xref: /sqlite-3.40.0/src/expr.c (revision fb32c44e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   pExpr = sqlite3ExprSkipCollate(pExpr);
48   if( pExpr->flags & EP_Generic ) return 0;
49   op = pExpr->op;
50   if( op==TK_SELECT ){
51     assert( pExpr->flags&EP_xIsSelect );
52     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
53   }
54   if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56   if( op==TK_CAST ){
57     assert( !ExprHasProperty(pExpr, EP_IntValue) );
58     return sqlite3AffinityType(pExpr->u.zToken, 0);
59   }
60 #endif
61   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){
62     return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
63   }
64   if( op==TK_SELECT_COLUMN ){
65     assert( pExpr->pLeft->flags&EP_xIsSelect );
66     return sqlite3ExprAffinity(
67         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
68     );
69   }
70   return pExpr->affinity;
71 }
72 
73 /*
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken.   Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
77 **
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
80 */
81 Expr *sqlite3ExprAddCollateToken(
82   Parse *pParse,           /* Parsing context */
83   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
84   const Token *pCollName,  /* Name of collating sequence */
85   int dequote              /* True to dequote pCollName */
86 ){
87   if( pCollName->n>0 ){
88     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89     if( pNew ){
90       pNew->pLeft = pExpr;
91       pNew->flags |= EP_Collate|EP_Skip;
92       pExpr = pNew;
93     }
94   }
95   return pExpr;
96 }
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98   Token s;
99   assert( zC!=0 );
100   sqlite3TokenInit(&s, (char*)zC);
101   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
102 }
103 
104 /*
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
107 */
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110     if( ExprHasProperty(pExpr, EP_Unlikely) ){
111       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112       assert( pExpr->x.pList->nExpr>0 );
113       assert( pExpr->op==TK_FUNCTION );
114       pExpr = pExpr->x.pList->a[0].pExpr;
115     }else{
116       assert( pExpr->op==TK_COLLATE );
117       pExpr = pExpr->pLeft;
118     }
119   }
120   return pExpr;
121 }
122 
123 /*
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
126 **
127 ** See also: sqlite3ExprNNCollSeq()
128 **
129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
130 ** default collation if pExpr has no defined collation.
131 **
132 ** The collating sequence might be determined by a COLLATE operator
133 ** or by the presence of a column with a defined collating sequence.
134 ** COLLATE operators take first precedence.  Left operands take
135 ** precedence over right operands.
136 */
137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
138   sqlite3 *db = pParse->db;
139   CollSeq *pColl = 0;
140   Expr *p = pExpr;
141   while( p ){
142     int op = p->op;
143     if( p->flags & EP_Generic ) break;
144     if( op==TK_CAST || op==TK_UPLUS ){
145       p = p->pLeft;
146       continue;
147     }
148     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
149       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
150       break;
151     }
152     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
153           || op==TK_REGISTER || op==TK_TRIGGER)
154      && p->pTab!=0
155     ){
156       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
157       ** a TK_COLUMN but was previously evaluated and cached in a register */
158       int j = p->iColumn;
159       if( j>=0 ){
160         const char *zColl = p->pTab->aCol[j].zColl;
161         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
162       }
163       break;
164     }
165     if( p->flags & EP_Collate ){
166       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
167         p = p->pLeft;
168       }else{
169         Expr *pNext  = p->pRight;
170         /* The Expr.x union is never used at the same time as Expr.pRight */
171         assert( p->x.pList==0 || p->pRight==0 );
172         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
173         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
174         ** least one EP_Collate. Thus the following two ALWAYS. */
175         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
176           int i;
177           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
178             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
179               pNext = p->x.pList->a[i].pExpr;
180               break;
181             }
182           }
183         }
184         p = pNext;
185       }
186     }else{
187       break;
188     }
189   }
190   if( sqlite3CheckCollSeq(pParse, pColl) ){
191     pColl = 0;
192   }
193   return pColl;
194 }
195 
196 /*
197 ** Return the collation sequence for the expression pExpr. If
198 ** there is no defined collating sequence, return a pointer to the
199 ** defautl collation sequence.
200 **
201 ** See also: sqlite3ExprCollSeq()
202 **
203 ** The sqlite3ExprCollSeq() routine works the same except that it
204 ** returns NULL if there is no defined collation.
205 */
206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
207   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
208   if( p==0 ) p = pParse->db->pDfltColl;
209   assert( p!=0 );
210   return p;
211 }
212 
213 /*
214 ** Return TRUE if the two expressions have equivalent collating sequences.
215 */
216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
217   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
218   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
219   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
220 }
221 
222 /*
223 ** pExpr is an operand of a comparison operator.  aff2 is the
224 ** type affinity of the other operand.  This routine returns the
225 ** type affinity that should be used for the comparison operator.
226 */
227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
228   char aff1 = sqlite3ExprAffinity(pExpr);
229   if( aff1 && aff2 ){
230     /* Both sides of the comparison are columns. If one has numeric
231     ** affinity, use that. Otherwise use no affinity.
232     */
233     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
234       return SQLITE_AFF_NUMERIC;
235     }else{
236       return SQLITE_AFF_BLOB;
237     }
238   }else if( !aff1 && !aff2 ){
239     /* Neither side of the comparison is a column.  Compare the
240     ** results directly.
241     */
242     return SQLITE_AFF_BLOB;
243   }else{
244     /* One side is a column, the other is not. Use the columns affinity. */
245     assert( aff1==0 || aff2==0 );
246     return (aff1 + aff2);
247   }
248 }
249 
250 /*
251 ** pExpr is a comparison operator.  Return the type affinity that should
252 ** be applied to both operands prior to doing the comparison.
253 */
254 static char comparisonAffinity(Expr *pExpr){
255   char aff;
256   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
257           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
258           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
259   assert( pExpr->pLeft );
260   aff = sqlite3ExprAffinity(pExpr->pLeft);
261   if( pExpr->pRight ){
262     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
263   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
264     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
265   }else if( aff==0 ){
266     aff = SQLITE_AFF_BLOB;
267   }
268   return aff;
269 }
270 
271 /*
272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
273 ** idx_affinity is the affinity of an indexed column. Return true
274 ** if the index with affinity idx_affinity may be used to implement
275 ** the comparison in pExpr.
276 */
277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
278   char aff = comparisonAffinity(pExpr);
279   switch( aff ){
280     case SQLITE_AFF_BLOB:
281       return 1;
282     case SQLITE_AFF_TEXT:
283       return idx_affinity==SQLITE_AFF_TEXT;
284     default:
285       return sqlite3IsNumericAffinity(idx_affinity);
286   }
287 }
288 
289 /*
290 ** Return the P5 value that should be used for a binary comparison
291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
292 */
293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
294   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
295   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
296   return aff;
297 }
298 
299 /*
300 ** Return a pointer to the collation sequence that should be used by
301 ** a binary comparison operator comparing pLeft and pRight.
302 **
303 ** If the left hand expression has a collating sequence type, then it is
304 ** used. Otherwise the collation sequence for the right hand expression
305 ** is used, or the default (BINARY) if neither expression has a collating
306 ** type.
307 **
308 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
309 ** it is not considered.
310 */
311 CollSeq *sqlite3BinaryCompareCollSeq(
312   Parse *pParse,
313   Expr *pLeft,
314   Expr *pRight
315 ){
316   CollSeq *pColl;
317   assert( pLeft );
318   if( pLeft->flags & EP_Collate ){
319     pColl = sqlite3ExprCollSeq(pParse, pLeft);
320   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
321     pColl = sqlite3ExprCollSeq(pParse, pRight);
322   }else{
323     pColl = sqlite3ExprCollSeq(pParse, pLeft);
324     if( !pColl ){
325       pColl = sqlite3ExprCollSeq(pParse, pRight);
326     }
327   }
328   return pColl;
329 }
330 
331 /*
332 ** Generate code for a comparison operator.
333 */
334 static int codeCompare(
335   Parse *pParse,    /* The parsing (and code generating) context */
336   Expr *pLeft,      /* The left operand */
337   Expr *pRight,     /* The right operand */
338   int opcode,       /* The comparison opcode */
339   int in1, int in2, /* Register holding operands */
340   int dest,         /* Jump here if true.  */
341   int jumpIfNull    /* If true, jump if either operand is NULL */
342 ){
343   int p5;
344   int addr;
345   CollSeq *p4;
346 
347   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
348   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
349   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
350                            (void*)p4, P4_COLLSEQ);
351   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
352   return addr;
353 }
354 
355 /*
356 ** Return true if expression pExpr is a vector, or false otherwise.
357 **
358 ** A vector is defined as any expression that results in two or more
359 ** columns of result.  Every TK_VECTOR node is an vector because the
360 ** parser will not generate a TK_VECTOR with fewer than two entries.
361 ** But a TK_SELECT might be either a vector or a scalar. It is only
362 ** considered a vector if it has two or more result columns.
363 */
364 int sqlite3ExprIsVector(Expr *pExpr){
365   return sqlite3ExprVectorSize(pExpr)>1;
366 }
367 
368 /*
369 ** If the expression passed as the only argument is of type TK_VECTOR
370 ** return the number of expressions in the vector. Or, if the expression
371 ** is a sub-select, return the number of columns in the sub-select. For
372 ** any other type of expression, return 1.
373 */
374 int sqlite3ExprVectorSize(Expr *pExpr){
375   u8 op = pExpr->op;
376   if( op==TK_REGISTER ) op = pExpr->op2;
377   if( op==TK_VECTOR ){
378     return pExpr->x.pList->nExpr;
379   }else if( op==TK_SELECT ){
380     return pExpr->x.pSelect->pEList->nExpr;
381   }else{
382     return 1;
383   }
384 }
385 
386 /*
387 ** Return a pointer to a subexpression of pVector that is the i-th
388 ** column of the vector (numbered starting with 0).  The caller must
389 ** ensure that i is within range.
390 **
391 ** If pVector is really a scalar (and "scalar" here includes subqueries
392 ** that return a single column!) then return pVector unmodified.
393 **
394 ** pVector retains ownership of the returned subexpression.
395 **
396 ** If the vector is a (SELECT ...) then the expression returned is
397 ** just the expression for the i-th term of the result set, and may
398 ** not be ready for evaluation because the table cursor has not yet
399 ** been positioned.
400 */
401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
402   assert( i<sqlite3ExprVectorSize(pVector) );
403   if( sqlite3ExprIsVector(pVector) ){
404     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
405     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
406       return pVector->x.pSelect->pEList->a[i].pExpr;
407     }else{
408       return pVector->x.pList->a[i].pExpr;
409     }
410   }
411   return pVector;
412 }
413 
414 /*
415 ** Compute and return a new Expr object which when passed to
416 ** sqlite3ExprCode() will generate all necessary code to compute
417 ** the iField-th column of the vector expression pVector.
418 **
419 ** It is ok for pVector to be a scalar (as long as iField==0).
420 ** In that case, this routine works like sqlite3ExprDup().
421 **
422 ** The caller owns the returned Expr object and is responsible for
423 ** ensuring that the returned value eventually gets freed.
424 **
425 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
426 ** then the returned object will reference pVector and so pVector must remain
427 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
428 ** or a scalar expression, then it can be deleted as soon as this routine
429 ** returns.
430 **
431 ** A trick to cause a TK_SELECT pVector to be deleted together with
432 ** the returned Expr object is to attach the pVector to the pRight field
433 ** of the returned TK_SELECT_COLUMN Expr object.
434 */
435 Expr *sqlite3ExprForVectorField(
436   Parse *pParse,       /* Parsing context */
437   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
438   int iField           /* Which column of the vector to return */
439 ){
440   Expr *pRet;
441   if( pVector->op==TK_SELECT ){
442     assert( pVector->flags & EP_xIsSelect );
443     /* The TK_SELECT_COLUMN Expr node:
444     **
445     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
446     ** pRight:          not used.  But recursively deleted.
447     ** iColumn:         Index of a column in pVector
448     ** iTable:          0 or the number of columns on the LHS of an assignment
449     ** pLeft->iTable:   First in an array of register holding result, or 0
450     **                  if the result is not yet computed.
451     **
452     ** sqlite3ExprDelete() specifically skips the recursive delete of
453     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
454     ** can be attached to pRight to cause this node to take ownership of
455     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
456     ** with the same pLeft pointer to the pVector, but only one of them
457     ** will own the pVector.
458     */
459     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
460     if( pRet ){
461       pRet->iColumn = iField;
462       pRet->pLeft = pVector;
463     }
464     assert( pRet==0 || pRet->iTable==0 );
465   }else{
466     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
467     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
468   }
469   return pRet;
470 }
471 
472 /*
473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
474 ** it. Return the register in which the result is stored (or, if the
475 ** sub-select returns more than one column, the first in an array
476 ** of registers in which the result is stored).
477 **
478 ** If pExpr is not a TK_SELECT expression, return 0.
479 */
480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
481   int reg = 0;
482 #ifndef SQLITE_OMIT_SUBQUERY
483   if( pExpr->op==TK_SELECT ){
484     reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
485   }
486 #endif
487   return reg;
488 }
489 
490 /*
491 ** Argument pVector points to a vector expression - either a TK_VECTOR
492 ** or TK_SELECT that returns more than one column. This function returns
493 ** the register number of a register that contains the value of
494 ** element iField of the vector.
495 **
496 ** If pVector is a TK_SELECT expression, then code for it must have
497 ** already been generated using the exprCodeSubselect() routine. In this
498 ** case parameter regSelect should be the first in an array of registers
499 ** containing the results of the sub-select.
500 **
501 ** If pVector is of type TK_VECTOR, then code for the requested field
502 ** is generated. In this case (*pRegFree) may be set to the number of
503 ** a temporary register to be freed by the caller before returning.
504 **
505 ** Before returning, output parameter (*ppExpr) is set to point to the
506 ** Expr object corresponding to element iElem of the vector.
507 */
508 static int exprVectorRegister(
509   Parse *pParse,                  /* Parse context */
510   Expr *pVector,                  /* Vector to extract element from */
511   int iField,                     /* Field to extract from pVector */
512   int regSelect,                  /* First in array of registers */
513   Expr **ppExpr,                  /* OUT: Expression element */
514   int *pRegFree                   /* OUT: Temp register to free */
515 ){
516   u8 op = pVector->op;
517   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
518   if( op==TK_REGISTER ){
519     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
520     return pVector->iTable+iField;
521   }
522   if( op==TK_SELECT ){
523     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
524      return regSelect+iField;
525   }
526   *ppExpr = pVector->x.pList->a[iField].pExpr;
527   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
528 }
529 
530 /*
531 ** Expression pExpr is a comparison between two vector values. Compute
532 ** the result of the comparison (1, 0, or NULL) and write that
533 ** result into register dest.
534 **
535 ** The caller must satisfy the following preconditions:
536 **
537 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
538 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
539 **    otherwise:                op==pExpr->op and p5==0
540 */
541 static void codeVectorCompare(
542   Parse *pParse,        /* Code generator context */
543   Expr *pExpr,          /* The comparison operation */
544   int dest,             /* Write results into this register */
545   u8 op,                /* Comparison operator */
546   u8 p5                 /* SQLITE_NULLEQ or zero */
547 ){
548   Vdbe *v = pParse->pVdbe;
549   Expr *pLeft = pExpr->pLeft;
550   Expr *pRight = pExpr->pRight;
551   int nLeft = sqlite3ExprVectorSize(pLeft);
552   int i;
553   int regLeft = 0;
554   int regRight = 0;
555   u8 opx = op;
556   int addrDone = sqlite3VdbeMakeLabel(v);
557 
558   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
559     sqlite3ErrorMsg(pParse, "row value misused");
560     return;
561   }
562   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
563        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
564        || pExpr->op==TK_LT || pExpr->op==TK_GT
565        || pExpr->op==TK_LE || pExpr->op==TK_GE
566   );
567   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
568             || (pExpr->op==TK_ISNOT && op==TK_NE) );
569   assert( p5==0 || pExpr->op!=op );
570   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
571 
572   p5 |= SQLITE_STOREP2;
573   if( opx==TK_LE ) opx = TK_LT;
574   if( opx==TK_GE ) opx = TK_GT;
575 
576   regLeft = exprCodeSubselect(pParse, pLeft);
577   regRight = exprCodeSubselect(pParse, pRight);
578 
579   for(i=0; 1 /*Loop exits by "break"*/; i++){
580     int regFree1 = 0, regFree2 = 0;
581     Expr *pL, *pR;
582     int r1, r2;
583     assert( i>=0 && i<nLeft );
584     if( i>0 ) sqlite3ExprCachePush(pParse);
585     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
586     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
587     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
588     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
589     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
590     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
591     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
592     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
593     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
594     sqlite3ReleaseTempReg(pParse, regFree1);
595     sqlite3ReleaseTempReg(pParse, regFree2);
596     if( i>0 ) sqlite3ExprCachePop(pParse);
597     if( i==nLeft-1 ){
598       break;
599     }
600     if( opx==TK_EQ ){
601       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
602       p5 |= SQLITE_KEEPNULL;
603     }else if( opx==TK_NE ){
604       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
605       p5 |= SQLITE_KEEPNULL;
606     }else{
607       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
608       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
609       VdbeCoverageIf(v, op==TK_LT);
610       VdbeCoverageIf(v, op==TK_GT);
611       VdbeCoverageIf(v, op==TK_LE);
612       VdbeCoverageIf(v, op==TK_GE);
613       if( i==nLeft-2 ) opx = op;
614     }
615   }
616   sqlite3VdbeResolveLabel(v, addrDone);
617 }
618 
619 #if SQLITE_MAX_EXPR_DEPTH>0
620 /*
621 ** Check that argument nHeight is less than or equal to the maximum
622 ** expression depth allowed. If it is not, leave an error message in
623 ** pParse.
624 */
625 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
626   int rc = SQLITE_OK;
627   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
628   if( nHeight>mxHeight ){
629     sqlite3ErrorMsg(pParse,
630        "Expression tree is too large (maximum depth %d)", mxHeight
631     );
632     rc = SQLITE_ERROR;
633   }
634   return rc;
635 }
636 
637 /* The following three functions, heightOfExpr(), heightOfExprList()
638 ** and heightOfSelect(), are used to determine the maximum height
639 ** of any expression tree referenced by the structure passed as the
640 ** first argument.
641 **
642 ** If this maximum height is greater than the current value pointed
643 ** to by pnHeight, the second parameter, then set *pnHeight to that
644 ** value.
645 */
646 static void heightOfExpr(Expr *p, int *pnHeight){
647   if( p ){
648     if( p->nHeight>*pnHeight ){
649       *pnHeight = p->nHeight;
650     }
651   }
652 }
653 static void heightOfExprList(ExprList *p, int *pnHeight){
654   if( p ){
655     int i;
656     for(i=0; i<p->nExpr; i++){
657       heightOfExpr(p->a[i].pExpr, pnHeight);
658     }
659   }
660 }
661 static void heightOfSelect(Select *pSelect, int *pnHeight){
662   Select *p;
663   for(p=pSelect; p; p=p->pPrior){
664     heightOfExpr(p->pWhere, pnHeight);
665     heightOfExpr(p->pHaving, pnHeight);
666     heightOfExpr(p->pLimit, pnHeight);
667     heightOfExprList(p->pEList, pnHeight);
668     heightOfExprList(p->pGroupBy, pnHeight);
669     heightOfExprList(p->pOrderBy, pnHeight);
670   }
671 }
672 
673 /*
674 ** Set the Expr.nHeight variable in the structure passed as an
675 ** argument. An expression with no children, Expr.pList or
676 ** Expr.pSelect member has a height of 1. Any other expression
677 ** has a height equal to the maximum height of any other
678 ** referenced Expr plus one.
