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3323 }else{ 3324 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3325 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 3326 if( inReg!=target && pParse->pVdbe ){ 3327 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3328 } 3329 } 3330 } 3331 3332 /* 3333 ** Make a transient copy of expression pExpr and then code it using 3334 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 3335 ** except that the input expression is guaranteed to be unchanged. 3336 */ 3337 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 3338 sqlite3 *db = pParse->db; 3339 pExpr = sqlite3ExprDup(db, pExpr, 0); 3340 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 3341 sqlite3ExprDelete(db, pExpr); 3342 } 3343 3344 /* 3345 ** Generate code that will evaluate expression pExpr and store the 3346 ** results in register target. The results are guaranteed to appear 3347 ** in register target. If the expression is constant, then this routine 3348 ** might choose to code the expression at initialization time. 3349 */ 3350 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3351 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3352 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3353 }else{ 3354 sqlite3ExprCode(pParse, pExpr, target); 3355 } 3356 } 3357 3358 /* 3359 ** Generate code that evaluates the given expression and puts the result 3360 ** in register target. 3361 ** 3362 ** Also make a copy of the expression results into another "cache" register 3363 ** and modify the expression so that the next time it is evaluated, 3364 ** the result is a copy of the cache register. 3365 ** 3366 ** This routine is used for expressions that are used multiple 3367 ** times. They are evaluated once and the results of the expression 3368 ** are reused. 3369 */ 3370 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3371 Vdbe *v = pParse->pVdbe; 3372 int iMem; 3373 3374 assert( target>0 ); 3375 assert( pExpr->op!=TK_REGISTER ); 3376 sqlite3ExprCode(pParse, pExpr, target); 3377 iMem = ++pParse->nMem; 3378 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3379 exprToRegister(pExpr, iMem); 3380 } 3381 3382 /* 3383 ** Generate code that pushes the value of every element of the given 3384 ** expression list into a sequence of registers beginning at target. 3385 ** 3386 ** Return the number of elements evaluated. 3387 ** 3388 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3389 ** filled using OP_SCopy. OP_Copy must be used instead. 3390 ** 3391 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3392 ** factored out into initialization code. 3393 ** 3394 ** The SQLITE_ECEL_REF flag means that expressions in the list with 3395 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 3396 ** in registers at srcReg, and so the value can be copied from there. 3397 */ 3398 int sqlite3ExprCodeExprList( 3399 Parse *pParse, /* Parsing context */ 3400 ExprList *pList, /* The expression list to be coded */ 3401 int target, /* Where to write results */ 3402 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 3403 u8 flags /* SQLITE_ECEL_* flags */ 3404 ){ 3405 struct ExprList_item *pItem; 3406 int i, j, n; 3407 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3408 Vdbe *v = pParse->pVdbe; 3409 assert( pList!=0 ); 3410 assert( target>0 ); 3411 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3412 n = pList->nExpr; 3413 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3414 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3415 Expr *pExpr = pItem->pExpr; 3416 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){ 3417 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 3418 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3419 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3420 }else{ 3421 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3422 if( inReg!=target+i ){ 3423 VdbeOp *pOp; 3424 if( copyOp==OP_Copy 3425 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3426 && pOp->p1+pOp->p3+1==inReg 3427 && pOp->p2+pOp->p3+1==target+i 3428 ){ 3429 pOp->p3++; 3430 }else{ 3431 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3432 } 3433 } 3434 } 3435 } 3436 return n; 3437 } 3438 3439 /* 3440 ** Generate code for a BETWEEN operator. 