xref: /sqlite-3.40.0/src/expr.c (revision fe888bcf)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25   if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
26   return pTab->aCol[iCol].affinity;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( op==TK_COLUMN || op==TK_AGG_COLUMN ){
57     assert( ExprUseYTab(pExpr) );
58     if( pExpr->y.pTab ){
59       return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
60     }
61   }
62   if( op==TK_SELECT ){
63     assert( ExprUseXSelect(pExpr) );
64     assert( pExpr->x.pSelect!=0 );
65     assert( pExpr->x.pSelect->pEList!=0 );
66     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
67     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
68   }
69 #ifndef SQLITE_OMIT_CAST
70   if( op==TK_CAST ){
71     assert( !ExprHasProperty(pExpr, EP_IntValue) );
72     return sqlite3AffinityType(pExpr->u.zToken, 0);
73   }
74 #endif
75   if( op==TK_SELECT_COLUMN ){
76     assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
77     assert( pExpr->iColumn < pExpr->iTable );
78     assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
79     return sqlite3ExprAffinity(
80         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
81     );
82   }
83   if( op==TK_VECTOR ){
84     assert( ExprUseXList(pExpr) );
85     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
86   }
87   return pExpr->affExpr;
88 }
89 
90 /*
91 ** Set the collating sequence for expression pExpr to be the collating
92 ** sequence named by pToken.   Return a pointer to a new Expr node that
93 ** implements the COLLATE operator.
94 **
95 ** If a memory allocation error occurs, that fact is recorded in pParse->db
96 ** and the pExpr parameter is returned unchanged.
97 */
98 Expr *sqlite3ExprAddCollateToken(
99   const Parse *pParse,     /* Parsing context */
100   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
101   const Token *pCollName,  /* Name of collating sequence */
102   int dequote              /* True to dequote pCollName */
103 ){
104   if( pCollName->n>0 ){
105     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
106     if( pNew ){
107       pNew->pLeft = pExpr;
108       pNew->flags |= EP_Collate|EP_Skip;
109       pExpr = pNew;
110     }
111   }
112   return pExpr;
113 }
114 Expr *sqlite3ExprAddCollateString(
115   const Parse *pParse,  /* Parsing context */
116   Expr *pExpr,          /* Add the "COLLATE" clause to this expression */
117   const char *zC        /* The collating sequence name */
118 ){
119   Token s;
120   assert( zC!=0 );
121   sqlite3TokenInit(&s, (char*)zC);
122   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
123 }
124 
125 /*
126 ** Skip over any TK_COLLATE operators.
127 */
128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
129   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
130     assert( pExpr->op==TK_COLLATE );
131     pExpr = pExpr->pLeft;
132   }
133   return pExpr;
134 }
135 
136 /*
137 ** Skip over any TK_COLLATE operators and/or any unlikely()
138 ** or likelihood() or likely() functions at the root of an
139 ** expression.
140 */
141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
142   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
143     if( ExprHasProperty(pExpr, EP_Unlikely) ){
144       assert( ExprUseXList(pExpr) );
145       assert( pExpr->x.pList->nExpr>0 );
146       assert( pExpr->op==TK_FUNCTION );
147       pExpr = pExpr->x.pList->a[0].pExpr;
148     }else{
149       assert( pExpr->op==TK_COLLATE );
150       pExpr = pExpr->pLeft;
151     }
152   }
153   return pExpr;
154 }
155 
156 /*
157 ** Return the collation sequence for the expression pExpr. If
158 ** there is no defined collating sequence, return NULL.
159 **
160 ** See also: sqlite3ExprNNCollSeq()
161 **
162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
163 ** default collation if pExpr has no defined collation.
164 **
165 ** The collating sequence might be determined by a COLLATE operator
166 ** or by the presence of a column with a defined collating sequence.
167 ** COLLATE operators take first precedence.  Left operands take
168 ** precedence over right operands.
169 */
170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
171   sqlite3 *db = pParse->db;
172   CollSeq *pColl = 0;
173   const Expr *p = pExpr;
174   while( p ){
175     int op = p->op;
176     if( op==TK_REGISTER ) op = p->op2;
177     if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){
178       assert( ExprUseYTab(p) );
179       if( p->y.pTab!=0 ){
180         /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
181         ** a TK_COLUMN but was previously evaluated and cached in a register */
182         int j = p->iColumn;
183         if( j>=0 ){
184           const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
185           pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
186         }
187         break;
188       }
189     }
190     if( op==TK_CAST || op==TK_UPLUS ){
191       p = p->pLeft;
192       continue;
193     }
194     if( op==TK_VECTOR ){
195       assert( ExprUseXList(p) );
196       p = p->x.pList->a[0].pExpr;
197       continue;
198     }
199     if( op==TK_COLLATE ){
200       assert( !ExprHasProperty(p, EP_IntValue) );
201       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
202       break;
203     }
204     if( p->flags & EP_Collate ){
205       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
206         p = p->pLeft;
207       }else{
208         Expr *pNext  = p->pRight;
209         /* The Expr.x union is never used at the same time as Expr.pRight */
210         assert( ExprUseXList(p) );
211         assert( p->x.pList==0 || p->pRight==0 );
212         if( p->x.pList!=0 && !db->mallocFailed ){
213           int i;
214           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
215             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
216               pNext = p->x.pList->a[i].pExpr;
217               break;
218             }
219           }
220         }
221         p = pNext;
222       }
223     }else{
224       break;
225     }
226   }
227   if( sqlite3CheckCollSeq(pParse, pColl) ){
228     pColl = 0;
229   }
230   return pColl;
231 }
232 
233 /*
234 ** Return the collation sequence for the expression pExpr. If
235 ** there is no defined collating sequence, return a pointer to the
236 ** defautl collation sequence.
237 **
238 ** See also: sqlite3ExprCollSeq()
239 **
240 ** The sqlite3ExprCollSeq() routine works the same except that it
241 ** returns NULL if there is no defined collation.
242 */
243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
244   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
245   if( p==0 ) p = pParse->db->pDfltColl;
246   assert( p!=0 );
247   return p;
248 }
249 
250 /*
251 ** Return TRUE if the two expressions have equivalent collating sequences.
252 */
253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
254   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
255   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
256   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
257 }
258 
259 /*
260 ** pExpr is an operand of a comparison operator.  aff2 is the
261 ** type affinity of the other operand.  This routine returns the
262 ** type affinity that should be used for the comparison operator.
263 */
264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
265   char aff1 = sqlite3ExprAffinity(pExpr);
266   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
267     /* Both sides of the comparison are columns. If one has numeric
268     ** affinity, use that. Otherwise use no affinity.
269     */
270     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
271       return SQLITE_AFF_NUMERIC;
272     }else{
273       return SQLITE_AFF_BLOB;
274     }
275   }else{
276     /* One side is a column, the other is not. Use the columns affinity. */
277     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
278     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
279   }
280 }
281 
282 /*
283 ** pExpr is a comparison operator.  Return the type affinity that should
284 ** be applied to both operands prior to doing the comparison.
285 */
286 static char comparisonAffinity(const Expr *pExpr){
287   char aff;
288   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
289           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
290           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
291   assert( pExpr->pLeft );
292   aff = sqlite3ExprAffinity(pExpr->pLeft);
293   if( pExpr->pRight ){
294     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
295   }else if( ExprUseXSelect(pExpr) ){
296     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
297   }else if( aff==0 ){
298     aff = SQLITE_AFF_BLOB;
299   }
300   return aff;
301 }
302 
303 /*
304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
305 ** idx_affinity is the affinity of an indexed column. Return true
306 ** if the index with affinity idx_affinity may be used to implement
307 ** the comparison in pExpr.
308 */
309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
310   char aff = comparisonAffinity(pExpr);
311   if( aff<SQLITE_AFF_TEXT ){
312     return 1;
313   }
314   if( aff==SQLITE_AFF_TEXT ){
315     return idx_affinity==SQLITE_AFF_TEXT;
316   }
317   return sqlite3IsNumericAffinity(idx_affinity);
318 }
319 
320 /*
321 ** Return the P5 value that should be used for a binary comparison
322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
323 */
324 static u8 binaryCompareP5(
325   const Expr *pExpr1,   /* Left operand */
326   const Expr *pExpr2,   /* Right operand */
327   int jumpIfNull        /* Extra flags added to P5 */
328 ){
329   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
330   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
331   return aff;
332 }
333 
334 /*
335 ** Return a pointer to the collation sequence that should be used by
336 ** a binary comparison operator comparing pLeft and pRight.
337 **
338 ** If the left hand expression has a collating sequence type, then it is
339 ** used. Otherwise the collation sequence for the right hand expression
340 ** is used, or the default (BINARY) if neither expression has a collating
341 ** type.
342 **
343 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
344 ** it is not considered.
345 */
346 CollSeq *sqlite3BinaryCompareCollSeq(
347   Parse *pParse,
348   const Expr *pLeft,
349   const Expr *pRight
350 ){
351   CollSeq *pColl;
352   assert( pLeft );
353   if( pLeft->flags & EP_Collate ){
354     pColl = sqlite3ExprCollSeq(pParse, pLeft);
355   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
356     pColl = sqlite3ExprCollSeq(pParse, pRight);
357   }else{
358     pColl = sqlite3ExprCollSeq(pParse, pLeft);
359     if( !pColl ){
360       pColl = sqlite3ExprCollSeq(pParse, pRight);
361     }
362   }
363   return pColl;
364 }
365 
366 /* Expresssion p is a comparison operator.  Return a collation sequence
367 ** appropriate for the comparison operator.
368 **
369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
370 ** However, if the OP_Commuted flag is set, then the order of the operands
371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
372 ** correct collating sequence is found.
373 */
374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
375   if( ExprHasProperty(p, EP_Commuted) ){
376     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
377   }else{
378     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
379   }
380 }
381 
382 /*
383 ** Generate code for a comparison operator.
384 */
385 static int codeCompare(
386   Parse *pParse,    /* The parsing (and code generating) context */
387   Expr *pLeft,      /* The left operand */
388   Expr *pRight,     /* The right operand */
389   int opcode,       /* The comparison opcode */
390   int in1, int in2, /* Register holding operands */
391   int dest,         /* Jump here if true.  */
392   int jumpIfNull,   /* If true, jump if either operand is NULL */
393   int isCommuted    /* The comparison has been commuted */
394 ){
395   int p5;
396   int addr;
397   CollSeq *p4;
398 
399   if( pParse->nErr ) return 0;
400   if( isCommuted ){
401     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
402   }else{
403     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
404   }
405   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
406   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
407                            (void*)p4, P4_COLLSEQ);
408   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
409   return addr;
410 }
411 
412 /*
413 ** Return true if expression pExpr is a vector, or false otherwise.
414 **
415 ** A vector is defined as any expression that results in two or more
416 ** columns of result.  Every TK_VECTOR node is an vector because the
417 ** parser will not generate a TK_VECTOR with fewer than two entries.
418 ** But a TK_SELECT might be either a vector or a scalar. It is only
419 ** considered a vector if it has two or more result columns.
420 */
421 int sqlite3ExprIsVector(const Expr *pExpr){
422   return sqlite3ExprVectorSize(pExpr)>1;
423 }
424 
425 /*
426 ** If the expression passed as the only argument is of type TK_VECTOR
427 ** return the number of expressions in the vector. Or, if the expression
428 ** is a sub-select, return the number of columns in the sub-select. For
429 ** any other type of expression, return 1.
430 */
431 int sqlite3ExprVectorSize(const Expr *pExpr){
432   u8 op = pExpr->op;
433   if( op==TK_REGISTER ) op = pExpr->op2;
434   if( op==TK_VECTOR ){
435     assert( ExprUseXList(pExpr) );
436     return pExpr->x.pList->nExpr;
437   }else if( op==TK_SELECT ){
438     assert( ExprUseXSelect(pExpr) );
439     return pExpr->x.pSelect->pEList->nExpr;
440   }else{
441     return 1;
442   }
443 }
444 
445 /*
446 ** Return a pointer to a subexpression of pVector that is the i-th
447 ** column of the vector (numbered starting with 0).  The caller must
448 ** ensure that i is within range.
449 **
450 ** If pVector is really a scalar (and "scalar" here includes subqueries
451 ** that return a single column!) then return pVector unmodified.
452 **
453 ** pVector retains ownership of the returned subexpression.
454 **
455 ** If the vector is a (SELECT ...) then the expression returned is
456 ** just the expression for the i-th term of the result set, and may
457 ** not be ready for evaluation because the table cursor has not yet
458 ** been positioned.
459 */
460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
461   assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
462   if( sqlite3ExprIsVector(pVector) ){
463     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
464     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
465       assert( ExprUseXSelect(pVector) );
466       return pVector->x.pSelect->pEList->a[i].pExpr;
467     }else{
468       assert( ExprUseXList(pVector) );
469       return pVector->x.pList->a[i].pExpr;
470     }
471   }
472   return pVector;
473 }
474 
475 /*
476 ** Compute and return a new Expr object which when passed to
477 ** sqlite3ExprCode() will generate all necessary code to compute
478 ** the iField-th column of the vector expression pVector.
479 **
480 ** It is ok for pVector to be a scalar (as long as iField==0).
481 ** In that case, this routine works like sqlite3ExprDup().
482 **
483 ** The caller owns the returned Expr object and is responsible for
484 ** ensuring that the returned value eventually gets freed.
485 **
486 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
487 ** then the returned object will reference pVector and so pVector must remain
488 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
489 ** or a scalar expression, then it can be deleted as soon as this routine
490 ** returns.
491 **
492 ** A trick to cause a TK_SELECT pVector to be deleted together with
493 ** the returned Expr object is to attach the pVector to the pRight field
494 ** of the returned TK_SELECT_COLUMN Expr object.
495 */
496 Expr *sqlite3ExprForVectorField(
497   Parse *pParse,       /* Parsing context */
498   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
499   int iField,          /* Which column of the vector to return */
500   int nField           /* Total number of columns in the vector */
501 ){
502   Expr *pRet;
503   if( pVector->op==TK_SELECT ){
504     assert( ExprUseXSelect(pVector) );
505     /* The TK_SELECT_COLUMN Expr node:
506     **
507     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
508     ** pRight:          not used.  But recursively deleted.
509     ** iColumn:         Index of a column in pVector
510     ** iTable:          0 or the number of columns on the LHS of an assignment
511     ** pLeft->iTable:   First in an array of register holding result, or 0
512     **                  if the result is not yet computed.
513     **
514     ** sqlite3ExprDelete() specifically skips the recursive delete of
515     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
516     ** can be attached to pRight to cause this node to take ownership of
517     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
518     ** with the same pLeft pointer to the pVector, but only one of them
519     ** will own the pVector.
520     */
521     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
522     if( pRet ){
523       pRet->iTable = nField;
524       pRet->iColumn = iField;
525       pRet->pLeft = pVector;
526     }
527   }else{
528     if( pVector->op==TK_VECTOR ){
529       Expr **ppVector;
530       assert( ExprUseXList(pVector) );
531       ppVector = &pVector->x.pList->a[iField].pExpr;
532       pVector = *ppVector;
533       if( IN_RENAME_OBJECT ){
534         /* This must be a vector UPDATE inside a trigger */
535         *ppVector = 0;
536         return pVector;
537       }
538     }
539     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
540   }
541   return pRet;
542 }
543 
544 /*
545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
546 ** it. Return the register in which the result is stored (or, if the
547 ** sub-select returns more than one column, the first in an array
548 ** of registers in which the result is stored).
549 **
550 ** If pExpr is not a TK_SELECT expression, return 0.
551 */
552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
553   int reg = 0;
554 #ifndef SQLITE_OMIT_SUBQUERY
555   if( pExpr->op==TK_SELECT ){
556     reg = sqlite3CodeSubselect(pParse, pExpr);
557   }
558 #endif
559   return reg;
560 }
561 
562 /*
563 ** Argument pVector points to a vector expression - either a TK_VECTOR
564 ** or TK_SELECT that returns more than one column. This function returns
565 ** the register number of a register that contains the value of
566 ** element iField of the vector.
567 **
568 ** If pVector is a TK_SELECT expression, then code for it must have
569 ** already been generated using the exprCodeSubselect() routine. In this
570 ** case parameter regSelect should be the first in an array of registers
571 ** containing the results of the sub-select.
572 **
573 ** If pVector is of type TK_VECTOR, then code for the requested field
574 ** is generated. In this case (*pRegFree) may be set to the number of
575 ** a temporary register to be freed by the caller before returning.
576 **
577 ** Before returning, output parameter (*ppExpr) is set to point to the
578 ** Expr object corresponding to element iElem of the vector.
579 */
580 static int exprVectorRegister(
581   Parse *pParse,                  /* Parse context */
582   Expr *pVector,                  /* Vector to extract element from */
583   int iField,                     /* Field to extract from pVector */
584   int regSelect,                  /* First in array of registers */
585   Expr **ppExpr,                  /* OUT: Expression element */
586   int *pRegFree                   /* OUT: Temp register to free */
587 ){
588   u8 op = pVector->op;
589   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
590   if( op==TK_REGISTER ){
591     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
592     return pVector->iTable+iField;
593   }
594   if( op==TK_SELECT ){
595     assert( ExprUseXSelect(pVector) );
596     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
597      return regSelect+iField;
598   }
599   if( op==TK_VECTOR ){
600     assert( ExprUseXList(pVector) );
601     *ppExpr = pVector->x.pList->a[iField].pExpr;
602     return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
603   }
604   return 0;
605 }
606 
607 /*
608 ** Expression pExpr is a comparison between two vector values. Compute
609 ** the result of the comparison (1, 0, or NULL) and write that
610 ** result into register dest.
611 **
612 ** The caller must satisfy the following preconditions:
613 **
614 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
615 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
616 **    otherwise:                op==pExpr->op and p5==0
617 */
618 static void codeVectorCompare(
619   Parse *pParse,        /* Code generator context */
620   Expr *pExpr,          /* The comparison operation */
621   int dest,             /* Write results into this register */
622   u8 op,                /* Comparison operator */
623   u8 p5                 /* SQLITE_NULLEQ or zero */
624 ){
625   Vdbe *v = pParse->pVdbe;
626   Expr *pLeft = pExpr->pLeft;
627   Expr *pRight = pExpr->pRight;
628   int nLeft = sqlite3ExprVectorSize(pLeft);
629   int i;
630   int regLeft = 0;
631   int regRight = 0;
632   u8 opx = op;
633   int addrCmp = 0;
634   int addrDone = sqlite3VdbeMakeLabel(pParse);
635   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
636 
637   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
638   if( pParse->nErr ) return;
639   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
640     sqlite3ErrorMsg(pParse, "row value misused");
641     return;
642   }
643   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
644        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
645        || pExpr->op==TK_LT || pExpr->op==TK_GT
646        || pExpr->op==TK_LE || pExpr->op==TK_GE
647   );
648   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
649             || (pExpr->op==TK_ISNOT && op==TK_NE) );
650   assert( p5==0 || pExpr->op!=op );
651   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
652 
653   if( op==TK_LE ) opx = TK_LT;
654   if( op==TK_GE ) opx = TK_GT;
655   if( op==TK_NE ) opx = TK_EQ;
656 
657   regLeft = exprCodeSubselect(pParse, pLeft);
658   regRight = exprCodeSubselect(pParse, pRight);
659 
660   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
661   for(i=0; 1 /*Loop exits by "break"*/; i++){
662     int regFree1 = 0, regFree2 = 0;
663     Expr *pL = 0, *pR = 0;
664     int r1, r2;
665     assert( i>=0 && i<nLeft );
666     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
667     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
668     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
669     addrCmp = sqlite3VdbeCurrentAddr(v);
670     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
671     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
672     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
673     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
674     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
675     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
676     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
677     sqlite3ReleaseTempReg(pParse, regFree1);
678     sqlite3ReleaseTempReg(pParse, regFree2);
679     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
680       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
681       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
682       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
683     }
684     if( p5==SQLITE_NULLEQ ){
685       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
686     }else{
687       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
688     }
689     if( i==nLeft-1 ){
690       break;
691     }
692     if( opx==TK_EQ ){
693       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
694     }else{
695       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
696       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
697       if( i==nLeft-2 ) opx = op;
698     }
699   }
700   sqlite3VdbeJumpHere(v, addrCmp);
701   sqlite3VdbeResolveLabel(v, addrDone);
702   if( op==TK_NE ){
703     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
704   }
705 }
706 
707 #if SQLITE_MAX_EXPR_DEPTH>0
708 /*
709 ** Check that argument nHeight is less than or equal to the maximum
710 ** expression depth allowed. If it is not, leave an error message in
711 ** pParse.
712 */
713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
714   int rc = SQLITE_OK;
715   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
716   if( nHeight>mxHeight ){
717     sqlite3ErrorMsg(pParse,
718        "Expression tree is too large (maximum depth %d)", mxHeight
719     );
720     rc = SQLITE_ERROR;
721   }
722   return rc;
723 }
724 
725 /* The following three functions, heightOfExpr(), heightOfExprList()
726 ** and heightOfSelect(), are used to determine the maximum height
727 ** of any expression tree referenced by the structure passed as the
728 ** first argument.
729 **
730 ** If this maximum height is greater than the current value pointed
731 ** to by pnHeight, the second parameter, then set *pnHeight to that
732 ** value.
733 */
734 static void heightOfExpr(const Expr *p, int *pnHeight){
735   if( p ){
736     if( p->nHeight>*pnHeight ){
737       *pnHeight = p->nHeight;
738     }
739   }
740 }
741 static void heightOfExprList(const ExprList *p, int *pnHeight){
742   if( p ){
743     int i;
744     for(i=0; i<p->nExpr; i++){
745       heightOfExpr(p->a[i].pExpr, pnHeight);
746     }
747   }
748 }
749 static void heightOfSelect(const Select *pSelect, int *pnHeight){
750   const Select *p;
751   for(p=pSelect; p; p=p->pPrior){
752     heightOfExpr(p->pWhere, pnHeight);
753     heightOfExpr(p->pHaving, pnHeight);
754     heightOfExpr(p->pLimit, pnHeight);
755     heightOfExprList(p->pEList, pnHeight);
756     heightOfExprList(p->pGroupBy, pnHeight);
757     heightOfExprList(p->pOrderBy, pnHeight);
758   }
759 }
760 
761 /*
762 ** Set the Expr.nHeight variable in the structure passed as an
763 ** argument. An expression with no children, Expr.pList or
764 ** Expr.pSelect member has a height of 1. Any other expression
765 ** has a height equal to the maximum height of any other
766 ** referenced Expr plus one.
767 **
768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
769 ** if appropriate.
770 */
771 static void exprSetHeight(Expr *p){
772   int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
773   if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){
774     nHeight = p->pRight->nHeight;
775   }
776   if( ExprUseXSelect(p) ){
777     heightOfSelect(p->x.pSelect, &nHeight);
778   }else if( p->x.pList ){
779     heightOfExprList(p->x.pList, &nHeight);
780     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
781   }
782   p->nHeight = nHeight + 1;
783 }
784 
785 /*
786 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
787 ** the height is greater than the maximum allowed expression depth,
788 ** leave an error in pParse.
789 **
790 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
791 ** Expr.flags.
792 */
793 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
794   if( pParse->nErr ) return;
795   exprSetHeight(p);
796   sqlite3ExprCheckHeight(pParse, p->nHeight);
797 }
798 
799 /*
800 ** Return the maximum height of any expression tree referenced
801 ** by the select statement passed as an argument.
802 */
803 int sqlite3SelectExprHeight(const Select *p){
804   int nHeight = 0;
805   heightOfSelect(p, &nHeight);
806   return nHeight;
807 }
808 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
809 /*
810 ** Propagate all EP_Propagate flags from the Expr.x.pList into
811 ** Expr.flags.
812 */
813 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
814   if( pParse->nErr ) return;
815   if( p && ExprUseXList(p) && p->x.pList ){
816     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
817   }
818 }
819 #define exprSetHeight(y)
820 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
821 
822 /*
823 ** This routine is the core allocator for Expr nodes.
824 **
825 ** Construct a new expression node and return a pointer to it.  Memory
826 ** for this node and for the pToken argument is a single allocation
827 ** obtained from sqlite3DbMalloc().  The calling function
828 ** is responsible for making sure the node eventually gets freed.
829 **
830 ** If dequote is true, then the token (if it exists) is dequoted.
831 ** If dequote is false, no dequoting is performed.  The deQuote
832 ** parameter is ignored if pToken is NULL or if the token does not
833 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
834 ** then the EP_DblQuoted flag is set on the expression node.
835 **
836 ** Special case:  If op==TK_INTEGER and pToken points to a string that
837 ** can be translated into a 32-bit integer, then the token is not
838 ** stored in u.zToken.  Instead, the integer values is written
839 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
840 ** is allocated to hold the integer text and the dequote flag is ignored.
841 */
842 Expr *sqlite3ExprAlloc(
843   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
844   int op,                 /* Expression opcode */
845   const Token *pToken,    /* Token argument.  Might be NULL */
846   int dequote             /* True to dequote */
847 ){
848   Expr *pNew;
849   int nExtra = 0;
850   int iValue = 0;
851 
852   assert( db!=0 );
853   if( pToken ){
854     if( op!=TK_INTEGER || pToken->z==0
855           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
856       nExtra = pToken->n+1;
857       assert( iValue>=0 );
858     }
859   }
860   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
861   if( pNew ){
862     memset(pNew, 0, sizeof(Expr));
863     pNew->op = (u8)op;
864     pNew->iAgg = -1;
865     if( pToken ){
866       if( nExtra==0 ){
867         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
868         pNew->u.iValue = iValue;
869       }else{
870         pNew->u.zToken = (char*)&pNew[1];
871         assert( pToken->z!=0 || pToken->n==0 );
872         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
873         pNew->u.zToken[pToken->n] = 0;
874         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
875           sqlite3DequoteExpr(pNew);
876         }
877       }
878     }
879 #if SQLITE_MAX_EXPR_DEPTH>0
880     pNew->nHeight = 1;
881 #endif
882   }
883   return pNew;
884 }
885 
886 /*
887 ** Allocate a new expression node from a zero-terminated token that has
888 ** already been dequoted.