679 **
680 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
681 ** if appropriate.
682 */
683 static void exprSetHeight(Expr *p){
684   int nHeight = 0;
685   heightOfExpr(p->pLeft, &nHeight);
686   heightOfExpr(p->pRight, &nHeight);
687   if( ExprHasProperty(p, EP_xIsSelect) ){
688     heightOfSelect(p->x.pSelect, &nHeight);
689   }else if( p->x.pList ){
690     heightOfExprList(p->x.pList, &nHeight);
691     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
692   }
693   p->nHeight = nHeight + 1;
694 }
695 
696 /*
697 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
698 ** the height is greater than the maximum allowed expression depth,
699 ** leave an error in pParse.
700 **
701 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
702 ** Expr.flags.
703 */
704 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
705   if( pParse->nErr ) return;
706   exprSetHeight(p);
707   sqlite3ExprCheckHeight(pParse, p->nHeight);
708 }
709 
710 /*
711 ** Return the maximum height of any expression tree referenced
712 ** by the select statement passed as an argument.
713 */
714 int sqlite3SelectExprHeight(Select *p){
715   int nHeight = 0;
716   heightOfSelect(p, &nHeight);
717   return nHeight;
718 }
719 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
720 /*
721 ** Propagate all EP_Propagate flags from the Expr.x.pList into
722 ** Expr.flags.
723 */
724 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
725   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
726     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
727   }
728 }
729 #define exprSetHeight(y)
730 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
731 
732 /*
733 ** This routine is the core allocator for Expr nodes.
734 **
735 ** Construct a new expression node and return a pointer to it.  Memory
736 ** for this node and for the pToken argument is a single allocation
737 ** obtained from sqlite3DbMalloc().  The calling function
738 ** is responsible for making sure the node eventually gets freed.
739 **
740 ** If dequote is true, then the token (if it exists) is dequoted.
741 ** If dequote is false, no dequoting is performed.  The deQuote
742 ** parameter is ignored if pToken is NULL or if the token does not
743 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
744 ** then the EP_DblQuoted flag is set on the expression node.
745 **
746 ** Special case:  If op==TK_INTEGER and pToken points to a string that
747 ** can be translated into a 32-bit integer, then the token is not
748 ** stored in u.zToken.  Instead, the integer values is written
749 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
750 ** is allocated to hold the integer text and the dequote flag is ignored.
751 */
752 Expr *sqlite3ExprAlloc(
753   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
754   int op,                 /* Expression opcode */
755   const Token *pToken,    /* Token argument.  Might be NULL */
756   int dequote             /* True to dequote */
757 ){
758   Expr *pNew;
759   int nExtra = 0;
760   int iValue = 0;
761 
762   assert( db!=0 );
763   if( pToken ){
764     if( op!=TK_INTEGER || pToken->z==0
765           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
766       nExtra = pToken->n+1;
767       assert( iValue>=0 );
768     }
769   }
770   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
771   if( pNew ){
772     memset(pNew, 0, sizeof(Expr));
773     pNew->op = (u8)op;
774     pNew->iAgg = -1;
775     if( pToken ){
776       if( nExtra==0 ){
777         pNew->flags |= EP_IntValue|EP_Leaf;
778         pNew->u.iValue = iValue;
779       }else{
780         pNew->u.zToken = (char*)&pNew[1];
781         assert( pToken->z!=0 || pToken->n==0 );
782         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
783         pNew->u.zToken[pToken->n] = 0;
784         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
785           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
786           sqlite3Dequote(pNew->u.zToken);
787         }
788       }
789     }
790 #if SQLITE_MAX_EXPR_DEPTH>0
791     pNew->nHeight = 1;
792 #endif
793   }
794   return pNew;
795 }
796 
797 /*
798 ** Allocate a new expression node from a zero-terminated token that has
799 ** already been dequoted.
800 */
801 Expr *sqlite3Expr(
802   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
803   int op,                 /* Expression opcode */
804   const char *zToken      /* Token argument.  Might be NULL */
805 ){
806   Token x;
807   x.z = zToken;
808   x.n = sqlite3Strlen30(zToken);
809   return sqlite3ExprAlloc(db, op, &x, 0);
810 }
811 
812 /*
813 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
814 **
815 ** If pRoot==NULL that means that a memory allocation error has occurred.
816 ** In that case, delete the subtrees pLeft and pRight.
817 */
818 void sqlite3ExprAttachSubtrees(
819   sqlite3 *db,
820   Expr *pRoot,
821   Expr *pLeft,
822   Expr *pRight
823 ){
824   if( pRoot==0 ){
825     assert( db->mallocFailed );
826     sqlite3ExprDelete(db, pLeft);
827     sqlite3ExprDelete(db, pRight);
828   }else{
829     if( pRight ){
830       pRoot->pRight = pRight;
831       pRoot->flags |= EP_Propagate & pRight->flags;
832     }
833     if( pLeft ){
834       pRoot->pLeft = pLeft;
835       pRoot->flags |= EP_Propagate & pLeft->flags;
836     }
837     exprSetHeight(pRoot);
838   }
839 }
840 
841 /*
842 ** Allocate an Expr node which joins as many as two subtrees.
843 **
844 ** One or both of the subtrees can be NULL.  Return a pointer to the new
845 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
846 ** free the subtrees and return NULL.
847 */
848 Expr *sqlite3PExpr(
849   Parse *pParse,          /* Parsing context */
850   int op,                 /* Expression opcode */
851   Expr *pLeft,            /* Left operand */
852   Expr *pRight            /* Right operand */
853 ){
854   Expr *p;
855   if( op==TK_AND && pParse->nErr==0 ){
856     /* Take advantage of short-circuit false optimization for AND */
857     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
858   }else{
859     p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
860     if( p ){
861       memset(p, 0, sizeof(Expr));
862       p->op = op & TKFLG_MASK;
863       p->iAgg = -1;
864     }
865     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
866   }
867   if( p ) {
868     sqlite3ExprCheckHeight(pParse, p->nHeight);
869   }
870   return p;
871 }
872 
873 /*
874 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
875 ** do a memory allocation failure) then delete the pSelect object.
876 */
877 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
878   if( pExpr ){
879     pExpr->x.pSelect = pSelect;
880     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
881     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
882   }else{
883     assert( pParse->db->mallocFailed );
884     sqlite3SelectDelete(pParse->db, pSelect);
885   }
886 }
887 
888 
889 /*
890 ** If the expression is always either TRUE or FALSE (respectively),
891 ** then return 1.  If one cannot determine the truth value of the
892 ** expression at compile-time return 0.
893 **
894 ** This is an optimization.  If is OK to return 0 here even if
895 ** the expression really is always false or false (a false negative).
896 ** But it is a bug to return 1 if the expression might have different
897 ** boolean values in different circumstances (a false positive.)
898 **
899 ** Note that if the expression is part of conditional for a
900 ** LEFT JOIN, then we cannot determine at compile-time whether or not
901 ** is it true or false, so always return 0.
902 */
903 static int exprAlwaysTrue(Expr *p){
904   int v = 0;
905   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
906   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
907   return v!=0;
908 }
909 static int exprAlwaysFalse(Expr *p){
910   int v = 0;
911   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
912   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
913   return v==0;
914 }
915 
916 /*
917 ** Join two expressions using an AND operator.  If either expression is
918 ** NULL, then just return the other expression.
919 **
920 ** If one side or the other of the AND is known to be false, then instead
921 ** of returning an AND expression, just return a constant expression with
922 ** a value of false.
923 */
924 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
925   if( pLeft==0 ){
926     return pRight;
927   }else if( pRight==0 ){
928     return pLeft;
929   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
930     sqlite3ExprDelete(db, pLeft);
931     sqlite3ExprDelete(db, pRight);
932     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
933   }else{
934     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
935     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
936     return pNew;
937   }
938 }
939 
940 /*
941 ** Construct a new expression node for a function with multiple
942 ** arguments.
943 */
944 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
945   Expr *pNew;
946   sqlite3 *db = pParse->db;
947   assert( pToken );
948   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
949   if( pNew==0 ){
950     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
951     return 0;
952   }
953   pNew->x.pList = pList;
954   ExprSetProperty(pNew, EP_HasFunc);
955   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
956   sqlite3ExprSetHeightAndFlags(pParse, pNew);
957   return pNew;
958 }
959 
960 /*
961 ** Assign a variable number to an expression that encodes a wildcard
962 ** in the original SQL statement.
963 **
964 ** Wildcards consisting of a single "?" are assigned the next sequential
965 ** variable number.
966 **
967 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
968 ** sure "nnn" is not too big to avoid a denial of service attack when
969 ** the SQL statement comes from an external source.
970 **
971 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
972 ** as the previous instance of the same wildcard.  Or if this is the first
973 ** instance of the wildcard, the next sequential variable number is
974 ** assigned.
975 */
976 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
977   sqlite3 *db = pParse->db;
978   const char *z;
979   ynVar x;
980 
981   if( pExpr==0 ) return;
982   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
983   z = pExpr->u.zToken;
984   assert( z!=0 );
985   assert( z[0]!=0 );
986   assert( n==(u32)sqlite3Strlen30(z) );
987   if( z[1]==0 ){
988     /* Wildcard of the form "?".  Assign the next variable number */
989     assert( z[0]=='?' );
990     x = (ynVar)(++pParse->nVar);
991   }else{
992     int doAdd = 0;
993     if( z[0]=='?' ){
994       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
995       ** use it as the variable number */
996       i64 i;
997       int bOk;
998       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
999         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1000         bOk = 1;
1001       }else{
1002         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1003       }
1004       testcase( i==0 );
1005       testcase( i==1 );
1006       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1007       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1008       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1009         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1010             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1011         return;
1012       }
1013       x = (ynVar)i;
1014       if( x>pParse->nVar ){
1015         pParse->nVar = (int)x;
1016         doAdd = 1;
1017       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1018         doAdd = 1;
1019       }
1020     }else{
1021       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1022       ** number as the prior appearance of the same name, or if the name
1023       ** has never appeared before, reuse the same variable number
1024       */
1025       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1026       if( x==0 ){
1027         x = (ynVar)(++pParse->nVar);
1028         doAdd = 1;
1029       }
1030     }
1031     if( doAdd ){
1032       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1033     }
1034   }
1035   pExpr->iColumn = x;
1036   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1037     sqlite3ErrorMsg(pParse, "too many SQL variables");
1038   }
1039 }
1040 
1041 /*
1042 ** Recursively delete an expression tree.
1043 */
1044 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1045   assert( p!=0 );
1046   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1047   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1048 #ifdef SQLITE_DEBUG
1049   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1050     assert( p->pLeft==0 );
1051     assert( p->pRight==0 );
1052     assert( p->x.pSelect==0 );
1053   }
1054 #endif
1055   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1056     /* The Expr.x union is never used at the same time as Expr.pRight */
1057     assert( p->x.pList==0 || p->pRight==0 );
1058     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1059     if( p->pRight ){
1060       sqlite3ExprDeleteNN(db, p->pRight);
1061     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1062       sqlite3SelectDelete(db, p->x.pSelect);
1063     }else{
1064       sqlite3ExprListDelete(db, p->x.pList);
1065     }
1066   }
1067   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1068   if( !ExprHasProperty(p, EP_Static) ){
1069     sqlite3DbFreeNN(db, p);
1070   }
1071 }
1072 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1073   if( p ) sqlite3ExprDeleteNN(db, p);
1074 }
1075 
1076 /*
1077 ** Return the number of bytes allocated for the expression structure
1078 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1079 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1080 */
1081 static int exprStructSize(Expr *p){
1082   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1083   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1084   return EXPR_FULLSIZE;
1085 }
1086 
1087 /*
1088 ** The dupedExpr*Size() routines each return the number of bytes required
1089 ** to store a copy of an expression or expression tree.  They differ in
1090 ** how much of the tree is measured.
1091 **
1092 **     dupedExprStructSize()     Size of only the Expr structure
1093 **     dupedExprNodeSize()       Size of Expr + space for token
1094 **     dupedExprSize()           Expr + token + subtree components
1095 **
1096 ***************************************************************************
1097 **
1098 ** The dupedExprStructSize() function returns two values OR-ed together:
1099 ** (1) the space required for a copy of the Expr structure only and
1100 ** (2) the EP_xxx flags that indicate what the structure size should be.
1101 ** The return values is always one of:
1102 **
1103 **      EXPR_FULLSIZE
1104 **      EXPR_REDUCEDSIZE   | EP_Reduced
1105 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1106 **
1107 ** The size of the structure can be found by masking the return value
1108 ** of this routine with 0xfff.  The flags can be found by masking the
1109 ** return value with EP_Reduced|EP_TokenOnly.
1110 **
1111 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1112 ** (unreduced) Expr objects as they or originally constructed by the parser.
1113 ** During expression analysis, extra information is computed and moved into
1114 ** later parts of teh Expr object and that extra information might get chopped
1115 ** off if the expression is reduced.  Note also that it does not work to
1116 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1117 ** to reduce a pristine expression tree from the parser.  The implementation
1118 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1119 ** to enforce this constraint.
1120 */
1121 static int dupedExprStructSize(Expr *p, int flags){
1122   int nSize;
1123   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1124   assert( EXPR_FULLSIZE<=0xfff );
1125   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1126   if( 0==flags || p->op==TK_SELECT_COLUMN ){
1127     nSize = EXPR_FULLSIZE;
1128   }else{
1129     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1130     assert( !ExprHasProperty(p, EP_FromJoin) );
1131     assert( !ExprHasProperty(p, EP_MemToken) );
1132     assert( !ExprHasProperty(p, EP_NoReduce) );
1133     if( p->pLeft || p->x.pList ){
1134       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1135     }else{
1136       assert( p->pRight==0 );
1137       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1138     }
1139   }
1140   return nSize;
1141 }
1142 
1143 /*
1144 ** This function returns the space in bytes required to store the copy
1145 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1146 ** string is defined.)
1147 */
1148 static int dupedExprNodeSize(Expr *p, int flags){
1149   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1150   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1151     nByte += sqlite3Strlen30(p->u.zToken)+1;
1152   }
1153   return ROUND8(nByte);
1154 }
1155 
1156 /*
1157 ** Return the number of bytes required to create a duplicate of the
1158 ** expression passed as the first argument. The second argument is a
1159 ** mask containing EXPRDUP_XXX flags.
1160 **
1161 ** The value returned includes space to create a copy of the Expr struct
1162 ** itself and the buffer referred to by Expr.u.zToken, if any.
1163 **
1164 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1165 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1166 ** and Expr.pRight variables (but not for any structures pointed to or
1167 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1168 */
1169 static int dupedExprSize(Expr *p, int flags){
1170   int nByte = 0;
1171   if( p ){
1172     nByte = dupedExprNodeSize(p, flags);
1173     if( flags&EXPRDUP_REDUCE ){
1174       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1175     }
1176   }
1177   return nByte;
1178 }
1179 
1180 /*
1181 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1182 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1183 ** to store the copy of expression p, the copies of p->u.zToken
1184 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1185 ** if any. Before returning, *pzBuffer is set to the first byte past the
1186 ** portion of the buffer copied into by this function.
1187 */
1188 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1189   Expr *pNew;           /* Value to return */
1190   u8 *zAlloc;           /* Memory space from which to build Expr object */
1191   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1192 
1193   assert( db!=0 );
1194   assert( p );
1195   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1196   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1197 
1198   /* Figure out where to write the new Expr structure. */
1199   if( pzBuffer ){
1200     zAlloc = *pzBuffer;
1201     staticFlag = EP_Static;
1202   }else{
1203     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1204     staticFlag = 0;
1205   }
1206   pNew = (Expr *)zAlloc;
1207 
1208   if( pNew ){
1209     /* Set nNewSize to the size allocated for the structure pointed to
1210     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1211     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1212     ** by the copy of the p->u.zToken string (if any).
1213     */
1214     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1215     const int nNewSize = nStructSize & 0xfff;
1216     int nToken;
1217     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1218       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1219     }else{
1220       nToken = 0;
1221     }
1222     if( dupFlags ){
1223       assert( ExprHasProperty(p, EP_Reduced)==0 );
1224       memcpy(zAlloc, p, nNewSize);
1225     }else{
1226       u32 nSize = (u32)exprStructSize(p);
1227       memcpy(zAlloc, p, nSize);
1228       if( nSize<EXPR_FULLSIZE ){
1229         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1230       }
1231     }
1232 
1233     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1234     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1235     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1236     pNew->flags |= staticFlag;
1237 
1238     /* Copy the p->u.zToken string, if any. */
1239     if( nToken ){
1240       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1241       memcpy(zToken, p->u.zToken, nToken);
1242     }
1243 
1244     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1245       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1246       if( ExprHasProperty(p, EP_xIsSelect) ){
1247         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1248       }else{
1249         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1250       }
1251     }
1252 
1253     /* Fill in pNew->pLeft and pNew->pRight. */
1254     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
1255       zAlloc += dupedExprNodeSize(p, dupFlags);
1256       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1257         pNew->pLeft = p->pLeft ?
1258                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1259         pNew->pRight = p->pRight ?
1260                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1261       }
1262       if( pzBuffer ){
1263         *pzBuffer = zAlloc;
1264       }
1265     }else{
1266       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1267         if( pNew->op==TK_SELECT_COLUMN ){
1268           pNew->pLeft = p->pLeft;
1269           assert( p->iColumn==0 || p->pRight==0 );
1270           assert( p->pRight==0  || p->pRight==p->pLeft );
1271         }else{
1272           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1273         }
1274         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1275       }
1276     }
1277   }
1278   return pNew;
1279 }
1280 
1281 /*
1282 ** Create and return a deep copy of the object passed as the second
1283 ** argument. If an OOM condition is encountered, NULL is returned
1284 ** and the db->mallocFailed flag set.
1285 */
1286 #ifndef SQLITE_OMIT_CTE
1287 static With *withDup(sqlite3 *db, With *p){
1288   With *pRet = 0;
1289   if( p ){
1290     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1291     pRet = sqlite3DbMallocZero(db, nByte);
1292     if( pRet ){
1293       int i;
1294       pRet->nCte = p->nCte;
1295       for(i=0; i<p->nCte; i++){
1296         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1297         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1298         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1299       }
1300     }
1301   }
1302   return pRet;
1303 }
1304 #else
1305 # define withDup(x,y) 0
1306 #endif
1307 
1308 /*
1309 ** The following group of routines make deep copies of expressions,
1310 ** expression lists, ID lists, and select statements.  The copies can
1311 ** be deleted (by being passed to their respective ...Delete() routines)
1312 ** without effecting the originals.
1313 **
1314 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1315 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1316 ** by subsequent calls to sqlite*ListAppend() routines.
1317 **
1318 ** Any tables that the SrcList might point to are not duplicated.
1319 **
1320 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1321 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1322 ** truncated version of the usual Expr structure that will be stored as
1323 ** part of the in-memory representation of the database schema.