3441 ** 3442 ** x BETWEEN y AND z 3443 ** 3444 ** The above is equivalent to 3445 ** 3446 ** x>=y AND x<=z 3447 ** 3448 ** Code it as such, taking care to do the common subexpression 3449 ** elimination of x. 3450 */ 3451 static void exprCodeBetween( 3452 Parse *pParse, /* Parsing and code generating context */ 3453 Expr *pExpr, /* The BETWEEN expression */ 3454 int dest, /* Jump here if the jump is taken */ 3455 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3456 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3457 ){ 3458 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3459 Expr compLeft; /* The x>=y term */ 3460 Expr compRight; /* The x<=z term */ 3461 Expr exprX; /* The x subexpression */ 3462 int regFree1 = 0; /* Temporary use register */ 3463 3464 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3465 exprX = *pExpr->pLeft; 3466 exprAnd.op = TK_AND; 3467 exprAnd.pLeft = &compLeft; 3468 exprAnd.pRight = &compRight; 3469 compLeft.op = TK_GE; 3470 compLeft.pLeft = &exprX; 3471 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3472 compRight.op = TK_LE; 3473 compRight.pLeft = &exprX; 3474 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3475 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3476 if( jumpIfTrue ){ 3477 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3478 }else{ 3479 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3480 } 3481 sqlite3ReleaseTempReg(pParse, regFree1); 3482 3483 /* Ensure adequate test coverage */ 3484 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3485 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3486 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3487 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3488 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3489 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3490 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3491 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3492 } 3493 3494 /* 3495 ** Generate code for a boolean expression such that a jump is made 3496 ** to the label "dest" if the expression is true but execution 3497 ** continues straight thru if the expression is false. 3498 ** 3499 ** If the expression evaluates to NULL (neither true nor false), then 3500 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3501 ** 3502 ** This code depends on the fact that certain token values (ex: TK_EQ) 3503 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3504 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3505 ** the make process cause these values to align. Assert()s in the code 3506 ** below verify that the numbers are aligned correctly. 3507 */ 3508 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3509 Vdbe *v = pParse->pVdbe; 3510 int op = 0; 3511 int regFree1 = 0; 3512 int regFree2 = 0; 3513 int r1, r2; 3514 3515 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3516 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3517 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3518 op = pExpr->op; 3519 switch( op ){ 3520 case TK_AND: { 3521 int d2 = sqlite3VdbeMakeLabel(v); 3522 testcase( jumpIfNull==0 ); 3523 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3524 sqlite3ExprCachePush(pParse); 3525 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3526 sqlite3VdbeResolveLabel(v, d2); 3527 sqlite3ExprCachePop(pParse); 3528 break; 3529 } 3530 case TK_OR: { 3531 testcase( jumpIfNull==0 ); 3532 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3533 sqlite3ExprCachePush(pParse); 3534 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3535 sqlite3ExprCachePop(pParse); 3536 break; 3537 } 3538 case TK_NOT: { 3539 testcase( jumpIfNull==0 ); 3540 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3541 break; 3542 } 3543 case TK_LT: 3544 case TK_LE: 3545 case TK_GT: 3546 case TK_GE: 3547 case TK_NE: 3548 case TK_EQ: { 3549 testcase( jumpIfNull==0 ); 3550 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3551 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3552 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3553 r1, r2, dest, jumpIfNull); 3554 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3555 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3556 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3557 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3558 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3559 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3560 testcase( regFree1==0 ); 3561 testcase( regFree2==0 ); 3562 break; 3563 } 3564 case TK_IS: 3565 case TK_ISNOT: { 3566 testcase( op==TK_IS ); 3567 testcase( op==TK_ISNOT ); 3568 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3569 