889 */
890 Expr *sqlite3Expr(
891   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
892   int op,                 /* Expression opcode */
893   const char *zToken      /* Token argument.  Might be NULL */
894 ){
895   Token x;
896   x.z = zToken;
897   x.n = sqlite3Strlen30(zToken);
898   return sqlite3ExprAlloc(db, op, &x, 0);
899 }
900 
901 /*
902 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
903 **
904 ** If pRoot==NULL that means that a memory allocation error has occurred.
905 ** In that case, delete the subtrees pLeft and pRight.
906 */
907 void sqlite3ExprAttachSubtrees(
908   sqlite3 *db,
909   Expr *pRoot,
910   Expr *pLeft,
911   Expr *pRight
912 ){
913   if( pRoot==0 ){
914     assert( db->mallocFailed );
915     sqlite3ExprDelete(db, pLeft);
916     sqlite3ExprDelete(db, pRight);
917   }else{
918     assert( ExprUseXList(pRoot) );
919     assert( pRoot->x.pSelect==0 );
920     if( pRight ){
921       pRoot->pRight = pRight;
922       pRoot->flags |= EP_Propagate & pRight->flags;
923 #if SQLITE_MAX_EXPR_DEPTH>0
924       pRoot->nHeight = pRight->nHeight+1;
925     }else{
926       pRoot->nHeight = 1;
927 #endif
928     }
929     if( pLeft ){
930       pRoot->pLeft = pLeft;
931       pRoot->flags |= EP_Propagate & pLeft->flags;
932 #if SQLITE_MAX_EXPR_DEPTH>0
933       if( pLeft->nHeight>=pRoot->nHeight ){
934         pRoot->nHeight = pLeft->nHeight+1;
935       }
936 #endif
937     }
938   }
939 }
940 
941 /*
942 ** Allocate an Expr node which joins as many as two subtrees.
943 **
944 ** One or both of the subtrees can be NULL.  Return a pointer to the new
945 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
946 ** free the subtrees and return NULL.
947 */
948 Expr *sqlite3PExpr(
949   Parse *pParse,          /* Parsing context */
950   int op,                 /* Expression opcode */
951   Expr *pLeft,            /* Left operand */
952   Expr *pRight            /* Right operand */
953 ){
954   Expr *p;
955   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
956   if( p ){
957     memset(p, 0, sizeof(Expr));
958     p->op = op & 0xff;
959     p->iAgg = -1;
960     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
961     sqlite3ExprCheckHeight(pParse, p->nHeight);
962   }else{
963     sqlite3ExprDelete(pParse->db, pLeft);
964     sqlite3ExprDelete(pParse->db, pRight);
965   }
966   return p;
967 }
968 
969 /*
970 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
971 ** do a memory allocation failure) then delete the pSelect object.
972 */
973 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
974   if( pExpr ){
975     pExpr->x.pSelect = pSelect;
976     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
977     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
978   }else{
979     assert( pParse->db->mallocFailed );
980     sqlite3SelectDelete(pParse->db, pSelect);
981   }
982 }
983 
984 /*
985 ** Expression list pEList is a list of vector values. This function
986 ** converts the contents of pEList to a VALUES(...) Select statement
987 ** returning 1 row for each element of the list. For example, the
988 ** expression list:
989 **
990 **   ( (1,2), (3,4) (5,6) )
991 **
992 ** is translated to the equivalent of:
993 **
994 **   VALUES(1,2), (3,4), (5,6)
995 **
996 ** Each of the vector values in pEList must contain exactly nElem terms.
997 ** If a list element that is not a vector or does not contain nElem terms,
998 ** an error message is left in pParse.
999 **
1000 ** This is used as part of processing IN(...) expressions with a list
1001 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
1002 */
1003 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
1004   int ii;
1005   Select *pRet = 0;
1006   assert( nElem>1 );
1007   for(ii=0; ii<pEList->nExpr; ii++){
1008     Select *pSel;
1009     Expr *pExpr = pEList->a[ii].pExpr;
1010     int nExprElem;
1011     if( pExpr->op==TK_VECTOR ){
1012       assert( ExprUseXList(pExpr) );
1013       nExprElem = pExpr->x.pList->nExpr;
1014     }else{
1015       nExprElem = 1;
1016     }
1017     if( nExprElem!=nElem ){
1018       sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
1019           nExprElem, nExprElem>1?"s":"", nElem
1020       );
1021       break;
1022     }
1023     assert( ExprUseXList(pExpr) );
1024     pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
1025     pExpr->x.pList = 0;
1026     if( pSel ){
1027       if( pRet ){
1028         pSel->op = TK_ALL;
1029         pSel->pPrior = pRet;
1030       }
1031       pRet = pSel;
1032     }
1033   }
1034 
1035   if( pRet && pRet->pPrior ){
1036     pRet->selFlags |= SF_MultiValue;
1037   }
1038   sqlite3ExprListDelete(pParse->db, pEList);
1039   return pRet;
1040 }
1041 
1042 /*
1043 ** Join two expressions using an AND operator.  If either expression is
1044 ** NULL, then just return the other expression.
1045 **
1046 ** If one side or the other of the AND is known to be false, then instead
1047 ** of returning an AND expression, just return a constant expression with
1048 ** a value of false.
1049 */
1050 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1051   sqlite3 *db = pParse->db;
1052   if( pLeft==0  ){
1053     return pRight;
1054   }else if( pRight==0 ){
1055     return pLeft;
1056   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
1057          && !IN_RENAME_OBJECT
1058   ){
1059     sqlite3ExprDeferredDelete(pParse, pLeft);
1060     sqlite3ExprDeferredDelete(pParse, pRight);
1061     return sqlite3Expr(db, TK_INTEGER, "0");
1062   }else{
1063     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1064   }
1065 }
1066 
1067 /*
1068 ** Construct a new expression node for a function with multiple
1069 ** arguments.
1070 */
1071 Expr *sqlite3ExprFunction(
1072   Parse *pParse,        /* Parsing context */
1073   ExprList *pList,      /* Argument list */
1074   const Token *pToken,  /* Name of the function */
1075   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
1076 ){
1077   Expr *pNew;
1078   sqlite3 *db = pParse->db;
1079   assert( pToken );
1080   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1081   if( pNew==0 ){
1082     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1083     return 0;
1084   }
1085   assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) );
1086   pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
1087   if( pList
1088    && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1089    && !pParse->nested
1090   ){
1091     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1092   }
1093   pNew->x.pList = pList;
1094   ExprSetProperty(pNew, EP_HasFunc);
1095   assert( ExprUseXList(pNew) );
1096   sqlite3ExprSetHeightAndFlags(pParse, pNew);
1097   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1098   return pNew;
1099 }
1100 
1101 /*
1102 ** Check to see if a function is usable according to current access
1103 ** rules:
1104 **
1105 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1106 **
1107 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1108 **                                top-level SQL
1109 **
1110 ** If the function is not usable, create an error.
1111 */
1112 void sqlite3ExprFunctionUsable(
1113   Parse *pParse,         /* Parsing and code generating context */
1114   const Expr *pExpr,     /* The function invocation */
1115   const FuncDef *pDef    /* The function being invoked */
1116 ){
1117   assert( !IN_RENAME_OBJECT );
1118   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1119   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1120     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1121      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1122     ){
1123       /* Functions prohibited in triggers and views if:
1124       **     (1) tagged with SQLITE_DIRECTONLY
1125       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1126       **         is tagged with SQLITE_FUNC_UNSAFE) and
1127       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1128       **         that the schema is possibly tainted).
1129       */
1130       sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
1131     }
1132   }
1133 }
1134 
1135 /*
1136 ** Assign a variable number to an expression that encodes a wildcard
1137 ** in the original SQL statement.
1138 **
1139 ** Wildcards consisting of a single "?" are assigned the next sequential
1140 ** variable number.
1141 **
1142 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1143 ** sure "nnn" is not too big to avoid a denial of service attack when
1144 ** the SQL statement comes from an external source.
1145 **
1146 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1147 ** as the previous instance of the same wildcard.  Or if this is the first
1148 ** instance of the wildcard, the next sequential variable number is
1149 ** assigned.
1150 */
1151 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1152   sqlite3 *db = pParse->db;
1153   const char *z;
1154   ynVar x;
1155 
1156   if( pExpr==0 ) return;
1157   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1158   z = pExpr->u.zToken;
1159   assert( z!=0 );
1160   assert( z[0]!=0 );
1161   assert( n==(u32)sqlite3Strlen30(z) );
1162   if( z[1]==0 ){
1163     /* Wildcard of the form "?".  Assign the next variable number */
1164     assert( z[0]=='?' );
1165     x = (ynVar)(++pParse->nVar);
1166   }else{
1167     int doAdd = 0;
1168     if( z[0]=='?' ){
1169       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1170       ** use it as the variable number */
1171       i64 i;
1172       int bOk;
1173       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1174         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1175         bOk = 1;
1176       }else{
1177         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1178       }
1179       testcase( i==0 );
1180       testcase( i==1 );
1181       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1182       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1183       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1184         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1185             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1186         sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1187         return;
1188       }
1189       x = (ynVar)i;
1190       if( x>pParse->nVar ){
1191         pParse->nVar = (int)x;
1192         doAdd = 1;
1193       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1194         doAdd = 1;
1195       }
1196     }else{
1197       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1198       ** number as the prior appearance of the same name, or if the name
1199       ** has never appeared before, reuse the same variable number
1200       */
1201       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1202       if( x==0 ){
1203         x = (ynVar)(++pParse->nVar);
1204         doAdd = 1;
1205       }
1206     }
1207     if( doAdd ){
1208       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1209     }
1210   }
1211   pExpr->iColumn = x;
1212   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1213     sqlite3ErrorMsg(pParse, "too many SQL variables");
1214     sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1215   }
1216 }
1217 
1218 /*
1219 ** Recursively delete an expression tree.
1220 */
1221 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1222   assert( p!=0 );
1223   assert( !ExprUseUValue(p) || p->u.iValue>=0 );
1224   assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
1225   assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
1226   assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
1227 #ifdef SQLITE_DEBUG
1228   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1229     assert( p->pLeft==0 );
1230     assert( p->pRight==0 );
1231     assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
1232     assert( !ExprUseXList(p) || p->x.pList==0 );
1233   }
1234 #endif
1235   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1236     /* The Expr.x union is never used at the same time as Expr.pRight */
1237     assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
1238     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1239     if( p->pRight ){
1240       assert( !ExprHasProperty(p, EP_WinFunc) );
1241       sqlite3ExprDeleteNN(db, p->pRight);
1242     }else if( ExprUseXSelect(p) ){
1243       assert( !ExprHasProperty(p, EP_WinFunc) );
1244       sqlite3SelectDelete(db, p->x.pSelect);
1245     }else{
1246       sqlite3ExprListDelete(db, p->x.pList);
1247 #ifndef SQLITE_OMIT_WINDOWFUNC
1248       if( ExprHasProperty(p, EP_WinFunc) ){
1249         sqlite3WindowDelete(db, p->y.pWin);
1250       }
1251 #endif
1252     }
1253   }
1254   if( !ExprHasProperty(p, EP_Static) ){
1255     sqlite3DbFreeNN(db, p);
1256   }
1257 }
1258 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1259   if( p ) sqlite3ExprDeleteNN(db, p);
1260 }
1261 
1262 /*
1263 ** Clear both elements of an OnOrUsing object
1264 */
1265 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
1266   if( p==0 ){
1267     /* Nothing to clear */
1268   }else if( p->pOn ){
1269     sqlite3ExprDeleteNN(db, p->pOn);
1270   }else if( p->pUsing ){
1271     sqlite3IdListDelete(db, p->pUsing);
1272   }
1273 }
1274 
1275 /*
1276 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1277 ** This is similar to sqlite3ExprDelete() except that the delete is
1278 ** deferred untilthe pParse is deleted.
1279 **
1280 ** The pExpr might be deleted immediately on an OOM error.
1281 **
1282 ** The deferred delete is (currently) implemented by adding the
1283 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1284 */
1285 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1286   sqlite3ParserAddCleanup(pParse,
1287     (void(*)(sqlite3*,void*))sqlite3ExprDelete,
1288     pExpr);
1289 }
1290 
1291 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1292 ** expression.
1293 */
1294 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1295   if( p ){
1296     if( IN_RENAME_OBJECT ){
1297       sqlite3RenameExprUnmap(pParse, p);
1298     }
1299     sqlite3ExprDeleteNN(pParse->db, p);
1300   }
1301 }
1302 
1303 /*
1304 ** Return the number of bytes allocated for the expression structure
1305 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1306 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1307 */
1308 static int exprStructSize(const Expr *p){
1309   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1310   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1311   return EXPR_FULLSIZE;
1312 }
1313 
1314 /*
1315 ** The dupedExpr*Size() routines each return the number of bytes required
1316 ** to store a copy of an expression or expression tree.  They differ in
1317 ** how much of the tree is measured.
1318 **
1319 **     dupedExprStructSize()     Size of only the Expr structure
1320 **     dupedExprNodeSize()       Size of Expr + space for token
1321 **     dupedExprSize()           Expr + token + subtree components
1322 **
1323 ***************************************************************************
1324 **
1325 ** The dupedExprStructSize() function returns two values OR-ed together:
1326 ** (1) the space required for a copy of the Expr structure only and
1327 ** (2) the EP_xxx flags that indicate what the structure size should be.
1328 ** The return values is always one of:
1329 **
1330 **      EXPR_FULLSIZE
1331 **      EXPR_REDUCEDSIZE   | EP_Reduced
1332 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1333 **
1334 ** The size of the structure can be found by masking the return value
1335 ** of this routine with 0xfff.  The flags can be found by masking the
1336 ** return value with EP_Reduced|EP_TokenOnly.
1337 **
1338 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1339 ** (unreduced) Expr objects as they or originally constructed by the parser.
1340 ** During expression analysis, extra information is computed and moved into
1341 ** later parts of the Expr object and that extra information might get chopped
1342 ** off if the expression is reduced.  Note also that it does not work to
1343 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1344 ** to reduce a pristine expression tree from the parser.  The implementation
1345 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1346 ** to enforce this constraint.
1347 */
1348 static int dupedExprStructSize(const Expr *p, int flags){
1349   int nSize;
1350   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1351   assert( EXPR_FULLSIZE<=0xfff );
1352   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1353   if( 0==flags || p->op==TK_SELECT_COLUMN
1354 #ifndef SQLITE_OMIT_WINDOWFUNC
1355    || ExprHasProperty(p, EP_WinFunc)
1356 #endif
1357   ){
1358     nSize = EXPR_FULLSIZE;
1359   }else{
1360     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1361     assert( !ExprHasProperty(p, EP_OuterON) );
1362     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1363     if( p->pLeft || p->x.pList ){
1364       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1365     }else{
1366       assert( p->pRight==0 );
1367       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1368     }
1369   }
1370   return nSize;
1371 }
1372 
1373 /*
1374 ** This function returns the space in bytes required to store the copy
1375 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1376 ** string is defined.)
1377 */
1378 static int dupedExprNodeSize(const Expr *p, int flags){
1379   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1380   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1381     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1382   }
1383   return ROUND8(nByte);
1384 }
1385 
1386 /*
1387 ** Return the number of bytes required to create a duplicate of the
1388 ** expression passed as the first argument. The second argument is a
1389 ** mask containing EXPRDUP_XXX flags.
1390 **
1391 ** The value returned includes space to create a copy of the Expr struct
1392 ** itself and the buffer referred to by Expr.u.zToken, if any.
1393 **
1394 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1395 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1396 ** and Expr.pRight variables (but not for any structures pointed to or
1397 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1398 */
1399 static int dupedExprSize(const Expr *p, int flags){
1400   int nByte = 0;
1401   if( p ){
1402     nByte = dupedExprNodeSize(p, flags);
1403     if( flags&EXPRDUP_REDUCE ){
1404       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1405     }
1406   }
1407   return nByte;
1408 }
1409 
1410 /*
1411 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1412 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1413 ** to store the copy of expression p, the copies of p->u.zToken
1414 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1415 ** if any. Before returning, *pzBuffer is set to the first byte past the
1416 ** portion of the buffer copied into by this function.
1417 */
1418 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){
1419   Expr *pNew;           /* Value to return */
1420   u8 *zAlloc;           /* Memory space from which to build Expr object */
1421   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1422 
1423   assert( db!=0 );
1424   assert( p );
1425   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1426   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1427 
1428   /* Figure out where to write the new Expr structure. */
1429   if( pzBuffer ){
1430     zAlloc = *pzBuffer;
1431     staticFlag = EP_Static;
1432     assert( zAlloc!=0 );
1433   }else{
1434     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1435     staticFlag = 0;
1436   }
1437   pNew = (Expr *)zAlloc;
1438 
1439   if( pNew ){
1440     /* Set nNewSize to the size allocated for the structure pointed to
1441     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1442     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1443     ** by the copy of the p->u.zToken string (if any).
1444     */
1445     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1446     const int nNewSize = nStructSize & 0xfff;
1447     int nToken;
1448     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1449       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1450     }else{
1451       nToken = 0;
1452     }
1453     if( dupFlags ){
1454       assert( ExprHasProperty(p, EP_Reduced)==0 );
1455       memcpy(zAlloc, p, nNewSize);
1456     }else{
1457       u32 nSize = (u32)exprStructSize(p);
1458       memcpy(zAlloc, p, nSize);
1459       if( nSize<EXPR_FULLSIZE ){
1460         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1461       }
1462     }
1463 
1464     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1465     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
1466     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1467     pNew->flags |= staticFlag;
1468     ExprClearVVAProperties(pNew);
1469     if( dupFlags ){
1470       ExprSetVVAProperty(pNew, EP_Immutable);
1471     }
1472 
1473     /* Copy the p->u.zToken string, if any. */
1474     if( nToken ){
1475       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1476       memcpy(zToken, p->u.zToken, nToken);
1477     }
1478 
1479     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1480       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1481       if( ExprUseXSelect(p) ){
1482         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1483       }else{
1484         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1485       }
1486     }
1487 
1488     /* Fill in pNew->pLeft and pNew->pRight. */
1489     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1490       zAlloc += dupedExprNodeSize(p, dupFlags);
1491       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1492         pNew->pLeft = p->pLeft ?
1493                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1494         pNew->pRight = p->pRight ?
1495                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1496       }
1497 #ifndef SQLITE_OMIT_WINDOWFUNC
1498       if( ExprHasProperty(p, EP_WinFunc) ){
1499         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1500         assert( ExprHasProperty(pNew, EP_WinFunc) );
1501       }
1502 #endif /* SQLITE_OMIT_WINDOWFUNC */
1503       if( pzBuffer ){
1504         *pzBuffer = zAlloc;
1505       }
1506     }else{
1507       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1508         if( pNew->op==TK_SELECT_COLUMN ){
1509           pNew->pLeft = p->pLeft;
1510           assert( p->pRight==0  || p->pRight==p->pLeft
1511                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1512         }else{
1513           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1514         }
1515         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1516       }
1517     }
1518   }
1519   return pNew;
1520 }
1521 
1522 /*
1523 ** Create and return a deep copy of the object passed as the second
1524 ** argument. If an OOM condition is encountered, NULL is returned
1525 ** and the db->mallocFailed flag set.
1526 */
1527 #ifndef SQLITE_OMIT_CTE
1528 With *sqlite3WithDup(sqlite3 *db, With *p){
1529   With *pRet = 0;
1530   if( p ){
1531     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1532     pRet = sqlite3DbMallocZero(db, nByte);
1533     if( pRet ){
1534       int i;
1535       pRet->nCte = p->nCte;
1536       for(i=0; i<p->nCte; i++){
1537         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1538         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1539         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1540         pRet->a[i].eM10d = p->a[i].eM10d;
1541       }
1542     }
1543   }
1544   return pRet;
1545 }
1546 #else
1547 # define sqlite3WithDup(x,y) 0
1548 #endif
1549 
1550 #ifndef SQLITE_OMIT_WINDOWFUNC
1551 /*
1552 ** The gatherSelectWindows() procedure and its helper routine
1553 ** gatherSelectWindowsCallback() are used to scan all the expressions
1554 ** an a newly duplicated SELECT statement and gather all of the Window
1555 ** objects found there, assembling them onto the linked list at Select->pWin.
1556 */
1557 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1558   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1559     Select *pSelect = pWalker->u.pSelect;
1560     Window *pWin = pExpr->y.pWin;
1561     assert( pWin );
1562     assert( IsWindowFunc(pExpr) );
1563     assert( pWin->ppThis==0 );
1564     sqlite3WindowLink(pSelect, pWin);
1565   }
1566   return WRC_Continue;
1567 }
1568 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1569   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1570 }
1571 static void gatherSelectWindows(Select *p){
1572   Walker w;
1573   w.xExprCallback = gatherSelectWindowsCallback;
1574   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1575   w.xSelectCallback2 = 0;
1576   w.pParse = 0;
1577   w.u.pSelect = p;
1578   sqlite3WalkSelect(&w, p);
1579 }
1580 #endif
1581 
1582 
1583 /*
1584 ** The following group of routines make deep copies of expressions,
1585 ** expression lists, ID lists, and select statements.  The copies can
1586 ** be deleted (by being passed to their respective ...Delete() routines)
1587 ** without effecting the originals.
1588 **
1589 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1590 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1591 ** by subsequent calls to sqlite*ListAppend() routines.
1592 **
1593 ** Any tables that the SrcList might point to are not duplicated.
1594 **
1595 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1596 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1597 ** truncated version of the usual Expr structure that will be stored as
1598 ** part of the in-memory representation of the database schema.
1599 */
1600 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1601   assert( flags==0 || flags==EXPRDUP_REDUCE );
1602   return p ? exprDup(db, p, flags, 0) : 0;
1603 }
1604 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1605   ExprList *pNew;
1606   struct ExprList_item *pItem;
1607   const struct ExprList_item *pOldItem;
1608   int i;
1609   Expr *pPriorSelectColOld = 0;
1610   Expr *pPriorSelectColNew = 0;
1611   assert( db!=0 );
1612   if( p==0 ) return 0;
1613   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1614   if( pNew==0 ) return 0;
1615   pNew->nExpr = p->nExpr;
1616   pNew->nAlloc = p->nAlloc;
1617   pItem = pNew->a;
1618   pOldItem = p->a;
1619   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1620     Expr *pOldExpr = pOldItem->pExpr;
1621     Expr *pNewExpr;
1622     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1623     if( pOldExpr
1624      && pOldExpr->op==TK_SELECT_COLUMN
1625      && (pNewExpr = pItem->pExpr)!=0
1626     ){
1627       if( pNewExpr->pRight ){
1628         pPriorSelectColOld = pOldExpr->pRight;
1629         pPriorSelectColNew = pNewExpr->pRight;
1630         pNewExpr->pLeft = pNewExpr->pRight;
1631       }else{
1632         if( pOldExpr->pLeft!=pPriorSelectColOld ){
1633           pPriorSelectColOld = pOldExpr->pLeft;
1634           pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1635           pNewExpr->pRight = pPriorSelectColNew;
1636         }
1637         pNewExpr->pLeft = pPriorSelectColNew;
1638       }
1639     }
1640     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1641     pItem->fg = pOldItem->fg;
1642     pItem->fg.done = 0;
1643     pItem->u = pOldItem->u;
1644   }
1645   return pNew;
1646 }
1647 
1648 /*
1649 ** If cursors, triggers, views and subqueries are all omitted from
1650 ** the build, then none of the following routines, except for
1651 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1652 ** called with a NULL argument.