1324 */
1325 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1326   assert( flags==0 || flags==EXPRDUP_REDUCE );
1327   return p ? exprDup(db, p, flags, 0) : 0;
1328 }
1329 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1330   ExprList *pNew;
1331   struct ExprList_item *pItem, *pOldItem;
1332   int i;
1333   Expr *pPriorSelectCol = 0;
1334   assert( db!=0 );
1335   if( p==0 ) return 0;
1336   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1337   if( pNew==0 ) return 0;
1338   pNew->nExpr = p->nExpr;
1339   pItem = pNew->a;
1340   pOldItem = p->a;
1341   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1342     Expr *pOldExpr = pOldItem->pExpr;
1343     Expr *pNewExpr;
1344     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1345     if( pOldExpr
1346      && pOldExpr->op==TK_SELECT_COLUMN
1347      && (pNewExpr = pItem->pExpr)!=0
1348     ){
1349       assert( pNewExpr->iColumn==0 || i>0 );
1350       if( pNewExpr->iColumn==0 ){
1351         assert( pOldExpr->pLeft==pOldExpr->pRight );
1352         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1353       }else{
1354         assert( i>0 );
1355         assert( pItem[-1].pExpr!=0 );
1356         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1357         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1358         pNewExpr->pLeft = pPriorSelectCol;
1359       }
1360     }
1361     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1362     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1363     pItem->sortOrder = pOldItem->sortOrder;
1364     pItem->done = 0;
1365     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1366     pItem->bSorterRef = pOldItem->bSorterRef;
1367     pItem->u = pOldItem->u;
1368   }
1369   return pNew;
1370 }
1371 
1372 /*
1373 ** If cursors, triggers, views and subqueries are all omitted from
1374 ** the build, then none of the following routines, except for
1375 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1376 ** called with a NULL argument.
1377 */
1378 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1379  || !defined(SQLITE_OMIT_SUBQUERY)
1380 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1381   SrcList *pNew;
1382   int i;
1383   int nByte;
1384   assert( db!=0 );
1385   if( p==0 ) return 0;
1386   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1387   pNew = sqlite3DbMallocRawNN(db, nByte );
1388   if( pNew==0 ) return 0;
1389   pNew->nSrc = pNew->nAlloc = p->nSrc;
1390   for(i=0; i<p->nSrc; i++){
1391     struct SrcList_item *pNewItem = &pNew->a[i];
1392     struct SrcList_item *pOldItem = &p->a[i];
1393     Table *pTab;
1394     pNewItem->pSchema = pOldItem->pSchema;
1395     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1396     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1397     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1398     pNewItem->fg = pOldItem->fg;
1399     pNewItem->iCursor = pOldItem->iCursor;
1400     pNewItem->addrFillSub = pOldItem->addrFillSub;
1401     pNewItem->regReturn = pOldItem->regReturn;
1402     if( pNewItem->fg.isIndexedBy ){
1403       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1404     }
1405     pNewItem->pIBIndex = pOldItem->pIBIndex;
1406     if( pNewItem->fg.isTabFunc ){
1407       pNewItem->u1.pFuncArg =
1408           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1409     }
1410     pTab = pNewItem->pTab = pOldItem->pTab;
1411     if( pTab ){
1412       pTab->nTabRef++;
1413     }
1414     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1415     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1416     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1417     pNewItem->colUsed = pOldItem->colUsed;
1418   }
1419   return pNew;
1420 }
1421 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1422   IdList *pNew;
1423   int i;
1424   assert( db!=0 );
1425   if( p==0 ) return 0;
1426   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1427   if( pNew==0 ) return 0;
1428   pNew->nId = p->nId;
1429   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1430   if( pNew->a==0 ){
1431     sqlite3DbFreeNN(db, pNew);
1432     return 0;
1433   }
1434   /* Note that because the size of the allocation for p->a[] is not
1435   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1436   ** on the duplicate created by this function. */
1437   for(i=0; i<p->nId; i++){
1438     struct IdList_item *pNewItem = &pNew->a[i];
1439     struct IdList_item *pOldItem = &p->a[i];
1440     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1441     pNewItem->idx = pOldItem->idx;
1442   }
1443   return pNew;
1444 }
1445 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1446   Select *pRet = 0;
1447   Select *pNext = 0;
1448   Select **pp = &pRet;
1449   Select *p;
1450 
1451   assert( db!=0 );
1452   for(p=pDup; p; p=p->pPrior){
1453     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1454     if( pNew==0 ) break;
1455     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1456     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1457     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1458     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1459     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1460     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1461     pNew->op = p->op;
1462     pNew->pNext = pNext;
1463     pNew->pPrior = 0;
1464     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1465     pNew->iLimit = 0;
1466     pNew->iOffset = 0;
1467     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1468     pNew->addrOpenEphm[0] = -1;
1469     pNew->addrOpenEphm[1] = -1;
1470     pNew->nSelectRow = p->nSelectRow;
1471     pNew->pWith = withDup(db, p->pWith);
1472     sqlite3SelectSetName(pNew, p->zSelName);
1473     *pp = pNew;
1474     pp = &pNew->pPrior;
1475     pNext = pNew;
1476   }
1477 
1478   return pRet;
1479 }
1480 #else
1481 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1482   assert( p==0 );
1483   return 0;
1484 }
1485 #endif
1486 
1487 
1488 /*
1489 ** Add a new element to the end of an expression list.  If pList is
1490 ** initially NULL, then create a new expression list.
1491 **
1492 ** The pList argument must be either NULL or a pointer to an ExprList
1493 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1494 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1495 ** Reason:  This routine assumes that the number of slots in pList->a[]
1496 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1497 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1498 **
1499 ** If a memory allocation error occurs, the entire list is freed and
1500 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1501 ** that the new entry was successfully appended.
1502 */
1503 ExprList *sqlite3ExprListAppend(
1504   Parse *pParse,          /* Parsing context */
1505   ExprList *pList,        /* List to which to append. Might be NULL */
1506   Expr *pExpr             /* Expression to be appended. Might be NULL */
1507 ){
1508   struct ExprList_item *pItem;
1509   sqlite3 *db = pParse->db;
1510   assert( db!=0 );
1511   if( pList==0 ){
1512     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1513     if( pList==0 ){
1514       goto no_mem;
1515     }
1516     pList->nExpr = 0;
1517   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1518     ExprList *pNew;
1519     pNew = sqlite3DbRealloc(db, pList,
1520              sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0]));
1521     if( pNew==0 ){
1522       goto no_mem;
1523     }
1524     pList = pNew;
1525   }
1526   pItem = &pList->a[pList->nExpr++];
1527   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1528   assert( offsetof(struct ExprList_item,pExpr)==0 );
1529   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1530   pItem->pExpr = pExpr;
1531   return pList;
1532 
1533 no_mem:
1534   /* Avoid leaking memory if malloc has failed. */
1535   sqlite3ExprDelete(db, pExpr);
1536   sqlite3ExprListDelete(db, pList);
1537   return 0;
1538 }
1539 
1540 /*
1541 ** pColumns and pExpr form a vector assignment which is part of the SET
1542 ** clause of an UPDATE statement.  Like this:
1543 **
1544 **        (a,b,c) = (expr1,expr2,expr3)
1545 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1546 **
1547 ** For each term of the vector assignment, append new entries to the
1548 ** expression list pList.  In the case of a subquery on the RHS, append
1549 ** TK_SELECT_COLUMN expressions.
1550 */
1551 ExprList *sqlite3ExprListAppendVector(
1552   Parse *pParse,         /* Parsing context */
1553   ExprList *pList,       /* List to which to append. Might be NULL */
1554   IdList *pColumns,      /* List of names of LHS of the assignment */
1555   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1556 ){
1557   sqlite3 *db = pParse->db;
1558   int n;
1559   int i;
1560   int iFirst = pList ? pList->nExpr : 0;
1561   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1562   ** exit prior to this routine being invoked */
1563   if( NEVER(pColumns==0) ) goto vector_append_error;
1564   if( pExpr==0 ) goto vector_append_error;
1565 
1566   /* If the RHS is a vector, then we can immediately check to see that
1567   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1568   ** wildcards ("*") in the result set of the SELECT must be expanded before
1569   ** we can do the size check, so defer the size check until code generation.
1570   */
1571   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1572     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1573                     pColumns->nId, n);
1574     goto vector_append_error;
1575   }
1576 
1577   for(i=0; i<pColumns->nId; i++){
1578     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1579     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1580     if( pList ){
1581       assert( pList->nExpr==iFirst+i+1 );
1582       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1583       pColumns->a[i].zName = 0;
1584     }
1585   }
1586 
1587   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1588     Expr *pFirst = pList->a[iFirst].pExpr;
1589     assert( pFirst!=0 );
1590     assert( pFirst->op==TK_SELECT_COLUMN );
1591 
1592     /* Store the SELECT statement in pRight so it will be deleted when
1593     ** sqlite3ExprListDelete() is called */
1594     pFirst->pRight = pExpr;
1595     pExpr = 0;
1596 
1597     /* Remember the size of the LHS in iTable so that we can check that
1598     ** the RHS and LHS sizes match during code generation. */
1599     pFirst->iTable = pColumns->nId;
1600   }
1601 
1602 vector_append_error:
1603   sqlite3ExprDelete(db, pExpr);
1604   sqlite3IdListDelete(db, pColumns);
1605   return pList;
1606 }
1607 
1608 /*
1609 ** Set the sort order for the last element on the given ExprList.
1610 */
1611 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1612   if( p==0 ) return;
1613   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1614   assert( p->nExpr>0 );
1615   if( iSortOrder<0 ){
1616     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1617     return;
1618   }
1619   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1620 }
1621 
1622 /*
1623 ** Set the ExprList.a[].zName element of the most recently added item
1624 ** on the expression list.
1625 **
1626 ** pList might be NULL following an OOM error.  But pName should never be
1627 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1628 ** is set.
1629 */
1630 void sqlite3ExprListSetName(
1631   Parse *pParse,          /* Parsing context */
1632   ExprList *pList,        /* List to which to add the span. */
1633   Token *pName,           /* Name to be added */
1634   int dequote             /* True to cause the name to be dequoted */
1635 ){
1636   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1637   if( pList ){
1638     struct ExprList_item *pItem;
1639     assert( pList->nExpr>0 );
1640     pItem = &pList->a[pList->nExpr-1];
1641     assert( pItem->zName==0 );
1642     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1643     if( dequote ) sqlite3Dequote(pItem->zName);
1644   }
1645 }
1646 
1647 /*
1648 ** Set the ExprList.a[].zSpan element of the most recently added item
1649 ** on the expression list.
1650 **
1651 ** pList might be NULL following an OOM error.  But pSpan should never be
1652 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1653 ** is set.
1654 */
1655 void sqlite3ExprListSetSpan(
1656   Parse *pParse,          /* Parsing context */
1657   ExprList *pList,        /* List to which to add the span. */
1658   const char *zStart,     /* Start of the span */
1659   const char *zEnd        /* End of the span */
1660 ){
1661   sqlite3 *db = pParse->db;
1662   assert( pList!=0 || db->mallocFailed!=0 );
1663   if( pList ){
1664     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1665     assert( pList->nExpr>0 );
1666     sqlite3DbFree(db, pItem->zSpan);
1667     pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1668   }
1669 }
1670 
1671 /*
1672 ** If the expression list pEList contains more than iLimit elements,
1673 ** leave an error message in pParse.
1674 */
1675 void sqlite3ExprListCheckLength(
1676   Parse *pParse,
1677   ExprList *pEList,
1678   const char *zObject
1679 ){
1680   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1681   testcase( pEList && pEList->nExpr==mx );
1682   testcase( pEList && pEList->nExpr==mx+1 );
1683   if( pEList && pEList->nExpr>mx ){
1684     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1685   }
1686 }
1687 
1688 /*
1689 ** Delete an entire expression list.
1690 */
1691 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1692   int i = pList->nExpr;
1693   struct ExprList_item *pItem =  pList->a;
1694   assert( pList->nExpr>0 );
1695   do{
1696     sqlite3ExprDelete(db, pItem->pExpr);
1697     sqlite3DbFree(db, pItem->zName);
1698     sqlite3DbFree(db, pItem->zSpan);
1699     pItem++;
1700   }while( --i>0 );
1701   sqlite3DbFreeNN(db, pList);
1702 }
1703 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1704   if( pList ) exprListDeleteNN(db, pList);
1705 }
1706 
1707 /*
1708 ** Return the bitwise-OR of all Expr.flags fields in the given
1709 ** ExprList.
1710 */
1711 u32 sqlite3ExprListFlags(const ExprList *pList){
1712   int i;
1713   u32 m = 0;
1714   assert( pList!=0 );
1715   for(i=0; i<pList->nExpr; i++){
1716      Expr *pExpr = pList->a[i].pExpr;
1717      assert( pExpr!=0 );
1718      m |= pExpr->flags;
1719   }
1720   return m;
1721 }
1722 
1723 /*
1724 ** This is a SELECT-node callback for the expression walker that
1725 ** always "fails".  By "fail" in this case, we mean set
1726 ** pWalker->eCode to zero and abort.
1727 **
1728 ** This callback is used by multiple expression walkers.
1729 */
1730 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1731   UNUSED_PARAMETER(NotUsed);
1732   pWalker->eCode = 0;
1733   return WRC_Abort;
1734 }
1735 
1736 /*
1737 ** If the input expression is an ID with the name "true" or "false"
1738 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1739 ** the conversion happened, and zero if the expression is unaltered.
1740 */
1741 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1742   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1743   if( sqlite3StrICmp(pExpr->u.zToken, "true")==0
1744    || sqlite3StrICmp(pExpr->u.zToken, "false")==0
1745   ){
1746     pExpr->op = TK_TRUEFALSE;
1747     return 1;
1748   }
1749   return 0;
1750 }
1751 
1752 /*
1753 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1754 ** and 0 if it is FALSE.
1755 */
1756 int sqlite3ExprTruthValue(const Expr *pExpr){
1757   assert( pExpr->op==TK_TRUEFALSE );
1758   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1759        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1760   return pExpr->u.zToken[4]==0;
1761 }
1762 
1763 
1764 /*
1765 ** These routines are Walker callbacks used to check expressions to
1766 ** see if they are "constant" for some definition of constant.  The
1767 ** Walker.eCode value determines the type of "constant" we are looking
1768 ** for.
1769 **
1770 ** These callback routines are used to implement the following:
1771 **
1772 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1773 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1774 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1775 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1776 **
1777 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1778 ** is found to not be a constant.
1779 **
1780 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1781 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1782 ** an existing schema and 4 when processing a new statement.  A bound
1783 ** parameter raises an error for new statements, but is silently converted
1784 ** to NULL for existing schemas.  This allows sqlite_master tables that
1785 ** contain a bound parameter because they were generated by older versions
1786 ** of SQLite to be parsed by newer versions of SQLite without raising a
1787 ** malformed schema error.
1788 */
1789 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1790 
1791   /* If pWalker->eCode is 2 then any term of the expression that comes from
1792   ** the ON or USING clauses of a left join disqualifies the expression
1793   ** from being considered constant. */
1794   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1795     pWalker->eCode = 0;
1796     return WRC_Abort;
1797   }
1798 
1799   switch( pExpr->op ){
1800     /* Consider functions to be constant if all their arguments are constant
1801     ** and either pWalker->eCode==4 or 5 or the function has the
1802     ** SQLITE_FUNC_CONST flag. */
1803     case TK_FUNCTION:
1804       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1805         return WRC_Continue;
1806       }else{
1807         pWalker->eCode = 0;
1808         return WRC_Abort;
1809       }
1810     case TK_ID:
1811       /* Convert "true" or "false" in a DEFAULT clause into the
1812       ** appropriate TK_TRUEFALSE operator */
1813       if( sqlite3ExprIdToTrueFalse(pExpr) ){
1814         return WRC_Prune;
1815       }
1816       /* Fall thru */
1817     case TK_COLUMN:
1818     case TK_AGG_FUNCTION:
1819     case TK_AGG_COLUMN:
1820       testcase( pExpr->op==TK_ID );
1821       testcase( pExpr->op==TK_COLUMN );
1822       testcase( pExpr->op==TK_AGG_FUNCTION );
1823       testcase( pExpr->op==TK_AGG_COLUMN );
1824       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1825         return WRC_Continue;
1826       }
1827       /* Fall through */
1828     case TK_IF_NULL_ROW:
1829     case TK_REGISTER:
1830       testcase( pExpr->op==TK_REGISTER );
1831       testcase( pExpr->op==TK_IF_NULL_ROW );
1832       pWalker->eCode = 0;
1833       return WRC_Abort;
1834     case TK_VARIABLE:
1835       if( pWalker->eCode==5 ){
1836         /* Silently convert bound parameters that appear inside of CREATE
1837         ** statements into a NULL when parsing the CREATE statement text out
1838         ** of the sqlite_master table */
1839         pExpr->op = TK_NULL;
1840       }else if( pWalker->eCode==4 ){
1841         /* A bound parameter in a CREATE statement that originates from
1842         ** sqlite3_prepare() causes an error */
1843         pWalker->eCode = 0;
1844         return WRC_Abort;
1845       }
1846       /* Fall through */
1847     default:
1848       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1849       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1850       return WRC_Continue;
1851   }
1852 }
1853 static int exprIsConst(Expr *p, int initFlag, int iCur){
1854   Walker w;
1855   w.eCode = initFlag;
1856   w.xExprCallback = exprNodeIsConstant;
1857   w.xSelectCallback = sqlite3SelectWalkFail;
1858 #ifdef SQLITE_DEBUG
1859   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1860 #endif
1861   w.u.iCur = iCur;
1862   sqlite3WalkExpr(&w, p);
1863   return w.eCode;
1864 }
1865 
1866 /*
1867 ** Walk an expression tree.  Return non-zero if the expression is constant
1868 ** and 0 if it involves variables or function calls.
1869 **
1870 ** For the purposes of this function, a double-quoted string (ex: "abc")
1871 ** is considered a variable but a single-quoted string (ex: 'abc') is
1872 ** a constant.
1873 */
1874 int sqlite3ExprIsConstant(Expr *p){
1875   return exprIsConst(p, 1, 0);
1876 }
1877 
1878 /*
1879 ** Walk an expression tree.  Return non-zero if the expression is constant
1880 ** that does no originate from the ON or USING clauses of a join.
1881 ** Return 0 if it involves variables or function calls or terms from
1882 ** an ON or USING clause.
1883 */
1884 int sqlite3ExprIsConstantNotJoin(Expr *p){
1885   return exprIsConst(p, 2, 0);
1886 }
1887 
1888 /*
1889 ** Walk an expression tree.  Return non-zero if the expression is constant
1890 ** for any single row of the table with cursor iCur.  In other words, the
1891 ** expression must not refer to any non-deterministic function nor any
1892 ** table other than iCur.