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3570 op = (op==TK_IS) ? TK_EQ : TK_NE; 3571 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3572 r1, r2, dest, SQLITE_NULLEQ); 3573 VdbeCoverageIf(v, op==TK_EQ); 3574 VdbeCoverageIf(v, op==TK_NE); 3575 testcase( regFree1==0 ); 3576 testcase( regFree2==0 ); 3577 break; 3578 } 3579 case TK_ISNULL: 3580 case TK_NOTNULL: { 3581 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3582 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3583 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3584 sqlite3VdbeAddOp2(v, op, r1, dest); 3585 VdbeCoverageIf(v, op==TK_ISNULL); 3586 VdbeCoverageIf(v, op==TK_NOTNULL); 3587 testcase( regFree1==0 ); 3588 break; 3589 } 3590 case TK_BETWEEN: { 3591 testcase( jumpIfNull==0 ); 3592 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3593 break; 3594 } 3595 #ifndef SQLITE_OMIT_SUBQUERY 3596 case TK_IN: { 3597 int destIfFalse = sqlite3VdbeMakeLabel(v); 3598 int destIfNull = jumpIfNull ? dest : destIfFalse; 3599 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3600 sqlite3VdbeGoto(v, dest); 3601 sqlite3VdbeResolveLabel(v, destIfFalse); 3602 break; 3603 } 3604 #endif 3605 default: { 3606 if( exprAlwaysTrue(pExpr) ){ 3607 sqlite3VdbeGoto(v, dest); 3608 }else if( exprAlwaysFalse(pExpr) ){ 3609 /* No-op */ 3610 }else{ 3611 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3612 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3613 VdbeCoverage(v); 3614 testcase( regFree1==0 ); 3615 testcase( jumpIfNull==0 ); 3616 } 3617 break; 3618 } 3619 } 3620 sqlite3ReleaseTempReg(pParse, regFree1); 3621 sqlite3ReleaseTempReg(pParse, regFree2); 3622 } 3623 3624 /* 3625 ** Generate code for a boolean expression such that a jump is made 3626 ** to the label "dest" if the expression is false but execution 3627 ** continues straight thru if the expression is true. 3628 ** 3629 ** If the expression evaluates to NULL (neither true nor false) then 3630 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3631 ** is 0. 3632 */ 3633 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3634 Vdbe *v = pParse->pVdbe; 3635 int op = 0; 3636 int regFree1 = 0; 3637 int regFree2 = 0; 3638 int r1, r2; 3639 3640 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3641 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3642 if( pExpr==0 ) return; 3643 3644 /* The value of pExpr->op and op are related as follows: 3645 ** 3646 ** pExpr->op op 3647 ** --------- ---------- 3648 ** TK_ISNULL OP_NotNull 3649 ** TK_NOTNULL OP_IsNull 3650 ** TK_NE OP_Eq 3651 ** TK_EQ OP_Ne 3652 ** TK_GT OP_Le 3653 ** TK_LE OP_Gt 3654 ** TK_GE OP_Lt 3655 ** TK_LT OP_Ge 3656 ** 3657 ** For other values of pExpr->op, op is undefined and unused. 3658 ** The value of TK_ and OP_ constants are arranged such that we 3659 ** can compute the mapping above using the following expression. 3660 ** Assert()s verify that the computation is correct. 3661 */ 3662 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3663 3664 /* Verify correct alignment of TK_ and OP_ constants 3665 */ 3666 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3667 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3668 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3669 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3670 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3671 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3672 assert( pExpr->op!=TK_GT || op==OP_Le ); 3673 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3674 3675 switch( pExpr->op ){ 3676 case TK_AND: { 3677 testcase( jumpIfNull==0 ); 3678 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3679 sqlite3ExprCachePush(pParse); 3680 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3681 sqlite3ExprCachePop(pParse); 3682 break; 3683 } 3684 case TK_OR: { 3685 int d2 = sqlite3VdbeMakeLabel(v); 3686 testcase( jumpIfNull==0 ); 3687 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3688 sqlite3ExprCachePush(pParse); 3689 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3690 sqlite3VdbeResolveLabel(v, d2); 3691 sqlite3ExprCachePop(pParse); 3692 break; 3693 } 3694 case TK_NOT: { 3695 testcase( jumpIfNull==0 ); 3696 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3697 break; 3698 } 3699 case TK_LT: 3700 case TK_LE: 3701 case TK_GT: 3702 case TK_GE: 3703 case TK_NE: 3704 case TK_EQ: { 3705 testcase( jumpIfNull==0 ); 3706 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3707 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3708 