1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op = pExpr->op; 35 if( op==TK_SELECT ){ 36 assert( pExpr->flags&EP_xIsSelect ); 37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 38 } 39 #ifndef SQLITE_OMIT_CAST 40 if( op==TK_CAST ){ 41 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 42 return sqlite3AffinityType(pExpr->u.zToken); 43 } 44 #endif 45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 46 && pExpr->pTab!=0 47 ){ 48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 49 ** a TK_COLUMN but was previously evaluated and cached in a register */ 50 int j = pExpr->iColumn; 51 if( j<0 ) return SQLITE_AFF_INTEGER; 52 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 53 return pExpr->pTab->aCol[j].affinity; 54 } 55 return pExpr->affinity; 56 } 57 58 /* 59 ** Set the collating sequence for expression pExpr to be the collating 60 ** sequence named by pToken. Return a pointer to the revised expression. 61 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 62 ** flag. An explicit collating sequence will override implicit 63 ** collating sequences. 64 */ 65 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){ 66 char *zColl = 0; /* Dequoted name of collation sequence */ 67 CollSeq *pColl; 68 sqlite3 *db = pParse->db; 69 zColl = sqlite3NameFromToken(db, pCollName); 70 if( pExpr && zColl ){ 71 pColl = sqlite3LocateCollSeq(pParse, zColl); 72 if( pColl ){ 73 pExpr->pColl = pColl; 74 pExpr->flags |= EP_ExpCollate; 75 } 76 } 77 sqlite3DbFree(db, zColl); 78 return pExpr; 79 } 80 81 /* 82 ** Return the default collation sequence for the expression pExpr. If 83 ** there is no default collation type, return 0. 84 */ 85 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 86 CollSeq *pColl = 0; 87 Expr *p = pExpr; 88 while( ALWAYS(p) ){ 89 int op; 90 pColl = p->pColl; 91 if( pColl ) break; 92 op = p->op; 93 if( p->pTab!=0 && ( 94 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER 95 )){ 96 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 97 ** a TK_COLUMN but was previously evaluated and cached in a register */ 98 const char *zColl; 99 int j = p->iColumn; 100 if( j>=0 ){ 101 sqlite3 *db = pParse->db; 102 zColl = p->pTab->aCol[j].zColl; 103 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 104 pExpr->pColl = pColl; 105 } 106 break; 107 } 108 if( op!=TK_CAST && op!=TK_UPLUS ){ 109 break; 110 } 111 p = p->pLeft; 112 } 113 if( sqlite3CheckCollSeq(pParse, pColl) ){ 114 pColl = 0; 115 } 116 return pColl; 117 } 118 119 /* 120 ** pExpr is an operand of a comparison operator. aff2 is the 121 ** type affinity of the other operand. This routine returns the 122 ** type affinity that should be used for the comparison operator. 123 */ 124 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 125 char aff1 = sqlite3ExprAffinity(pExpr); 126 if( aff1 && aff2 ){ 127 /* Both sides of the comparison are columns. If one has numeric 128 ** affinity, use that. Otherwise use no affinity. 129 */ 130 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 131 return SQLITE_AFF_NUMERIC; 132 }else{ 133 return SQLITE_AFF_NONE; 134 } 135 }else if( !aff1 && !aff2 ){ 136 /* Neither side of the comparison is a column. Compare the 137 ** results directly. 138 */ 139 return SQLITE_AFF_NONE; 140 }else{ 141 /* One side is a column, the other is not. Use the columns affinity. */ 142 assert( aff1==0 || aff2==0 ); 143 return (aff1 + aff2); 144 } 145 } 146 147 /* 148 ** pExpr is a comparison operator. Return the type affinity that should 149 ** be applied to both operands prior to doing the comparison. 150 */ 151 static char comparisonAffinity(Expr *pExpr){ 152 char aff; 153 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 154 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 155 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 156 assert( pExpr->pLeft ); 157 aff = sqlite3ExprAffinity(pExpr->pLeft); 158 if( pExpr->pRight ){ 159 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 160 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 161 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 162 }else if( !aff ){ 163 aff = SQLITE_AFF_NONE; 164 } 165 return aff; 166 } 167 168 /* 169 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 170 ** idx_affinity is the affinity of an indexed column. Return true 171 ** if the index with affinity idx_affinity may be used to implement 172 ** the comparison in pExpr. 173 */ 174 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 175 char aff = comparisonAffinity(pExpr); 176 switch( aff ){ 177 case SQLITE_AFF_NONE: 178 return 1; 179 case SQLITE_AFF_TEXT: 180 return idx_affinity==SQLITE_AFF_TEXT; 181 default: 182 return sqlite3IsNumericAffinity(idx_affinity); 183 } 184 } 185 186 /* 187 ** Return the P5 value that should be used for a binary comparison 188 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 189 */ 190 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 191 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 192 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 193 return aff; 194 } 195 196 /* 197 ** Return a pointer to the collation sequence that should be used by 198 ** a binary comparison operator comparing pLeft and pRight. 199 ** 200 ** If the left hand expression has a collating sequence type, then it is 201 ** used. Otherwise the collation sequence for the right hand expression 202 ** is used, or the default (BINARY) if neither expression has a collating 203 ** type. 204 ** 205 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 206 ** it is not considered. 207 */ 208 CollSeq *sqlite3BinaryCompareCollSeq( 209 Parse *pParse, 210 Expr *pLeft, 211 Expr *pRight 212 ){ 213 CollSeq *pColl; 214 assert( pLeft ); 215 if( pLeft->flags & EP_ExpCollate ){ 216 assert( pLeft->pColl ); 217 pColl = pLeft->pColl; 218 }else if( pRight && pRight->flags & EP_ExpCollate ){ 219 assert( pRight->pColl ); 220 pColl = pRight->pColl; 221 }else{ 222 pColl = sqlite3ExprCollSeq(pParse, pLeft); 223 if( !pColl ){ 224 pColl = sqlite3ExprCollSeq(pParse, pRight); 225 } 226 } 227 return pColl; 228 } 229 230 /* 231 ** Generate the operands for a comparison operation. Before 232 ** generating the code for each operand, set the EP_AnyAff 233 ** flag on the expression so that it will be able to used a 234 ** cached column value that has previously undergone an 235 ** affinity change. 236 */ 237 static void codeCompareOperands( 238 Parse *pParse, /* Parsing and code generating context */ 239 Expr *pLeft, /* The left operand */ 240 int *pRegLeft, /* Register where left operand is stored */ 241 int *pFreeLeft, /* Free this register when done */ 242 Expr *pRight, /* The right operand */ 243 int *pRegRight, /* Register where right operand is stored */ 244 int *pFreeRight /* Write temp register for right operand there */ 245 ){ 246 while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft; 247 pLeft->flags |= EP_AnyAff; 248 *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft); 249 while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft; 250 pRight->flags |= EP_AnyAff; 251 *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight); 252 } 253 254 /* 255 ** Generate code for a comparison operator. 256 */ 257 static int codeCompare( 258 Parse *pParse, /* The parsing (and code generating) context */ 259 Expr *pLeft, /* The left operand */ 260 Expr *pRight, /* The right operand */ 261 int opcode, /* The comparison opcode */ 262 int in1, int in2, /* Register holding operands */ 263 int dest, /* Jump here if true. */ 264 int jumpIfNull /* If true, jump if either operand is NULL */ 265 ){ 266 int p5; 267 int addr; 268 CollSeq *p4; 269 270 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 271 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 272 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 273 (void*)p4, P4_COLLSEQ); 274 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 275 if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){ 276 sqlite3ExprCacheAffinityChange(pParse, in1, 1); 277 sqlite3ExprCacheAffinityChange(pParse, in2, 1); 278 } 279 return addr; 280 } 281 282 #if SQLITE_MAX_EXPR_DEPTH>0 283 /* 284 ** Check that argument nHeight is less than or equal to the maximum 285 ** expression depth allowed. If it is not, leave an error message in 286 ** pParse. 287 */ 288 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 289 int rc = SQLITE_OK; 290 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 291 if( nHeight>mxHeight ){ 292 sqlite3ErrorMsg(pParse, 293 "Expression tree is too large (maximum depth %d)", mxHeight 294 ); 295 rc = SQLITE_ERROR; 296 } 297 return rc; 298 } 299 300 /* The following three functions, heightOfExpr(), heightOfExprList() 301 ** and heightOfSelect(), are used to determine the maximum height 302 ** of any expression tree referenced by the structure passed as the 303 ** first argument. 304 ** 305 ** If this maximum height is greater than the current value pointed 306 ** to by pnHeight, the second parameter, then set *pnHeight to that 307 ** value. 308 */ 309 static void heightOfExpr(Expr *p, int *pnHeight){ 310 if( p ){ 311 if( p->nHeight>*pnHeight ){ 312 *pnHeight = p->nHeight; 313 } 314 } 315 } 316 static void heightOfExprList(ExprList *p, int *pnHeight){ 317 if( p ){ 318 int i; 319 for(i=0; i<p->nExpr; i++){ 320 heightOfExpr(p->a[i].pExpr, pnHeight); 321 } 322 } 323 } 324 static void heightOfSelect(Select *p, int *pnHeight){ 325 if( p ){ 326 heightOfExpr(p->pWhere, pnHeight); 327 heightOfExpr(p->pHaving, pnHeight); 328 heightOfExpr(p->pLimit, pnHeight); 329 heightOfExpr(p->pOffset, pnHeight); 330 heightOfExprList(p->pEList, pnHeight); 331 heightOfExprList(p->pGroupBy, pnHeight); 332 heightOfExprList(p->pOrderBy, pnHeight); 333 heightOfSelect(p->pPrior, pnHeight); 334 } 335 } 336 337 /* 338 ** Set the Expr.nHeight variable in the structure passed as an 339 ** argument. An expression with no children, Expr.pList or 340 ** Expr.pSelect member has a height of 1. Any other expression 341 ** has a height equal to the maximum height of any other 342 ** referenced Expr plus one. 343 */ 344 static void exprSetHeight(Expr *p){ 345 int nHeight = 0; 346 heightOfExpr(p->pLeft, &nHeight); 347 heightOfExpr(p->pRight, &nHeight); 348 if( ExprHasProperty(p, EP_xIsSelect) ){ 349 heightOfSelect(p->x.pSelect, &nHeight); 350 }else{ 351 heightOfExprList(p->x.pList, &nHeight); 352 } 353 p->nHeight = nHeight + 1; 354 } 355 356 /* 357 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 358 ** the height is greater than the maximum allowed expression depth, 359 ** leave an error in pParse. 360 */ 361 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 362 exprSetHeight(p); 363 sqlite3ExprCheckHeight(pParse, p->nHeight); 364 } 365 366 /* 367 ** Return the maximum height of any expression tree referenced 368 ** by the select statement passed as an argument. 369 */ 370 int sqlite3SelectExprHeight(Select *p){ 371 int nHeight = 0; 372 heightOfSelect(p, &nHeight); 373 return nHeight; 374 } 375 #else 376 #define exprSetHeight(y) 377 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 378 379 /* 380 ** This routine is the core allocator for Expr nodes. 381 ** 382 ** Construct a new expression node and return a pointer to it. Memory 383 ** for this node and for the pToken argument is a single allocation 384 ** obtained from sqlite3DbMalloc(). The calling function 385 ** is responsible for making sure the node eventually gets freed. 386 ** 387 ** If dequote is true, then the token (if it exists) is dequoted. 388 ** If dequote is false, no dequoting is performance. The deQuote 389 ** parameter is ignored if pToken is NULL or if the token does not 390 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 391 ** then the EP_DblQuoted flag is set on the expression node. 392 ** 393 ** Special case: If op==TK_INTEGER and pToken points to a string that 394 ** can be translated into a 32-bit integer, then the token is not 395 ** stored in u.zToken. Instead, the integer values is written 396 ** into u.iValue and the EP_IntValue flag is set. No extra storage 397 ** is allocated to hold the integer text and the dequote flag is ignored. 398 */ 399 Expr *sqlite3ExprAlloc( 400 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 401 int op, /* Expression opcode */ 402 const Token *pToken, /* Token argument. Might be NULL */ 403 int dequote /* True to dequote */ 404 ){ 405 Expr *pNew; 406 int nExtra = 0; 407 int iValue = 0; 408 409 if( pToken ){ 410 if( op!=TK_INTEGER || pToken->z==0 411 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 412 nExtra = pToken->n+1; 413 } 414 } 415 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 416 if( pNew ){ 417 pNew->op = (u8)op; 418 pNew->iAgg = -1; 419 if( pToken ){ 420 if( nExtra==0 ){ 421 pNew->flags |= EP_IntValue; 422 pNew->u.iValue = iValue; 423 }else{ 424 int c; 425 pNew->u.zToken = (char*)&pNew[1]; 426 memcpy(pNew->u.zToken, pToken->z, pToken->n); 427 pNew->u.zToken[pToken->n] = 0; 428 if( dequote && nExtra>=3 429 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 430 sqlite3Dequote(pNew->u.zToken); 431 if( c=='"' ) pNew->flags |= EP_DblQuoted; 432 } 433 } 434 } 435 #if SQLITE_MAX_EXPR_DEPTH>0 436 pNew->nHeight = 1; 437 #endif 438 } 439 return pNew; 440 } 441 442 /* 443 ** Allocate a new expression node from a zero-terminated token that has 444 ** already been dequoted. 445 */ 446 Expr *sqlite3Expr( 447 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 448 int op, /* Expression opcode */ 449 const char *zToken /* Token argument. Might be NULL */ 450 ){ 451 Token x; 452 x.z = zToken; 453 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 454 return sqlite3ExprAlloc(db, op, &x, 0); 455 } 456 457 /* 458 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 459 ** 460 ** If pRoot==NULL that means that a memory allocation error has occurred. 461 ** In that case, delete the subtrees pLeft and pRight. 462 */ 463 void sqlite3ExprAttachSubtrees( 464 sqlite3 *db, 465 Expr *pRoot, 466 Expr *pLeft, 467 Expr *pRight 468 ){ 469 if( pRoot==0 ){ 470 assert( db->mallocFailed ); 471 sqlite3ExprDelete(db, pLeft); 472 sqlite3ExprDelete(db, pRight); 473 }else{ 474 if( pRight ){ 475 pRoot->pRight = pRight; 476 if( pRight->flags & EP_ExpCollate ){ 477 pRoot->flags |= EP_ExpCollate; 478 pRoot->pColl = pRight->pColl; 479 } 480 } 481 if( pLeft ){ 482 pRoot->pLeft = pLeft; 483 if( pLeft->flags & EP_ExpCollate ){ 484 pRoot->flags |= EP_ExpCollate; 485 pRoot->pColl = pLeft->pColl; 486 } 487 } 488 exprSetHeight(pRoot); 489 } 490 } 491 492 /* 493 ** Allocate a Expr node which joins as many as two subtrees. 