1653 */
1654 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1655  || !defined(SQLITE_OMIT_SUBQUERY)
1656 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1657   SrcList *pNew;
1658   int i;
1659   int nByte;
1660   assert( db!=0 );
1661   if( p==0 ) return 0;
1662   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1663   pNew = sqlite3DbMallocRawNN(db, nByte );
1664   if( pNew==0 ) return 0;
1665   pNew->nSrc = pNew->nAlloc = p->nSrc;
1666   for(i=0; i<p->nSrc; i++){
1667     SrcItem *pNewItem = &pNew->a[i];
1668     const SrcItem *pOldItem = &p->a[i];
1669     Table *pTab;
1670     pNewItem->pSchema = pOldItem->pSchema;
1671     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1672     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1673     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1674     pNewItem->fg = pOldItem->fg;
1675     pNewItem->iCursor = pOldItem->iCursor;
1676     pNewItem->addrFillSub = pOldItem->addrFillSub;
1677     pNewItem->regReturn = pOldItem->regReturn;
1678     if( pNewItem->fg.isIndexedBy ){
1679       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1680     }
1681     pNewItem->u2 = pOldItem->u2;
1682     if( pNewItem->fg.isCte ){
1683       pNewItem->u2.pCteUse->nUse++;
1684     }
1685     if( pNewItem->fg.isTabFunc ){
1686       pNewItem->u1.pFuncArg =
1687           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1688     }
1689     pTab = pNewItem->pTab = pOldItem->pTab;
1690     if( pTab ){
1691       pTab->nTabRef++;
1692     }
1693     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1694     if( pOldItem->fg.isUsing ){
1695       assert( pNewItem->fg.isUsing );
1696       pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
1697     }else{
1698       pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
1699     }
1700     pNewItem->colUsed = pOldItem->colUsed;
1701   }
1702   return pNew;
1703 }
1704 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1705   IdList *pNew;
1706   int i;
1707   assert( db!=0 );
1708   if( p==0 ) return 0;
1709   assert( p->eU4!=EU4_EXPR );
1710   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) );
1711   if( pNew==0 ) return 0;
1712   pNew->nId = p->nId;
1713   pNew->eU4 = p->eU4;
1714   for(i=0; i<p->nId; i++){
1715     struct IdList_item *pNewItem = &pNew->a[i];
1716     const struct IdList_item *pOldItem = &p->a[i];
1717     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1718     pNewItem->u4 = pOldItem->u4;
1719   }
1720   return pNew;
1721 }
1722 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1723   Select *pRet = 0;
1724   Select *pNext = 0;
1725   Select **pp = &pRet;
1726   const Select *p;
1727 
1728   assert( db!=0 );
1729   for(p=pDup; p; p=p->pPrior){
1730     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1731     if( pNew==0 ) break;
1732     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1733     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1734     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1735     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1736     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1737     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1738     pNew->op = p->op;
1739     pNew->pNext = pNext;
1740     pNew->pPrior = 0;
1741     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1742     pNew->iLimit = 0;
1743     pNew->iOffset = 0;
1744     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1745     pNew->addrOpenEphm[0] = -1;
1746     pNew->addrOpenEphm[1] = -1;
1747     pNew->nSelectRow = p->nSelectRow;
1748     pNew->pWith = sqlite3WithDup(db, p->pWith);
1749 #ifndef SQLITE_OMIT_WINDOWFUNC
1750     pNew->pWin = 0;
1751     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1752     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1753 #endif
1754     pNew->selId = p->selId;
1755     if( db->mallocFailed ){
1756       /* Any prior OOM might have left the Select object incomplete.
1757       ** Delete the whole thing rather than allow an incomplete Select
1758       ** to be used by the code generator. */
1759       pNew->pNext = 0;
1760       sqlite3SelectDelete(db, pNew);
1761       break;
1762     }
1763     *pp = pNew;
1764     pp = &pNew->pPrior;
1765     pNext = pNew;
1766   }
1767 
1768   return pRet;
1769 }
1770 #else
1771 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
1772   assert( p==0 );
1773   return 0;
1774 }
1775 #endif
1776 
1777 
1778 /*
1779 ** Add a new element to the end of an expression list.  If pList is
1780 ** initially NULL, then create a new expression list.
1781 **
1782 ** The pList argument must be either NULL or a pointer to an ExprList
1783 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1784 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1785 ** Reason:  This routine assumes that the number of slots in pList->a[]
1786 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1787 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1788 **
1789 ** If a memory allocation error occurs, the entire list is freed and
1790 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1791 ** that the new entry was successfully appended.
1792 */
1793 static const struct ExprList_item zeroItem = {0};
1794 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1795   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1796   Expr *pExpr             /* Expression to be appended. Might be NULL */
1797 ){
1798   struct ExprList_item *pItem;
1799   ExprList *pList;
1800 
1801   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1802   if( pList==0 ){
1803     sqlite3ExprDelete(db, pExpr);
1804     return 0;
1805   }
1806   pList->nAlloc = 4;
1807   pList->nExpr = 1;
1808   pItem = &pList->a[0];
1809   *pItem = zeroItem;
1810   pItem->pExpr = pExpr;
1811   return pList;
1812 }
1813 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1814   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1815   ExprList *pList,        /* List to which to append. Might be NULL */
1816   Expr *pExpr             /* Expression to be appended. Might be NULL */
1817 ){
1818   struct ExprList_item *pItem;
1819   ExprList *pNew;
1820   pList->nAlloc *= 2;
1821   pNew = sqlite3DbRealloc(db, pList,
1822        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1823   if( pNew==0 ){
1824     sqlite3ExprListDelete(db, pList);
1825     sqlite3ExprDelete(db, pExpr);
1826     return 0;
1827   }else{
1828     pList = pNew;
1829   }
1830   pItem = &pList->a[pList->nExpr++];
1831   *pItem = zeroItem;
1832   pItem->pExpr = pExpr;
1833   return pList;
1834 }
1835 ExprList *sqlite3ExprListAppend(
1836   Parse *pParse,          /* Parsing context */
1837   ExprList *pList,        /* List to which to append. Might be NULL */
1838   Expr *pExpr             /* Expression to be appended. Might be NULL */
1839 ){
1840   struct ExprList_item *pItem;
1841   if( pList==0 ){
1842     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1843   }
1844   if( pList->nAlloc<pList->nExpr+1 ){
1845     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1846   }
1847   pItem = &pList->a[pList->nExpr++];
1848   *pItem = zeroItem;
1849   pItem->pExpr = pExpr;
1850   return pList;
1851 }
1852 
1853 /*
1854 ** pColumns and pExpr form a vector assignment which is part of the SET
1855 ** clause of an UPDATE statement.  Like this:
1856 **
1857 **        (a,b,c) = (expr1,expr2,expr3)
1858 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1859 **
1860 ** For each term of the vector assignment, append new entries to the
1861 ** expression list pList.  In the case of a subquery on the RHS, append
1862 ** TK_SELECT_COLUMN expressions.
1863 */
1864 ExprList *sqlite3ExprListAppendVector(
1865   Parse *pParse,         /* Parsing context */
1866   ExprList *pList,       /* List to which to append. Might be NULL */
1867   IdList *pColumns,      /* List of names of LHS of the assignment */
1868   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1869 ){
1870   sqlite3 *db = pParse->db;
1871   int n;
1872   int i;
1873   int iFirst = pList ? pList->nExpr : 0;
1874   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1875   ** exit prior to this routine being invoked */
1876   if( NEVER(pColumns==0) ) goto vector_append_error;
1877   if( pExpr==0 ) goto vector_append_error;
1878 
1879   /* If the RHS is a vector, then we can immediately check to see that
1880   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1881   ** wildcards ("*") in the result set of the SELECT must be expanded before
1882   ** we can do the size check, so defer the size check until code generation.
1883   */
1884   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1885     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1886                     pColumns->nId, n);
1887     goto vector_append_error;
1888   }
1889 
1890   for(i=0; i<pColumns->nId; i++){
1891     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
1892     assert( pSubExpr!=0 || db->mallocFailed );
1893     if( pSubExpr==0 ) continue;
1894     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1895     if( pList ){
1896       assert( pList->nExpr==iFirst+i+1 );
1897       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1898       pColumns->a[i].zName = 0;
1899     }
1900   }
1901 
1902   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1903     Expr *pFirst = pList->a[iFirst].pExpr;
1904     assert( pFirst!=0 );
1905     assert( pFirst->op==TK_SELECT_COLUMN );
1906 
1907     /* Store the SELECT statement in pRight so it will be deleted when
1908     ** sqlite3ExprListDelete() is called */
1909     pFirst->pRight = pExpr;
1910     pExpr = 0;
1911 
1912     /* Remember the size of the LHS in iTable so that we can check that
1913     ** the RHS and LHS sizes match during code generation. */
1914     pFirst->iTable = pColumns->nId;
1915   }
1916 
1917 vector_append_error:
1918   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1919   sqlite3IdListDelete(db, pColumns);
1920   return pList;
1921 }
1922 
1923 /*
1924 ** Set the sort order for the last element on the given ExprList.
1925 */
1926 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1927   struct ExprList_item *pItem;
1928   if( p==0 ) return;
1929   assert( p->nExpr>0 );
1930 
1931   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1932   assert( iSortOrder==SQLITE_SO_UNDEFINED
1933        || iSortOrder==SQLITE_SO_ASC
1934        || iSortOrder==SQLITE_SO_DESC
1935   );
1936   assert( eNulls==SQLITE_SO_UNDEFINED
1937        || eNulls==SQLITE_SO_ASC
1938        || eNulls==SQLITE_SO_DESC
1939   );
1940 
1941   pItem = &p->a[p->nExpr-1];
1942   assert( pItem->fg.bNulls==0 );
1943   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1944     iSortOrder = SQLITE_SO_ASC;
1945   }
1946   pItem->fg.sortFlags = (u8)iSortOrder;
1947 
1948   if( eNulls!=SQLITE_SO_UNDEFINED ){
1949     pItem->fg.bNulls = 1;
1950     if( iSortOrder!=eNulls ){
1951       pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL;
1952     }
1953   }
1954 }
1955 
1956 /*
1957 ** Set the ExprList.a[].zEName element of the most recently added item
1958 ** on the expression list.
1959 **
1960 ** pList might be NULL following an OOM error.  But pName should never be
1961 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1962 ** is set.
1963 */
1964 void sqlite3ExprListSetName(
1965   Parse *pParse,          /* Parsing context */
1966   ExprList *pList,        /* List to which to add the span. */
1967   const Token *pName,     /* Name to be added */
1968   int dequote             /* True to cause the name to be dequoted */
1969 ){
1970   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1971   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1972   if( pList ){
1973     struct ExprList_item *pItem;
1974     assert( pList->nExpr>0 );
1975     pItem = &pList->a[pList->nExpr-1];
1976     assert( pItem->zEName==0 );
1977     assert( pItem->fg.eEName==ENAME_NAME );
1978     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1979     if( dequote ){
1980       /* If dequote==0, then pName->z does not point to part of a DDL
1981       ** statement handled by the parser. And so no token need be added
1982       ** to the token-map.  */
1983       sqlite3Dequote(pItem->zEName);
1984       if( IN_RENAME_OBJECT ){
1985         sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
1986       }
1987     }
1988   }
1989 }
1990 
1991 /*
1992 ** Set the ExprList.a[].zSpan element of the most recently added item
1993 ** on the expression list.
1994 **
1995 ** pList might be NULL following an OOM error.  But pSpan should never be
1996 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1997 ** is set.
1998 */
1999 void sqlite3ExprListSetSpan(
2000   Parse *pParse,          /* Parsing context */
2001   ExprList *pList,        /* List to which to add the span. */
2002   const char *zStart,     /* Start of the span */
2003   const char *zEnd        /* End of the span */
2004 ){
2005   sqlite3 *db = pParse->db;
2006   assert( pList!=0 || db->mallocFailed!=0 );
2007   if( pList ){
2008     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
2009     assert( pList->nExpr>0 );
2010     if( pItem->zEName==0 ){
2011       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
2012       pItem->fg.eEName = ENAME_SPAN;
2013     }
2014   }
2015 }
2016 
2017 /*
2018 ** If the expression list pEList contains more than iLimit elements,
2019 ** leave an error message in pParse.
2020 */
2021 void sqlite3ExprListCheckLength(
2022   Parse *pParse,
2023   ExprList *pEList,
2024   const char *zObject
2025 ){
2026   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
2027   testcase( pEList && pEList->nExpr==mx );
2028   testcase( pEList && pEList->nExpr==mx+1 );
2029   if( pEList && pEList->nExpr>mx ){
2030     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
2031   }
2032 }
2033 
2034 /*
2035 ** Delete an entire expression list.
2036 */
2037 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
2038   int i = pList->nExpr;
2039   struct ExprList_item *pItem =  pList->a;
2040   assert( pList->nExpr>0 );
2041   do{
2042     sqlite3ExprDelete(db, pItem->pExpr);
2043     sqlite3DbFree(db, pItem->zEName);
2044     pItem++;
2045   }while( --i>0 );
2046   sqlite3DbFreeNN(db, pList);
2047 }
2048 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2049   if( pList ) exprListDeleteNN(db, pList);
2050 }
2051 
2052 /*
2053 ** Return the bitwise-OR of all Expr.flags fields in the given
2054 ** ExprList.
2055 */
2056 u32 sqlite3ExprListFlags(const ExprList *pList){
2057   int i;
2058   u32 m = 0;
2059   assert( pList!=0 );
2060   for(i=0; i<pList->nExpr; i++){
2061      Expr *pExpr = pList->a[i].pExpr;
2062      assert( pExpr!=0 );
2063      m |= pExpr->flags;
2064   }
2065   return m;
2066 }
2067 
2068 /*
2069 ** This is a SELECT-node callback for the expression walker that
2070 ** always "fails".  By "fail" in this case, we mean set
2071 ** pWalker->eCode to zero and abort.
2072 **
2073 ** This callback is used by multiple expression walkers.
2074 */
2075 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2076   UNUSED_PARAMETER(NotUsed);
2077   pWalker->eCode = 0;
2078   return WRC_Abort;
2079 }
2080 
2081 /*
2082 ** Check the input string to see if it is "true" or "false" (in any case).
2083 **
2084 **       If the string is....           Return
2085 **         "true"                         EP_IsTrue
2086 **         "false"                        EP_IsFalse
2087 **         anything else                  0
2088 */
2089 u32 sqlite3IsTrueOrFalse(const char *zIn){
2090   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
2091   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2092   return 0;
2093 }
2094 
2095 
2096 /*
2097 ** If the input expression is an ID with the name "true" or "false"
2098 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
2099 ** the conversion happened, and zero if the expression is unaltered.
2100 */
2101 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2102   u32 v;
2103   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2104   if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
2105    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2106   ){
2107     pExpr->op = TK_TRUEFALSE;
2108     ExprSetProperty(pExpr, v);
2109     return 1;
2110   }
2111   return 0;
2112 }
2113 
2114 /*
2115 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2116 ** and 0 if it is FALSE.
2117 */
2118 int sqlite3ExprTruthValue(const Expr *pExpr){
2119   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2120   assert( pExpr->op==TK_TRUEFALSE );
2121   assert( !ExprHasProperty(pExpr, EP_IntValue) );
2122   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2123        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2124   return pExpr->u.zToken[4]==0;
2125 }
2126 
2127 /*
2128 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2129 ** terms that are always true or false.  Return the simplified expression.
2130 ** Or return the original expression if no simplification is possible.
2131 **
2132 ** Examples:
2133 **
2134 **     (x<10) AND true                =>   (x<10)
2135 **     (x<10) AND false               =>   false
2136 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2137 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2138 **     (y=22) OR true                 =>   true
2139 */
2140 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2141   assert( pExpr!=0 );
2142   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2143     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2144     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2145     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2146       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2147     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2148       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2149     }
2150   }
2151   return pExpr;
2152 }
2153 
2154 
2155 /*
2156 ** These routines are Walker callbacks used to check expressions to
2157 ** see if they are "constant" for some definition of constant.  The
2158 ** Walker.eCode value determines the type of "constant" we are looking
2159 ** for.
2160 **
2161 ** These callback routines are used to implement the following:
2162 **
2163 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2164 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2165 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2166 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2167 **
2168 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2169 ** is found to not be a constant.
2170 **
2171 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2172 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2173 ** when parsing an existing schema out of the sqlite_schema table and 4
2174 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2175 ** an error for new statements, but is silently converted
2176 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2177 ** contain a bound parameter because they were generated by older versions
2178 ** of SQLite to be parsed by newer versions of SQLite without raising a
2179 ** malformed schema error.
2180 */
2181 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2182 
2183   /* If pWalker->eCode is 2 then any term of the expression that comes from
2184   ** the ON or USING clauses of an outer join disqualifies the expression
2185   ** from being considered constant. */
2186   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){
2187     pWalker->eCode = 0;
2188     return WRC_Abort;
2189   }
2190 
2191   switch( pExpr->op ){
2192     /* Consider functions to be constant if all their arguments are constant
2193     ** and either pWalker->eCode==4 or 5 or the function has the
2194     ** SQLITE_FUNC_CONST flag. */
2195     case TK_FUNCTION:
2196       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2197        && !ExprHasProperty(pExpr, EP_WinFunc)
2198       ){
2199         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2200         return WRC_Continue;
2201       }else{
2202         pWalker->eCode = 0;
2203         return WRC_Abort;
2204       }
2205     case TK_ID:
2206       /* Convert "true" or "false" in a DEFAULT clause into the
2207       ** appropriate TK_TRUEFALSE operator */
2208       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2209         return WRC_Prune;
2210       }
2211       /* no break */ deliberate_fall_through
2212     case TK_COLUMN:
2213     case TK_AGG_FUNCTION:
2214     case TK_AGG_COLUMN:
2215       testcase( pExpr->op==TK_ID );
2216       testcase( pExpr->op==TK_COLUMN );
2217       testcase( pExpr->op==TK_AGG_FUNCTION );
2218       testcase( pExpr->op==TK_AGG_COLUMN );
2219       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2220         return WRC_Continue;
2221       }
2222       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2223         return WRC_Continue;
2224       }
2225       /* no break */ deliberate_fall_through
2226     case TK_IF_NULL_ROW:
2227     case TK_REGISTER:
2228     case TK_DOT:
2229       testcase( pExpr->op==TK_REGISTER );
2230       testcase( pExpr->op==TK_IF_NULL_ROW );
2231       testcase( pExpr->op==TK_DOT );
2232       pWalker->eCode = 0;
2233       return WRC_Abort;
2234     case TK_VARIABLE:
2235       if( pWalker->eCode==5 ){
2236         /* Silently convert bound parameters that appear inside of CREATE
2237         ** statements into a NULL when parsing the CREATE statement text out
2238         ** of the sqlite_schema table */
2239         pExpr->op = TK_NULL;
2240       }else if( pWalker->eCode==4 ){
2241         /* A bound parameter in a CREATE statement that originates from
2242         ** sqlite3_prepare() causes an error */
2243         pWalker->eCode = 0;
2244         return WRC_Abort;
2245       }
2246       /* no break */ deliberate_fall_through
2247     default:
2248       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2249       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2250       return WRC_Continue;
2251   }
2252 }
2253 static int exprIsConst(Expr *p, int initFlag, int iCur){
2254   Walker w;
2255   w.eCode = initFlag;
2256   w.xExprCallback = exprNodeIsConstant;
2257   w.xSelectCallback = sqlite3SelectWalkFail;
2258 #ifdef SQLITE_DEBUG
2259   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2260 #endif
2261   w.u.iCur = iCur;
2262   sqlite3WalkExpr(&w, p);
2263   return w.eCode;
2264 }
2265 
2266 /*
2267 ** Walk an expression tree.  Return non-zero if the expression is constant
2268 ** and 0 if it involves variables or function calls.
2269 **
2270 ** For the purposes of this function, a double-quoted string (ex: "abc")
2271 ** is considered a variable but a single-quoted string (ex: 'abc') is
2272 ** a constant.
2273 */
2274 int sqlite3ExprIsConstant(Expr *p){
2275   return exprIsConst(p, 1, 0);
2276 }
2277 
2278 /*
2279 ** Walk an expression tree.  Return non-zero if
2280 **
2281 **   (1) the expression is constant, and
2282 **   (2) the expression does originate in the ON or USING clause
2283 **       of a LEFT JOIN, and
2284 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2285 **       operands created by the constant propagation optimization.
2286 **
2287 ** When this routine returns true, it indicates that the expression
2288 ** can be added to the pParse->pConstExpr list and evaluated once when
2289 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2290 */
2291 int sqlite3ExprIsConstantNotJoin(Expr *p){
2292   return exprIsConst(p, 2, 0);
2293 }
2294 
2295 /*
2296 ** Walk an expression tree.  Return non-zero if the expression is constant
2297 ** for any single row of the table with cursor iCur.  In other words, the
2298 ** expression must not refer to any non-deterministic function nor any
2299 ** table other than iCur.
2300 */
2301 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2302   return exprIsConst(p, 3, iCur);
2303 }
2304 
2305 /*
2306 ** Check pExpr to see if it is an invariant constraint on data source pSrc.
2307 ** This is an optimization.  False negatives will perhaps cause slower
2308 ** queries, but false positives will yield incorrect answers.  So when in
2309 ** doubt, return 0.
2310 **
2311 ** To be an invariant constraint, the following must be true:
2312 **
2313 **   (1)  pExpr cannot refer to any table other than pSrc->iCursor.
2314 **
2315 **   (2)  pExpr cannot use subqueries or non-deterministic functions.
2316 **
2317 **   (3)  pSrc cannot be part of the left operand for a RIGHT JOIN.
2318 **        (Is there some way to relax this constraint?)
2319 **
2320 **   (4)  If pSrc is the right operand of a LEFT JOIN, then...
2321 **         (4a)  pExpr must come from an ON clause..
2322            (4b)  and specifically the ON clause associated with the LEFT JOIN.
2323 **
2324 **   (5)  If pSrc is not the right operand of a LEFT JOIN or the left
2325 **        operand of a RIGHT JOIN, then pExpr must be from the WHERE
2326 **        clause, not an ON clause.
2327 */
2328 int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){
2329   if( pSrc->fg.jointype & JT_LTORJ ){
2330     return 0;  /* rule (3) */
2331   }
2332   if( pSrc->fg.jointype & JT_LEFT ){
2333     if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0;   /* rule (4a) */
2334     if( pExpr->w.iJoin!=pSrc->iCursor ) return 0;         /* rule (4b) */
2335   }else{
2336     if( ExprHasProperty(pExpr, EP_OuterON) ) return 0;    /* rule (5) */
2337   }
2338   return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */
2339 }
2340 
2341 
2342 /*
2343 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2344 */
2345 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2346   ExprList *pGroupBy = pWalker->u.pGroupBy;
2347   int i;
2348 
2349   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2350   ** it constant.  */
2351   for(i=0; i<pGroupBy->nExpr; i++){
2352     Expr *p = pGroupBy->a[i].pExpr;
2353     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2354       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2355       if( sqlite3IsBinary(pColl) ){
2356         return WRC_Prune;
2357       }
2358     }
2359   }
2360 
2361   /* Check if pExpr is a sub-select. If so, consider it variable. */
2362   if( ExprUseXSelect(pExpr) ){
2363     pWalker->eCode = 0;
2364     return WRC_Abort;
2365   }
2366 
2367   return exprNodeIsConstant(pWalker, pExpr);
2368 }
2369 
2370 /*
2371 ** Walk the expression tree passed as the first argument. Return non-zero
2372 ** if the expression consists entirely of constants or copies of terms
2373 ** in pGroupBy that sort with the BINARY collation sequence.
2374 **
2375 ** This routine is used to determine if a term of the HAVING clause can
2376 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2377 ** the value of the HAVING clause term must be the same for all members of
2378 ** a "group".  The requirement that the GROUP BY term must be BINARY
2379 ** assumes that no other collating sequence will have a finer-grained
2380 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2381 ** A=B in every other collating sequence.  The requirement that the
2382 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2383 ** to promote HAVING clauses that use the same alternative collating
2384 ** sequence as the GROUP BY term, but that is much harder to check,
2385 ** alternative collating sequences are uncommon, and this is only an
2386 ** optimization, so we take the easy way out and simply require the
2387 ** GROUP BY to use the BINARY collating sequence.
2388 */
2389 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2390   Walker w;
2391   w.eCode = 1;
2392   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2393   w.xSelectCallback = 0;
2394   w.u.pGroupBy = pGroupBy;
2395   w.pParse = pParse;
2396   sqlite3WalkExpr(&w, p);
2397   return w.eCode;
2398 }
2399 
2400 /*
2401 ** Walk an expression tree for the DEFAULT field of a column definition
2402 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2403 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2404 ** the expression is constant or a function call with constant arguments.
2405 ** Return and 0 if there are any variables.
2406 **
2407 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2408 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2409 ** (such as ? or $abc) in the expression are converted into NULL.  When
2410 ** isInit is false, parameters raise an error.  Parameters should not be
2411 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2412 ** allowed it, so we need to support it when reading sqlite_schema for
2413 ** backwards compatibility.
2414 **
2415 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2416 **
2417 ** For the purposes of this function, a double-quoted string (ex: "abc")
2418 ** is considered a variable but a single-quoted string (ex: 'abc') is
2419 ** a constant.
2420 */
2421 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2422   assert( isInit==0 || isInit==1 );
2423   return exprIsConst(p, 4+isInit, 0);
2424 }
2425 
2426 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2427 /*
2428 ** Walk an expression tree.  Return 1 if the expression contains a
2429 ** subquery of some kind.  Return 0 if there are no subqueries.
2430 */
2431 int sqlite3ExprContainsSubquery(Expr *p){
2432   Walker w;
2433   w.eCode = 1;
2434   w.xExprCallback = sqlite3ExprWalkNoop;
2435   w.xSelectCallback = sqlite3SelectWalkFail;
2436 #ifdef SQLITE_DEBUG
2437   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2438 #endif
2439   sqlite3WalkExpr(&w, p);
2440   return w.eCode==0;
2441 }
2442 #endif
2443 
2444 /*
2445 ** If the expression p codes a constant integer that is small enough
2446 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2447 ** in *pValue.  If the expression is not an integer or if it is too big
2448 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2449 */
2450 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2451   int rc = 0;
2452   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2453 
2454   /* If an expression is an integer literal that fits in a signed 32-bit
2455   ** integer, then the EP_IntValue flag will have already been set */
2456   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2457            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2458 
2459   if( p->flags & EP_IntValue ){
2460     *pValue = p->u.iValue;
2461     return 1;
2462   }
2463   switch( p->op ){
2464     case TK_UPLUS: {
2465       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2466       break;
2467     }
2468     case TK_UMINUS: {
2469       int v = 0;
2470       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2471         assert( ((unsigned int)v)!=0x80000000 );
2472         *pValue = -v;
2473         rc = 1;
2474       }
2475       break;
2476     }
2477     default: break;
2478   }
2479   return rc;
2480 }
2481 
2482 /*
2483 ** Return FALSE if there is no chance that the expression can be NULL.
