1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; 26 return pTab->aCol[iCol].affinity; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( op==TK_COLUMN || op==TK_AGG_COLUMN ){ 57 assert( ExprUseYTab(pExpr) ); 58 if( pExpr->y.pTab ){ 59 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 60 } 61 } 62 if( op==TK_SELECT ){ 63 assert( ExprUseXSelect(pExpr) ); 64 assert( pExpr->x.pSelect!=0 ); 65 assert( pExpr->x.pSelect->pEList!=0 ); 66 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 67 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 68 } 69 #ifndef SQLITE_OMIT_CAST 70 if( op==TK_CAST ){ 71 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 72 return sqlite3AffinityType(pExpr->u.zToken, 0); 73 } 74 #endif 75 if( op==TK_SELECT_COLUMN ){ 76 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); 77 assert( pExpr->iColumn < pExpr->iTable ); 78 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 79 return sqlite3ExprAffinity( 80 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 81 ); 82 } 83 if( op==TK_VECTOR ){ 84 assert( ExprUseXList(pExpr) ); 85 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 86 } 87 return pExpr->affExpr; 88 } 89 90 /* 91 ** Set the collating sequence for expression pExpr to be the collating 92 ** sequence named by pToken. Return a pointer to a new Expr node that 93 ** implements the COLLATE operator. 94 ** 95 ** If a memory allocation error occurs, that fact is recorded in pParse->db 96 ** and the pExpr parameter is returned unchanged. 97 */ 98 Expr *sqlite3ExprAddCollateToken( 99 const Parse *pParse, /* Parsing context */ 100 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 101 const Token *pCollName, /* Name of collating sequence */ 102 int dequote /* True to dequote pCollName */ 103 ){ 104 if( pCollName->n>0 ){ 105 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 106 if( pNew ){ 107 pNew->pLeft = pExpr; 108 pNew->flags |= EP_Collate|EP_Skip; 109 pExpr = pNew; 110 } 111 } 112 return pExpr; 113 } 114 Expr *sqlite3ExprAddCollateString( 115 const Parse *pParse, /* Parsing context */ 116 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 117 const char *zC /* The collating sequence name */ 118 ){ 119 Token s; 120 assert( zC!=0 ); 121 sqlite3TokenInit(&s, (char*)zC); 122 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 123 } 124 125 /* 126 ** Skip over any TK_COLLATE operators. 127 */ 128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 129 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 130 assert( pExpr->op==TK_COLLATE ); 131 pExpr = pExpr->pLeft; 132 } 133 return pExpr; 134 } 135 136 /* 137 ** Skip over any TK_COLLATE operators and/or any unlikely() 138 ** or likelihood() or likely() functions at the root of an 139 ** expression. 140 */ 141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 142 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 143 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 144 assert( ExprUseXList(pExpr) ); 145 assert( pExpr->x.pList->nExpr>0 ); 146 assert( pExpr->op==TK_FUNCTION ); 147 pExpr = pExpr->x.pList->a[0].pExpr; 148 }else{ 149 assert( pExpr->op==TK_COLLATE ); 150 pExpr = pExpr->pLeft; 151 } 152 } 153 return pExpr; 154 } 155 156 /* 157 ** Return the collation sequence for the expression pExpr. If 158 ** there is no defined collating sequence, return NULL. 159 ** 160 ** See also: sqlite3ExprNNCollSeq() 161 ** 162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 163 ** default collation if pExpr has no defined collation. 164 ** 165 ** The collating sequence might be determined by a COLLATE operator 166 ** or by the presence of a column with a defined collating sequence. 167 ** COLLATE operators take first precedence. Left operands take 168 ** precedence over right operands. 169 */ 170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 171 sqlite3 *db = pParse->db; 172 CollSeq *pColl = 0; 173 const Expr *p = pExpr; 174 while( p ){ 175 int op = p->op; 176 if( op==TK_REGISTER ) op = p->op2; 177 if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){ 178 assert( ExprUseYTab(p) ); 179 if( p->y.pTab!=0 ){ 180 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 181 ** a TK_COLUMN but was previously evaluated and cached in a register */ 182 int j = p->iColumn; 183 if( j>=0 ){ 184 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 185 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 186 } 187 break; 188 } 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 assert( ExprUseXList(p) ); 196 p = p->x.pList->a[0].pExpr; 197 continue; 198 } 199 if( op==TK_COLLATE ){ 200 assert( !ExprHasProperty(p, EP_IntValue) ); 201 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 202 break; 203 } 204 if( p->flags & EP_Collate ){ 205 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 206 p = p->pLeft; 207 }else{ 208 Expr *pNext = p->pRight; 209 /* The Expr.x union is never used at the same time as Expr.pRight */ 210 assert( ExprUseXList(p) ); 211 assert( p->x.pList==0 || p->pRight==0 ); 212 if( p->x.pList!=0 && !db->mallocFailed ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprUseXSelect(pExpr) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(const Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(const Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 assert( ExprUseXList(pExpr) ); 436 return pExpr->x.pList->nExpr; 437 }else if( op==TK_SELECT ){ 438 assert( ExprUseXSelect(pExpr) ); 439 return pExpr->x.pSelect->pEList->nExpr; 440 }else{ 441 return 1; 442 } 443 } 444 445 /* 446 ** Return a pointer to a subexpression of pVector that is the i-th 447 ** column of the vector (numbered starting with 0). The caller must 448 ** ensure that i is within range. 449 ** 450 ** If pVector is really a scalar (and "scalar" here includes subqueries 451 ** that return a single column!) then return pVector unmodified. 452 ** 453 ** pVector retains ownership of the returned subexpression. 454 ** 455 ** If the vector is a (SELECT ...) then the expression returned is 456 ** just the expression for the i-th term of the result set, and may 457 ** not be ready for evaluation because the table cursor has not yet 458 ** been positioned. 459 */ 460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 461 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 462 if( sqlite3ExprIsVector(pVector) ){ 463 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 464 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 465 assert( ExprUseXSelect(pVector) ); 466 return pVector->x.pSelect->pEList->a[i].pExpr; 467 }else{ 468 assert( ExprUseXList(pVector) ); 469 return pVector->x.pList->a[i].pExpr; 470 } 471 } 472 return pVector; 473 } 474 475 /* 476 ** Compute and return a new Expr object which when passed to 477 ** sqlite3ExprCode() will generate all necessary code to compute 478 ** the iField-th column of the vector expression pVector. 479 ** 480 ** It is ok for pVector to be a scalar (as long as iField==0). 481 ** In that case, this routine works like sqlite3ExprDup(). 482 ** 483 ** The caller owns the returned Expr object and is responsible for 484 ** ensuring that the returned value eventually gets freed. 485 ** 486 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 487 ** then the returned object will reference pVector and so pVector must remain 488 ** valid for the life of the returned object. If pVector is a TK_VECTOR 489 ** or a scalar expression, then it can be deleted as soon as this routine 490 ** returns. 491 ** 492 ** A trick to cause a TK_SELECT pVector to be deleted together with 493 ** the returned Expr object is to attach the pVector to the pRight field 494 ** of the returned TK_SELECT_COLUMN Expr object. 495 */ 496 Expr *sqlite3ExprForVectorField( 497 Parse *pParse, /* Parsing context */ 498 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 499 int iField, /* Which column of the vector to return */ 500 int nField /* Total number of columns in the vector */ 501 ){ 502 Expr *pRet; 503 if( pVector->op==TK_SELECT ){ 504 assert( ExprUseXSelect(pVector) ); 505 /* The TK_SELECT_COLUMN Expr node: 506 ** 507 ** pLeft: pVector containing TK_SELECT. Not deleted. 508 ** pRight: not used. But recursively deleted. 509 ** iColumn: Index of a column in pVector 510 ** iTable: 0 or the number of columns on the LHS of an assignment 511 ** pLeft->iTable: First in an array of register holding result, or 0 512 ** if the result is not yet computed. 513 ** 514 ** sqlite3ExprDelete() specifically skips the recursive delete of 515 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 516 ** can be attached to pRight to cause this node to take ownership of 517 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 518 ** with the same pLeft pointer to the pVector, but only one of them 519 ** will own the pVector. 520 */ 521 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 522 if( pRet ){ 523 pRet->iTable = nField; 524 pRet->iColumn = iField; 525 pRet->pLeft = pVector; 526 } 527 }else{ 528 if( pVector->op==TK_VECTOR ){ 529 Expr **ppVector; 530 assert( ExprUseXList(pVector) ); 531 ppVector = &pVector->x.pList->a[iField].pExpr; 532 pVector = *ppVector; 533 if( IN_RENAME_OBJECT ){ 534 /* This must be a vector UPDATE inside a trigger */ 535 *ppVector = 0; 536 return pVector; 537 } 538 } 539 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 540 } 541 return pRet; 542 } 543 544 /* 545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 546 ** it. Return the register in which the result is stored (or, if the 547 ** sub-select returns more than one column, the first in an array 548 ** of registers in which the result is stored). 549 ** 550 ** If pExpr is not a TK_SELECT expression, return 0. 551 */ 552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 553 int reg = 0; 554 #ifndef SQLITE_OMIT_SUBQUERY 555 if( pExpr->op==TK_SELECT ){ 556 reg = sqlite3CodeSubselect(pParse, pExpr); 557 } 558 #endif 559 return reg; 560 } 561 562 /* 563 ** Argument pVector points to a vector expression - either a TK_VECTOR 564 ** or TK_SELECT that returns more than one column. This function returns 565 ** the register number of a register that contains the value of 566 ** element iField of the vector. 567 ** 568 ** If pVector is a TK_SELECT expression, then code for it must have 569 ** already been generated using the exprCodeSubselect() routine. In this 570 ** case parameter regSelect should be the first in an array of registers 571 ** containing the results of the sub-select. 572 ** 573 ** If pVector is of type TK_VECTOR, then code for the requested field 574 ** is generated. In this case (*pRegFree) may be set to the number of 575 ** a temporary register to be freed by the caller before returning. 576 ** 577 ** Before returning, output parameter (*ppExpr) is set to point to the 578 ** Expr object corresponding to element iElem of the vector. 579 */ 580 static int exprVectorRegister( 581 Parse *pParse, /* Parse context */ 582 Expr *pVector, /* Vector to extract element from */ 583 int iField, /* Field to extract from pVector */ 584 int regSelect, /* First in array of registers */ 585 Expr **ppExpr, /* OUT: Expression element */ 586 int *pRegFree /* OUT: Temp register to free */ 587 ){ 588 u8 op = pVector->op; 589 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 590 if( op==TK_REGISTER ){ 591 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 592 return pVector->iTable+iField; 593 } 594 if( op==TK_SELECT ){ 595 assert( ExprUseXSelect(pVector) ); 596 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 597 return regSelect+iField; 598 } 599 if( op==TK_VECTOR ){ 600 assert( ExprUseXList(pVector) ); 601 *ppExpr = pVector->x.pList->a[iField].pExpr; 602 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 603 } 604 return 0; 605 } 606 607 /* 608 ** Expression pExpr is a comparison between two vector values. Compute 609 ** the result of the comparison (1, 0, or NULL) and write that 610 ** result into register dest. 611 ** 612 ** The caller must satisfy the following preconditions: 613 ** 614 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 615 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 616 ** otherwise: op==pExpr->op and p5==0 617 */ 618 static void codeVectorCompare( 619 Parse *pParse, /* Code generator context */ 620 Expr *pExpr, /* The comparison operation */ 621 int dest, /* Write results into this register */ 622 u8 op, /* Comparison operator */ 623 u8 p5 /* SQLITE_NULLEQ or zero */ 624 ){ 625 Vdbe *v = pParse->pVdbe; 626 Expr *pLeft = pExpr->pLeft; 627 Expr *pRight = pExpr->pRight; 628 int nLeft = sqlite3ExprVectorSize(pLeft); 629 int i; 630 int regLeft = 0; 631 int regRight = 0; 632 u8 opx = op; 633 int addrCmp = 0; 634 int addrDone = sqlite3VdbeMakeLabel(pParse); 635 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 636 637 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 638 if( pParse->nErr ) return; 639 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 640 sqlite3ErrorMsg(pParse, "row value misused"); 641 return; 642 } 643 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 644 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 645 || pExpr->op==TK_LT || pExpr->op==TK_GT 646 || pExpr->op==TK_LE || pExpr->op==TK_GE 647 ); 648 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 649 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 650 assert( p5==0 || pExpr->op!=op ); 651 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 652 653 if( op==TK_LE ) opx = TK_LT; 654 if( op==TK_GE ) opx = TK_GT; 655 if( op==TK_NE ) opx = TK_EQ; 656 657 regLeft = exprCodeSubselect(pParse, pLeft); 658 regRight = exprCodeSubselect(pParse, pRight); 659 660 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 661 for(i=0; 1 /*Loop exits by "break"*/; i++){ 662 int regFree1 = 0, regFree2 = 0; 663 Expr *pL = 0, *pR = 0; 664 int r1, r2; 665 assert( i>=0 && i<nLeft ); 666 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 667 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 668 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 669 addrCmp = sqlite3VdbeCurrentAddr(v); 670 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 671 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 672 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 673 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 674 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 675 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 676 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 677 sqlite3ReleaseTempReg(pParse, regFree1); 678 sqlite3ReleaseTempReg(pParse, regFree2); 679 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 680 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 681 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 682 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 683 } 684 if( p5==SQLITE_NULLEQ ){ 685 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 686 }else{ 687 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 688 } 689 if( i==nLeft-1 ){ 690 break; 691 } 692 if( opx==TK_EQ ){ 693 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 694 }else{ 695 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 696 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 697 if( i==nLeft-2 ) opx = op; 698 } 699 } 700 sqlite3VdbeJumpHere(v, addrCmp); 701 sqlite3VdbeResolveLabel(v, addrDone); 702 if( op==TK_NE ){ 703 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 704 } 705 } 706 707 #if SQLITE_MAX_EXPR_DEPTH>0 708 /* 709 ** Check that argument nHeight is less than or equal to the maximum 710 ** expression depth allowed. If it is not, leave an error message in 711 ** pParse. 712 */ 713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 714 int rc = SQLITE_OK; 715 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 716 if( nHeight>mxHeight ){ 717 sqlite3ErrorMsg(pParse, 718 "Expression tree is too large (maximum depth %d)", mxHeight 719 ); 720 rc = SQLITE_ERROR; 721 } 722 return rc; 723 } 724 725 /* The following three functions, heightOfExpr(), heightOfExprList() 726 ** and heightOfSelect(), are used to determine the maximum height 727 ** of any expression tree referenced by the structure passed as the 728 ** first argument. 729 ** 730 ** If this maximum height is greater than the current value pointed 731 ** to by pnHeight, the second parameter, then set *pnHeight to that 732 ** value. 733 */ 734 static void heightOfExpr(const Expr *p, int *pnHeight){ 735 if( p ){ 736 if( p->nHeight>*pnHeight ){ 737 *pnHeight = p->nHeight; 738 } 739 } 740 } 741 static void heightOfExprList(const ExprList *p, int *pnHeight){ 742 if( p ){ 743 int i; 744 for(i=0; i<p->nExpr; i++){ 745 heightOfExpr(p->a[i].pExpr, pnHeight); 746 } 747 } 748 } 749 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 750 const Select *p; 751 for(p=pSelect; p; p=p->pPrior){ 752 heightOfExpr(p->pWhere, pnHeight); 753 heightOfExpr(p->pHaving, pnHeight); 754 heightOfExpr(p->pLimit, pnHeight); 755 heightOfExprList(p->pEList, pnHeight); 756 heightOfExprList(p->pGroupBy, pnHeight); 757 heightOfExprList(p->pOrderBy, pnHeight); 758 } 759 } 760 761 /* 762 ** Set the Expr.nHeight variable in the structure passed as an 763 ** argument. An expression with no children, Expr.pList or 764 ** Expr.pSelect member has a height of 1. Any other expression 765 ** has a height equal to the maximum height of any other 766 ** referenced Expr plus one. 767 ** 768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 769 ** if appropriate. 770 */ 771 static void exprSetHeight(Expr *p){ 772 int nHeight = p->pLeft ? p->pLeft->nHeight : 0; 773 if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){ 774 nHeight = p->pRight->nHeight; 775 } 776 if( ExprUseXSelect(p) ){ 777 heightOfSelect(p->x.pSelect, &nHeight); 778 }else if( p->x.pList ){ 779 heightOfExprList(p->x.pList, &nHeight); 780 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 781 } 782 p->nHeight = nHeight + 1; 783 } 784 785 /* 786 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 787 ** the height is greater than the maximum allowed expression depth, 788 ** leave an error in pParse. 789 ** 790 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 791 ** Expr.flags. 792 */ 793 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 794 if( pParse->nErr ) return; 795 exprSetHeight(p); 796 sqlite3ExprCheckHeight(pParse, p->nHeight); 797 } 798 799 /* 800 ** Return the maximum height of any expression tree referenced 801 ** by the select statement passed as an argument. 802 */ 803 int sqlite3SelectExprHeight(const Select *p){ 804 int nHeight = 0; 805 heightOfSelect(p, &nHeight); 806 return nHeight; 807 } 808 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 809 /* 810 ** Propagate all EP_Propagate flags from the Expr.x.pList into 811 ** Expr.flags. 812 */ 813 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 814 if( pParse->nErr ) return; 815 if( p && ExprUseXList(p) && p->x.pList ){ 816 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 817 } 818 } 819 #define exprSetHeight(y) 820 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 821 822 /* 823 ** This routine is the core allocator for Expr nodes. 824 ** 825 ** Construct a new expression node and return a pointer to it. Memory 826 ** for this node and for the pToken argument is a single allocation 827 ** obtained from sqlite3DbMalloc(). The calling function 828 ** is responsible for making sure the node eventually gets freed. 829 ** 830 ** If dequote is true, then the token (if it exists) is dequoted. 831 ** If dequote is false, no dequoting is performed. The deQuote 832 ** parameter is ignored if pToken is NULL or if the token does not 833 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 834 ** then the EP_DblQuoted flag is set on the expression node. 835 ** 836 ** Special case: If op==TK_INTEGER and pToken points to a string that 837 ** can be translated into a 32-bit integer, then the token is not 838 ** stored in u.zToken. Instead, the integer values is written 839 ** into u.iValue and the EP_IntValue flag is set. No extra storage 840 ** is allocated to hold the integer text and the dequote flag is ignored. 841 */ 842 Expr *sqlite3ExprAlloc( 843 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 844 int op, /* Expression opcode */ 845 const Token *pToken, /* Token argument. Might be NULL */ 846 int dequote /* True to dequote */ 847 ){ 848 Expr *pNew; 849 int nExtra = 0; 850 int iValue = 0; 851 852 assert( db!=0 ); 853 if( pToken ){ 854 if( op!=TK_INTEGER || pToken->z==0 855 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 856 nExtra = pToken->n+1; 857 assert( iValue>=0 ); 858 } 859 } 860 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 861 if( pNew ){ 862 memset(pNew, 0, sizeof(Expr)); 863 pNew->op = (u8)op; 864 pNew->iAgg = -1; 865 if( pToken ){ 866 if( nExtra==0 ){ 867 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 868 pNew->u.iValue = iValue; 869 }else{ 870 pNew->u.zToken = (char*)&pNew[1]; 871 assert( pToken->z!=0 || pToken->n==0 ); 872 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 873 pNew->u.zToken[pToken->n] = 0; 874 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 875 sqlite3DequoteExpr(pNew); 876 } 877 } 878 } 879 #if SQLITE_MAX_EXPR_DEPTH>0 880 pNew->nHeight = 1; 881 #endif 882 } 883 return pNew; 884 } 885 886 /* 887 ** Allocate a new expression node from a zero-terminated token that has 888 ** already been dequoted. 889 */ 890 Expr *sqlite3Expr( 891 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 892 int op, /* Expression opcode */ 893 const char *zToken /* Token argument. Might be NULL */ 894 ){ 895 Token x; 896 x.z = zToken; 897 x.n = sqlite3Strlen30(zToken); 898 return sqlite3ExprAlloc(db, op, &x, 0); 899 } 900 901 /* 902 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 903 ** 904 ** If pRoot==NULL that means that a memory allocation error has occurred. 905 ** In that case, delete the subtrees pLeft and pRight. 906 */ 907 void sqlite3ExprAttachSubtrees( 908 sqlite3 *db, 909 Expr *pRoot, 910 Expr *pLeft, 911 Expr *pRight 912 ){ 913 if( pRoot==0 ){ 914 assert( db->mallocFailed ); 915 sqlite3ExprDelete(db, pLeft); 916 sqlite3ExprDelete(db, pRight); 917 }else{ 918 assert( ExprUseXList(pRoot) ); 919 assert( pRoot->x.pSelect==0 ); 920 if( pRight ){ 921 pRoot->pRight = pRight; 922 pRoot->flags |= EP_Propagate & pRight->flags; 923 #if SQLITE_MAX_EXPR_DEPTH>0 924 pRoot->nHeight = pRight->nHeight+1; 925 }else{ 926 pRoot->nHeight = 1; 927 #endif 928 } 929 if( pLeft ){ 930 pRoot->pLeft = pLeft; 931 pRoot->flags |= EP_Propagate & pLeft->flags; 932 #if SQLITE_MAX_EXPR_DEPTH>0 933 if( pLeft->nHeight>=pRoot->nHeight ){ 934 pRoot->nHeight = pLeft->nHeight+1; 935 } 936 #endif 937 } 938 } 939 } 940 941 /* 942 ** Allocate an Expr node which joins as many as two subtrees. 943 ** 944 ** One or both of the subtrees can be NULL. Return a pointer to the new 945 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 946 ** free the subtrees and return NULL. 947 */ 948 Expr *sqlite3PExpr( 949 Parse *pParse, /* Parsing context */ 950 int op, /* Expression opcode */ 951 Expr *pLeft, /* Left operand */ 952 Expr *pRight /* Right operand */ 953 ){ 954 Expr *p; 955 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 956 if( p ){ 957 memset(p, 0, sizeof(Expr)); 958 p->op = op & 0xff; 959 p->iAgg = -1; 960 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 961 sqlite3ExprCheckHeight(pParse, p->nHeight); 962 }else{ 963 sqlite3ExprDelete(pParse->db, pLeft); 964 sqlite3ExprDelete(pParse->db, pRight); 965 } 966 return p; 967 } 968 969 /* 970 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 971 ** do a memory allocation failure) then delete the pSelect object. 972 */ 973 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 974 if( pExpr ){ 975 pExpr->x.pSelect = pSelect; 976 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 977 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 978 }else{ 979 assert( pParse->db->mallocFailed ); 980 sqlite3SelectDelete(pParse->db, pSelect); 981 } 982 } 983 984 /* 985 ** Expression list pEList is a list of vector values. This function 986 ** converts the contents of pEList to a VALUES(...) Select statement 987 ** returning 1 row for each element of the list. For example, the 988 ** expression list: 989 ** 990 ** ( (1,2), (3,4) (5,6) ) 991 ** 992 ** is translated to the equivalent of: 993 ** 994 ** VALUES(1,2), (3,4), (5,6) 995 ** 996 ** Each of the vector values in pEList must contain exactly nElem terms. 997 ** If a list element that is not a vector or does not contain nElem terms, 998 ** an error message is left in pParse. 999 ** 1000 ** This is used as part of processing IN(...) expressions with a list 1001 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 1002 */ 1003 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 1004 int ii; 1005 Select *pRet = 0; 1006 assert( nElem>1 ); 1007 for(ii=0; ii<pEList->nExpr; ii++){ 1008 Select *pSel; 1009 Expr *pExpr = pEList->a[ii].pExpr; 1010 int nExprElem; 1011 if( pExpr->op==TK_VECTOR ){ 1012 assert( ExprUseXList(pExpr) ); 1013 nExprElem = pExpr->x.pList->nExpr; 1014 }else{ 1015 nExprElem = 1; 1016 } 1017 if( nExprElem!=nElem ){ 1018 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 1019 nExprElem, nExprElem>1?"s":"", nElem 1020 ); 1021 break; 1022 } 1023 assert( ExprUseXList(pExpr) ); 1024 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 1025 pExpr->x.pList = 0; 1026 if( pSel ){ 1027 if( pRet ){ 1028 pSel->op = TK_ALL; 1029 pSel->pPrior = pRet; 1030 } 1031 pRet = pSel; 1032 } 1033 } 1034 1035 if( pRet && pRet->pPrior ){ 1036 pRet->selFlags |= SF_MultiValue; 1037 } 1038 sqlite3ExprListDelete(pParse->db, pEList); 1039 return pRet; 1040 } 1041 1042 /* 1043 ** Join two expressions using an AND operator. If either expression is 1044 ** NULL, then just return the other expression. 1045 ** 1046 ** If one side or the other of the AND is known to be false, then instead 1047 ** of returning an AND expression, just return a constant expression with 1048 ** a value of false. 1049 */ 1050 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1051 sqlite3 *db = pParse->db; 1052 if( pLeft==0 ){ 1053 return pRight; 1054 }else if( pRight==0 ){ 1055 return pLeft; 1056 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1057 && !IN_RENAME_OBJECT 1058 ){ 1059 sqlite3ExprDeferredDelete(pParse, pLeft); 1060 sqlite3ExprDeferredDelete(pParse, pRight); 1061 return sqlite3Expr(db, TK_INTEGER, "0"); 1062 }else{ 1063 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1064 } 1065 } 1066 1067 /* 1068 ** Construct a new expression node for a function with multiple 1069 ** arguments. 