1893 */
1894 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1895   return exprIsConst(p, 3, iCur);
1896 }
1897 
1898 
1899 /*
1900 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1901 */
1902 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
1903   ExprList *pGroupBy = pWalker->u.pGroupBy;
1904   int i;
1905 
1906   /* Check if pExpr is identical to any GROUP BY term. If so, consider
1907   ** it constant.  */
1908   for(i=0; i<pGroupBy->nExpr; i++){
1909     Expr *p = pGroupBy->a[i].pExpr;
1910     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
1911       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
1912       if( sqlite3_stricmp("BINARY", pColl->zName)==0 ){
1913         return WRC_Prune;
1914       }
1915     }
1916   }
1917 
1918   /* Check if pExpr is a sub-select. If so, consider it variable. */
1919   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1920     pWalker->eCode = 0;
1921     return WRC_Abort;
1922   }
1923 
1924   return exprNodeIsConstant(pWalker, pExpr);
1925 }
1926 
1927 /*
1928 ** Walk the expression tree passed as the first argument. Return non-zero
1929 ** if the expression consists entirely of constants or copies of terms
1930 ** in pGroupBy that sort with the BINARY collation sequence.
1931 **
1932 ** This routine is used to determine if a term of the HAVING clause can
1933 ** be promoted into the WHERE clause.  In order for such a promotion to work,
1934 ** the value of the HAVING clause term must be the same for all members of
1935 ** a "group".  The requirement that the GROUP BY term must be BINARY
1936 ** assumes that no other collating sequence will have a finer-grained
1937 ** grouping than binary.  In other words (A=B COLLATE binary) implies
1938 ** A=B in every other collating sequence.  The requirement that the
1939 ** GROUP BY be BINARY is stricter than necessary.  It would also work
1940 ** to promote HAVING clauses that use the same alternative collating
1941 ** sequence as the GROUP BY term, but that is much harder to check,
1942 ** alternative collating sequences are uncommon, and this is only an
1943 ** optimization, so we take the easy way out and simply require the
1944 ** GROUP BY to use the BINARY collating sequence.
1945 */
1946 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
1947   Walker w;
1948   w.eCode = 1;
1949   w.xExprCallback = exprNodeIsConstantOrGroupBy;
1950   w.xSelectCallback = 0;
1951   w.u.pGroupBy = pGroupBy;
1952   w.pParse = pParse;
1953   sqlite3WalkExpr(&w, p);
1954   return w.eCode;
1955 }
1956 
1957 /*
1958 ** Walk an expression tree.  Return non-zero if the expression is constant
1959 ** or a function call with constant arguments.  Return and 0 if there
1960 ** are any variables.
1961 **
1962 ** For the purposes of this function, a double-quoted string (ex: "abc")
1963 ** is considered a variable but a single-quoted string (ex: 'abc') is
1964 ** a constant.
1965 */
1966 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1967   assert( isInit==0 || isInit==1 );
1968   return exprIsConst(p, 4+isInit, 0);
1969 }
1970 
1971 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1972 /*
1973 ** Walk an expression tree.  Return 1 if the expression contains a
1974 ** subquery of some kind.  Return 0 if there are no subqueries.
1975 */
1976 int sqlite3ExprContainsSubquery(Expr *p){
1977   Walker w;
1978   w.eCode = 1;
1979   w.xExprCallback = sqlite3ExprWalkNoop;
1980   w.xSelectCallback = sqlite3SelectWalkFail;
1981 #ifdef SQLITE_DEBUG
1982   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1983 #endif
1984   sqlite3WalkExpr(&w, p);
1985   return w.eCode==0;
1986 }
1987 #endif
1988 
1989 /*
1990 ** If the expression p codes a constant integer that is small enough
1991 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1992 ** in *pValue.  If the expression is not an integer or if it is too big
1993 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1994 */
1995 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1996   int rc = 0;
1997   if( p==0 ) return 0;  /* Can only happen following on OOM */
1998 
1999   /* If an expression is an integer literal that fits in a signed 32-bit
2000   ** integer, then the EP_IntValue flag will have already been set */
2001   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2002            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2003 
2004   if( p->flags & EP_IntValue ){
2005     *pValue = p->u.iValue;
2006     return 1;
2007   }
2008   switch( p->op ){
2009     case TK_UPLUS: {
2010       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2011       break;
2012     }
2013     case TK_UMINUS: {
2014       int v;
2015       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2016         assert( v!=(-2147483647-1) );
2017         *pValue = -v;
2018         rc = 1;
2019       }
2020       break;
2021     }
2022     default: break;
2023   }
2024   return rc;
2025 }
2026 
2027 /*
2028 ** Return FALSE if there is no chance that the expression can be NULL.
2029 **
2030 ** If the expression might be NULL or if the expression is too complex
2031 ** to tell return TRUE.
2032 **
2033 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2034 ** when we know that a value cannot be NULL.  Hence, a false positive
2035 ** (returning TRUE when in fact the expression can never be NULL) might
2036 ** be a small performance hit but is otherwise harmless.  On the other
2037 ** hand, a false negative (returning FALSE when the result could be NULL)
2038 ** will likely result in an incorrect answer.  So when in doubt, return
2039 ** TRUE.
2040 */
2041 int sqlite3ExprCanBeNull(const Expr *p){
2042   u8 op;
2043   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2044   op = p->op;
2045   if( op==TK_REGISTER ) op = p->op2;
2046   switch( op ){
2047     case TK_INTEGER:
2048     case TK_STRING:
2049     case TK_FLOAT:
2050     case TK_BLOB:
2051       return 0;
2052     case TK_COLUMN:
2053       return ExprHasProperty(p, EP_CanBeNull) ||
2054              p->pTab==0 ||  /* Reference to column of index on expression */
2055              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
2056     default:
2057       return 1;
2058   }
2059 }
2060 
2061 /*
2062 ** Return TRUE if the given expression is a constant which would be
2063 ** unchanged by OP_Affinity with the affinity given in the second
2064 ** argument.
2065 **
2066 ** This routine is used to determine if the OP_Affinity operation
2067 ** can be omitted.  When in doubt return FALSE.  A false negative
2068 ** is harmless.  A false positive, however, can result in the wrong
2069 ** answer.
2070 */
2071 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2072   u8 op;
2073   if( aff==SQLITE_AFF_BLOB ) return 1;
2074   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2075   op = p->op;
2076   if( op==TK_REGISTER ) op = p->op2;
2077   switch( op ){
2078     case TK_INTEGER: {
2079       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2080     }
2081     case TK_FLOAT: {
2082       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2083     }
2084     case TK_STRING: {
2085       return aff==SQLITE_AFF_TEXT;
2086     }
2087     case TK_BLOB: {
2088       return 1;
2089     }
2090     case TK_COLUMN: {
2091       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2092       return p->iColumn<0
2093           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2094     }
2095     default: {
2096       return 0;
2097     }
2098   }
2099 }
2100 
2101 /*
2102 ** Return TRUE if the given string is a row-id column name.
2103 */
2104 int sqlite3IsRowid(const char *z){
2105   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2106   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2107   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2108   return 0;
2109 }
2110 
2111 /*
2112 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2113 ** that can be simplified to a direct table access, then return
2114 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2115 ** or if the SELECT statement needs to be manifested into a transient
2116 ** table, then return NULL.
2117 */
2118 #ifndef SQLITE_OMIT_SUBQUERY
2119 static Select *isCandidateForInOpt(Expr *pX){
2120   Select *p;
2121   SrcList *pSrc;
2122   ExprList *pEList;
2123   Table *pTab;
2124   int i;
2125   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2126   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2127   p = pX->x.pSelect;
2128   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2129   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2130     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2131     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2132     return 0; /* No DISTINCT keyword and no aggregate functions */
2133   }
2134   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2135   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2136   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2137   pSrc = p->pSrc;
2138   assert( pSrc!=0 );
2139   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2140   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2141   pTab = pSrc->a[0].pTab;
2142   assert( pTab!=0 );
2143   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2144   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2145   pEList = p->pEList;
2146   assert( pEList!=0 );
2147   /* All SELECT results must be columns. */
2148   for(i=0; i<pEList->nExpr; i++){
2149     Expr *pRes = pEList->a[i].pExpr;
2150     if( pRes->op!=TK_COLUMN ) return 0;
2151     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2152   }
2153   return p;
2154 }
2155 #endif /* SQLITE_OMIT_SUBQUERY */
2156 
2157 #ifndef SQLITE_OMIT_SUBQUERY
2158 /*
2159 ** Generate code that checks the left-most column of index table iCur to see if
2160 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2161 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2162 ** to be set to NULL if iCur contains one or more NULL values.
2163 */
2164 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2165   int addr1;
2166   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2167   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2168   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2169   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2170   VdbeComment((v, "first_entry_in(%d)", iCur));
2171   sqlite3VdbeJumpHere(v, addr1);
2172 }
2173 #endif
2174 
2175 
2176 #ifndef SQLITE_OMIT_SUBQUERY
2177 /*
2178 ** The argument is an IN operator with a list (not a subquery) on the
2179 ** right-hand side.  Return TRUE if that list is constant.
2180 */
2181 static int sqlite3InRhsIsConstant(Expr *pIn){
2182   Expr *pLHS;
2183   int res;
2184   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2185   pLHS = pIn->pLeft;
2186   pIn->pLeft = 0;
2187   res = sqlite3ExprIsConstant(pIn);
2188   pIn->pLeft = pLHS;
2189   return res;
2190 }
2191 #endif
2192 
2193 /*
2194 ** This function is used by the implementation of the IN (...) operator.
2195 ** The pX parameter is the expression on the RHS of the IN operator, which
2196 ** might be either a list of expressions or a subquery.
2197 **
2198 ** The job of this routine is to find or create a b-tree object that can
2199 ** be used either to test for membership in the RHS set or to iterate through
2200 ** all members of the RHS set, skipping duplicates.
2201 **
2202 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2203 ** and pX->iTable is set to the index of that cursor.
2204 **
2205 ** The returned value of this function indicates the b-tree type, as follows:
2206 **
2207 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2208 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2209 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2210 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2211 **                         populated epheremal table.
2212 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2213 **                         implemented as a sequence of comparisons.
2214 **
2215 ** An existing b-tree might be used if the RHS expression pX is a simple
2216 ** subquery such as:
2217 **
2218 **     SELECT <column1>, <column2>... FROM <table>
2219 **
2220 ** If the RHS of the IN operator is a list or a more complex subquery, then
2221 ** an ephemeral table might need to be generated from the RHS and then
2222 ** pX->iTable made to point to the ephemeral table instead of an
2223 ** existing table.
2224 **
2225 ** The inFlags parameter must contain, at a minimum, one of the bits
2226 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2227 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2228 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2229 ** be used to loop over all values of the RHS of the IN operator.
2230 **
2231 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2232 ** through the set members) then the b-tree must not contain duplicates.
2233 ** An epheremal table will be created unless the selected columns are guaranteed
2234 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2235 ** a UNIQUE constraint or index.
2236 **
2237 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2238 ** for fast set membership tests) then an epheremal table must
2239 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2240 ** index can be found with the specified <columns> as its left-most.
2241 **
2242 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2243 ** if the RHS of the IN operator is a list (not a subquery) then this
2244 ** routine might decide that creating an ephemeral b-tree for membership
2245 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2246 ** calling routine should implement the IN operator using a sequence
2247 ** of Eq or Ne comparison operations.
2248 **
2249 ** When the b-tree is being used for membership tests, the calling function
2250 ** might need to know whether or not the RHS side of the IN operator
2251 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2252 ** if there is any chance that the (...) might contain a NULL value at
2253 ** runtime, then a register is allocated and the register number written
2254 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2255 ** NULL value, then *prRhsHasNull is left unchanged.
2256 **
2257 ** If a register is allocated and its location stored in *prRhsHasNull, then
2258 ** the value in that register will be NULL if the b-tree contains one or more
2259 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2260 ** NULL values.
2261 **
2262 ** If the aiMap parameter is not NULL, it must point to an array containing
2263 ** one element for each column returned by the SELECT statement on the RHS
2264 ** of the IN(...) operator. The i'th entry of the array is populated with the
2265 ** offset of the index column that matches the i'th column returned by the
2266 ** SELECT. For example, if the expression and selected index are:
2267 **
2268 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2269 **   CREATE INDEX i1 ON t1(b, c, a);
2270 **
2271 ** then aiMap[] is populated with {2, 0, 1}.
2272 */
2273 #ifndef SQLITE_OMIT_SUBQUERY
2274 int sqlite3FindInIndex(
2275   Parse *pParse,             /* Parsing context */
2276   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2277   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2278   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2279   int *aiMap                 /* Mapping from Index fields to RHS fields */
2280 ){
2281   Select *p;                            /* SELECT to the right of IN operator */
2282   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2283   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2284   int mustBeUnique;                     /* True if RHS must be unique */
2285   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2286 
2287   assert( pX->op==TK_IN );
2288   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2289 
2290   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2291   ** whether or not the SELECT result contains NULL values, check whether
2292   ** or not NULL is actually possible (it may not be, for example, due
2293   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2294   ** set prRhsHasNull to 0 before continuing.  */
2295   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2296     int i;
2297     ExprList *pEList = pX->x.pSelect->pEList;
2298     for(i=0; i<pEList->nExpr; i++){
2299       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2300     }
2301     if( i==pEList->nExpr ){
2302       prRhsHasNull = 0;
2303     }
2304   }
2305 
2306   /* Check to see if an existing table or index can be used to
2307   ** satisfy the query.  This is preferable to generating a new
2308   ** ephemeral table.  */
2309   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2310     sqlite3 *db = pParse->db;              /* Database connection */
2311     Table *pTab;                           /* Table <table>. */
2312     i16 iDb;                               /* Database idx for pTab */
2313     ExprList *pEList = p->pEList;
2314     int nExpr = pEList->nExpr;
2315 
2316     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2317     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2318     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2319     pTab = p->pSrc->a[0].pTab;
2320 
2321     /* Code an OP_Transaction and OP_TableLock for <table>. */
2322     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2323     sqlite3CodeVerifySchema(pParse, iDb);
2324     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2325 
2326     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2327     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2328       /* The "x IN (SELECT rowid FROM table)" case */
2329       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2330       VdbeCoverage(v);
2331 
2332       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2333       eType = IN_INDEX_ROWID;
2334 
2335       sqlite3VdbeJumpHere(v, iAddr);
2336     }else{
2337       Index *pIdx;                         /* Iterator variable */
2338       int affinity_ok = 1;
2339       int i;
2340 
2341       /* Check that the affinity that will be used to perform each
2342       ** comparison is the same as the affinity of each column in table
2343       ** on the RHS of the IN operator.  If it not, it is not possible to
2344       ** use any index of the RHS table.  */
2345       for(i=0; i<nExpr && affinity_ok; i++){
2346         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2347         int iCol = pEList->a[i].pExpr->iColumn;
2348         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2349         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2350         testcase( cmpaff==SQLITE_AFF_BLOB );
2351         testcase( cmpaff==SQLITE_AFF_TEXT );
2352         switch( cmpaff ){
2353           case SQLITE_AFF_BLOB:
2354             break;
2355           case SQLITE_AFF_TEXT:
2356             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2357             ** other has no affinity and the other side is TEXT.  Hence,
2358             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2359             ** and for the term on the LHS of the IN to have no affinity. */
2360             assert( idxaff==SQLITE_AFF_TEXT );
2361             break;
2362           default:
2363             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2364         }
2365       }
2366 
2367       if( affinity_ok ){
2368         /* Search for an existing index that will work for this IN operator */
2369         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2370           Bitmask colUsed;      /* Columns of the index used */
2371           Bitmask mCol;         /* Mask for the current column */
2372           if( pIdx->nColumn<nExpr ) continue;
2373           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2374           ** BITMASK(nExpr) without overflowing */
2375           testcase( pIdx->nColumn==BMS-2 );
2376           testcase( pIdx->nColumn==BMS-1 );
2377           if( pIdx->nColumn>=BMS-1 ) continue;
2378           if( mustBeUnique ){
2379             if( pIdx->nKeyCol>nExpr
2380              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2381             ){
2382               continue;  /* This index is not unique over the IN RHS columns */
2383             }
2384           }
2385 
2386           colUsed = 0;   /* Columns of index used so far */
2387           for(i=0; i<nExpr; i++){
2388             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2389             Expr *pRhs = pEList->a[i].pExpr;
2390             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2391             int j;
2392 
2393             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2394             for(j=0; j<nExpr; j++){
2395               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2396               assert( pIdx->azColl[j] );
2397               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2398                 continue;
2399               }
2400               break;
2401             }
2402             if( j==nExpr ) break;
2403             mCol = MASKBIT(j);
2404             if( mCol & colUsed ) break; /* Each column used only once */
2405             colUsed |= mCol;
2406             if( aiMap ) aiMap[i] = j;
2407           }
2408 
2409           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2410           if( colUsed==(MASKBIT(nExpr)-1) ){
2411             /* If we reach this point, that means the index pIdx is usable */
2412             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2413 #ifndef SQLITE_OMIT_EXPLAIN
2414             sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0,
2415               sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName),
2416               P4_DYNAMIC);
2417 #endif
2418             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2419             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2420             VdbeComment((v, "%s", pIdx->zName));
2421             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2422             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2423 
2424             if( prRhsHasNull ){
2425 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2426               i64 mask = (1<<nExpr)-1;
2427               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2428                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2429 #endif
2430               *prRhsHasNull = ++pParse->nMem;
2431               if( nExpr==1 ){
2432                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2433               }
2434             }
2435             sqlite3VdbeJumpHere(v, iAddr);
2436           }
2437         } /* End loop over indexes */
2438       } /* End if( affinity_ok ) */
2439     } /* End if not an rowid index */
2440   } /* End attempt to optimize using an index */
2441 
2442   /* If no preexisting index is available for the IN clause
2443   ** and IN_INDEX_NOOP is an allowed reply
2444   ** and the RHS of the IN operator is a list, not a subquery
2445   ** and the RHS is not constant or has two or fewer terms,
2446   ** then it is not worth creating an ephemeral table to evaluate
2447   ** the IN operator so return IN_INDEX_NOOP.
2448   */
2449   if( eType==0
2450    && (inFlags & IN_INDEX_NOOP_OK)
2451    && !ExprHasProperty(pX, EP_xIsSelect)
2452    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2453   ){
2454     eType = IN_INDEX_NOOP;
2455   }
2456 
2457   if( eType==0 ){
2458     /* Could not find an existing table or index to use as the RHS b-tree.
2459     ** We will have to generate an ephemeral table to do the job.
2460     */
2461     u32 savedNQueryLoop = pParse->nQueryLoop;
2462     int rMayHaveNull = 0;
2463     eType = IN_INDEX_EPH;
2464     if( inFlags & IN_INDEX_LOOP ){
2465       pParse->nQueryLoop = 0;
2466       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2467         eType = IN_INDEX_ROWID;
2468       }
2469     }else if( prRhsHasNull ){
2470       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2471     }
2472     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
2473     pParse->nQueryLoop = savedNQueryLoop;
2474   }else{
2475     pX->iTable = iTab;
2476   }
2477 
2478   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2479     int i, n;
2480     n = sqlite3ExprVectorSize(pX->pLeft);
2481     for(i=0; i<n; i++) aiMap[i] = i;
2482   }
2483   return eType;
2484 }
2485 #endif
2486 
2487 #ifndef SQLITE_OMIT_SUBQUERY
2488 /*
2489 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2490 ** function allocates and returns a nul-terminated string containing
2491 ** the affinities to be used for each column of the comparison.
2492 **
2493 ** It is the responsibility of the caller to ensure that the returned
2494 ** string is eventually freed using sqlite3DbFree().