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3709 r1, r2, dest, jumpIfNull); 3710 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3711 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3712 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3713 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3714 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3715 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3716 testcase( regFree1==0 ); 3717 testcase( regFree2==0 ); 3718 break; 3719 } 3720 case TK_IS: 3721 case TK_ISNOT: { 3722 testcase( pExpr->op==TK_IS ); 3723 testcase( pExpr->op==TK_ISNOT ); 3724 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3725 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3726 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3727 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3728 r1, r2, dest, SQLITE_NULLEQ); 3729 VdbeCoverageIf(v, op==TK_EQ); 3730 VdbeCoverageIf(v, op==TK_NE); 3731 testcase( regFree1==0 ); 3732 testcase( regFree2==0 ); 3733 break; 3734 } 3735 case TK_ISNULL: 3736 case TK_NOTNULL: { 3737 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3738 sqlite3VdbeAddOp2(v, op, r1, dest); 3739 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3740 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3741 testcase( regFree1==0 ); 3742 break; 3743 } 3744 case TK_BETWEEN: { 3745 testcase( jumpIfNull==0 ); 3746 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3747 break; 3748 } 3749 #ifndef SQLITE_OMIT_SUBQUERY 3750 case TK_IN: { 3751 if( jumpIfNull ){ 3752 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3753 }else{ 3754 int destIfNull = sqlite3VdbeMakeLabel(v); 3755 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3756 sqlite3VdbeResolveLabel(v, destIfNull); 3757 } 3758 break; 3759 } 3760 #endif 3761 default: { 3762 if( exprAlwaysFalse(pExpr) ){ 3763 sqlite3VdbeGoto(v, dest); 3764 }else if( exprAlwaysTrue(pExpr) ){ 3765 /* no-op */ 3766 }else{ 3767 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3768 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3769 VdbeCoverage(v); 3770 testcase( regFree1==0 ); 3771 testcase( jumpIfNull==0 ); 3772 } 3773 break; 3774 } 3775 } 3776 sqlite3ReleaseTempReg(pParse, regFree1); 3777 sqlite3ReleaseTempReg(pParse, regFree2); 3778 } 3779 3780 /* 3781 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 3782 ** code generation, and that copy is deleted after code generation. This 3783 ** ensures that the original pExpr is unchanged. 3784 */ 3785 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 3786 sqlite3 *db = pParse->db; 3787 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 3788 if( db->mallocFailed==0 ){ 3789 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 3790 } 3791 sqlite3ExprDelete(db, pCopy); 3792 } 3793 3794 3795 /* 3796 ** Do a deep comparison of two expression trees. Return 0 if the two 3797 ** expressions are completely identical. Return 1 if they differ only 3798 ** by a COLLATE operator at the top level. Return 2 if there are differences 3799 ** other than the top-level COLLATE operator. 3800 ** 3801 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3802 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3803 ** 3804 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3805 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3806 ** 3807 ** Sometimes this routine will return 2 even if the two expressions 3808 ** really are equivalent. If we cannot prove that the expressions are 3809 ** identical, we return 2 just to be safe. So if this routine 3810 ** returns 2, then you do not really know for certain if the two 3811 ** expressions are the same. But if you get a 0 or 1 return, then you 3812 ** can be sure the expressions are the same. In the places where 3813 ** this routine is used, it does not hurt to get an extra 2 - that 3814 ** just might result in some slightly slower code. But returning 3815 ** an incorrect 0 or 1 could lead to a malfunction. 3816 */ 3817 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3818 u32 combinedFlags; 3819 if( pA==0 || pB==0 ){ 3820 return pB==pA ? 0 : 2; 3821 } 3822 combinedFlags = pA->flags | pB->flags; 3823 if( combinedFlags & EP_IntValue ){ 3824 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3825 return 0; 3826 } 3827 return 2; 3828 } 3829 if( pA->op!