1070 */ 1071 Expr *sqlite3ExprFunction( 1072 Parse *pParse, /* Parsing context */ 1073 ExprList *pList, /* Argument list */ 1074 const Token *pToken, /* Name of the function */ 1075 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1076 ){ 1077 Expr *pNew; 1078 sqlite3 *db = pParse->db; 1079 assert( pToken ); 1080 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1081 if( pNew==0 ){ 1082 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1083 return 0; 1084 } 1085 assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) ); 1086 pNew->w.iOfst = (int)(pToken->z - pParse->zTail); 1087 if( pList 1088 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1089 && !pParse->nested 1090 ){ 1091 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1092 } 1093 pNew->x.pList = pList; 1094 ExprSetProperty(pNew, EP_HasFunc); 1095 assert( ExprUseXList(pNew) ); 1096 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1097 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1098 return pNew; 1099 } 1100 1101 /* 1102 ** Check to see if a function is usable according to current access 1103 ** rules: 1104 ** 1105 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1106 ** 1107 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1108 ** top-level SQL 1109 ** 1110 ** If the function is not usable, create an error. 1111 */ 1112 void sqlite3ExprFunctionUsable( 1113 Parse *pParse, /* Parsing and code generating context */ 1114 const Expr *pExpr, /* The function invocation */ 1115 const FuncDef *pDef /* The function being invoked */ 1116 ){ 1117 assert( !IN_RENAME_OBJECT ); 1118 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1119 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1120 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1121 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1122 ){ 1123 /* Functions prohibited in triggers and views if: 1124 ** (1) tagged with SQLITE_DIRECTONLY 1125 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1126 ** is tagged with SQLITE_FUNC_UNSAFE) and 1127 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1128 ** that the schema is possibly tainted). 1129 */ 1130 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); 1131 } 1132 } 1133 } 1134 1135 /* 1136 ** Assign a variable number to an expression that encodes a wildcard 1137 ** in the original SQL statement. 1138 ** 1139 ** Wildcards consisting of a single "?" are assigned the next sequential 1140 ** variable number. 1141 ** 1142 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1143 ** sure "nnn" is not too big to avoid a denial of service attack when 1144 ** the SQL statement comes from an external source. 1145 ** 1146 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1147 ** as the previous instance of the same wildcard. Or if this is the first 1148 ** instance of the wildcard, the next sequential variable number is 1149 ** assigned. 1150 */ 1151 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1152 sqlite3 *db = pParse->db; 1153 const char *z; 1154 ynVar x; 1155 1156 if( pExpr==0 ) return; 1157 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1158 z = pExpr->u.zToken; 1159 assert( z!=0 ); 1160 assert( z[0]!=0 ); 1161 assert( n==(u32)sqlite3Strlen30(z) ); 1162 if( z[1]==0 ){ 1163 /* Wildcard of the form "?". Assign the next variable number */ 1164 assert( z[0]=='?' ); 1165 x = (ynVar)(++pParse->nVar); 1166 }else{ 1167 int doAdd = 0; 1168 if( z[0]=='?' ){ 1169 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1170 ** use it as the variable number */ 1171 i64 i; 1172 int bOk; 1173 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1174 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1175 bOk = 1; 1176 }else{ 1177 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1178 } 1179 testcase( i==0 ); 1180 testcase( i==1 ); 1181 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1182 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1183 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1184 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1185 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1186 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1187 return; 1188 } 1189 x = (ynVar)i; 1190 if( x>pParse->nVar ){ 1191 pParse->nVar = (int)x; 1192 doAdd = 1; 1193 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1194 doAdd = 1; 1195 } 1196 }else{ 1197 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1198 ** number as the prior appearance of the same name, or if the name 1199 ** has never appeared before, reuse the same variable number 1200 */ 1201 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1202 if( x==0 ){ 1203 x = (ynVar)(++pParse->nVar); 1204 doAdd = 1; 1205 } 1206 } 1207 if( doAdd ){ 1208 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1209 } 1210 } 1211 pExpr->iColumn = x; 1212 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1213 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1214 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1215 } 1216 } 1217 1218 /* 1219 ** Recursively delete an expression tree. 1220 */ 1221 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1222 assert( p!=0 ); 1223 assert( !ExprUseUValue(p) || p->u.iValue>=0 ); 1224 assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); 1225 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); 1226 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); 1227 #ifdef SQLITE_DEBUG 1228 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1229 assert( p->pLeft==0 ); 1230 assert( p->pRight==0 ); 1231 assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); 1232 assert( !ExprUseXList(p) || p->x.pList==0 ); 1233 } 1234 #endif 1235 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1236 /* The Expr.x union is never used at the same time as Expr.pRight */ 1237 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); 1238 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1239 if( p->pRight ){ 1240 assert( !ExprHasProperty(p, EP_WinFunc) ); 1241 sqlite3ExprDeleteNN(db, p->pRight); 1242 }else if( ExprUseXSelect(p) ){ 1243 assert( !ExprHasProperty(p, EP_WinFunc) ); 1244 sqlite3SelectDelete(db, p->x.pSelect); 1245 }else{ 1246 sqlite3ExprListDelete(db, p->x.pList); 1247 #ifndef SQLITE_OMIT_WINDOWFUNC 1248 if( ExprHasProperty(p, EP_WinFunc) ){ 1249 sqlite3WindowDelete(db, p->y.pWin); 1250 } 1251 #endif 1252 } 1253 } 1254 if( !ExprHasProperty(p, EP_Static) ){ 1255 sqlite3DbFreeNN(db, p); 1256 } 1257 } 1258 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1259 if( p ) sqlite3ExprDeleteNN(db, p); 1260 } 1261 1262 /* 1263 ** Clear both elements of an OnOrUsing object 1264 */ 1265 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ 1266 if( p==0 ){ 1267 /* Nothing to clear */ 1268 }else if( p->pOn ){ 1269 sqlite3ExprDeleteNN(db, p->pOn); 1270 }else if( p->pUsing ){ 1271 sqlite3IdListDelete(db, p->pUsing); 1272 } 1273 } 1274 1275 /* 1276 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1277 ** This is similar to sqlite3ExprDelete() except that the delete is 1278 ** deferred untilthe pParse is deleted. 1279 ** 1280 ** The pExpr might be deleted immediately on an OOM error. 1281 ** 1282 ** The deferred delete is (currently) implemented by adding the 1283 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1284 */ 1285 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1286 sqlite3ParserAddCleanup(pParse, 1287 (void(*)(sqlite3*,void*))sqlite3ExprDelete, 1288 pExpr); 1289 } 1290 1291 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1292 ** expression. 1293 */ 1294 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1295 if( p ){ 1296 if( IN_RENAME_OBJECT ){ 1297 sqlite3RenameExprUnmap(pParse, p); 1298 } 1299 sqlite3ExprDeleteNN(pParse->db, p); 1300 } 1301 } 1302 1303 /* 1304 ** Return the number of bytes allocated for the expression structure 1305 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1306 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1307 */ 1308 static int exprStructSize(const Expr *p){ 1309 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1310 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1311 return EXPR_FULLSIZE; 1312 } 1313 1314 /* 1315 ** The dupedExpr*Size() routines each return the number of bytes required 1316 ** to store a copy of an expression or expression tree. They differ in 1317 ** how much of the tree is measured. 1318 ** 1319 ** dupedExprStructSize() Size of only the Expr structure 1320 ** dupedExprNodeSize() Size of Expr + space for token 1321 ** dupedExprSize() Expr + token + subtree components 1322 ** 1323 *************************************************************************** 1324 ** 1325 ** The dupedExprStructSize() function returns two values OR-ed together: 1326 ** (1) the space required for a copy of the Expr structure only and 1327 ** (2) the EP_xxx flags that indicate what the structure size should be. 1328 ** The return values is always one of: 1329 ** 1330 ** EXPR_FULLSIZE 1331 ** EXPR_REDUCEDSIZE | EP_Reduced 1332 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1333 ** 1334 ** The size of the structure can be found by masking the return value 1335 ** of this routine with 0xfff. The flags can be found by masking the 1336 ** return value with EP_Reduced|EP_TokenOnly. 1337 ** 1338 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1339 ** (unreduced) Expr objects as they or originally constructed by the parser. 1340 ** During expression analysis, extra information is computed and moved into 1341 ** later parts of the Expr object and that extra information might get chopped 1342 ** off if the expression is reduced. Note also that it does not work to 1343 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1344 ** to reduce a pristine expression tree from the parser. The implementation 1345 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1346 ** to enforce this constraint. 1347 */ 1348 static int dupedExprStructSize(const Expr *p, int flags){ 1349 int nSize; 1350 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1351 assert( EXPR_FULLSIZE<=0xfff ); 1352 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1353 if( 0==flags || p->op==TK_SELECT_COLUMN 1354 #ifndef SQLITE_OMIT_WINDOWFUNC 1355 || ExprHasProperty(p, EP_WinFunc) 1356 #endif 1357 ){ 1358 nSize = EXPR_FULLSIZE; 1359 }else{ 1360 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1361 assert( !ExprHasProperty(p, EP_OuterON) ); 1362 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1363 if( p->pLeft || p->x.pList ){ 1364 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1365 }else{ 1366 assert( p->pRight==0 ); 1367 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1368 } 1369 } 1370 return nSize; 1371 } 1372 1373 /* 1374 ** This function returns the space in bytes required to store the copy 1375 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1376 ** string is defined.) 1377 */ 1378 static int dupedExprNodeSize(const Expr *p, int flags){ 1379 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1380 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1381 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1382 } 1383 return ROUND8(nByte); 1384 } 1385 1386 /* 1387 ** Return the number of bytes required to create a duplicate of the 1388 ** expression passed as the first argument. The second argument is a 1389 ** mask containing EXPRDUP_XXX flags. 1390 ** 1391 ** The value returned includes space to create a copy of the Expr struct 1392 ** itself and the buffer referred to by Expr.u.zToken, if any. 1393 ** 1394 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1395 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1396 ** and Expr.pRight variables (but not for any structures pointed to or 1397 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1398 */ 1399 static int dupedExprSize(const Expr *p, int flags){ 1400 int nByte = 0; 1401 if( p ){ 1402 nByte = dupedExprNodeSize(p, flags); 1403 if( flags&EXPRDUP_REDUCE ){ 1404 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1405 } 1406 } 1407 return nByte; 1408 } 1409 1410 /* 1411 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1412 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1413 ** to store the copy of expression p, the copies of p->u.zToken 1414 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1415 ** if any. Before returning, *pzBuffer is set to the first byte past the 1416 ** portion of the buffer copied into by this function. 1417 */ 1418 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 1419 Expr *pNew; /* Value to return */ 1420 u8 *zAlloc; /* Memory space from which to build Expr object */ 1421 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1422 1423 assert( db!=0 ); 1424 assert( p ); 1425 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1426 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1427 1428 /* Figure out where to write the new Expr structure. */ 1429 if( pzBuffer ){ 1430 zAlloc = *pzBuffer; 1431 staticFlag = EP_Static; 1432 assert( zAlloc!=0 ); 1433 }else{ 1434 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1435 staticFlag = 0; 1436 } 1437 pNew = (Expr *)zAlloc; 1438 1439 if( pNew ){ 1440 /* Set nNewSize to the size allocated for the structure pointed to 1441 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1442 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1443 ** by the copy of the p->u.zToken string (if any). 1444 */ 1445 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1446 const int nNewSize = nStructSize & 0xfff; 1447 int nToken; 1448 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1449 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1450 }else{ 1451 nToken = 0; 1452 } 1453 if( dupFlags ){ 1454 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1455 memcpy(zAlloc, p, nNewSize); 1456 }else{ 1457 u32 nSize = (u32)exprStructSize(p); 1458 memcpy(zAlloc, p, nSize); 1459 if( nSize<EXPR_FULLSIZE ){ 1460 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1461 } 1462 } 1463 1464 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1465 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 1466 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1467 pNew->flags |= staticFlag; 1468 ExprClearVVAProperties(pNew); 1469 if( dupFlags ){ 1470 ExprSetVVAProperty(pNew, EP_Immutable); 1471 } 1472 1473 /* Copy the p->u.zToken string, if any. */ 1474 if( nToken ){ 1475 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1476 memcpy(zToken, p->u.zToken, nToken); 1477 } 1478 1479 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1480 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1481 if( ExprUseXSelect(p) ){ 1482 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1483 }else{ 1484 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1485 } 1486 } 1487 1488 /* Fill in pNew->pLeft and pNew->pRight. */ 1489 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1490 zAlloc += dupedExprNodeSize(p, dupFlags); 1491 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1492 pNew->pLeft = p->pLeft ? 1493 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1494 pNew->pRight = p->pRight ? 1495 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1496 } 1497 #ifndef SQLITE_OMIT_WINDOWFUNC 1498 if( ExprHasProperty(p, EP_WinFunc) ){ 1499 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1500 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1501 } 1502 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1503 if( pzBuffer ){ 1504 *pzBuffer = zAlloc; 1505 } 1506 }else{ 1507 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1508 if( pNew->op==TK_SELECT_COLUMN ){ 1509 pNew->pLeft = p->pLeft; 1510 assert( p->pRight==0 || p->pRight==p->pLeft 1511 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1512 }else{ 1513 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1514 } 1515 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1516 } 1517 } 1518 } 1519 return pNew; 1520 } 1521 1522 /* 1523 ** Create and return a deep copy of the object passed as the second 1524 ** argument. If an OOM condition is encountered, NULL is returned 1525 ** and the db->mallocFailed flag set. 1526 */ 1527 #ifndef SQLITE_OMIT_CTE 1528 With *sqlite3WithDup(sqlite3 *db, With *p){ 1529 With *pRet = 0; 1530 if( p ){ 1531 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1532 pRet = sqlite3DbMallocZero(db, nByte); 1533 if( pRet ){ 1534 int i; 1535 pRet->nCte = p->nCte; 1536 for(i=0; i<p->nCte; i++){ 1537 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1538 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1539 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1540 pRet->a[i].eM10d = p->a[i].eM10d; 1541 } 1542 } 1543 } 1544 return pRet; 1545 } 1546 #else 1547 # define sqlite3WithDup(x,y) 0 1548 #endif 1549 1550 #ifndef SQLITE_OMIT_WINDOWFUNC 1551 /* 1552 ** The gatherSelectWindows() procedure and its helper routine 1553 ** gatherSelectWindowsCallback() are used to scan all the expressions 1554 ** an a newly duplicated SELECT statement and gather all of the Window 1555 ** objects found there, assembling them onto the linked list at Select->pWin. 1556 */ 1557 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1558 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1559 Select *pSelect = pWalker->u.pSelect; 1560 Window *pWin = pExpr->y.pWin; 1561 assert( pWin ); 1562 assert( IsWindowFunc(pExpr) ); 1563 assert( pWin->ppThis==0 ); 1564 sqlite3WindowLink(pSelect, pWin); 1565 } 1566 return WRC_Continue; 1567 } 1568 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1569 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1570 } 1571 static void gatherSelectWindows(Select *p){ 1572 Walker w; 1573 w.xExprCallback = gatherSelectWindowsCallback; 1574 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1575 w.xSelectCallback2 = 0; 1576 w.pParse = 0; 1577 w.u.pSelect = p; 1578 sqlite3WalkSelect(&w, p); 1579 } 1580 #endif 1581 1582 1583 /* 1584 ** The following group of routines make deep copies of expressions, 1585 ** expression lists, ID lists, and select statements. The copies can 1586 ** be deleted (by being passed to their respective ...Delete() routines) 1587 ** without effecting the originals. 1588 ** 1589 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1590 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1591 ** by subsequent calls to sqlite*ListAppend() routines. 1592 ** 1593 ** Any tables that the SrcList might point to are not duplicated. 1594 ** 1595 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1596 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1597 ** truncated version of the usual Expr structure that will be stored as 1598 ** part of the in-memory representation of the database schema. 1599 */ 1600 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 1601 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1602 return p ? exprDup(db, p, flags, 0) : 0; 1603 } 1604 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 1605 ExprList *pNew; 1606 struct ExprList_item *pItem; 1607 const struct ExprList_item *pOldItem; 1608 int i; 1609 Expr *pPriorSelectColOld = 0; 1610 Expr *pPriorSelectColNew = 0; 1611 assert( db!=0 ); 1612 if( p==0 ) return 0; 1613 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1614 if( pNew==0 ) return 0; 1615 pNew->nExpr = p->nExpr; 1616 pNew->nAlloc = p->nAlloc; 1617 pItem = pNew->a; 1618 pOldItem = p->a; 1619 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1620 Expr *pOldExpr = pOldItem->pExpr; 1621 Expr *pNewExpr; 1622 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1623 if( pOldExpr 1624 && pOldExpr->op==TK_SELECT_COLUMN 1625 && (pNewExpr = pItem->pExpr)!=0 1626 ){ 1627 if( pNewExpr->pRight ){ 1628 pPriorSelectColOld = pOldExpr->pRight; 1629 pPriorSelectColNew = pNewExpr->pRight; 1630 pNewExpr->pLeft = pNewExpr->pRight; 1631 }else{ 1632 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1633 pPriorSelectColOld = pOldExpr->pLeft; 1634 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1635 pNewExpr->pRight = pPriorSelectColNew; 1636 } 1637 pNewExpr->pLeft = pPriorSelectColNew; 1638 } 1639 } 1640 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1641 pItem->fg = pOldItem->fg; 1642 pItem->fg.done = 0; 1643 pItem->u = pOldItem->u; 1644 } 1645 return pNew; 1646 } 1647 1648 /* 1649 ** If cursors, triggers, views and subqueries are all omitted from 1650 ** the build, then none of the following routines, except for 1651 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1652 ** called with a NULL argument. 1653 */ 1654 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1655 || !defined(SQLITE_OMIT_SUBQUERY) 1656 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 1657 SrcList *pNew; 1658 int i; 1659 int nByte; 1660 assert( db!=0 ); 1661 if( p==0 ) return 0; 1662 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1663 pNew = sqlite3DbMallocRawNN(db, nByte ); 1664 if( pNew==0 ) return 0; 1665 pNew->nSrc = pNew->nAlloc = p->nSrc; 1666 for(i=0; i<p->nSrc; i++){ 1667 SrcItem *pNewItem = &pNew->a[i]; 1668 const SrcItem *pOldItem = &p->a[i]; 1669 Table *pTab; 1670 pNewItem->pSchema = pOldItem->pSchema; 1671 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1672 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1673 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1674 pNewItem->fg = pOldItem->fg; 1675 pNewItem->iCursor = pOldItem->iCursor; 1676 pNewItem->addrFillSub = pOldItem->addrFillSub; 1677 pNewItem->regReturn = pOldItem->regReturn; 1678 if( pNewItem->fg.isIndexedBy ){ 1679 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1680 } 1681 pNewItem->u2 = pOldItem->u2; 1682 if( pNewItem->fg.isCte ){ 1683 pNewItem->u2.pCteUse->nUse++; 1684 } 1685 if( pNewItem->fg.isTabFunc ){ 1686 pNewItem->u1.pFuncArg = 1687 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1688 } 1689 pTab = pNewItem->pTab = pOldItem->pTab; 1690 if( pTab ){ 1691 pTab->nTabRef++; 1692 } 1693 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1694 if( pOldItem->fg.isUsing ){ 1695 assert( pNewItem->fg.isUsing ); 1696 pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); 1697 }else{ 1698 pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); 1699 } 1700 pNewItem->colUsed = pOldItem->colUsed; 1701 } 1702 return pNew; 1703 } 1704 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 1705 IdList *pNew; 1706 int i; 1707 assert( db!=0 ); 1708 if( p==0 ) return 0; 1709 assert( p->eU4!=EU4_EXPR ); 1710 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) ); 1711 if( pNew==0 ) return 0; 1712 pNew->nId = p->nId; 1713 pNew->eU4 = p->eU4; 1714 for(i=0; i<p->nId; i++){ 1715 struct IdList_item *pNewItem = &pNew->a[i]; 1716 const struct IdList_item *pOldItem = &p->a[i]; 1717 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1718 pNewItem->u4 = pOldItem->u4; 1719 } 1720 return pNew; 1721 } 1722 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 1723 Select *pRet = 0; 1724 Select *pNext = 0; 1725 Select **pp = &pRet; 1726 const Select *p; 1727 1728 assert( db!=0 ); 1729 for(p=pDup; p; p=p->pPrior){ 1730 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1731 if( pNew==0 ) break; 1732 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1733 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1734 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1735 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1736 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1737 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1738 pNew->op = p->op; 1739 pNew->pNext = pNext; 1740 pNew->pPrior = 0; 1741 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1742 pNew->iLimit = 0; 1743 pNew->iOffset = 0; 1744 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1745 pNew->addrOpenEphm[0] = -1; 1746 pNew->addrOpenEphm[1] = -1; 1747 pNew->nSelectRow = p->nSelectRow; 1748 pNew->pWith = sqlite3WithDup(db, p->pWith); 1749 #ifndef SQLITE_OMIT_WINDOWFUNC 1750 pNew->pWin = 0; 1751 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1752 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1753 #endif 1754 pNew->selId = p->selId; 1755 if( db->mallocFailed ){ 1756 /* Any prior OOM might have left the Select object incomplete. 1757 ** Delete the whole thing rather than allow an incomplete Select 1758 ** to be used by the code generator. */ 1759 pNew->pNext = 0; 1760 sqlite3SelectDelete(db, pNew); 1761 break; 1762 } 1763 *pp = pNew; 1764 pp = &pNew->pPrior; 1765 pNext = pNew; 1766 } 1767 1768 return pRet; 1769 } 1770 #else 1771 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ 1772 assert( p==0 ); 1773 return 0; 1774 } 1775 #endif 1776 1777 1778 /* 1779 ** Add a new element to the end of an expression list. If pList is 1780 ** initially NULL, then create a new expression list. 1781 ** 1782 ** The pList argument must be either NULL or a pointer to an ExprList 1783 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1784 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1785 ** Reason: This routine assumes that the number of slots in pList->a[] 1786 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1787 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1788 ** 1789 ** If a memory allocation error occurs, the entire list is freed and 1790 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1791 ** that the new entry was successfully appended. 1792 */ 1793 static const struct ExprList_item zeroItem = {0}; 1794 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1795 sqlite3 *db, /* Database handle. Used for memory allocation */ 1796 Expr *pExpr /* Expression to be appended. Might be NULL */ 1797 ){ 1798 struct ExprList_item *pItem; 1799 ExprList *pList; 1800 1801 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1802 if( pList==0 ){ 1803 sqlite3ExprDelete(db, pExpr); 1804 return 0; 1805 } 1806 pList->nAlloc = 4; 1807 pList->nExpr = 1; 1808 pItem = &pList->a[0]; 1809 *pItem = zeroItem; 1810 pItem->pExpr = pExpr; 1811 return pList; 1812 } 1813 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1814 sqlite3 *db, /* Database handle. Used for memory allocation */ 1815 ExprList *pList, /* List to which to append. Might be NULL */ 1816 Expr *pExpr /* Expression to be appended. Might be NULL */ 1817 ){ 1818 struct ExprList_item *pItem; 1819 ExprList *pNew; 1820 pList->nAlloc *= 2; 1821 pNew = sqlite3DbRealloc(db, pList, 1822 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1823 if( pNew==0 ){ 1824 sqlite3ExprListDelete(db, pList); 1825 sqlite3ExprDelete(db, pExpr); 1826 return 0; 1827 }else{ 1828 pList = pNew; 1829 } 1830 pItem = &pList->a[pList->nExpr++]; 1831 *pItem = zeroItem; 1832 pItem->pExpr = pExpr; 1833 return pList; 1834 } 1835 ExprList *sqlite3ExprListAppend( 1836 Parse *pParse, /* Parsing context */ 1837 ExprList *pList, /* List to which to append. Might be NULL */ 1838 Expr *pExpr /* Expression to be appended. Might be NULL */ 1839 ){ 1840 struct ExprList_item *pItem; 1841 if( pList==0 ){ 1842 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1843 } 1844 if( pList->nAlloc<pList->nExpr+1 ){ 1845 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1846 } 1847 pItem = &pList->a[pList->nExpr++]; 1848 *pItem = zeroItem; 1849 pItem->pExpr = pExpr; 1850 return pList; 1851 } 1852 1853 /* 1854 ** pColumns and pExpr form a vector assignment which is part of the SET 1855 ** clause of an UPDATE statement. Like this: 1856 ** 1857 ** (a,b,c) = (expr1,expr2,expr3) 1858 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1859 ** 1860 ** For each term of the vector assignment, append new entries to the 1861 ** expression list pList. In the case of a subquery on the RHS, append 1862 ** TK_SELECT_COLUMN expressions. 