2495 */
2496 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2497   Expr *pLeft = pExpr->pLeft;
2498   int nVal = sqlite3ExprVectorSize(pLeft);
2499   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2500   char *zRet;
2501 
2502   assert( pExpr->op==TK_IN );
2503   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2504   if( zRet ){
2505     int i;
2506     for(i=0; i<nVal; i++){
2507       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2508       char a = sqlite3ExprAffinity(pA);
2509       if( pSelect ){
2510         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2511       }else{
2512         zRet[i] = a;
2513       }
2514     }
2515     zRet[nVal] = '\0';
2516   }
2517   return zRet;
2518 }
2519 #endif
2520 
2521 #ifndef SQLITE_OMIT_SUBQUERY
2522 /*
2523 ** Load the Parse object passed as the first argument with an error
2524 ** message of the form:
2525 **
2526 **   "sub-select returns N columns - expected M"
2527 */
2528 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2529   const char *zFmt = "sub-select returns %d columns - expected %d";
2530   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2531 }
2532 #endif
2533 
2534 /*
2535 ** Expression pExpr is a vector that has been used in a context where
2536 ** it is not permitted. If pExpr is a sub-select vector, this routine
2537 ** loads the Parse object with a message of the form:
2538 **
2539 **   "sub-select returns N columns - expected 1"
2540 **
2541 ** Or, if it is a regular scalar vector:
2542 **
2543 **   "row value misused"
2544 */
2545 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2546 #ifndef SQLITE_OMIT_SUBQUERY
2547   if( pExpr->flags & EP_xIsSelect ){
2548     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2549   }else
2550 #endif
2551   {
2552     sqlite3ErrorMsg(pParse, "row value misused");
2553   }
2554 }
2555 
2556 /*
2557 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2558 ** or IN operators.  Examples:
2559 **
2560 **     (SELECT a FROM b)          -- subquery
2561 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2562 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2563 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2564 **
2565 ** The pExpr parameter describes the expression that contains the IN
2566 ** operator or subquery.
2567 **
2568 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2569 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2570 ** to some integer key column of a table B-Tree. In this case, use an
2571 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2572 ** (slower) variable length keys B-Tree.
2573 **
2574 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2575 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2576 ** All this routine does is initialize the register given by rMayHaveNull
2577 ** to NULL.  Calling routines will take care of changing this register
2578 ** value to non-NULL if the RHS is NULL-free.
2579 **
2580 ** For a SELECT or EXISTS operator, return the register that holds the
2581 ** result.  For a multi-column SELECT, the result is stored in a contiguous
2582 ** array of registers and the return value is the register of the left-most
2583 ** result column.  Return 0 for IN operators or if an error occurs.
2584 */
2585 #ifndef SQLITE_OMIT_SUBQUERY
2586 int sqlite3CodeSubselect(
2587   Parse *pParse,          /* Parsing context */
2588   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
2589   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
2590   int isRowid             /* If true, LHS of IN operator is a rowid */
2591 ){
2592   int jmpIfDynamic = -1;                      /* One-time test address */
2593   int rReg = 0;                           /* Register storing resulting */
2594   Vdbe *v = sqlite3GetVdbe(pParse);
2595   if( NEVER(v==0) ) return 0;
2596   sqlite3ExprCachePush(pParse);
2597 
2598   /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2599   ** is encountered if any of the following is true:
2600   **
2601   **    *  The right-hand side is a correlated subquery
2602   **    *  The right-hand side is an expression list containing variables
2603   **    *  We are inside a trigger
2604   **
2605   ** If all of the above are false, then we can run this code just once
2606   ** save the results, and reuse the same result on subsequent invocations.
2607   */
2608   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2609     jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2610   }
2611 
2612 #ifndef SQLITE_OMIT_EXPLAIN
2613   if( pParse->explain==2 ){
2614     char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
2615         jmpIfDynamic>=0?"":"CORRELATED ",
2616         pExpr->op==TK_IN?"LIST":"SCALAR",
2617         pParse->iNextSelectId
2618     );
2619     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
2620   }
2621 #endif
2622 
2623   switch( pExpr->op ){
2624     case TK_IN: {
2625       int addr;                   /* Address of OP_OpenEphemeral instruction */
2626       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
2627       KeyInfo *pKeyInfo = 0;      /* Key information */
2628       int nVal;                   /* Size of vector pLeft */
2629 
2630       nVal = sqlite3ExprVectorSize(pLeft);
2631       assert( !isRowid || nVal==1 );
2632 
2633       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2634       ** expression it is handled the same way.  An ephemeral table is
2635       ** filled with index keys representing the results from the
2636       ** SELECT or the <exprlist>.
2637       **
2638       ** If the 'x' expression is a column value, or the SELECT...
2639       ** statement returns a column value, then the affinity of that
2640       ** column is used to build the index keys. If both 'x' and the
2641       ** SELECT... statement are columns, then numeric affinity is used
2642       ** if either column has NUMERIC or INTEGER affinity. If neither
2643       ** 'x' nor the SELECT... statement are columns, then numeric affinity
2644       ** is used.
2645       */
2646       pExpr->iTable = pParse->nTab++;
2647       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2648           pExpr->iTable, (isRowid?0:nVal));
2649       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2650 
2651       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2652         /* Case 1:     expr IN (SELECT ...)
2653         **
2654         ** Generate code to write the results of the select into the temporary
2655         ** table allocated and opened above.
2656         */
2657         Select *pSelect = pExpr->x.pSelect;
2658         ExprList *pEList = pSelect->pEList;
2659 
2660         assert( !isRowid );
2661         /* If the LHS and RHS of the IN operator do not match, that
2662         ** error will have been caught long before we reach this point. */
2663         if( ALWAYS(pEList->nExpr==nVal) ){
2664           SelectDest dest;
2665           int i;
2666           sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2667           dest.zAffSdst = exprINAffinity(pParse, pExpr);
2668           pSelect->iLimit = 0;
2669           testcase( pSelect->selFlags & SF_Distinct );
2670           testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2671           if( sqlite3Select(pParse, pSelect, &dest) ){
2672             sqlite3DbFree(pParse->db, dest.zAffSdst);
2673             sqlite3KeyInfoUnref(pKeyInfo);
2674             return 0;
2675           }
2676           sqlite3DbFree(pParse->db, dest.zAffSdst);
2677           assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2678           assert( pEList!=0 );
2679           assert( pEList->nExpr>0 );
2680           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2681           for(i=0; i<nVal; i++){
2682             Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2683             pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2684                 pParse, p, pEList->a[i].pExpr
2685             );
2686           }
2687         }
2688       }else if( ALWAYS(pExpr->x.pList!=0) ){
2689         /* Case 2:     expr IN (exprlist)
2690         **
2691         ** For each expression, build an index key from the evaluation and
2692         ** store it in the temporary table. If <expr> is a column, then use
2693         ** that columns affinity when building index keys. If <expr> is not
2694         ** a column, use numeric affinity.
2695         */
2696         char affinity;            /* Affinity of the LHS of the IN */
2697         int i;
2698         ExprList *pList = pExpr->x.pList;
2699         struct ExprList_item *pItem;
2700         int r1, r2, r3;
2701 
2702         affinity = sqlite3ExprAffinity(pLeft);
2703         if( !affinity ){
2704           affinity = SQLITE_AFF_BLOB;
2705         }
2706         if( pKeyInfo ){
2707           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2708           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2709         }
2710 
2711         /* Loop through each expression in <exprlist>. */
2712         r1 = sqlite3GetTempReg(pParse);
2713         r2 = sqlite3GetTempReg(pParse);
2714         if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC);
2715         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2716           Expr *pE2 = pItem->pExpr;
2717           int iValToIns;
2718 
2719           /* If the expression is not constant then we will need to
2720           ** disable the test that was generated above that makes sure
2721           ** this code only executes once.  Because for a non-constant
2722           ** expression we need to rerun this code each time.
2723           */
2724           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2725             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2726             jmpIfDynamic = -1;
2727           }
2728 
2729           /* Evaluate the expression and insert it into the temp table */
2730           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2731             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2732           }else{
2733             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2734             if( isRowid ){
2735               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2736                                 sqlite3VdbeCurrentAddr(v)+2);
2737               VdbeCoverage(v);
2738               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2739             }else{
2740               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2741               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2742               sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1);
2743             }
2744           }
2745         }
2746         sqlite3ReleaseTempReg(pParse, r1);
2747         sqlite3ReleaseTempReg(pParse, r2);
2748       }
2749       if( pKeyInfo ){
2750         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2751       }
2752       break;
2753     }
2754 
2755     case TK_EXISTS:
2756     case TK_SELECT:
2757     default: {
2758       /* Case 3:    (SELECT ... FROM ...)
2759       **     or:    EXISTS(SELECT ... FROM ...)
2760       **
2761       ** For a SELECT, generate code to put the values for all columns of
2762       ** the first row into an array of registers and return the index of
2763       ** the first register.
2764       **
2765       ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2766       ** into a register and return that register number.
2767       **
2768       ** In both cases, the query is augmented with "LIMIT 1".  Any
2769       ** preexisting limit is discarded in place of the new LIMIT 1.
2770       */
2771       Select *pSel;                         /* SELECT statement to encode */
2772       SelectDest dest;                      /* How to deal with SELECT result */
2773       int nReg;                             /* Registers to allocate */
2774       Expr *pLimit;                         /* New limit expression */
2775 
2776       testcase( pExpr->op==TK_EXISTS );
2777       testcase( pExpr->op==TK_SELECT );
2778       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2779       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2780 
2781       pSel = pExpr->x.pSelect;
2782       nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2783       sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2784       pParse->nMem += nReg;
2785       if( pExpr->op==TK_SELECT ){
2786         dest.eDest = SRT_Mem;
2787         dest.iSdst = dest.iSDParm;
2788         dest.nSdst = nReg;
2789         sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2790         VdbeComment((v, "Init subquery result"));
2791       }else{
2792         dest.eDest = SRT_Exists;
2793         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2794         VdbeComment((v, "Init EXISTS result"));
2795       }
2796       pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0);
2797       if( pSel->pLimit ){
2798         sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft);
2799         pSel->pLimit->pLeft = pLimit;
2800       }else{
2801         pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
2802       }
2803       pSel->iLimit = 0;
2804       if( sqlite3Select(pParse, pSel, &dest) ){
2805         return 0;
2806       }
2807       rReg = dest.iSDParm;
2808       ExprSetVVAProperty(pExpr, EP_NoReduce);
2809       break;
2810     }
2811   }
2812 
2813   if( rHasNullFlag ){
2814     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2815   }
2816 
2817   if( jmpIfDynamic>=0 ){
2818     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2819   }
2820   sqlite3ExprCachePop(pParse);
2821 
2822   return rReg;
2823 }
2824 #endif /* SQLITE_OMIT_SUBQUERY */
2825 
2826 #ifndef SQLITE_OMIT_SUBQUERY
2827 /*
2828 ** Expr pIn is an IN(...) expression. This function checks that the
2829 ** sub-select on the RHS of the IN() operator has the same number of
2830 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2831 ** a sub-query, that the LHS is a vector of size 1.
2832 */
2833 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2834   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2835   if( (pIn->flags & EP_xIsSelect) ){
2836     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2837       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2838       return 1;
2839     }
2840   }else if( nVector!=1 ){
2841     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2842     return 1;
2843   }
2844   return 0;
2845 }
2846 #endif
2847 
2848 #ifndef SQLITE_OMIT_SUBQUERY
2849 /*
2850 ** Generate code for an IN expression.
2851 **
2852 **      x IN (SELECT ...)
2853 **      x IN (value, value, ...)
2854 **
2855 ** The left-hand side (LHS) is a scalar or vector expression.  The
2856 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2857 ** subquery.  If the RHS is a subquery, the number of result columns must
2858 ** match the number of columns in the vector on the LHS.  If the RHS is
2859 ** a list of values, the LHS must be a scalar.
2860 **
2861 ** The IN operator is true if the LHS value is contained within the RHS.
2862 ** The result is false if the LHS is definitely not in the RHS.  The
2863 ** result is NULL if the presence of the LHS in the RHS cannot be
2864 ** determined due to NULLs.
2865 **
2866 ** This routine generates code that jumps to destIfFalse if the LHS is not
2867 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2868 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2869 ** within the RHS then fall through.
2870 **
2871 ** See the separate in-operator.md documentation file in the canonical
2872 ** SQLite source tree for additional information.
2873 */
2874 static void sqlite3ExprCodeIN(
2875   Parse *pParse,        /* Parsing and code generating context */
2876   Expr *pExpr,          /* The IN expression */
2877   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2878   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2879 ){
2880   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2881   int eType;            /* Type of the RHS */
2882   int rLhs;             /* Register(s) holding the LHS values */
2883   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
2884   Vdbe *v;              /* Statement under construction */
2885   int *aiMap = 0;       /* Map from vector field to index column */
2886   char *zAff = 0;       /* Affinity string for comparisons */
2887   int nVector;          /* Size of vectors for this IN operator */
2888   int iDummy;           /* Dummy parameter to exprCodeVector() */
2889   Expr *pLeft;          /* The LHS of the IN operator */
2890   int i;                /* loop counter */
2891   int destStep2;        /* Where to jump when NULLs seen in step 2 */
2892   int destStep6 = 0;    /* Start of code for Step 6 */
2893   int addrTruthOp;      /* Address of opcode that determines the IN is true */
2894   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
2895   int addrTop;          /* Top of the step-6 loop */
2896 
2897   pLeft = pExpr->pLeft;
2898   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2899   zAff = exprINAffinity(pParse, pExpr);
2900   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2901   aiMap = (int*)sqlite3DbMallocZero(
2902       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2903   );
2904   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2905 
2906   /* Attempt to compute the RHS. After this step, if anything other than
2907   ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2908   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2909   ** the RHS has not yet been coded.  */
2910   v = pParse->pVdbe;
2911   assert( v!=0 );       /* OOM detected prior to this routine */
2912   VdbeNoopComment((v, "begin IN expr"));
2913   eType = sqlite3FindInIndex(pParse, pExpr,
2914                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2915                              destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2916 
2917   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2918        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2919   );
2920 #ifdef SQLITE_DEBUG
2921   /* Confirm that aiMap[] contains nVector integer values between 0 and
2922   ** nVector-1. */
2923   for(i=0; i<nVector; i++){
2924     int j, cnt;
2925     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
2926     assert( cnt==1 );
2927   }
2928 #endif
2929 
2930   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2931   ** vector, then it is stored in an array of nVector registers starting
2932   ** at r1.
2933   **
2934   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2935   ** so that the fields are in the same order as an existing index.   The
2936   ** aiMap[] array contains a mapping from the original LHS field order to
2937   ** the field order that matches the RHS index.
2938   */
2939   sqlite3ExprCachePush(pParse);
2940   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
2941   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
2942   if( i==nVector ){
2943     /* LHS fields are not reordered */
2944     rLhs = rLhsOrig;
2945   }else{
2946     /* Need to reorder the LHS fields according to aiMap */
2947     rLhs = sqlite3GetTempRange(pParse, nVector);
2948     for(i=0; i<nVector; i++){
2949       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
2950     }
2951   }
2952 
2953   /* If sqlite3FindInIndex() did not find or create an index that is
2954   ** suitable for evaluating the IN operator, then evaluate using a
2955   ** sequence of comparisons.
2956   **
2957   ** This is step (1) in the in-operator.md optimized algorithm.
2958   */
2959   if( eType==IN_INDEX_NOOP ){
2960     ExprList *pList = pExpr->x.pList;
2961     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2962     int labelOk = sqlite3VdbeMakeLabel(v);
2963     int r2, regToFree;
2964     int regCkNull = 0;
2965     int ii;
2966     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2967     if( destIfNull!=destIfFalse ){
2968       regCkNull = sqlite3GetTempReg(pParse);
2969       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
2970     }
2971     for(ii=0; ii<pList->nExpr; ii++){
2972       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2973       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2974         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2975       }
2976       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2977         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
2978                           (void*)pColl, P4_COLLSEQ);
2979         VdbeCoverageIf(v, ii<pList->nExpr-1);
2980         VdbeCoverageIf(v, ii==pList->nExpr-1);
2981         sqlite3VdbeChangeP5(v, zAff[0]);
2982       }else{
2983         assert( destIfNull==destIfFalse );
2984         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
2985                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2986         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
2987       }
2988       sqlite3ReleaseTempReg(pParse, regToFree);
2989     }
2990     if( regCkNull ){
2991       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2992       sqlite3VdbeGoto(v, destIfFalse);
2993     }
2994     sqlite3VdbeResolveLabel(v, labelOk);
2995     sqlite3ReleaseTempReg(pParse, regCkNull);
2996     goto sqlite3ExprCodeIN_finished;
2997   }
2998 
2999   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3000   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3001   ** We will then skip the binary search of the RHS.
3002   */
3003   if( destIfNull==destIfFalse ){
3004     destStep2 = destIfFalse;
3005   }else{
3006     destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
3007   }
3008   for(i=0; i<nVector; i++){
3009     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3010     if( sqlite3ExprCanBeNull(p) ){
3011       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3012       VdbeCoverage(v);
3013     }
3014   }
3015 
3016   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3017   ** of the RHS using the LHS as a probe.  If found, the result is
3018   ** true.
3019   */
3020   if( eType==IN_INDEX_ROWID ){
3021     /* In this case, the RHS is the ROWID of table b-tree and so we also
3022     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3023     ** into a single opcode. */
3024     sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
3025     VdbeCoverage(v);
3026     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3027   }else{
3028     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3029     if( destIfFalse==destIfNull ){
3030       /* Combine Step 3 and Step 5 into a single opcode */
3031       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
3032                            rLhs, nVector); VdbeCoverage(v);
3033       goto sqlite3ExprCodeIN_finished;
3034     }
3035     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3036     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
3037                                       rLhs, nVector); VdbeCoverage(v);
3038   }
3039 
3040   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3041   ** an match on the search above, then the result must be FALSE.
3042   */
3043   if( rRhsHasNull && nVector==1 ){
3044     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3045     VdbeCoverage(v);
3046   }
3047 
3048   /* Step 5.  If we do not care about the difference between NULL and
3049   ** FALSE, then just return false.
3050   */
3051   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3052 
3053   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3054   ** If any comparison is NULL, then the result is NULL.  If all
3055   ** comparisons are FALSE then the final result is FALSE.
3056   **
3057   ** For a scalar LHS, it is sufficient to check just the first row
3058   ** of the RHS.