494 ** 495 ** One or both of the subtrees can be NULL. Return a pointer to the new 496 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 497 ** free the subtrees and return NULL. 498 */ 499 Expr *sqlite3PExpr( 500 Parse *pParse, /* Parsing context */ 501 int op, /* Expression opcode */ 502 Expr *pLeft, /* Left operand */ 503 Expr *pRight, /* Right operand */ 504 const Token *pToken /* Argument token */ 505 ){ 506 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 507 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 508 return p; 509 } 510 511 /* 512 ** Join two expressions using an AND operator. If either expression is 513 ** NULL, then just return the other expression. 514 */ 515 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 516 if( pLeft==0 ){ 517 return pRight; 518 }else if( pRight==0 ){ 519 return pLeft; 520 }else{ 521 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 522 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 523 return pNew; 524 } 525 } 526 527 /* 528 ** Construct a new expression node for a function with multiple 529 ** arguments. 530 */ 531 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 532 Expr *pNew; 533 sqlite3 *db = pParse->db; 534 assert( pToken ); 535 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 536 if( pNew==0 ){ 537 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 538 return 0; 539 } 540 pNew->x.pList = pList; 541 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 542 sqlite3ExprSetHeight(pParse, pNew); 543 return pNew; 544 } 545 546 /* 547 ** Assign a variable number to an expression that encodes a wildcard 548 ** in the original SQL statement. 549 ** 550 ** Wildcards consisting of a single "?" are assigned the next sequential 551 ** variable number. 552 ** 553 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 554 ** sure "nnn" is not too be to avoid a denial of service attack when 555 ** the SQL statement comes from an external source. 556 ** 557 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 558 ** as the previous instance of the same wildcard. Or if this is the first 559 ** instance of the wildcard, the next sequenial variable number is 560 ** assigned. 561 */ 562 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 563 sqlite3 *db = pParse->db; 564 const char *z; 565 566 if( pExpr==0 ) return; 567 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 568 z = pExpr->u.zToken; 569 assert( z!=0 ); 570 assert( z[0]!=0 ); 571 if( z[1]==0 ){ 572 /* Wildcard of the form "?". Assign the next variable number */ 573 assert( z[0]=='?' ); 574 pExpr->iColumn = ++pParse->nVar; 575 }else if( z[0]=='?' ){ 576 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 577 ** use it as the variable number */ 578 int i; 579 pExpr->iColumn = i = atoi((char*)&z[1]); 580 testcase( i==0 ); 581 testcase( i==1 ); 582 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 583 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 584 if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 585 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 586 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 587 } 588 if( i>pParse->nVar ){ 589 pParse->nVar = i; 590 } 591 }else{ 592 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 593 ** number as the prior appearance of the same name, or if the name 594 ** has never appeared before, reuse the same variable number 595 */ 596 int i; 597 u32 n; 598 n = sqlite3Strlen30(z); 599 for(i=0; i<pParse->nVarExpr; i++){ 600 Expr *pE = pParse->apVarExpr[i]; 601 assert( pE!=0 ); 602 if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){ 603 pExpr->iColumn = pE->iColumn; 604 break; 605 } 606 } 607 if( i>=pParse->nVarExpr ){ 608 pExpr->iColumn = ++pParse->nVar; 609 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 610 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 611 pParse->apVarExpr = 612 sqlite3DbReallocOrFree( 613 db, 614 pParse->apVarExpr, 615 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 616 ); 617 } 618 if( !db->mallocFailed ){ 619 assert( pParse->apVarExpr!=0 ); 620 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 621 } 622 } 623 } 624 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 625 sqlite3ErrorMsg(pParse, "too many SQL variables"); 626 } 627 } 628 629 /* 630 ** Clear an expression structure without deleting the structure itself. 631 ** Substructure is deleted. 632 */ 633 void sqlite3ExprClear(sqlite3 *db, Expr *p){ 634 assert( p!=0 ); 635 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 636 sqlite3ExprDelete(db, p->pLeft); 637 sqlite3ExprDelete(db, p->pRight); 638 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 639 sqlite3DbFree(db, p->u.zToken); 640 } 641 if( ExprHasProperty(p, EP_xIsSelect) ){ 642 sqlite3SelectDelete(db, p->x.pSelect); 643 }else{ 644 sqlite3ExprListDelete(db, p->x.pList); 645 } 646 } 647 } 648 649 /* 650 ** Recursively delete an expression tree. 651 */ 652 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 653 if( p==0 ) return; 654 sqlite3ExprClear(db, p); 655 if( !ExprHasProperty(p, EP_Static) ){ 656 sqlite3DbFree(db, p); 657 } 658 } 659 660 /* 661 ** Return the number of bytes allocated for the expression structure 662 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 663 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 664 */ 665 static int exprStructSize(Expr *p){ 666 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 667 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 668 return EXPR_FULLSIZE; 669 } 670 671 /* 672 ** The dupedExpr*Size() routines each return the number of bytes required 673 ** to store a copy of an expression or expression tree. They differ in 674 ** how much of the tree is measured. 675 ** 676 ** dupedExprStructSize() Size of only the Expr structure 677 ** dupedExprNodeSize() Size of Expr + space for token 678 ** dupedExprSize() Expr + token + subtree components 679 ** 680 *************************************************************************** 681 ** 682 ** The dupedExprStructSize() function returns two values OR-ed together: 683 ** (1) the space required for a copy of the Expr structure only and 684 ** (2) the EP_xxx flags that indicate what the structure size should be. 685 ** The return values is always one of: 686 ** 687 ** EXPR_FULLSIZE 688 ** EXPR_REDUCEDSIZE | EP_Reduced 689 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 690 ** 691 ** The size of the structure can be found by masking the return value 692 ** of this routine with 0xfff. The flags can be found by masking the 693 ** return value with EP_Reduced|EP_TokenOnly. 694 ** 695 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 696 ** (unreduced) Expr objects as they or originally constructed by the parser. 697 ** During expression analysis, extra information is computed and moved into 698 ** later parts of teh Expr object and that extra information might get chopped 699 ** off if the expression is reduced. Note also that it does not work to 700 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 701 ** to reduce a pristine expression tree from the parser. The implementation 702 ** of dupedExprStructSize() contain multiple assert() statements that attempt 703 ** to enforce this constraint. 704 */ 705 static int dupedExprStructSize(Expr *p, int flags){ 706 int nSize; 707 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 708 if( 0==(flags&EXPRDUP_REDUCE) ){ 709 nSize = EXPR_FULLSIZE; 710 }else{ 711 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 712 assert( !ExprHasProperty(p, EP_FromJoin) ); 713 assert( (p->flags2 & EP2_MallocedToken)==0 ); 714 assert( (p->flags2 & EP2_Irreducible)==0 ); 715 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 716 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 717 }else{ 718 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 719 } 720 } 721 return nSize; 722 } 723 724 /* 725 ** This function returns the space in bytes required to store the copy 726 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 727 ** string is defined.) 728 */ 729 static int dupedExprNodeSize(Expr *p, int flags){ 730 int nByte = dupedExprStructSize(p, flags) & 0xfff; 731 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 732 nByte += sqlite3Strlen30(p->u.zToken)+1; 733 } 734 return ROUND8(nByte); 735 } 736 737 /* 738 ** Return the number of bytes required to create a duplicate of the 739 ** expression passed as the first argument. The second argument is a 740 ** mask containing EXPRDUP_XXX flags. 741 ** 742 ** The value returned includes space to create a copy of the Expr struct 743 ** itself and the buffer referred to by Expr.u.zToken, if any. 744 ** 745 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 746 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 747 ** and Expr.pRight variables (but not for any structures pointed to or 748 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 749 */ 750 static int dupedExprSize(Expr *p, int flags){ 751 int nByte = 0; 752 if( p ){ 753 nByte = dupedExprNodeSize(p, flags); 754 if( flags&EXPRDUP_REDUCE ){ 755 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 756 } 757 } 758 return nByte; 759 } 760 761 /* 762 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 763 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 764 ** to store the copy of expression p, the copies of p->u.zToken 765 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 766 ** if any. Before returning, *pzBuffer is set to the first byte passed the 767 ** portion of the buffer copied into by this function. 768 */ 769 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 770 Expr *pNew = 0; /* Value to return */ 771 if( p ){ 772 const int isReduced = (flags&EXPRDUP_REDUCE); 773 u8 *zAlloc; 774 u32 staticFlag = 0; 775 776 assert( pzBuffer==0 || isReduced ); 777 778 /* Figure out where to write the new Expr structure. */ 779 if( pzBuffer ){ 780 zAlloc = *pzBuffer; 781 staticFlag = EP_Static; 782 }else{ 783 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 784 } 785 pNew = (Expr *)zAlloc; 786 787 if( pNew ){ 788 /* Set nNewSize to the size allocated for the structure pointed to 789 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 790 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 791 ** by the copy of the p->u.zToken string (if any). 792 */ 793 const unsigned nStructSize = dupedExprStructSize(p, flags); 794 const int nNewSize = nStructSize & 0xfff; 795 int nToken; 796 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 797 nToken = sqlite3Strlen30(p->u.zToken) + 1; 798 }else{ 799 nToken = 0; 800 } 801 if( isReduced ){ 802 assert( ExprHasProperty(p, EP_Reduced)==0 ); 803 memcpy(zAlloc, p, nNewSize); 804 }else{ 805 int nSize = exprStructSize(p); 806 memcpy(zAlloc, p, nSize); 807 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 808 } 809 810 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 811 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 812 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 813 pNew->flags |= staticFlag; 814 815 /* Copy the p->u.zToken string, if any. */ 816 if( nToken ){ 817 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 818 memcpy(zToken, p->u.zToken, nToken); 819 } 820 821 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 822 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 823 if( ExprHasProperty(p, EP_xIsSelect) ){ 824 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 825 }else{ 826 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 827 } 828 } 829 830 /* Fill in pNew->pLeft and pNew->pRight. */ 831 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 832 zAlloc += dupedExprNodeSize(p, flags); 833 if( ExprHasProperty(pNew, EP_Reduced) ){ 834 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 835 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 836 } 837 if( pzBuffer ){ 838 *pzBuffer = zAlloc; 839 } 840 }else{ 841 pNew->flags2 = 0; 842 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 843 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 844 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 845 } 846 } 847 848 } 849 } 850 return pNew; 851 } 852 853 /* 854 ** The following group of routines make deep copies of expressions, 855 ** expression lists, ID lists, and select statements. The copies can 856 ** be deleted (by being passed to their respective ...Delete() routines) 857 ** without effecting the originals. 858 ** 859 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 860 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 861 ** by subsequent calls to sqlite*ListAppend() routines. 862 ** 863 ** Any tables that the SrcList might point to are not duplicated. 864 ** 865 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 866 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 867 ** truncated version of the usual Expr structure that will be stored as 868 ** part of the in-memory representation of the database schema. 869 */ 870 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 871 return exprDup(db, p, flags, 0); 872 } 873 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 874 ExprList *pNew; 875 struct ExprList_item *pItem, *pOldItem; 876 int i; 877 if( p==0 ) return 0; 878 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 879 if( pNew==0 ) return 0; 880 pNew->iECursor = 0; 881 pNew->nExpr = pNew->nAlloc = p->nExpr; 882 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 883 if( pItem==0 ){ 884 sqlite3DbFree(db, pNew); 885 return 0; 886 } 887 pOldItem = p->a; 888 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 889 Expr *pOldExpr = pOldItem->pExpr; 890 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 891 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 892 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 893 pItem->sortOrder = pOldItem->sortOrder; 894 pItem->done = 0; 895 pItem->iCol = pOldItem->iCol; 896 pItem->iAlias = pOldItem->iAlias; 897 } 898 return pNew; 899 } 900 901 /* 902 ** If cursors, triggers, views and subqueries are all omitted from 903 ** the build, then none of the following routines, except for 904 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 905 ** called with a NULL argument. 