1863 */ 1864 ExprList *sqlite3ExprListAppendVector( 1865 Parse *pParse, /* Parsing context */ 1866 ExprList *pList, /* List to which to append. Might be NULL */ 1867 IdList *pColumns, /* List of names of LHS of the assignment */ 1868 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1869 ){ 1870 sqlite3 *db = pParse->db; 1871 int n; 1872 int i; 1873 int iFirst = pList ? pList->nExpr : 0; 1874 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1875 ** exit prior to this routine being invoked */ 1876 if( NEVER(pColumns==0) ) goto vector_append_error; 1877 if( pExpr==0 ) goto vector_append_error; 1878 1879 /* If the RHS is a vector, then we can immediately check to see that 1880 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1881 ** wildcards ("*") in the result set of the SELECT must be expanded before 1882 ** we can do the size check, so defer the size check until code generation. 1883 */ 1884 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1885 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1886 pColumns->nId, n); 1887 goto vector_append_error; 1888 } 1889 1890 for(i=0; i<pColumns->nId; i++){ 1891 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1892 assert( pSubExpr!=0 || db->mallocFailed ); 1893 if( pSubExpr==0 ) continue; 1894 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1895 if( pList ){ 1896 assert( pList->nExpr==iFirst+i+1 ); 1897 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1898 pColumns->a[i].zName = 0; 1899 } 1900 } 1901 1902 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1903 Expr *pFirst = pList->a[iFirst].pExpr; 1904 assert( pFirst!=0 ); 1905 assert( pFirst->op==TK_SELECT_COLUMN ); 1906 1907 /* Store the SELECT statement in pRight so it will be deleted when 1908 ** sqlite3ExprListDelete() is called */ 1909 pFirst->pRight = pExpr; 1910 pExpr = 0; 1911 1912 /* Remember the size of the LHS in iTable so that we can check that 1913 ** the RHS and LHS sizes match during code generation. */ 1914 pFirst->iTable = pColumns->nId; 1915 } 1916 1917 vector_append_error: 1918 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1919 sqlite3IdListDelete(db, pColumns); 1920 return pList; 1921 } 1922 1923 /* 1924 ** Set the sort order for the last element on the given ExprList. 1925 */ 1926 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1927 struct ExprList_item *pItem; 1928 if( p==0 ) return; 1929 assert( p->nExpr>0 ); 1930 1931 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1932 assert( iSortOrder==SQLITE_SO_UNDEFINED 1933 || iSortOrder==SQLITE_SO_ASC 1934 || iSortOrder==SQLITE_SO_DESC 1935 ); 1936 assert( eNulls==SQLITE_SO_UNDEFINED 1937 || eNulls==SQLITE_SO_ASC 1938 || eNulls==SQLITE_SO_DESC 1939 ); 1940 1941 pItem = &p->a[p->nExpr-1]; 1942 assert( pItem->fg.bNulls==0 ); 1943 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1944 iSortOrder = SQLITE_SO_ASC; 1945 } 1946 pItem->fg.sortFlags = (u8)iSortOrder; 1947 1948 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1949 pItem->fg.bNulls = 1; 1950 if( iSortOrder!=eNulls ){ 1951 pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL; 1952 } 1953 } 1954 } 1955 1956 /* 1957 ** Set the ExprList.a[].zEName element of the most recently added item 1958 ** on the expression list. 1959 ** 1960 ** pList might be NULL following an OOM error. But pName should never be 1961 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1962 ** is set. 1963 */ 1964 void sqlite3ExprListSetName( 1965 Parse *pParse, /* Parsing context */ 1966 ExprList *pList, /* List to which to add the span. */ 1967 const Token *pName, /* Name to be added */ 1968 int dequote /* True to cause the name to be dequoted */ 1969 ){ 1970 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1971 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1972 if( pList ){ 1973 struct ExprList_item *pItem; 1974 assert( pList->nExpr>0 ); 1975 pItem = &pList->a[pList->nExpr-1]; 1976 assert( pItem->zEName==0 ); 1977 assert( pItem->fg.eEName==ENAME_NAME ); 1978 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1979 if( dequote ){ 1980 /* If dequote==0, then pName->z does not point to part of a DDL 1981 ** statement handled by the parser. And so no token need be added 1982 ** to the token-map. */ 1983 sqlite3Dequote(pItem->zEName); 1984 if( IN_RENAME_OBJECT ){ 1985 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 1986 } 1987 } 1988 } 1989 } 1990 1991 /* 1992 ** Set the ExprList.a[].zSpan element of the most recently added item 1993 ** on the expression list. 1994 ** 1995 ** pList might be NULL following an OOM error. But pSpan should never be 1996 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1997 ** is set. 1998 */ 1999 void sqlite3ExprListSetSpan( 2000 Parse *pParse, /* Parsing context */ 2001 ExprList *pList, /* List to which to add the span. */ 2002 const char *zStart, /* Start of the span */ 2003 const char *zEnd /* End of the span */ 2004 ){ 2005 sqlite3 *db = pParse->db; 2006 assert( pList!=0 || db->mallocFailed!=0 ); 2007 if( pList ){ 2008 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 2009 assert( pList->nExpr>0 ); 2010 if( pItem->zEName==0 ){ 2011 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 2012 pItem->fg.eEName = ENAME_SPAN; 2013 } 2014 } 2015 } 2016 2017 /* 2018 ** If the expression list pEList contains more than iLimit elements, 2019 ** leave an error message in pParse. 2020 */ 2021 void sqlite3ExprListCheckLength( 2022 Parse *pParse, 2023 ExprList *pEList, 2024 const char *zObject 2025 ){ 2026 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 2027 testcase( pEList && pEList->nExpr==mx ); 2028 testcase( pEList && pEList->nExpr==mx+1 ); 2029 if( pEList && pEList->nExpr>mx ){ 2030 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 2031 } 2032 } 2033 2034 /* 2035 ** Delete an entire expression list. 2036 */ 2037 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 2038 int i = pList->nExpr; 2039 struct ExprList_item *pItem = pList->a; 2040 assert( pList->nExpr>0 ); 2041 do{ 2042 sqlite3ExprDelete(db, pItem->pExpr); 2043 sqlite3DbFree(db, pItem->zEName); 2044 pItem++; 2045 }while( --i>0 ); 2046 sqlite3DbFreeNN(db, pList); 2047 } 2048 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 2049 if( pList ) exprListDeleteNN(db, pList); 2050 } 2051 2052 /* 2053 ** Return the bitwise-OR of all Expr.flags fields in the given 2054 ** ExprList. 2055 */ 2056 u32 sqlite3ExprListFlags(const ExprList *pList){ 2057 int i; 2058 u32 m = 0; 2059 assert( pList!=0 ); 2060 for(i=0; i<pList->nExpr; i++){ 2061 Expr *pExpr = pList->a[i].pExpr; 2062 assert( pExpr!=0 ); 2063 m |= pExpr->flags; 2064 } 2065 return m; 2066 } 2067 2068 /* 2069 ** This is a SELECT-node callback for the expression walker that 2070 ** always "fails". By "fail" in this case, we mean set 2071 ** pWalker->eCode to zero and abort. 2072 ** 2073 ** This callback is used by multiple expression walkers. 2074 */ 2075 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2076 UNUSED_PARAMETER(NotUsed); 2077 pWalker->eCode = 0; 2078 return WRC_Abort; 2079 } 2080 2081 /* 2082 ** Check the input string to see if it is "true" or "false" (in any case). 2083 ** 2084 ** If the string is.... Return 2085 ** "true" EP_IsTrue 2086 ** "false" EP_IsFalse 2087 ** anything else 0 2088 */ 2089 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2090 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2091 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2092 return 0; 2093 } 2094 2095 2096 /* 2097 ** If the input expression is an ID with the name "true" or "false" 2098 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2099 ** the conversion happened, and zero if the expression is unaltered. 2100 */ 2101 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2102 u32 v; 2103 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2104 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) 2105 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2106 ){ 2107 pExpr->op = TK_TRUEFALSE; 2108 ExprSetProperty(pExpr, v); 2109 return 1; 2110 } 2111 return 0; 2112 } 2113 2114 /* 2115 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2116 ** and 0 if it is FALSE. 2117 */ 2118 int sqlite3ExprTruthValue(const Expr *pExpr){ 2119 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2120 assert( pExpr->op==TK_TRUEFALSE ); 2121 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2122 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2123 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2124 return pExpr->u.zToken[4]==0; 2125 } 2126 2127 /* 2128 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2129 ** terms that are always true or false. Return the simplified expression. 2130 ** Or return the original expression if no simplification is possible. 2131 ** 2132 ** Examples: 2133 ** 2134 ** (x<10) AND true => (x<10) 2135 ** (x<10) AND false => false 2136 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2137 ** (x<10) AND (y=22 OR true) => (x<10) 2138 ** (y=22) OR true => true 2139 */ 2140 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2141 assert( pExpr!=0 ); 2142 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2143 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2144 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2145 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2146 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2147 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2148 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2149 } 2150 } 2151 return pExpr; 2152 } 2153 2154 2155 /* 2156 ** These routines are Walker callbacks used to check expressions to 2157 ** see if they are "constant" for some definition of constant. The 2158 ** Walker.eCode value determines the type of "constant" we are looking 2159 ** for. 2160 ** 2161 ** These callback routines are used to implement the following: 2162 ** 2163 ** sqlite3ExprIsConstant() pWalker->eCode==1 2164 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2165 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2166 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2167 ** 2168 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2169 ** is found to not be a constant. 2170 ** 2171 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2172 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2173 ** when parsing an existing schema out of the sqlite_schema table and 4 2174 ** when processing a new CREATE TABLE statement. A bound parameter raises 2175 ** an error for new statements, but is silently converted 2176 ** to NULL for existing schemas. This allows sqlite_schema tables that 2177 ** contain a bound parameter because they were generated by older versions 2178 ** of SQLite to be parsed by newer versions of SQLite without raising a 2179 ** malformed schema error. 2180 */ 2181 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2182 2183 /* If pWalker->eCode is 2 then any term of the expression that comes from 2184 ** the ON or USING clauses of an outer join disqualifies the expression 2185 ** from being considered constant. */ 2186 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){ 2187 pWalker->eCode = 0; 2188 return WRC_Abort; 2189 } 2190 2191 switch( pExpr->op ){ 2192 /* Consider functions to be constant if all their arguments are constant 2193 ** and either pWalker->eCode==4 or 5 or the function has the 2194 ** SQLITE_FUNC_CONST flag. */ 2195 case TK_FUNCTION: 2196 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2197 && !ExprHasProperty(pExpr, EP_WinFunc) 2198 ){ 2199 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2200 return WRC_Continue; 2201 }else{ 2202 pWalker->eCode = 0; 2203 return WRC_Abort; 2204 } 2205 case TK_ID: 2206 /* Convert "true" or "false" in a DEFAULT clause into the 2207 ** appropriate TK_TRUEFALSE operator */ 2208 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2209 return WRC_Prune; 2210 } 2211 /* no break */ deliberate_fall_through 2212 case TK_COLUMN: 2213 case TK_AGG_FUNCTION: 2214 case TK_AGG_COLUMN: 2215 testcase( pExpr->op==TK_ID ); 2216 testcase( pExpr->op==TK_COLUMN ); 2217 testcase( pExpr->op==TK_AGG_FUNCTION ); 2218 testcase( pExpr->op==TK_AGG_COLUMN ); 2219 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2220 return WRC_Continue; 2221 } 2222 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2223 return WRC_Continue; 2224 } 2225 /* no break */ deliberate_fall_through 2226 case TK_IF_NULL_ROW: 2227 case TK_REGISTER: 2228 case TK_DOT: 2229 testcase( pExpr->op==TK_REGISTER ); 2230 testcase( pExpr->op==TK_IF_NULL_ROW ); 2231 testcase( pExpr->op==TK_DOT ); 2232 pWalker->eCode = 0; 2233 return WRC_Abort; 2234 case TK_VARIABLE: 2235 if( pWalker->eCode==5 ){ 2236 /* Silently convert bound parameters that appear inside of CREATE 2237 ** statements into a NULL when parsing the CREATE statement text out 2238 ** of the sqlite_schema table */ 2239 pExpr->op = TK_NULL; 2240 }else if( pWalker->eCode==4 ){ 2241 /* A bound parameter in a CREATE statement that originates from 2242 ** sqlite3_prepare() causes an error */ 2243 pWalker->eCode = 0; 2244 return WRC_Abort; 2245 } 2246 /* no break */ deliberate_fall_through 2247 default: 2248 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2249 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2250 return WRC_Continue; 2251 } 2252 } 2253 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2254 Walker w; 2255 w.eCode = initFlag; 2256 w.xExprCallback = exprNodeIsConstant; 2257 w.xSelectCallback = sqlite3SelectWalkFail; 2258 #ifdef SQLITE_DEBUG 2259 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2260 #endif 2261 w.u.iCur = iCur; 2262 sqlite3WalkExpr(&w, p); 2263 return w.eCode; 2264 } 2265 2266 /* 2267 ** Walk an expression tree. Return non-zero if the expression is constant 2268 ** and 0 if it involves variables or function calls. 2269 ** 2270 ** For the purposes of this function, a double-quoted string (ex: "abc") 2271 ** is considered a variable but a single-quoted string (ex: 'abc') is 2272 ** a constant. 2273 */ 2274 int sqlite3ExprIsConstant(Expr *p){ 2275 return exprIsConst(p, 1, 0); 2276 } 2277 2278 /* 2279 ** Walk an expression tree. Return non-zero if 2280 ** 2281 ** (1) the expression is constant, and 2282 ** (2) the expression does originate in the ON or USING clause 2283 ** of a LEFT JOIN, and 2284 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2285 ** operands created by the constant propagation optimization. 2286 ** 2287 ** When this routine returns true, it indicates that the expression 2288 ** can be added to the pParse->pConstExpr list and evaluated once when 2289 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2290 */ 2291 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2292 return exprIsConst(p, 2, 0); 2293 } 2294 2295 /* 2296 ** Walk an expression tree. Return non-zero if the expression is constant 2297 ** for any single row of the table with cursor iCur. In other words, the 2298 ** expression must not refer to any non-deterministic function nor any 2299 ** table other than iCur. 2300 */ 2301 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2302 return exprIsConst(p, 3, iCur); 2303 } 2304 2305 /* 2306 ** Check pExpr to see if it is an invariant constraint on data source pSrc. 2307 ** This is an optimization. False negatives will perhaps cause slower 2308 ** queries, but false positives will yield incorrect answers. So when in 2309 ** doubt, return 0. 2310 ** 2311 ** To be an invariant constraint, the following must be true: 2312 ** 2313 ** (1) pExpr cannot refer to any table other than pSrc->iCursor. 2314 ** 2315 ** (2) pExpr cannot use subqueries or non-deterministic functions. 2316 ** 2317 ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN. 2318 ** (Is there some way to relax this constraint?) 2319 ** 2320 ** (4) If pSrc is the right operand of a LEFT JOIN, then... 2321 ** (4a) pExpr must come from an ON clause.. 2322 (4b) and specifically the ON clause associated with the LEFT JOIN. 2323 ** 2324 ** (5) If pSrc is not the right operand of a LEFT JOIN or the left 2325 ** operand of a RIGHT JOIN, then pExpr must be from the WHERE 2326 ** clause, not an ON clause. 2327 */ 2328 int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){ 2329 if( pSrc->fg.jointype & JT_LTORJ ){ 2330 return 0; /* rule (3) */ 2331 } 2332 if( pSrc->fg.jointype & JT_LEFT ){ 2333 if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */ 2334 if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */ 2335 }else{ 2336 if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */ 2337 } 2338 return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */ 2339 } 2340 2341 2342 /* 2343 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2344 */ 2345 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2346 ExprList *pGroupBy = pWalker->u.pGroupBy; 2347 int i; 2348 2349 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2350 ** it constant. */ 2351 for(i=0; i<pGroupBy->nExpr; i++){ 2352 Expr *p = pGroupBy->a[i].pExpr; 2353 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2354 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2355 if( sqlite3IsBinary(pColl) ){ 2356 return WRC_Prune; 2357 } 2358 } 2359 } 2360 2361 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2362 if( ExprUseXSelect(pExpr) ){ 2363 pWalker->eCode = 0; 2364 return WRC_Abort; 2365 } 2366 2367 return exprNodeIsConstant(pWalker, pExpr); 2368 } 2369 2370 /* 2371 ** Walk the expression tree passed as the first argument. Return non-zero 2372 ** if the expression consists entirely of constants or copies of terms 2373 ** in pGroupBy that sort with the BINARY collation sequence. 2374 ** 2375 ** This routine is used to determine if a term of the HAVING clause can 2376 ** be promoted into the WHERE clause. In order for such a promotion to work, 2377 ** the value of the HAVING clause term must be the same for all members of 2378 ** a "group". The requirement that the GROUP BY term must be BINARY 2379 ** assumes that no other collating sequence will have a finer-grained 2380 ** grouping than binary. In other words (A=B COLLATE binary) implies 2381 ** A=B in every other collating sequence. The requirement that the 2382 ** GROUP BY be BINARY is stricter than necessary. It would also work 2383 ** to promote HAVING clauses that use the same alternative collating 2384 ** sequence as the GROUP BY term, but that is much harder to check, 2385 ** alternative collating sequences are uncommon, and this is only an 2386 ** optimization, so we take the easy way out and simply require the 2387 ** GROUP BY to use the BINARY collating sequence. 2388 */ 2389 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2390 Walker w; 2391 w.eCode = 1; 2392 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2393 w.xSelectCallback = 0; 2394 w.u.pGroupBy = pGroupBy; 2395 w.pParse = pParse; 2396 sqlite3WalkExpr(&w, p); 2397 return w.eCode; 2398 } 2399 2400 /* 2401 ** Walk an expression tree for the DEFAULT field of a column definition 2402 ** in a CREATE TABLE statement. Return non-zero if the expression is 2403 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2404 ** the expression is constant or a function call with constant arguments. 2405 ** Return and 0 if there are any variables. 2406 ** 2407 ** isInit is true when parsing from sqlite_schema. isInit is false when 2408 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2409 ** (such as ? or $abc) in the expression are converted into NULL. When 2410 ** isInit is false, parameters raise an error. Parameters should not be 2411 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2412 ** allowed it, so we need to support it when reading sqlite_schema for 2413 ** backwards compatibility. 2414 ** 2415 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2416 ** 2417 ** For the purposes of this function, a double-quoted string (ex: "abc") 2418 ** is considered a variable but a single-quoted string (ex: 'abc') is 2419 ** a constant. 2420 */ 2421 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2422 assert( isInit==0 || isInit==1 ); 2423 return exprIsConst(p, 4+isInit, 0); 2424 } 2425 2426 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2427 /* 2428 ** Walk an expression tree. Return 1 if the expression contains a 2429 ** subquery of some kind. Return 0 if there are no subqueries. 2430 */ 2431 int sqlite3ExprContainsSubquery(Expr *p){ 2432 Walker w; 2433 w.eCode = 1; 2434 w.xExprCallback = sqlite3ExprWalkNoop; 2435 w.xSelectCallback = sqlite3SelectWalkFail; 2436 #ifdef SQLITE_DEBUG 2437 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2438 #endif 2439 sqlite3WalkExpr(&w, p); 2440 return w.eCode==0; 2441 } 2442 #endif 2443 2444 /* 2445 ** If the expression p codes a constant integer that is small enough 2446 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2447 ** in *pValue. If the expression is not an integer or if it is too big 2448 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2449 */ 2450 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 2451 int rc = 0; 2452 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2453 2454 /* If an expression is an integer literal that fits in a signed 32-bit 2455 ** integer, then the EP_IntValue flag will have already been set */ 2456 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2457 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2458 2459 if( p->flags & EP_IntValue ){ 2460 *pValue = p->u.iValue; 2461 return 1; 2462 } 2463 switch( p->op ){ 2464 case TK_UPLUS: { 2465 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2466 break; 2467 } 2468 case TK_UMINUS: { 2469 int v = 0; 2470 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2471 assert( ((unsigned int)v)!=0x80000000 ); 2472 *pValue = -v; 2473 rc = 1; 2474 } 2475 break; 2476 } 2477 default: break; 2478 } 2479 return rc; 2480 } 2481 2482 /* 2483 ** Return FALSE if there is no chance that the expression can be NULL. 2484 ** 2485 ** If the expression might be NULL or if the expression is too complex 2486 ** to tell return TRUE. 2487 ** 2488 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2489 ** when we know that a value cannot be NULL. Hence, a false positive 2490 ** (returning TRUE when in fact the expression can never be NULL) might 2491 ** be a small performance hit but is otherwise harmless. On the other 2492 ** hand, a false negative (returning FALSE when the result could be NULL) 2493 ** will likely result in an incorrect answer. So when in doubt, return 2494 ** TRUE. 2495 */ 2496 int sqlite3ExprCanBeNull(const Expr *p){ 2497 u8 op; 2498 assert( p!=0 ); 2499 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2500 p = p->pLeft; 2501 assert( p!=0 ); 2502 } 2503 op = p->op; 2504 if( op==TK_REGISTER ) op = p->op2; 2505 switch( op ){ 2506 case TK_INTEGER: 2507 case TK_STRING: 2508 case TK_FLOAT: 2509 case TK_BLOB: 2510 return 0; 2511 case TK_COLUMN: 2512 assert( ExprUseYTab(p) ); 2513 return ExprHasProperty(p, EP_CanBeNull) || 2514 p->y.pTab==0 || /* Reference to column of index on expression */ 2515 (p->iColumn>=0 2516 && p->y.pTab->aCol!=0 /* Possible due to prior error */ 2517 && p->y.pTab->aCol[p->iColumn].notNull==0); 2518 default: 2519 return 1; 2520 } 2521 } 2522 2523 /* 2524 ** Return TRUE if the given expression is a constant which would be 2525 ** unchanged by OP_Affinity with the affinity given in the second 2526 ** argument. 2527 ** 2528 ** This routine is used to determine if the OP_Affinity operation 2529 ** can be omitted. When in doubt return FALSE. A false negative 2530 ** is harmless. A false positive, however, can result in the wrong 2531 ** answer. 2532 */ 2533 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2534 u8 op; 2535 int unaryMinus = 0; 2536 if( aff==SQLITE_AFF_BLOB ) return 1; 2537 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2538 if( p->op==TK_UMINUS ) unaryMinus = 1; 2539 p = p->pLeft; 2540 } 2541 op = p->op; 2542 if( op==TK_REGISTER ) op = p->op2; 2543 switch( op ){ 2544 case TK_INTEGER: { 2545 return aff>=SQLITE_AFF_NUMERIC; 2546 } 2547 case TK_FLOAT: { 2548 return aff>=SQLITE_AFF_NUMERIC; 2549 } 2550 case TK_STRING: { 2551 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2552 } 2553 case TK_BLOB: { 2554 return !unaryMinus; 2555 } 2556 case TK_COLUMN: { 2557 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2558 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2559 } 2560 default: { 2561 return 0; 2562 } 2563 } 2564 } 2565 2566 /* 2567 ** Return TRUE if the given string is a row-id column name. 2568 */ 2569 int sqlite3IsRowid(const char *z){ 2570 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2571 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2572 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2573 return 0; 2574 } 2575 2576 /* 2577 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2578 ** that can be simplified to a direct table access, then return 2579 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2580 ** or if the SELECT statement needs to be manifested into a transient 2581 ** table, then return NULL. 2582 */ 2583 #ifndef SQLITE_OMIT_SUBQUERY 2584 static Select *isCandidateForInOpt(const Expr *pX){ 2585 Select *p; 2586 SrcList *pSrc; 2587 ExprList *pEList; 2588 Table *pTab; 2589 int i; 2590 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ 2591 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2592 p = pX->x.pSelect; 2593 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2594 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2595 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2596 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2597 return 0; /* No DISTINCT keyword and no aggregate functions */ 2598 } 2599 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2600 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2601 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2602 pSrc = p->pSrc; 2603 assert( pSrc!=0 ); 2604 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2605 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2606 pTab = pSrc->a[0].pTab; 2607 assert( pTab!=0 ); 2608 assert( !IsView(pTab) ); /* FROM clause is not a view */ 2609 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2610 pEList = p->pEList; 2611 assert( pEList!=0 ); 2612 /* All SELECT results must be columns. */ 2613 for(i=0; i<pEList->nExpr; i++){ 2614 Expr *pRes = pEList->a[i].pExpr; 2615 if( pRes->op!=TK_COLUMN ) return 0; 2616 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2617 } 2618 return p; 2619 } 2620 #endif /* SQLITE_OMIT_SUBQUERY */ 2621 2622 #ifndef SQLITE_OMIT_SUBQUERY 2623 /* 2624 ** Generate code that checks the left-most column of index table iCur to see if 2625 ** it contains any NULL entries. Cause the register at regHasNull to be set 2626 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2627 ** to be set to NULL if iCur contains one or more NULL values. 