3059   */
3060   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3061   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
3062   VdbeCoverage(v);
3063   if( nVector>1 ){
3064     destNotNull = sqlite3VdbeMakeLabel(v);
3065   }else{
3066     /* For nVector==1, combine steps 6 and 7 by immediately returning
3067     ** FALSE if the first comparison is not NULL */
3068     destNotNull = destIfFalse;
3069   }
3070   for(i=0; i<nVector; i++){
3071     Expr *p;
3072     CollSeq *pColl;
3073     int r3 = sqlite3GetTempReg(pParse);
3074     p = sqlite3VectorFieldSubexpr(pLeft, i);
3075     pColl = sqlite3ExprCollSeq(pParse, p);
3076     sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
3077     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3078                       (void*)pColl, P4_COLLSEQ);
3079     VdbeCoverage(v);
3080     sqlite3ReleaseTempReg(pParse, r3);
3081   }
3082   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3083   if( nVector>1 ){
3084     sqlite3VdbeResolveLabel(v, destNotNull);
3085     sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
3086     VdbeCoverage(v);
3087 
3088     /* Step 7:  If we reach this point, we know that the result must
3089     ** be false. */
3090     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3091   }
3092 
3093   /* Jumps here in order to return true. */
3094   sqlite3VdbeJumpHere(v, addrTruthOp);
3095 
3096 sqlite3ExprCodeIN_finished:
3097   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3098   sqlite3ExprCachePop(pParse);
3099   VdbeComment((v, "end IN expr"));
3100 sqlite3ExprCodeIN_oom_error:
3101   sqlite3DbFree(pParse->db, aiMap);
3102   sqlite3DbFree(pParse->db, zAff);
3103 }
3104 #endif /* SQLITE_OMIT_SUBQUERY */
3105 
3106 #ifndef SQLITE_OMIT_FLOATING_POINT
3107 /*
3108 ** Generate an instruction that will put the floating point
3109 ** value described by z[0..n-1] into register iMem.
3110 **
3111 ** The z[] string will probably not be zero-terminated.  But the
3112 ** z[n] character is guaranteed to be something that does not look
3113 ** like the continuation of the number.
3114 */
3115 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3116   if( ALWAYS(z!=0) ){
3117     double value;
3118     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3119     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3120     if( negateFlag ) value = -value;
3121     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3122   }
3123 }
3124 #endif
3125 
3126 
3127 /*
3128 ** Generate an instruction that will put the integer describe by
3129 ** text z[0..n-1] into register iMem.
3130 **
3131 ** Expr.u.zToken is always UTF8 and zero-terminated.
3132 */
3133 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3134   Vdbe *v = pParse->pVdbe;
3135   if( pExpr->flags & EP_IntValue ){
3136     int i = pExpr->u.iValue;
3137     assert( i>=0 );
3138     if( negFlag ) i = -i;
3139     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3140   }else{
3141     int c;
3142     i64 value;
3143     const char *z = pExpr->u.zToken;
3144     assert( z!=0 );
3145     c = sqlite3DecOrHexToI64(z, &value);
3146     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3147 #ifdef SQLITE_OMIT_FLOATING_POINT
3148       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3149 #else
3150 #ifndef SQLITE_OMIT_HEX_INTEGER
3151       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3152         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3153       }else
3154 #endif
3155       {
3156         codeReal(v, z, negFlag, iMem);
3157       }
3158 #endif
3159     }else{
3160       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3161       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3162     }
3163   }
3164 }
3165 
3166 /*
3167 ** Erase column-cache entry number i
3168 */
3169 static void cacheEntryClear(Parse *pParse, int i){
3170   if( pParse->aColCache[i].tempReg ){
3171     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3172       pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3173     }
3174   }
3175   pParse->nColCache--;
3176   if( i<pParse->nColCache ){
3177     pParse->aColCache[i] = pParse->aColCache[pParse->nColCache];
3178   }
3179 }
3180 
3181 
3182 /*
3183 ** Record in the column cache that a particular column from a
3184 ** particular table is stored in a particular register.
3185 */
3186 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
3187   int i;
3188   int minLru;
3189   int idxLru;
3190   struct yColCache *p;
3191 
3192   /* Unless an error has occurred, register numbers are always positive. */
3193   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
3194   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
3195 
3196   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
3197   ** for testing only - to verify that SQLite always gets the same answer
3198   ** with and without the column cache.
3199   */
3200   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
3201 
3202   /* First replace any existing entry.
3203   **
3204   ** Actually, the way the column cache is currently used, we are guaranteed
3205   ** that the object will never already be in cache.  Verify this guarantee.
3206   */
3207 #ifndef NDEBUG
3208   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3209     assert( p->iTable!=iTab || p->iColumn!=iCol );
3210   }
3211 #endif
3212 
3213   /* If the cache is already full, delete the least recently used entry */
3214   if( pParse->nColCache>=SQLITE_N_COLCACHE ){
3215     minLru = 0x7fffffff;
3216     idxLru = -1;
3217     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3218       if( p->lru<minLru ){
3219         idxLru = i;
3220         minLru = p->lru;
3221       }
3222     }
3223     p = &pParse->aColCache[idxLru];
3224   }else{
3225     p = &pParse->aColCache[pParse->nColCache++];
3226   }
3227 
3228   /* Add the new entry to the end of the cache */
3229   p->iLevel = pParse->iCacheLevel;
3230   p->iTable = iTab;
3231   p->iColumn = iCol;
3232   p->iReg = iReg;
3233   p->tempReg = 0;
3234   p->lru = pParse->iCacheCnt++;
3235 }
3236 
3237 /*
3238 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
3239 ** Purge the range of registers from the column cache.
3240 */
3241 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
3242   int i = 0;
3243   while( i<pParse->nColCache ){
3244     struct yColCache *p = &pParse->aColCache[i];
3245     if( p->iReg >= iReg && p->iReg < iReg+nReg ){
3246       cacheEntryClear(pParse, i);
3247     }else{
3248       i++;
3249     }
3250   }
3251 }
3252 
3253 /*
3254 ** Remember the current column cache context.  Any new entries added
3255 ** added to the column cache after this call are removed when the
3256 ** corresponding pop occurs.
3257 */
3258 void sqlite3ExprCachePush(Parse *pParse){
3259   pParse->iCacheLevel++;
3260 #ifdef SQLITE_DEBUG
3261   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3262     printf("PUSH to %d\n", pParse->iCacheLevel);
3263   }
3264 #endif
3265 }
3266 
3267 /*
3268 ** Remove from the column cache any entries that were added since the
3269 ** the previous sqlite3ExprCachePush operation.  In other words, restore
3270 ** the cache to the state it was in prior the most recent Push.
3271 */
3272 void sqlite3ExprCachePop(Parse *pParse){
3273   int i = 0;
3274   assert( pParse->iCacheLevel>=1 );
3275   pParse->iCacheLevel--;
3276 #ifdef SQLITE_DEBUG
3277   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3278     printf("POP  to %d\n", pParse->iCacheLevel);
3279   }
3280 #endif
3281   while( i<pParse->nColCache ){
3282     if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){
3283       cacheEntryClear(pParse, i);
3284     }else{
3285       i++;
3286     }
3287   }
3288 }
3289 
3290 /*
3291 ** When a cached column is reused, make sure that its register is
3292 ** no longer available as a temp register.  ticket #3879:  that same
3293 ** register might be in the cache in multiple places, so be sure to
3294 ** get them all.
3295 */
3296 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
3297   int i;
3298   struct yColCache *p;
3299   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3300     if( p->iReg==iReg ){
3301       p->tempReg = 0;
3302     }
3303   }
3304 }
3305 
3306 /* Generate code that will load into register regOut a value that is
3307 ** appropriate for the iIdxCol-th column of index pIdx.
3308 */
3309 void sqlite3ExprCodeLoadIndexColumn(
3310   Parse *pParse,  /* The parsing context */
3311   Index *pIdx,    /* The index whose column is to be loaded */
3312   int iTabCur,    /* Cursor pointing to a table row */
3313   int iIdxCol,    /* The column of the index to be loaded */
3314   int regOut      /* Store the index column value in this register */
3315 ){
3316   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3317   if( iTabCol==XN_EXPR ){
3318     assert( pIdx->aColExpr );
3319     assert( pIdx->aColExpr->nExpr>iIdxCol );
3320     pParse->iSelfTab = iTabCur + 1;
3321     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3322     pParse->iSelfTab = 0;
3323   }else{
3324     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3325                                     iTabCol, regOut);
3326   }
3327 }
3328 
3329 /*
3330 ** Generate code to extract the value of the iCol-th column of a table.
3331 */
3332 void sqlite3ExprCodeGetColumnOfTable(
3333   Vdbe *v,        /* The VDBE under construction */
3334   Table *pTab,    /* The table containing the value */
3335   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3336   int iCol,       /* Index of the column to extract */
3337   int regOut      /* Extract the value into this register */
3338 ){
3339   if( pTab==0 ){
3340     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3341     return;
3342   }
3343   if( iCol<0 || iCol==pTab->iPKey ){
3344     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3345   }else{
3346     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3347     int x = iCol;
3348     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3349       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3350     }
3351     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3352   }
3353   if( iCol>=0 ){
3354     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3355   }
3356 }
3357 
3358 /*
3359 ** Generate code that will extract the iColumn-th column from
3360 ** table pTab and store the column value in a register.
3361 **
3362 ** An effort is made to store the column value in register iReg.  This
3363 ** is not garanteeed for GetColumn() - the result can be stored in
3364 ** any register.  But the result is guaranteed to land in register iReg
3365 ** for GetColumnToReg().
3366 **
3367 ** There must be an open cursor to pTab in iTable when this routine
3368 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3369 */
3370 int sqlite3ExprCodeGetColumn(
3371   Parse *pParse,   /* Parsing and code generating context */
3372   Table *pTab,     /* Description of the table we are reading from */
3373   int iColumn,     /* Index of the table column */
3374   int iTable,      /* The cursor pointing to the table */
3375   int iReg,        /* Store results here */
3376   u8 p5            /* P5 value for OP_Column + FLAGS */
3377 ){
3378   Vdbe *v = pParse->pVdbe;
3379   int i;
3380   struct yColCache *p;
3381 
3382   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3383     if( p->iTable==iTable && p->iColumn==iColumn ){
3384       p->lru = pParse->iCacheCnt++;
3385       sqlite3ExprCachePinRegister(pParse, p->iReg);
3386       return p->iReg;
3387     }
3388   }
3389   assert( v!=0 );
3390   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3391   if( p5 ){
3392     sqlite3VdbeChangeP5(v, p5);
3393   }else{
3394     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
3395   }
3396   return iReg;
3397 }
3398 void sqlite3ExprCodeGetColumnToReg(
3399   Parse *pParse,   /* Parsing and code generating context */
3400   Table *pTab,     /* Description of the table we are reading from */
3401   int iColumn,     /* Index of the table column */
3402   int iTable,      /* The cursor pointing to the table */
3403   int iReg         /* Store results here */
3404 ){
3405   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
3406   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
3407 }
3408 
3409 
3410 /*
3411 ** Clear all column cache entries.
3412 */
3413 void sqlite3ExprCacheClear(Parse *pParse){
3414   int i;
3415 
3416 #ifdef SQLITE_DEBUG
3417   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3418     printf("CLEAR\n");
3419   }
3420 #endif
3421   for(i=0; i<pParse->nColCache; i++){
3422     if( pParse->aColCache[i].tempReg
3423      && pParse->nTempReg<ArraySize(pParse->aTempReg)
3424     ){
3425        pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3426     }
3427   }
3428   pParse->nColCache = 0;
3429 }
3430 
3431 /*
3432 ** Record the fact that an affinity change has occurred on iCount
3433 ** registers starting with iStart.
3434 */
3435 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
3436   sqlite3ExprCacheRemove(pParse, iStart, iCount);
3437 }
3438 
3439 /*
3440 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3441 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
3442 */
3443 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3444   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3445   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3446   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
3447 }
3448 
3449 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
3450 /*
3451 ** Return true if any register in the range iFrom..iTo (inclusive)
3452 ** is used as part of the column cache.
3453 **
3454 ** This routine is used within assert() and testcase() macros only
3455 ** and does not appear in a normal build.
3456 */
3457 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
3458   int i;
3459   struct yColCache *p;
3460   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3461     int r = p->iReg;
3462     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
3463   }
3464   return 0;
3465 }
3466 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
3467 
3468 
3469 /*
3470 ** Convert a scalar expression node to a TK_REGISTER referencing
3471 ** register iReg.  The caller must ensure that iReg already contains
3472 ** the correct value for the expression.
3473 */
3474 static void exprToRegister(Expr *p, int iReg){
3475   p->op2 = p->op;
3476   p->op = TK_REGISTER;
3477   p->iTable = iReg;
3478   ExprClearProperty(p, EP_Skip);
3479 }
3480 
3481 /*
3482 ** Evaluate an expression (either a vector or a scalar expression) and store
3483 ** the result in continguous temporary registers.  Return the index of
3484 ** the first register used to store the result.
3485 **
3486 ** If the returned result register is a temporary scalar, then also write
3487 ** that register number into *piFreeable.  If the returned result register
3488 ** is not a temporary or if the expression is a vector set *piFreeable
3489 ** to 0.
3490 */
3491 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3492   int iResult;
3493   int nResult = sqlite3ExprVectorSize(p);
3494   if( nResult==1 ){
3495     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3496   }else{
3497     *piFreeable = 0;
3498     if( p->op==TK_SELECT ){
3499 #if SQLITE_OMIT_SUBQUERY
3500       iResult = 0;
3501 #else
3502       iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
3503 #endif
3504     }else{
3505       int i;
3506       iResult = pParse->nMem+1;
3507       pParse->nMem += nResult;
3508       for(i=0; i<nResult; i++){
3509         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3510       }
3511     }
3512   }
3513   return iResult;
3514 }
3515 
3516 
3517 /*
3518 ** Generate code into the current Vdbe to evaluate the given
3519 ** expression.  Attempt to store the results in register "target".
3520 ** Return the register where results are stored.
3521 **
3522 ** With this routine, there is no guarantee that results will
3523 ** be stored in target.  The result might be stored in some other
3524 ** register if it is convenient to do so.  The calling function
3525 ** must check the return code and move the results to the desired
3526 ** register.
3527 */
3528 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3529   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3530   int op;                   /* The opcode being coded */
3531   int inReg = target;       /* Results stored in register inReg */
3532   int regFree1 = 0;         /* If non-zero free this temporary register */
3533   int regFree2 = 0;         /* If non-zero free this temporary register */
3534   int r1, r2;               /* Various register numbers */
3535   Expr tempX;               /* Temporary expression node */
3536   int p5 = 0;
3537 
3538   assert( target>0 && target<=pParse->nMem );
3539   if( v==0 ){
3540     assert( pParse->db->mallocFailed );
3541     return 0;
3542   }
3543 
3544   if( pExpr==0 ){
3545     op = TK_NULL;
3546   }else{
3547     op = pExpr->op;
3548   }
3549   switch( op ){
3550     case TK_AGG_COLUMN: {
3551       AggInfo *pAggInfo = pExpr->pAggInfo;
3552       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3553       if( !pAggInfo->directMode ){
3554         assert( pCol->iMem>0 );
3555         return pCol->iMem;
3556       }else if( pAggInfo->useSortingIdx ){
3557         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3558                               pCol->iSorterColumn, target);
3559         return target;
3560       }
3561       /* Otherwise, fall thru into the TK_COLUMN case */
3562     }
3563     case TK_COLUMN: {
3564       int iTab = pExpr->iTable;
3565       if( iTab<0 ){
3566         if( pParse->iSelfTab<0 ){
3567           /* Generating CHECK constraints or inserting into partial index */
3568           return pExpr->iColumn - pParse->iSelfTab;
3569         }else{
3570           /* Coding an expression that is part of an index where column names
3571           ** in the index refer to the table to which the index belongs */
3572           iTab = pParse->iSelfTab - 1;
3573         }
3574       }
3575       return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
3576                                pExpr->iColumn, iTab, target,
3577                                pExpr->op2);
3578     }
3579     case TK_INTEGER: {
3580       codeInteger(pParse, pExpr, 0, target);
3581       return target;
3582     }
3583     case TK_TRUEFALSE: {
3584       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3585       return target;
3586     }
3587 #ifndef SQLITE_OMIT_FLOATING_POINT
3588     case TK_FLOAT: {
3589       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3590       codeReal(v, pExpr->u.zToken, 0, target);
3591       return target;
3592     }
3593 #endif
3594     case TK_STRING: {
3595       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3596       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3597       return target;
3598     }
3599     case TK_NULL: {
3600       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3601       return target;
3602     }
3603 #ifndef SQLITE_OMIT_BLOB_LITERAL
3604     case TK_BLOB: {
3605       int n;
3606       const char *z;
3607       char *zBlob;
3608       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3609       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3610       assert( pExpr->u.zToken[1]=='\'' );
3611       z = &pExpr->u.zToken[2];
3612       n = sqlite3Strlen30(z) - 1;
3613       assert( z[n]=='\'' );
3614       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3615       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3616       return target;
3617     }
3618 #endif
3619     case TK_VARIABLE: {
3620       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3621       assert( pExpr->u.zToken!=0 );
3622       assert( pExpr->u.zToken[0]!=0 );
3623       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3624       if( pExpr->u.zToken[1]!=0 ){
3625         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3626         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3627         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3628         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3629       }
3630       return target;
3631     }
3632     case TK_REGISTER: {
3633       return pExpr->iTable;
3634     }
3635 #ifndef SQLITE_OMIT_CAST
3636     case TK_CAST: {
3637       /* Expressions of the form:   CAST(pLeft AS token) */
3638       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3639       if( inReg!=target ){
3640         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3641         inReg = target;
3642       }
3643       sqlite3VdbeAddOp2(v, OP_Cast, target,
3644                         sqlite3AffinityType(pExpr->u.zToken, 0));
3645       testcase( usedAsColumnCache(pParse, inReg, inReg) );
3646       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
3647       return inReg;
3648     }
3649 #endif /* SQLITE_OMIT_CAST */
3650     case TK_IS:
3651     case TK_ISNOT:
3652       op = (op==TK_IS) ? TK_EQ : TK_NE;
3653       p5 = SQLITE_NULLEQ;
3654       /* fall-through */
3655     case TK_LT:
3656     case TK_LE:
3657     case TK_GT:
3658     case TK_GE:
3659     case TK_NE:
3660     case TK_EQ: {
3661       Expr *pLeft = pExpr->pLeft;
3662       if( sqlite3ExprIsVector(pLeft) ){
3663         codeVectorCompare(pParse, pExpr, target, op, p5);
3664       }else{
3665         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3666         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3667         codeCompare(pParse, pLeft, pExpr->pRight, op,
3668             r1, r2, inReg, SQLITE_STOREP2 | p5);
3669         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3670         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3671         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3672         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3673         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3674         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3675         testcase( regFree1==0 );
3676         testcase( regFree2==0 );
3677       }
3678       break;
3679     }
3680     case TK_AND:
3681     case TK_OR:
3682     case TK_PLUS:
3683     case TK_STAR:
3684     case TK_MINUS:
3685     case TK_REM:
3686     case TK_BITAND:
3687     case TK_BITOR:
3688     case TK_SLASH:
3689     case TK_LSHIFT:
3690     case TK_RSHIFT:
3691     case TK_CONCAT: {
3692       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3693       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3694       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3695       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3696       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3697       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3698       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3699       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3700       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3701       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3702       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3703       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3704       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3705       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3706       testcase( regFree1==0 );
3707       testcase( regFree2==0 );
3708       break;
3709     }
3710     case TK_UMINUS: {
3711       Expr *pLeft = pExpr->pLeft;
3712       assert( pLeft );
3713       if( pLeft->op==TK_INTEGER ){
3714         codeInteger(pParse, pLeft, 1, target);
3715         return target;
3716 #ifndef SQLITE_OMIT_FLOATING_POINT
3717       }else if( pLeft->op==TK_FLOAT ){
3718         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3719         codeReal(v, pLeft->u.zToken, 1, target);
3720         return target;
3721 #endif
3722       }else{
3723         tempX.op = TK_INTEGER;
3724         tempX.flags = EP_IntValue|EP_TokenOnly;
3725         tempX.u.iValue = 0;
3726         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3727         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3728         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3729         testcase( regFree2==0 );
3730       }
3731       break;
3732     }
3733     case TK_BITNOT:
3734     case TK_NOT: {
3735       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3736       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3737       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3738       testcase( regFree1==0 );
3739       sqlite3VdbeAddOp2(v, op, r1, inReg);
3740       break;
3741     }
3742     case TK_TRUTH: {
3743       int isTrue;    /* IS TRUE or IS NOT TRUE */
3744       int bNormal;   /* IS TRUE or IS FALSE */
3745       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3746       testcase( regFree1==0 );
3747       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3748       bNormal = pExpr->op2==TK_IS;
3749       testcase( isTrue && bNormal);
3750       testcase( !isTrue && bNormal);
3751       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3752       break;
3753     }
3754     case TK_ISNULL:
3755     case TK_NOTNULL: {
3756       int addr;
3757       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3758       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3759       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3760       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3761       testcase( regFree1==0 );
3762       addr = sqlite3VdbeAddOp1(v, op, r1);
3763       VdbeCoverageIf(v, op==TK_ISNULL);
3764       VdbeCoverageIf(v, op==TK_NOTNULL);
3765       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3766       sqlite3VdbeJumpHere(v, addr);
3767       break;
3768     }
3769     case TK_AGG_FUNCTION: {
3770       AggInfo *pInfo = pExpr->pAggInfo;
3771       if( pInfo==0 ){
3772         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3773         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3774       }else{
3775         return pInfo->aFunc[pExpr->iAgg].iMem;
3776       }
3777       break;
3778     }
3779     case TK_FUNCTION: {
3780       ExprList *pFarg;       /* List of function arguments */
3781       int nFarg;             /* Number of function arguments */
3782       FuncDef *pDef;         /* The function definition object */
3783       const char *zId;       /* The function name */
3784       u32 constMask = 0;     /* Mask of function arguments that are constant */
3785       int i;                 /* Loop counter */
3786       sqlite3 *db = pParse->db;  /* The database connection */
3787       u8 enc = ENC(db);      /* The text encoding used by this database */
3788       CollSeq *pColl = 0;    /* A collating sequence */
3789 
3790       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3791         /* SQL functions can be expensive. So try to move constant functions
3792         ** out of the inner loop, even if that means an extra OP_Copy. */
3793         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3794       }
3795       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3796       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3797         pFarg = 0;
3798       }else{
3799         pFarg = pExpr->x.pList;
3800       }
3801       nFarg = pFarg ? pFarg->nExpr : 0;
3802       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3803       zId = pExpr->u.zToken;
3804       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3805 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3806       if( pDef==0 && pParse->explain ){
3807         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3808       }
3809 #endif
3810       if( pDef==0 || pDef->xFinalize!=0 ){
3811         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3812         break;
3813       }
3814 
3815       /* Attempt a direct implementation of the built-in COALESCE() and
3816       ** IFNULL() functions.  This avoids unnecessary evaluation of
3817       ** arguments past the first non-NULL argument.