906 */ 907 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 908 || !defined(SQLITE_OMIT_SUBQUERY) 909 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 910 SrcList *pNew; 911 int i; 912 int nByte; 913 if( p==0 ) return 0; 914 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 915 pNew = sqlite3DbMallocRaw(db, nByte ); 916 if( pNew==0 ) return 0; 917 pNew->nSrc = pNew->nAlloc = p->nSrc; 918 for(i=0; i<p->nSrc; i++){ 919 struct SrcList_item *pNewItem = &pNew->a[i]; 920 struct SrcList_item *pOldItem = &p->a[i]; 921 Table *pTab; 922 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 923 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 924 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 925 pNewItem->jointype = pOldItem->jointype; 926 pNewItem->iCursor = pOldItem->iCursor; 927 pNewItem->isPopulated = pOldItem->isPopulated; 928 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 929 pNewItem->notIndexed = pOldItem->notIndexed; 930 pNewItem->pIndex = pOldItem->pIndex; 931 pTab = pNewItem->pTab = pOldItem->pTab; 932 if( pTab ){ 933 pTab->nRef++; 934 } 935 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 936 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 937 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 938 pNewItem->colUsed = pOldItem->colUsed; 939 } 940 return pNew; 941 } 942 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 943 IdList *pNew; 944 int i; 945 if( p==0 ) return 0; 946 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 947 if( pNew==0 ) return 0; 948 pNew->nId = pNew->nAlloc = p->nId; 949 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 950 if( pNew->a==0 ){ 951 sqlite3DbFree(db, pNew); 952 return 0; 953 } 954 for(i=0; i<p->nId; i++){ 955 struct IdList_item *pNewItem = &pNew->a[i]; 956 struct IdList_item *pOldItem = &p->a[i]; 957 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 958 pNewItem->idx = pOldItem->idx; 959 } 960 return pNew; 961 } 962 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 963 Select *pNew; 964 if( p==0 ) return 0; 965 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 966 if( pNew==0 ) return 0; 967 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 968 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 969 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 970 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 971 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 972 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 973 pNew->op = p->op; 974 pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags); 975 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 976 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 977 pNew->iLimit = 0; 978 pNew->iOffset = 0; 979 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 980 pNew->pRightmost = 0; 981 pNew->addrOpenEphm[0] = -1; 982 pNew->addrOpenEphm[1] = -1; 983 pNew->addrOpenEphm[2] = -1; 984 return pNew; 985 } 986 #else 987 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 988 assert( p==0 ); 989 return 0; 990 } 991 #endif 992 993 994 /* 995 ** Add a new element to the end of an expression list. If pList is 996 ** initially NULL, then create a new expression list. 997 ** 998 ** If a memory allocation error occurs, the entire list is freed and 999 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1000 ** that the new entry was successfully appended. 1001 */ 1002 ExprList *sqlite3ExprListAppend( 1003 Parse *pParse, /* Parsing context */ 1004 ExprList *pList, /* List to which to append. Might be NULL */ 1005 Expr *pExpr /* Expression to be appended. Might be NULL */ 1006 ){ 1007 sqlite3 *db = pParse->db; 1008 if( pList==0 ){ 1009 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1010 if( pList==0 ){ 1011 goto no_mem; 1012 } 1013 assert( pList->nAlloc==0 ); 1014 } 1015 if( pList->nAlloc<=pList->nExpr ){ 1016 struct ExprList_item *a; 1017 int n = pList->nAlloc*2 + 4; 1018 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 1019 if( a==0 ){ 1020 goto no_mem; 1021 } 1022 pList->a = a; 1023 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]); 1024 } 1025 assert( pList->a!=0 ); 1026 if( 1 ){ 1027 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1028 memset(pItem, 0, sizeof(*pItem)); 1029 pItem->pExpr = pExpr; 1030 } 1031 return pList; 1032 1033 no_mem: 1034 /* Avoid leaking memory if malloc has failed. */ 1035 sqlite3ExprDelete(db, pExpr); 1036 sqlite3ExprListDelete(db, pList); 1037 return 0; 1038 } 1039 1040 /* 1041 ** Set the ExprList.a[].zName element of the most recently added item 1042 ** on the expression list. 1043 ** 1044 ** pList might be NULL following an OOM error. But pName should never be 1045 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1046 ** is set. 1047 */ 1048 void sqlite3ExprListSetName( 1049 Parse *pParse, /* Parsing context */ 1050 ExprList *pList, /* List to which to add the span. */ 1051 Token *pName, /* Name to be added */ 1052 int dequote /* True to cause the name to be dequoted */ 1053 ){ 1054 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1055 if( pList ){ 1056 struct ExprList_item *pItem; 1057 assert( pList->nExpr>0 ); 1058 pItem = &pList->a[pList->nExpr-1]; 1059 assert( pItem->zName==0 ); 1060 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1061 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1062 } 1063 } 1064 1065 /* 1066 ** Set the ExprList.a[].zSpan element of the most recently added item 1067 ** on the expression list. 1068 ** 1069 ** pList might be NULL following an OOM error. But pSpan should never be 1070 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1071 ** is set. 1072 */ 1073 void sqlite3ExprListSetSpan( 1074 Parse *pParse, /* Parsing context */ 1075 ExprList *pList, /* List to which to add the span. */ 1076 ExprSpan *pSpan /* The span to be added */ 1077 ){ 1078 sqlite3 *db = pParse->db; 1079 assert( pList!=0 || db->mallocFailed!=0 ); 1080 if( pList ){ 1081 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1082 assert( pList->nExpr>0 ); 1083 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1084 sqlite3DbFree(db, pItem->zSpan); 1085 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1086 (int)(pSpan->zEnd - pSpan->zStart)); 1087 } 1088 } 1089 1090 /* 1091 ** If the expression list pEList contains more than iLimit elements, 1092 ** leave an error message in pParse. 1093 */ 1094 void sqlite3ExprListCheckLength( 1095 Parse *pParse, 1096 ExprList *pEList, 1097 const char *zObject 1098 ){ 1099 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1100 testcase( pEList && pEList->nExpr==mx ); 1101 testcase( pEList && pEList->nExpr==mx+1 ); 1102 if( pEList && pEList->nExpr>mx ){ 1103 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1104 } 1105 } 1106 1107 /* 1108 ** Delete an entire expression list. 1109 */ 1110 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1111 int i; 1112 struct ExprList_item *pItem; 1113 if( pList==0 ) return; 1114 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 1115 assert( pList->nExpr<=pList->nAlloc ); 1116 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1117 sqlite3ExprDelete(db, pItem->pExpr); 1118 sqlite3DbFree(db, pItem->zName); 1119 sqlite3DbFree(db, pItem->zSpan); 1120 } 1121 sqlite3DbFree(db, pList->a); 1122 sqlite3DbFree(db, pList); 1123 } 1124 1125 /* 1126 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1127 ** to an integer. These routines are checking an expression to see 1128 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1129 ** not constant. 1130 ** 1131 ** These callback routines are used to implement the following: 1132 ** 1133 ** sqlite3ExprIsConstant() 1134 ** sqlite3ExprIsConstantNotJoin() 1135 ** sqlite3ExprIsConstantOrFunction() 1136 ** 1137 */ 1138 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1139 1140 /* If pWalker->u.i is 3 then any term of the expression that comes from 1141 ** the ON or USING clauses of a join disqualifies the expression 1142 ** from being considered constant. */ 1143 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1144 pWalker->u.i = 0; 1145 return WRC_Abort; 1146 } 1147 1148 switch( pExpr->op ){ 1149 /* Consider functions to be constant if all their arguments are constant 1150 ** and pWalker->u.i==2 */ 1151 case TK_FUNCTION: 1152 if( pWalker->u.i==2 ) return 0; 1153 /* Fall through */ 1154 case TK_ID: 1155 case TK_COLUMN: 1156 case TK_AGG_FUNCTION: 1157 case TK_AGG_COLUMN: 1158 testcase( pExpr->op==TK_ID ); 1159 testcase( pExpr->op==TK_COLUMN ); 1160 testcase( pExpr->op==TK_AGG_FUNCTION ); 1161 testcase( pExpr->op==TK_AGG_COLUMN ); 1162 pWalker->u.i = 0; 1163 return WRC_Abort; 1164 default: 1165 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1166 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1167 return WRC_Continue; 1168 } 1169 } 1170 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1171 UNUSED_PARAMETER(NotUsed); 1172 pWalker->u.i = 0; 1173 return WRC_Abort; 1174 } 1175 static int exprIsConst(Expr *p, int initFlag){ 1176 Walker w; 1177 w.u.i = initFlag; 1178 w.xExprCallback = exprNodeIsConstant; 1179 w.xSelectCallback = selectNodeIsConstant; 1180 sqlite3WalkExpr(&w, p); 1181 return w.u.i; 1182 } 1183 1184 /* 1185 ** Walk an expression tree. Return 1 if the expression is constant 1186 ** and 0 if it involves variables or function calls. 1187 ** 1188 ** For the purposes of this function, a double-quoted string (ex: "abc") 1189 ** is considered a variable but a single-quoted string (ex: 'abc') is 1190 ** a constant. 1191 */ 1192 int sqlite3ExprIsConstant(Expr *p){ 1193 return exprIsConst(p, 1); 1194 } 1195 1196 /* 1197 ** Walk an expression tree. Return 1 if the expression is constant 1198 ** that does no originate from the ON or USING clauses of a join. 1199 ** Return 0 if it involves variables or function calls or terms from 1200 ** an ON or USING clause. 1201 */ 1202 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1203 return exprIsConst(p, 3); 1204 } 1205 1206 /* 1207 ** Walk an expression tree. Return 1 if the expression is constant 1208 ** or a function call with constant arguments. Return and 0 if there 1209 ** are any variables. 1210 ** 1211 ** For the purposes of this function, a double-quoted string (ex: "abc") 1212 ** is considered a variable but a single-quoted string (ex: 'abc') is 1213 ** a constant. 1214 */ 1215 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1216 return exprIsConst(p, 2); 1217 } 1218 1219 /* 1220 ** If the expression p codes a constant integer that is small enough 1221 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1222 ** in *pValue. If the expression is not an integer or if it is too big 1223 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1224 */ 1225 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1226 int rc = 0; 1227 if( p->flags & EP_IntValue ){ 1228 *pValue = p->u.iValue; 1229 return 1; 1230 } 1231 switch( p->op ){ 1232 case TK_INTEGER: { 1233 rc = sqlite3GetInt32(p->u.zToken, pValue); 1234 assert( rc==0 ); 1235 break; 1236 } 1237 case TK_UPLUS: { 1238 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1239 break; 1240 } 1241 case TK_UMINUS: { 1242 int v; 1243 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1244 *pValue = -v; 1245 rc = 1; 1246 } 1247 break; 1248 } 1249 default: break; 1250 } 1251 if( rc ){ 1252 assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly) 1253 || (p->flags2 & EP2_MallocedToken)==0 ); 1254 p->op = TK_INTEGER; 1255 p->flags |= EP_IntValue; 1256 p->u.iValue = *pValue; 1257 } 1258 return rc; 1259 } 1260 1261 /* 1262 ** Return TRUE if the given string is a row-id column name. 1263 */ 1264 int sqlite3IsRowid(const char *z){ 1265 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1266 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1267 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1268 return 0; 1269 } 1270 1271 /* 1272 ** Return true if we are able to the IN operator optimization on a 1273 ** query of the form 1274 ** 1275 ** x IN (SELECT ...) 1276 ** 1277 ** Where the SELECT... clause is as specified by the parameter to this 1278 ** routine. 1279 ** 1280 ** The Select object passed in has already been preprocessed and no 1281 ** errors have been found. 1282 */ 1283 #ifndef SQLITE_OMIT_SUBQUERY 1284 static int isCandidateForInOpt(Select *p){ 1285 SrcList *pSrc; 1286 ExprList *pEList; 1287 Table *pTab; 1288 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1289 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1290 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1291 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1292 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1293 return 0; /* No DISTINCT keyword and no aggregate functions */ 1294 } 1295 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1296 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1297 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1298 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1299 pSrc = p->pSrc; 1300 assert( pSrc!=0 ); 1301 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1302 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1303 pTab = pSrc->a[0].pTab; 1304 if( NEVER(pTab==0) ) return 0; 1305 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1306 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1307 pEList = p->pEList; 1308 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1309 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1310 return 1; 1311 } 1312 #endif /* SQLITE_OMIT_SUBQUERY */ 1313 1314 /* 1315 ** This function is used by the implementation of the IN (...) operator. 1316 ** It's job is to find or create a b-tree structure that may be used 1317 ** either to test for membership of the (...) set or to iterate through 1318 ** its members, skipping duplicates. 1319 ** 1320 ** The index of the cursor opened on the b-tree (database table, database index 1321 ** or ephermal table) is stored in pX->iTable before this function returns. 1322 ** The returned value of this function indicates the b-tree type, as follows: 1323 ** 1324 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1325 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1326 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1327 ** populated epheremal table. 1328 ** 1329 ** An existing b-tree may only be used if the SELECT is of the simple 1330 ** form: 1331 ** 1332 ** SELECT <column> FROM <table> 1333 ** 1334 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1335 ** through the set members, skipping any duplicates. In this case an 1336 ** epheremal table must be used unless the selected <column> is guaranteed 1337 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1338 ** has a UNIQUE constraint or UNIQUE index. 1339 ** 1340 ** If the prNotFound parameter is not 0, then the b-tree will be used 1341 ** for fast set membership tests. In this case an epheremal table must 1342 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1343 ** be found with <column> as its left-most column. 1344 ** 1345 ** When the b-tree is being used for membership tests, the calling function 1346 ** needs to know whether or not the structure contains an SQL NULL 1347 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1348 ** If there is a chance that the b-tree might contain a NULL value at 1349 ** runtime, then a register is allocated and the register number written 1350 ** to *prNotFound. If there is no chance that the b-tree contains a 1351 ** NULL value, then *prNotFound is left unchanged. 1352 ** 1353 ** If a register is allocated and its location stored in *prNotFound, then 1354 ** its initial value is NULL. If the b-tree does not remain constant 1355 ** for the duration of the query (i.e. the SELECT that generates the b-tree 1356 ** is a correlated subquery) then the value of the allocated register is 1357 ** reset to NULL each time the b-tree is repopulated. This allows the 1358 ** caller to use vdbe code equivalent to the following: 1359 ** 1360 ** if( register==NULL ){ 1361 ** has_null = <test if data structure contains null> 1362 ** register = 1 1363 ** } 1364 ** 1365 ** in order to avoid running the <test if data structure contains null> 1366 ** test more often than is necessary. 