2628 */ 2629 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2630 int addr1; 2631 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2632 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2633 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2634 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2635 VdbeComment((v, "first_entry_in(%d)", iCur)); 2636 sqlite3VdbeJumpHere(v, addr1); 2637 } 2638 #endif 2639 2640 2641 #ifndef SQLITE_OMIT_SUBQUERY 2642 /* 2643 ** The argument is an IN operator with a list (not a subquery) on the 2644 ** right-hand side. Return TRUE if that list is constant. 2645 */ 2646 static int sqlite3InRhsIsConstant(Expr *pIn){ 2647 Expr *pLHS; 2648 int res; 2649 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2650 pLHS = pIn->pLeft; 2651 pIn->pLeft = 0; 2652 res = sqlite3ExprIsConstant(pIn); 2653 pIn->pLeft = pLHS; 2654 return res; 2655 } 2656 #endif 2657 2658 /* 2659 ** This function is used by the implementation of the IN (...) operator. 2660 ** The pX parameter is the expression on the RHS of the IN operator, which 2661 ** might be either a list of expressions or a subquery. 2662 ** 2663 ** The job of this routine is to find or create a b-tree object that can 2664 ** be used either to test for membership in the RHS set or to iterate through 2665 ** all members of the RHS set, skipping duplicates. 2666 ** 2667 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2668 ** and the *piTab parameter is set to the index of that cursor. 2669 ** 2670 ** The returned value of this function indicates the b-tree type, as follows: 2671 ** 2672 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2673 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2674 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2675 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2676 ** populated epheremal table. 2677 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2678 ** implemented as a sequence of comparisons. 2679 ** 2680 ** An existing b-tree might be used if the RHS expression pX is a simple 2681 ** subquery such as: 2682 ** 2683 ** SELECT <column1>, <column2>... FROM <table> 2684 ** 2685 ** If the RHS of the IN operator is a list or a more complex subquery, then 2686 ** an ephemeral table might need to be generated from the RHS and then 2687 ** pX->iTable made to point to the ephemeral table instead of an 2688 ** existing table. In this case, the creation and initialization of the 2689 ** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag 2690 ** will be set on pX and the pX->y.sub fields will be set to show where 2691 ** the subroutine is coded. 2692 ** 2693 ** The inFlags parameter must contain, at a minimum, one of the bits 2694 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2695 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2696 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2697 ** be used to loop over all values of the RHS of the IN operator. 2698 ** 2699 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2700 ** through the set members) then the b-tree must not contain duplicates. 2701 ** An epheremal table will be created unless the selected columns are guaranteed 2702 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2703 ** a UNIQUE constraint or index. 2704 ** 2705 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2706 ** for fast set membership tests) then an epheremal table must 2707 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2708 ** index can be found with the specified <columns> as its left-most. 2709 ** 2710 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2711 ** if the RHS of the IN operator is a list (not a subquery) then this 2712 ** routine might decide that creating an ephemeral b-tree for membership 2713 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2714 ** calling routine should implement the IN operator using a sequence 2715 ** of Eq or Ne comparison operations. 2716 ** 2717 ** When the b-tree is being used for membership tests, the calling function 2718 ** might need to know whether or not the RHS side of the IN operator 2719 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2720 ** if there is any chance that the (...) might contain a NULL value at 2721 ** runtime, then a register is allocated and the register number written 2722 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2723 ** NULL value, then *prRhsHasNull is left unchanged. 2724 ** 2725 ** If a register is allocated and its location stored in *prRhsHasNull, then 2726 ** the value in that register will be NULL if the b-tree contains one or more 2727 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2728 ** NULL values. 2729 ** 2730 ** If the aiMap parameter is not NULL, it must point to an array containing 2731 ** one element for each column returned by the SELECT statement on the RHS 2732 ** of the IN(...) operator. The i'th entry of the array is populated with the 2733 ** offset of the index column that matches the i'th column returned by the 2734 ** SELECT. For example, if the expression and selected index are: 2735 ** 2736 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2737 ** CREATE INDEX i1 ON t1(b, c, a); 2738 ** 2739 ** then aiMap[] is populated with {2, 0, 1}. 2740 */ 2741 #ifndef SQLITE_OMIT_SUBQUERY 2742 int sqlite3FindInIndex( 2743 Parse *pParse, /* Parsing context */ 2744 Expr *pX, /* The IN expression */ 2745 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2746 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2747 int *aiMap, /* Mapping from Index fields to RHS fields */ 2748 int *piTab /* OUT: index to use */ 2749 ){ 2750 Select *p; /* SELECT to the right of IN operator */ 2751 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2752 int iTab; /* Cursor of the RHS table */ 2753 int mustBeUnique; /* True if RHS must be unique */ 2754 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2755 2756 assert( pX->op==TK_IN ); 2757 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2758 iTab = pParse->nTab++; 2759 2760 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2761 ** whether or not the SELECT result contains NULL values, check whether 2762 ** or not NULL is actually possible (it may not be, for example, due 2763 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2764 ** set prRhsHasNull to 0 before continuing. */ 2765 if( prRhsHasNull && ExprUseXSelect(pX) ){ 2766 int i; 2767 ExprList *pEList = pX->x.pSelect->pEList; 2768 for(i=0; i<pEList->nExpr; i++){ 2769 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2770 } 2771 if( i==pEList->nExpr ){ 2772 prRhsHasNull = 0; 2773 } 2774 } 2775 2776 /* Check to see if an existing table or index can be used to 2777 ** satisfy the query. This is preferable to generating a new 2778 ** ephemeral table. */ 2779 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2780 sqlite3 *db = pParse->db; /* Database connection */ 2781 Table *pTab; /* Table <table>. */ 2782 int iDb; /* Database idx for pTab */ 2783 ExprList *pEList = p->pEList; 2784 int nExpr = pEList->nExpr; 2785 2786 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2787 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2788 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2789 pTab = p->pSrc->a[0].pTab; 2790 2791 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2792 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2793 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2794 sqlite3CodeVerifySchema(pParse, iDb); 2795 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2796 2797 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2798 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2799 /* The "x IN (SELECT rowid FROM table)" case */ 2800 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2801 VdbeCoverage(v); 2802 2803 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2804 eType = IN_INDEX_ROWID; 2805 ExplainQueryPlan((pParse, 0, 2806 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2807 sqlite3VdbeJumpHere(v, iAddr); 2808 }else{ 2809 Index *pIdx; /* Iterator variable */ 2810 int affinity_ok = 1; 2811 int i; 2812 2813 /* Check that the affinity that will be used to perform each 2814 ** comparison is the same as the affinity of each column in table 2815 ** on the RHS of the IN operator. If it not, it is not possible to 2816 ** use any index of the RHS table. */ 2817 for(i=0; i<nExpr && affinity_ok; i++){ 2818 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2819 int iCol = pEList->a[i].pExpr->iColumn; 2820 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2821 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2822 testcase( cmpaff==SQLITE_AFF_BLOB ); 2823 testcase( cmpaff==SQLITE_AFF_TEXT ); 2824 switch( cmpaff ){ 2825 case SQLITE_AFF_BLOB: 2826 break; 2827 case SQLITE_AFF_TEXT: 2828 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2829 ** other has no affinity and the other side is TEXT. Hence, 2830 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2831 ** and for the term on the LHS of the IN to have no affinity. */ 2832 assert( idxaff==SQLITE_AFF_TEXT ); 2833 break; 2834 default: 2835 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2836 } 2837 } 2838 2839 if( affinity_ok ){ 2840 /* Search for an existing index that will work for this IN operator */ 2841 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2842 Bitmask colUsed; /* Columns of the index used */ 2843 Bitmask mCol; /* Mask for the current column */ 2844 if( pIdx->nColumn<nExpr ) continue; 2845 if( pIdx->pPartIdxWhere!=0 ) continue; 2846 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2847 ** BITMASK(nExpr) without overflowing */ 2848 testcase( pIdx->nColumn==BMS-2 ); 2849 testcase( pIdx->nColumn==BMS-1 ); 2850 if( pIdx->nColumn>=BMS-1 ) continue; 2851 if( mustBeUnique ){ 2852 if( pIdx->nKeyCol>nExpr 2853 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2854 ){ 2855 continue; /* This index is not unique over the IN RHS columns */ 2856 } 2857 } 2858 2859 colUsed = 0; /* Columns of index used so far */ 2860 for(i=0; i<nExpr; i++){ 2861 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2862 Expr *pRhs = pEList->a[i].pExpr; 2863 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2864 int j; 2865 2866 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2867 for(j=0; j<nExpr; j++){ 2868 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2869 assert( pIdx->azColl[j] ); 2870 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2871 continue; 2872 } 2873 break; 2874 } 2875 if( j==nExpr ) break; 2876 mCol = MASKBIT(j); 2877 if( mCol & colUsed ) break; /* Each column used only once */ 2878 colUsed |= mCol; 2879 if( aiMap ) aiMap[i] = j; 2880 } 2881 2882 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2883 if( colUsed==(MASKBIT(nExpr)-1) ){ 2884 /* If we reach this point, that means the index pIdx is usable */ 2885 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2886 ExplainQueryPlan((pParse, 0, 2887 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2888 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2889 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2890 VdbeComment((v, "%s", pIdx->zName)); 2891 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2892 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2893 2894 if( prRhsHasNull ){ 2895 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2896 i64 mask = (1<<nExpr)-1; 2897 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2898 iTab, 0, 0, (u8*)&mask, P4_INT64); 2899 #endif 2900 *prRhsHasNull = ++pParse->nMem; 2901 if( nExpr==1 ){ 2902 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2903 } 2904 } 2905 sqlite3VdbeJumpHere(v, iAddr); 2906 } 2907 } /* End loop over indexes */ 2908 } /* End if( affinity_ok ) */ 2909 } /* End if not an rowid index */ 2910 } /* End attempt to optimize using an index */ 2911 2912 /* If no preexisting index is available for the IN clause 2913 ** and IN_INDEX_NOOP is an allowed reply 2914 ** and the RHS of the IN operator is a list, not a subquery 2915 ** and the RHS is not constant or has two or fewer terms, 2916 ** then it is not worth creating an ephemeral table to evaluate 2917 ** the IN operator so return IN_INDEX_NOOP. 2918 */ 2919 if( eType==0 2920 && (inFlags & IN_INDEX_NOOP_OK) 2921 && ExprUseXList(pX) 2922 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2923 ){ 2924 pParse->nTab--; /* Back out the allocation of the unused cursor */ 2925 iTab = -1; /* Cursor is not allocated */ 2926 eType = IN_INDEX_NOOP; 2927 } 2928 2929 if( eType==0 ){ 2930 /* Could not find an existing table or index to use as the RHS b-tree. 2931 ** We will have to generate an ephemeral table to do the job. 2932 */ 2933 u32 savedNQueryLoop = pParse->nQueryLoop; 2934 int rMayHaveNull = 0; 2935 eType = IN_INDEX_EPH; 2936 if( inFlags & IN_INDEX_LOOP ){ 2937 pParse->nQueryLoop = 0; 2938 }else if( prRhsHasNull ){ 2939 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2940 } 2941 assert( pX->op==TK_IN ); 2942 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2943 if( rMayHaveNull ){ 2944 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2945 } 2946 pParse->nQueryLoop = savedNQueryLoop; 2947 } 2948 2949 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2950 int i, n; 2951 n = sqlite3ExprVectorSize(pX->pLeft); 2952 for(i=0; i<n; i++) aiMap[i] = i; 2953 } 2954 *piTab = iTab; 2955 return eType; 2956 } 2957 #endif 2958 2959 #ifndef SQLITE_OMIT_SUBQUERY 2960 /* 2961 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2962 ** function allocates and returns a nul-terminated string containing 2963 ** the affinities to be used for each column of the comparison. 2964 ** 2965 ** It is the responsibility of the caller to ensure that the returned 2966 ** string is eventually freed using sqlite3DbFree(). 2967 */ 2968 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 2969 Expr *pLeft = pExpr->pLeft; 2970 int nVal = sqlite3ExprVectorSize(pLeft); 2971 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; 2972 char *zRet; 2973 2974 assert( pExpr->op==TK_IN ); 2975 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2976 if( zRet ){ 2977 int i; 2978 for(i=0; i<nVal; i++){ 2979 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2980 char a = sqlite3ExprAffinity(pA); 2981 if( pSelect ){ 2982 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2983 }else{ 2984 zRet[i] = a; 2985 } 2986 } 2987 zRet[nVal] = '\0'; 2988 } 2989 return zRet; 2990 } 2991 #endif 2992 2993 #ifndef SQLITE_OMIT_SUBQUERY 2994 /* 2995 ** Load the Parse object passed as the first argument with an error 2996 ** message of the form: 2997 ** 2998 ** "sub-select returns N columns - expected M" 2999 */ 3000 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 3001 if( pParse->nErr==0 ){ 3002 const char *zFmt = "sub-select returns %d columns - expected %d"; 3003 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 3004 } 3005 } 3006 #endif 3007 3008 /* 3009 ** Expression pExpr is a vector that has been used in a context where 3010 ** it is not permitted. If pExpr is a sub-select vector, this routine 3011 ** loads the Parse object with a message of the form: 3012 ** 3013 ** "sub-select returns N columns - expected 1" 3014 ** 3015 ** Or, if it is a regular scalar vector: 3016 ** 3017 ** "row value misused" 3018 */ 3019 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 3020 #ifndef SQLITE_OMIT_SUBQUERY 3021 if( ExprUseXSelect(pExpr) ){ 3022 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 3023 }else 3024 #endif 3025 { 3026 sqlite3ErrorMsg(pParse, "row value misused"); 3027 } 3028 } 3029 3030 #ifndef SQLITE_OMIT_SUBQUERY 3031 /* 3032 ** Generate code that will construct an ephemeral table containing all terms 3033 ** in the RHS of an IN operator. The IN operator can be in either of two 3034 ** forms: 3035 ** 3036 ** x IN (4,5,11) -- IN operator with list on right-hand side 3037 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 3038 ** 3039 ** The pExpr parameter is the IN operator. The cursor number for the 3040 ** constructed ephermeral table is returned. The first time the ephemeral 3041 ** table is computed, the cursor number is also stored in pExpr->iTable, 3042 ** however the cursor number returned might not be the same, as it might 3043 ** have been duplicated using OP_OpenDup. 3044 ** 3045 ** If the LHS expression ("x" in the examples) is a column value, or 3046 ** the SELECT statement returns a column value, then the affinity of that 3047 ** column is used to build the index keys. If both 'x' and the 3048 ** SELECT... statement are columns, then numeric affinity is used 3049 ** if either column has NUMERIC or INTEGER affinity. If neither 3050 ** 'x' nor the SELECT... statement are columns, then numeric affinity 3051 ** is used. 3052 */ 3053 void sqlite3CodeRhsOfIN( 3054 Parse *pParse, /* Parsing context */ 3055 Expr *pExpr, /* The IN operator */ 3056 int iTab /* Use this cursor number */ 3057 ){ 3058 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 3059 int addr; /* Address of OP_OpenEphemeral instruction */ 3060 Expr *pLeft; /* the LHS of the IN operator */ 3061 KeyInfo *pKeyInfo = 0; /* Key information */ 3062 int nVal; /* Size of vector pLeft */ 3063 Vdbe *v; /* The prepared statement under construction */ 3064 3065 v = pParse->pVdbe; 3066 assert( v!=0 ); 3067 3068 /* The evaluation of the IN must be repeated every time it 3069 ** is encountered if any of the following is true: 3070 ** 3071 ** * The right-hand side is a correlated subquery 3072 ** * The right-hand side is an expression list containing variables 3073 ** * We are inside a trigger 3074 ** 3075 ** If all of the above are false, then we can compute the RHS just once 3076 ** and reuse it many names. 3077 */ 3078 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 3079 /* Reuse of the RHS is allowed */ 3080 /* If this routine has already been coded, but the previous code 3081 ** might not have been invoked yet, so invoke it now as a subroutine. 3082 */ 3083 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3084 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3085 if( ExprUseXSelect(pExpr) ){ 3086 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 3087 pExpr->x.pSelect->selId)); 3088 } 3089 assert( ExprUseYSub(pExpr) ); 3090 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3091 pExpr->y.sub.iAddr); 3092 assert( iTab!=pExpr->iTable ); 3093 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 3094 sqlite3VdbeJumpHere(v, addrOnce); 3095 return; 3096 } 3097 3098 /* Begin coding the subroutine */ 3099 assert( !ExprUseYWin(pExpr) ); 3100 ExprSetProperty(pExpr, EP_Subrtn); 3101 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3102 pExpr->y.sub.regReturn = ++pParse->nMem; 3103 pExpr->y.sub.iAddr = 3104 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3105 3106 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3107 } 3108 3109 /* Check to see if this is a vector IN operator */ 3110 pLeft = pExpr->pLeft; 3111 nVal = sqlite3ExprVectorSize(pLeft); 3112 3113 /* Construct the ephemeral table that will contain the content of 3114 ** RHS of the IN operator. 3115 */ 3116 pExpr->iTable = iTab; 3117 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3118 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3119 if( ExprUseXSelect(pExpr) ){ 3120 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3121 }else{ 3122 VdbeComment((v, "RHS of IN operator")); 3123 } 3124 #endif 3125 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3126 3127 if( ExprUseXSelect(pExpr) ){ 3128 /* Case 1: expr IN (SELECT ...) 3129 ** 3130 ** Generate code to write the results of the select into the temporary 3131 ** table allocated and opened above. 3132 */ 3133 Select *pSelect = pExpr->x.pSelect; 3134 ExprList *pEList = pSelect->pEList; 3135 3136 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3137 addrOnce?"":"CORRELATED ", pSelect->selId 3138 )); 3139 /* If the LHS and RHS of the IN operator do not match, that 3140 ** error will have been caught long before we reach this point. */ 3141 if( ALWAYS(pEList->nExpr==nVal) ){ 3142 Select *pCopy; 3143 SelectDest dest; 3144 int i; 3145 int rc; 3146 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3147 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3148 pSelect->iLimit = 0; 3149 testcase( pSelect->selFlags & SF_Distinct ); 3150 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3151 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3152 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3153 sqlite3SelectDelete(pParse->db, pCopy); 3154 sqlite3DbFree(pParse->db, dest.zAffSdst); 3155 if( rc ){ 3156 sqlite3KeyInfoUnref(pKeyInfo); 3157 return; 3158 } 3159 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3160 assert( pEList!=0 ); 3161 assert( pEList->nExpr>0 ); 3162 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3163 for(i=0; i<nVal; i++){ 3164 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3165 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3166 pParse, p, pEList->a[i].pExpr 3167 ); 3168 } 3169 } 3170 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3171 /* Case 2: expr IN (exprlist) 3172 ** 3173 ** For each expression, build an index key from the evaluation and 3174 ** store it in the temporary table. If <expr> is a column, then use 3175 ** that columns affinity when building index keys. If <expr> is not 3176 ** a column, use numeric affinity. 3177 */ 3178 char affinity; /* Affinity of the LHS of the IN */ 3179 int i; 3180 ExprList *pList = pExpr->x.pList; 3181 struct ExprList_item *pItem; 3182 int r1, r2; 3183 affinity = sqlite3ExprAffinity(pLeft); 3184 if( affinity<=SQLITE_AFF_NONE ){ 3185 affinity = SQLITE_AFF_BLOB; 3186 }else if( affinity==SQLITE_AFF_REAL ){ 3187 affinity = SQLITE_AFF_NUMERIC; 3188 } 3189 if( pKeyInfo ){ 3190 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3191 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3192 } 3193 3194 /* Loop through each expression in <exprlist>. */ 3195 r1 = sqlite3GetTempReg(pParse); 3196 r2 = sqlite3GetTempReg(pParse); 3197 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3198 Expr *pE2 = pItem->pExpr; 3199 3200 /* If the expression is not constant then we will need to 3201 ** disable the test that was generated above that makes sure 3202 ** this code only executes once. Because for a non-constant 3203 ** expression we need to rerun this code each time. 3204 */ 3205 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3206 sqlite3VdbeChangeToNoop(v, addrOnce-1); 3207 sqlite3VdbeChangeToNoop(v, addrOnce); 3208 ExprClearProperty(pExpr, EP_Subrtn); 3209 addrOnce = 0; 3210 } 3211 3212 /* Evaluate the expression and insert it into the temp table */ 3213 sqlite3ExprCode(pParse, pE2, r1); 3214 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3215 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3216 } 3217 sqlite3ReleaseTempReg(pParse, r1); 3218 sqlite3ReleaseTempReg(pParse, r2); 3219 } 3220 if( pKeyInfo ){ 3221 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3222 } 3223 if( addrOnce ){ 3224 sqlite3VdbeJumpHere(v, addrOnce); 3225 /* Subroutine return */ 3226 assert( ExprUseYSub(pExpr) ); 3227 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3228 || pParse->nErr ); 3229 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3230 pExpr->y.sub.iAddr, 1); 3231 VdbeCoverage(v); 3232 sqlite3ClearTempRegCache(pParse); 3233 } 3234 } 3235 #endif /* SQLITE_OMIT_SUBQUERY */ 3236 3237 /* 3238 ** Generate code for scalar subqueries used as a subquery expression 3239 ** or EXISTS operator: 3240 ** 3241 ** (SELECT a FROM b) -- subquery 3242 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3243 ** 3244 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3245 ** 3246 ** Return the register that holds the result. For a multi-column SELECT, 3247 ** the result is stored in a contiguous array of registers and the 3248 ** return value is the register of the left-most result column. 3249 ** Return 0 if an error occurs. 3250 */ 3251 #ifndef SQLITE_OMIT_SUBQUERY 3252 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3253 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3254 int rReg = 0; /* Register storing resulting */ 3255 Select *pSel; /* SELECT statement to encode */ 3256 SelectDest dest; /* How to deal with SELECT result */ 3257 int nReg; /* Registers to allocate */ 3258 Expr *pLimit; /* New limit expression */ 3259 3260 Vdbe *v = pParse->pVdbe; 3261 assert( v!=0 ); 3262 if( pParse->nErr ) return 0; 3263 testcase( pExpr->op==TK_EXISTS ); 3264 testcase( pExpr->op==TK_SELECT ); 3265 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3266 assert( ExprUseXSelect(pExpr) ); 3267 pSel = pExpr->x.pSelect; 3268 3269 /* If this routine has already been coded, then invoke it as a 3270 ** subroutine. */ 3271 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3272 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3273 assert( ExprUseYSub(pExpr) ); 3274 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3275 pExpr->y.sub.iAddr); 3276 return pExpr->iTable; 3277 } 3278 3279 /* Begin coding the subroutine */ 3280 assert( !ExprUseYWin(pExpr) ); 3281 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); 3282 ExprSetProperty(pExpr, EP_Subrtn); 3283 pExpr->y.sub.regReturn = ++pParse->nMem; 3284 pExpr->y.sub.iAddr = 3285 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3286 3287 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3288 ** is encountered if any of the following is true: 3289 ** 3290 ** * The right-hand side is a correlated subquery 3291 ** * The right-hand side is an expression list containing variables 3292 ** * We are inside a trigger 3293 ** 3294 ** If all of the above are false, then we can run this code just once 3295 ** save the results, and reuse the same result on subsequent invocations. 3296 */ 3297 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3298 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3299 } 3300 3301 /* For a SELECT, generate code to put the values for all columns of 3302 ** the first row into an array of registers and return the index of 3303 ** the first register. 3304 ** 3305 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3306 ** into a register and return that register number. 3307 ** 3308 ** In both cases, the query is augmented with "LIMIT 1". Any 3309 ** preexisting limit is discarded in place of the new LIMIT 1. 