2484 **
2485 ** If the expression might be NULL or if the expression is too complex
2486 ** to tell return TRUE.
2487 **
2488 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2489 ** when we know that a value cannot be NULL.  Hence, a false positive
2490 ** (returning TRUE when in fact the expression can never be NULL) might
2491 ** be a small performance hit but is otherwise harmless.  On the other
2492 ** hand, a false negative (returning FALSE when the result could be NULL)
2493 ** will likely result in an incorrect answer.  So when in doubt, return
2494 ** TRUE.
2495 */
2496 int sqlite3ExprCanBeNull(const Expr *p){
2497   u8 op;
2498   assert( p!=0 );
2499   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2500     p = p->pLeft;
2501     assert( p!=0 );
2502   }
2503   op = p->op;
2504   if( op==TK_REGISTER ) op = p->op2;
2505   switch( op ){
2506     case TK_INTEGER:
2507     case TK_STRING:
2508     case TK_FLOAT:
2509     case TK_BLOB:
2510       return 0;
2511     case TK_COLUMN:
2512       assert( ExprUseYTab(p) );
2513       return ExprHasProperty(p, EP_CanBeNull) ||
2514              p->y.pTab==0 ||  /* Reference to column of index on expression */
2515              (p->iColumn>=0
2516               && p->y.pTab->aCol!=0 /* Possible due to prior error */
2517               && p->y.pTab->aCol[p->iColumn].notNull==0);
2518     default:
2519       return 1;
2520   }
2521 }
2522 
2523 /*
2524 ** Return TRUE if the given expression is a constant which would be
2525 ** unchanged by OP_Affinity with the affinity given in the second
2526 ** argument.
2527 **
2528 ** This routine is used to determine if the OP_Affinity operation
2529 ** can be omitted.  When in doubt return FALSE.  A false negative
2530 ** is harmless.  A false positive, however, can result in the wrong
2531 ** answer.
2532 */
2533 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2534   u8 op;
2535   int unaryMinus = 0;
2536   if( aff==SQLITE_AFF_BLOB ) return 1;
2537   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2538     if( p->op==TK_UMINUS ) unaryMinus = 1;
2539     p = p->pLeft;
2540   }
2541   op = p->op;
2542   if( op==TK_REGISTER ) op = p->op2;
2543   switch( op ){
2544     case TK_INTEGER: {
2545       return aff>=SQLITE_AFF_NUMERIC;
2546     }
2547     case TK_FLOAT: {
2548       return aff>=SQLITE_AFF_NUMERIC;
2549     }
2550     case TK_STRING: {
2551       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2552     }
2553     case TK_BLOB: {
2554       return !unaryMinus;
2555     }
2556     case TK_COLUMN: {
2557       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2558       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2559     }
2560     default: {
2561       return 0;
2562     }
2563   }
2564 }
2565 
2566 /*
2567 ** Return TRUE if the given string is a row-id column name.
2568 */
2569 int sqlite3IsRowid(const char *z){
2570   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2571   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2572   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2573   return 0;
2574 }
2575 
2576 /*
2577 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2578 ** that can be simplified to a direct table access, then return
2579 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2580 ** or if the SELECT statement needs to be manifested into a transient
2581 ** table, then return NULL.
2582 */
2583 #ifndef SQLITE_OMIT_SUBQUERY
2584 static Select *isCandidateForInOpt(const Expr *pX){
2585   Select *p;
2586   SrcList *pSrc;
2587   ExprList *pEList;
2588   Table *pTab;
2589   int i;
2590   if( !ExprUseXSelect(pX) ) return 0;                 /* Not a subquery */
2591   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2592   p = pX->x.pSelect;
2593   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2594   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2595     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2596     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2597     return 0; /* No DISTINCT keyword and no aggregate functions */
2598   }
2599   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2600   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2601   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2602   pSrc = p->pSrc;
2603   assert( pSrc!=0 );
2604   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2605   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2606   pTab = pSrc->a[0].pTab;
2607   assert( pTab!=0 );
2608   assert( !IsView(pTab)  );              /* FROM clause is not a view */
2609   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2610   pEList = p->pEList;
2611   assert( pEList!=0 );
2612   /* All SELECT results must be columns. */
2613   for(i=0; i<pEList->nExpr; i++){
2614     Expr *pRes = pEList->a[i].pExpr;
2615     if( pRes->op!=TK_COLUMN ) return 0;
2616     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2617   }
2618   return p;
2619 }
2620 #endif /* SQLITE_OMIT_SUBQUERY */
2621 
2622 #ifndef SQLITE_OMIT_SUBQUERY
2623 /*
2624 ** Generate code that checks the left-most column of index table iCur to see if
2625 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2626 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2627 ** to be set to NULL if iCur contains one or more NULL values.
2628 */
2629 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2630   int addr1;
2631   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2632   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2633   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2634   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2635   VdbeComment((v, "first_entry_in(%d)", iCur));
2636   sqlite3VdbeJumpHere(v, addr1);
2637 }
2638 #endif
2639 
2640 
2641 #ifndef SQLITE_OMIT_SUBQUERY
2642 /*
2643 ** The argument is an IN operator with a list (not a subquery) on the
2644 ** right-hand side.  Return TRUE if that list is constant.
2645 */
2646 static int sqlite3InRhsIsConstant(Expr *pIn){
2647   Expr *pLHS;
2648   int res;
2649   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2650   pLHS = pIn->pLeft;
2651   pIn->pLeft = 0;
2652   res = sqlite3ExprIsConstant(pIn);
2653   pIn->pLeft = pLHS;
2654   return res;
2655 }
2656 #endif
2657 
2658 /*
2659 ** This function is used by the implementation of the IN (...) operator.
2660 ** The pX parameter is the expression on the RHS of the IN operator, which
2661 ** might be either a list of expressions or a subquery.
2662 **
2663 ** The job of this routine is to find or create a b-tree object that can
2664 ** be used either to test for membership in the RHS set or to iterate through
2665 ** all members of the RHS set, skipping duplicates.
2666 **
2667 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2668 ** and the *piTab parameter is set to the index of that cursor.
2669 **
2670 ** The returned value of this function indicates the b-tree type, as follows:
2671 **
2672 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2673 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2674 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2675 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2676 **                         populated epheremal table.
2677 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2678 **                         implemented as a sequence of comparisons.
2679 **
2680 ** An existing b-tree might be used if the RHS expression pX is a simple
2681 ** subquery such as:
2682 **
2683 **     SELECT <column1>, <column2>... FROM <table>
2684 **
2685 ** If the RHS of the IN operator is a list or a more complex subquery, then
2686 ** an ephemeral table might need to be generated from the RHS and then
2687 ** pX->iTable made to point to the ephemeral table instead of an
2688 ** existing table.  In this case, the creation and initialization of the
2689 ** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag
2690 ** will be set on pX and the pX->y.sub fields will be set to show where
2691 ** the subroutine is coded.
2692 **
2693 ** The inFlags parameter must contain, at a minimum, one of the bits
2694 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2695 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2696 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2697 ** be used to loop over all values of the RHS of the IN operator.
2698 **
2699 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2700 ** through the set members) then the b-tree must not contain duplicates.
2701 ** An epheremal table will be created unless the selected columns are guaranteed
2702 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2703 ** a UNIQUE constraint or index.
2704 **
2705 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2706 ** for fast set membership tests) then an epheremal table must
2707 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2708 ** index can be found with the specified <columns> as its left-most.
2709 **
2710 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2711 ** if the RHS of the IN operator is a list (not a subquery) then this
2712 ** routine might decide that creating an ephemeral b-tree for membership
2713 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2714 ** calling routine should implement the IN operator using a sequence
2715 ** of Eq or Ne comparison operations.
2716 **
2717 ** When the b-tree is being used for membership tests, the calling function
2718 ** might need to know whether or not the RHS side of the IN operator
2719 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2720 ** if there is any chance that the (...) might contain a NULL value at
2721 ** runtime, then a register is allocated and the register number written
2722 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2723 ** NULL value, then *prRhsHasNull is left unchanged.
2724 **
2725 ** If a register is allocated and its location stored in *prRhsHasNull, then
2726 ** the value in that register will be NULL if the b-tree contains one or more
2727 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2728 ** NULL values.
2729 **
2730 ** If the aiMap parameter is not NULL, it must point to an array containing
2731 ** one element for each column returned by the SELECT statement on the RHS
2732 ** of the IN(...) operator. The i'th entry of the array is populated with the
2733 ** offset of the index column that matches the i'th column returned by the
2734 ** SELECT. For example, if the expression and selected index are:
2735 **
2736 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2737 **   CREATE INDEX i1 ON t1(b, c, a);
2738 **
2739 ** then aiMap[] is populated with {2, 0, 1}.
2740 */
2741 #ifndef SQLITE_OMIT_SUBQUERY
2742 int sqlite3FindInIndex(
2743   Parse *pParse,             /* Parsing context */
2744   Expr *pX,                  /* The IN expression */
2745   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2746   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2747   int *aiMap,                /* Mapping from Index fields to RHS fields */
2748   int *piTab                 /* OUT: index to use */
2749 ){
2750   Select *p;                            /* SELECT to the right of IN operator */
2751   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2752   int iTab;                             /* Cursor of the RHS table */
2753   int mustBeUnique;                     /* True if RHS must be unique */
2754   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2755 
2756   assert( pX->op==TK_IN );
2757   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2758   iTab = pParse->nTab++;
2759 
2760   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2761   ** whether or not the SELECT result contains NULL values, check whether
2762   ** or not NULL is actually possible (it may not be, for example, due
2763   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2764   ** set prRhsHasNull to 0 before continuing.  */
2765   if( prRhsHasNull && ExprUseXSelect(pX) ){
2766     int i;
2767     ExprList *pEList = pX->x.pSelect->pEList;
2768     for(i=0; i<pEList->nExpr; i++){
2769       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2770     }
2771     if( i==pEList->nExpr ){
2772       prRhsHasNull = 0;
2773     }
2774   }
2775 
2776   /* Check to see if an existing table or index can be used to
2777   ** satisfy the query.  This is preferable to generating a new
2778   ** ephemeral table.  */
2779   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2780     sqlite3 *db = pParse->db;              /* Database connection */
2781     Table *pTab;                           /* Table <table>. */
2782     int iDb;                               /* Database idx for pTab */
2783     ExprList *pEList = p->pEList;
2784     int nExpr = pEList->nExpr;
2785 
2786     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2787     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2788     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2789     pTab = p->pSrc->a[0].pTab;
2790 
2791     /* Code an OP_Transaction and OP_TableLock for <table>. */
2792     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2793     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2794     sqlite3CodeVerifySchema(pParse, iDb);
2795     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2796 
2797     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2798     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2799       /* The "x IN (SELECT rowid FROM table)" case */
2800       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2801       VdbeCoverage(v);
2802 
2803       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2804       eType = IN_INDEX_ROWID;
2805       ExplainQueryPlan((pParse, 0,
2806             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2807       sqlite3VdbeJumpHere(v, iAddr);
2808     }else{
2809       Index *pIdx;                         /* Iterator variable */
2810       int affinity_ok = 1;
2811       int i;
2812 
2813       /* Check that the affinity that will be used to perform each
2814       ** comparison is the same as the affinity of each column in table
2815       ** on the RHS of the IN operator.  If it not, it is not possible to
2816       ** use any index of the RHS table.  */
2817       for(i=0; i<nExpr && affinity_ok; i++){
2818         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2819         int iCol = pEList->a[i].pExpr->iColumn;
2820         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2821         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2822         testcase( cmpaff==SQLITE_AFF_BLOB );
2823         testcase( cmpaff==SQLITE_AFF_TEXT );
2824         switch( cmpaff ){
2825           case SQLITE_AFF_BLOB:
2826             break;
2827           case SQLITE_AFF_TEXT:
2828             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2829             ** other has no affinity and the other side is TEXT.  Hence,
2830             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2831             ** and for the term on the LHS of the IN to have no affinity. */
2832             assert( idxaff==SQLITE_AFF_TEXT );
2833             break;
2834           default:
2835             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2836         }
2837       }
2838 
2839       if( affinity_ok ){
2840         /* Search for an existing index that will work for this IN operator */
2841         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2842           Bitmask colUsed;      /* Columns of the index used */
2843           Bitmask mCol;         /* Mask for the current column */
2844           if( pIdx->nColumn<nExpr ) continue;
2845           if( pIdx->pPartIdxWhere!=0 ) continue;
2846           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2847           ** BITMASK(nExpr) without overflowing */
2848           testcase( pIdx->nColumn==BMS-2 );
2849           testcase( pIdx->nColumn==BMS-1 );
2850           if( pIdx->nColumn>=BMS-1 ) continue;
2851           if( mustBeUnique ){
2852             if( pIdx->nKeyCol>nExpr
2853              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2854             ){
2855               continue;  /* This index is not unique over the IN RHS columns */
2856             }
2857           }
2858 
2859           colUsed = 0;   /* Columns of index used so far */
2860           for(i=0; i<nExpr; i++){
2861             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2862             Expr *pRhs = pEList->a[i].pExpr;
2863             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2864             int j;
2865 
2866             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2867             for(j=0; j<nExpr; j++){
2868               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2869               assert( pIdx->azColl[j] );
2870               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2871                 continue;
2872               }
2873               break;
2874             }
2875             if( j==nExpr ) break;
2876             mCol = MASKBIT(j);
2877             if( mCol & colUsed ) break; /* Each column used only once */
2878             colUsed |= mCol;
2879             if( aiMap ) aiMap[i] = j;
2880           }
2881 
2882           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2883           if( colUsed==(MASKBIT(nExpr)-1) ){
2884             /* If we reach this point, that means the index pIdx is usable */
2885             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2886             ExplainQueryPlan((pParse, 0,
2887                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2888             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2889             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2890             VdbeComment((v, "%s", pIdx->zName));
2891             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2892             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2893 
2894             if( prRhsHasNull ){
2895 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2896               i64 mask = (1<<nExpr)-1;
2897               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2898                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2899 #endif
2900               *prRhsHasNull = ++pParse->nMem;
2901               if( nExpr==1 ){
2902                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2903               }
2904             }
2905             sqlite3VdbeJumpHere(v, iAddr);
2906           }
2907         } /* End loop over indexes */
2908       } /* End if( affinity_ok ) */
2909     } /* End if not an rowid index */
2910   } /* End attempt to optimize using an index */
2911 
2912   /* If no preexisting index is available for the IN clause
2913   ** and IN_INDEX_NOOP is an allowed reply
2914   ** and the RHS of the IN operator is a list, not a subquery
2915   ** and the RHS is not constant or has two or fewer terms,
2916   ** then it is not worth creating an ephemeral table to evaluate
2917   ** the IN operator so return IN_INDEX_NOOP.
2918   */
2919   if( eType==0
2920    && (inFlags & IN_INDEX_NOOP_OK)
2921    && ExprUseXList(pX)
2922    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2923   ){
2924     pParse->nTab--;  /* Back out the allocation of the unused cursor */
2925     iTab = -1;       /* Cursor is not allocated */
2926     eType = IN_INDEX_NOOP;
2927   }
2928 
2929   if( eType==0 ){
2930     /* Could not find an existing table or index to use as the RHS b-tree.
2931     ** We will have to generate an ephemeral table to do the job.
2932     */
2933     u32 savedNQueryLoop = pParse->nQueryLoop;
2934     int rMayHaveNull = 0;
2935     eType = IN_INDEX_EPH;
2936     if( inFlags & IN_INDEX_LOOP ){
2937       pParse->nQueryLoop = 0;
2938     }else if( prRhsHasNull ){
2939       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2940     }
2941     assert( pX->op==TK_IN );
2942     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2943     if( rMayHaveNull ){
2944       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2945     }
2946     pParse->nQueryLoop = savedNQueryLoop;
2947   }
2948 
2949   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2950     int i, n;
2951     n = sqlite3ExprVectorSize(pX->pLeft);
2952     for(i=0; i<n; i++) aiMap[i] = i;
2953   }
2954   *piTab = iTab;
2955   return eType;
2956 }
2957 #endif
2958 
2959 #ifndef SQLITE_OMIT_SUBQUERY
2960 /*
2961 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2962 ** function allocates and returns a nul-terminated string containing
2963 ** the affinities to be used for each column of the comparison.
2964 **
2965 ** It is the responsibility of the caller to ensure that the returned
2966 ** string is eventually freed using sqlite3DbFree().
2967 */
2968 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
2969   Expr *pLeft = pExpr->pLeft;
2970   int nVal = sqlite3ExprVectorSize(pLeft);
2971   Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
2972   char *zRet;
2973 
2974   assert( pExpr->op==TK_IN );
2975   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2976   if( zRet ){
2977     int i;
2978     for(i=0; i<nVal; i++){
2979       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2980       char a = sqlite3ExprAffinity(pA);
2981       if( pSelect ){
2982         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2983       }else{
2984         zRet[i] = a;
2985       }
2986     }
2987     zRet[nVal] = '\0';
2988   }
2989   return zRet;
2990 }
2991 #endif
2992 
2993 #ifndef SQLITE_OMIT_SUBQUERY
2994 /*
2995 ** Load the Parse object passed as the first argument with an error
2996 ** message of the form:
2997 **
2998 **   "sub-select returns N columns - expected M"
2999 */
3000 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
3001   if( pParse->nErr==0 ){
3002     const char *zFmt = "sub-select returns %d columns - expected %d";
3003     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
3004   }
3005 }
3006 #endif
3007 
3008 /*
3009 ** Expression pExpr is a vector that has been used in a context where
3010 ** it is not permitted. If pExpr is a sub-select vector, this routine
3011 ** loads the Parse object with a message of the form:
3012 **
3013 **   "sub-select returns N columns - expected 1"
3014 **
3015 ** Or, if it is a regular scalar vector:
3016 **
3017 **   "row value misused"
3018 */
3019 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
3020 #ifndef SQLITE_OMIT_SUBQUERY
3021   if( ExprUseXSelect(pExpr) ){
3022     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
3023   }else
3024 #endif
3025   {
3026     sqlite3ErrorMsg(pParse, "row value misused");
3027   }
3028 }
3029 
3030 #ifndef SQLITE_OMIT_SUBQUERY
3031 /*
3032 ** Generate code that will construct an ephemeral table containing all terms
3033 ** in the RHS of an IN operator.  The IN operator can be in either of two
3034 ** forms:
3035 **
3036 **     x IN (4,5,11)              -- IN operator with list on right-hand side
3037 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
3038 **
3039 ** The pExpr parameter is the IN operator.  The cursor number for the
3040 ** constructed ephermeral table is returned.  The first time the ephemeral
3041 ** table is computed, the cursor number is also stored in pExpr->iTable,
3042 ** however the cursor number returned might not be the same, as it might
3043 ** have been duplicated using OP_OpenDup.
3044 **
3045 ** If the LHS expression ("x" in the examples) is a column value, or
3046 ** the SELECT statement returns a column value, then the affinity of that
3047 ** column is used to build the index keys. If both 'x' and the
3048 ** SELECT... statement are columns, then numeric affinity is used
3049 ** if either column has NUMERIC or INTEGER affinity. If neither
3050 ** 'x' nor the SELECT... statement are columns, then numeric affinity
3051 ** is used.
3052 */
3053 void sqlite3CodeRhsOfIN(
3054   Parse *pParse,          /* Parsing context */
3055   Expr *pExpr,            /* The IN operator */
3056   int iTab                /* Use this cursor number */
3057 ){
3058   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
3059   int addr;                   /* Address of OP_OpenEphemeral instruction */
3060   Expr *pLeft;                /* the LHS of the IN operator */
3061   KeyInfo *pKeyInfo = 0;      /* Key information */
3062   int nVal;                   /* Size of vector pLeft */
3063   Vdbe *v;                    /* The prepared statement under construction */
3064 
3065   v = pParse->pVdbe;
3066   assert( v!=0 );
3067 
3068   /* The evaluation of the IN must be repeated every time it
3069   ** is encountered if any of the following is true:
3070   **
3071   **    *  The right-hand side is a correlated subquery
3072   **    *  The right-hand side is an expression list containing variables
3073   **    *  We are inside a trigger
3074   **
3075   ** If all of the above are false, then we can compute the RHS just once
3076   ** and reuse it many names.
3077   */
3078   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
3079     /* Reuse of the RHS is allowed */
3080     /* If this routine has already been coded, but the previous code
3081     ** might not have been invoked yet, so invoke it now as a subroutine.
3082     */
3083     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3084       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3085       if( ExprUseXSelect(pExpr) ){
3086         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
3087               pExpr->x.pSelect->selId));
3088       }
3089       assert( ExprUseYSub(pExpr) );
3090       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3091                         pExpr->y.sub.iAddr);
3092       assert( iTab!=pExpr->iTable );
3093       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
3094       sqlite3VdbeJumpHere(v, addrOnce);
3095       return;
3096     }
3097 
3098     /* Begin coding the subroutine */
3099     assert( !ExprUseYWin(pExpr) );
3100     ExprSetProperty(pExpr, EP_Subrtn);
3101     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3102     pExpr->y.sub.regReturn = ++pParse->nMem;
3103     pExpr->y.sub.iAddr =
3104       sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3105 
3106     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3107   }
3108 
3109   /* Check to see if this is a vector IN operator */
3110   pLeft = pExpr->pLeft;
3111   nVal = sqlite3ExprVectorSize(pLeft);
3112 
3113   /* Construct the ephemeral table that will contain the content of
3114   ** RHS of the IN operator.
3115   */
3116   pExpr->iTable = iTab;
3117   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3118 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3119   if( ExprUseXSelect(pExpr) ){
3120     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3121   }else{
3122     VdbeComment((v, "RHS of IN operator"));
3123   }
3124 #endif
3125   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3126 
3127   if( ExprUseXSelect(pExpr) ){
3128     /* Case 1:     expr IN (SELECT ...)
3129     **
3130     ** Generate code to write the results of the select into the temporary
3131     ** table allocated and opened above.
3132     */
3133     Select *pSelect = pExpr->x.pSelect;
3134     ExprList *pEList = pSelect->pEList;
3135 
3136     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3137         addrOnce?"":"CORRELATED ", pSelect->selId
3138     ));
3139     /* If the LHS and RHS of the IN operator do not match, that
3140     ** error will have been caught long before we reach this point. */
3141     if( ALWAYS(pEList->nExpr==nVal) ){
3142       Select *pCopy;
3143       SelectDest dest;
3144       int i;
3145       int rc;
3146       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3147       dest.zAffSdst = exprINAffinity(pParse, pExpr);
3148       pSelect->iLimit = 0;
3149       testcase( pSelect->selFlags & SF_Distinct );
3150       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3151       pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3152       rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3153       sqlite3SelectDelete(pParse->db, pCopy);
3154       sqlite3DbFree(pParse->db, dest.zAffSdst);
3155       if( rc ){
3156         sqlite3KeyInfoUnref(pKeyInfo);
3157         return;
3158       }
3159       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3160       assert( pEList!=0 );
3161       assert( pEList->nExpr>0 );
3162       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3163       for(i=0; i<nVal; i++){
3164         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3165         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3166             pParse, p, pEList->a[i].pExpr
3167         );
3168       }
3169     }
3170   }else if( ALWAYS(pExpr->x.pList!=0) ){
3171     /* Case 2:     expr IN (exprlist)
3172     **
3173     ** For each expression, build an index key from the evaluation and
3174     ** store it in the temporary table. If <expr> is a column, then use
3175     ** that columns affinity when building index keys. If <expr> is not
3176     ** a column, use numeric affinity.
3177     */
3178     char affinity;            /* Affinity of the LHS of the IN */
3179     int i;
3180     ExprList *pList = pExpr->x.pList;
3181     struct ExprList_item *pItem;
3182     int r1, r2;
3183     affinity = sqlite3ExprAffinity(pLeft);
3184     if( affinity<=SQLITE_AFF_NONE ){
3185       affinity = SQLITE_AFF_BLOB;
3186     }else if( affinity==SQLITE_AFF_REAL ){
3187       affinity = SQLITE_AFF_NUMERIC;
3188     }
3189     if( pKeyInfo ){
3190       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3191       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3192     }
3193 
3194     /* Loop through each expression in <exprlist>. */
3195     r1 = sqlite3GetTempReg(pParse);
3196     r2 = sqlite3GetTempReg(pParse);
3197     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3198       Expr *pE2 = pItem->pExpr;
3199 
3200       /* If the expression is not constant then we will need to
3201       ** disable the test that was generated above that makes sure
3202       ** this code only executes once.  Because for a non-constant
3203       ** expression we need to rerun this code each time.
3204       */
3205       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3206         sqlite3VdbeChangeToNoop(v, addrOnce-1);
3207         sqlite3VdbeChangeToNoop(v, addrOnce);
3208         ExprClearProperty(pExpr, EP_Subrtn);
3209         addrOnce = 0;
3210       }
3211 
3212       /* Evaluate the expression and insert it into the temp table */
3213       sqlite3ExprCode(pParse, pE2, r1);
3214       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3215       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3216     }
3217     sqlite3ReleaseTempReg(pParse, r1);
3218     sqlite3ReleaseTempReg(pParse, r2);
3219   }
3220   if( pKeyInfo ){
3221     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3222   }
3223   if( addrOnce ){
3224     sqlite3VdbeJumpHere(v, addrOnce);
3225     /* Subroutine return */
3226     assert( ExprUseYSub(pExpr) );
3227     assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3228             || pParse->nErr );
3229     sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3230                       pExpr->y.sub.iAddr, 1);
3231     VdbeCoverage(v);
3232     sqlite3ClearTempRegCache(pParse);
3233   }
3234 }
3235 #endif /* SQLITE_OMIT_SUBQUERY */
3236 
3237 /*
3238 ** Generate code for scalar subqueries used as a subquery expression
3239 ** or EXISTS operator:
3240 **
3241 **     (SELECT a FROM b)          -- subquery
3242 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3243 **
3244 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3245 **
3246 ** Return the register that holds the result.  For a multi-column SELECT,
3247 ** the result is stored in a contiguous array of registers and the
3248 ** return value is the register of the left-most result column.