=pB->op ){ 3830 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3831 return 1; 3832 } 3833 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3834 return 1; 3835 } 3836 return 2; 3837 } 3838 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 3839 if( pA->op==TK_FUNCTION ){ 3840 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 3841 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3842 return pA->op==TK_COLLATE ? 1 : 2; 3843 } 3844 } 3845 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3846 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3847 if( combinedFlags & EP_xIsSelect ) return 2; 3848 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3849 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3850 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3851 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 3852 if( pA->iColumn!=pB->iColumn ) return 2; 3853 if( pA->iTable!=pB->iTable 3854 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3855 } 3856 } 3857 return 0; 3858 } 3859 3860 /* 3861 ** Compare two ExprList objects. Return 0 if they are identical and 3862 ** non-zero if they differ in any way. 3863 ** 3864 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3865 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3866 ** 3867 ** This routine might return non-zero for equivalent ExprLists. The 3868 ** only consequence will be disabled optimizations. But this routine 3869 ** must never return 0 if the two ExprList objects are different, or 3870 ** a malfunction will result. 3871 ** 3872 ** Two NULL pointers are considered to be the same. But a NULL pointer 3873 ** always differs from a non-NULL pointer. 3874 */ 3875 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3876 int i; 3877 if( pA==0 && pB==0 ) return 0; 3878 if( pA==0 || pB==0 ) return 1; 3879 if( pA->nExpr!=pB->nExpr ) return 1; 3880 for(i=0; i<pA->nExpr; i++){ 3881 Expr *pExprA = pA->a[i].pExpr; 3882 Expr *pExprB = pB->a[i].pExpr; 3883 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3884 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3885 } 3886 return 0; 3887 } 3888 3889 /* 3890 ** Return true if we can prove the pE2 will always be true if pE1 is 3891 ** true. Return false if we cannot complete the proof or if pE2 might 3892 ** be false. Examples: 3893 ** 3894 ** pE1: x==5 pE2: x==5 Result: true 3895 ** pE1: x>0 pE2: x==5 Result: false 3896 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3897 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3898 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 3899 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 3900 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 3901 ** 3902 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 3903 ** Expr.iTable<0 then assume a table number given by iTab. 3904 ** 3905 ** When in doubt, return false. Returning true might give a performance 3906 ** improvement. Returning false might cause a performance reduction, but 3907 ** it will always give the correct answer and is hence always safe. 3908 */ 3909 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 3910 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 3911 return 1; 3912 } 3913 if( pE2->op==TK_OR 3914 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 3915 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 3916 ){ 3917 return 1; 3918 } 3919 if( pE2->op==TK_NOTNULL 3920 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 3921 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 3922 ){ 3923 return 1; 3924 } 3925 return 0; 3926 } 3927 3928 /* 3929 ** An instance of the following structure is used by the tree walker 3930 ** to count references to table columns in the arguments of an 3931 ** aggregate function, in order to implement the 3932 ** sqlite3FunctionThisSrc() routine. 3933 */ 3934 struct SrcCount { 3935 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3936 int nThis; /* Number of references to columns in pSrcList */ 3937 int nOther; /* Number of references to columns in other FROM clauses */ 3938 }; 3939 3940 /* 3941 ** Count the number of references to columns. 