3310 */ 3311 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3312 addrOnce?"":"CORRELATED ", pSel->selId)); 3313 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3314 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3315 pParse->nMem += nReg; 3316 if( pExpr->op==TK_SELECT ){ 3317 dest.eDest = SRT_Mem; 3318 dest.iSdst = dest.iSDParm; 3319 dest.nSdst = nReg; 3320 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3321 VdbeComment((v, "Init subquery result")); 3322 }else{ 3323 dest.eDest = SRT_Exists; 3324 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3325 VdbeComment((v, "Init EXISTS result")); 3326 } 3327 if( pSel->pLimit ){ 3328 /* The subquery already has a limit. If the pre-existing limit is X 3329 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3330 sqlite3 *db = pParse->db; 3331 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3332 if( pLimit ){ 3333 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3334 pLimit = sqlite3PExpr(pParse, TK_NE, 3335 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3336 } 3337 sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft); 3338 pSel->pLimit->pLeft = pLimit; 3339 }else{ 3340 /* If there is no pre-existing limit add a limit of 1 */ 3341 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3342 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3343 } 3344 pSel->iLimit = 0; 3345 if( sqlite3Select(pParse, pSel, &dest) ){ 3346 pExpr->op2 = pExpr->op; 3347 pExpr->op = TK_ERROR; 3348 return 0; 3349 } 3350 pExpr->iTable = rReg = dest.iSDParm; 3351 ExprSetVVAProperty(pExpr, EP_NoReduce); 3352 if( addrOnce ){ 3353 sqlite3VdbeJumpHere(v, addrOnce); 3354 } 3355 3356 /* Subroutine return */ 3357 assert( ExprUseYSub(pExpr) ); 3358 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3359 || pParse->nErr ); 3360 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3361 pExpr->y.sub.iAddr, 1); 3362 VdbeCoverage(v); 3363 sqlite3ClearTempRegCache(pParse); 3364 return rReg; 3365 } 3366 #endif /* SQLITE_OMIT_SUBQUERY */ 3367 3368 #ifndef SQLITE_OMIT_SUBQUERY 3369 /* 3370 ** Expr pIn is an IN(...) expression. This function checks that the 3371 ** sub-select on the RHS of the IN() operator has the same number of 3372 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3373 ** a sub-query, that the LHS is a vector of size 1. 3374 */ 3375 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3376 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3377 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ 3378 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3379 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3380 return 1; 3381 } 3382 }else if( nVector!=1 ){ 3383 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3384 return 1; 3385 } 3386 return 0; 3387 } 3388 #endif 3389 3390 #ifndef SQLITE_OMIT_SUBQUERY 3391 /* 3392 ** Generate code for an IN expression. 3393 ** 3394 ** x IN (SELECT ...) 3395 ** x IN (value, value, ...) 3396 ** 3397 ** The left-hand side (LHS) is a scalar or vector expression. The 3398 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3399 ** subquery. If the RHS is a subquery, the number of result columns must 3400 ** match the number of columns in the vector on the LHS. If the RHS is 3401 ** a list of values, the LHS must be a scalar. 3402 ** 3403 ** The IN operator is true if the LHS value is contained within the RHS. 3404 ** The result is false if the LHS is definitely not in the RHS. The 3405 ** result is NULL if the presence of the LHS in the RHS cannot be 3406 ** determined due to NULLs. 3407 ** 3408 ** This routine generates code that jumps to destIfFalse if the LHS is not 3409 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3410 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3411 ** within the RHS then fall through. 3412 ** 3413 ** See the separate in-operator.md documentation file in the canonical 3414 ** SQLite source tree for additional information. 3415 */ 3416 static void sqlite3ExprCodeIN( 3417 Parse *pParse, /* Parsing and code generating context */ 3418 Expr *pExpr, /* The IN expression */ 3419 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3420 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3421 ){ 3422 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3423 int eType; /* Type of the RHS */ 3424 int rLhs; /* Register(s) holding the LHS values */ 3425 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3426 Vdbe *v; /* Statement under construction */ 3427 int *aiMap = 0; /* Map from vector field to index column */ 3428 char *zAff = 0; /* Affinity string for comparisons */ 3429 int nVector; /* Size of vectors for this IN operator */ 3430 int iDummy; /* Dummy parameter to exprCodeVector() */ 3431 Expr *pLeft; /* The LHS of the IN operator */ 3432 int i; /* loop counter */ 3433 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3434 int destStep6 = 0; /* Start of code for Step 6 */ 3435 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3436 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3437 int addrTop; /* Top of the step-6 loop */ 3438 int iTab = 0; /* Index to use */ 3439 u8 okConstFactor = pParse->okConstFactor; 3440 3441 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3442 pLeft = pExpr->pLeft; 3443 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3444 zAff = exprINAffinity(pParse, pExpr); 3445 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3446 aiMap = (int*)sqlite3DbMallocZero( 3447 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3448 ); 3449 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3450 3451 /* Attempt to compute the RHS. After this step, if anything other than 3452 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3453 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3454 ** the RHS has not yet been coded. */ 3455 v = pParse->pVdbe; 3456 assert( v!=0 ); /* OOM detected prior to this routine */ 3457 VdbeNoopComment((v, "begin IN expr")); 3458 eType = sqlite3FindInIndex(pParse, pExpr, 3459 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3460 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3461 aiMap, &iTab); 3462 3463 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3464 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3465 ); 3466 #ifdef SQLITE_DEBUG 3467 /* Confirm that aiMap[] contains nVector integer values between 0 and 3468 ** nVector-1. */ 3469 for(i=0; i<nVector; i++){ 3470 int j, cnt; 3471 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3472 assert( cnt==1 ); 3473 } 3474 #endif 3475 3476 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3477 ** vector, then it is stored in an array of nVector registers starting 3478 ** at r1. 3479 ** 3480 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3481 ** so that the fields are in the same order as an existing index. The 3482 ** aiMap[] array contains a mapping from the original LHS field order to 3483 ** the field order that matches the RHS index. 3484 ** 3485 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3486 ** even if it is constant, as OP_Affinity may be used on the register 3487 ** by code generated below. */ 3488 assert( pParse->okConstFactor==okConstFactor ); 3489 pParse->okConstFactor = 0; 3490 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3491 pParse->okConstFactor = okConstFactor; 3492 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3493 if( i==nVector ){ 3494 /* LHS fields are not reordered */ 3495 rLhs = rLhsOrig; 3496 }else{ 3497 /* Need to reorder the LHS fields according to aiMap */ 3498 rLhs = sqlite3GetTempRange(pParse, nVector); 3499 for(i=0; i<nVector; i++){ 3500 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3501 } 3502 } 3503 3504 /* If sqlite3FindInIndex() did not find or create an index that is 3505 ** suitable for evaluating the IN operator, then evaluate using a 3506 ** sequence of comparisons. 3507 ** 3508 ** This is step (1) in the in-operator.md optimized algorithm. 3509 */ 3510 if( eType==IN_INDEX_NOOP ){ 3511 ExprList *pList; 3512 CollSeq *pColl; 3513 int labelOk = sqlite3VdbeMakeLabel(pParse); 3514 int r2, regToFree; 3515 int regCkNull = 0; 3516 int ii; 3517 assert( ExprUseXList(pExpr) ); 3518 pList = pExpr->x.pList; 3519 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3520 if( destIfNull!=destIfFalse ){ 3521 regCkNull = sqlite3GetTempReg(pParse); 3522 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3523 } 3524 for(ii=0; ii<pList->nExpr; ii++){ 3525 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3526 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3527 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3528 } 3529 sqlite3ReleaseTempReg(pParse, regToFree); 3530 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3531 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3532 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3533 (void*)pColl, P4_COLLSEQ); 3534 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3535 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3536 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3537 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3538 sqlite3VdbeChangeP5(v, zAff[0]); 3539 }else{ 3540 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3541 assert( destIfNull==destIfFalse ); 3542 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3543 (void*)pColl, P4_COLLSEQ); 3544 VdbeCoverageIf(v, op==OP_Ne); 3545 VdbeCoverageIf(v, op==OP_IsNull); 3546 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3547 } 3548 } 3549 if( regCkNull ){ 3550 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3551 sqlite3VdbeGoto(v, destIfFalse); 3552 } 3553 sqlite3VdbeResolveLabel(v, labelOk); 3554 sqlite3ReleaseTempReg(pParse, regCkNull); 3555 goto sqlite3ExprCodeIN_finished; 3556 } 3557 3558 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3559 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3560 ** We will then skip the binary search of the RHS. 3561 */ 3562 if( destIfNull==destIfFalse ){ 3563 destStep2 = destIfFalse; 3564 }else{ 3565 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3566 } 3567 for(i=0; i<nVector; i++){ 3568 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3569 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; 3570 if( sqlite3ExprCanBeNull(p) ){ 3571 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3572 VdbeCoverage(v); 3573 } 3574 } 3575 3576 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3577 ** of the RHS using the LHS as a probe. If found, the result is 3578 ** true. 3579 */ 3580 if( eType==IN_INDEX_ROWID ){ 3581 /* In this case, the RHS is the ROWID of table b-tree and so we also 3582 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3583 ** into a single opcode. */ 3584 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3585 VdbeCoverage(v); 3586 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3587 }else{ 3588 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3589 if( destIfFalse==destIfNull ){ 3590 /* Combine Step 3 and Step 5 into a single opcode */ 3591 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3592 rLhs, nVector); VdbeCoverage(v); 3593 goto sqlite3ExprCodeIN_finished; 3594 } 3595 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3596 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3597 rLhs, nVector); VdbeCoverage(v); 3598 } 3599 3600 /* Step 4. If the RHS is known to be non-NULL and we did not find 3601 ** an match on the search above, then the result must be FALSE. 3602 */ 3603 if( rRhsHasNull && nVector==1 ){ 3604 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3605 VdbeCoverage(v); 3606 } 3607 3608 /* Step 5. If we do not care about the difference between NULL and 3609 ** FALSE, then just return false. 3610 */ 3611 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3612 3613 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3614 ** If any comparison is NULL, then the result is NULL. If all 3615 ** comparisons are FALSE then the final result is FALSE. 3616 ** 3617 ** For a scalar LHS, it is sufficient to check just the first row 3618 ** of the RHS. 3619 */ 3620 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3621 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3622 VdbeCoverage(v); 3623 if( nVector>1 ){ 3624 destNotNull = sqlite3VdbeMakeLabel(pParse); 3625 }else{ 3626 /* For nVector==1, combine steps 6 and 7 by immediately returning 3627 ** FALSE if the first comparison is not NULL */ 3628 destNotNull = destIfFalse; 3629 } 3630 for(i=0; i<nVector; i++){ 3631 Expr *p; 3632 CollSeq *pColl; 3633 int r3 = sqlite3GetTempReg(pParse); 3634 p = sqlite3VectorFieldSubexpr(pLeft, i); 3635 pColl = sqlite3ExprCollSeq(pParse, p); 3636 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3637 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3638 (void*)pColl, P4_COLLSEQ); 3639 VdbeCoverage(v); 3640 sqlite3ReleaseTempReg(pParse, r3); 3641 } 3642 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3643 if( nVector>1 ){ 3644 sqlite3VdbeResolveLabel(v, destNotNull); 3645 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3646 VdbeCoverage(v); 3647 3648 /* Step 7: If we reach this point, we know that the result must 3649 ** be false. */ 3650 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3651 } 3652 3653 /* Jumps here in order to return true. */ 3654 sqlite3VdbeJumpHere(v, addrTruthOp); 3655 3656 sqlite3ExprCodeIN_finished: 3657 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3658 VdbeComment((v, "end IN expr")); 3659 sqlite3ExprCodeIN_oom_error: 3660 sqlite3DbFree(pParse->db, aiMap); 3661 sqlite3DbFree(pParse->db, zAff); 3662 } 3663 #endif /* SQLITE_OMIT_SUBQUERY */ 3664 3665 #ifndef SQLITE_OMIT_FLOATING_POINT 3666 /* 3667 ** Generate an instruction that will put the floating point 3668 ** value described by z[0..n-1] into register iMem. 3669 ** 3670 ** The z[] string will probably not be zero-terminated. But the 3671 ** z[n] character is guaranteed to be something that does not look 3672 ** like the continuation of the number. 3673 */ 3674 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3675 if( ALWAYS(z!=0) ){ 3676 double value; 3677 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3678 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3679 if( negateFlag ) value = -value; 3680 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3681 } 3682 } 3683 #endif 3684 3685 3686 /* 3687 ** Generate an instruction that will put the integer describe by 3688 ** text z[0..n-1] into register iMem. 3689 ** 3690 ** Expr.u.zToken is always UTF8 and zero-terminated. 3691 */ 3692 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3693 Vdbe *v = pParse->pVdbe; 3694 if( pExpr->flags & EP_IntValue ){ 3695 int i = pExpr->u.iValue; 3696 assert( i>=0 ); 3697 if( negFlag ) i = -i; 3698 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3699 }else{ 3700 int c; 3701 i64 value; 3702 const char *z = pExpr->u.zToken; 3703 assert( z!=0 ); 3704 c = sqlite3DecOrHexToI64(z, &value); 3705 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3706 #ifdef SQLITE_OMIT_FLOATING_POINT 3707 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); 3708 #else 3709 #ifndef SQLITE_OMIT_HEX_INTEGER 3710 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3711 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", 3712 negFlag?"-":"",pExpr); 3713 }else 3714 #endif 3715 { 3716 codeReal(v, z, negFlag, iMem); 3717 } 3718 #endif 3719 }else{ 3720 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3721 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3722 } 3723 } 3724 } 3725 3726 3727 /* Generate code that will load into register regOut a value that is 3728 ** appropriate for the iIdxCol-th column of index pIdx. 3729 */ 3730 void sqlite3ExprCodeLoadIndexColumn( 3731 Parse *pParse, /* The parsing context */ 3732 Index *pIdx, /* The index whose column is to be loaded */ 3733 int iTabCur, /* Cursor pointing to a table row */ 3734 int iIdxCol, /* The column of the index to be loaded */ 3735 int regOut /* Store the index column value in this register */ 3736 ){ 3737 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3738 if( iTabCol==XN_EXPR ){ 3739 assert( pIdx->aColExpr ); 3740 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3741 pParse->iSelfTab = iTabCur + 1; 3742 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3743 pParse->iSelfTab = 0; 3744 }else{ 3745 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3746 iTabCol, regOut); 3747 } 3748 } 3749 3750 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3751 /* 3752 ** Generate code that will compute the value of generated column pCol 3753 ** and store the result in register regOut 3754 */ 3755 void sqlite3ExprCodeGeneratedColumn( 3756 Parse *pParse, /* Parsing context */ 3757 Table *pTab, /* Table containing the generated column */ 3758 Column *pCol, /* The generated column */ 3759 int regOut /* Put the result in this register */ 3760 ){ 3761 int iAddr; 3762 Vdbe *v = pParse->pVdbe; 3763 assert( v!=0 ); 3764 assert( pParse->iSelfTab!=0 ); 3765 if( pParse->iSelfTab>0 ){ 3766 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3767 }else{ 3768 iAddr = 0; 3769 } 3770 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 3771 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3772 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3773 } 3774 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3775 } 3776 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3777 3778 /* 3779 ** Generate code to extract the value of the iCol-th column of a table. 3780 */ 3781 void sqlite3ExprCodeGetColumnOfTable( 3782 Vdbe *v, /* Parsing context */ 3783 Table *pTab, /* The table containing the value */ 3784 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3785 int iCol, /* Index of the column to extract */ 3786 int regOut /* Extract the value into this register */ 3787 ){ 3788 Column *pCol; 3789 assert( v!=0 ); 3790 if( pTab==0 ){ 3791 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3792 return; 3793 } 3794 if( iCol<0 || iCol==pTab->iPKey ){ 3795 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3796 VdbeComment((v, "%s.rowid", pTab->zName)); 3797 }else{ 3798 int op; 3799 int x; 3800 if( IsVirtual(pTab) ){ 3801 op = OP_VColumn; 3802 x = iCol; 3803 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3804 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3805 Parse *pParse = sqlite3VdbeParser(v); 3806 if( pCol->colFlags & COLFLAG_BUSY ){ 3807 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3808 pCol->zCnName); 3809 }else{ 3810 int savedSelfTab = pParse->iSelfTab; 3811 pCol->colFlags |= COLFLAG_BUSY; 3812 pParse->iSelfTab = iTabCur+1; 3813 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 3814 pParse->iSelfTab = savedSelfTab; 3815 pCol->colFlags &= ~COLFLAG_BUSY; 3816 } 3817 return; 3818 #endif 3819 }else if( !HasRowid(pTab) ){ 3820 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3821 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3822 op = OP_Column; 3823 }else{ 3824 x = sqlite3TableColumnToStorage(pTab,iCol); 3825 testcase( x!=iCol ); 3826 op = OP_Column; 3827 } 3828 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3829 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3830 } 3831 } 3832 3833 /* 3834 ** Generate code that will extract the iColumn-th column from 3835 ** table pTab and store the column value in register iReg. 3836 ** 3837 ** There must be an open cursor to pTab in iTable when this routine 3838 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3839 */ 3840 int sqlite3ExprCodeGetColumn( 3841 Parse *pParse, /* Parsing and code generating context */ 3842 Table *pTab, /* Description of the table we are reading from */ 3843 int iColumn, /* Index of the table column */ 3844 int iTable, /* The cursor pointing to the table */ 3845 int iReg, /* Store results here */ 3846 u8 p5 /* P5 value for OP_Column + FLAGS */ 3847 ){ 3848 assert( pParse->pVdbe!=0 ); 3849 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3850 if( p5 ){ 3851 VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); 3852 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3853 } 3854 return iReg; 3855 } 3856 3857 /* 3858 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3859 ** over to iTo..iTo+nReg-1. 3860 */ 3861 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3862 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3863 } 3864 3865 /* 3866 ** Convert a scalar expression node to a TK_REGISTER referencing 3867 ** register iReg. The caller must ensure that iReg already contains 3868 ** the correct value for the expression. 3869 */ 3870 static void exprToRegister(Expr *pExpr, int iReg){ 3871 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3872 if( NEVER(p==0) ) return; 3873 p->op2 = p->op; 3874 p->op = TK_REGISTER; 3875 p->iTable = iReg; 3876 ExprClearProperty(p, EP_Skip); 3877 } 3878 3879 /* 3880 ** Evaluate an expression (either a vector or a scalar expression) and store 3881 ** the result in continguous temporary registers. Return the index of 3882 ** the first register used to store the result. 3883 ** 3884 ** If the returned result register is a temporary scalar, then also write 3885 ** that register number into *piFreeable. If the returned result register 3886 ** is not a temporary or if the expression is a vector set *piFreeable 3887 ** to 0. 3888 */ 3889 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3890 int iResult; 3891 int nResult = sqlite3ExprVectorSize(p); 3892 if( nResult==1 ){ 3893 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3894 }else{ 3895 *piFreeable = 0; 3896 if( p->op==TK_SELECT ){ 3897 #if SQLITE_OMIT_SUBQUERY 3898 iResult = 0; 3899 #else 3900 iResult = sqlite3CodeSubselect(pParse, p); 3901 #endif 3902 }else{ 3903 int i; 3904 iResult = pParse->nMem+1; 3905 pParse->nMem += nResult; 3906 assert( ExprUseXList(p) ); 3907 for(i=0; i<nResult; i++){ 3908 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3909 } 3910 } 3911 } 3912 return iResult; 3913 } 3914 3915 /* 3916 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3917 ** so that a subsequent copy will not be merged into this one. 3918 */ 3919 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3920 if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){ 3921 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3922 } 3923 } 3924 3925 /* 3926 ** Generate code to implement special SQL functions that are implemented 3927 ** in-line rather than by using the usual callbacks. 3928 */ 3929 static int exprCodeInlineFunction( 3930 Parse *pParse, /* Parsing context */ 3931 ExprList *pFarg, /* List of function arguments */ 3932 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3933 int target /* Store function result in this register */ 3934 ){ 3935 int nFarg; 3936 Vdbe *v = pParse->pVdbe; 3937 assert( v!=0 ); 3938 assert( pFarg!=0 ); 3939 nFarg = pFarg->nExpr; 3940 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3941 switch( iFuncId ){ 3942 case INLINEFUNC_coalesce: { 3943 /* Attempt a direct implementation of the built-in COALESCE() and 3944 ** IFNULL() functions. This avoids unnecessary evaluation of 3945 ** arguments past the first non-NULL argument. 3946 */ 3947 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3948 int i; 3949 assert( nFarg>=2 ); 3950 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3951 for(i=1; i<nFarg; i++){ 3952 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3953 VdbeCoverage(v); 3954 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3955 } 3956 setDoNotMergeFlagOnCopy(v); 3957 sqlite3VdbeResolveLabel(v, endCoalesce); 3958 break; 3959 } 3960 case INLINEFUNC_iif: { 3961 Expr caseExpr; 3962 memset(&caseExpr, 0, sizeof(caseExpr)); 3963 caseExpr.op = TK_CASE; 3964 caseExpr.x.pList = pFarg; 3965 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3966 } 3967 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3968 case INLINEFUNC_sqlite_offset: { 3969 Expr *pArg = pFarg->a[0].pExpr; 3970 if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){ 3971 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3972 }else{ 3973 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3974 } 3975 break; 3976 } 3977 #endif 3978 default: { 3979 /* The UNLIKELY() function is a no-op. The result is the value 3980 ** of the first argument. 3981 */ 3982 assert( nFarg==1 || nFarg==2 ); 3983 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3984 break; 3985 } 3986 3987 /*********************************************************************** 3988 ** Test-only SQL functions that are only usable if enabled 3989 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3990 */ 3991 #if !defined(SQLITE_UNTESTABLE) 3992 case INLINEFUNC_expr_compare: { 3993 /* Compare two expressions using sqlite3ExprCompare() */ 3994 assert( nFarg==2 ); 3995 sqlite3VdbeAddOp2(v, OP_Integer, 3996 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3997 target); 3998 break; 3999 } 4000 4001 case INLINEFUNC_expr_implies_expr: { 4002 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 4003 assert( nFarg==2 ); 4004 sqlite3VdbeAddOp2(v, OP_Integer, 4005 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 4006 target); 4007 break; 4008 } 4009 4010 case INLINEFUNC_implies_nonnull_row: { 4011 /* REsult of sqlite3ExprImpliesNonNullRow() */ 4012 Expr *pA1; 4013 assert( nFarg==2 ); 4014 pA1 = pFarg->a[1].pExpr; 4015 if( pA1->op==TK_COLUMN ){ 4016 sqlite3VdbeAddOp2(v, OP_Integer, 4017 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 4018 target); 4019 }else{ 4020 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4021 } 4022 break; 4023 } 4024 4025 case INLINEFUNC_affinity: { 4026 /* The AFFINITY() function evaluates to a string that describes 4027 ** the type affinity of the argument. This is used for testing of 4028 ** the SQLite type logic. 4029 */ 4030 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 4031 char aff; 4032 assert( nFarg==1 ); 4033 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 4034 sqlite3VdbeLoadString(v, target, 4035 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 4036 break; 4037 } 4038 #endif /* !defined(SQLITE_UNTESTABLE) */ 4039 } 4040 return target; 4041 } 4042 4043 4044 /* 4045 ** Generate code into the current Vdbe to evaluate the given 4046 ** expression. Attempt to store the results in register "target". 4047 ** Return the register where results are stored. 4048 ** 4049 ** With this routine, there is no guarantee that results will 4050 ** be stored in target. The result might be stored in some other 4051 ** register if it is convenient to do so. The calling function 4052 ** must check the return code and move the results to the desired 4053 ** register. 4054 */ 4055 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 4056 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 4057 int op; /* The opcode being coded */ 4058 int inReg = target; /* Results stored in register inReg */ 4059 int regFree1 = 0; /* If non-zero free this temporary register */ 4060 int regFree2 = 0; /* If non-zero free this temporary register */ 4061 int r1, r2; /* Various register numbers */ 4062 Expr tempX; /* Temporary expression node */ 4063 int p5 = 0; 4064 4065 assert( target>0 && target<=pParse->nMem ); 4066 assert( v!