3249 ** Return 0 if an error occurs.
3250 */
3251 #ifndef SQLITE_OMIT_SUBQUERY
3252 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3253   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3254   int rReg = 0;               /* Register storing resulting */
3255   Select *pSel;               /* SELECT statement to encode */
3256   SelectDest dest;            /* How to deal with SELECT result */
3257   int nReg;                   /* Registers to allocate */
3258   Expr *pLimit;               /* New limit expression */
3259 
3260   Vdbe *v = pParse->pVdbe;
3261   assert( v!=0 );
3262   if( pParse->nErr ) return 0;
3263   testcase( pExpr->op==TK_EXISTS );
3264   testcase( pExpr->op==TK_SELECT );
3265   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3266   assert( ExprUseXSelect(pExpr) );
3267   pSel = pExpr->x.pSelect;
3268 
3269   /* If this routine has already been coded, then invoke it as a
3270   ** subroutine. */
3271   if( ExprHasProperty(pExpr, EP_Subrtn) ){
3272     ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3273     assert( ExprUseYSub(pExpr) );
3274     sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3275                       pExpr->y.sub.iAddr);
3276     return pExpr->iTable;
3277   }
3278 
3279   /* Begin coding the subroutine */
3280   assert( !ExprUseYWin(pExpr) );
3281   assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
3282   ExprSetProperty(pExpr, EP_Subrtn);
3283   pExpr->y.sub.regReturn = ++pParse->nMem;
3284   pExpr->y.sub.iAddr =
3285     sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3286 
3287   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3288   ** is encountered if any of the following is true:
3289   **
3290   **    *  The right-hand side is a correlated subquery
3291   **    *  The right-hand side is an expression list containing variables
3292   **    *  We are inside a trigger
3293   **
3294   ** If all of the above are false, then we can run this code just once
3295   ** save the results, and reuse the same result on subsequent invocations.
3296   */
3297   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3298     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3299   }
3300 
3301   /* For a SELECT, generate code to put the values for all columns of
3302   ** the first row into an array of registers and return the index of
3303   ** the first register.
3304   **
3305   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3306   ** into a register and return that register number.
3307   **
3308   ** In both cases, the query is augmented with "LIMIT 1".  Any
3309   ** preexisting limit is discarded in place of the new LIMIT 1.
3310   */
3311   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3312         addrOnce?"":"CORRELATED ", pSel->selId));
3313   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3314   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3315   pParse->nMem += nReg;
3316   if( pExpr->op==TK_SELECT ){
3317     dest.eDest = SRT_Mem;
3318     dest.iSdst = dest.iSDParm;
3319     dest.nSdst = nReg;
3320     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3321     VdbeComment((v, "Init subquery result"));
3322   }else{
3323     dest.eDest = SRT_Exists;
3324     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3325     VdbeComment((v, "Init EXISTS result"));
3326   }
3327   if( pSel->pLimit ){
3328     /* The subquery already has a limit.  If the pre-existing limit is X
3329     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3330     sqlite3 *db = pParse->db;
3331     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3332     if( pLimit ){
3333       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3334       pLimit = sqlite3PExpr(pParse, TK_NE,
3335                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3336     }
3337     sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft);
3338     pSel->pLimit->pLeft = pLimit;
3339   }else{
3340     /* If there is no pre-existing limit add a limit of 1 */
3341     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3342     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3343   }
3344   pSel->iLimit = 0;
3345   if( sqlite3Select(pParse, pSel, &dest) ){
3346     pExpr->op2 = pExpr->op;
3347     pExpr->op = TK_ERROR;
3348     return 0;
3349   }
3350   pExpr->iTable = rReg = dest.iSDParm;
3351   ExprSetVVAProperty(pExpr, EP_NoReduce);
3352   if( addrOnce ){
3353     sqlite3VdbeJumpHere(v, addrOnce);
3354   }
3355 
3356   /* Subroutine return */
3357   assert( ExprUseYSub(pExpr) );
3358   assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3359           || pParse->nErr );
3360   sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3361                     pExpr->y.sub.iAddr, 1);
3362   VdbeCoverage(v);
3363   sqlite3ClearTempRegCache(pParse);
3364   return rReg;
3365 }
3366 #endif /* SQLITE_OMIT_SUBQUERY */
3367 
3368 #ifndef SQLITE_OMIT_SUBQUERY
3369 /*
3370 ** Expr pIn is an IN(...) expression. This function checks that the
3371 ** sub-select on the RHS of the IN() operator has the same number of
3372 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3373 ** a sub-query, that the LHS is a vector of size 1.
3374 */
3375 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3376   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3377   if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
3378     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3379       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3380       return 1;
3381     }
3382   }else if( nVector!=1 ){
3383     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3384     return 1;
3385   }
3386   return 0;
3387 }
3388 #endif
3389 
3390 #ifndef SQLITE_OMIT_SUBQUERY
3391 /*
3392 ** Generate code for an IN expression.
3393 **
3394 **      x IN (SELECT ...)
3395 **      x IN (value, value, ...)
3396 **
3397 ** The left-hand side (LHS) is a scalar or vector expression.  The
3398 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3399 ** subquery.  If the RHS is a subquery, the number of result columns must
3400 ** match the number of columns in the vector on the LHS.  If the RHS is
3401 ** a list of values, the LHS must be a scalar.
3402 **
3403 ** The IN operator is true if the LHS value is contained within the RHS.
3404 ** The result is false if the LHS is definitely not in the RHS.  The
3405 ** result is NULL if the presence of the LHS in the RHS cannot be
3406 ** determined due to NULLs.
3407 **
3408 ** This routine generates code that jumps to destIfFalse if the LHS is not
3409 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3410 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3411 ** within the RHS then fall through.
3412 **
3413 ** See the separate in-operator.md documentation file in the canonical
3414 ** SQLite source tree for additional information.
3415 */
3416 static void sqlite3ExprCodeIN(
3417   Parse *pParse,        /* Parsing and code generating context */
3418   Expr *pExpr,          /* The IN expression */
3419   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3420   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3421 ){
3422   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3423   int eType;            /* Type of the RHS */
3424   int rLhs;             /* Register(s) holding the LHS values */
3425   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3426   Vdbe *v;              /* Statement under construction */
3427   int *aiMap = 0;       /* Map from vector field to index column */
3428   char *zAff = 0;       /* Affinity string for comparisons */
3429   int nVector;          /* Size of vectors for this IN operator */
3430   int iDummy;           /* Dummy parameter to exprCodeVector() */
3431   Expr *pLeft;          /* The LHS of the IN operator */
3432   int i;                /* loop counter */
3433   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3434   int destStep6 = 0;    /* Start of code for Step 6 */
3435   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3436   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3437   int addrTop;          /* Top of the step-6 loop */
3438   int iTab = 0;         /* Index to use */
3439   u8 okConstFactor = pParse->okConstFactor;
3440 
3441   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3442   pLeft = pExpr->pLeft;
3443   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3444   zAff = exprINAffinity(pParse, pExpr);
3445   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3446   aiMap = (int*)sqlite3DbMallocZero(
3447       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3448   );
3449   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3450 
3451   /* Attempt to compute the RHS. After this step, if anything other than
3452   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3453   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3454   ** the RHS has not yet been coded.  */
3455   v = pParse->pVdbe;
3456   assert( v!=0 );       /* OOM detected prior to this routine */
3457   VdbeNoopComment((v, "begin IN expr"));
3458   eType = sqlite3FindInIndex(pParse, pExpr,
3459                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3460                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3461                              aiMap, &iTab);
3462 
3463   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3464        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3465   );
3466 #ifdef SQLITE_DEBUG
3467   /* Confirm that aiMap[] contains nVector integer values between 0 and
3468   ** nVector-1. */
3469   for(i=0; i<nVector; i++){
3470     int j, cnt;
3471     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3472     assert( cnt==1 );
3473   }
3474 #endif
3475 
3476   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3477   ** vector, then it is stored in an array of nVector registers starting
3478   ** at r1.
3479   **
3480   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3481   ** so that the fields are in the same order as an existing index.   The
3482   ** aiMap[] array contains a mapping from the original LHS field order to
3483   ** the field order that matches the RHS index.
3484   **
3485   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3486   ** even if it is constant, as OP_Affinity may be used on the register
3487   ** by code generated below.  */
3488   assert( pParse->okConstFactor==okConstFactor );
3489   pParse->okConstFactor = 0;
3490   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3491   pParse->okConstFactor = okConstFactor;
3492   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3493   if( i==nVector ){
3494     /* LHS fields are not reordered */
3495     rLhs = rLhsOrig;
3496   }else{
3497     /* Need to reorder the LHS fields according to aiMap */
3498     rLhs = sqlite3GetTempRange(pParse, nVector);
3499     for(i=0; i<nVector; i++){
3500       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3501     }
3502   }
3503 
3504   /* If sqlite3FindInIndex() did not find or create an index that is
3505   ** suitable for evaluating the IN operator, then evaluate using a
3506   ** sequence of comparisons.
3507   **
3508   ** This is step (1) in the in-operator.md optimized algorithm.
3509   */
3510   if( eType==IN_INDEX_NOOP ){
3511     ExprList *pList;
3512     CollSeq *pColl;
3513     int labelOk = sqlite3VdbeMakeLabel(pParse);
3514     int r2, regToFree;
3515     int regCkNull = 0;
3516     int ii;
3517     assert( ExprUseXList(pExpr) );
3518     pList = pExpr->x.pList;
3519     pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3520     if( destIfNull!=destIfFalse ){
3521       regCkNull = sqlite3GetTempReg(pParse);
3522       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3523     }
3524     for(ii=0; ii<pList->nExpr; ii++){
3525       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3526       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3527         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3528       }
3529       sqlite3ReleaseTempReg(pParse, regToFree);
3530       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3531         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3532         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3533                           (void*)pColl, P4_COLLSEQ);
3534         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3535         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3536         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3537         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3538         sqlite3VdbeChangeP5(v, zAff[0]);
3539       }else{
3540         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3541         assert( destIfNull==destIfFalse );
3542         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3543                           (void*)pColl, P4_COLLSEQ);
3544         VdbeCoverageIf(v, op==OP_Ne);
3545         VdbeCoverageIf(v, op==OP_IsNull);
3546         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3547       }
3548     }
3549     if( regCkNull ){
3550       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3551       sqlite3VdbeGoto(v, destIfFalse);
3552     }
3553     sqlite3VdbeResolveLabel(v, labelOk);
3554     sqlite3ReleaseTempReg(pParse, regCkNull);
3555     goto sqlite3ExprCodeIN_finished;
3556   }
3557 
3558   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3559   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3560   ** We will then skip the binary search of the RHS.
3561   */
3562   if( destIfNull==destIfFalse ){
3563     destStep2 = destIfFalse;
3564   }else{
3565     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3566   }
3567   for(i=0; i<nVector; i++){
3568     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3569     if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
3570     if( sqlite3ExprCanBeNull(p) ){
3571       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3572       VdbeCoverage(v);
3573     }
3574   }
3575 
3576   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3577   ** of the RHS using the LHS as a probe.  If found, the result is
3578   ** true.
3579   */
3580   if( eType==IN_INDEX_ROWID ){
3581     /* In this case, the RHS is the ROWID of table b-tree and so we also
3582     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3583     ** into a single opcode. */
3584     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3585     VdbeCoverage(v);
3586     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3587   }else{
3588     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3589     if( destIfFalse==destIfNull ){
3590       /* Combine Step 3 and Step 5 into a single opcode */
3591       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3592                            rLhs, nVector); VdbeCoverage(v);
3593       goto sqlite3ExprCodeIN_finished;
3594     }
3595     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3596     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3597                                       rLhs, nVector); VdbeCoverage(v);
3598   }
3599 
3600   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3601   ** an match on the search above, then the result must be FALSE.
3602   */
3603   if( rRhsHasNull && nVector==1 ){
3604     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3605     VdbeCoverage(v);
3606   }
3607 
3608   /* Step 5.  If we do not care about the difference between NULL and
3609   ** FALSE, then just return false.
3610   */
3611   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3612 
3613   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3614   ** If any comparison is NULL, then the result is NULL.  If all
3615   ** comparisons are FALSE then the final result is FALSE.
3616   **
3617   ** For a scalar LHS, it is sufficient to check just the first row
3618   ** of the RHS.
3619   */
3620   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3621   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3622   VdbeCoverage(v);
3623   if( nVector>1 ){
3624     destNotNull = sqlite3VdbeMakeLabel(pParse);
3625   }else{
3626     /* For nVector==1, combine steps 6 and 7 by immediately returning
3627     ** FALSE if the first comparison is not NULL */
3628     destNotNull = destIfFalse;
3629   }
3630   for(i=0; i<nVector; i++){
3631     Expr *p;
3632     CollSeq *pColl;
3633     int r3 = sqlite3GetTempReg(pParse);
3634     p = sqlite3VectorFieldSubexpr(pLeft, i);
3635     pColl = sqlite3ExprCollSeq(pParse, p);
3636     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3637     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3638                       (void*)pColl, P4_COLLSEQ);
3639     VdbeCoverage(v);
3640     sqlite3ReleaseTempReg(pParse, r3);
3641   }
3642   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3643   if( nVector>1 ){
3644     sqlite3VdbeResolveLabel(v, destNotNull);
3645     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3646     VdbeCoverage(v);
3647 
3648     /* Step 7:  If we reach this point, we know that the result must
3649     ** be false. */
3650     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3651   }
3652 
3653   /* Jumps here in order to return true. */
3654   sqlite3VdbeJumpHere(v, addrTruthOp);
3655 
3656 sqlite3ExprCodeIN_finished:
3657   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3658   VdbeComment((v, "end IN expr"));
3659 sqlite3ExprCodeIN_oom_error:
3660   sqlite3DbFree(pParse->db, aiMap);
3661   sqlite3DbFree(pParse->db, zAff);
3662 }
3663 #endif /* SQLITE_OMIT_SUBQUERY */
3664 
3665 #ifndef SQLITE_OMIT_FLOATING_POINT
3666 /*
3667 ** Generate an instruction that will put the floating point
3668 ** value described by z[0..n-1] into register iMem.
3669 **
3670 ** The z[] string will probably not be zero-terminated.  But the
3671 ** z[n] character is guaranteed to be something that does not look
3672 ** like the continuation of the number.
3673 */
3674 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3675   if( ALWAYS(z!=0) ){
3676     double value;
3677     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3678     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3679     if( negateFlag ) value = -value;
3680     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3681   }
3682 }
3683 #endif
3684 
3685 
3686 /*
3687 ** Generate an instruction that will put the integer describe by
3688 ** text z[0..n-1] into register iMem.
3689 **
3690 ** Expr.u.zToken is always UTF8 and zero-terminated.
3691 */
3692 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3693   Vdbe *v = pParse->pVdbe;
3694   if( pExpr->flags & EP_IntValue ){
3695     int i = pExpr->u.iValue;
3696     assert( i>=0 );
3697     if( negFlag ) i = -i;
3698     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3699   }else{
3700     int c;
3701     i64 value;
3702     const char *z = pExpr->u.zToken;
3703     assert( z!=0 );
3704     c = sqlite3DecOrHexToI64(z, &value);
3705     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3706 #ifdef SQLITE_OMIT_FLOATING_POINT
3707       sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
3708 #else
3709 #ifndef SQLITE_OMIT_HEX_INTEGER
3710       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3711         sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
3712                         negFlag?"-":"",pExpr);
3713       }else
3714 #endif
3715       {
3716         codeReal(v, z, negFlag, iMem);
3717       }
3718 #endif
3719     }else{
3720       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3721       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3722     }
3723   }
3724 }
3725 
3726 
3727 /* Generate code that will load into register regOut a value that is
3728 ** appropriate for the iIdxCol-th column of index pIdx.
3729 */
3730 void sqlite3ExprCodeLoadIndexColumn(
3731   Parse *pParse,  /* The parsing context */
3732   Index *pIdx,    /* The index whose column is to be loaded */
3733   int iTabCur,    /* Cursor pointing to a table row */
3734   int iIdxCol,    /* The column of the index to be loaded */
3735   int regOut      /* Store the index column value in this register */
3736 ){
3737   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3738   if( iTabCol==XN_EXPR ){
3739     assert( pIdx->aColExpr );
3740     assert( pIdx->aColExpr->nExpr>iIdxCol );
3741     pParse->iSelfTab = iTabCur + 1;
3742     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3743     pParse->iSelfTab = 0;
3744   }else{
3745     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3746                                     iTabCol, regOut);
3747   }
3748 }
3749 
3750 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3751 /*
3752 ** Generate code that will compute the value of generated column pCol
3753 ** and store the result in register regOut
3754 */
3755 void sqlite3ExprCodeGeneratedColumn(
3756   Parse *pParse,     /* Parsing context */
3757   Table *pTab,       /* Table containing the generated column */
3758   Column *pCol,      /* The generated column */
3759   int regOut         /* Put the result in this register */
3760 ){
3761   int iAddr;
3762   Vdbe *v = pParse->pVdbe;
3763   assert( v!=0 );
3764   assert( pParse->iSelfTab!=0 );
3765   if( pParse->iSelfTab>0 ){
3766     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3767   }else{
3768     iAddr = 0;
3769   }
3770   sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
3771   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3772     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3773   }
3774   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3775 }
3776 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3777 
3778 /*
3779 ** Generate code to extract the value of the iCol-th column of a table.
3780 */
3781 void sqlite3ExprCodeGetColumnOfTable(
3782   Vdbe *v,        /* Parsing context */
3783   Table *pTab,    /* The table containing the value */
3784   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3785   int iCol,       /* Index of the column to extract */
3786   int regOut      /* Extract the value into this register */
3787 ){
3788   Column *pCol;
3789   assert( v!=0 );
3790   if( pTab==0 ){
3791     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3792     return;
3793   }
3794   if( iCol<0 || iCol==pTab->iPKey ){
3795     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3796     VdbeComment((v, "%s.rowid", pTab->zName));
3797   }else{
3798     int op;
3799     int x;
3800     if( IsVirtual(pTab) ){
3801       op = OP_VColumn;
3802       x = iCol;
3803 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3804     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3805       Parse *pParse = sqlite3VdbeParser(v);
3806       if( pCol->colFlags & COLFLAG_BUSY ){
3807         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3808                         pCol->zCnName);
3809       }else{
3810         int savedSelfTab = pParse->iSelfTab;
3811         pCol->colFlags |= COLFLAG_BUSY;
3812         pParse->iSelfTab = iTabCur+1;
3813         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
3814         pParse->iSelfTab = savedSelfTab;
3815         pCol->colFlags &= ~COLFLAG_BUSY;
3816       }
3817       return;
3818 #endif
3819     }else if( !HasRowid(pTab) ){
3820       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3821       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3822       op = OP_Column;
3823     }else{
3824       x = sqlite3TableColumnToStorage(pTab,iCol);
3825       testcase( x!=iCol );
3826       op = OP_Column;
3827     }
3828     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3829     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3830   }
3831 }
3832 
3833 /*
3834 ** Generate code that will extract the iColumn-th column from
3835 ** table pTab and store the column value in register iReg.
3836 **
3837 ** There must be an open cursor to pTab in iTable when this routine
3838 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3839 */
3840 int sqlite3ExprCodeGetColumn(
3841   Parse *pParse,   /* Parsing and code generating context */
3842   Table *pTab,     /* Description of the table we are reading from */
3843   int iColumn,     /* Index of the table column */
3844   int iTable,      /* The cursor pointing to the table */
3845   int iReg,        /* Store results here */
3846   u8 p5            /* P5 value for OP_Column + FLAGS */
3847 ){
3848   assert( pParse->pVdbe!=0 );
3849   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3850   if( p5 ){
3851     VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe);
3852     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3853   }
3854   return iReg;
3855 }
3856 
3857 /*
3858 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3859 ** over to iTo..iTo+nReg-1.
3860 */
3861 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3862   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3863 }
3864 
3865 /*
3866 ** Convert a scalar expression node to a TK_REGISTER referencing
3867 ** register iReg.  The caller must ensure that iReg already contains
3868 ** the correct value for the expression.
3869 */
3870 static void exprToRegister(Expr *pExpr, int iReg){
3871   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3872   if( NEVER(p==0) ) return;
3873   p->op2 = p->op;
3874   p->op = TK_REGISTER;
3875   p->iTable = iReg;
3876   ExprClearProperty(p, EP_Skip);
3877 }
3878 
3879 /*
3880 ** Evaluate an expression (either a vector or a scalar expression) and store
3881 ** the result in continguous temporary registers.  Return the index of
3882 ** the first register used to store the result.
3883 **
3884 ** If the returned result register is a temporary scalar, then also write
3885 ** that register number into *piFreeable.  If the returned result register
3886 ** is not a temporary or if the expression is a vector set *piFreeable
3887 ** to 0.
3888 */
3889 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3890   int iResult;
3891   int nResult = sqlite3ExprVectorSize(p);
3892   if( nResult==1 ){
3893     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3894   }else{
3895     *piFreeable = 0;
3896     if( p->op==TK_SELECT ){
3897 #if SQLITE_OMIT_SUBQUERY
3898       iResult = 0;
3899 #else
3900       iResult = sqlite3CodeSubselect(pParse, p);
3901 #endif
3902     }else{
3903       int i;
3904       iResult = pParse->nMem+1;
3905       pParse->nMem += nResult;
3906       assert( ExprUseXList(p) );
3907       for(i=0; i<nResult; i++){
3908         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3909       }
3910     }
3911   }
3912   return iResult;
3913 }
3914 
3915 /*
3916 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3917 ** so that a subsequent copy will not be merged into this one.
3918 */
3919 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3920   if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){
3921     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3922   }
3923 }
3924 
3925 /*
3926 ** Generate code to implement special SQL functions that are implemented
3927 ** in-line rather than by using the usual callbacks.
3928 */
3929 static int exprCodeInlineFunction(
3930   Parse *pParse,        /* Parsing context */
3931   ExprList *pFarg,      /* List of function arguments */
3932   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3933   int target            /* Store function result in this register */
3934 ){
3935   int nFarg;
3936   Vdbe *v = pParse->pVdbe;
3937   assert( v!=0 );
3938   assert( pFarg!=0 );
3939   nFarg = pFarg->nExpr;
3940   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3941   switch( iFuncId ){
3942     case INLINEFUNC_coalesce: {
3943       /* Attempt a direct implementation of the built-in COALESCE() and
3944       ** IFNULL() functions.  This avoids unnecessary evaluation of
3945       ** arguments past the first non-NULL argument.
3946       */
3947       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3948       int i;
3949       assert( nFarg>=2 );
3950       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3951       for(i=1; i<nFarg; i++){
3952         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3953         VdbeCoverage(v);
3954         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3955       }
3956       setDoNotMergeFlagOnCopy(v);
3957       sqlite3VdbeResolveLabel(v, endCoalesce);
3958       break;
3959     }
3960     case INLINEFUNC_iif: {
3961       Expr caseExpr;
3962       memset(&caseExpr, 0, sizeof(caseExpr));
3963       caseExpr.op = TK_CASE;
3964       caseExpr.x.pList = pFarg;
3965       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3966     }
3967 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3968     case INLINEFUNC_sqlite_offset: {
3969       Expr *pArg = pFarg->a[0].pExpr;
3970       if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){
3971         sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3972       }else{
3973         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3974       }
3975       break;
3976     }
3977 #endif
3978     default: {
3979       /* The UNLIKELY() function is a no-op.  The result is the value
3980       ** of the first argument.
3981       */
3982       assert( nFarg==1 || nFarg==2 );
3983       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3984       break;
3985     }
3986 
3987   /***********************************************************************
3988   ** Test-only SQL functions that are only usable if enabled
3989   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3990   */
3991 #if !defined(SQLITE_UNTESTABLE)
3992     case INLINEFUNC_expr_compare: {
3993       /* Compare two expressions using sqlite3ExprCompare() */
3994       assert( nFarg==2 );
3995       sqlite3VdbeAddOp2(v, OP_Integer,
3996          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3997          target);
3998       break;
3999     }
4000 
4001     case INLINEFUNC_expr_implies_expr: {
4002       /* Compare two expressions using sqlite3ExprImpliesExpr() */
4003       assert( nFarg==2 );
4004       sqlite3VdbeAddOp2(v, OP_Integer,
4005          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
4006          target);
4007       break;
4008     }
4009 
4010     case INLINEFUNC_implies_nonnull_row: {
4011       /* REsult of sqlite3ExprImpliesNonNullRow() */
4012       Expr *pA1;
4013       assert( nFarg==2 );
4014       pA1 = pFarg->a[1].pExpr;
4015       if( pA1->op==TK_COLUMN ){
4016         sqlite3VdbeAddOp2(v, OP_Integer,
4017            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
4018            target);
4019       }else{
4020         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4021       }
4022       break;
4023     }
4024 
4025     case INLINEFUNC_affinity: {
4026       /* The AFFINITY() function evaluates to a string that describes
4027       ** the type affinity of the argument.  This is used for testing of
4028       ** the SQLite type logic.