1367 */ 1368 #ifndef SQLITE_OMIT_SUBQUERY 1369 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1370 Select *p; /* SELECT to the right of IN operator */ 1371 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1372 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1373 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1374 1375 /* Check to see if an existing table or index can be used to 1376 ** satisfy the query. This is preferable to generating a new 1377 ** ephemeral table. 1378 */ 1379 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1380 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1381 sqlite3 *db = pParse->db; /* Database connection */ 1382 Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */ 1383 int iCol = pExpr->iColumn; /* Index of column <column> */ 1384 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1385 Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */ 1386 int iDb; /* Database idx for pTab */ 1387 1388 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1389 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1390 sqlite3CodeVerifySchema(pParse, iDb); 1391 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1392 1393 /* This function is only called from two places. In both cases the vdbe 1394 ** has already been allocated. So assume sqlite3GetVdbe() is always 1395 ** successful here. 1396 */ 1397 assert(v); 1398 if( iCol<0 ){ 1399 int iMem = ++pParse->nMem; 1400 int iAddr; 1401 1402 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1403 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1404 1405 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1406 eType = IN_INDEX_ROWID; 1407 1408 sqlite3VdbeJumpHere(v, iAddr); 1409 }else{ 1410 Index *pIdx; /* Iterator variable */ 1411 1412 /* The collation sequence used by the comparison. If an index is to 1413 ** be used in place of a temp-table, it must be ordered according 1414 ** to this collation sequence. */ 1415 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1416 1417 /* Check that the affinity that will be used to perform the 1418 ** comparison is the same as the affinity of the column. If 1419 ** it is not, it is not possible to use any index. 1420 */ 1421 char aff = comparisonAffinity(pX); 1422 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1423 1424 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1425 if( (pIdx->aiColumn[0]==iCol) 1426 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1427 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1428 ){ 1429 int iMem = ++pParse->nMem; 1430 int iAddr; 1431 char *pKey; 1432 1433 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1434 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1435 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1436 1437 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1438 pKey,P4_KEYINFO_HANDOFF); 1439 VdbeComment((v, "%s", pIdx->zName)); 1440 eType = IN_INDEX_INDEX; 1441 1442 sqlite3VdbeJumpHere(v, iAddr); 1443 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1444 *prNotFound = ++pParse->nMem; 1445 } 1446 } 1447 } 1448 } 1449 } 1450 1451 if( eType==0 ){ 1452 /* Could not found an existing able or index to use as the RHS b-tree. 1453 ** We will have to generate an ephemeral table to do the job. 1454 */ 1455 int rMayHaveNull = 0; 1456 eType = IN_INDEX_EPH; 1457 if( prNotFound ){ 1458 *prNotFound = rMayHaveNull = ++pParse->nMem; 1459 }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1460 eType = IN_INDEX_ROWID; 1461 } 1462 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1463 }else{ 1464 pX->iTable = iTab; 1465 } 1466 return eType; 1467 } 1468 #endif 1469 1470 /* 1471 ** Generate code for scalar subqueries used as an expression 1472 ** and IN operators. Examples: 1473 ** 1474 ** (SELECT a FROM b) -- subquery 1475 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1476 ** x IN (4,5,11) -- IN operator with list on right-hand side 1477 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1478 ** 1479 ** The pExpr parameter describes the expression that contains the IN 1480 ** operator or subquery. 1481 ** 1482 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1483 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1484 ** to some integer key column of a table B-Tree. In this case, use an 1485 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1486 ** (slower) variable length keys B-Tree. 1487 ** 1488 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1489 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1490 ** Furthermore, the IN is in a WHERE clause and that we really want 1491 ** to iterate over the RHS of the IN operator in order to quickly locate 1492 ** all corresponding LHS elements. All this routine does is initialize 1493 ** the register given by rMayHaveNull to NULL. Calling routines will take 1494 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1495 ** 1496 ** If rMayHaveNull is zero, that means that the subquery is being used 1497 ** for membership testing only. There is no need to initialize any 1498 ** registers to indicate the presense or absence of NULLs on the RHS. 1499 */ 1500 #ifndef SQLITE_OMIT_SUBQUERY 1501 void sqlite3CodeSubselect( 1502 Parse *pParse, /* Parsing context */ 1503 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1504 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1505 int isRowid /* If true, LHS of IN operator is a rowid */ 1506 ){ 1507 int testAddr = 0; /* One-time test address */ 1508 Vdbe *v = sqlite3GetVdbe(pParse); 1509 if( NEVER(v==0) ) return; 1510 sqlite3ExprCachePush(pParse); 1511 1512 /* This code must be run in its entirety every time it is encountered 1513 ** if any of the following is true: 1514 ** 1515 ** * The right-hand side is a correlated subquery 1516 ** * The right-hand side is an expression list containing variables 1517 ** * We are inside a trigger 1518 ** 1519 ** If all of the above are false, then we can run this code just once 1520 ** save the results, and reuse the same result on subsequent invocations. 1521 */ 1522 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){ 1523 int mem = ++pParse->nMem; 1524 sqlite3VdbeAddOp1(v, OP_If, mem); 1525 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); 1526 assert( testAddr>0 || pParse->db->mallocFailed ); 1527 } 1528 1529 switch( pExpr->op ){ 1530 case TK_IN: { 1531 char affinity; 1532 KeyInfo keyInfo; 1533 int addr; /* Address of OP_OpenEphemeral instruction */ 1534 Expr *pLeft = pExpr->pLeft; 1535 1536 if( rMayHaveNull ){ 1537 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1538 } 1539 1540 affinity = sqlite3ExprAffinity(pLeft); 1541 1542 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1543 ** expression it is handled the same way. A virtual table is 1544 ** filled with single-field index keys representing the results 1545 ** from the SELECT or the <exprlist>. 1546 ** 1547 ** If the 'x' expression is a column value, or the SELECT... 1548 ** statement returns a column value, then the affinity of that 1549 ** column is used to build the index keys. If both 'x' and the 1550 ** SELECT... statement are columns, then numeric affinity is used 1551 ** if either column has NUMERIC or INTEGER affinity. If neither 1552 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1553 ** is used. 1554 */ 1555 pExpr->iTable = pParse->nTab++; 1556 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1557 memset(&keyInfo, 0, sizeof(keyInfo)); 1558 keyInfo.nField = 1; 1559 1560 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1561 /* Case 1: expr IN (SELECT ...) 1562 ** 1563 ** Generate code to write the results of the select into the temporary 1564 ** table allocated and opened above. 1565 */ 1566 SelectDest dest; 1567 ExprList *pEList; 1568 1569 assert( !isRowid ); 1570 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1571 dest.affinity = (u8)affinity; 1572 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1573 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1574 return; 1575 } 1576 pEList = pExpr->x.pSelect->pEList; 1577 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1578 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1579 pEList->a[0].pExpr); 1580 } 1581 }else if( pExpr->x.pList!=0 ){ 1582 /* Case 2: expr IN (exprlist) 1583 ** 1584 ** For each expression, build an index key from the evaluation and 1585 ** store it in the temporary table. If <expr> is a column, then use 1586 ** that columns affinity when building index keys. If <expr> is not 1587 ** a column, use numeric affinity. 1588 */ 1589 int i; 1590 ExprList *pList = pExpr->x.pList; 1591 struct ExprList_item *pItem; 1592 int r1, r2, r3; 1593 1594 if( !affinity ){ 1595 affinity = SQLITE_AFF_NONE; 1596 } 1597 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1598 1599 /* Loop through each expression in <exprlist>. */ 1600 r1 = sqlite3GetTempReg(pParse); 1601 r2 = sqlite3GetTempReg(pParse); 1602 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1603 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1604 Expr *pE2 = pItem->pExpr; 1605 1606 /* If the expression is not constant then we will need to 1607 ** disable the test that was generated above that makes sure 1608 ** this code only executes once. Because for a non-constant 1609 ** expression we need to rerun this code each time. 1610 */ 1611 if( testAddr && !sqlite3ExprIsConstant(pE2) ){ 1612 sqlite3VdbeChangeToNoop(v, testAddr-1, 2); 1613 testAddr = 0; 1614 } 1615 1616 /* Evaluate the expression and insert it into the temp table */ 1617 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1618 if( isRowid ){ 1619 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2); 1620 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1621 }else{ 1622 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1623 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1624 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1625 } 1626 } 1627 sqlite3ReleaseTempReg(pParse, r1); 1628 sqlite3ReleaseTempReg(pParse, r2); 1629 } 1630 if( !isRowid ){ 1631 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1632 } 1633 break; 1634 } 1635 1636 case TK_EXISTS: 1637 case TK_SELECT: 1638 default: { 1639 /* If this has to be a scalar SELECT. Generate code to put the 1640 ** value of this select in a memory cell and record the number 1641 ** of the memory cell in iColumn. If this is an EXISTS, write 1642 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1643 ** and record that memory cell in iColumn. 1644 */ 1645 static const Token one = { "1", 1 }; /* Token for literal value 1 */ 1646 Select *pSel; /* SELECT statement to encode */ 1647 SelectDest dest; /* How to deal with SELECt result */ 1648 1649 testcase( pExpr->op==TK_EXISTS ); 1650 testcase( pExpr->op==TK_SELECT ); 1651 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1652 1653 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1654 pSel = pExpr->x.pSelect; 1655 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1656 if( pExpr->op==TK_SELECT ){ 1657 dest.eDest = SRT_Mem; 1658 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1659 VdbeComment((v, "Init subquery result")); 1660 }else{ 1661 dest.eDest = SRT_Exists; 1662 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1663 VdbeComment((v, "Init EXISTS result")); 1664 } 1665 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1666 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); 1667 if( sqlite3Select(pParse, pSel, &dest) ){ 1668 return; 1669 } 1670 pExpr->iColumn = (i16)dest.iParm; 1671 ExprSetIrreducible(pExpr); 1672 break; 1673 } 1674 } 1675 1676 if( testAddr ){ 1677 sqlite3VdbeJumpHere(v, testAddr-1); 1678 } 1679 sqlite3ExprCachePop(pParse, 1); 1680 1681 return; 1682 } 1683 #endif /* SQLITE_OMIT_SUBQUERY */ 1684 1685 /* 1686 ** Duplicate an 8-byte value 1687 */ 1688 static char *dup8bytes(Vdbe *v, const char *in){ 1689 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1690 if( out ){ 1691 memcpy(out, in, 8); 1692 } 1693 return out; 1694 } 1695 1696 /* 1697 ** Generate an instruction that will put the floating point 1698 ** value described by z[0..n-1] into register iMem. 1699 ** 1700 ** The z[] string will probably not be zero-terminated. But the 1701 ** z[n] character is guaranteed to be something that does not look 1702 ** like the continuation of the number. 1703 */ 1704 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 1705 if( ALWAYS(z!=0) ){ 1706 double value; 1707 char *zV; 1708 sqlite3AtoF(z, &value); 1709 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 1710 if( negateFlag ) value = -value; 1711 zV = dup8bytes(v, (char*)&value); 1712 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 1713 } 1714 } 1715 1716 1717 /* 1718 ** Generate an instruction that will put the integer describe by 1719 ** text z[0..n-1] into register iMem. 1720 ** 1721 ** The z[] string will probably not be zero-terminated. But the 1722 ** z[n] character is guaranteed to be something that does not look 1723 ** like the continuation of the number. 1724 */ 1725 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){ 1726 if( pExpr->flags & EP_IntValue ){ 1727 int i = pExpr->u.iValue; 1728 if( negFlag ) i = -i; 1729 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1730 }else{ 1731 const char *z = pExpr->u.zToken; 1732 assert( z!=0 ); 1733 if( sqlite3FitsIn64Bits(z, negFlag) ){ 1734 i64 value; 1735 char *zV; 1736 sqlite3Atoi64(z, &value); 1737 if( negFlag ) value = -value; 1738 zV = dup8bytes(v, (char*)&value); 1739 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 1740 }else{ 1741 codeReal(v, z, negFlag, iMem); 1742 } 1743 } 1744 } 1745 1746 /* 1747 ** Clear a cache entry. 1748 */ 1749 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 1750 if( p->tempReg ){ 1751 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 1752 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 1753 } 1754 p->tempReg = 0; 1755 } 1756 } 1757 1758 1759 /* 1760 ** Record in the column cache that a particular column from a 1761 ** particular table is stored in a particular register. 