=0 ); 4067 4068 expr_code_doover: 4069 if( pExpr==0 ){ 4070 op = TK_NULL; 4071 }else{ 4072 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4073 op = pExpr->op; 4074 } 4075 switch( op ){ 4076 case TK_AGG_COLUMN: { 4077 AggInfo *pAggInfo = pExpr->pAggInfo; 4078 struct AggInfo_col *pCol; 4079 assert( pAggInfo!=0 ); 4080 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 4081 pCol = &pAggInfo->aCol[pExpr->iAgg]; 4082 if( !pAggInfo->directMode ){ 4083 assert( pCol->iMem>0 ); 4084 return pCol->iMem; 4085 }else if( pAggInfo->useSortingIdx ){ 4086 Table *pTab = pCol->pTab; 4087 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 4088 pCol->iSorterColumn, target); 4089 if( pCol->iColumn<0 ){ 4090 VdbeComment((v,"%s.rowid",pTab->zName)); 4091 }else{ 4092 VdbeComment((v,"%s.%s", 4093 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 4094 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 4095 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4096 } 4097 } 4098 return target; 4099 } 4100 /* Otherwise, fall thru into the TK_COLUMN case */ 4101 /* no break */ deliberate_fall_through 4102 } 4103 case TK_COLUMN: { 4104 int iTab = pExpr->iTable; 4105 int iReg; 4106 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 4107 /* This COLUMN expression is really a constant due to WHERE clause 4108 ** constraints, and that constant is coded by the pExpr->pLeft 4109 ** expresssion. However, make sure the constant has the correct 4110 ** datatype by applying the Affinity of the table column to the 4111 ** constant. 4112 */ 4113 int aff; 4114 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 4115 assert( ExprUseYTab(pExpr) ); 4116 if( pExpr->y.pTab ){ 4117 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 4118 }else{ 4119 aff = pExpr->affExpr; 4120 } 4121 if( aff>SQLITE_AFF_BLOB ){ 4122 static const char zAff[] = "B\000C\000D\000E"; 4123 assert( SQLITE_AFF_BLOB=='A' ); 4124 assert( SQLITE_AFF_TEXT=='B' ); 4125 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 4126 &zAff[(aff-'B')*2], P4_STATIC); 4127 } 4128 return iReg; 4129 } 4130 if( iTab<0 ){ 4131 if( pParse->iSelfTab<0 ){ 4132 /* Other columns in the same row for CHECK constraints or 4133 ** generated columns or for inserting into partial index. 4134 ** The row is unpacked into registers beginning at 4135 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4136 ** immediately prior to the first column. 4137 */ 4138 Column *pCol; 4139 Table *pTab; 4140 int iSrc; 4141 int iCol = pExpr->iColumn; 4142 assert( ExprUseYTab(pExpr) ); 4143 pTab = pExpr->y.pTab; 4144 assert( pTab!=0 ); 4145 assert( iCol>=XN_ROWID ); 4146 assert( iCol<pTab->nCol ); 4147 if( iCol<0 ){ 4148 return -1-pParse->iSelfTab; 4149 } 4150 pCol = pTab->aCol + iCol; 4151 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4152 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4153 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4154 if( pCol->colFlags & COLFLAG_GENERATED ){ 4155 if( pCol->colFlags & COLFLAG_BUSY ){ 4156 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4157 pCol->zCnName); 4158 return 0; 4159 } 4160 pCol->colFlags |= COLFLAG_BUSY; 4161 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4162 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 4163 } 4164 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4165 return iSrc; 4166 }else 4167 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4168 if( pCol->affinity==SQLITE_AFF_REAL ){ 4169 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4170 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4171 return target; 4172 }else{ 4173 return iSrc; 4174 } 4175 }else{ 4176 /* Coding an expression that is part of an index where column names 4177 ** in the index refer to the table to which the index belongs */ 4178 iTab = pParse->iSelfTab - 1; 4179 } 4180 } 4181 assert( ExprUseYTab(pExpr) ); 4182 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4183 pExpr->iColumn, iTab, target, 4184 pExpr->op2); 4185 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4186 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4187 } 4188 return iReg; 4189 } 4190 case TK_INTEGER: { 4191 codeInteger(pParse, pExpr, 0, target); 4192 return target; 4193 } 4194 case TK_TRUEFALSE: { 4195 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4196 return target; 4197 } 4198 #ifndef SQLITE_OMIT_FLOATING_POINT 4199 case TK_FLOAT: { 4200 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4201 codeReal(v, pExpr->u.zToken, 0, target); 4202 return target; 4203 } 4204 #endif 4205 case TK_STRING: { 4206 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4207 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4208 return target; 4209 } 4210 default: { 4211 /* Make NULL the default case so that if a bug causes an illegal 4212 ** Expr node to be passed into this function, it will be handled 4213 ** sanely and not crash. But keep the assert() to bring the problem 4214 ** to the attention of the developers. */ 4215 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4216 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4217 return target; 4218 } 4219 #ifndef SQLITE_OMIT_BLOB_LITERAL 4220 case TK_BLOB: { 4221 int n; 4222 const char *z; 4223 char *zBlob; 4224 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4225 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4226 assert( pExpr->u.zToken[1]=='\'' ); 4227 z = &pExpr->u.zToken[2]; 4228 n = sqlite3Strlen30(z) - 1; 4229 assert( z[n]=='\'' ); 4230 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4231 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4232 return target; 4233 } 4234 #endif 4235 case TK_VARIABLE: { 4236 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4237 assert( pExpr->u.zToken!=0 ); 4238 assert( pExpr->u.zToken[0]!=0 ); 4239 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4240 if( pExpr->u.zToken[1]!=0 ){ 4241 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4242 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4243 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4244 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4245 } 4246 return target; 4247 } 4248 case TK_REGISTER: { 4249 return pExpr->iTable; 4250 } 4251 #ifndef SQLITE_OMIT_CAST 4252 case TK_CAST: { 4253 /* Expressions of the form: CAST(pLeft AS token) */ 4254 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4255 if( inReg!=target ){ 4256 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4257 inReg = target; 4258 } 4259 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4260 sqlite3VdbeAddOp2(v, OP_Cast, target, 4261 sqlite3AffinityType(pExpr->u.zToken, 0)); 4262 return inReg; 4263 } 4264 #endif /* SQLITE_OMIT_CAST */ 4265 case TK_IS: 4266 case TK_ISNOT: 4267 op = (op==TK_IS) ? TK_EQ : TK_NE; 4268 p5 = SQLITE_NULLEQ; 4269 /* fall-through */ 4270 case TK_LT: 4271 case TK_LE: 4272 case TK_GT: 4273 case TK_GE: 4274 case TK_NE: 4275 case TK_EQ: { 4276 Expr *pLeft = pExpr->pLeft; 4277 if( sqlite3ExprIsVector(pLeft) ){ 4278 codeVectorCompare(pParse, pExpr, target, op, p5); 4279 }else{ 4280 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4281 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4282 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4283 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4284 sqlite3VdbeCurrentAddr(v)+2, p5, 4285 ExprHasProperty(pExpr,EP_Commuted)); 4286 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4287 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4288 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4289 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4290 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4291 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4292 if( p5==SQLITE_NULLEQ ){ 4293 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4294 }else{ 4295 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4296 } 4297 testcase( regFree1==0 ); 4298 testcase( regFree2==0 ); 4299 } 4300 break; 4301 } 4302 case TK_AND: 4303 case TK_OR: 4304 case TK_PLUS: 4305 case TK_STAR: 4306 case TK_MINUS: 4307 case TK_REM: 4308 case TK_BITAND: 4309 case TK_BITOR: 4310 case TK_SLASH: 4311 case TK_LSHIFT: 4312 case TK_RSHIFT: 4313 case TK_CONCAT: { 4314 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4315 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4316 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4317 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4318 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4319 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4320 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4321 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4322 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4323 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4324 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4325 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4326 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4327 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4328 testcase( regFree1==0 ); 4329 testcase( regFree2==0 ); 4330 break; 4331 } 4332 case TK_UMINUS: { 4333 Expr *pLeft = pExpr->pLeft; 4334 assert( pLeft ); 4335 if( pLeft->op==TK_INTEGER ){ 4336 codeInteger(pParse, pLeft, 1, target); 4337 return target; 4338 #ifndef SQLITE_OMIT_FLOATING_POINT 4339 }else if( pLeft->op==TK_FLOAT ){ 4340 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4341 codeReal(v, pLeft->u.zToken, 1, target); 4342 return target; 4343 #endif 4344 }else{ 4345 tempX.op = TK_INTEGER; 4346 tempX.flags = EP_IntValue|EP_TokenOnly; 4347 tempX.u.iValue = 0; 4348 ExprClearVVAProperties(&tempX); 4349 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4350 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4351 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4352 testcase( regFree2==0 ); 4353 } 4354 break; 4355 } 4356 case TK_BITNOT: 4357 case TK_NOT: { 4358 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4359 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4360 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4361 testcase( regFree1==0 ); 4362 sqlite3VdbeAddOp2(v, op, r1, inReg); 4363 break; 4364 } 4365 case TK_TRUTH: { 4366 int isTrue; /* IS TRUE or IS NOT TRUE */ 4367 int bNormal; /* IS TRUE or IS FALSE */ 4368 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4369 testcase( regFree1==0 ); 4370 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4371 bNormal = pExpr->op2==TK_IS; 4372 testcase( isTrue && bNormal); 4373 testcase( !isTrue && bNormal); 4374 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4375 break; 4376 } 4377 case TK_ISNULL: 4378 case TK_NOTNULL: { 4379 int addr; 4380 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4381 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4382 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4383 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4384 testcase( regFree1==0 ); 4385 addr = sqlite3VdbeAddOp1(v, op, r1); 4386 VdbeCoverageIf(v, op==TK_ISNULL); 4387 VdbeCoverageIf(v, op==TK_NOTNULL); 4388 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4389 sqlite3VdbeJumpHere(v, addr); 4390 break; 4391 } 4392 case TK_AGG_FUNCTION: { 4393 AggInfo *pInfo = pExpr->pAggInfo; 4394 if( pInfo==0 4395 || NEVER(pExpr->iAgg<0) 4396 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4397 ){ 4398 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4399 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); 4400 }else{ 4401 return pInfo->aFunc[pExpr->iAgg].iMem; 4402 } 4403 break; 4404 } 4405 case TK_FUNCTION: { 4406 ExprList *pFarg; /* List of function arguments */ 4407 int nFarg; /* Number of function arguments */ 4408 FuncDef *pDef; /* The function definition object */ 4409 const char *zId; /* The function name */ 4410 u32 constMask = 0; /* Mask of function arguments that are constant */ 4411 int i; /* Loop counter */ 4412 sqlite3 *db = pParse->db; /* The database connection */ 4413 u8 enc = ENC(db); /* The text encoding used by this database */ 4414 CollSeq *pColl = 0; /* A collating sequence */ 4415 4416 #ifndef SQLITE_OMIT_WINDOWFUNC 4417 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4418 return pExpr->y.pWin->regResult; 4419 } 4420 #endif 4421 4422 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4423 /* SQL functions can be expensive. So try to avoid running them 4424 ** multiple times if we know they always give the same result */ 4425 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4426 } 4427 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4428 assert( ExprUseXList(pExpr) ); 4429 pFarg = pExpr->x.pList; 4430 nFarg = pFarg ? pFarg->nExpr : 0; 4431 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4432 zId = pExpr->u.zToken; 4433 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4434 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4435 if( pDef==0 && pParse->explain ){ 4436 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4437 } 4438 #endif 4439 if( pDef==0 || pDef->xFinalize!=0 ){ 4440 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); 4441 break; 4442 } 4443 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4444 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4445 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4446 return exprCodeInlineFunction(pParse, pFarg, 4447 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4448 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4449 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4450 } 4451 4452 for(i=0; i<nFarg; i++){ 4453 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4454 testcase( i==31 ); 4455 constMask |= MASKBIT32(i); 4456 } 4457 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4458 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4459 } 4460 } 4461 if( pFarg ){ 4462 if( constMask ){ 4463 r1 = pParse->nMem+1; 4464 pParse->nMem += nFarg; 4465 }else{ 4466 r1 = sqlite3GetTempRange(pParse, nFarg); 4467 } 4468 4469 /* For length() and typeof() functions with a column argument, 4470 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4471 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4472 ** loading. 4473 */ 4474 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4475 u8 exprOp; 4476 assert( nFarg==1 ); 4477 assert( pFarg->a[0].pExpr!=0 ); 4478 exprOp = pFarg->a[0].pExpr->op; 4479 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4480 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4481 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4482 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4483 pFarg->a[0].pExpr->op2 = 4484 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4485 } 4486 } 4487 4488 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4489 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4490 }else{ 4491 r1 = 0; 4492 } 4493 #ifndef SQLITE_OMIT_VIRTUALTABLE 4494 /* Possibly overload the function if the first argument is 4495 ** a virtual table column. 4496 ** 4497 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4498 ** second argument, not the first, as the argument to test to 4499 ** see if it is a column in a virtual table. This is done because 4500 ** the left operand of infix functions (the operand we want to 4501 ** control overloading) ends up as the second argument to the 4502 ** function. The expression "A glob B" is equivalent to 4503 ** "glob(B,A). We want to use the A in "A glob B" to test 4504 ** for function overloading. But we use the B term in "glob(B,A)". 4505 */ 4506 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4507 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4508 }else if( nFarg>0 ){ 4509 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4510 } 4511 #endif 4512 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4513 if( !pColl ) pColl = db->pDfltColl; 4514 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4515 } 4516 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4517 pDef, pExpr->op2); 4518 if( nFarg ){ 4519 if( constMask==0 ){ 4520 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4521 }else{ 4522 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4523 } 4524 } 4525 return target; 4526 } 4527 #ifndef SQLITE_OMIT_SUBQUERY 4528 case TK_EXISTS: 4529 case TK_SELECT: { 4530 int nCol; 4531 testcase( op==TK_EXISTS ); 4532 testcase( op==TK_SELECT ); 4533 if( pParse->db->mallocFailed ){ 4534 return 0; 4535 }else if( op==TK_SELECT 4536 && ALWAYS( ExprUseXSelect(pExpr) ) 4537 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 4538 ){ 4539 sqlite3SubselectError(pParse, nCol, 1); 4540 }else{ 4541 return sqlite3CodeSubselect(pParse, pExpr); 4542 } 4543 break; 4544 } 4545 case TK_SELECT_COLUMN: { 4546 int n; 4547 Expr *pLeft = pExpr->pLeft; 4548 if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){ 4549 pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft); 4550 pLeft->op2 = pParse->withinRJSubrtn; 4551 } 4552 assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR ); 4553 n = sqlite3ExprVectorSize(pLeft); 4554 if( pExpr->iTable!=n ){ 4555 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4556 pExpr->iTable, n); 4557 } 4558 return pLeft->iTable + pExpr->iColumn; 4559 } 4560 case TK_IN: { 4561 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4562 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4563 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4564 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4565 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4566 sqlite3VdbeResolveLabel(v, destIfFalse); 4567 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4568 sqlite3VdbeResolveLabel(v, destIfNull); 4569 return target; 4570 } 4571 #endif /* SQLITE_OMIT_SUBQUERY */ 4572 4573 4574 /* 4575 ** x BETWEEN y AND z 4576 ** 4577 ** This is equivalent to 4578 ** 4579 ** x>=y AND x<=z 4580 ** 4581 ** X is stored in pExpr->pLeft. 4582 ** Y is stored in pExpr->pList->a[0].pExpr. 4583 ** Z is stored in pExpr->pList->a[1].pExpr. 4584 */ 4585 case TK_BETWEEN: { 4586 exprCodeBetween(pParse, pExpr, target, 0, 0); 4587 return target; 4588 } 4589 case TK_COLLATE: { 4590 if( !ExprHasProperty(pExpr, EP_Collate) 4591 && ALWAYS(pExpr->pLeft) 4592 && pExpr->pLeft->op==TK_FUNCTION 4593 ){ 4594 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4595 if( inReg!=target ){ 4596 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4597 inReg = target; 4598 } 4599 sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg); 4600 return inReg; 4601 }else{ 4602 pExpr = pExpr->pLeft; 4603 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */ 4604 } 4605 } 4606 case TK_SPAN: 4607 case TK_UPLUS: { 4608 pExpr = pExpr->pLeft; 4609 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4610 } 4611 4612 case TK_TRIGGER: { 4613 /* If the opcode is TK_TRIGGER, then the expression is a reference 4614 ** to a column in the new.* or old.* pseudo-tables available to 4615 ** trigger programs. In this case Expr.iTable is set to 1 for the 4616 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4617 ** is set to the column of the pseudo-table to read, or to -1 to 4618 ** read the rowid field. 4619 ** 4620 ** The expression is implemented using an OP_Param opcode. The p1 4621 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4622 ** to reference another column of the old.* pseudo-table, where 4623 ** i is the index of the column. For a new.rowid reference, p1 is 4624 ** set to (n+1), where n is the number of columns in each pseudo-table. 4625 ** For a reference to any other column in the new.* pseudo-table, p1 4626 ** is set to (n+2+i), where n and i are as defined previously. For 4627 ** example, if the table on which triggers are being fired is 4628 ** declared as: 4629 ** 4630 ** CREATE TABLE t1(a, b); 4631 ** 4632 ** Then p1 is interpreted as follows: 4633 ** 4634 ** p1==0 -> old.rowid p1==3 -> new.rowid 4635 ** p1==1 -> old.a p1==4 -> new.a 4636 ** p1==2 -> old.b p1==5 -> new.b 4637 */ 4638 Table *pTab; 4639 int iCol; 4640 int p1; 4641 4642 assert( ExprUseYTab(pExpr) ); 4643 pTab = pExpr->y.pTab; 4644 iCol = pExpr->iColumn; 4645 p1 = pExpr->iTable * (pTab->nCol+1) + 1 4646 + sqlite3TableColumnToStorage(pTab, iCol); 4647 4648 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4649 assert( iCol>=-1 && iCol<pTab->nCol ); 4650 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4651 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4652 4653 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4654 VdbeComment((v, "r[%d]=%s.%s", target, 4655 (pExpr->iTable ? "new" : "old"), 4656 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 4657 )); 4658 4659 #ifndef SQLITE_OMIT_FLOATING_POINT 4660 /* If the column has REAL affinity, it may currently be stored as an 4661 ** integer. Use OP_RealAffinity to make sure it is really real. 4662 ** 4663 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4664 ** floating point when extracting it from the record. */ 4665 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4666 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4667 } 4668 #endif 4669 break; 4670 } 4671 4672 case TK_VECTOR: { 4673 sqlite3ErrorMsg(pParse, "row value misused"); 4674 break; 4675 } 4676 4677 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4678 ** that derive from the right-hand table of a LEFT JOIN. The 4679 ** Expr.iTable value is the table number for the right-hand table. 4680 ** The expression is only evaluated if that table is not currently 4681 ** on a LEFT JOIN NULL row. 4682 */ 4683 case TK_IF_NULL_ROW: { 4684 int addrINR; 4685 u8 okConstFactor = pParse->okConstFactor; 4686 AggInfo *pAggInfo = pExpr->pAggInfo; 4687 if( pAggInfo ){ 4688 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 4689 if( !pAggInfo->directMode ){ 4690 inReg = pAggInfo->aCol[pExpr->iAgg].iMem; 4691 break; 4692 } 4693 if( pExpr->pAggInfo->useSortingIdx ){ 4694 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 4695 pAggInfo->aCol[pExpr->iAgg].iSorterColumn, 4696 target); 4697 inReg = target; 4698 break; 4699 } 4700 } 4701 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4702 /* Temporarily disable factoring of constant expressions, since 4703 ** even though expressions may appear to be constant, they are not 4704 ** really constant because they originate from the right-hand side 4705 ** of a LEFT JOIN. */ 4706 pParse->okConstFactor = 0; 4707 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4708 pParse->okConstFactor = okConstFactor; 4709 sqlite3VdbeJumpHere(v, addrINR); 4710 sqlite3VdbeChangeP3(v, addrINR, inReg); 4711 break; 4712 } 4713 4714 /* 4715 ** Form A: 4716 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4717 ** 4718 ** Form B: 4719 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4720 ** 4721 ** Form A is can be transformed into the equivalent form B as follows: 4722 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4723 ** WHEN x=eN THEN rN ELSE y END 4724 ** 4725 ** X (if it exists) is in pExpr->pLeft. 4726 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4727 ** odd. The Y is also optional. If the number of elements in x.pList 4728 ** is even, then Y is omitted and the "otherwise" result is NULL. 4729 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4730 ** 4731 ** The result of the expression is the Ri for the first matching Ei, 4732 ** or if there is no matching Ei, the ELSE term Y, or if there is 4733 ** no ELSE term, NULL. 4734 */ 4735 case TK_CASE: { 4736 int endLabel; /* GOTO label for end of CASE stmt */ 4737 int nextCase; /* GOTO label for next WHEN clause */ 4738 int nExpr; /* 2x number of WHEN terms */ 4739 int i; /* Loop counter */ 4740 ExprList *pEList; /* List of WHEN terms */ 4741 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4742 Expr opCompare; /* The X==Ei expression */ 4743 Expr *pX; /* The X expression */ 4744 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4745 Expr *pDel = 0; 4746 sqlite3 *db = pParse->db; 4747 4748 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); 4749 assert(pExpr->x.pList->nExpr > 0); 4750 pEList = pExpr->x.pList; 4751 aListelem = pEList->a; 4752 nExpr = pEList->nExpr; 4753 endLabel = sqlite3VdbeMakeLabel(pParse); 4754 if( (pX = pExpr->pLeft)!=0 ){ 4755 pDel = sqlite3ExprDup(db, pX, 0); 4756 if( db->mallocFailed ){ 4757 sqlite3ExprDelete(db, pDel); 4758 break; 4759 } 4760 testcase( pX->op==TK_COLUMN ); 4761 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4762 testcase( regFree1==0 ); 4763 memset(&opCompare, 0, sizeof(opCompare)); 4764 opCompare.op = TK_EQ; 4765 opCompare.pLeft = pDel; 4766 pTest = &opCompare; 4767 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4768 ** The value in regFree1 might get SCopy-ed into the file result. 4769 ** So make sure that the regFree1 register is not reused for other 4770 ** purposes and possibly overwritten. */ 4771 regFree1 = 0; 4772 } 4773 for(i=0; i<nExpr-1; i=i+2){ 4774 if( pX ){ 4775 assert( pTest!=0 ); 4776 opCompare.pRight = aListelem[i].pExpr; 4777 }else{ 4778 pTest = aListelem[i].pExpr; 4779 } 4780 nextCase = sqlite3VdbeMakeLabel(pParse); 4781 testcase( pTest->op==TK_COLUMN ); 4782 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4783 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4784 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4785 sqlite3VdbeGoto(v, endLabel); 4786 sqlite3VdbeResolveLabel(v, nextCase); 4787 } 4788 if( (nExpr&1)!=0 ){ 4789 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4790 }else{ 4791 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4792 } 4793 sqlite3ExprDelete(db, pDel); 4794 setDoNotMergeFlagOnCopy(v); 4795 sqlite3VdbeResolveLabel(v, endLabel); 4796 break; 4797 } 4798 #ifndef SQLITE_OMIT_TRIGGER 4799 case TK_RAISE: { 4800 assert( pExpr->affExpr==OE_Rollback 4801 || pExpr->affExpr==OE_Abort 4802 || pExpr->affExpr==OE_Fail 4803 || pExpr->affExpr==OE_Ignore 4804 ); 4805 if( !pParse->pTriggerTab && !pParse->nested ){ 4806 sqlite3ErrorMsg(pParse, 4807 "RAISE() may only be used within a trigger-program"); 4808 return 0; 4809 } 4810 if( pExpr->affExpr==OE_Abort ){ 4811 sqlite3MayAbort(pParse); 4812 } 4813 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4814 if( pExpr->affExpr==OE_Ignore ){ 4815 sqlite3VdbeAddOp4( 4816 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4817 VdbeCoverage(v); 4818 }else{ 4819 sqlite3HaltConstraint(pParse, 4820 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4821 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4822 } 4823 4824 break; 4825 } 4826 #endif 4827 } 4828 sqlite3ReleaseTempReg(pParse, regFree1); 4829 sqlite3ReleaseTempReg(pParse, regFree2); 4830 return inReg; 4831 } 4832 4833 /* 4834 ** Generate code that will evaluate expression pExpr just one time 4835 ** per prepared statement execution. 4836 ** 4837 ** If the expression uses functions (that might throw an exception) then 4838 ** guard them with an OP_Once opcode to ensure that the code is only executed 4839 ** once. If no functions are involved, then factor the code out and put it at 4840 ** the end of the prepared statement in the initialization section. 