3818       */
3819       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3820         int endCoalesce = sqlite3VdbeMakeLabel(v);
3821         assert( nFarg>=2 );
3822         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3823         for(i=1; i<nFarg; i++){
3824           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3825           VdbeCoverage(v);
3826           sqlite3ExprCacheRemove(pParse, target, 1);
3827           sqlite3ExprCachePush(pParse);
3828           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3829           sqlite3ExprCachePop(pParse);
3830         }
3831         sqlite3VdbeResolveLabel(v, endCoalesce);
3832         break;
3833       }
3834 
3835       /* The UNLIKELY() function is a no-op.  The result is the value
3836       ** of the first argument.
3837       */
3838       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3839         assert( nFarg>=1 );
3840         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3841       }
3842 
3843 #ifdef SQLITE_DEBUG
3844       /* The AFFINITY() function evaluates to a string that describes
3845       ** the type affinity of the argument.  This is used for testing of
3846       ** the SQLite type logic.
3847       */
3848       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3849         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3850         char aff;
3851         assert( nFarg==1 );
3852         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3853         sqlite3VdbeLoadString(v, target,
3854                               aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3855         return target;
3856       }
3857 #endif
3858 
3859       for(i=0; i<nFarg; i++){
3860         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3861           testcase( i==31 );
3862           constMask |= MASKBIT32(i);
3863         }
3864         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3865           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3866         }
3867       }
3868       if( pFarg ){
3869         if( constMask ){
3870           r1 = pParse->nMem+1;
3871           pParse->nMem += nFarg;
3872         }else{
3873           r1 = sqlite3GetTempRange(pParse, nFarg);
3874         }
3875 
3876         /* For length() and typeof() functions with a column argument,
3877         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3878         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3879         ** loading.
3880         */
3881         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3882           u8 exprOp;
3883           assert( nFarg==1 );
3884           assert( pFarg->a[0].pExpr!=0 );
3885           exprOp = pFarg->a[0].pExpr->op;
3886           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3887             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3888             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3889             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3890             pFarg->a[0].pExpr->op2 =
3891                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3892           }
3893         }
3894 
3895         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
3896         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3897                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3898         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
3899       }else{
3900         r1 = 0;
3901       }
3902 #ifndef SQLITE_OMIT_VIRTUALTABLE
3903       /* Possibly overload the function if the first argument is
3904       ** a virtual table column.
3905       **
3906       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3907       ** second argument, not the first, as the argument to test to
3908       ** see if it is a column in a virtual table.  This is done because
3909       ** the left operand of infix functions (the operand we want to
3910       ** control overloading) ends up as the second argument to the
3911       ** function.  The expression "A glob B" is equivalent to
3912       ** "glob(B,A).  We want to use the A in "A glob B" to test
3913       ** for function overloading.  But we use the B term in "glob(B,A)".
3914       */
3915       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3916         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3917       }else if( nFarg>0 ){
3918         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3919       }
3920 #endif
3921       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3922         if( !pColl ) pColl = db->pDfltColl;
3923         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3924       }
3925 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3926       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
3927         Expr *pArg = pFarg->a[0].pExpr;
3928         if( pArg->op==TK_COLUMN ){
3929           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3930         }else{
3931           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3932         }
3933       }else
3934 #endif
3935       {
3936         sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3937                           constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3938         sqlite3VdbeChangeP5(v, (u8)nFarg);
3939       }
3940       if( nFarg && constMask==0 ){
3941         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3942       }
3943       return target;
3944     }
3945 #ifndef SQLITE_OMIT_SUBQUERY
3946     case TK_EXISTS:
3947     case TK_SELECT: {
3948       int nCol;
3949       testcase( op==TK_EXISTS );
3950       testcase( op==TK_SELECT );
3951       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3952         sqlite3SubselectError(pParse, nCol, 1);
3953       }else{
3954         return sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3955       }
3956       break;
3957     }
3958     case TK_SELECT_COLUMN: {
3959       int n;
3960       if( pExpr->pLeft->iTable==0 ){
3961         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
3962       }
3963       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3964       if( pExpr->iTable
3965        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3966       ){
3967         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3968                                 pExpr->iTable, n);
3969       }
3970       return pExpr->pLeft->iTable + pExpr->iColumn;
3971     }
3972     case TK_IN: {
3973       int destIfFalse = sqlite3VdbeMakeLabel(v);
3974       int destIfNull = sqlite3VdbeMakeLabel(v);
3975       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3976       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3977       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3978       sqlite3VdbeResolveLabel(v, destIfFalse);
3979       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3980       sqlite3VdbeResolveLabel(v, destIfNull);
3981       return target;
3982     }
3983 #endif /* SQLITE_OMIT_SUBQUERY */
3984 
3985 
3986     /*
3987     **    x BETWEEN y AND z
3988     **
3989     ** This is equivalent to
3990     **
3991     **    x>=y AND x<=z
3992     **
3993     ** X is stored in pExpr->pLeft.
3994     ** Y is stored in pExpr->pList->a[0].pExpr.
3995     ** Z is stored in pExpr->pList->a[1].pExpr.
3996     */
3997     case TK_BETWEEN: {
3998       exprCodeBetween(pParse, pExpr, target, 0, 0);
3999       return target;
4000     }
4001     case TK_SPAN:
4002     case TK_COLLATE:
4003     case TK_UPLUS: {
4004       return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4005     }
4006 
4007     case TK_TRIGGER: {
4008       /* If the opcode is TK_TRIGGER, then the expression is a reference
4009       ** to a column in the new.* or old.* pseudo-tables available to
4010       ** trigger programs. In this case Expr.iTable is set to 1 for the
4011       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4012       ** is set to the column of the pseudo-table to read, or to -1 to
4013       ** read the rowid field.
4014       **
4015       ** The expression is implemented using an OP_Param opcode. The p1
4016       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4017       ** to reference another column of the old.* pseudo-table, where
4018       ** i is the index of the column. For a new.rowid reference, p1 is
4019       ** set to (n+1), where n is the number of columns in each pseudo-table.
4020       ** For a reference to any other column in the new.* pseudo-table, p1
4021       ** is set to (n+2+i), where n and i are as defined previously. For
4022       ** example, if the table on which triggers are being fired is
4023       ** declared as:
4024       **
4025       **   CREATE TABLE t1(a, b);
4026       **
4027       ** Then p1 is interpreted as follows:
4028       **
4029       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4030       **   p1==1   ->    old.a         p1==4   ->    new.a
4031       **   p1==2   ->    old.b         p1==5   ->    new.b
4032       */
4033       Table *pTab = pExpr->pTab;
4034       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
4035 
4036       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4037       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
4038       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
4039       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4040 
4041       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4042       VdbeComment((v, "%s.%s -> $%d",
4043         (pExpr->iTable ? "new" : "old"),
4044         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
4045         target
4046       ));
4047 
4048 #ifndef SQLITE_OMIT_FLOATING_POINT
4049       /* If the column has REAL affinity, it may currently be stored as an
4050       ** integer. Use OP_RealAffinity to make sure it is really real.
4051       **
4052       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4053       ** floating point when extracting it from the record.  */
4054       if( pExpr->iColumn>=0
4055        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
4056       ){
4057         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4058       }
4059 #endif
4060       break;
4061     }
4062 
4063     case TK_VECTOR: {
4064       sqlite3ErrorMsg(pParse, "row value misused");
4065       break;
4066     }
4067 
4068     case TK_IF_NULL_ROW: {
4069       int addrINR;
4070       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4071       sqlite3ExprCachePush(pParse);
4072       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4073       sqlite3ExprCachePop(pParse);
4074       sqlite3VdbeJumpHere(v, addrINR);
4075       sqlite3VdbeChangeP3(v, addrINR, inReg);
4076       break;
4077     }
4078 
4079     /*
4080     ** Form A:
4081     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4082     **
4083     ** Form B:
4084     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4085     **
4086     ** Form A is can be transformed into the equivalent form B as follows:
4087     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4088     **        WHEN x=eN THEN rN ELSE y END
4089     **
4090     ** X (if it exists) is in pExpr->pLeft.
4091     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4092     ** odd.  The Y is also optional.  If the number of elements in x.pList
4093     ** is even, then Y is omitted and the "otherwise" result is NULL.
4094     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4095     **
4096     ** The result of the expression is the Ri for the first matching Ei,
4097     ** or if there is no matching Ei, the ELSE term Y, or if there is
4098     ** no ELSE term, NULL.
4099     */
4100     default: assert( op==TK_CASE ); {
4101       int endLabel;                     /* GOTO label for end of CASE stmt */
4102       int nextCase;                     /* GOTO label for next WHEN clause */
4103       int nExpr;                        /* 2x number of WHEN terms */
4104       int i;                            /* Loop counter */
4105       ExprList *pEList;                 /* List of WHEN terms */
4106       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4107       Expr opCompare;                   /* The X==Ei expression */
4108       Expr *pX;                         /* The X expression */
4109       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4110       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
4111 
4112       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4113       assert(pExpr->x.pList->nExpr > 0);
4114       pEList = pExpr->x.pList;
4115       aListelem = pEList->a;
4116       nExpr = pEList->nExpr;
4117       endLabel = sqlite3VdbeMakeLabel(v);
4118       if( (pX = pExpr->pLeft)!=0 ){
4119         tempX = *pX;
4120         testcase( pX->op==TK_COLUMN );
4121         exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
4122         testcase( regFree1==0 );
4123         memset(&opCompare, 0, sizeof(opCompare));
4124         opCompare.op = TK_EQ;
4125         opCompare.pLeft = &tempX;
4126         pTest = &opCompare;
4127         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4128         ** The value in regFree1 might get SCopy-ed into the file result.
4129         ** So make sure that the regFree1 register is not reused for other
4130         ** purposes and possibly overwritten.  */
4131         regFree1 = 0;
4132       }
4133       for(i=0; i<nExpr-1; i=i+2){
4134         sqlite3ExprCachePush(pParse);
4135         if( pX ){
4136           assert( pTest!=0 );
4137           opCompare.pRight = aListelem[i].pExpr;
4138         }else{
4139           pTest = aListelem[i].pExpr;
4140         }
4141         nextCase = sqlite3VdbeMakeLabel(v);
4142         testcase( pTest->op==TK_COLUMN );
4143         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4144         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4145         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4146         sqlite3VdbeGoto(v, endLabel);
4147         sqlite3ExprCachePop(pParse);
4148         sqlite3VdbeResolveLabel(v, nextCase);
4149       }
4150       if( (nExpr&1)!=0 ){
4151         sqlite3ExprCachePush(pParse);
4152         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4153         sqlite3ExprCachePop(pParse);
4154       }else{
4155         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4156       }
4157       assert( pParse->db->mallocFailed || pParse->nErr>0
4158            || pParse->iCacheLevel==iCacheLevel );
4159       sqlite3VdbeResolveLabel(v, endLabel);
4160       break;
4161     }
4162 #ifndef SQLITE_OMIT_TRIGGER
4163     case TK_RAISE: {
4164       assert( pExpr->affinity==OE_Rollback
4165            || pExpr->affinity==OE_Abort
4166            || pExpr->affinity==OE_Fail
4167            || pExpr->affinity==OE_Ignore
4168       );
4169       if( !pParse->pTriggerTab ){
4170         sqlite3ErrorMsg(pParse,
4171                        "RAISE() may only be used within a trigger-program");
4172         return 0;
4173       }
4174       if( pExpr->affinity==OE_Abort ){
4175         sqlite3MayAbort(pParse);
4176       }
4177       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4178       if( pExpr->affinity==OE_Ignore ){
4179         sqlite3VdbeAddOp4(
4180             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4181         VdbeCoverage(v);
4182       }else{
4183         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4184                               pExpr->affinity, pExpr->u.zToken, 0, 0);
4185       }
4186 
4187       break;
4188     }
4189 #endif
4190   }
4191   sqlite3ReleaseTempReg(pParse, regFree1);
4192   sqlite3ReleaseTempReg(pParse, regFree2);
4193   return inReg;
4194 }
4195 
4196 /*
4197 ** Factor out the code of the given expression to initialization time.
4198 **
4199 ** If regDest>=0 then the result is always stored in that register and the
4200 ** result is not reusable.  If regDest<0 then this routine is free to
4201 ** store the value whereever it wants.  The register where the expression
4202 ** is stored is returned.  When regDest<0, two identical expressions will
4203 ** code to the same register.
4204 */
4205 int sqlite3ExprCodeAtInit(
4206   Parse *pParse,    /* Parsing context */
4207   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4208   int regDest       /* Store the value in this register */
4209 ){
4210   ExprList *p;
4211   assert( ConstFactorOk(pParse) );
4212   p = pParse->pConstExpr;
4213   if( regDest<0 && p ){
4214     struct ExprList_item *pItem;
4215     int i;
4216     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4217       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4218         return pItem->u.iConstExprReg;
4219       }
4220     }
4221   }
4222   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4223   p = sqlite3ExprListAppend(pParse, p, pExpr);
4224   if( p ){
4225      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4226      pItem->reusable = regDest<0;
4227      if( regDest<0 ) regDest = ++pParse->nMem;
4228      pItem->u.iConstExprReg = regDest;
4229   }
4230   pParse->pConstExpr = p;
4231   return regDest;
4232 }
4233 
4234 /*
4235 ** Generate code to evaluate an expression and store the results
4236 ** into a register.  Return the register number where the results
4237 ** are stored.
4238 **
4239 ** If the register is a temporary register that can be deallocated,
4240 ** then write its number into *pReg.  If the result register is not
4241 ** a temporary, then set *pReg to zero.
4242 **
4243 ** If pExpr is a constant, then this routine might generate this
4244 ** code to fill the register in the initialization section of the
4245 ** VDBE program, in order to factor it out of the evaluation loop.
4246 */
4247 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4248   int r2;
4249   pExpr = sqlite3ExprSkipCollate(pExpr);
4250   if( ConstFactorOk(pParse)
4251    && pExpr->op!=TK_REGISTER
4252    && sqlite3ExprIsConstantNotJoin(pExpr)
4253   ){
4254     *pReg  = 0;
4255     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4256   }else{
4257     int r1 = sqlite3GetTempReg(pParse);
4258     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4259     if( r2==r1 ){
4260       *pReg = r1;
4261     }else{
4262       sqlite3ReleaseTempReg(pParse, r1);
4263       *pReg = 0;
4264     }
4265   }
4266   return r2;
4267 }
4268 
4269 /*
4270 ** Generate code that will evaluate expression pExpr and store the
4271 ** results in register target.  The results are guaranteed to appear
4272 ** in register target.
4273 */
4274 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4275   int inReg;
4276 
4277   assert( target>0 && target<=pParse->nMem );
4278   if( pExpr && pExpr->op==TK_REGISTER ){
4279     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4280   }else{
4281     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4282     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4283     if( inReg!=target && pParse->pVdbe ){
4284       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4285     }
4286   }
4287 }
4288 
4289 /*
4290 ** Make a transient copy of expression pExpr and then code it using
4291 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4292 ** except that the input expression is guaranteed to be unchanged.
4293 */
4294 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4295   sqlite3 *db = pParse->db;
4296   pExpr = sqlite3ExprDup(db, pExpr, 0);
4297   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4298   sqlite3ExprDelete(db, pExpr);
4299 }
4300 
4301 /*
4302 ** Generate code that will evaluate expression pExpr and store the
4303 ** results in register target.  The results are guaranteed to appear
4304 ** in register target.  If the expression is constant, then this routine
4305 ** might choose to code the expression at initialization time.
4306 */
4307 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4308   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
4309     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4310   }else{
4311     sqlite3ExprCode(pParse, pExpr, target);
4312   }
4313 }
4314 
4315 /*
4316 ** Generate code that evaluates the given expression and puts the result
4317 ** in register target.
4318 **
4319 ** Also make a copy of the expression results into another "cache" register
4320 ** and modify the expression so that the next time it is evaluated,
4321 ** the result is a copy of the cache register.
4322 **
4323 ** This routine is used for expressions that are used multiple
4324 ** times.  They are evaluated once and the results of the expression
4325 ** are reused.