1762 */ 1763 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 1764 int i; 1765 int minLru; 1766 int idxLru; 1767 struct yColCache *p; 1768 1769 assert( iReg>0 ); /* Register numbers are always positive */ 1770 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 1771 1772 /* First replace any existing entry */ 1773 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1774 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){ 1775 cacheEntryClear(pParse, p); 1776 p->iLevel = pParse->iCacheLevel; 1777 p->iReg = iReg; 1778 p->affChange = 0; 1779 p->lru = pParse->iCacheCnt++; 1780 return; 1781 } 1782 } 1783 1784 /* Find an empty slot and replace it */ 1785 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1786 if( p->iReg==0 ){ 1787 p->iLevel = pParse->iCacheLevel; 1788 p->iTable = iTab; 1789 p->iColumn = iCol; 1790 p->iReg = iReg; 1791 p->affChange = 0; 1792 p->tempReg = 0; 1793 p->lru = pParse->iCacheCnt++; 1794 return; 1795 } 1796 } 1797 1798 /* Replace the last recently used */ 1799 minLru = 0x7fffffff; 1800 idxLru = -1; 1801 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1802 if( p->lru<minLru ){ 1803 idxLru = i; 1804 minLru = p->lru; 1805 } 1806 } 1807 if( ALWAYS(idxLru>=0) ){ 1808 p = &pParse->aColCache[idxLru]; 1809 p->iLevel = pParse->iCacheLevel; 1810 p->iTable = iTab; 1811 p->iColumn = iCol; 1812 p->iReg = iReg; 1813 p->affChange = 0; 1814 p->tempReg = 0; 1815 p->lru = pParse->iCacheCnt++; 1816 return; 1817 } 1818 } 1819 1820 /* 1821 ** Indicate that a register is being overwritten. Purge the register 1822 ** from the column cache. 1823 */ 1824 void sqlite3ExprCacheRemove(Parse *pParse, int iReg){ 1825 int i; 1826 struct yColCache *p; 1827 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1828 if( p->iReg==iReg ){ 1829 cacheEntryClear(pParse, p); 1830 p->iReg = 0; 1831 } 1832 } 1833 } 1834 1835 /* 1836 ** Remember the current column cache context. Any new entries added 1837 ** added to the column cache after this call are removed when the 1838 ** corresponding pop occurs. 1839 */ 1840 void sqlite3ExprCachePush(Parse *pParse){ 1841 pParse->iCacheLevel++; 1842 } 1843 1844 /* 1845 ** Remove from the column cache any entries that were added since the 1846 ** the previous N Push operations. In other words, restore the cache 1847 ** to the state it was in N Pushes ago. 1848 */ 1849 void sqlite3ExprCachePop(Parse *pParse, int N){ 1850 int i; 1851 struct yColCache *p; 1852 assert( N>0 ); 1853 assert( pParse->iCacheLevel>=N ); 1854 pParse->iCacheLevel -= N; 1855 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1856 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 1857 cacheEntryClear(pParse, p); 1858 p->iReg = 0; 1859 } 1860 } 1861 } 1862 1863 /* 1864 ** When a cached column is reused, make sure that its register is 1865 ** no longer available as a temp register. ticket #3879: that same 1866 ** register might be in the cache in multiple places, so be sure to 1867 ** get them all. 1868 */ 1869 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 1870 int i; 1871 struct yColCache *p; 1872 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1873 if( p->iReg==iReg ){ 1874 p->tempReg = 0; 1875 } 1876 } 1877 } 1878 1879 /* 1880 ** Generate code that will extract the iColumn-th column from 1881 ** table pTab and store the column value in a register. An effort 1882 ** is made to store the column value in register iReg, but this is 1883 ** not guaranteed. The location of the column value is returned. 1884 ** 1885 ** There must be an open cursor to pTab in iTable when this routine 1886 ** is called. If iColumn<0 then code is generated that extracts the rowid. 1887 ** 1888 ** This routine might attempt to reuse the value of the column that 1889 ** has already been loaded into a register. The value will always 1890 ** be used if it has not undergone any affinity changes. But if 1891 ** an affinity change has occurred, then the cached value will only be 1892 ** used if allowAffChng is true. 1893 */ 1894 int sqlite3ExprCodeGetColumn( 1895 Parse *pParse, /* Parsing and code generating context */ 1896 Table *pTab, /* Description of the table we are reading from */ 1897 int iColumn, /* Index of the table column */ 1898 int iTable, /* The cursor pointing to the table */ 1899 int iReg, /* Store results here */ 1900 int allowAffChng /* True if prior affinity changes are OK */ 1901 ){ 1902 Vdbe *v = pParse->pVdbe; 1903 int i; 1904 struct yColCache *p; 1905 1906 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1907 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn 1908 && (!p->affChange || allowAffChng) ){ 1909 p->lru = pParse->iCacheCnt++; 1910 sqlite3ExprCachePinRegister(pParse, p->iReg); 1911 return p->iReg; 1912 } 1913 } 1914 assert( v!=0 ); 1915 if( iColumn<0 ){ 1916 sqlite3VdbeAddOp2(v, OP_Rowid, iTable, iReg); 1917 }else if( ALWAYS(pTab!=0) ){ 1918 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 1919 sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg); 1920 sqlite3ColumnDefault(v, pTab, iColumn, iReg); 1921 } 1922 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 1923 return iReg; 1924 } 1925 1926 /* 1927 ** Clear all column cache entries. 1928 */ 1929 void sqlite3ExprCacheClear(Parse *pParse){ 1930 int i; 1931 struct yColCache *p; 1932 1933 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1934 if( p->iReg ){ 1935 cacheEntryClear(pParse, p); 1936 p->iReg = 0; 1937 } 1938 } 1939 } 1940 1941 /* 1942 ** Record the fact that an affinity change has occurred on iCount 1943 ** registers starting with iStart. 1944 */ 1945 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 1946 int iEnd = iStart + iCount - 1; 1947 int i; 1948 struct yColCache *p; 1949 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1950 int r = p->iReg; 1951 if( r>=iStart && r<=iEnd ){ 1952 p->affChange = 1; 1953 } 1954 } 1955 } 1956 1957 /* 1958 ** Generate code to move content from registers iFrom...iFrom+nReg-1 1959 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 1960 */ 1961 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 1962 int i; 1963 struct yColCache *p; 1964 if( NEVER(iFrom==iTo) ) return; 1965 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 1966 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1967 int x = p->iReg; 1968 if( x>=iFrom && x<iFrom+nReg ){ 1969 p->iReg += iTo-iFrom; 1970 } 1971 } 1972 } 1973 1974 /* 1975 ** Generate code to copy content from registers iFrom...iFrom+nReg-1 1976 ** over to iTo..iTo+nReg-1. 1977 */ 1978 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ 1979 int i; 1980 if( NEVER(iFrom==iTo) ) return; 1981 for(i=0; i<nReg; i++){ 1982 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); 1983 } 1984 } 1985 1986 /* 1987 ** Return true if any register in the range iFrom..iTo (inclusive) 1988 ** is used as part of the column cache. 1989 */ 1990 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 1991 int i; 1992 struct yColCache *p; 1993 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1994 int r = p->iReg; 1995 if( r>=iFrom && r<=iTo ) return 1; 1996 } 1997 return 0; 1998 } 1999 2000 /* 2001 ** If the last instruction coded is an ephemeral copy of any of 2002 ** the registers in the nReg registers beginning with iReg, then 2003 ** convert the last instruction from OP_SCopy to OP_Copy. 2004 */ 2005 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ 2006 VdbeOp *pOp; 2007 Vdbe *v; 2008 2009 assert( pParse->db->mallocFailed==0 ); 2010 v = pParse->pVdbe; 2011 assert( v!=0 ); 2012 pOp = sqlite3VdbeGetOp(v, -1); 2013 assert( pOp!=0 ); 2014 if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){ 2015 pOp->opcode = OP_Copy; 2016 } 2017 } 2018 2019 /* 2020 ** Generate code to store the value of the iAlias-th alias in register 2021 ** target. The first time this is called, pExpr is evaluated to compute 2022 ** the value of the alias. The value is stored in an auxiliary register 2023 ** and the number of that register is returned. On subsequent calls, 2024 ** the register number is returned without generating any code. 2025 ** 2026 ** Note that in order for this to work, code must be generated in the 2027 ** same order that it is executed. 2028 ** 2029 ** Aliases are numbered starting with 1. So iAlias is in the range 2030 ** of 1 to pParse->nAlias inclusive. 2031 ** 2032 ** pParse->aAlias[iAlias-1] records the register number where the value 2033 ** of the iAlias-th alias is stored. If zero, that means that the 2034 ** alias has not yet been computed. 2035 */ 2036 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){ 2037 #if 0 2038 sqlite3 *db = pParse->db; 2039 int iReg; 2040 if( pParse->nAliasAlloc<pParse->nAlias ){ 2041 pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias, 2042 sizeof(pParse->aAlias[0])*pParse->nAlias ); 2043 testcase( db->mallocFailed && pParse->nAliasAlloc>0 ); 2044 if( db->mallocFailed ) return 0; 2045 memset(&pParse->aAlias[pParse->nAliasAlloc], 0, 2046 (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0])); 2047 pParse->nAliasAlloc = pParse->nAlias; 2048 } 2049 assert( iAlias>0 && iAlias<=pParse->nAlias ); 2050 iReg = pParse->aAlias[iAlias-1]; 2051 if( iReg==0 ){ 2052 if( pParse->iCacheLevel>0 ){ 2053 iReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2054 }else{ 2055 iReg = ++pParse->nMem; 2056 sqlite3ExprCode(pParse, pExpr, iReg); 2057 pParse->aAlias[iAlias-1] = iReg; 2058 } 2059 } 2060 return iReg; 2061 #else 2062 UNUSED_PARAMETER(iAlias); 2063 return sqlite3ExprCodeTarget(pParse, pExpr, target); 2064 #endif 2065 } 2066 2067 /* 2068 ** Generate code into the current Vdbe to evaluate the given 2069 ** expression. Attempt to store the results in register "target". 2070 ** Return the register where results are stored. 2071 ** 2072 ** With this routine, there is no guarantee that results will 2073 ** be stored in target. The result might be stored in some other 2074 ** register if it is convenient to do so. The calling function 2075 ** must check the return code and move the results to the desired 2076 ** register. 2077 */ 2078 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2079 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2080 int op; /* The opcode being coded */ 2081 int inReg = target; /* Results stored in register inReg */ 2082 int regFree1 = 0; /* If non-zero free this temporary register */ 2083 int regFree2 = 0; /* If non-zero free this temporary register */ 2084 int r1, r2, r3, r4; /* Various register numbers */ 2085 sqlite3 *db = pParse->db; /* The database connection */ 2086 2087 assert( target>0 && target<=pParse->nMem ); 2088 if( v==0 ){ 2089 assert( pParse->db->mallocFailed ); 2090 return 0; 2091 } 2092 2093 if( pExpr==0 ){ 2094 op = TK_NULL; 2095 }else{ 2096 op = pExpr->op; 2097 } 2098 switch( op ){ 2099 case TK_AGG_COLUMN: { 2100 AggInfo *pAggInfo = pExpr->pAggInfo; 2101 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2102 if( !pAggInfo->directMode ){ 2103 assert( pCol->iMem>0 ); 2104 inReg = pCol->iMem; 2105 break; 2106 }else if( pAggInfo->useSortingIdx ){ 2107 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, 2108 pCol->iSorterColumn, target); 2109 break; 2110 } 2111 /* Otherwise, fall thru into the TK_COLUMN case */ 2112 } 2113 case TK_COLUMN: { 2114 if( pExpr->iTable<0 ){ 2115 /* This only happens when coding check constraints */ 2116 assert( pParse->ckBase>0 ); 2117 inReg = pExpr->iColumn + pParse->ckBase; 2118 }else{ 2119 testcase( (pExpr->flags & EP_AnyAff)!=0 ); 2120 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2121 pExpr->iColumn, pExpr->iTable, target, 2122 pExpr->flags & EP_AnyAff); 2123 } 2124 break; 2125 } 2126 case TK_INTEGER: { 2127 codeInteger(v, pExpr, 0, target); 2128 break; 2129 } 2130 case TK_FLOAT: { 2131 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2132 codeReal(v, pExpr->u.zToken, 0, target); 2133 break; 2134 } 2135 case TK_STRING: { 2136 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2137 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2138 break; 2139 } 2140 case TK_NULL: { 2141 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2142 break; 2143 } 2144 #ifndef SQLITE_OMIT_BLOB_LITERAL 2145 case TK_BLOB: { 2146 int n; 2147 const char *z; 2148 char *zBlob; 2149 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2150 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2151 assert( pExpr->u.zToken[1]=='\'' ); 2152 z = &pExpr->u.zToken[2]; 2153 n = sqlite3Strlen30(z) - 1; 2154 assert( z[n]=='\'' ); 2155 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2156 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2157 break; 2158 } 2159 #endif 2160 case TK_VARIABLE: { 2161 VdbeOp *pOp; 2162 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2163 assert( pExpr->u.zToken!=0 ); 2164 assert( pExpr->u.zToken[0]!=0 ); 2165 if( pExpr->u.zToken[1]==0 2166 && (pOp = sqlite3VdbeGetOp(v, -1))->opcode==OP_Variable 2167 && pOp->p1+pOp->p3==pExpr->iColumn 2168 && pOp->p2+pOp->p3==target 2169 && pOp->p4.z==0 2170 ){ 2171 /* If the previous instruction was a copy of the previous unnamed 2172 ** parameter into the previous register, then simply increment the 2173 ** repeat count on the prior instruction rather than making a new 2174 ** instruction. 2175 */ 2176 pOp->p3++; 2177 }else{ 2178 sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iColumn, target, 1); 2179 if( pExpr->u.zToken[1]!=0 ){ 2180 sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0); 2181 } 2182 } 2183 break; 2184 } 2185 case TK_REGISTER: { 2186 inReg = pExpr->iTable; 2187 break; 2188 } 2189 case TK_AS: { 2190 inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target); 2191 break; 2192 } 2193 #ifndef SQLITE_OMIT_CAST 2194 case TK_CAST: { 2195 /* Expressions of the form: CAST(pLeft AS token) */ 2196 int aff, to_op; 2197 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2198 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2199 aff = sqlite3AffinityType(pExpr->u.zToken); 2200 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2201 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2202 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2203 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2204 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2205 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2206 testcase( to_op==OP_ToText ); 2207 testcase( to_op==OP_ToBlob ); 2208 testcase( to_op==OP_ToNumeric ); 2209 testcase( to_op==OP_ToInt ); 2210 testcase( to_op==OP_ToReal ); 2211 if( inReg!