4841 ** 4842 ** If regDest>=0 then the result is always stored in that register and the 4843 ** result is not reusable. If regDest<0 then this routine is free to 4844 ** store the value whereever it wants. The register where the expression 4845 ** is stored is returned. When regDest<0, two identical expressions might 4846 ** code to the same register, if they do not contain function calls and hence 4847 ** are factored out into the initialization section at the end of the 4848 ** prepared statement. 4849 */ 4850 int sqlite3ExprCodeRunJustOnce( 4851 Parse *pParse, /* Parsing context */ 4852 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4853 int regDest /* Store the value in this register */ 4854 ){ 4855 ExprList *p; 4856 assert( ConstFactorOk(pParse) ); 4857 p = pParse->pConstExpr; 4858 if( regDest<0 && p ){ 4859 struct ExprList_item *pItem; 4860 int i; 4861 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4862 if( pItem->fg.reusable 4863 && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 4864 ){ 4865 return pItem->u.iConstExprReg; 4866 } 4867 } 4868 } 4869 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4870 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4871 Vdbe *v = pParse->pVdbe; 4872 int addr; 4873 assert( v ); 4874 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4875 pParse->okConstFactor = 0; 4876 if( !pParse->db->mallocFailed ){ 4877 if( regDest<0 ) regDest = ++pParse->nMem; 4878 sqlite3ExprCode(pParse, pExpr, regDest); 4879 } 4880 pParse->okConstFactor = 1; 4881 sqlite3ExprDelete(pParse->db, pExpr); 4882 sqlite3VdbeJumpHere(v, addr); 4883 }else{ 4884 p = sqlite3ExprListAppend(pParse, p, pExpr); 4885 if( p ){ 4886 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4887 pItem->fg.reusable = regDest<0; 4888 if( regDest<0 ) regDest = ++pParse->nMem; 4889 pItem->u.iConstExprReg = regDest; 4890 } 4891 pParse->pConstExpr = p; 4892 } 4893 return regDest; 4894 } 4895 4896 /* 4897 ** Generate code to evaluate an expression and store the results 4898 ** into a register. Return the register number where the results 4899 ** are stored. 4900 ** 4901 ** If the register is a temporary register that can be deallocated, 4902 ** then write its number into *pReg. If the result register is not 4903 ** a temporary, then set *pReg to zero. 4904 ** 4905 ** If pExpr is a constant, then this routine might generate this 4906 ** code to fill the register in the initialization section of the 4907 ** VDBE program, in order to factor it out of the evaluation loop. 4908 */ 4909 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4910 int r2; 4911 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4912 if( ConstFactorOk(pParse) 4913 && ALWAYS(pExpr!=0) 4914 && pExpr->op!=TK_REGISTER 4915 && sqlite3ExprIsConstantNotJoin(pExpr) 4916 ){ 4917 *pReg = 0; 4918 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4919 }else{ 4920 int r1 = sqlite3GetTempReg(pParse); 4921 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4922 if( r2==r1 ){ 4923 *pReg = r1; 4924 }else{ 4925 sqlite3ReleaseTempReg(pParse, r1); 4926 *pReg = 0; 4927 } 4928 } 4929 return r2; 4930 } 4931 4932 /* 4933 ** Generate code that will evaluate expression pExpr and store the 4934 ** results in register target. The results are guaranteed to appear 4935 ** in register target. 4936 */ 4937 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4938 int inReg; 4939 4940 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4941 assert( target>0 && target<=pParse->nMem ); 4942 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4943 if( pParse->pVdbe==0 ) return; 4944 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4945 if( inReg!=target ){ 4946 u8 op; 4947 if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){ 4948 op = OP_Copy; 4949 }else{ 4950 op = OP_SCopy; 4951 } 4952 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4953 } 4954 } 4955 4956 /* 4957 ** Make a transient copy of expression pExpr and then code it using 4958 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4959 ** except that the input expression is guaranteed to be unchanged. 4960 */ 4961 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4962 sqlite3 *db = pParse->db; 4963 pExpr = sqlite3ExprDup(db, pExpr, 0); 4964 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4965 sqlite3ExprDelete(db, pExpr); 4966 } 4967 4968 /* 4969 ** Generate code that will evaluate expression pExpr and store the 4970 ** results in register target. The results are guaranteed to appear 4971 ** in register target. If the expression is constant, then this routine 4972 ** might choose to code the expression at initialization time. 4973 */ 4974 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4975 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4976 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4977 }else{ 4978 sqlite3ExprCodeCopy(pParse, pExpr, target); 4979 } 4980 } 4981 4982 /* 4983 ** Generate code that pushes the value of every element of the given 4984 ** expression list into a sequence of registers beginning at target. 4985 ** 4986 ** Return the number of elements evaluated. The number returned will 4987 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4988 ** is defined. 4989 ** 4990 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4991 ** filled using OP_SCopy. OP_Copy must be used instead. 4992 ** 4993 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4994 ** factored out into initialization code. 4995 ** 4996 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4997 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4998 ** in registers at srcReg, and so the value can be copied from there. 4999 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 5000 ** are simply omitted rather than being copied from srcReg. 5001 */ 5002 int sqlite3ExprCodeExprList( 5003 Parse *pParse, /* Parsing context */ 5004 ExprList *pList, /* The expression list to be coded */ 5005 int target, /* Where to write results */ 5006 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 5007 u8 flags /* SQLITE_ECEL_* flags */ 5008 ){ 5009 struct ExprList_item *pItem; 5010 int i, j, n; 5011 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 5012 Vdbe *v = pParse->pVdbe; 5013 assert( pList!=0 ); 5014 assert( target>0 ); 5015 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 5016 n = pList->nExpr; 5017 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 5018 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 5019 Expr *pExpr = pItem->pExpr; 5020 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 5021 if( pItem->fg.bSorterRef ){ 5022 i--; 5023 n--; 5024 }else 5025 #endif 5026 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 5027 if( flags & SQLITE_ECEL_OMITREF ){ 5028 i--; 5029 n--; 5030 }else{ 5031 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 5032 } 5033 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 5034 && sqlite3ExprIsConstantNotJoin(pExpr) 5035 ){ 5036 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 5037 }else{ 5038 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 5039 if( inReg!=target+i ){ 5040 VdbeOp *pOp; 5041 if( copyOp==OP_Copy 5042 && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy 5043 && pOp->p1+pOp->p3+1==inReg 5044 && pOp->p2+pOp->p3+1==target+i 5045 && pOp->p5==0 /* The do-not-merge flag must be clear */ 5046 ){ 5047 pOp->p3++; 5048 }else{ 5049 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 5050 } 5051 } 5052 } 5053 } 5054 return n; 5055 } 5056 5057 /* 5058 ** Generate code for a BETWEEN operator. 5059 ** 5060 ** x BETWEEN y AND z 5061 ** 5062 ** The above is equivalent to 5063 ** 5064 ** x>=y AND x<=z 5065 ** 5066 ** Code it as such, taking care to do the common subexpression 5067 ** elimination of x. 5068 ** 5069 ** The xJumpIf parameter determines details: 5070 ** 5071 ** NULL: Store the boolean result in reg[dest] 5072 ** sqlite3ExprIfTrue: Jump to dest if true 5073 ** sqlite3ExprIfFalse: Jump to dest if false 5074 ** 5075 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 5076 */ 5077 static void exprCodeBetween( 5078 Parse *pParse, /* Parsing and code generating context */ 5079 Expr *pExpr, /* The BETWEEN expression */ 5080 int dest, /* Jump destination or storage location */ 5081 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 5082 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 5083 ){ 5084 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 5085 Expr compLeft; /* The x>=y term */ 5086 Expr compRight; /* The x<=z term */ 5087 int regFree1 = 0; /* Temporary use register */ 5088 Expr *pDel = 0; 5089 sqlite3 *db = pParse->db; 5090 5091 memset(&compLeft, 0, sizeof(Expr)); 5092 memset(&compRight, 0, sizeof(Expr)); 5093 memset(&exprAnd, 0, sizeof(Expr)); 5094 5095 assert( ExprUseXList(pExpr) ); 5096 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 5097 if( db->mallocFailed==0 ){ 5098 exprAnd.op = TK_AND; 5099 exprAnd.pLeft = &compLeft; 5100 exprAnd.pRight = &compRight; 5101 compLeft.op = TK_GE; 5102 compLeft.pLeft = pDel; 5103 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 5104 compRight.op = TK_LE; 5105 compRight.pLeft = pDel; 5106 compRight.pRight = pExpr->x.pList->a[1].pExpr; 5107 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 5108 if( xJump ){ 5109 xJump(pParse, &exprAnd, dest, jumpIfNull); 5110 }else{ 5111 /* Mark the expression is being from the ON or USING clause of a join 5112 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 5113 ** it into the Parse.pConstExpr list. We should use a new bit for this, 5114 ** for clarity, but we are out of bits in the Expr.flags field so we 5115 ** have to reuse the EP_OuterON bit. Bummer. */ 5116 pDel->flags |= EP_OuterON; 5117 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 5118 } 5119 sqlite3ReleaseTempReg(pParse, regFree1); 5120 } 5121 sqlite3ExprDelete(db, pDel); 5122 5123 /* Ensure adequate test coverage */ 5124 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 5125 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 5126 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 5127 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 5128 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 5129 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 5130 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 5131 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 5132 testcase( xJump==0 ); 5133 } 5134 5135 /* 5136 ** Generate code for a boolean expression such that a jump is made 5137 ** to the label "dest" if the expression is true but execution 5138 ** continues straight thru if the expression is false. 5139 ** 5140 ** If the expression evaluates to NULL (neither true nor false), then 5141 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 5142 ** 5143 ** This code depends on the fact that certain token values (ex: TK_EQ) 5144 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 5145 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 5146 ** the make process cause these values to align. Assert()s in the code 5147 ** below verify that the numbers are aligned correctly. 5148 */ 5149 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5150 Vdbe *v = pParse->pVdbe; 5151 int op = 0; 5152 int regFree1 = 0; 5153 int regFree2 = 0; 5154 int r1, r2; 5155 5156 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5157 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5158 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 5159 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 5160 op = pExpr->op; 5161 switch( op ){ 5162 case TK_AND: 5163 case TK_OR: { 5164 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5165 if( pAlt!=pExpr ){ 5166 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5167 }else if( op==TK_AND ){ 5168 int d2 = sqlite3VdbeMakeLabel(pParse); 5169 testcase( jumpIfNull==0 ); 5170 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5171 jumpIfNull^SQLITE_JUMPIFNULL); 5172 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5173 sqlite3VdbeResolveLabel(v, d2); 5174 }else{ 5175 testcase( jumpIfNull==0 ); 5176 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5177 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5178 } 5179 break; 5180 } 5181 case TK_NOT: { 5182 testcase( jumpIfNull==0 ); 5183 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5184 break; 5185 } 5186 case TK_TRUTH: { 5187 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5188 int isTrue; /* IS TRUE or IS NOT TRUE */ 5189 testcase( jumpIfNull==0 ); 5190 isNot = pExpr->op2==TK_ISNOT; 5191 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5192 testcase( isTrue && isNot ); 5193 testcase( !isTrue && isNot ); 5194 if( isTrue ^ isNot ){ 5195 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5196 isNot ? SQLITE_JUMPIFNULL : 0); 5197 }else{ 5198 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5199 isNot ? SQLITE_JUMPIFNULL : 0); 5200 } 5201 break; 5202 } 5203 case TK_IS: 5204 case TK_ISNOT: 5205 testcase( op==TK_IS ); 5206 testcase( op==TK_ISNOT ); 5207 op = (op==TK_IS) ? TK_EQ : TK_NE; 5208 jumpIfNull = SQLITE_NULLEQ; 5209 /* no break */ deliberate_fall_through 5210 case TK_LT: 5211 case TK_LE: 5212 case TK_GT: 5213 case TK_GE: 5214 case TK_NE: 5215 case TK_EQ: { 5216 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5217 testcase( jumpIfNull==0 ); 5218 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5219 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5220 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5221 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5222 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5223 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5224 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5225 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5226 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5227 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5228 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5229 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5230 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5231 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5232 testcase( regFree1==0 ); 5233 testcase( regFree2==0 ); 5234 break; 5235 } 5236 case TK_ISNULL: 5237 case TK_NOTNULL: { 5238 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5239 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5240 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5241 sqlite3VdbeAddOp2(v, op, r1, dest); 5242 VdbeCoverageIf(v, op==TK_ISNULL); 5243 VdbeCoverageIf(v, op==TK_NOTNULL); 5244 testcase( regFree1==0 ); 5245 break; 5246 } 5247 case TK_BETWEEN: { 5248 testcase( jumpIfNull==0 ); 5249 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5250 break; 5251 } 5252 #ifndef SQLITE_OMIT_SUBQUERY 5253 case TK_IN: { 5254 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5255 int destIfNull = jumpIfNull ? dest : destIfFalse; 5256 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5257 sqlite3VdbeGoto(v, dest); 5258 sqlite3VdbeResolveLabel(v, destIfFalse); 5259 break; 5260 } 5261 #endif 5262 default: { 5263 default_expr: 5264 if( ExprAlwaysTrue(pExpr) ){ 5265 sqlite3VdbeGoto(v, dest); 5266 }else if( ExprAlwaysFalse(pExpr) ){ 5267 /* No-op */ 5268 }else{ 5269 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5270 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5271 VdbeCoverage(v); 5272 testcase( regFree1==0 ); 5273 testcase( jumpIfNull==0 ); 5274 } 5275 break; 5276 } 5277 } 5278 sqlite3ReleaseTempReg(pParse, regFree1); 5279 sqlite3ReleaseTempReg(pParse, regFree2); 5280 } 5281 5282 /* 5283 ** Generate code for a boolean expression such that a jump is made 5284 ** to the label "dest" if the expression is false but execution 5285 ** continues straight thru if the expression is true. 5286 ** 5287 ** If the expression evaluates to NULL (neither true nor false) then 5288 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5289 ** is 0. 5290 */ 5291 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5292 Vdbe *v = pParse->pVdbe; 5293 int op = 0; 5294 int regFree1 = 0; 5295 int regFree2 = 0; 5296 int r1, r2; 5297 5298 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5299 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5300 if( pExpr==0 ) return; 5301 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5302 5303 /* The value of pExpr->op and op are related as follows: 5304 ** 5305 ** pExpr->op op 5306 ** --------- ---------- 5307 ** TK_ISNULL OP_NotNull 5308 ** TK_NOTNULL OP_IsNull 5309 ** TK_NE OP_Eq 5310 ** TK_EQ OP_Ne 5311 ** TK_GT OP_Le 5312 ** TK_LE OP_Gt 5313 ** TK_GE OP_Lt 5314 ** TK_LT OP_Ge 5315 ** 5316 ** For other values of pExpr->op, op is undefined and unused. 5317 ** The value of TK_ and OP_ constants are arranged such that we 5318 ** can compute the mapping above using the following expression. 5319 ** Assert()s verify that the computation is correct. 5320 */ 5321 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5322 5323 /* Verify correct alignment of TK_ and OP_ constants 5324 */ 5325 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5326 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5327 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5328 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5329 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5330 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5331 assert( pExpr->op!=TK_GT || op==OP_Le ); 5332 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5333 5334 switch( pExpr->op ){ 5335 case TK_AND: 5336 case TK_OR: { 5337 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5338 if( pAlt!=pExpr ){ 5339 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5340 }else if( pExpr->op==TK_AND ){ 5341 testcase( jumpIfNull==0 ); 5342 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5343 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5344 }else{ 5345 int d2 = sqlite3VdbeMakeLabel(pParse); 5346 testcase( jumpIfNull==0 ); 5347 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5348 jumpIfNull^SQLITE_JUMPIFNULL); 5349 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5350 sqlite3VdbeResolveLabel(v, d2); 5351 } 5352 break; 5353 } 5354 case TK_NOT: { 5355 testcase( jumpIfNull==0 ); 5356 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5357 break; 5358 } 5359 case TK_TRUTH: { 5360 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5361 int isTrue; /* IS TRUE or IS NOT TRUE */ 5362 testcase( jumpIfNull==0 ); 5363 isNot = pExpr->op2==TK_ISNOT; 5364 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5365 testcase( isTrue && isNot ); 5366 testcase( !isTrue && isNot ); 5367 if( isTrue ^ isNot ){ 5368 /* IS TRUE and IS NOT FALSE */ 5369 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5370 isNot ? 0 : SQLITE_JUMPIFNULL); 5371 5372 }else{ 5373 /* IS FALSE and IS NOT TRUE */ 5374 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5375 isNot ? 0 : SQLITE_JUMPIFNULL); 5376 } 5377 break; 5378 } 5379 case TK_IS: 5380 case TK_ISNOT: 5381 testcase( pExpr->op==TK_IS ); 5382 testcase( pExpr->op==TK_ISNOT ); 5383 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5384 jumpIfNull = SQLITE_NULLEQ; 5385 /* no break */ deliberate_fall_through 5386 case TK_LT: 5387 case TK_LE: 5388 case TK_GT: 5389 case TK_GE: 5390 case TK_NE: 5391 case TK_EQ: { 5392 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5393 testcase( jumpIfNull==0 ); 5394 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5395 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5396 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5397 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5398 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5399 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5400 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5401 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5402 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5403 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5404 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5405 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5406 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5407 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5408 testcase( regFree1==0 ); 5409 testcase( regFree2==0 ); 5410 break; 5411 } 5412 case TK_ISNULL: 5413 case TK_NOTNULL: { 5414 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5415 sqlite3VdbeAddOp2(v, op, r1, dest); 5416 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5417 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5418 testcase( regFree1==0 ); 5419 break; 5420 } 5421 case TK_BETWEEN: { 5422 testcase( jumpIfNull==0 ); 5423 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5424 break; 5425 } 5426 #ifndef SQLITE_OMIT_SUBQUERY 5427 case TK_IN: { 5428 if( jumpIfNull ){ 5429 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5430 }else{ 5431 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5432 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5433 sqlite3VdbeResolveLabel(v, destIfNull); 5434 } 5435 break; 5436 } 5437 #endif 5438 default: { 5439 default_expr: 5440 if( ExprAlwaysFalse(pExpr) ){ 5441 sqlite3VdbeGoto(v, dest); 5442 }else if( ExprAlwaysTrue(pExpr) ){ 5443 /* no-op */ 5444 }else{ 5445 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5446 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5447 VdbeCoverage(v); 5448 testcase( regFree1==0 ); 5449 testcase( jumpIfNull==0 ); 5450 } 5451 break; 5452 } 5453 } 5454 sqlite3ReleaseTempReg(pParse, regFree1); 5455 sqlite3ReleaseTempReg(pParse, regFree2); 5456 } 5457 5458 /* 5459 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5460 ** code generation, and that copy is deleted after code generation. This 5461 ** ensures that the original pExpr is unchanged. 5462 */ 5463 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5464 sqlite3 *db = pParse->db; 5465 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5466 if( db->mallocFailed==0 ){ 5467 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5468 } 5469 sqlite3ExprDelete(db, pCopy); 5470 } 5471 5472 /* 5473 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5474 ** type of expression. 5475 ** 5476 ** If pExpr is a simple SQL value - an integer, real, string, blob 5477 ** or NULL value - then the VDBE currently being prepared is configured 5478 ** to re-prepare each time a new value is bound to variable pVar. 5479 ** 5480 ** Additionally, if pExpr is a simple SQL value and the value is the 5481 ** same as that currently bound to variable pVar, non-zero is returned. 5482 ** Otherwise, if the values are not the same or if pExpr is not a simple 5483 ** SQL value, zero is returned. 5484 */ 5485 static int exprCompareVariable( 5486 const Parse *pParse, 5487 const Expr *pVar, 5488 const Expr *pExpr 5489 ){ 5490 int res = 0; 5491 int iVar; 5492 sqlite3_value *pL, *pR = 0; 5493 5494 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5495 if( pR ){ 5496 iVar = pVar->iColumn; 5497 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5498 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5499 if( pL ){ 5500 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5501 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5502 } 5503 res = 0==sqlite3MemCompare(pL, pR, 0); 5504 } 5505 sqlite3ValueFree(pR); 5506 sqlite3ValueFree(pL); 5507 } 5508 5509 return res; 5510 } 5511 5512 /* 5513 ** Do a deep comparison of two expression trees. Return 0 if the two 5514 ** expressions are completely identical. Return 1 if they differ only 5515 ** by a COLLATE operator at the top level. Return 2 if there are differences 5516 ** other than the top-level COLLATE operator. 5517 ** 5518 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5519 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5520 ** 5521 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5522 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5523 ** 5524 ** Sometimes this routine will return 2 even if the two expressions 5525 ** really are equivalent. If we cannot prove that the expressions are 5526 ** identical, we return 2 just to be safe. So if this routine 5527 ** returns 2, then you do not really know for certain if the two 5528 ** expressions are the same. But if you get a 0 or 1 return, then you 5529 ** can be sure the expressions are the same. In the places where 5530 ** this routine is used, it does not hurt to get an extra 2 - that 5531 ** just might result in some slightly slower code. But returning 5532 ** an incorrect 0 or 1 could lead to a malfunction. 5533 ** 5534 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5535 ** pParse->pReprepare can be matched against literals in pB. The 5536 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5537 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5538 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5539 ** pB causes a return value of 2. 5540 */ 5541 int sqlite3ExprCompare( 5542 const Parse *pParse, 5543 const Expr *pA, 5544 const Expr *pB, 5545 int iTab 5546 ){ 5547 u32 combinedFlags; 5548 if( pA==0 || pB==0 ){ 5549 return pB==pA ? 0 : 2; 5550 } 5551 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5552 return 0; 5553 } 5554 combinedFlags = pA->flags | pB->flags; 5555 if( combinedFlags & EP_IntValue ){ 5556 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5557 return 0; 5558 } 5559 return 2; 5560 } 5561 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5562 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5563 return 1; 5564 } 5565 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5566 return 1; 5567 } 5568 return 2; 5569 } 5570 assert( !ExprHasProperty(pA, EP_IntValue) ); 5571 assert( !ExprHasProperty(pB, EP_IntValue) ); 5572 if( pA->u.zToken ){ 5573 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5574 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5575 #ifndef SQLITE_OMIT_WINDOWFUNC 5576 assert( pA->op==pB->op ); 5577 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5578 return 2; 5579 } 5580 if( ExprHasProperty(pA,EP_WinFunc) ){ 5581 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5582 return 2; 5583 } 5584 } 5585 #endif 5586 }else if( pA->op==TK_NULL ){ 5587 return 0; 5588 }else if( pA->op==TK_COLLATE ){ 5589 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5590 }else 5591 if( pB->u.zToken!=0 5592 && pA->op!=TK_COLUMN 5593 && pA->op!=TK_AGG_COLUMN 5594 && strcmp(pA->u.zToken,pB->u.zToken)!=0 5595 ){ 5596 return 2; 5597 } 5598 } 5599 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5600 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5601 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5602 if( combinedFlags & EP_xIsSelect ) return 2; 5603 if( (combinedFlags & EP_FixedCol)==0 5604 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5605 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5606 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5607 if( pA->op!=TK_STRING 5608 && pA->op!