4029       */
4030       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
4031       char aff;
4032       assert( nFarg==1 );
4033       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
4034       sqlite3VdbeLoadString(v, target,
4035               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
4036       break;
4037     }
4038 #endif /* !defined(SQLITE_UNTESTABLE) */
4039   }
4040   return target;
4041 }
4042 
4043 
4044 /*
4045 ** Generate code into the current Vdbe to evaluate the given
4046 ** expression.  Attempt to store the results in register "target".
4047 ** Return the register where results are stored.
4048 **
4049 ** With this routine, there is no guarantee that results will
4050 ** be stored in target.  The result might be stored in some other
4051 ** register if it is convenient to do so.  The calling function
4052 ** must check the return code and move the results to the desired
4053 ** register.
4054 */
4055 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
4056   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
4057   int op;                   /* The opcode being coded */
4058   int inReg = target;       /* Results stored in register inReg */
4059   int regFree1 = 0;         /* If non-zero free this temporary register */
4060   int regFree2 = 0;         /* If non-zero free this temporary register */
4061   int r1, r2;               /* Various register numbers */
4062   Expr tempX;               /* Temporary expression node */
4063   int p5 = 0;
4064 
4065   assert( target>0 && target<=pParse->nMem );
4066   assert( v!=0 );
4067 
4068 expr_code_doover:
4069   if( pExpr==0 ){
4070     op = TK_NULL;
4071   }else{
4072     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4073     op = pExpr->op;
4074   }
4075   switch( op ){
4076     case TK_AGG_COLUMN: {
4077       AggInfo *pAggInfo = pExpr->pAggInfo;
4078       struct AggInfo_col *pCol;
4079       assert( pAggInfo!=0 );
4080       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4081       pCol = &pAggInfo->aCol[pExpr->iAgg];
4082       if( !pAggInfo->directMode ){
4083         assert( pCol->iMem>0 );
4084         return pCol->iMem;
4085       }else if( pAggInfo->useSortingIdx ){
4086         Table *pTab = pCol->pTab;
4087         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4088                               pCol->iSorterColumn, target);
4089         if( pCol->iColumn<0 ){
4090           VdbeComment((v,"%s.rowid",pTab->zName));
4091         }else{
4092           VdbeComment((v,"%s.%s",
4093               pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
4094           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
4095             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4096           }
4097         }
4098         return target;
4099       }
4100       /* Otherwise, fall thru into the TK_COLUMN case */
4101       /* no break */ deliberate_fall_through
4102     }
4103     case TK_COLUMN: {
4104       int iTab = pExpr->iTable;
4105       int iReg;
4106       if( ExprHasProperty(pExpr, EP_FixedCol) ){
4107         /* This COLUMN expression is really a constant due to WHERE clause
4108         ** constraints, and that constant is coded by the pExpr->pLeft
4109         ** expresssion.  However, make sure the constant has the correct
4110         ** datatype by applying the Affinity of the table column to the
4111         ** constant.
4112         */
4113         int aff;
4114         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
4115         assert( ExprUseYTab(pExpr) );
4116         if( pExpr->y.pTab ){
4117           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4118         }else{
4119           aff = pExpr->affExpr;
4120         }
4121         if( aff>SQLITE_AFF_BLOB ){
4122           static const char zAff[] = "B\000C\000D\000E";
4123           assert( SQLITE_AFF_BLOB=='A' );
4124           assert( SQLITE_AFF_TEXT=='B' );
4125           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4126                             &zAff[(aff-'B')*2], P4_STATIC);
4127         }
4128         return iReg;
4129       }
4130       if( iTab<0 ){
4131         if( pParse->iSelfTab<0 ){
4132           /* Other columns in the same row for CHECK constraints or
4133           ** generated columns or for inserting into partial index.
4134           ** The row is unpacked into registers beginning at
4135           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
4136           ** immediately prior to the first column.
4137           */
4138           Column *pCol;
4139           Table *pTab;
4140           int iSrc;
4141           int iCol = pExpr->iColumn;
4142           assert( ExprUseYTab(pExpr) );
4143           pTab = pExpr->y.pTab;
4144           assert( pTab!=0 );
4145           assert( iCol>=XN_ROWID );
4146           assert( iCol<pTab->nCol );
4147           if( iCol<0 ){
4148             return -1-pParse->iSelfTab;
4149           }
4150           pCol = pTab->aCol + iCol;
4151           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4152           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4153 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4154           if( pCol->colFlags & COLFLAG_GENERATED ){
4155             if( pCol->colFlags & COLFLAG_BUSY ){
4156               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4157                               pCol->zCnName);
4158               return 0;
4159             }
4160             pCol->colFlags |= COLFLAG_BUSY;
4161             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4162               sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4163             }
4164             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4165             return iSrc;
4166           }else
4167 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4168           if( pCol->affinity==SQLITE_AFF_REAL ){
4169             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4170             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4171             return target;
4172           }else{
4173             return iSrc;
4174           }
4175         }else{
4176           /* Coding an expression that is part of an index where column names
4177           ** in the index refer to the table to which the index belongs */
4178           iTab = pParse->iSelfTab - 1;
4179         }
4180       }
4181       assert( ExprUseYTab(pExpr) );
4182       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4183                                pExpr->iColumn, iTab, target,
4184                                pExpr->op2);
4185       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
4186         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
4187       }
4188       return iReg;
4189     }
4190     case TK_INTEGER: {
4191       codeInteger(pParse, pExpr, 0, target);
4192       return target;
4193     }
4194     case TK_TRUEFALSE: {
4195       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4196       return target;
4197     }
4198 #ifndef SQLITE_OMIT_FLOATING_POINT
4199     case TK_FLOAT: {
4200       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4201       codeReal(v, pExpr->u.zToken, 0, target);
4202       return target;
4203     }
4204 #endif
4205     case TK_STRING: {
4206       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4207       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4208       return target;
4209     }
4210     default: {
4211       /* Make NULL the default case so that if a bug causes an illegal
4212       ** Expr node to be passed into this function, it will be handled
4213       ** sanely and not crash.  But keep the assert() to bring the problem
4214       ** to the attention of the developers. */
4215       assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4216       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4217       return target;
4218     }
4219 #ifndef SQLITE_OMIT_BLOB_LITERAL
4220     case TK_BLOB: {
4221       int n;
4222       const char *z;
4223       char *zBlob;
4224       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4225       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4226       assert( pExpr->u.zToken[1]=='\'' );
4227       z = &pExpr->u.zToken[2];
4228       n = sqlite3Strlen30(z) - 1;
4229       assert( z[n]=='\'' );
4230       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4231       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4232       return target;
4233     }
4234 #endif
4235     case TK_VARIABLE: {
4236       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4237       assert( pExpr->u.zToken!=0 );
4238       assert( pExpr->u.zToken[0]!=0 );
4239       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4240       if( pExpr->u.zToken[1]!=0 ){
4241         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4242         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4243         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4244         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4245       }
4246       return target;
4247     }
4248     case TK_REGISTER: {
4249       return pExpr->iTable;
4250     }
4251 #ifndef SQLITE_OMIT_CAST
4252     case TK_CAST: {
4253       /* Expressions of the form:   CAST(pLeft AS token) */
4254       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4255       if( inReg!=target ){
4256         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4257         inReg = target;
4258       }
4259       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4260       sqlite3VdbeAddOp2(v, OP_Cast, target,
4261                         sqlite3AffinityType(pExpr->u.zToken, 0));
4262       return inReg;
4263     }
4264 #endif /* SQLITE_OMIT_CAST */
4265     case TK_IS:
4266     case TK_ISNOT:
4267       op = (op==TK_IS) ? TK_EQ : TK_NE;
4268       p5 = SQLITE_NULLEQ;
4269       /* fall-through */
4270     case TK_LT:
4271     case TK_LE:
4272     case TK_GT:
4273     case TK_GE:
4274     case TK_NE:
4275     case TK_EQ: {
4276       Expr *pLeft = pExpr->pLeft;
4277       if( sqlite3ExprIsVector(pLeft) ){
4278         codeVectorCompare(pParse, pExpr, target, op, p5);
4279       }else{
4280         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4281         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4282         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4283         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4284             sqlite3VdbeCurrentAddr(v)+2, p5,
4285             ExprHasProperty(pExpr,EP_Commuted));
4286         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4287         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4288         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4289         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4290         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4291         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4292         if( p5==SQLITE_NULLEQ ){
4293           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4294         }else{
4295           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4296         }
4297         testcase( regFree1==0 );
4298         testcase( regFree2==0 );
4299       }
4300       break;
4301     }
4302     case TK_AND:
4303     case TK_OR:
4304     case TK_PLUS:
4305     case TK_STAR:
4306     case TK_MINUS:
4307     case TK_REM:
4308     case TK_BITAND:
4309     case TK_BITOR:
4310     case TK_SLASH:
4311     case TK_LSHIFT:
4312     case TK_RSHIFT:
4313     case TK_CONCAT: {
4314       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4315       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4316       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4317       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4318       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4319       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4320       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4321       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4322       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4323       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4324       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4325       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4326       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4327       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4328       testcase( regFree1==0 );
4329       testcase( regFree2==0 );
4330       break;
4331     }
4332     case TK_UMINUS: {
4333       Expr *pLeft = pExpr->pLeft;
4334       assert( pLeft );
4335       if( pLeft->op==TK_INTEGER ){
4336         codeInteger(pParse, pLeft, 1, target);
4337         return target;
4338 #ifndef SQLITE_OMIT_FLOATING_POINT
4339       }else if( pLeft->op==TK_FLOAT ){
4340         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4341         codeReal(v, pLeft->u.zToken, 1, target);
4342         return target;
4343 #endif
4344       }else{
4345         tempX.op = TK_INTEGER;
4346         tempX.flags = EP_IntValue|EP_TokenOnly;
4347         tempX.u.iValue = 0;
4348         ExprClearVVAProperties(&tempX);
4349         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4350         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4351         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4352         testcase( regFree2==0 );
4353       }
4354       break;
4355     }
4356     case TK_BITNOT:
4357     case TK_NOT: {
4358       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4359       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4360       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4361       testcase( regFree1==0 );
4362       sqlite3VdbeAddOp2(v, op, r1, inReg);
4363       break;
4364     }
4365     case TK_TRUTH: {
4366       int isTrue;    /* IS TRUE or IS NOT TRUE */
4367       int bNormal;   /* IS TRUE or IS FALSE */
4368       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4369       testcase( regFree1==0 );
4370       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4371       bNormal = pExpr->op2==TK_IS;
4372       testcase( isTrue && bNormal);
4373       testcase( !isTrue && bNormal);
4374       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4375       break;
4376     }
4377     case TK_ISNULL:
4378     case TK_NOTNULL: {
4379       int addr;
4380       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4381       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4382       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4383       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4384       testcase( regFree1==0 );
4385       addr = sqlite3VdbeAddOp1(v, op, r1);
4386       VdbeCoverageIf(v, op==TK_ISNULL);
4387       VdbeCoverageIf(v, op==TK_NOTNULL);
4388       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4389       sqlite3VdbeJumpHere(v, addr);
4390       break;
4391     }
4392     case TK_AGG_FUNCTION: {
4393       AggInfo *pInfo = pExpr->pAggInfo;
4394       if( pInfo==0
4395        || NEVER(pExpr->iAgg<0)
4396        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4397       ){
4398         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4399         sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
4400       }else{
4401         return pInfo->aFunc[pExpr->iAgg].iMem;
4402       }
4403       break;
4404     }
4405     case TK_FUNCTION: {
4406       ExprList *pFarg;       /* List of function arguments */
4407       int nFarg;             /* Number of function arguments */
4408       FuncDef *pDef;         /* The function definition object */
4409       const char *zId;       /* The function name */
4410       u32 constMask = 0;     /* Mask of function arguments that are constant */
4411       int i;                 /* Loop counter */
4412       sqlite3 *db = pParse->db;  /* The database connection */
4413       u8 enc = ENC(db);      /* The text encoding used by this database */
4414       CollSeq *pColl = 0;    /* A collating sequence */
4415 
4416 #ifndef SQLITE_OMIT_WINDOWFUNC
4417       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4418         return pExpr->y.pWin->regResult;
4419       }
4420 #endif
4421 
4422       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4423         /* SQL functions can be expensive. So try to avoid running them
4424         ** multiple times if we know they always give the same result */
4425         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4426       }
4427       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4428       assert( ExprUseXList(pExpr) );
4429       pFarg = pExpr->x.pList;
4430       nFarg = pFarg ? pFarg->nExpr : 0;
4431       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4432       zId = pExpr->u.zToken;
4433       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4434 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4435       if( pDef==0 && pParse->explain ){
4436         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4437       }
4438 #endif
4439       if( pDef==0 || pDef->xFinalize!=0 ){
4440         sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
4441         break;
4442       }
4443       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4444         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4445         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4446         return exprCodeInlineFunction(pParse, pFarg,
4447              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4448       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4449         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4450       }
4451 
4452       for(i=0; i<nFarg; i++){
4453         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4454           testcase( i==31 );
4455           constMask |= MASKBIT32(i);
4456         }
4457         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4458           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4459         }
4460       }
4461       if( pFarg ){
4462         if( constMask ){
4463           r1 = pParse->nMem+1;
4464           pParse->nMem += nFarg;
4465         }else{
4466           r1 = sqlite3GetTempRange(pParse, nFarg);
4467         }
4468 
4469         /* For length() and typeof() functions with a column argument,
4470         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4471         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4472         ** loading.
4473         */
4474         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4475           u8 exprOp;
4476           assert( nFarg==1 );
4477           assert( pFarg->a[0].pExpr!=0 );
4478           exprOp = pFarg->a[0].pExpr->op;
4479           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4480             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4481             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4482             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4483             pFarg->a[0].pExpr->op2 =
4484                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4485           }
4486         }
4487 
4488         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4489                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4490       }else{
4491         r1 = 0;
4492       }
4493 #ifndef SQLITE_OMIT_VIRTUALTABLE
4494       /* Possibly overload the function if the first argument is
4495       ** a virtual table column.
4496       **
4497       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4498       ** second argument, not the first, as the argument to test to
4499       ** see if it is a column in a virtual table.  This is done because
4500       ** the left operand of infix functions (the operand we want to
4501       ** control overloading) ends up as the second argument to the
4502       ** function.  The expression "A glob B" is equivalent to
4503       ** "glob(B,A).  We want to use the A in "A glob B" to test
4504       ** for function overloading.  But we use the B term in "glob(B,A)".
4505       */
4506       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4507         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4508       }else if( nFarg>0 ){
4509         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4510       }
4511 #endif
4512       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4513         if( !pColl ) pColl = db->pDfltColl;
4514         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4515       }
4516       sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4517                                  pDef, pExpr->op2);
4518       if( nFarg ){
4519         if( constMask==0 ){
4520           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4521         }else{
4522           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4523         }
4524       }
4525       return target;
4526     }
4527 #ifndef SQLITE_OMIT_SUBQUERY
4528     case TK_EXISTS:
4529     case TK_SELECT: {
4530       int nCol;
4531       testcase( op==TK_EXISTS );
4532       testcase( op==TK_SELECT );
4533       if( pParse->db->mallocFailed ){
4534         return 0;
4535       }else if( op==TK_SELECT
4536              && ALWAYS( ExprUseXSelect(pExpr) )
4537              && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
4538       ){
4539         sqlite3SubselectError(pParse, nCol, 1);
4540       }else{
4541         return sqlite3CodeSubselect(pParse, pExpr);
4542       }
4543       break;
4544     }
4545     case TK_SELECT_COLUMN: {
4546       int n;
4547       Expr *pLeft = pExpr->pLeft;
4548       if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){
4549         pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft);
4550         pLeft->op2 = pParse->withinRJSubrtn;
4551       }
4552       assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR );
4553       n = sqlite3ExprVectorSize(pLeft);
4554       if( pExpr->iTable!=n ){
4555         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4556                                 pExpr->iTable, n);
4557       }
4558       return pLeft->iTable + pExpr->iColumn;
4559     }
4560     case TK_IN: {
4561       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4562       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4563       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4564       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4565       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4566       sqlite3VdbeResolveLabel(v, destIfFalse);
4567       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4568       sqlite3VdbeResolveLabel(v, destIfNull);
4569       return target;
4570     }
4571 #endif /* SQLITE_OMIT_SUBQUERY */
4572 
4573 
4574     /*
4575     **    x BETWEEN y AND z
4576     **
4577     ** This is equivalent to
4578     **
4579     **    x>=y AND x<=z
4580     **
4581     ** X is stored in pExpr->pLeft.
4582     ** Y is stored in pExpr->pList->a[0].pExpr.
4583     ** Z is stored in pExpr->pList->a[1].pExpr.
4584     */
4585     case TK_BETWEEN: {
4586       exprCodeBetween(pParse, pExpr, target, 0, 0);
4587       return target;
4588     }
4589     case TK_COLLATE: {
4590       if( !ExprHasProperty(pExpr, EP_Collate)
4591        && ALWAYS(pExpr->pLeft)
4592        && pExpr->pLeft->op==TK_FUNCTION
4593       ){
4594         inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4595         if( inReg!=target ){
4596           sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4597           inReg = target;
4598         }
4599         sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg);
4600         return inReg;
4601       }else{
4602         pExpr = pExpr->pLeft;
4603         goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */
4604       }
4605     }
4606     case TK_SPAN:
4607     case TK_UPLUS: {
4608       pExpr = pExpr->pLeft;
4609       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4610     }
4611 
4612     case TK_TRIGGER: {
4613       /* If the opcode is TK_TRIGGER, then the expression is a reference
4614       ** to a column in the new.* or old.* pseudo-tables available to
4615       ** trigger programs. In this case Expr.iTable is set to 1 for the
4616       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4617       ** is set to the column of the pseudo-table to read, or to -1 to
4618       ** read the rowid field.
4619       **
4620       ** The expression is implemented using an OP_Param opcode. The p1
4621       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4622       ** to reference another column of the old.* pseudo-table, where
4623       ** i is the index of the column. For a new.rowid reference, p1 is
4624       ** set to (n+1), where n is the number of columns in each pseudo-table.
4625       ** For a reference to any other column in the new.* pseudo-table, p1
4626       ** is set to (n+2+i), where n and i are as defined previously. For
4627       ** example, if the table on which triggers are being fired is
4628       ** declared as:
4629       **
4630       **   CREATE TABLE t1(a, b);
4631       **
4632       ** Then p1 is interpreted as follows:
4633       **
4634       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4635       **   p1==1   ->    old.a         p1==4   ->    new.a
4636       **   p1==2   ->    old.b         p1==5   ->    new.b
4637       */
4638       Table *pTab;
4639       int iCol;
4640       int p1;
4641 
4642       assert( ExprUseYTab(pExpr) );
4643       pTab = pExpr->y.pTab;
4644       iCol = pExpr->iColumn;
4645       p1 = pExpr->iTable * (pTab->nCol+1) + 1
4646                      + sqlite3TableColumnToStorage(pTab, iCol);
4647 
4648       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4649       assert( iCol>=-1 && iCol<pTab->nCol );
4650       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4651       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4652 
4653       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4654       VdbeComment((v, "r[%d]=%s.%s", target,
4655         (pExpr->iTable ? "new" : "old"),
4656         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
4657       ));
4658 
4659 #ifndef SQLITE_OMIT_FLOATING_POINT
4660       /* If the column has REAL affinity, it may currently be stored as an
4661       ** integer. Use OP_RealAffinity to make sure it is really real.
4662       **
4663       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4664       ** floating point when extracting it from the record.  */
4665       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4666         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4667       }
4668 #endif
4669       break;
4670     }
4671 
4672     case TK_VECTOR: {
4673       sqlite3ErrorMsg(pParse, "row value misused");
4674       break;
4675     }
4676 
4677     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4678     ** that derive from the right-hand table of a LEFT JOIN.  The
4679     ** Expr.iTable value is the table number for the right-hand table.
4680     ** The expression is only evaluated if that table is not currently
4681     ** on a LEFT JOIN NULL row.
4682     */
4683     case TK_IF_NULL_ROW: {
4684       int addrINR;
4685       u8 okConstFactor = pParse->okConstFactor;
4686       AggInfo *pAggInfo = pExpr->pAggInfo;
4687       if( pAggInfo ){
4688         assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4689         if( !pAggInfo->directMode ){
4690           inReg = pAggInfo->aCol[pExpr->iAgg].iMem;
4691           break;
4692         }
4693         if( pExpr->pAggInfo->useSortingIdx ){
4694           sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4695                             pAggInfo->aCol[pExpr->iAgg].iSorterColumn,
4696                             target);
4697           inReg = target;
4698           break;
4699         }
4700       }
4701       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4702       /* Temporarily disable factoring of constant expressions, since
4703       ** even though expressions may appear to be constant, they are not
4704       ** really constant because they originate from the right-hand side
4705       ** of a LEFT JOIN. */
4706       pParse->okConstFactor = 0;
4707       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4708       pParse->okConstFactor = okConstFactor;
4709       sqlite3VdbeJumpHere(v, addrINR);
4710       sqlite3VdbeChangeP3(v, addrINR, inReg);
4711       break;
4712     }
4713 
4714     /*
4715     ** Form A:
4716     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4717     **
4718     ** Form B:
4719     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4720     **
4721     ** Form A is can be transformed into the equivalent form B as follows:
4722     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4723     **        WHEN x=eN THEN rN ELSE y END
4724     **
4725     ** X (if it exists) is in pExpr->pLeft.
4726     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4727     ** odd.  The Y is also optional.  If the number of elements in x.pList
4728     ** is even, then Y is omitted and the "otherwise" result is NULL.
4729     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4730     **
4731     ** The result of the expression is the Ri for the first matching Ei,
4732     ** or if there is no matching Ei, the ELSE term Y, or if there is
4733     ** no ELSE term, NULL.
4734     */
4735     case TK_CASE: {
4736       int endLabel;                     /* GOTO label for end of CASE stmt */
4737       int nextCase;                     /* GOTO label for next WHEN clause */
4738       int nExpr;                        /* 2x number of WHEN terms */
4739       int i;                            /* Loop counter */
4740       ExprList *pEList;                 /* List of WHEN terms */
4741       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4742       Expr opCompare;                   /* The X==Ei expression */
4743       Expr *pX;                         /* The X expression */
4744       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4745       Expr *pDel = 0;
4746       sqlite3 *db = pParse->db;
4747 
4748       assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
4749       assert(pExpr->x.pList->nExpr > 0);
4750       pEList = pExpr->x.pList;
4751       aListelem = pEList->a;
4752       nExpr = pEList->nExpr;
4753       endLabel = sqlite3VdbeMakeLabel(pParse);
4754       if( (pX = pExpr->pLeft)!=0 ){
4755         pDel = sqlite3ExprDup(db, pX, 0);
4756         if( db->mallocFailed ){
4757           sqlite3ExprDelete(db, pDel);
4758           break;
4759         }
4760         testcase( pX->op==TK_COLUMN );
4761         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4762         testcase( regFree1==0 );
4763         memset(&opCompare, 0, sizeof(opCompare));
4764         opCompare.op = TK_EQ;
4765         opCompare.pLeft = pDel;
4766         pTest = &opCompare;
4767         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4768         ** The value in regFree1 might get SCopy-ed into the file result.
4769         ** So make sure that the regFree1 register is not reused for other
4770         ** purposes and possibly overwritten.  */
4771         regFree1 = 0;
4772       }
4773       for(i=0; i<nExpr-1; i=i+2){
4774         if( pX ){
4775           assert( pTest!=0 );
4776           opCompare.pRight = aListelem[i].pExpr;
4777         }else{
4778           pTest = aListelem[i].pExpr;
4779         }
4780         nextCase = sqlite3VdbeMakeLabel(pParse);
4781         testcase( pTest->op==TK_COLUMN );
4782         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4783         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4784         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4785         sqlite3VdbeGoto(v, endLabel);
4786         sqlite3VdbeResolveLabel(v, nextCase);
4787       }
4788       if( (nExpr&1)!=0 ){
4789         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4790       }else{
4791         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4792       }
4793       sqlite3ExprDelete(db, pDel);
4794       setDoNotMergeFlagOnCopy(v);
4795       sqlite3VdbeResolveLabel(v, endLabel);
4796       break;
4797     }
4798 #ifndef SQLITE_OMIT_TRIGGER
4799     case TK_RAISE: {
4800       assert( pExpr->affExpr==OE_Rollback
4801            || pExpr->affExpr==OE_Abort
4802            || pExpr->affExpr==OE_Fail
4803            || pExpr->affExpr==OE_Ignore
4804       );
4805       if( !pParse->pTriggerTab && !pParse->nested ){
4806         sqlite3ErrorMsg(pParse,
4807                        "RAISE() may only be used within a trigger-program");
4808         return 0;
4809       }
4810       if( pExpr->affExpr==OE_Abort ){
4811         sqlite3MayAbort(pParse);
4812       }
4813       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4814       if( pExpr->affExpr==OE_Ignore ){
4815         sqlite3VdbeAddOp4(
4816             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4817         VdbeCoverage(v);
4818       }else{
4819         sqlite3HaltConstraint(pParse,
4820              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4821              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4822       }
4823 
4824       break;
4825     }
4826 #endif
4827   }
4828   sqlite3ReleaseTempReg(pParse, regFree1);
4829   sqlite3ReleaseTempReg(pParse, regFree2);
4830   return inReg;
4831 }
4832 
4833 /*
4834 ** Generate code that will evaluate expression pExpr just one time
4835 ** per prepared statement execution.