=target ){ 2212 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2213 inReg = target; 2214 } 2215 sqlite3VdbeAddOp1(v, to_op, inReg); 2216 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2217 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2218 break; 2219 } 2220 #endif /* SQLITE_OMIT_CAST */ 2221 case TK_LT: 2222 case TK_LE: 2223 case TK_GT: 2224 case TK_GE: 2225 case TK_NE: 2226 case TK_EQ: { 2227 assert( TK_LT==OP_Lt ); 2228 assert( TK_LE==OP_Le ); 2229 assert( TK_GT==OP_Gt ); 2230 assert( TK_GE==OP_Ge ); 2231 assert( TK_EQ==OP_Eq ); 2232 assert( TK_NE==OP_Ne ); 2233 testcase( op==TK_LT ); 2234 testcase( op==TK_LE ); 2235 testcase( op==TK_GT ); 2236 testcase( op==TK_GE ); 2237 testcase( op==TK_EQ ); 2238 testcase( op==TK_NE ); 2239 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2240 pExpr->pRight, &r2, ®Free2); 2241 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2242 r1, r2, inReg, SQLITE_STOREP2); 2243 testcase( regFree1==0 ); 2244 testcase( regFree2==0 ); 2245 break; 2246 } 2247 case TK_IS: 2248 case TK_ISNOT: { 2249 testcase( op==TK_IS ); 2250 testcase( op==TK_ISNOT ); 2251 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2252 pExpr->pRight, &r2, ®Free2); 2253 op = (op==TK_IS) ? TK_EQ : TK_NE; 2254 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2255 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2256 testcase( regFree1==0 ); 2257 testcase( regFree2==0 ); 2258 break; 2259 } 2260 case TK_AND: 2261 case TK_OR: 2262 case TK_PLUS: 2263 case TK_STAR: 2264 case TK_MINUS: 2265 case TK_REM: 2266 case TK_BITAND: 2267 case TK_BITOR: 2268 case TK_SLASH: 2269 case TK_LSHIFT: 2270 case TK_RSHIFT: 2271 case TK_CONCAT: { 2272 assert( TK_AND==OP_And ); 2273 assert( TK_OR==OP_Or ); 2274 assert( TK_PLUS==OP_Add ); 2275 assert( TK_MINUS==OP_Subtract ); 2276 assert( TK_REM==OP_Remainder ); 2277 assert( TK_BITAND==OP_BitAnd ); 2278 assert( TK_BITOR==OP_BitOr ); 2279 assert( TK_SLASH==OP_Divide ); 2280 assert( TK_LSHIFT==OP_ShiftLeft ); 2281 assert( TK_RSHIFT==OP_ShiftRight ); 2282 assert( TK_CONCAT==OP_Concat ); 2283 testcase( op==TK_AND ); 2284 testcase( op==TK_OR ); 2285 testcase( op==TK_PLUS ); 2286 testcase( op==TK_MINUS ); 2287 testcase( op==TK_REM ); 2288 testcase( op==TK_BITAND ); 2289 testcase( op==TK_BITOR ); 2290 testcase( op==TK_SLASH ); 2291 testcase( op==TK_LSHIFT ); 2292 testcase( op==TK_RSHIFT ); 2293 testcase( op==TK_CONCAT ); 2294 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2295 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2296 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2297 testcase( regFree1==0 ); 2298 testcase( regFree2==0 ); 2299 break; 2300 } 2301 case TK_UMINUS: { 2302 Expr *pLeft = pExpr->pLeft; 2303 assert( pLeft ); 2304 if( pLeft->op==TK_FLOAT ){ 2305 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2306 codeReal(v, pLeft->u.zToken, 1, target); 2307 }else if( pLeft->op==TK_INTEGER ){ 2308 codeInteger(v, pLeft, 1, target); 2309 }else{ 2310 regFree1 = r1 = sqlite3GetTempReg(pParse); 2311 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2312 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2313 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2314 testcase( regFree2==0 ); 2315 } 2316 inReg = target; 2317 break; 2318 } 2319 case TK_BITNOT: 2320 case TK_NOT: { 2321 assert( TK_BITNOT==OP_BitNot ); 2322 assert( TK_NOT==OP_Not ); 2323 testcase( op==TK_BITNOT ); 2324 testcase( op==TK_NOT ); 2325 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2326 testcase( regFree1==0 ); 2327 inReg = target; 2328 sqlite3VdbeAddOp2(v, op, r1, inReg); 2329 break; 2330 } 2331 case TK_ISNULL: 2332 case TK_NOTNULL: { 2333 int addr; 2334 assert( TK_ISNULL==OP_IsNull ); 2335 assert( TK_NOTNULL==OP_NotNull ); 2336 testcase( op==TK_ISNULL ); 2337 testcase( op==TK_NOTNULL ); 2338 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2339 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2340 testcase( regFree1==0 ); 2341 addr = sqlite3VdbeAddOp1(v, op, r1); 2342 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2343 sqlite3VdbeJumpHere(v, addr); 2344 break; 2345 } 2346 case TK_AGG_FUNCTION: { 2347 AggInfo *pInfo = pExpr->pAggInfo; 2348 if( pInfo==0 ){ 2349 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2350 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2351 }else{ 2352 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2353 } 2354 break; 2355 } 2356 case TK_CONST_FUNC: 2357 case TK_FUNCTION: { 2358 ExprList *pFarg; /* List of function arguments */ 2359 int nFarg; /* Number of function arguments */ 2360 FuncDef *pDef; /* The function definition object */ 2361 int nId; /* Length of the function name in bytes */ 2362 const char *zId; /* The function name */ 2363 int constMask = 0; /* Mask of function arguments that are constant */ 2364 int i; /* Loop counter */ 2365 u8 enc = ENC(db); /* The text encoding used by this database */ 2366 CollSeq *pColl = 0; /* A collating sequence */ 2367 2368 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2369 testcase( op==TK_CONST_FUNC ); 2370 testcase( op==TK_FUNCTION ); 2371 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2372 pFarg = 0; 2373 }else{ 2374 pFarg = pExpr->x.pList; 2375 } 2376 nFarg = pFarg ? pFarg->nExpr : 0; 2377 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2378 zId = pExpr->u.zToken; 2379 nId = sqlite3Strlen30(zId); 2380 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2381 if( pDef==0 ){ 2382 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2383 break; 2384 } 2385 if( pFarg ){ 2386 r1 = sqlite3GetTempRange(pParse, nFarg); 2387 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2388 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2389 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2390 }else{ 2391 r1 = 0; 2392 } 2393 #ifndef SQLITE_OMIT_VIRTUALTABLE 2394 /* Possibly overload the function if the first argument is 2395 ** a virtual table column. 2396 ** 2397 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2398 ** second argument, not the first, as the argument to test to 2399 ** see if it is a column in a virtual table. This is done because 2400 ** the left operand of infix functions (the operand we want to 2401 ** control overloading) ends up as the second argument to the 2402 ** function. The expression "A glob B" is equivalent to 2403 ** "glob(B,A). We want to use the A in "A glob B" to test 2404 ** for function overloading. But we use the B term in "glob(B,A)". 2405 */ 2406 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2407 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2408 }else if( nFarg>0 ){ 2409 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2410 } 2411 #endif 2412 for(i=0; i<nFarg; i++){ 2413 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2414 constMask |= (1<<i); 2415 } 2416 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2417 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2418 } 2419 } 2420 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2421 if( !pColl ) pColl = db->pDfltColl; 2422 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2423 } 2424 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2425 (char*)pDef, P4_FUNCDEF); 2426 sqlite3VdbeChangeP5(v, (u8)nFarg); 2427 if( nFarg ){ 2428 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2429 } 2430 sqlite3ExprCacheAffinityChange(pParse, r1, nFarg); 2431 break; 2432 } 2433 #ifndef SQLITE_OMIT_SUBQUERY 2434 case TK_EXISTS: 2435 case TK_SELECT: { 2436 testcase( op==TK_EXISTS ); 2437 testcase( op==TK_SELECT ); 2438 sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2439 inReg = pExpr->iColumn; 2440 break; 2441 } 2442 case TK_IN: { 2443 int rNotFound = 0; 2444 int rMayHaveNull = 0; 2445 int j2, j3, j4, j5; 2446 char affinity; 2447 int eType; 2448 2449 VdbeNoopComment((v, "begin IN expr r%d", target)); 2450 eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull); 2451 if( rMayHaveNull ){ 2452 rNotFound = ++pParse->nMem; 2453 } 2454 2455 /* Figure out the affinity to use to create a key from the results 2456 ** of the expression. affinityStr stores a static string suitable for 2457 ** P4 of OP_MakeRecord. 2458 */ 2459 affinity = comparisonAffinity(pExpr); 2460 2461 2462 /* Code the <expr> from "<expr> IN (...)". The temporary table 2463 ** pExpr->iTable contains the values that make up the (...) set. 2464 */ 2465 sqlite3ExprCachePush(pParse); 2466 sqlite3ExprCode(pParse, pExpr->pLeft, target); 2467 j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target); 2468 if( eType==IN_INDEX_ROWID ){ 2469 j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target); 2470 j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target); 2471 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2472 j5 = sqlite3VdbeAddOp0(v, OP_Goto); 2473 sqlite3VdbeJumpHere(v, j3); 2474 sqlite3VdbeJumpHere(v, j4); 2475 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2476 }else{ 2477 r2 = regFree2 = sqlite3GetTempReg(pParse); 2478 2479 /* Create a record and test for set membership. If the set contains 2480 ** the value, then jump to the end of the test code. The target 2481 ** register still contains the true (1) value written to it earlier. 2482 */ 2483 sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1); 2484 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2485 j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2); 2486 2487 /* If the set membership test fails, then the result of the 2488 ** "x IN (...)" expression must be either 0 or NULL. If the set 2489 ** contains no NULL values, then the result is 0. If the set 2490 ** contains one or more NULL values, then the result of the 2491 ** expression is also NULL. 2492 */ 2493 if( rNotFound==0 ){ 2494 /* This branch runs if it is known at compile time (now) that 2495 ** the set contains no NULL values. This happens as the result 2496 ** of a "NOT NULL" constraint in the database schema. No need 2497 ** to test the data structure at runtime in this case. 2498 */ 2499 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2500 }else{ 2501 /* This block populates the rNotFound register with either NULL 2502 ** or 0 (an integer value). If the data structure contains one 2503 ** or more NULLs, then set rNotFound to NULL. Otherwise, set it 2504 ** to 0. If register rMayHaveNull is already set to some value 2505 ** other than NULL, then the test has already been run and 2506 ** rNotFound is already populated. 2507 */ 2508 static const char nullRecord[] = { 0x02, 0x00 }; 2509 j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull); 2510 sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound); 2511 sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, 2512 nullRecord, P4_STATIC); 2513 j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull); 2514 sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound); 2515 sqlite3VdbeJumpHere(v, j4); 2516 sqlite3VdbeJumpHere(v, j3); 2517 2518 /* Copy the value of register rNotFound (which is either NULL or 0) 2519 ** into the target register. This will be the result of the 2520 ** expression. 2521 */ 2522 sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target); 2523 } 2524 } 2525 sqlite3VdbeJumpHere(v, j2); 2526 sqlite3VdbeJumpHere(v, j5); 2527 sqlite3ExprCachePop(pParse, 1); 2528 VdbeComment((v, "end IN expr r%d", target)); 2529 break; 2530 } 2531 #endif 2532 /* 2533 ** x BETWEEN y AND z 2534 ** 2535 ** This is equivalent to 2536 ** 2537 ** x>=y AND x<=z 2538 ** 2539 ** X is stored in pExpr->pLeft. 2540 ** Y is stored in pExpr->pList->a[0].pExpr. 2541 ** Z is stored in pExpr->pList->a[1].pExpr. 2542 */ 2543 case TK_BETWEEN: { 2544 Expr *pLeft = pExpr->pLeft; 2545 struct ExprList_item *pLItem = pExpr->x.pList->a; 2546 Expr *pRight = pLItem->pExpr; 2547 2548 codeCompareOperands(pParse, pLeft, &r1, ®Free1, 2549 pRight, &r2, ®Free2); 2550 testcase( regFree1==0 ); 2551 testcase( regFree2==0 ); 2552 r3 = sqlite3GetTempReg(pParse); 2553 r4 = sqlite3GetTempReg(pParse); 2554 codeCompare(pParse, pLeft, pRight, OP_Ge, 2555 r1, r2, r3, SQLITE_STOREP2); 2556 pLItem++; 2557 pRight = pLItem->pExpr; 2558 sqlite3ReleaseTempReg(pParse, regFree2); 2559 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2560 testcase( regFree2==0 ); 2561 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2562 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2563 sqlite3ReleaseTempReg(pParse, r3); 2564 sqlite3ReleaseTempReg(pParse, r4); 2565 break; 2566 } 2567 case TK_UPLUS: { 2568 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2569 break; 2570 } 2571 2572 case TK_TRIGGER: { 2573 /* If the opcode is TK_TRIGGER, then the expression is a reference 2574 ** to a column in the new.* or old.* pseudo-tables available to 2575 ** trigger programs. In this case Expr.iTable is set to 1 for the 2576 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2577 ** is set to the column of the pseudo-table to read, or to -1 to 2578 ** read the rowid field. 2579 ** 2580 ** The expression is implemented using an OP_Param opcode. The p1 2581 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2582 ** to reference another column of the old.* pseudo-table, where 2583 ** i is the index of the column. For a new.rowid reference, p1 is 2584 ** set to (n+1), where n is the number of columns in each pseudo-table. 2585 ** For a reference to any other column in the new.* pseudo-table, p1 2586 ** is set to (n+2+i), where n and i are as defined previously. For 2587 ** example, if the table on which triggers are being fired is 2588 ** declared as: 2589 ** 2590 ** CREATE TABLE t1(a, b); 2591 ** 2592 ** Then p1 is interpreted as follows: 2593 ** 2594 ** p1==0 -> old.rowid p1==3 -> new.rowid 2595 ** p1==1 -> old.a p1==4 -> new.a 2596 ** p1==2 -> old.b p1==5 -> new.b 2597 */ 2598 Table *pTab = pExpr->pTab; 2599 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2600 2601 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2602 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2603 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2604 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2605 2606 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2607 VdbeComment((v, "%s.%s -> $%d", 2608 (pExpr->iTable ? "new" : "old"), 2609 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2610 target 2611 )); 2612 2613 /* If the column has REAL affinity, it may currently be stored as an 2614 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2615 if( pExpr->iColumn>=0 2616 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2617 ){ 2618 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2619 } 2620 break; 2621 } 2622 2623 2624 /* 2625 ** Form A: 2626 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2627 ** 2628 ** Form B: 2629 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2630 ** 2631 ** Form A is can be transformed into the equivalent form B as follows: 2632 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2633 ** WHEN x=eN THEN rN ELSE y END 2634 ** 2635 ** X (if it exists) is in pExpr->pLeft. 2636 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2637 ** ELSE clause and no other term matches, then the result of the 2638 ** exprssion is NULL. 2639 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2640 ** 2641 ** The result of the expression is the Ri for the first matching Ei, 2642 ** or if there is no matching Ei, the ELSE term Y, or if there is 2643 ** no ELSE term, NULL. 2644 */ 2645 default: assert( op==TK_CASE ); { 2646 int endLabel; /* GOTO label for end of CASE stmt */ 2647 int nextCase; /* GOTO label for next WHEN clause */ 2648 int nExpr; /* 2x number of WHEN terms */ 2649 int i; /* Loop counter */ 2650 ExprList *pEList; /* List of WHEN terms */ 2651 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2652 Expr opCompare; /* The X==Ei expression */ 2653 Expr cacheX; /* Cached expression X */ 2654 Expr *pX; /* The X expression */ 2655 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2656 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2657 2658 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2659 assert((pExpr->x.pList->nExpr % 2) == 0); 2660 assert(pExpr->x.pList->nExpr > 0); 2661 pEList = pExpr->x.pList; 2662 aListelem = pEList->a; 2663 nExpr = pEList->nExpr; 2664 endLabel = sqlite3VdbeMakeLabel(v); 2665 if( (pX = pExpr->pLeft)!