3942 */ 3943 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3944 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3945 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3946 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3947 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3948 ** NEVER() will need to be removed. */ 3949 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3950 int i; 3951 struct SrcCount *p = pWalker->u.pSrcCount; 3952 SrcList *pSrc = p->pSrc; 3953 int nSrc = pSrc ? pSrc->nSrc : 0; 3954 for(i=0; i<nSrc; i++){ 3955 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3956 } 3957 if( i<nSrc ){ 3958 p->nThis++; 3959 }else{ 3960 p->nOther++; 3961 } 3962 } 3963 return WRC_Continue; 3964 } 3965 3966 /* 3967 ** Determine if any of the arguments to the pExpr Function reference 3968 ** pSrcList. Return true if they do. Also return true if the function 3969 ** has no arguments or has only constant arguments. Return false if pExpr 3970 ** references columns but not columns of tables found in pSrcList. 3971 */ 3972 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 3973 Walker w; 3974 struct SrcCount cnt; 3975 assert( pExpr->op==TK_AGG_FUNCTION ); 3976 memset(&w, 0, sizeof(w)); 3977 w.xExprCallback = exprSrcCount; 3978 w.u.pSrcCount = &cnt; 3979 cnt.pSrc = pSrcList; 3980 cnt.nThis = 0; 3981 cnt.nOther = 0; 3982 sqlite3WalkExprList(&w, pExpr->x.pList); 3983 return cnt.nThis>0 || cnt.nOther==0; 3984 } 3985 3986 /* 3987 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3988 ** the new element. Return a negative number if malloc fails. 3989 */ 3990 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3991 int i; 3992 pInfo->aCol = sqlite3ArrayAllocate( 3993 db, 3994 pInfo->aCol, 3995 sizeof(pInfo->aCol[0]), 3996 &pInfo->nColumn, 3997 &i 3998 ); 3999 return i; 4000 } 4001 4002 /* 4003 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4004 ** the new element. Return a negative number if malloc fails. 4005 */ 4006 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4007 int i; 4008 pInfo->aFunc = sqlite3ArrayAllocate( 4009 db, 4010 pInfo->aFunc, 4011 sizeof(pInfo->aFunc[0]), 4012 &pInfo->nFunc, 4013 &i 4014 ); 4015 return i; 4016 } 4017 4018 /* 4019 ** This is the xExprCallback for a tree walker. It is used to 4020 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4021 ** for additional information. 4022 */ 4023 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4024 int i; 4025 NameContext *pNC = pWalker->u.pNC; 4026 Parse *pParse = pNC->pParse; 4027 SrcList *pSrcList = pNC->pSrcList; 4028 AggInfo *pAggInfo = pNC->pAggInfo; 4029 4030 switch( pExpr->op ){ 4031 case TK_AGG_COLUMN: 4032 case TK_COLUMN: { 4033 testcase( pExpr->op==TK_AGG_COLUMN ); 4034 testcase( pExpr->op==TK_COLUMN ); 4035 /* Check to see if the column is in one of the tables in the FROM 4036 ** clause of the aggregate query */ 4037 if( ALWAYS(pSrcList!=0) ){ 4038 struct SrcList_item *pItem = pSrcList->a; 4039 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4040 struct AggInfo_col *pCol; 4041 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4042 if( pExpr->iTable==pItem->iCursor ){ 4043 /* If we reach this point, it means that pExpr refers to a table 4044 ** that is in the FROM clause of the aggregate query. 4045 ** 4046 ** Make an entry for the column in pAggInfo->aCol[] if there 4047 ** is not an entry there already. 4048 */ 4049 int k; 4050 pCol = pAggInfo->aCol; 4051 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4052 if( pCol->iTable==pExpr->iTable && 4053 pCol->iColumn==pExpr->iColumn ){ 4054 break; 4055 } 4056 } 4057 if( (k>=pAggInfo->nColumn) 4058 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4059 ){ 4060 pCol = &pAggInfo->aCol[k]; 4061 pCol->pTab = pExpr->pTab; 4062 pCol->iTable = pExpr->iTable; 4063 pCol->iColumn = pExpr->iColumn; 4064 pCol->iMem = ++pParse->nMem; 4065 pCol->iSorterColumn = -1; 4066 pCol->pExpr = pExpr; 4067 if( pAggInfo->pGroupBy ){ 4068 int j, n; 4069 ExprList *pGB = pAggInfo->pGroupBy; 4070 struct ExprList_item *pTerm = pGB->a; 4071 n = pGB->nExpr; 4072 for(j=0; j<n; j++, pTerm++){ 4073 Expr *pE = pTerm->pExpr; 4074 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4075 pE->iColumn==pExpr->iColumn ){ 4076 pCol->iSorterColumn = j; 4077 break; 4078 } 4079 } 4080 } 4081 if( pCol->iSorterColumn<0 ){ 4082 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4083 } 4084 } 4085 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4086 ** because it was there before or because we just created it). 4087 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4088 ** pAggInfo->aCol[] entry. 