4836 **
4837 ** If the expression uses functions (that might throw an exception) then
4838 ** guard them with an OP_Once opcode to ensure that the code is only executed
4839 ** once. If no functions are involved, then factor the code out and put it at
4840 ** the end of the prepared statement in the initialization section.
4841 **
4842 ** If regDest>=0 then the result is always stored in that register and the
4843 ** result is not reusable.  If regDest<0 then this routine is free to
4844 ** store the value whereever it wants.  The register where the expression
4845 ** is stored is returned.  When regDest<0, two identical expressions might
4846 ** code to the same register, if they do not contain function calls and hence
4847 ** are factored out into the initialization section at the end of the
4848 ** prepared statement.
4849 */
4850 int sqlite3ExprCodeRunJustOnce(
4851   Parse *pParse,    /* Parsing context */
4852   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4853   int regDest       /* Store the value in this register */
4854 ){
4855   ExprList *p;
4856   assert( ConstFactorOk(pParse) );
4857   p = pParse->pConstExpr;
4858   if( regDest<0 && p ){
4859     struct ExprList_item *pItem;
4860     int i;
4861     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4862       if( pItem->fg.reusable
4863        && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0
4864       ){
4865         return pItem->u.iConstExprReg;
4866       }
4867     }
4868   }
4869   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4870   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4871     Vdbe *v = pParse->pVdbe;
4872     int addr;
4873     assert( v );
4874     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4875     pParse->okConstFactor = 0;
4876     if( !pParse->db->mallocFailed ){
4877       if( regDest<0 ) regDest = ++pParse->nMem;
4878       sqlite3ExprCode(pParse, pExpr, regDest);
4879     }
4880     pParse->okConstFactor = 1;
4881     sqlite3ExprDelete(pParse->db, pExpr);
4882     sqlite3VdbeJumpHere(v, addr);
4883   }else{
4884     p = sqlite3ExprListAppend(pParse, p, pExpr);
4885     if( p ){
4886        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4887        pItem->fg.reusable = regDest<0;
4888        if( regDest<0 ) regDest = ++pParse->nMem;
4889        pItem->u.iConstExprReg = regDest;
4890     }
4891     pParse->pConstExpr = p;
4892   }
4893   return regDest;
4894 }
4895 
4896 /*
4897 ** Generate code to evaluate an expression and store the results
4898 ** into a register.  Return the register number where the results
4899 ** are stored.
4900 **
4901 ** If the register is a temporary register that can be deallocated,
4902 ** then write its number into *pReg.  If the result register is not
4903 ** a temporary, then set *pReg to zero.
4904 **
4905 ** If pExpr is a constant, then this routine might generate this
4906 ** code to fill the register in the initialization section of the
4907 ** VDBE program, in order to factor it out of the evaluation loop.
4908 */
4909 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4910   int r2;
4911   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4912   if( ConstFactorOk(pParse)
4913    && ALWAYS(pExpr!=0)
4914    && pExpr->op!=TK_REGISTER
4915    && sqlite3ExprIsConstantNotJoin(pExpr)
4916   ){
4917     *pReg  = 0;
4918     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4919   }else{
4920     int r1 = sqlite3GetTempReg(pParse);
4921     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4922     if( r2==r1 ){
4923       *pReg = r1;
4924     }else{
4925       sqlite3ReleaseTempReg(pParse, r1);
4926       *pReg = 0;
4927     }
4928   }
4929   return r2;
4930 }
4931 
4932 /*
4933 ** Generate code that will evaluate expression pExpr and store the
4934 ** results in register target.  The results are guaranteed to appear
4935 ** in register target.
4936 */
4937 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4938   int inReg;
4939 
4940   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4941   assert( target>0 && target<=pParse->nMem );
4942   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4943   if( pParse->pVdbe==0 ) return;
4944   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4945   if( inReg!=target ){
4946     u8 op;
4947     if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){
4948       op = OP_Copy;
4949     }else{
4950       op = OP_SCopy;
4951     }
4952     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4953   }
4954 }
4955 
4956 /*
4957 ** Make a transient copy of expression pExpr and then code it using
4958 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4959 ** except that the input expression is guaranteed to be unchanged.
4960 */
4961 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4962   sqlite3 *db = pParse->db;
4963   pExpr = sqlite3ExprDup(db, pExpr, 0);
4964   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4965   sqlite3ExprDelete(db, pExpr);
4966 }
4967 
4968 /*
4969 ** Generate code that will evaluate expression pExpr and store the
4970 ** results in register target.  The results are guaranteed to appear
4971 ** in register target.  If the expression is constant, then this routine
4972 ** might choose to code the expression at initialization time.
4973 */
4974 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4975   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4976     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4977   }else{
4978     sqlite3ExprCodeCopy(pParse, pExpr, target);
4979   }
4980 }
4981 
4982 /*
4983 ** Generate code that pushes the value of every element of the given
4984 ** expression list into a sequence of registers beginning at target.
4985 **
4986 ** Return the number of elements evaluated.  The number returned will
4987 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4988 ** is defined.
4989 **
4990 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4991 ** filled using OP_SCopy.  OP_Copy must be used instead.
4992 **
4993 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4994 ** factored out into initialization code.
4995 **
4996 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4997 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4998 ** in registers at srcReg, and so the value can be copied from there.
4999 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
5000 ** are simply omitted rather than being copied from srcReg.
5001 */
5002 int sqlite3ExprCodeExprList(
5003   Parse *pParse,     /* Parsing context */
5004   ExprList *pList,   /* The expression list to be coded */
5005   int target,        /* Where to write results */
5006   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
5007   u8 flags           /* SQLITE_ECEL_* flags */
5008 ){
5009   struct ExprList_item *pItem;
5010   int i, j, n;
5011   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
5012   Vdbe *v = pParse->pVdbe;
5013   assert( pList!=0 );
5014   assert( target>0 );
5015   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
5016   n = pList->nExpr;
5017   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
5018   for(pItem=pList->a, i=0; i<n; i++, pItem++){
5019     Expr *pExpr = pItem->pExpr;
5020 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
5021     if( pItem->fg.bSorterRef ){
5022       i--;
5023       n--;
5024     }else
5025 #endif
5026     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
5027       if( flags & SQLITE_ECEL_OMITREF ){
5028         i--;
5029         n--;
5030       }else{
5031         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
5032       }
5033     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
5034            && sqlite3ExprIsConstantNotJoin(pExpr)
5035     ){
5036       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
5037     }else{
5038       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
5039       if( inReg!=target+i ){
5040         VdbeOp *pOp;
5041         if( copyOp==OP_Copy
5042          && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy
5043          && pOp->p1+pOp->p3+1==inReg
5044          && pOp->p2+pOp->p3+1==target+i
5045          && pOp->p5==0  /* The do-not-merge flag must be clear */
5046         ){
5047           pOp->p3++;
5048         }else{
5049           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
5050         }
5051       }
5052     }
5053   }
5054   return n;
5055 }
5056 
5057 /*
5058 ** Generate code for a BETWEEN operator.
5059 **
5060 **    x BETWEEN y AND z
5061 **
5062 ** The above is equivalent to
5063 **
5064 **    x>=y AND x<=z
5065 **
5066 ** Code it as such, taking care to do the common subexpression
5067 ** elimination of x.
5068 **
5069 ** The xJumpIf parameter determines details:
5070 **
5071 **    NULL:                   Store the boolean result in reg[dest]
5072 **    sqlite3ExprIfTrue:      Jump to dest if true
5073 **    sqlite3ExprIfFalse:     Jump to dest if false
5074 **
5075 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
5076 */
5077 static void exprCodeBetween(
5078   Parse *pParse,    /* Parsing and code generating context */
5079   Expr *pExpr,      /* The BETWEEN expression */
5080   int dest,         /* Jump destination or storage location */
5081   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
5082   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
5083 ){
5084   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
5085   Expr compLeft;    /* The  x>=y  term */
5086   Expr compRight;   /* The  x<=z  term */
5087   int regFree1 = 0; /* Temporary use register */
5088   Expr *pDel = 0;
5089   sqlite3 *db = pParse->db;
5090 
5091   memset(&compLeft, 0, sizeof(Expr));
5092   memset(&compRight, 0, sizeof(Expr));
5093   memset(&exprAnd, 0, sizeof(Expr));
5094 
5095   assert( ExprUseXList(pExpr) );
5096   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
5097   if( db->mallocFailed==0 ){
5098     exprAnd.op = TK_AND;
5099     exprAnd.pLeft = &compLeft;
5100     exprAnd.pRight = &compRight;
5101     compLeft.op = TK_GE;
5102     compLeft.pLeft = pDel;
5103     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
5104     compRight.op = TK_LE;
5105     compRight.pLeft = pDel;
5106     compRight.pRight = pExpr->x.pList->a[1].pExpr;
5107     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5108     if( xJump ){
5109       xJump(pParse, &exprAnd, dest, jumpIfNull);
5110     }else{
5111       /* Mark the expression is being from the ON or USING clause of a join
5112       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5113       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
5114       ** for clarity, but we are out of bits in the Expr.flags field so we
5115       ** have to reuse the EP_OuterON bit.  Bummer. */
5116       pDel->flags |= EP_OuterON;
5117       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
5118     }
5119     sqlite3ReleaseTempReg(pParse, regFree1);
5120   }
5121   sqlite3ExprDelete(db, pDel);
5122 
5123   /* Ensure adequate test coverage */
5124   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
5125   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
5126   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
5127   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
5128   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
5129   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
5130   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
5131   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
5132   testcase( xJump==0 );
5133 }
5134 
5135 /*
5136 ** Generate code for a boolean expression such that a jump is made
5137 ** to the label "dest" if the expression is true but execution
5138 ** continues straight thru if the expression is false.
5139 **
5140 ** If the expression evaluates to NULL (neither true nor false), then
5141 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5142 **
5143 ** This code depends on the fact that certain token values (ex: TK_EQ)
5144 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5145 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
5146 ** the make process cause these values to align.  Assert()s in the code
5147 ** below verify that the numbers are aligned correctly.
5148 */
5149 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5150   Vdbe *v = pParse->pVdbe;
5151   int op = 0;
5152   int regFree1 = 0;
5153   int regFree2 = 0;
5154   int r1, r2;
5155 
5156   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5157   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
5158   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
5159   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5160   op = pExpr->op;
5161   switch( op ){
5162     case TK_AND:
5163     case TK_OR: {
5164       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5165       if( pAlt!=pExpr ){
5166         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5167       }else if( op==TK_AND ){
5168         int d2 = sqlite3VdbeMakeLabel(pParse);
5169         testcase( jumpIfNull==0 );
5170         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5171                            jumpIfNull^SQLITE_JUMPIFNULL);
5172         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5173         sqlite3VdbeResolveLabel(v, d2);
5174       }else{
5175         testcase( jumpIfNull==0 );
5176         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5177         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5178       }
5179       break;
5180     }
5181     case TK_NOT: {
5182       testcase( jumpIfNull==0 );
5183       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5184       break;
5185     }
5186     case TK_TRUTH: {
5187       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
5188       int isTrue;     /* IS TRUE or IS NOT TRUE */
5189       testcase( jumpIfNull==0 );
5190       isNot = pExpr->op2==TK_ISNOT;
5191       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5192       testcase( isTrue && isNot );
5193       testcase( !isTrue && isNot );
5194       if( isTrue ^ isNot ){
5195         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5196                           isNot ? SQLITE_JUMPIFNULL : 0);
5197       }else{
5198         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5199                            isNot ? SQLITE_JUMPIFNULL : 0);
5200       }
5201       break;
5202     }
5203     case TK_IS:
5204     case TK_ISNOT:
5205       testcase( op==TK_IS );
5206       testcase( op==TK_ISNOT );
5207       op = (op==TK_IS) ? TK_EQ : TK_NE;
5208       jumpIfNull = SQLITE_NULLEQ;
5209       /* no break */ deliberate_fall_through
5210     case TK_LT:
5211     case TK_LE:
5212     case TK_GT:
5213     case TK_GE:
5214     case TK_NE:
5215     case TK_EQ: {
5216       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5217       testcase( jumpIfNull==0 );
5218       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5219       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5220       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5221                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5222       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5223       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5224       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5225       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5226       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5227       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5228       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5229       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5230       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5231       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5232       testcase( regFree1==0 );
5233       testcase( regFree2==0 );
5234       break;
5235     }
5236     case TK_ISNULL:
5237     case TK_NOTNULL: {
5238       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5239       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5240       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5241       sqlite3VdbeAddOp2(v, op, r1, dest);
5242       VdbeCoverageIf(v, op==TK_ISNULL);
5243       VdbeCoverageIf(v, op==TK_NOTNULL);
5244       testcase( regFree1==0 );
5245       break;
5246     }
5247     case TK_BETWEEN: {
5248       testcase( jumpIfNull==0 );
5249       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5250       break;
5251     }
5252 #ifndef SQLITE_OMIT_SUBQUERY
5253     case TK_IN: {
5254       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5255       int destIfNull = jumpIfNull ? dest : destIfFalse;
5256       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5257       sqlite3VdbeGoto(v, dest);
5258       sqlite3VdbeResolveLabel(v, destIfFalse);
5259       break;
5260     }
5261 #endif
5262     default: {
5263     default_expr:
5264       if( ExprAlwaysTrue(pExpr) ){
5265         sqlite3VdbeGoto(v, dest);
5266       }else if( ExprAlwaysFalse(pExpr) ){
5267         /* No-op */
5268       }else{
5269         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5270         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5271         VdbeCoverage(v);
5272         testcase( regFree1==0 );
5273         testcase( jumpIfNull==0 );
5274       }
5275       break;
5276     }
5277   }
5278   sqlite3ReleaseTempReg(pParse, regFree1);
5279   sqlite3ReleaseTempReg(pParse, regFree2);
5280 }
5281 
5282 /*
5283 ** Generate code for a boolean expression such that a jump is made
5284 ** to the label "dest" if the expression is false but execution
5285 ** continues straight thru if the expression is true.
5286 **
5287 ** If the expression evaluates to NULL (neither true nor false) then
5288 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5289 ** is 0.
5290 */
5291 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5292   Vdbe *v = pParse->pVdbe;
5293   int op = 0;
5294   int regFree1 = 0;
5295   int regFree2 = 0;
5296   int r1, r2;
5297 
5298   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5299   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5300   if( pExpr==0 )    return;
5301   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5302 
5303   /* The value of pExpr->op and op are related as follows:
5304   **
5305   **       pExpr->op            op
5306   **       ---------          ----------
5307   **       TK_ISNULL          OP_NotNull
5308   **       TK_NOTNULL         OP_IsNull
5309   **       TK_NE              OP_Eq
5310   **       TK_EQ              OP_Ne
5311   **       TK_GT              OP_Le
5312   **       TK_LE              OP_Gt
5313   **       TK_GE              OP_Lt
5314   **       TK_LT              OP_Ge
5315   **
5316   ** For other values of pExpr->op, op is undefined and unused.
5317   ** The value of TK_ and OP_ constants are arranged such that we
5318   ** can compute the mapping above using the following expression.
5319   ** Assert()s verify that the computation is correct.
5320   */
5321   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5322 
5323   /* Verify correct alignment of TK_ and OP_ constants
5324   */
5325   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5326   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5327   assert( pExpr->op!=TK_NE || op==OP_Eq );
5328   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5329   assert( pExpr->op!=TK_LT || op==OP_Ge );
5330   assert( pExpr->op!=TK_LE || op==OP_Gt );
5331   assert( pExpr->op!=TK_GT || op==OP_Le );
5332   assert( pExpr->op!=TK_GE || op==OP_Lt );
5333 
5334   switch( pExpr->op ){
5335     case TK_AND:
5336     case TK_OR: {
5337       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5338       if( pAlt!=pExpr ){
5339         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5340       }else if( pExpr->op==TK_AND ){
5341         testcase( jumpIfNull==0 );
5342         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5343         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5344       }else{
5345         int d2 = sqlite3VdbeMakeLabel(pParse);
5346         testcase( jumpIfNull==0 );
5347         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5348                           jumpIfNull^SQLITE_JUMPIFNULL);
5349         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5350         sqlite3VdbeResolveLabel(v, d2);
5351       }
5352       break;
5353     }
5354     case TK_NOT: {
5355       testcase( jumpIfNull==0 );
5356       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5357       break;
5358     }
5359     case TK_TRUTH: {
5360       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5361       int isTrue;  /* IS TRUE or IS NOT TRUE */
5362       testcase( jumpIfNull==0 );
5363       isNot = pExpr->op2==TK_ISNOT;
5364       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5365       testcase( isTrue && isNot );
5366       testcase( !isTrue && isNot );
5367       if( isTrue ^ isNot ){
5368         /* IS TRUE and IS NOT FALSE */
5369         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5370                            isNot ? 0 : SQLITE_JUMPIFNULL);
5371 
5372       }else{
5373         /* IS FALSE and IS NOT TRUE */
5374         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5375                           isNot ? 0 : SQLITE_JUMPIFNULL);
5376       }
5377       break;
5378     }
5379     case TK_IS:
5380     case TK_ISNOT:
5381       testcase( pExpr->op==TK_IS );
5382       testcase( pExpr->op==TK_ISNOT );
5383       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5384       jumpIfNull = SQLITE_NULLEQ;
5385       /* no break */ deliberate_fall_through
5386     case TK_LT:
5387     case TK_LE:
5388     case TK_GT:
5389     case TK_GE:
5390     case TK_NE:
5391     case TK_EQ: {
5392       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5393       testcase( jumpIfNull==0 );
5394       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5395       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5396       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5397                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5398       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5399       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5400       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5401       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5402       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5403       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5404       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5405       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5406       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5407       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5408       testcase( regFree1==0 );
5409       testcase( regFree2==0 );
5410       break;
5411     }
5412     case TK_ISNULL:
5413     case TK_NOTNULL: {
5414       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5415       sqlite3VdbeAddOp2(v, op, r1, dest);
5416       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5417       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5418       testcase( regFree1==0 );
5419       break;
5420     }
5421     case TK_BETWEEN: {
5422       testcase( jumpIfNull==0 );
5423       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5424       break;
5425     }
5426 #ifndef SQLITE_OMIT_SUBQUERY
5427     case TK_IN: {
5428       if( jumpIfNull ){
5429         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5430       }else{
5431         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5432         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5433         sqlite3VdbeResolveLabel(v, destIfNull);
5434       }
5435       break;
5436     }
5437 #endif
5438     default: {
5439     default_expr:
5440       if( ExprAlwaysFalse(pExpr) ){
5441         sqlite3VdbeGoto(v, dest);
5442       }else if( ExprAlwaysTrue(pExpr) ){
5443         /* no-op */
5444       }else{
5445         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5446         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5447         VdbeCoverage(v);
5448         testcase( regFree1==0 );
5449         testcase( jumpIfNull==0 );
5450       }
5451       break;
5452     }
5453   }
5454   sqlite3ReleaseTempReg(pParse, regFree1);
5455   sqlite3ReleaseTempReg(pParse, regFree2);
5456 }
5457 
5458 /*
5459 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5460 ** code generation, and that copy is deleted after code generation. This
5461 ** ensures that the original pExpr is unchanged.
5462 */
5463 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5464   sqlite3 *db = pParse->db;
5465   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5466   if( db->mallocFailed==0 ){
5467     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5468   }
5469   sqlite3ExprDelete(db, pCopy);
5470 }
5471 
5472 /*
5473 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5474 ** type of expression.
5475 **
5476 ** If pExpr is a simple SQL value - an integer, real, string, blob
5477 ** or NULL value - then the VDBE currently being prepared is configured
5478 ** to re-prepare each time a new value is bound to variable pVar.
5479 **
5480 ** Additionally, if pExpr is a simple SQL value and the value is the
5481 ** same as that currently bound to variable pVar, non-zero is returned.
5482 ** Otherwise, if the values are not the same or if pExpr is not a simple
5483 ** SQL value, zero is returned.
5484 */
5485 static int exprCompareVariable(
5486   const Parse *pParse,
5487   const Expr *pVar,
5488   const Expr *pExpr
5489 ){
5490   int res = 0;
5491   int iVar;
5492   sqlite3_value *pL, *pR = 0;
5493 
5494   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5495   if( pR ){
5496     iVar = pVar->iColumn;
5497     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5498     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5499     if( pL ){
5500       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5501         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5502       }
5503       res =  0==sqlite3MemCompare(pL, pR, 0);
5504     }
5505     sqlite3ValueFree(pR);
5506     sqlite3ValueFree(pL);
5507   }
5508 
5509   return res;
5510 }
5511 
5512 /*
5513 ** Do a deep comparison of two expression trees.  Return 0 if the two
5514 ** expressions are completely identical.  Return 1 if they differ only
5515 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5516 ** other than the top-level COLLATE operator.
5517 **
5518 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5519 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5520 **
5521 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5522 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5523 **
5524 ** Sometimes this routine will return 2 even if the two expressions
5525 ** really are equivalent.  If we cannot prove that the expressions are
5526 ** identical, we return 2 just to be safe.  So if this routine
5527 ** returns 2, then you do not really know for certain if the two
5528 ** expressions are the same.  But if you get a 0 or 1 return, then you
5529 ** can be sure the expressions are the same.  In the places where
5530 ** this routine is used, it does not hurt to get an extra 2 - that
5531 ** just might result in some slightly slower code.  But returning
5532 ** an incorrect 0 or 1 could lead to a malfunction.
5533 **
5534 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5535 ** pParse->pReprepare can be matched against literals in pB.  The
5536 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5537 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5538 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5539 ** pB causes a return value of 2.
5540 */
5541 int sqlite3ExprCompare(
5542   const Parse *pParse,
5543   const Expr *pA,
5544   const Expr *pB,
5545   int iTab
5546 ){
5547   u32 combinedFlags;
5548   if( pA==0 || pB==0 ){
5549     return pB==pA ? 0 : 2;
5550   }
5551   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5552     return 0;
5553   }
5554   combinedFlags = pA->flags | pB->flags;
5555   if( combinedFlags & EP_IntValue ){
5556     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5557       return 0;
5558     }
5559     return 2;
5560   }
5561   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5562     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5563       return 1;
5564     }
5565     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5566       return 1;
5567     }
5568     return 2;
5569   }
5570   assert( !ExprHasProperty(pA, EP_IntValue) );
5571   assert( !ExprHasProperty(pB, EP_IntValue) );
5572   if( pA->u.zToken ){
5573     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5574       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5575 #ifndef SQLITE_OMIT_WINDOWFUNC
5576       assert( pA->op==pB->op );
5577       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5578         return 2;
5579       }
5580       if( ExprHasProperty(pA,EP_WinFunc) ){
5581         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5582           return 2;
5583         }
5584       }
5585 #endif
5586     }else if( pA->op==TK_NULL ){
5587       return 0;
5588     }else if( pA->op==TK_COLLATE ){
5589       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5590     }else
5591     if( pB->u.zToken!=0
5592      && pA->op!=TK_COLUMN
5593      && pA->op!=TK_AGG_COLUMN
5594      && strcmp(pA->u.zToken,pB->u.zToken)!=0
5595     ){
5596       return 2;
5597     }
5598   }
5599   if( (pA->flags & (EP_Distinct|EP_Commuted))
5600      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5601   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5602     if( combinedFlags & EP_xIsSelect ) return 2;
5603     if( (combinedFlags & EP_FixedCol)==0
5604      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5605     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5606     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5607     if( pA->op!=TK_STRING
5608      && pA->op!=TK_TRUEFALSE
5609      && ALWAYS((combinedFlags & EP_Reduced)==0)
5610     ){
5611       if( pA->iColumn!=pB->iColumn ) return 2;
5612       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5613       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5614         return 2;
5615       }
5616     }
5617   }
5618   return 0;
5619 }
5620 
5621 /*
5622 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5623 ** if they are certainly different, or 2 if it is not possible to
5624 ** determine if they are identical or not.
5625 **
5626 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5627 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5628 **
5629 ** This routine might return non-zero for equivalent ExprLists.  The
5630 ** only consequence will be disabled optimizations.  But this routine
5631 ** must never return 0 if the two ExprList objects are different, or
5632 ** a malfunction will result.
5633 **
5634 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5635 ** always differs from a non-NULL pointer.
5636 */
5637 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
5638   int i;
5639   if( pA==0 && pB==0 ) return 0;
5640   if( pA==0 || pB==0 ) return 1;
5641   if( pA->nExpr!=pB->nExpr ) return 1;
5642   for(i=0; i<pA->nExpr; i++){
5643     int res;
5644     Expr *pExprA = pA->a[i].pExpr;
5645     Expr *pExprB = pB->a[i].pExpr;
5646     if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1;
5647     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5648   }
5649   return 0;
5650 }
5651 
5652 /*
5653 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5654 ** are ignored.