=TK_TRUEFALSE 5609 && ALWAYS((combinedFlags & EP_Reduced)==0) 5610 ){ 5611 if( pA->iColumn!=pB->iColumn ) return 2; 5612 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5613 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5614 return 2; 5615 } 5616 } 5617 } 5618 return 0; 5619 } 5620 5621 /* 5622 ** Compare two ExprList objects. Return 0 if they are identical, 1 5623 ** if they are certainly different, or 2 if it is not possible to 5624 ** determine if they are identical or not. 5625 ** 5626 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5627 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5628 ** 5629 ** This routine might return non-zero for equivalent ExprLists. The 5630 ** only consequence will be disabled optimizations. But this routine 5631 ** must never return 0 if the two ExprList objects are different, or 5632 ** a malfunction will result. 5633 ** 5634 ** Two NULL pointers are considered to be the same. But a NULL pointer 5635 ** always differs from a non-NULL pointer. 5636 */ 5637 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 5638 int i; 5639 if( pA==0 && pB==0 ) return 0; 5640 if( pA==0 || pB==0 ) return 1; 5641 if( pA->nExpr!=pB->nExpr ) return 1; 5642 for(i=0; i<pA->nExpr; i++){ 5643 int res; 5644 Expr *pExprA = pA->a[i].pExpr; 5645 Expr *pExprB = pB->a[i].pExpr; 5646 if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1; 5647 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5648 } 5649 return 0; 5650 } 5651 5652 /* 5653 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5654 ** are ignored. 5655 */ 5656 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 5657 return sqlite3ExprCompare(0, 5658 sqlite3ExprSkipCollateAndLikely(pA), 5659 sqlite3ExprSkipCollateAndLikely(pB), 5660 iTab); 5661 } 5662 5663 /* 5664 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5665 ** 5666 ** Or if seenNot is true, return non-zero if Expr p can only be 5667 ** non-NULL if pNN is not NULL 5668 */ 5669 static int exprImpliesNotNull( 5670 const Parse *pParse,/* Parsing context */ 5671 const Expr *p, /* The expression to be checked */ 5672 const Expr *pNN, /* The expression that is NOT NULL */ 5673 int iTab, /* Table being evaluated */ 5674 int seenNot /* Return true only if p can be any non-NULL value */ 5675 ){ 5676 assert( p ); 5677 assert( pNN ); 5678 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5679 return pNN->op!=TK_NULL; 5680 } 5681 switch( p->op ){ 5682 case TK_IN: { 5683 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5684 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5685 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5686 } 5687 case TK_BETWEEN: { 5688 ExprList *pList; 5689 assert( ExprUseXList(p) ); 5690 pList = p->x.pList; 5691 assert( pList!=0 ); 5692 assert( pList->nExpr==2 ); 5693 if( seenNot ) return 0; 5694 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5695 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5696 ){ 5697 return 1; 5698 } 5699 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5700 } 5701 case TK_EQ: 5702 case TK_NE: 5703 case TK_LT: 5704 case TK_LE: 5705 case TK_GT: 5706 case TK_GE: 5707 case TK_PLUS: 5708 case TK_MINUS: 5709 case TK_BITOR: 5710 case TK_LSHIFT: 5711 case TK_RSHIFT: 5712 case TK_CONCAT: 5713 seenNot = 1; 5714 /* no break */ deliberate_fall_through 5715 case TK_STAR: 5716 case TK_REM: 5717 case TK_BITAND: 5718 case TK_SLASH: { 5719 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5720 /* no break */ deliberate_fall_through 5721 } 5722 case TK_SPAN: 5723 case TK_COLLATE: 5724 case TK_UPLUS: 5725 case TK_UMINUS: { 5726 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5727 } 5728 case TK_TRUTH: { 5729 if( seenNot ) return 0; 5730 if( p->op2!=TK_IS ) return 0; 5731 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5732 } 5733 case TK_BITNOT: 5734 case TK_NOT: { 5735 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5736 } 5737 } 5738 return 0; 5739 } 5740 5741 /* 5742 ** Return true if we can prove the pE2 will always be true if pE1 is 5743 ** true. Return false if we cannot complete the proof or if pE2 might 5744 ** be false. Examples: 5745 ** 5746 ** pE1: x==5 pE2: x==5 Result: true 5747 ** pE1: x>0 pE2: x==5 Result: false 5748 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5749 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5750 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5751 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5752 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5753 ** 5754 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5755 ** Expr.iTable<0 then assume a table number given by iTab. 5756 ** 5757 ** If pParse is not NULL, then the values of bound variables in pE1 are 5758 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5759 ** modified to record which bound variables are referenced. If pParse 5760 ** is NULL, then false will be returned if pE1 contains any bound variables. 5761 ** 5762 ** When in doubt, return false. Returning true might give a performance 5763 ** improvement. Returning false might cause a performance reduction, but 5764 ** it will always give the correct answer and is hence always safe. 5765 */ 5766 int sqlite3ExprImpliesExpr( 5767 const Parse *pParse, 5768 const Expr *pE1, 5769 const Expr *pE2, 5770 int iTab 5771 ){ 5772 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5773 return 1; 5774 } 5775 if( pE2->op==TK_OR 5776 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5777 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5778 ){ 5779 return 1; 5780 } 5781 if( pE2->op==TK_NOTNULL 5782 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5783 ){ 5784 return 1; 5785 } 5786 return 0; 5787 } 5788 5789 /* 5790 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5791 ** If the expression node requires that the table at pWalker->iCur 5792 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5793 ** 5794 ** This routine controls an optimization. False positives (setting 5795 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5796 ** (never setting pWalker->eCode) is a harmless missed optimization. 5797 */ 5798 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5799 testcase( pExpr->op==TK_AGG_COLUMN ); 5800 testcase( pExpr->op==TK_AGG_FUNCTION ); 5801 if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune; 5802 switch( pExpr->op ){ 5803 case TK_ISNOT: 5804 case TK_ISNULL: 5805 case TK_NOTNULL: 5806 case TK_IS: 5807 case TK_OR: 5808 case TK_VECTOR: 5809 case TK_CASE: 5810 case TK_IN: 5811 case TK_FUNCTION: 5812 case TK_TRUTH: 5813 testcase( pExpr->op==TK_ISNOT ); 5814 testcase( pExpr->op==TK_ISNULL ); 5815 testcase( pExpr->op==TK_NOTNULL ); 5816 testcase( pExpr->op==TK_IS ); 5817 testcase( pExpr->op==TK_OR ); 5818 testcase( pExpr->op==TK_VECTOR ); 5819 testcase( pExpr->op==TK_CASE ); 5820 testcase( pExpr->op==TK_IN ); 5821 testcase( pExpr->op==TK_FUNCTION ); 5822 testcase( pExpr->op==TK_TRUTH ); 5823 return WRC_Prune; 5824 case TK_COLUMN: 5825 if( pWalker->u.iCur==pExpr->iTable ){ 5826 pWalker->eCode = 1; 5827 return WRC_Abort; 5828 } 5829 return WRC_Prune; 5830 5831 case TK_AND: 5832 if( pWalker->eCode==0 ){ 5833 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5834 if( pWalker->eCode ){ 5835 pWalker->eCode = 0; 5836 sqlite3WalkExpr(pWalker, pExpr->pRight); 5837 } 5838 } 5839 return WRC_Prune; 5840 5841 case TK_BETWEEN: 5842 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5843 assert( pWalker->eCode ); 5844 return WRC_Abort; 5845 } 5846 return WRC_Prune; 5847 5848 /* Virtual tables are allowed to use constraints like x=NULL. So 5849 ** a term of the form x=y does not prove that y is not null if x 5850 ** is the column of a virtual table */ 5851 case TK_EQ: 5852 case TK_NE: 5853 case TK_LT: 5854 case TK_LE: 5855 case TK_GT: 5856 case TK_GE: { 5857 Expr *pLeft = pExpr->pLeft; 5858 Expr *pRight = pExpr->pRight; 5859 testcase( pExpr->op==TK_EQ ); 5860 testcase( pExpr->op==TK_NE ); 5861 testcase( pExpr->op==TK_LT ); 5862 testcase( pExpr->op==TK_LE ); 5863 testcase( pExpr->op==TK_GT ); 5864 testcase( pExpr->op==TK_GE ); 5865 /* The y.pTab=0 assignment in wherecode.c always happens after the 5866 ** impliesNotNullRow() test */ 5867 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); 5868 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); 5869 if( (pLeft->op==TK_COLUMN 5870 && pLeft->y.pTab!=0 5871 && IsVirtual(pLeft->y.pTab)) 5872 || (pRight->op==TK_COLUMN 5873 && pRight->y.pTab!=0 5874 && IsVirtual(pRight->y.pTab)) 5875 ){ 5876 return WRC_Prune; 5877 } 5878 /* no break */ deliberate_fall_through 5879 } 5880 default: 5881 return WRC_Continue; 5882 } 5883 } 5884 5885 /* 5886 ** Return true (non-zero) if expression p can only be true if at least 5887 ** one column of table iTab is non-null. In other words, return true 5888 ** if expression p will always be NULL or false if every column of iTab 5889 ** is NULL. 5890 ** 5891 ** False negatives are acceptable. In other words, it is ok to return 5892 ** zero even if expression p will never be true of every column of iTab 5893 ** is NULL. A false negative is merely a missed optimization opportunity. 5894 ** 5895 ** False positives are not allowed, however. A false positive may result 5896 ** in an incorrect answer. 5897 ** 5898 ** Terms of p that are marked with EP_OuterON (and hence that come from 5899 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis. 5900 ** 5901 ** This routine is used to check if a LEFT JOIN can be converted into 5902 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5903 ** clause requires that some column of the right table of the LEFT JOIN 5904 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5905 ** ordinary join. 5906 */ 5907 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5908 Walker w; 5909 p = sqlite3ExprSkipCollateAndLikely(p); 5910 if( p==0 ) return 0; 5911 if( p->op==TK_NOTNULL ){ 5912 p = p->pLeft; 5913 }else{ 5914 while( p->op==TK_AND ){ 5915 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5916 p = p->pRight; 5917 } 5918 } 5919 w.xExprCallback = impliesNotNullRow; 5920 w.xSelectCallback = 0; 5921 w.xSelectCallback2 = 0; 5922 w.eCode = 0; 5923 w.u.iCur = iTab; 5924 sqlite3WalkExpr(&w, p); 5925 return w.eCode; 5926 } 5927 5928 /* 5929 ** An instance of the following structure is used by the tree walker 5930 ** to determine if an expression can be evaluated by reference to the 5931 ** index only, without having to do a search for the corresponding 5932 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5933 ** is the cursor for the table. 5934 */ 5935 struct IdxCover { 5936 Index *pIdx; /* The index to be tested for coverage */ 5937 int iCur; /* Cursor number for the table corresponding to the index */ 5938 }; 5939 5940 /* 5941 ** Check to see if there are references to columns in table 5942 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5943 ** pWalker->u.pIdxCover->pIdx. 5944 */ 5945 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5946 if( pExpr->op==TK_COLUMN 5947 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5948 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5949 ){ 5950 pWalker->eCode = 1; 5951 return WRC_Abort; 5952 } 5953 return WRC_Continue; 5954 } 5955 5956 /* 5957 ** Determine if an index pIdx on table with cursor iCur contains will 5958 ** the expression pExpr. Return true if the index does cover the 5959 ** expression and false if the pExpr expression references table columns 5960 ** that are not found in the index pIdx. 5961 ** 5962 ** An index covering an expression means that the expression can be 5963 ** evaluated using only the index and without having to lookup the 5964 ** corresponding table entry. 5965 */ 5966 int sqlite3ExprCoveredByIndex( 5967 Expr *pExpr, /* The index to be tested */ 5968 int iCur, /* The cursor number for the corresponding table */ 5969 Index *pIdx /* The index that might be used for coverage */ 5970 ){ 5971 Walker w; 5972 struct IdxCover xcov; 5973 memset(&w, 0, sizeof(w)); 5974 xcov.iCur = iCur; 5975 xcov.pIdx = pIdx; 5976 w.xExprCallback = exprIdxCover; 5977 w.u.pIdxCover = &xcov; 5978 sqlite3WalkExpr(&w, pExpr); 5979 return !w.eCode; 5980 } 5981 5982 5983 /* Structure used to pass information throught the Walker in order to 5984 ** implement sqlite3ReferencesSrcList(). 5985 */ 5986 struct RefSrcList { 5987 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ 5988 SrcList *pRef; /* Looking for references to these tables */ 5989 i64 nExclude; /* Number of tables to exclude from the search */ 5990 int *aiExclude; /* Cursor IDs for tables to exclude from the search */ 5991 }; 5992 5993 /* 5994 ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). 5995 ** 5996 ** When entering a new subquery on the pExpr argument, add all FROM clause 5997 ** entries for that subquery to the exclude list. 5998 ** 5999 ** When leaving the subquery, remove those entries from the exclude list. 6000 */ 6001 static int selectRefEnter(Walker *pWalker, Select *pSelect){ 6002 struct RefSrcList *p = pWalker->u.pRefSrcList; 6003 SrcList *pSrc = pSelect->pSrc; 6004 i64 i, j; 6005 int *piNew; 6006 if( pSrc->nSrc==0 ) return WRC_Continue; 6007 j = p->nExclude; 6008 p->nExclude += pSrc->nSrc; 6009 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); 6010 if( piNew==0 ){ 6011 p->nExclude = 0; 6012 return WRC_Abort; 6013 }else{ 6014 p->aiExclude = piNew; 6015 } 6016 for(i=0; i<pSrc->nSrc; i++, j++){ 6017 p->aiExclude[j] = pSrc->a[i].iCursor; 6018 } 6019 return WRC_Continue; 6020 } 6021 static void selectRefLeave(Walker *pWalker, Select *pSelect){ 6022 struct RefSrcList *p = pWalker->u.pRefSrcList; 6023 SrcList *pSrc = pSelect->pSrc; 6024 if( p->nExclude ){ 6025 assert( p->nExclude>=pSrc->nSrc ); 6026 p->nExclude -= pSrc->nSrc; 6027 } 6028 } 6029 6030 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). 6031 ** 6032 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any 6033 ** of the tables shown in RefSrcList.pRef. 6034 ** 6035 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a 6036 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. 6037 */ 6038 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ 6039 if( pExpr->op==TK_COLUMN 6040 || pExpr->op==TK_AGG_COLUMN 6041 ){ 6042 int i; 6043 struct RefSrcList *p = pWalker->u.pRefSrcList; 6044 SrcList *pSrc = p->pRef; 6045 int nSrc = pSrc ? pSrc->nSrc : 0; 6046 for(i=0; i<nSrc; i++){ 6047 if( pExpr->iTable==pSrc->a[i].iCursor ){ 6048 pWalker->eCode |= 1; 6049 return WRC_Continue; 6050 } 6051 } 6052 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} 6053 if( i>=p->nExclude ){ 6054 pWalker->eCode |= 2; 6055 } 6056 } 6057 return WRC_Continue; 6058 } 6059 6060 /* 6061 ** Check to see if pExpr references any tables in pSrcList. 6062 ** Possible return values: 6063 ** 6064 ** 1 pExpr does references a table in pSrcList. 6065 ** 6066 ** 0 pExpr references some table that is not defined in either 6067 ** pSrcList or in subqueries of pExpr itself. 6068 ** 6069 ** -1 pExpr only references no tables at all, or it only 6070 ** references tables defined in subqueries of pExpr itself. 6071 ** 6072 ** As currently used, pExpr is always an aggregate function call. That 6073 ** fact is exploited for efficiency. 6074 */ 6075 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ 6076 Walker w; 6077 struct RefSrcList x; 6078 memset(&w, 0, sizeof(w)); 6079 memset(&x, 0, sizeof(x)); 6080 w.xExprCallback = exprRefToSrcList; 6081 w.xSelectCallback = selectRefEnter; 6082 w.xSelectCallback2 = selectRefLeave; 6083 w.u.pRefSrcList = &x; 6084 x.db = pParse->db; 6085 x.pRef = pSrcList; 6086 assert( pExpr->op==TK_AGG_FUNCTION ); 6087 assert( ExprUseXList(pExpr) ); 6088 sqlite3WalkExprList(&w, pExpr->x.pList); 6089 #ifndef SQLITE_OMIT_WINDOWFUNC 6090 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6091 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 6092 } 6093 #endif 6094 sqlite3DbFree(pParse->db, x.aiExclude); 6095 if( w.eCode & 0x01 ){ 6096 return 1; 6097 }else if( w.eCode ){ 6098 return 0; 6099 }else{ 6100 return -1; 6101 } 6102 } 6103 6104 /* 6105 ** This is a Walker expression node callback. 6106 ** 6107 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 6108 ** object that is referenced does not refer directly to the Expr. If 6109 ** it does, make a copy. This is done because the pExpr argument is 6110 ** subject to change. 6111 ** 6112 ** The copy is stored on pParse->pConstExpr with a register number of 0. 6113 ** This will cause the expression to be deleted automatically when the 6114 ** Parse object is destroyed, but the zero register number means that it 6115 ** will not generate any code in the preamble. 6116 */ 6117 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 6118 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 6119 && pExpr->pAggInfo!=0 6120 ){ 6121 AggInfo *pAggInfo = pExpr->pAggInfo; 6122 int iAgg = pExpr->iAgg; 6123 Parse *pParse = pWalker->pParse; 6124 sqlite3 *db = pParse->db; 6125 if( pExpr->op!=TK_AGG_FUNCTION ){ 6126 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_IF_NULL_ROW ); 6127 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 6128 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 6129 pExpr = sqlite3ExprDup(db, pExpr, 0); 6130 if( pExpr ){ 6131 pAggInfo->aCol[iAgg].pCExpr = pExpr; 6132 sqlite3ExprDeferredDelete(pParse, pExpr); 6133 } 6134 } 6135 }else{ 6136 assert( pExpr->op==TK_AGG_FUNCTION ); 6137 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 6138 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 6139 pExpr = sqlite3ExprDup(db, pExpr, 0); 6140 if( pExpr ){ 6141 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 6142 sqlite3ExprDeferredDelete(pParse, pExpr); 6143 } 6144 } 6145 } 6146 } 6147 return WRC_Continue; 6148 } 6149 6150 /* 6151 ** Initialize a Walker object so that will persist AggInfo entries referenced 6152 ** by the tree that is walked. 6153 */ 6154 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 6155 memset(pWalker, 0, sizeof(*pWalker)); 6156 pWalker->pParse = pParse; 6157 pWalker->xExprCallback = agginfoPersistExprCb; 6158 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 6159 } 6160 6161 /* 6162 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 6163 ** the new element. Return a negative number if malloc fails. 6164 */ 6165 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 6166 int i; 6167 pInfo->aCol = sqlite3ArrayAllocate( 6168 db, 6169 pInfo->aCol, 6170 sizeof(pInfo->aCol[0]), 6171 &pInfo->nColumn, 6172 &i 6173 ); 6174 return i; 6175 } 6176 6177 /* 6178 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 6179 ** the new element. Return a negative number if malloc fails. 6180 */ 6181 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 6182 int i; 6183 pInfo->aFunc = sqlite3ArrayAllocate( 6184 db, 6185 pInfo->aFunc, 6186 sizeof(pInfo->aFunc[0]), 6187 &pInfo->nFunc, 6188 &i 6189 ); 6190 return i; 6191 } 6192 6193 /* 6194 ** This is the xExprCallback for a tree walker. It is used to 6195 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 6196 ** for additional information. 6197 */ 6198 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 6199 int i; 6200 NameContext *pNC = pWalker->u.pNC; 6201 Parse *pParse = pNC->pParse; 6202 SrcList *pSrcList = pNC->pSrcList; 6203 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 6204 6205 assert( pNC->ncFlags & NC_UAggInfo ); 6206 switch( pExpr->op ){ 6207 case TK_IF_NULL_ROW: 6208 case TK_AGG_COLUMN: 6209 case TK_COLUMN: { 6210 testcase( pExpr->op==TK_AGG_COLUMN ); 6211 testcase( pExpr->op==TK_COLUMN ); 6212 testcase( pExpr->op==TK_IF_NULL_ROW ); 6213 /* Check to see if the column is in one of the tables in the FROM 6214 ** clause of the aggregate query */ 6215 if( ALWAYS(pSrcList!=0) ){ 6216 SrcItem *pItem = pSrcList->a; 6217 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 6218 struct AggInfo_col *pCol; 6219 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6220 if( pExpr->iTable==pItem->iCursor ){ 6221 /* If we reach this point, it means that pExpr refers to a table 6222 ** that is in the FROM clause of the aggregate query. 6223 ** 6224 ** Make an entry for the column in pAggInfo->aCol[] if there 6225 ** is not an entry there already. 6226 */ 6227 int k; 6228 pCol = pAggInfo->aCol; 6229 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6230 if( pCol->iTable==pExpr->iTable && 6231 pCol->iColumn==pExpr->iColumn ){ 6232 break; 6233 } 6234 } 6235 if( (k>=pAggInfo->nColumn) 6236 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6237 ){ 6238 pCol = &pAggInfo->aCol[k]; 6239 assert( ExprUseYTab(pExpr) ); 6240 pCol->pTab = pExpr->y.pTab; 6241 pCol->iTable = pExpr->iTable; 6242 pCol->iColumn = pExpr->iColumn; 6243 pCol->iMem = ++pParse->nMem; 6244 pCol->iSorterColumn = -1; 6245 pCol->pCExpr = pExpr; 6246 if( pAggInfo->pGroupBy ){ 6247 int j, n; 6248 ExprList *pGB = pAggInfo->pGroupBy; 6249 struct ExprList_item *pTerm = pGB->a; 6250 n = pGB->nExpr; 6251 for(j=0; j<n; j++, pTerm++){ 6252 Expr *pE = pTerm->pExpr; 6253 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 6254 pE->iColumn==pExpr->iColumn ){ 6255 pCol->iSorterColumn = j; 6256 break; 6257 } 6258 } 6259 } 6260 if( pCol->iSorterColumn<0 ){ 6261 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6262 } 6263 } 6264 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6265 ** because it was there before or because we just created it). 6266 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6267 ** pAggInfo->aCol[] entry. 6268 */ 6269 ExprSetVVAProperty(pExpr, EP_NoReduce); 6270 pExpr->pAggInfo = pAggInfo; 6271 if( pExpr->op==TK_COLUMN ){ 6272 pExpr->op = TK_AGG_COLUMN; 6273 } 6274 pExpr->iAgg = (i16)k; 6275 break; 6276 } /* endif pExpr->iTable==pItem->iCursor */ 6277 } /* end loop over pSrcList */ 6278 } 6279 return WRC_Prune; 6280 } 6281 case TK_AGG_FUNCTION: { 6282 if( (pNC->ncFlags & NC_InAggFunc)==0 6283 && pWalker->walkerDepth==pExpr->op2 6284 ){ 6285 /* Check to see if pExpr is a duplicate of another aggregate 6286 ** function that is already in the pAggInfo structure 6287 */ 6288 struct AggInfo_func *pItem = pAggInfo->aFunc; 6289 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6290 if( pItem->pFExpr==pExpr ) break; 6291 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6292 break; 6293 } 6294 } 6295 if( i>=pAggInfo->nFunc ){ 6296 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6297 */ 6298 u8 enc = ENC(pParse->db); 6299 i = addAggInfoFunc(pParse->db, pAggInfo); 6300 if( i>=0 ){ 6301 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6302 pItem = &pAggInfo->aFunc[i]; 6303 pItem->pFExpr = pExpr; 6304 pItem->iMem = ++pParse->nMem; 6305 assert( ExprUseUToken(pExpr) ); 6306 pItem->pFunc = sqlite3FindFunction(pParse->db, 6307 pExpr->u.zToken, 6308 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6309 if( pExpr->flags & EP_Distinct ){ 6310 pItem->iDistinct = pParse->nTab++; 6311 }else{ 6312 pItem->iDistinct = -1; 6313 } 6314 } 6315 } 6316 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6317 */ 6318 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6319 ExprSetVVAProperty(pExpr, EP_NoReduce); 6320 pExpr->iAgg = (i16)i; 6321 pExpr->pAggInfo = pAggInfo; 6322 return WRC_Prune; 6323 }else{ 6324 return WRC_Continue; 6325 } 6326 } 6327 } 6328 return WRC_Continue; 6329 } 6330 6331 /* 6332 ** Analyze the pExpr expression looking for aggregate functions and 6333 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6334 ** points to. Additional entries are made on the AggInfo object as 6335 ** necessary. 6336 ** 6337 ** This routine should only be called after the expression has been 6338 ** analyzed by sqlite3ResolveExprNames(). 6339 */ 6340 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6341 Walker w; 6342 w.xExprCallback = analyzeAggregate; 6343 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6344 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6345 w.walkerDepth = 0; 6346 w.u.pNC = pNC; 6347 w.pParse = 0; 6348 assert( pNC->pSrcList!=0 ); 6349 sqlite3WalkExpr(&w, pExpr); 6350 } 6351 6352 /* 6353 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6354 ** expression list. Return the number of errors. 6355 ** 6356 ** If an error is found, the analysis is cut short. 6357 */ 6358 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6359 struct ExprList_item *pItem; 6360 int i; 6361 if( pList ){ 6362 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6363 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6364 } 6365 } 6366 } 6367 6368 /* 6369 ** Allocate a single new register for use to hold some intermediate result. 6370 */ 6371 int sqlite3GetTempReg(Parse *pParse){ 6372 if( pParse->nTempReg==0 ){ 6373 return ++pParse->nMem; 6374 } 6375 return pParse->aTempReg[--pParse->nTempReg]; 6376 } 6377 6378 /* 6379 ** Deallocate a register, making available for reuse for some other 6380 ** purpose. 6381 */ 6382 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6383 if( iReg ){ 6384 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6385 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6386 pParse->aTempReg[pParse->nTempReg++] = iReg; 6387 } 6388 } 6389 } 6390 6391 /* 6392 ** Allocate or deallocate a block of nReg consecutive registers. 6393 */ 6394 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6395 int i, n; 6396 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6397 i = pParse->iRangeReg; 6398 n = pParse->nRangeReg; 6399 if( nReg<=n ){ 6400 pParse->iRangeReg += nReg; 6401 pParse->nRangeReg -= nReg; 6402 }else{ 6403 i = pParse->nMem+1; 6404 pParse->nMem += nReg; 6405 } 6406 return i; 6407 } 6408 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6409 if( nReg==1 ){ 6410 sqlite3ReleaseTempReg(pParse, iReg); 6411 return; 6412 } 6413 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6414 if( nReg>pParse->nRangeReg ){ 6415 pParse->nRangeReg = nReg; 6416 pParse->iRangeReg = iReg; 6417 } 6418 } 6419 6420 /* 6421 ** Mark all temporary registers as being unavailable for reuse. 6422 ** 6423 ** Always invoke this procedure after coding a subroutine or co-routine 6424 ** that might be invoked from other parts of the code, to ensure that 6425 ** the sub/co-routine does not use registers in common with the code that 6426 ** invokes the sub/co-routine. 6427 */ 6428 void sqlite3ClearTempRegCache(Parse *pParse){ 6429 pParse->nTempReg = 0; 6430 pParse->nRangeReg = 0; 6431 } 6432 6433 /* 6434 ** Validate that no temporary register falls within the range of 6435 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6436 ** statements. 6437 */ 6438 #ifdef SQLITE_DEBUG 6439 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6440 int i; 6441 if( pParse->nRangeReg>0 6442 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6443 && pParse->iRangeReg <= iLast 6444 ){ 6445 return 0; 6446 } 6447 for(i=0; i<pParse->nTempReg; i++){ 6448 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6449 return 0; 6450 } 6451 } 6452 return 1; 6453 } 6454 #endif /* SQLITE_DEBUG */ 6455