4089 */ 4090 ExprSetVVAProperty(pExpr, EP_NoReduce); 4091 pExpr->pAggInfo = pAggInfo; 4092 pExpr->op = TK_AGG_COLUMN; 4093 pExpr->iAgg = (i16)k; 4094 break; 4095 } /* endif pExpr->iTable==pItem->iCursor */ 4096 } /* end loop over pSrcList */ 4097 } 4098 return WRC_Prune; 4099 } 4100 case TK_AGG_FUNCTION: { 4101 if( (pNC->ncFlags & NC_InAggFunc)==0 4102 && pWalker->walkerDepth==pExpr->op2 4103 ){ 4104 /* Check to see if pExpr is a duplicate of another aggregate 4105 ** function that is already in the pAggInfo structure 4106 */ 4107 struct AggInfo_func *pItem = pAggInfo->aFunc; 4108 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4109 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4110 break; 4111 } 4112 } 4113 if( i>=pAggInfo->nFunc ){ 4114 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4115 */ 4116 u8 enc = ENC(pParse->db); 4117 i = addAggInfoFunc(pParse->db, pAggInfo); 4118 if( i>=0 ){ 4119 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4120 pItem = &pAggInfo->aFunc[i]; 4121 pItem->pExpr = pExpr; 4122 pItem->iMem = ++pParse->nMem; 4123 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4124 pItem->pFunc = sqlite3FindFunction(pParse->db, 4125 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4126 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4127 if( pExpr->flags & EP_Distinct ){ 4128 pItem->iDistinct = pParse->nTab++; 4129 }else{ 4130 pItem->iDistinct = -1; 4131 } 4132 } 4133 } 4134 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4135 */ 4136 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4137 ExprSetVVAProperty(pExpr, EP_NoReduce); 4138 pExpr->iAgg = (i16)i; 4139 pExpr->pAggInfo = pAggInfo; 4140 return WRC_Prune; 4141 }else{ 4142 return WRC_Continue; 4143 } 4144 } 4145 } 4146 return WRC_Continue; 4147 } 4148 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4149 UNUSED_PARAMETER(pWalker); 4150 UNUSED_PARAMETER(pSelect); 4151 return WRC_Continue; 4152 } 4153 4154 /* 4155 ** Analyze the pExpr expression looking for aggregate functions and 4156 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4157 ** points to. Additional entries are made on the AggInfo object as 4158 ** necessary. 4159 ** 4160 ** This routine should only be called after the expression has been 4161 ** analyzed by sqlite3ResolveExprNames(). 4162 */ 4163 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4164 Walker w; 4165 memset(&w, 0, sizeof(w)); 4166 w.xExprCallback = analyzeAggregate; 4167 w.xSelectCallback = analyzeAggregatesInSelect; 4168 w.u.pNC = pNC; 4169 assert( pNC->pSrcList!=0 ); 4170 sqlite3WalkExpr(&w, pExpr); 4171 } 4172 4173 /* 4174 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4175 ** expression list. Return the number of errors. 4176 ** 4177 ** If an error is found, the analysis is cut short. 4178 */ 4179 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4180 struct ExprList_item *pItem; 4181 int i; 4182 if( pList ){ 4183 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4184 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4185 } 4186 } 4187 } 4188 4189 /* 4190 ** Allocate a single new register for use to hold some intermediate result. 4191 */ 4192 int sqlite3GetTempReg(Parse *pParse){ 4193 if( pParse->nTempReg==0 ){ 4194 return ++pParse->nMem; 4195 } 4196 return pParse->aTempReg[--pParse->nTempReg]; 4197 } 4198 4199 /* 4200 ** Deallocate a register, making available for reuse for some other 4201 ** purpose. 4202 ** 4203 ** If a register is currently being used by the column cache, then 4204 ** the deallocation is deferred until the column cache line that uses 4205 ** the register becomes stale. 4206 */ 4207 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4208 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4209 int i; 4210 struct yColCache *p; 4211 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4212 if( p->iReg==iReg ){ 4213 p->tempReg = 1; 4214 return; 4215 } 4216 } 4217 pParse->aTempReg[pParse->nTempReg++] = iReg; 4218 } 4219 } 4220 4221 /* 4222 ** Allocate or deallocate a block of nReg consecutive registers 4223 */ 4224 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4225 int i, n; 4226 i = pParse->iRangeReg; 4227 n = pParse->nRangeReg; 4228 if( nReg<=n ){ 4229 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4230 pParse->iRangeReg += nReg; 4231 pParse->nRangeReg -= nReg; 4232 }else{ 4233 i = pParse->nMem+1; 4234 pParse->nMem += nReg; 4235 } 4236 return i; 4237 } 4238 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4239 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4240 if( nReg>pParse->nRangeReg ){ 4241 pParse->nRangeReg = nReg; 4242 pParse->iRangeReg = iReg; 4243 } 4244 } 4245 4246 /* 4247 ** Mark all temporary registers as being unavailable for reuse. 4248 */ 4249 void sqlite3ClearTempRegCache(Parse *pParse){ 4250 pParse->nTempReg = 0; 4251 pParse->nRangeReg = 0; 4252 } 4253