5655 */
5656 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
5657   return sqlite3ExprCompare(0,
5658              sqlite3ExprSkipCollateAndLikely(pA),
5659              sqlite3ExprSkipCollateAndLikely(pB),
5660              iTab);
5661 }
5662 
5663 /*
5664 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5665 **
5666 ** Or if seenNot is true, return non-zero if Expr p can only be
5667 ** non-NULL if pNN is not NULL
5668 */
5669 static int exprImpliesNotNull(
5670   const Parse *pParse,/* Parsing context */
5671   const Expr *p,      /* The expression to be checked */
5672   const Expr *pNN,    /* The expression that is NOT NULL */
5673   int iTab,           /* Table being evaluated */
5674   int seenNot         /* Return true only if p can be any non-NULL value */
5675 ){
5676   assert( p );
5677   assert( pNN );
5678   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5679     return pNN->op!=TK_NULL;
5680   }
5681   switch( p->op ){
5682     case TK_IN: {
5683       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5684       assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5685       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5686     }
5687     case TK_BETWEEN: {
5688       ExprList *pList;
5689       assert( ExprUseXList(p) );
5690       pList = p->x.pList;
5691       assert( pList!=0 );
5692       assert( pList->nExpr==2 );
5693       if( seenNot ) return 0;
5694       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5695        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5696       ){
5697         return 1;
5698       }
5699       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5700     }
5701     case TK_EQ:
5702     case TK_NE:
5703     case TK_LT:
5704     case TK_LE:
5705     case TK_GT:
5706     case TK_GE:
5707     case TK_PLUS:
5708     case TK_MINUS:
5709     case TK_BITOR:
5710     case TK_LSHIFT:
5711     case TK_RSHIFT:
5712     case TK_CONCAT:
5713       seenNot = 1;
5714       /* no break */ deliberate_fall_through
5715     case TK_STAR:
5716     case TK_REM:
5717     case TK_BITAND:
5718     case TK_SLASH: {
5719       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5720       /* no break */ deliberate_fall_through
5721     }
5722     case TK_SPAN:
5723     case TK_COLLATE:
5724     case TK_UPLUS:
5725     case TK_UMINUS: {
5726       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5727     }
5728     case TK_TRUTH: {
5729       if( seenNot ) return 0;
5730       if( p->op2!=TK_IS ) return 0;
5731       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5732     }
5733     case TK_BITNOT:
5734     case TK_NOT: {
5735       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5736     }
5737   }
5738   return 0;
5739 }
5740 
5741 /*
5742 ** Return true if we can prove the pE2 will always be true if pE1 is
5743 ** true.  Return false if we cannot complete the proof or if pE2 might
5744 ** be false.  Examples:
5745 **
5746 **     pE1: x==5       pE2: x==5             Result: true
5747 **     pE1: x>0        pE2: x==5             Result: false
5748 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5749 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5750 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5751 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5752 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5753 **
5754 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5755 ** Expr.iTable<0 then assume a table number given by iTab.
5756 **
5757 ** If pParse is not NULL, then the values of bound variables in pE1 are
5758 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5759 ** modified to record which bound variables are referenced.  If pParse
5760 ** is NULL, then false will be returned if pE1 contains any bound variables.
5761 **
5762 ** When in doubt, return false.  Returning true might give a performance
5763 ** improvement.  Returning false might cause a performance reduction, but
5764 ** it will always give the correct answer and is hence always safe.
5765 */
5766 int sqlite3ExprImpliesExpr(
5767   const Parse *pParse,
5768   const Expr *pE1,
5769   const Expr *pE2,
5770   int iTab
5771 ){
5772   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5773     return 1;
5774   }
5775   if( pE2->op==TK_OR
5776    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5777              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5778   ){
5779     return 1;
5780   }
5781   if( pE2->op==TK_NOTNULL
5782    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5783   ){
5784     return 1;
5785   }
5786   return 0;
5787 }
5788 
5789 /*
5790 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5791 ** If the expression node requires that the table at pWalker->iCur
5792 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5793 **
5794 ** This routine controls an optimization.  False positives (setting
5795 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5796 ** (never setting pWalker->eCode) is a harmless missed optimization.
5797 */
5798 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5799   testcase( pExpr->op==TK_AGG_COLUMN );
5800   testcase( pExpr->op==TK_AGG_FUNCTION );
5801   if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune;
5802   switch( pExpr->op ){
5803     case TK_ISNOT:
5804     case TK_ISNULL:
5805     case TK_NOTNULL:
5806     case TK_IS:
5807     case TK_OR:
5808     case TK_VECTOR:
5809     case TK_CASE:
5810     case TK_IN:
5811     case TK_FUNCTION:
5812     case TK_TRUTH:
5813       testcase( pExpr->op==TK_ISNOT );
5814       testcase( pExpr->op==TK_ISNULL );
5815       testcase( pExpr->op==TK_NOTNULL );
5816       testcase( pExpr->op==TK_IS );
5817       testcase( pExpr->op==TK_OR );
5818       testcase( pExpr->op==TK_VECTOR );
5819       testcase( pExpr->op==TK_CASE );
5820       testcase( pExpr->op==TK_IN );
5821       testcase( pExpr->op==TK_FUNCTION );
5822       testcase( pExpr->op==TK_TRUTH );
5823       return WRC_Prune;
5824     case TK_COLUMN:
5825       if( pWalker->u.iCur==pExpr->iTable ){
5826         pWalker->eCode = 1;
5827         return WRC_Abort;
5828       }
5829       return WRC_Prune;
5830 
5831     case TK_AND:
5832       if( pWalker->eCode==0 ){
5833         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5834         if( pWalker->eCode ){
5835           pWalker->eCode = 0;
5836           sqlite3WalkExpr(pWalker, pExpr->pRight);
5837         }
5838       }
5839       return WRC_Prune;
5840 
5841     case TK_BETWEEN:
5842       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5843         assert( pWalker->eCode );
5844         return WRC_Abort;
5845       }
5846       return WRC_Prune;
5847 
5848     /* Virtual tables are allowed to use constraints like x=NULL.  So
5849     ** a term of the form x=y does not prove that y is not null if x
5850     ** is the column of a virtual table */
5851     case TK_EQ:
5852     case TK_NE:
5853     case TK_LT:
5854     case TK_LE:
5855     case TK_GT:
5856     case TK_GE: {
5857       Expr *pLeft = pExpr->pLeft;
5858       Expr *pRight = pExpr->pRight;
5859       testcase( pExpr->op==TK_EQ );
5860       testcase( pExpr->op==TK_NE );
5861       testcase( pExpr->op==TK_LT );
5862       testcase( pExpr->op==TK_LE );
5863       testcase( pExpr->op==TK_GT );
5864       testcase( pExpr->op==TK_GE );
5865       /* The y.pTab=0 assignment in wherecode.c always happens after the
5866       ** impliesNotNullRow() test */
5867       assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
5868       assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
5869       if( (pLeft->op==TK_COLUMN
5870            && pLeft->y.pTab!=0
5871            && IsVirtual(pLeft->y.pTab))
5872        || (pRight->op==TK_COLUMN
5873            && pRight->y.pTab!=0
5874            && IsVirtual(pRight->y.pTab))
5875       ){
5876         return WRC_Prune;
5877       }
5878       /* no break */ deliberate_fall_through
5879     }
5880     default:
5881       return WRC_Continue;
5882   }
5883 }
5884 
5885 /*
5886 ** Return true (non-zero) if expression p can only be true if at least
5887 ** one column of table iTab is non-null.  In other words, return true
5888 ** if expression p will always be NULL or false if every column of iTab
5889 ** is NULL.
5890 **
5891 ** False negatives are acceptable.  In other words, it is ok to return
5892 ** zero even if expression p will never be true of every column of iTab
5893 ** is NULL.  A false negative is merely a missed optimization opportunity.
5894 **
5895 ** False positives are not allowed, however.  A false positive may result
5896 ** in an incorrect answer.
5897 **
5898 ** Terms of p that are marked with EP_OuterON (and hence that come from
5899 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
5900 **
5901 ** This routine is used to check if a LEFT JOIN can be converted into
5902 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5903 ** clause requires that some column of the right table of the LEFT JOIN
5904 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5905 ** ordinary join.
5906 */
5907 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5908   Walker w;
5909   p = sqlite3ExprSkipCollateAndLikely(p);
5910   if( p==0 ) return 0;
5911   if( p->op==TK_NOTNULL ){
5912     p = p->pLeft;
5913   }else{
5914     while( p->op==TK_AND ){
5915       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5916       p = p->pRight;
5917     }
5918   }
5919   w.xExprCallback = impliesNotNullRow;
5920   w.xSelectCallback = 0;
5921   w.xSelectCallback2 = 0;
5922   w.eCode = 0;
5923   w.u.iCur = iTab;
5924   sqlite3WalkExpr(&w, p);
5925   return w.eCode;
5926 }
5927 
5928 /*
5929 ** An instance of the following structure is used by the tree walker
5930 ** to determine if an expression can be evaluated by reference to the
5931 ** index only, without having to do a search for the corresponding
5932 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5933 ** is the cursor for the table.
5934 */
5935 struct IdxCover {
5936   Index *pIdx;     /* The index to be tested for coverage */
5937   int iCur;        /* Cursor number for the table corresponding to the index */
5938 };
5939 
5940 /*
5941 ** Check to see if there are references to columns in table
5942 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5943 ** pWalker->u.pIdxCover->pIdx.
5944 */
5945 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5946   if( pExpr->op==TK_COLUMN
5947    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5948    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5949   ){
5950     pWalker->eCode = 1;
5951     return WRC_Abort;
5952   }
5953   return WRC_Continue;
5954 }
5955 
5956 /*
5957 ** Determine if an index pIdx on table with cursor iCur contains will
5958 ** the expression pExpr.  Return true if the index does cover the
5959 ** expression and false if the pExpr expression references table columns
5960 ** that are not found in the index pIdx.
5961 **
5962 ** An index covering an expression means that the expression can be
5963 ** evaluated using only the index and without having to lookup the
5964 ** corresponding table entry.
5965 */
5966 int sqlite3ExprCoveredByIndex(
5967   Expr *pExpr,        /* The index to be tested */
5968   int iCur,           /* The cursor number for the corresponding table */
5969   Index *pIdx         /* The index that might be used for coverage */
5970 ){
5971   Walker w;
5972   struct IdxCover xcov;
5973   memset(&w, 0, sizeof(w));
5974   xcov.iCur = iCur;
5975   xcov.pIdx = pIdx;
5976   w.xExprCallback = exprIdxCover;
5977   w.u.pIdxCover = &xcov;
5978   sqlite3WalkExpr(&w, pExpr);
5979   return !w.eCode;
5980 }
5981 
5982 
5983 /* Structure used to pass information throught the Walker in order to
5984 ** implement sqlite3ReferencesSrcList().
5985 */
5986 struct RefSrcList {
5987   sqlite3 *db;         /* Database connection used for sqlite3DbRealloc() */
5988   SrcList *pRef;       /* Looking for references to these tables */
5989   i64 nExclude;        /* Number of tables to exclude from the search */
5990   int *aiExclude;      /* Cursor IDs for tables to exclude from the search */
5991 };
5992 
5993 /*
5994 ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
5995 **
5996 ** When entering a new subquery on the pExpr argument, add all FROM clause
5997 ** entries for that subquery to the exclude list.
5998 **
5999 ** When leaving the subquery, remove those entries from the exclude list.
6000 */
6001 static int selectRefEnter(Walker *pWalker, Select *pSelect){
6002   struct RefSrcList *p = pWalker->u.pRefSrcList;
6003   SrcList *pSrc = pSelect->pSrc;
6004   i64 i, j;
6005   int *piNew;
6006   if( pSrc->nSrc==0 ) return WRC_Continue;
6007   j = p->nExclude;
6008   p->nExclude += pSrc->nSrc;
6009   piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
6010   if( piNew==0 ){
6011     p->nExclude = 0;
6012     return WRC_Abort;
6013   }else{
6014     p->aiExclude = piNew;
6015   }
6016   for(i=0; i<pSrc->nSrc; i++, j++){
6017      p->aiExclude[j] = pSrc->a[i].iCursor;
6018   }
6019   return WRC_Continue;
6020 }
6021 static void selectRefLeave(Walker *pWalker, Select *pSelect){
6022   struct RefSrcList *p = pWalker->u.pRefSrcList;
6023   SrcList *pSrc = pSelect->pSrc;
6024   if( p->nExclude ){
6025     assert( p->nExclude>=pSrc->nSrc );
6026     p->nExclude -= pSrc->nSrc;
6027   }
6028 }
6029 
6030 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
6031 **
6032 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
6033 ** of the tables shown in RefSrcList.pRef.
6034 **
6035 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
6036 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
6037 */
6038 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
6039   if( pExpr->op==TK_COLUMN
6040    || pExpr->op==TK_AGG_COLUMN
6041   ){
6042     int i;
6043     struct RefSrcList *p = pWalker->u.pRefSrcList;
6044     SrcList *pSrc = p->pRef;
6045     int nSrc = pSrc ? pSrc->nSrc : 0;
6046     for(i=0; i<nSrc; i++){
6047       if( pExpr->iTable==pSrc->a[i].iCursor ){
6048         pWalker->eCode |= 1;
6049         return WRC_Continue;
6050       }
6051     }
6052     for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
6053     if( i>=p->nExclude ){
6054       pWalker->eCode |= 2;
6055     }
6056   }
6057   return WRC_Continue;
6058 }
6059 
6060 /*
6061 ** Check to see if pExpr references any tables in pSrcList.
6062 ** Possible return values:
6063 **
6064 **    1         pExpr does references a table in pSrcList.
6065 **
6066 **    0         pExpr references some table that is not defined in either
6067 **              pSrcList or in subqueries of pExpr itself.
6068 **
6069 **   -1         pExpr only references no tables at all, or it only
6070 **              references tables defined in subqueries of pExpr itself.
6071 **
6072 ** As currently used, pExpr is always an aggregate function call.  That
6073 ** fact is exploited for efficiency.
6074 */
6075 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
6076   Walker w;
6077   struct RefSrcList x;
6078   memset(&w, 0, sizeof(w));
6079   memset(&x, 0, sizeof(x));
6080   w.xExprCallback = exprRefToSrcList;
6081   w.xSelectCallback = selectRefEnter;
6082   w.xSelectCallback2 = selectRefLeave;
6083   w.u.pRefSrcList = &x;
6084   x.db = pParse->db;
6085   x.pRef = pSrcList;
6086   assert( pExpr->op==TK_AGG_FUNCTION );
6087   assert( ExprUseXList(pExpr) );
6088   sqlite3WalkExprList(&w, pExpr->x.pList);
6089 #ifndef SQLITE_OMIT_WINDOWFUNC
6090   if( ExprHasProperty(pExpr, EP_WinFunc) ){
6091     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
6092   }
6093 #endif
6094   sqlite3DbFree(pParse->db, x.aiExclude);
6095   if( w.eCode & 0x01 ){
6096     return 1;
6097   }else if( w.eCode ){
6098     return 0;
6099   }else{
6100     return -1;
6101   }
6102 }
6103 
6104 /*
6105 ** This is a Walker expression node callback.
6106 **
6107 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
6108 ** object that is referenced does not refer directly to the Expr.  If
6109 ** it does, make a copy.  This is done because the pExpr argument is
6110 ** subject to change.
6111 **
6112 ** The copy is stored on pParse->pConstExpr with a register number of 0.
6113 ** This will cause the expression to be deleted automatically when the
6114 ** Parse object is destroyed, but the zero register number means that it
6115 ** will not generate any code in the preamble.
6116 */
6117 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
6118   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
6119    && pExpr->pAggInfo!=0
6120   ){
6121     AggInfo *pAggInfo = pExpr->pAggInfo;
6122     int iAgg = pExpr->iAgg;
6123     Parse *pParse = pWalker->pParse;
6124     sqlite3 *db = pParse->db;
6125     if( pExpr->op!=TK_AGG_FUNCTION ){
6126       assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_IF_NULL_ROW );
6127       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
6128       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
6129         pExpr = sqlite3ExprDup(db, pExpr, 0);
6130         if( pExpr ){
6131           pAggInfo->aCol[iAgg].pCExpr = pExpr;
6132           sqlite3ExprDeferredDelete(pParse, pExpr);
6133         }
6134       }
6135     }else{
6136       assert( pExpr->op==TK_AGG_FUNCTION );
6137       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
6138       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
6139         pExpr = sqlite3ExprDup(db, pExpr, 0);
6140         if( pExpr ){
6141           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
6142           sqlite3ExprDeferredDelete(pParse, pExpr);
6143         }
6144       }
6145     }
6146   }
6147   return WRC_Continue;
6148 }
6149 
6150 /*
6151 ** Initialize a Walker object so that will persist AggInfo entries referenced
6152 ** by the tree that is walked.
6153 */
6154 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
6155   memset(pWalker, 0, sizeof(*pWalker));
6156   pWalker->pParse = pParse;
6157   pWalker->xExprCallback = agginfoPersistExprCb;
6158   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
6159 }
6160 
6161 /*
6162 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
6163 ** the new element.  Return a negative number if malloc fails.
6164 */
6165 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
6166   int i;
6167   pInfo->aCol = sqlite3ArrayAllocate(
6168        db,
6169        pInfo->aCol,
6170        sizeof(pInfo->aCol[0]),
6171        &pInfo->nColumn,
6172        &i
6173   );
6174   return i;
6175 }
6176 
6177 /*
6178 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
6179 ** the new element.  Return a negative number if malloc fails.
6180 */
6181 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
6182   int i;
6183   pInfo->aFunc = sqlite3ArrayAllocate(
6184        db,
6185        pInfo->aFunc,
6186        sizeof(pInfo->aFunc[0]),
6187        &pInfo->nFunc,
6188        &i
6189   );
6190   return i;
6191 }
6192 
6193 /*
6194 ** This is the xExprCallback for a tree walker.  It is used to
6195 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
6196 ** for additional information.
6197 */
6198 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
6199   int i;
6200   NameContext *pNC = pWalker->u.pNC;
6201   Parse *pParse = pNC->pParse;
6202   SrcList *pSrcList = pNC->pSrcList;
6203   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6204 
6205   assert( pNC->ncFlags & NC_UAggInfo );
6206   switch( pExpr->op ){
6207     case TK_IF_NULL_ROW:
6208     case TK_AGG_COLUMN:
6209     case TK_COLUMN: {
6210       testcase( pExpr->op==TK_AGG_COLUMN );
6211       testcase( pExpr->op==TK_COLUMN );
6212       testcase( pExpr->op==TK_IF_NULL_ROW );
6213       /* Check to see if the column is in one of the tables in the FROM
6214       ** clause of the aggregate query */
6215       if( ALWAYS(pSrcList!=0) ){
6216         SrcItem *pItem = pSrcList->a;
6217         for(i=0; i<pSrcList->nSrc; i++, pItem++){
6218           struct AggInfo_col *pCol;
6219           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6220           if( pExpr->iTable==pItem->iCursor ){
6221             /* If we reach this point, it means that pExpr refers to a table
6222             ** that is in the FROM clause of the aggregate query.
6223             **
6224             ** Make an entry for the column in pAggInfo->aCol[] if there
6225             ** is not an entry there already.
6226             */
6227             int k;
6228             pCol = pAggInfo->aCol;
6229             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6230               if( pCol->iTable==pExpr->iTable &&
6231                   pCol->iColumn==pExpr->iColumn ){
6232                 break;
6233               }
6234             }
6235             if( (k>=pAggInfo->nColumn)
6236              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
6237             ){
6238               pCol = &pAggInfo->aCol[k];
6239               assert( ExprUseYTab(pExpr) );
6240               pCol->pTab = pExpr->y.pTab;
6241               pCol->iTable = pExpr->iTable;
6242               pCol->iColumn = pExpr->iColumn;
6243               pCol->iMem = ++pParse->nMem;
6244               pCol->iSorterColumn = -1;
6245               pCol->pCExpr = pExpr;
6246               if( pAggInfo->pGroupBy ){
6247                 int j, n;
6248                 ExprList *pGB = pAggInfo->pGroupBy;
6249                 struct ExprList_item *pTerm = pGB->a;
6250                 n = pGB->nExpr;
6251                 for(j=0; j<n; j++, pTerm++){
6252                   Expr *pE = pTerm->pExpr;
6253                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
6254                       pE->iColumn==pExpr->iColumn ){
6255                     pCol->iSorterColumn = j;
6256                     break;
6257                   }
6258                 }
6259               }
6260               if( pCol->iSorterColumn<0 ){
6261                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6262               }
6263             }
6264             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
6265             ** because it was there before or because we just created it).
6266             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
6267             ** pAggInfo->aCol[] entry.
6268             */
6269             ExprSetVVAProperty(pExpr, EP_NoReduce);
6270             pExpr->pAggInfo = pAggInfo;
6271             if( pExpr->op==TK_COLUMN ){
6272               pExpr->op = TK_AGG_COLUMN;
6273             }
6274             pExpr->iAgg = (i16)k;
6275             break;
6276           } /* endif pExpr->iTable==pItem->iCursor */
6277         } /* end loop over pSrcList */
6278       }
6279       return WRC_Prune;
6280     }
6281     case TK_AGG_FUNCTION: {
6282       if( (pNC->ncFlags & NC_InAggFunc)==0
6283        && pWalker->walkerDepth==pExpr->op2
6284       ){
6285         /* Check to see if pExpr is a duplicate of another aggregate
6286         ** function that is already in the pAggInfo structure
6287         */
6288         struct AggInfo_func *pItem = pAggInfo->aFunc;
6289         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6290           if( pItem->pFExpr==pExpr ) break;
6291           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6292             break;
6293           }
6294         }
6295         if( i>=pAggInfo->nFunc ){
6296           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6297           */
6298           u8 enc = ENC(pParse->db);
6299           i = addAggInfoFunc(pParse->db, pAggInfo);
6300           if( i>=0 ){
6301             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6302             pItem = &pAggInfo->aFunc[i];
6303             pItem->pFExpr = pExpr;
6304             pItem->iMem = ++pParse->nMem;
6305             assert( ExprUseUToken(pExpr) );
6306             pItem->pFunc = sqlite3FindFunction(pParse->db,
6307                    pExpr->u.zToken,
6308                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6309             if( pExpr->flags & EP_Distinct ){
6310               pItem->iDistinct = pParse->nTab++;
6311             }else{
6312               pItem->iDistinct = -1;
6313             }
6314           }
6315         }
6316         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6317         */
6318         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6319         ExprSetVVAProperty(pExpr, EP_NoReduce);
6320         pExpr->iAgg = (i16)i;
6321         pExpr->pAggInfo = pAggInfo;
6322         return WRC_Prune;
6323       }else{
6324         return WRC_Continue;
6325       }
6326     }
6327   }
6328   return WRC_Continue;
6329 }
6330 
6331 /*
6332 ** Analyze the pExpr expression looking for aggregate functions and
6333 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6334 ** points to.  Additional entries are made on the AggInfo object as
6335 ** necessary.
6336 **
6337 ** This routine should only be called after the expression has been
6338 ** analyzed by sqlite3ResolveExprNames().
6339 */
6340 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6341   Walker w;
6342   w.xExprCallback = analyzeAggregate;
6343   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6344   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6345   w.walkerDepth = 0;
6346   w.u.pNC = pNC;
6347   w.pParse = 0;
6348   assert( pNC->pSrcList!=0 );
6349   sqlite3WalkExpr(&w, pExpr);
6350 }
6351 
6352 /*
6353 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6354 ** expression list.  Return the number of errors.
6355 **
6356 ** If an error is found, the analysis is cut short.
6357 */
6358 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6359   struct ExprList_item *pItem;
6360   int i;
6361   if( pList ){
6362     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6363       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6364     }
6365   }
6366 }
6367 
6368 /*
6369 ** Allocate a single new register for use to hold some intermediate result.
6370 */
6371 int sqlite3GetTempReg(Parse *pParse){
6372   if( pParse->nTempReg==0 ){
6373     return ++pParse->nMem;
6374   }
6375   return pParse->aTempReg[--pParse->nTempReg];
6376 }
6377 
6378 /*
6379 ** Deallocate a register, making available for reuse for some other
6380 ** purpose.
6381 */
6382 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6383   if( iReg ){
6384     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6385     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6386       pParse->aTempReg[pParse->nTempReg++] = iReg;
6387     }
6388   }
6389 }
6390 
6391 /*
6392 ** Allocate or deallocate a block of nReg consecutive registers.
6393 */
6394 int sqlite3GetTempRange(Parse *pParse, int nReg){
6395   int i, n;
6396   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6397   i = pParse->iRangeReg;
6398   n = pParse->nRangeReg;
6399   if( nReg<=n ){
6400     pParse->iRangeReg += nReg;
6401     pParse->nRangeReg -= nReg;
6402   }else{
6403     i = pParse->nMem+1;
6404     pParse->nMem += nReg;
6405   }
6406   return i;
6407 }
6408 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6409   if( nReg==1 ){
6410     sqlite3ReleaseTempReg(pParse, iReg);
6411     return;
6412   }
6413   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6414   if( nReg>pParse->nRangeReg ){
6415     pParse->nRangeReg = nReg;
6416     pParse->iRangeReg = iReg;
6417   }
6418 }
6419 
6420 /*
6421 ** Mark all temporary registers as being unavailable for reuse.
6422 **
6423 ** Always invoke this procedure after coding a subroutine or co-routine
6424 ** that might be invoked from other parts of the code, to ensure that
6425 ** the sub/co-routine does not use registers in common with the code that
6426 ** invokes the sub/co-routine.
6427 */
6428 void sqlite3ClearTempRegCache(Parse *pParse){
6429   pParse->nTempReg = 0;
6430   pParse->nRangeReg = 0;
6431 }
6432 
6433 /*
6434 ** Validate that no temporary register falls within the range of
6435 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6436 ** statements.
6437 */
6438 #ifdef SQLITE_DEBUG
6439 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6440   int i;
6441   if( pParse->nRangeReg>0
6442    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6443    && pParse->iRangeReg <= iLast
6444   ){
6445      return 0;
6446   }
6447   for(i=0; i<pParse->nTempReg; i++){
6448     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6449       return 0;
6450     }
6451   }
6452   return 1;
6453 }
6454 #endif /* SQLITE_DEBUG */
6455