=0 ){ 2666 cacheX = *pX; 2667 testcase( pX->op==TK_COLUMN ); 2668 testcase( pX->op==TK_REGISTER ); 2669 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2670 testcase( regFree1==0 ); 2671 cacheX.op = TK_REGISTER; 2672 opCompare.op = TK_EQ; 2673 opCompare.pLeft = &cacheX; 2674 pTest = &opCompare; 2675 } 2676 for(i=0; i<nExpr; i=i+2){ 2677 sqlite3ExprCachePush(pParse); 2678 if( pX ){ 2679 assert( pTest!=0 ); 2680 opCompare.pRight = aListelem[i].pExpr; 2681 }else{ 2682 pTest = aListelem[i].pExpr; 2683 } 2684 nextCase = sqlite3VdbeMakeLabel(v); 2685 testcase( pTest->op==TK_COLUMN ); 2686 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2687 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2688 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2689 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2690 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2691 sqlite3ExprCachePop(pParse, 1); 2692 sqlite3VdbeResolveLabel(v, nextCase); 2693 } 2694 if( pExpr->pRight ){ 2695 sqlite3ExprCachePush(pParse); 2696 sqlite3ExprCode(pParse, pExpr->pRight, target); 2697 sqlite3ExprCachePop(pParse, 1); 2698 }else{ 2699 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2700 } 2701 assert( db->mallocFailed || pParse->nErr>0 2702 || pParse->iCacheLevel==iCacheLevel ); 2703 sqlite3VdbeResolveLabel(v, endLabel); 2704 break; 2705 } 2706 #ifndef SQLITE_OMIT_TRIGGER 2707 case TK_RAISE: { 2708 assert( pExpr->affinity==OE_Rollback 2709 || pExpr->affinity==OE_Abort 2710 || pExpr->affinity==OE_Fail 2711 || pExpr->affinity==OE_Ignore 2712 ); 2713 if( !pParse->pTriggerTab ){ 2714 sqlite3ErrorMsg(pParse, 2715 "RAISE() may only be used within a trigger-program"); 2716 return 0; 2717 } 2718 if( pExpr->affinity==OE_Abort ){ 2719 sqlite3MayAbort(pParse); 2720 } 2721 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2722 if( pExpr->affinity==OE_Ignore ){ 2723 sqlite3VdbeAddOp4( 2724 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2725 }else{ 2726 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0); 2727 } 2728 2729 break; 2730 } 2731 #endif 2732 } 2733 sqlite3ReleaseTempReg(pParse, regFree1); 2734 sqlite3ReleaseTempReg(pParse, regFree2); 2735 return inReg; 2736 } 2737 2738 /* 2739 ** Generate code to evaluate an expression and store the results 2740 ** into a register. Return the register number where the results 2741 ** are stored. 2742 ** 2743 ** If the register is a temporary register that can be deallocated, 2744 ** then write its number into *pReg. If the result register is not 2745 ** a temporary, then set *pReg to zero. 2746 */ 2747 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2748 int r1 = sqlite3GetTempReg(pParse); 2749 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2750 if( r2==r1 ){ 2751 *pReg = r1; 2752 }else{ 2753 sqlite3ReleaseTempReg(pParse, r1); 2754 *pReg = 0; 2755 } 2756 return r2; 2757 } 2758 2759 /* 2760 ** Generate code that will evaluate expression pExpr and store the 2761 ** results in register target. The results are guaranteed to appear 2762 ** in register target. 2763 */ 2764 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2765 int inReg; 2766 2767 assert( target>0 && target<=pParse->nMem ); 2768 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2769 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2770 if( inReg!=target && pParse->pVdbe ){ 2771 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2772 } 2773 return target; 2774 } 2775 2776 /* 2777 ** Generate code that evalutes the given expression and puts the result 2778 ** in register target. 2779 ** 2780 ** Also make a copy of the expression results into another "cache" register 2781 ** and modify the expression so that the next time it is evaluated, 2782 ** the result is a copy of the cache register. 2783 ** 2784 ** This routine is used for expressions that are used multiple 2785 ** times. They are evaluated once and the results of the expression 2786 ** are reused. 2787 */ 2788 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2789 Vdbe *v = pParse->pVdbe; 2790 int inReg; 2791 inReg = sqlite3ExprCode(pParse, pExpr, target); 2792 assert( target>0 ); 2793 /* This routine is called for terms to INSERT or UPDATE. And the only 2794 ** other place where expressions can be converted into TK_REGISTER is 2795 ** in WHERE clause processing. So as currently implemented, there is 2796 ** no way for a TK_REGISTER to exist here. But it seems prudent to 2797 ** keep the ALWAYS() in case the conditions above change with future 2798 ** modifications or enhancements. */ 2799 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 2800 int iMem; 2801 iMem = ++pParse->nMem; 2802 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2803 pExpr->iTable = iMem; 2804 pExpr->op2 = pExpr->op; 2805 pExpr->op = TK_REGISTER; 2806 } 2807 return inReg; 2808 } 2809 2810 /* 2811 ** Return TRUE if pExpr is an constant expression that is appropriate 2812 ** for factoring out of a loop. Appropriate expressions are: 2813 ** 2814 ** * Any expression that evaluates to two or more opcodes. 2815 ** 2816 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 2817 ** or OP_Variable that does not need to be placed in a 2818 ** specific register. 2819 ** 2820 ** There is no point in factoring out single-instruction constant 2821 ** expressions that need to be placed in a particular register. 2822 ** We could factor them out, but then we would end up adding an 2823 ** OP_SCopy instruction to move the value into the correct register 2824 ** later. We might as well just use the original instruction and 2825 ** avoid the OP_SCopy. 2826 */ 2827 static int isAppropriateForFactoring(Expr *p){ 2828 if( !sqlite3ExprIsConstantNotJoin(p) ){ 2829 return 0; /* Only constant expressions are appropriate for factoring */ 2830 } 2831 if( (p->flags & EP_FixedDest)==0 ){ 2832 return 1; /* Any constant without a fixed destination is appropriate */ 2833 } 2834 while( p->op==TK_UPLUS ) p = p->pLeft; 2835 switch( p->op ){ 2836 #ifndef SQLITE_OMIT_BLOB_LITERAL 2837 case TK_BLOB: 2838 #endif 2839 case TK_VARIABLE: 2840 case TK_INTEGER: 2841 case TK_FLOAT: 2842 case TK_NULL: 2843 case TK_STRING: { 2844 testcase( p->op==TK_BLOB ); 2845 testcase( p->op==TK_VARIABLE ); 2846 testcase( p->op==TK_INTEGER ); 2847 testcase( p->op==TK_FLOAT ); 2848 testcase( p->op==TK_NULL ); 2849 testcase( p->op==TK_STRING ); 2850 /* Single-instruction constants with a fixed destination are 2851 ** better done in-line. If we factor them, they will just end 2852 ** up generating an OP_SCopy to move the value to the destination 2853 ** register. */ 2854 return 0; 2855 } 2856 case TK_UMINUS: { 2857 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 2858 return 0; 2859 } 2860 break; 2861 } 2862 default: { 2863 break; 2864 } 2865 } 2866 return 1; 2867 } 2868 2869 /* 2870 ** If pExpr is a constant expression that is appropriate for 2871 ** factoring out of a loop, then evaluate the expression 2872 ** into a register and convert the expression into a TK_REGISTER 2873 ** expression. 2874 */ 2875 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 2876 Parse *pParse = pWalker->pParse; 2877 switch( pExpr->op ){ 2878 case TK_REGISTER: { 2879 return WRC_Prune; 2880 } 2881 case TK_FUNCTION: 2882 case TK_AGG_FUNCTION: 2883 case TK_CONST_FUNC: { 2884 /* The arguments to a function have a fixed destination. 2885 ** Mark them this way to avoid generated unneeded OP_SCopy 2886 ** instructions. 2887 */ 2888 ExprList *pList = pExpr->x.pList; 2889 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2890 if( pList ){ 2891 int i = pList->nExpr; 2892 struct ExprList_item *pItem = pList->a; 2893 for(; i>0; i--, pItem++){ 2894 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 2895 } 2896 } 2897 break; 2898 } 2899 } 2900 if( isAppropriateForFactoring(pExpr) ){ 2901 int r1 = ++pParse->nMem; 2902 int r2; 2903 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2904 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); 2905 pExpr->op2 = pExpr->op; 2906 pExpr->op = TK_REGISTER; 2907 pExpr->iTable = r2; 2908 return WRC_Prune; 2909 } 2910 return WRC_Continue; 2911 } 2912 2913 /* 2914 ** Preevaluate constant subexpressions within pExpr and store the 2915 ** results in registers. Modify pExpr so that the constant subexpresions 2916 ** are TK_REGISTER opcodes that refer to the precomputed values. 2917 */ 2918 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 2919 Walker w; 2920 w.xExprCallback = evalConstExpr; 2921 w.xSelectCallback = 0; 2922 w.pParse = pParse; 2923 sqlite3WalkExpr(&w, pExpr); 2924 } 2925 2926 2927 /* 2928 ** Generate code that pushes the value of every element of the given 2929 ** expression list into a sequence of registers beginning at target. 2930 ** 2931 ** Return the number of elements evaluated. 2932 */ 2933 int sqlite3ExprCodeExprList( 2934 Parse *pParse, /* Parsing context */ 2935 ExprList *pList, /* The expression list to be coded */ 2936 int target, /* Where to write results */ 2937 int doHardCopy /* Make a hard copy of every element */ 2938 ){ 2939 struct ExprList_item *pItem; 2940 int i, n; 2941 assert( pList!=0 ); 2942 assert( target>0 ); 2943 n = pList->nExpr; 2944 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 2945 if( pItem->iAlias ){ 2946 int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i); 2947 Vdbe *v = sqlite3GetVdbe(pParse); 2948 if( iReg!=target+i ){ 2949 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i); 2950 } 2951 }else{ 2952 sqlite3ExprCode(pParse, pItem->pExpr, target+i); 2953 } 2954 if( doHardCopy && !pParse->db->mallocFailed ){ 2955 sqlite3ExprHardCopy(pParse, target, n); 2956 } 2957 } 2958 return n; 2959 } 2960 2961 /* 2962 ** Generate code for a boolean expression such that a jump is made 2963 ** to the label "dest" if the expression is true but execution 2964 ** continues straight thru if the expression is false. 2965 ** 2966 ** If the expression evaluates to NULL (neither true nor false), then 2967 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 2968 ** 2969 ** This code depends on the fact that certain token values (ex: TK_EQ) 2970 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 2971 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 2972 ** the make process cause these values to align. Assert()s in the code 2973 ** below verify that the numbers are aligned correctly. 2974 */ 2975 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2976 Vdbe *v = pParse->pVdbe; 2977 int op = 0; 2978 int regFree1 = 0; 2979 int regFree2 = 0; 2980 int r1, r2; 2981 2982 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 2983 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 2984 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 2985 op = pExpr->op; 2986 switch( op ){ 2987 case TK_AND: { 2988 int d2 = sqlite3VdbeMakeLabel(v); 2989 testcase( jumpIfNull==0 ); 2990 sqlite3ExprCachePush(pParse); 2991 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 2992 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2993 sqlite3VdbeResolveLabel(v, d2); 2994 sqlite3ExprCachePop(pParse, 1); 2995 break; 2996 } 2997 case TK_OR: { 2998 testcase( jumpIfNull==0 ); 2999 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3000 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3001 break; 3002 } 3003 case TK_NOT: { 3004 testcase( jumpIfNull==0 ); 3005 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3006 break; 3007 } 3008 case TK_LT: 3009 case TK_LE: 3010 case TK_GT: 3011 case TK_GE: 3012 case TK_NE: 3013 case TK_EQ: { 3014 assert( TK_LT==OP_Lt ); 3015 assert( TK_LE==OP_Le ); 3016 assert( TK_GT==OP_Gt ); 3017 assert( TK_GE==OP_Ge ); 3018 assert( TK_EQ==OP_Eq ); 3019 assert( TK_NE==OP_Ne ); 3020 testcase( op==TK_LT ); 3021 testcase( op==TK_LE ); 3022 testcase( op==TK_GT ); 3023 testcase( op==TK_GE ); 3024 testcase( op==TK_EQ ); 3025 testcase( op==TK_NE ); 3026 testcase( jumpIfNull==0 ); 3027 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3028 pExpr->pRight, &r2, ®Free2); 3029 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3030 r1, r2, dest, jumpIfNull); 3031 testcase( regFree1==0 ); 3032 testcase( regFree2==0 ); 3033 break; 3034 } 3035 case TK_IS: 3036 case TK_ISNOT: { 3037 testcase( op==TK_IS ); 3038 testcase( op==TK_ISNOT ); 3039 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3040 pExpr->pRight, &r2, ®Free2); 3041 op = (op==TK_IS) ? TK_EQ : TK_NE; 3042 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3043 r1, r2, dest, SQLITE_NULLEQ); 3044 testcase( regFree1==0 ); 3045 testcase( regFree2==0 ); 3046 break; 3047 } 3048 case TK_ISNULL: 3049 case TK_NOTNULL: { 3050 assert( TK_ISNULL==OP_IsNull ); 3051 assert( TK_NOTNULL==OP_NotNull ); 3052 testcase( op==TK_ISNULL ); 3053 testcase( op==TK_NOTNULL ); 3054 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3055 sqlite3VdbeAddOp2(v, op, r1, dest); 3056 testcase( regFree1==0 ); 3057 break; 3058 } 3059 case TK_BETWEEN: { 3060 /* x BETWEEN y AND z 3061 ** 3062 ** Is equivalent to 3063 ** 3064 ** x>=y AND x<=z 3065 ** 3066 ** Code it as such, taking care to do the common subexpression 3067 ** elementation of x. 3068 */ 3069 Expr exprAnd; 3070 Expr compLeft; 3071 Expr compRight; 3072 Expr exprX; 3073 3074 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3075 exprX = *pExpr->pLeft; 3076 exprAnd.op = TK_AND; 3077 exprAnd.pLeft = &compLeft; 3078 exprAnd.pRight = &compRight; 3079 compLeft.op = TK_GE; 3080 compLeft.pLeft = &exprX; 3081 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3082 compRight.op = TK_LE; 3083 compRight.pLeft = &exprX; 3084 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3085 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3086 testcase( regFree1==0 ); 3087 exprX.op = TK_REGISTER; 3088 testcase( jumpIfNull==0 ); 3089 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3090 break; 3091 } 3092 default: { 3093 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3094 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3095 testcase( regFree1==0 ); 3096 testcase( jumpIfNull==0 ); 3097 break; 3098 } 3099 } 3100 sqlite3ReleaseTempReg(pParse, regFree1); 3101 sqlite3ReleaseTempReg(pParse, regFree2); 3102 } 3103 3104 /* 3105 ** Generate code for a boolean expression such that a jump is made 3106 ** to the label "dest" if the expression is false but execution 3107 ** continues straight thru if the expression is true. 3108 ** 3109 ** If the expression evaluates to NULL (neither true nor false) then 3110 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3111 ** is 0. 3112 */ 3113 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3114 Vdbe *v = pParse->pVdbe; 3115 int op = 0; 3116 int regFree1 = 0; 3117 int regFree2 = 0; 3118 int r1, r2; 3119 3120 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3121 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3122 if( pExpr==0 ) return; 3123 3124 /* The value of pExpr->op and op are related as follows: 3125 ** 3126 ** pExpr->op op 3127 ** --------- ---------- 3128 ** TK_ISNULL OP_NotNull 3129 ** TK_NOTNULL OP_IsNull 3130 ** TK_NE OP_Eq 3131 ** TK_EQ OP_Ne 3132 ** TK_GT OP_Le 3133 ** TK_LE OP_Gt 3134 ** TK_GE OP_Lt 3135 ** TK_LT OP_Ge 3136 ** 3137 ** For other values of pExpr->op, op is undefined and unused. 3138 ** The value of TK_ and OP_ constants are arranged such that we 3139 ** can compute the mapping above using the following expression. 3140 ** Assert()s verify that the computation is correct. 3141 */ 3142 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3143 3144 /* Verify correct alignment of TK_ and OP_ constants 3145 */ 3146 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3147 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3148 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3149 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3150 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3151 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3152 assert( pExpr->op!=TK_GT || op==OP_Le ); 3153 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3154 3155 switch( pExpr->op ){ 3156 case TK_AND: { 3157 testcase( jumpIfNull==0 ); 3158 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3159 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3160 break; 3161 } 3162 case TK_OR: { 3163 int d2 = sqlite3VdbeMakeLabel(v); 3164 testcase( jumpIfNull==0 ); 3165 sqlite3ExprCachePush(pParse); 3166 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3167 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3168 sqlite3VdbeResolveLabel(v, d2); 3169 sqlite3ExprCachePop(pParse, 1); 3170 break; 3171 } 3172 case TK_NOT: { 3173 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3174 break; 3175 } 3176 case TK_LT: 3177 case TK_LE: 3178 case TK_GT: 3179 case TK_GE: 3180 case TK_NE: 3181 case TK_EQ: { 3182 testcase( op==TK_LT ); 3183 testcase( op==TK_LE ); 3184 testcase( op==TK_GT ); 3185 testcase( op==TK_GE ); 3186 testcase( op==TK_EQ ); 3187 testcase( op==TK_NE ); 3188 testcase( jumpIfNull==0 ); 3189 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3190 pExpr->pRight, &r2, ®Free2); 3191 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3192 r1, r2, dest, jumpIfNull); 3193 testcase( regFree1==0 ); 3194 testcase( regFree2==0 ); 3195 break; 3196 } 3197 case TK_IS: 3198 case TK_ISNOT: { 3199 testcase( pExpr->op==TK_IS ); 3200 testcase( pExpr->op==TK_ISNOT ); 3201 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3202 pExpr->pRight, &r2, ®Free2); 3203 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3204 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3205 r1, r2, dest, SQLITE_NULLEQ); 3206 testcase( regFree1==0 ); 3207 testcase( regFree2==0 ); 3208 break; 3209 } 3210 case TK_ISNULL: 3211 case TK_NOTNULL: { 3212 testcase( op==TK_ISNULL ); 3213 testcase( op==TK_NOTNULL ); 3214 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3215 sqlite3VdbeAddOp2(v, op, r1, dest); 3216 testcase( regFree1==0 ); 3217 break; 3218 } 3219 case TK_BETWEEN: { 3220 /* x BETWEEN y AND z 3221 ** 3222 ** Is equivalent to 3223 ** 3224 ** x>=y AND x<=z 3225 ** 3226 ** Code it as such, taking care to do the common subexpression 3227 ** elementation of x. 3228 */ 3229 Expr exprAnd; 3230 Expr compLeft; 3231 Expr compRight; 3232 Expr exprX; 3233 3234 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3235 exprX = *pExpr->pLeft; 3236 exprAnd.op = TK_AND; 3237 exprAnd.pLeft = &compLeft; 3238 exprAnd.pRight = &compRight; 3239 compLeft.op = TK_GE; 3240 compLeft.pLeft = &exprX; 3241 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3242 compRight.op = TK_LE; 3243 compRight.pLeft = &exprX; 3244 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3245 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3246 testcase( regFree1==0 ); 3247 exprX.op = TK_REGISTER; 3248 testcase( jumpIfNull==0 ); 3249 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3250 break; 3251 } 3252 default: { 3253 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3254 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3255 testcase( regFree1==0 ); 3256 testcase( jumpIfNull==0 ); 3257 break; 3258 } 3259 } 3260 sqlite3ReleaseTempReg(pParse, regFree1); 3261 sqlite3ReleaseTempReg(pParse, regFree2); 3262 } 3263 3264 /* 3265 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 3266 ** if they are identical and return FALSE if they differ in any way. 3267 ** 3268 ** Sometimes this routine will return FALSE even if the two expressions 3269 ** really are equivalent. If we cannot prove that the expressions are 3270 ** identical, we return FALSE just to be safe. So if this routine 3271 ** returns false, then you do not really know for certain if the two 3272 ** expressions are the same. But if you get a TRUE return, then you 3273 ** can be sure the expressions are the same. In the places where 3274 ** this routine is used, it does not hurt to get an extra FALSE - that 3275 ** just might result in some slightly slower code. But returning 3276 ** an incorrect TRUE could lead to a malfunction. 3277 */ 3278 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3279 int i; 3280 if( pA==0||pB==0 ){ 3281 return pB==pA; 3282 } 3283 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3284 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3285 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3286 return 0; 3287 } 3288 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 3289 if( pA->op!=pB->op ) return 0; 3290 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 3291 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 3292 3293 if( pA->x.pList && pB->x.pList ){ 3294 if( pA->x.pList->nExpr!=pB->x.pList->nExpr ) return 0; 3295 for(i=0; i<pA->x.pList->nExpr; i++){ 3296 Expr *pExprA = pA->x.pList->a[i].pExpr; 3297 Expr *pExprB = pB->x.pList->a[i].pExpr; 3298 if( !sqlite3ExprCompare(pExprA, pExprB) ) return 0; 3299 } 3300 }else if( pA->x.pList || pB->x.pList ){ 3301 return 0; 3302 } 3303 3304 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 3305 if( ExprHasProperty(pA, EP_IntValue) ){ 3306 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3307 return 0; 3308 } 3309 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){ 3310 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 0; 3311 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3312 return 0; 3313 } 3314 } 3315 return 1; 3316 } 3317 3318 3319 /* 3320 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3321 ** the new element. Return a negative number if malloc fails. 3322 */ 3323 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3324 int i; 3325 pInfo->aCol = sqlite3ArrayAllocate( 3326 db, 3327 pInfo->aCol, 3328 sizeof(pInfo->aCol[0]), 3329 3, 3330 &pInfo->nColumn, 3331 &pInfo->nColumnAlloc, 3332 &i 3333 ); 3334 return i; 3335 } 3336 3337 /* 3338 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3339 ** the new element. Return a negative number if malloc fails. 3340 */ 3341 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3342 int i; 3343 pInfo->aFunc = sqlite3ArrayAllocate( 3344 db, 3345 pInfo->aFunc, 3346 sizeof(pInfo->aFunc[0]), 3347 3, 3348 &pInfo->nFunc, 3349 &pInfo->nFuncAlloc, 3350 &i 3351 ); 3352 return i; 3353 } 3354 3355 /* 3356 ** This is the xExprCallback for a tree walker. It is used to 3357 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3358 ** for additional information. 3359 */ 3360 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3361 int i; 3362 NameContext *pNC = pWalker->u.pNC; 3363 Parse *pParse = pNC->pParse; 3364 SrcList *pSrcList = pNC->pSrcList; 3365 AggInfo *pAggInfo = pNC->pAggInfo; 3366 3367 switch( pExpr->op ){ 3368 case TK_AGG_COLUMN: 3369 case TK_COLUMN: { 3370 testcase( pExpr->op==TK_AGG_COLUMN ); 3371 testcase( pExpr->op==TK_COLUMN ); 3372 /* Check to see if the column is in one of the tables in the FROM 3373 ** clause of the aggregate query */ 3374 if( ALWAYS(pSrcList!=0) ){ 3375 struct SrcList_item *pItem = pSrcList->a; 3376 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3377 struct AggInfo_col *pCol; 3378 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3379 if( pExpr->iTable==pItem->iCursor ){ 3380 /* If we reach this point, it means that pExpr refers to a table 3381 ** that is in the FROM clause of the aggregate query. 3382 ** 3383 ** Make an entry for the column in pAggInfo->aCol[] if there 3384 ** is not an entry there already. 3385 */ 3386 int k; 3387 pCol = pAggInfo->aCol; 3388 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3389 if( pCol->iTable==pExpr->iTable && 3390 pCol->iColumn==pExpr->iColumn ){ 3391 break; 3392 } 3393 } 3394 if( (k>=pAggInfo->nColumn) 3395 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3396 ){ 3397 pCol = &pAggInfo->aCol[k]; 3398 pCol->pTab = pExpr->pTab; 3399 pCol->iTable = pExpr->iTable; 3400 pCol->iColumn = pExpr->iColumn; 3401 pCol->iMem = ++pParse->nMem; 3402 pCol->iSorterColumn = -1; 3403 pCol->pExpr = pExpr; 3404 if( pAggInfo->pGroupBy ){ 3405 int j, n; 3406 ExprList *pGB = pAggInfo->pGroupBy; 3407 struct ExprList_item *pTerm = pGB->a; 3408 n = pGB->nExpr; 3409 for(j=0; j<n; j++, pTerm++){ 3410 Expr *pE = pTerm->pExpr; 3411 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3412 pE->iColumn==pExpr->iColumn ){ 3413 pCol->iSorterColumn = j; 3414 break; 3415 } 3416 } 3417 } 3418 if( pCol->iSorterColumn<0 ){ 3419 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3420 } 3421 } 3422 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3423 ** because it was there before or because we just created it). 3424 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3425 ** pAggInfo->aCol[] entry. 3426 */ 3427 ExprSetIrreducible(pExpr); 3428 pExpr->pAggInfo = pAggInfo; 3429 pExpr->op = TK_AGG_COLUMN; 3430 pExpr->iAgg = (i16)k; 3431 break; 3432 } /* endif pExpr->iTable==pItem->iCursor */ 3433 } /* end loop over pSrcList */ 3434 } 3435 return WRC_Prune; 3436 } 3437 case TK_AGG_FUNCTION: { 3438 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 3439 ** to be ignored */ 3440 if( pNC->nDepth==0 ){ 3441 /* Check to see if pExpr is a duplicate of another aggregate 3442 ** function that is already in the pAggInfo structure 3443 */ 3444 struct AggInfo_func *pItem = pAggInfo->aFunc; 3445 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3446 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 3447 break; 3448 } 3449 } 3450 if( i>=pAggInfo->nFunc ){ 3451 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3452 */ 3453 u8 enc = ENC(pParse->db); 3454 i = addAggInfoFunc(pParse->db, pAggInfo); 3455 if( i>=0 ){ 3456 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3457 pItem = &pAggInfo->aFunc[i]; 3458 pItem->pExpr = pExpr; 3459 pItem->iMem = ++pParse->nMem; 3460 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3461 pItem->pFunc = sqlite3FindFunction(pParse->db, 3462 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 3463 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 3464 if( pExpr->flags & EP_Distinct ){ 3465 pItem->iDistinct = pParse->nTab++; 3466 }else{ 3467 pItem->iDistinct = -1; 3468 } 3469 } 3470 } 3471 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 3472 */ 3473 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3474 ExprSetIrreducible(pExpr); 3475 pExpr->iAgg = (i16)i; 3476 pExpr->pAggInfo = pAggInfo; 3477 return WRC_Prune; 3478 } 3479 } 3480 } 3481 return WRC_Continue; 3482 } 3483 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 3484 NameContext *pNC = pWalker->u.pNC; 3485 if( pNC->nDepth==0 ){ 3486 pNC->nDepth++; 3487 sqlite3WalkSelect(pWalker, pSelect); 3488 pNC->nDepth--; 3489 return WRC_Prune; 3490 }else{ 3491 return WRC_Continue; 3492 } 3493 } 3494 3495 /* 3496 ** Analyze the given expression looking for aggregate functions and 3497 ** for variables that need to be added to the pParse->aAgg[] array. 3498 ** Make additional entries to the pParse->aAgg[] array as necessary. 3499 ** 3500 ** This routine should only be called after the expression has been 3501 ** analyzed by sqlite3ResolveExprNames(). 3502 */ 3503 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 3504 Walker w; 3505 w.xExprCallback = analyzeAggregate; 3506 w.xSelectCallback = analyzeAggregatesInSelect; 3507 w.u.pNC = pNC; 3508 assert( pNC->pSrcList!=0 ); 3509 sqlite3WalkExpr(&w, pExpr); 3510 } 3511 3512 /* 3513 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 3514 ** expression list. Return the number of errors. 3515 ** 3516 ** If an error is found, the analysis is cut short. 3517 */ 3518 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 3519 struct ExprList_item *pItem; 3520 int i; 3521 if( pList ){ 3522 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 3523 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 3524 } 3525 } 3526 } 3527 3528 /* 3529 ** Allocate a single new register for use to hold some intermediate result. 3530 */ 3531 int sqlite3GetTempReg(Parse *pParse){ 3532 if( pParse->nTempReg==0 ){ 3533 return ++pParse->nMem; 3534 } 3535 return pParse->aTempReg[--pParse->nTempReg]; 3536 } 3537 3538 /* 3539 ** Deallocate a register, making available for reuse for some other 3540 ** purpose. 3541 ** 3542 ** If a register is currently being used by the column cache, then 3543 ** the dallocation is deferred until the column cache line that uses 3544 ** the register becomes stale. 3545 */ 3546 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 3547 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3548 int i; 3549 struct yColCache *p; 3550 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3551 if( p->iReg==iReg ){ 3552 p->tempReg = 1; 3553 return; 3554 } 3555 } 3556 pParse->aTempReg[pParse->nTempReg++] = iReg; 3557 } 3558 } 3559 3560 /* 3561 ** Allocate or deallocate a block of nReg consecutive registers 3562 */ 3563 int sqlite3GetTempRange(Parse *pParse, int nReg){ 3564 int i, n; 3565 i = pParse->iRangeReg; 3566 n = pParse->nRangeReg; 3567 if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){ 3568 pParse->iRangeReg += nReg; 3569 pParse->nRangeReg -= nReg; 3570 }else{ 3571 i = pParse->nMem+1; 3572 pParse->nMem += nReg; 3573 } 3574 return i; 3575 } 3576 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 3577 if( nReg>pParse->nRangeReg ){ 3578 pParse->nRangeReg = nReg; 3579 pParse->iRangeReg = iReg; 3580 } 3581 } 3582