4326 */
4327 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4328   Vdbe *v = pParse->pVdbe;
4329   int iMem;
4330 
4331   assert( target>0 );
4332   assert( pExpr->op!=TK_REGISTER );
4333   sqlite3ExprCode(pParse, pExpr, target);
4334   iMem = ++pParse->nMem;
4335   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4336   exprToRegister(pExpr, iMem);
4337 }
4338 
4339 /*
4340 ** Generate code that pushes the value of every element of the given
4341 ** expression list into a sequence of registers beginning at target.
4342 **
4343 ** Return the number of elements evaluated.  The number returned will
4344 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4345 ** is defined.
4346 **
4347 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4348 ** filled using OP_SCopy.  OP_Copy must be used instead.
4349 **
4350 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4351 ** factored out into initialization code.
4352 **
4353 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4354 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4355 ** in registers at srcReg, and so the value can be copied from there.
4356 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4357 ** are simply omitted rather than being copied from srcReg.
4358 */
4359 int sqlite3ExprCodeExprList(
4360   Parse *pParse,     /* Parsing context */
4361   ExprList *pList,   /* The expression list to be coded */
4362   int target,        /* Where to write results */
4363   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4364   u8 flags           /* SQLITE_ECEL_* flags */
4365 ){
4366   struct ExprList_item *pItem;
4367   int i, j, n;
4368   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4369   Vdbe *v = pParse->pVdbe;
4370   assert( pList!=0 );
4371   assert( target>0 );
4372   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4373   n = pList->nExpr;
4374   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4375   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4376     Expr *pExpr = pItem->pExpr;
4377 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4378     if( pItem->bSorterRef ){
4379       i--;
4380       n--;
4381     }else
4382 #endif
4383     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4384       if( flags & SQLITE_ECEL_OMITREF ){
4385         i--;
4386         n--;
4387       }else{
4388         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4389       }
4390     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
4391       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4392     }else{
4393       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4394       if( inReg!=target+i ){
4395         VdbeOp *pOp;
4396         if( copyOp==OP_Copy
4397          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4398          && pOp->p1+pOp->p3+1==inReg
4399          && pOp->p2+pOp->p3+1==target+i
4400         ){
4401           pOp->p3++;
4402         }else{
4403           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4404         }
4405       }
4406     }
4407   }
4408   return n;
4409 }
4410 
4411 /*
4412 ** Generate code for a BETWEEN operator.
4413 **
4414 **    x BETWEEN y AND z
4415 **
4416 ** The above is equivalent to
4417 **
4418 **    x>=y AND x<=z
4419 **
4420 ** Code it as such, taking care to do the common subexpression
4421 ** elimination of x.
4422 **
4423 ** The xJumpIf parameter determines details:
4424 **
4425 **    NULL:                   Store the boolean result in reg[dest]
4426 **    sqlite3ExprIfTrue:      Jump to dest if true
4427 **    sqlite3ExprIfFalse:     Jump to dest if false
4428 **
4429 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4430 */
4431 static void exprCodeBetween(
4432   Parse *pParse,    /* Parsing and code generating context */
4433   Expr *pExpr,      /* The BETWEEN expression */
4434   int dest,         /* Jump destination or storage location */
4435   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4436   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4437 ){
4438  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4439   Expr compLeft;    /* The  x>=y  term */
4440   Expr compRight;   /* The  x<=z  term */
4441   Expr exprX;       /* The  x  subexpression */
4442   int regFree1 = 0; /* Temporary use register */
4443 
4444 
4445   memset(&compLeft, 0, sizeof(Expr));
4446   memset(&compRight, 0, sizeof(Expr));
4447   memset(&exprAnd, 0, sizeof(Expr));
4448 
4449   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4450   exprX = *pExpr->pLeft;
4451   exprAnd.op = TK_AND;
4452   exprAnd.pLeft = &compLeft;
4453   exprAnd.pRight = &compRight;
4454   compLeft.op = TK_GE;
4455   compLeft.pLeft = &exprX;
4456   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4457   compRight.op = TK_LE;
4458   compRight.pLeft = &exprX;
4459   compRight.pRight = pExpr->x.pList->a[1].pExpr;
4460   exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4461   if( xJump ){
4462     xJump(pParse, &exprAnd, dest, jumpIfNull);
4463   }else{
4464     /* Mark the expression is being from the ON or USING clause of a join
4465     ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4466     ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4467     ** for clarity, but we are out of bits in the Expr.flags field so we
4468     ** have to reuse the EP_FromJoin bit.  Bummer. */
4469     exprX.flags |= EP_FromJoin;
4470     sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4471   }
4472   sqlite3ReleaseTempReg(pParse, regFree1);
4473 
4474   /* Ensure adequate test coverage */
4475   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4476   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4477   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4478   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4479   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4480   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4481   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4482   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4483   testcase( xJump==0 );
4484 }
4485 
4486 /*
4487 ** Generate code for a boolean expression such that a jump is made
4488 ** to the label "dest" if the expression is true but execution
4489 ** continues straight thru if the expression is false.
4490 **
4491 ** If the expression evaluates to NULL (neither true nor false), then
4492 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4493 **
4494 ** This code depends on the fact that certain token values (ex: TK_EQ)
4495 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4496 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4497 ** the make process cause these values to align.  Assert()s in the code
4498 ** below verify that the numbers are aligned correctly.
4499 */
4500 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4501   Vdbe *v = pParse->pVdbe;
4502   int op = 0;
4503   int regFree1 = 0;
4504   int regFree2 = 0;
4505   int r1, r2;
4506 
4507   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4508   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4509   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4510   op = pExpr->op;
4511   switch( op ){
4512     case TK_AND: {
4513       int d2 = sqlite3VdbeMakeLabel(v);
4514       testcase( jumpIfNull==0 );
4515       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4516       sqlite3ExprCachePush(pParse);
4517       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4518       sqlite3VdbeResolveLabel(v, d2);
4519       sqlite3ExprCachePop(pParse);
4520       break;
4521     }
4522     case TK_OR: {
4523       testcase( jumpIfNull==0 );
4524       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4525       sqlite3ExprCachePush(pParse);
4526       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4527       sqlite3ExprCachePop(pParse);
4528       break;
4529     }
4530     case TK_NOT: {
4531       testcase( jumpIfNull==0 );
4532       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4533       break;
4534     }
4535     case TK_TRUTH: {
4536       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4537       int isTrue;     /* IS TRUE or IS NOT TRUE */
4538       testcase( jumpIfNull==0 );
4539       isNot = pExpr->op2==TK_ISNOT;
4540       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4541       testcase( isTrue && isNot );
4542       testcase( !isTrue && isNot );
4543       if( isTrue ^ isNot ){
4544         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4545                           isNot ? SQLITE_JUMPIFNULL : 0);
4546       }else{
4547         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4548                            isNot ? SQLITE_JUMPIFNULL : 0);
4549       }
4550       break;
4551     }
4552     case TK_IS:
4553     case TK_ISNOT:
4554       testcase( op==TK_IS );
4555       testcase( op==TK_ISNOT );
4556       op = (op==TK_IS) ? TK_EQ : TK_NE;
4557       jumpIfNull = SQLITE_NULLEQ;
4558       /* Fall thru */
4559     case TK_LT:
4560     case TK_LE:
4561     case TK_GT:
4562     case TK_GE:
4563     case TK_NE:
4564     case TK_EQ: {
4565       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4566       testcase( jumpIfNull==0 );
4567       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4568       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4569       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4570                   r1, r2, dest, jumpIfNull);
4571       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4572       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4573       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4574       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4575       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4576       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4577       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4578       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4579       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4580       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4581       testcase( regFree1==0 );
4582       testcase( regFree2==0 );
4583       break;
4584     }
4585     case TK_ISNULL:
4586     case TK_NOTNULL: {
4587       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4588       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4589       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4590       sqlite3VdbeAddOp2(v, op, r1, dest);
4591       VdbeCoverageIf(v, op==TK_ISNULL);
4592       VdbeCoverageIf(v, op==TK_NOTNULL);
4593       testcase( regFree1==0 );
4594       break;
4595     }
4596     case TK_BETWEEN: {
4597       testcase( jumpIfNull==0 );
4598       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4599       break;
4600     }
4601 #ifndef SQLITE_OMIT_SUBQUERY
4602     case TK_IN: {
4603       int destIfFalse = sqlite3VdbeMakeLabel(v);
4604       int destIfNull = jumpIfNull ? dest : destIfFalse;
4605       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4606       sqlite3VdbeGoto(v, dest);
4607       sqlite3VdbeResolveLabel(v, destIfFalse);
4608       break;
4609     }
4610 #endif
4611     default: {
4612     default_expr:
4613       if( exprAlwaysTrue(pExpr) ){
4614         sqlite3VdbeGoto(v, dest);
4615       }else if( exprAlwaysFalse(pExpr) ){
4616         /* No-op */
4617       }else{
4618         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4619         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4620         VdbeCoverage(v);
4621         testcase( regFree1==0 );
4622         testcase( jumpIfNull==0 );
4623       }
4624       break;
4625     }
4626   }
4627   sqlite3ReleaseTempReg(pParse, regFree1);
4628   sqlite3ReleaseTempReg(pParse, regFree2);
4629 }
4630 
4631 /*
4632 ** Generate code for a boolean expression such that a jump is made
4633 ** to the label "dest" if the expression is false but execution
4634 ** continues straight thru if the expression is true.
4635 **
4636 ** If the expression evaluates to NULL (neither true nor false) then
4637 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4638 ** is 0.
4639 */
4640 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4641   Vdbe *v = pParse->pVdbe;
4642   int op = 0;
4643   int regFree1 = 0;
4644   int regFree2 = 0;
4645   int r1, r2;
4646 
4647   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4648   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4649   if( pExpr==0 )    return;
4650 
4651   /* The value of pExpr->op and op are related as follows:
4652   **
4653   **       pExpr->op            op
4654   **       ---------          ----------
4655   **       TK_ISNULL          OP_NotNull
4656   **       TK_NOTNULL         OP_IsNull
4657   **       TK_NE              OP_Eq
4658   **       TK_EQ              OP_Ne
4659   **       TK_GT              OP_Le
4660   **       TK_LE              OP_Gt
4661   **       TK_GE              OP_Lt
4662   **       TK_LT              OP_Ge
4663   **
4664   ** For other values of pExpr->op, op is undefined and unused.
4665   ** The value of TK_ and OP_ constants are arranged such that we
4666   ** can compute the mapping above using the following expression.
4667   ** Assert()s verify that the computation is correct.
4668   */
4669   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4670 
4671   /* Verify correct alignment of TK_ and OP_ constants
4672   */
4673   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4674   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4675   assert( pExpr->op!=TK_NE || op==OP_Eq );
4676   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4677   assert( pExpr->op!=TK_LT || op==OP_Ge );
4678   assert( pExpr->op!=TK_LE || op==OP_Gt );
4679   assert( pExpr->op!=TK_GT || op==OP_Le );
4680   assert( pExpr->op!=TK_GE || op==OP_Lt );
4681 
4682   switch( pExpr->op ){
4683     case TK_AND: {
4684       testcase( jumpIfNull==0 );
4685       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4686       sqlite3ExprCachePush(pParse);
4687       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4688       sqlite3ExprCachePop(pParse);
4689       break;
4690     }
4691     case TK_OR: {
4692       int d2 = sqlite3VdbeMakeLabel(v);
4693       testcase( jumpIfNull==0 );
4694       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4695       sqlite3ExprCachePush(pParse);
4696       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4697       sqlite3VdbeResolveLabel(v, d2);
4698       sqlite3ExprCachePop(pParse);
4699       break;
4700     }
4701     case TK_NOT: {
4702       testcase( jumpIfNull==0 );
4703       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4704       break;
4705     }
4706     case TK_TRUTH: {
4707       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
4708       int isTrue;  /* IS TRUE or IS NOT TRUE */
4709       testcase( jumpIfNull==0 );
4710       isNot = pExpr->op2==TK_ISNOT;
4711       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4712       testcase( isTrue && isNot );
4713       testcase( !isTrue && isNot );
4714       if( isTrue ^ isNot ){
4715         /* IS TRUE and IS NOT FALSE */
4716         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4717                            isNot ? 0 : SQLITE_JUMPIFNULL);
4718 
4719       }else{
4720         /* IS FALSE and IS NOT TRUE */
4721         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4722                           isNot ? 0 : SQLITE_JUMPIFNULL);
4723       }
4724       break;
4725     }
4726     case TK_IS:
4727     case TK_ISNOT:
4728       testcase( pExpr->op==TK_IS );
4729       testcase( pExpr->op==TK_ISNOT );
4730       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4731       jumpIfNull = SQLITE_NULLEQ;
4732       /* Fall thru */
4733     case TK_LT:
4734     case TK_LE:
4735     case TK_GT:
4736     case TK_GE:
4737     case TK_NE:
4738     case TK_EQ: {
4739       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4740       testcase( jumpIfNull==0 );
4741       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4742       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4743       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4744                   r1, r2, dest, jumpIfNull);
4745       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4746       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4747       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4748       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4749       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4750       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4751       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4752       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4753       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4754       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4755       testcase( regFree1==0 );
4756       testcase( regFree2==0 );
4757       break;
4758     }
4759     case TK_ISNULL:
4760     case TK_NOTNULL: {
4761       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4762       sqlite3VdbeAddOp2(v, op, r1, dest);
4763       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4764       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4765       testcase( regFree1==0 );
4766       break;
4767     }
4768     case TK_BETWEEN: {
4769       testcase( jumpIfNull==0 );
4770       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4771       break;
4772     }
4773 #ifndef SQLITE_OMIT_SUBQUERY
4774     case TK_IN: {
4775       if( jumpIfNull ){
4776         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4777       }else{
4778         int destIfNull = sqlite3VdbeMakeLabel(v);
4779         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4780         sqlite3VdbeResolveLabel(v, destIfNull);
4781       }
4782       break;
4783     }
4784 #endif
4785     default: {
4786     default_expr:
4787       if( exprAlwaysFalse(pExpr) ){
4788         sqlite3VdbeGoto(v, dest);
4789       }else if( exprAlwaysTrue(pExpr) ){
4790         /* no-op */
4791       }else{
4792         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4793         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4794         VdbeCoverage(v);
4795         testcase( regFree1==0 );
4796         testcase( jumpIfNull==0 );
4797       }
4798       break;
4799     }
4800   }
4801   sqlite3ReleaseTempReg(pParse, regFree1);
4802   sqlite3ReleaseTempReg(pParse, regFree2);
4803 }
4804 
4805 /*
4806 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4807 ** code generation, and that copy is deleted after code generation. This
4808 ** ensures that the original pExpr is unchanged.
4809 */
4810 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4811   sqlite3 *db = pParse->db;
4812   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4813   if( db->mallocFailed==0 ){
4814     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4815   }
4816   sqlite3ExprDelete(db, pCopy);
4817 }
4818 
4819 /*
4820 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4821 ** type of expression.
4822 **
4823 ** If pExpr is a simple SQL value - an integer, real, string, blob
4824 ** or NULL value - then the VDBE currently being prepared is configured
4825 ** to re-prepare each time a new value is bound to variable pVar.
4826 **
4827 ** Additionally, if pExpr is a simple SQL value and the value is the
4828 ** same as that currently bound to variable pVar, non-zero is returned.
4829 ** Otherwise, if the values are not the same or if pExpr is not a simple
4830 ** SQL value, zero is returned.
4831 */
4832 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4833   int res = 0;
4834   int iVar;
4835   sqlite3_value *pL, *pR = 0;
4836 
4837   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4838   if( pR ){
4839     iVar = pVar->iColumn;
4840     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4841     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4842     if( pL ){
4843       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4844         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4845       }
4846       res =  0==sqlite3MemCompare(pL, pR, 0);
4847     }
4848     sqlite3ValueFree(pR);
4849     sqlite3ValueFree(pL);
4850   }
4851 
4852   return res;
4853 }
4854 
4855 /*
4856 ** Do a deep comparison of two expression trees.  Return 0 if the two
4857 ** expressions are completely identical.  Return 1 if they differ only
4858 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4859 ** other than the top-level COLLATE operator.
4860 **
4861 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4862 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4863 **
4864 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4865 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4866 **
4867 ** Sometimes this routine will return 2 even if the two expressions
4868 ** really are equivalent.  If we cannot prove that the expressions are
4869 ** identical, we return 2 just to be safe.  So if this routine
4870 ** returns 2, then you do not really know for certain if the two
4871 ** expressions are the same.  But if you get a 0 or 1 return, then you
4872 ** can be sure the expressions are the same.  In the places where
4873 ** this routine is used, it does not hurt to get an extra 2 - that
4874 ** just might result in some slightly slower code.  But returning
4875 ** an incorrect 0 or 1 could lead to a malfunction.
4876 **
4877 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4878 ** pParse->pReprepare can be matched against literals in pB.  The
4879 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4880 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4881 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4882 ** pB causes a return value of 2.
4883 */
4884 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4885   u32 combinedFlags;
4886   if( pA==0 || pB==0 ){
4887     return pB==pA ? 0 : 2;
4888   }
4889   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4890     return 0;
4891   }
4892   combinedFlags = pA->flags | pB->flags;
4893   if( combinedFlags & EP_IntValue ){
4894     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4895       return 0;
4896     }
4897     return 2;
4898   }
4899   if( pA->op!=pB->op ){
4900     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4901       return 1;
4902     }
4903     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4904       return 1;
4905     }
4906     return 2;
4907   }
4908   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4909     if( pA->op==TK_FUNCTION ){
4910       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4911     }else if( pA->op==TK_COLLATE ){
4912       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4913     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4914       return 2;
4915     }
4916   }
4917   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4918   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4919     if( combinedFlags & EP_xIsSelect ) return 2;
4920     if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4921     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4922     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4923     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
4924       if( pA->iColumn!=pB->iColumn ) return 2;
4925       if( pA->iTable!=pB->iTable
4926        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4927     }
4928   }
4929   return 0;
4930 }
4931 
4932 /*
4933 ** Compare two ExprList objects.  Return 0 if they are identical and
4934 ** non-zero if they differ in any way.
4935 **
4936 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4937 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4938 **
4939 ** This routine might return non-zero for equivalent ExprLists.  The
4940 ** only consequence will be disabled optimizations.  But this routine
4941 ** must never return 0 if the two ExprList objects are different, or
4942 ** a malfunction will result.
4943 **
4944 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4945 ** always differs from a non-NULL pointer.
4946 */
4947 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4948   int i;
4949   if( pA==0 && pB==0 ) return 0;
4950   if( pA==0 || pB==0 ) return 1;
4951   if( pA->nExpr!=pB->nExpr ) return 1;
4952   for(i=0; i<pA->nExpr; i++){
4953     Expr *pExprA = pA->a[i].pExpr;
4954     Expr *pExprB = pB->a[i].pExpr;
4955     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4956     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4957   }
4958   return 0;
4959 }
4960 
4961 /*
4962 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4963 ** are ignored.
4964 */
4965 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4966   return sqlite3ExprCompare(0,
4967              sqlite3ExprSkipCollate(pA),
4968              sqlite3ExprSkipCollate(pB),
4969              iTab);
4970 }
4971 
4972 /*
4973 ** Return true if we can prove the pE2 will always be true if pE1 is
4974 ** true.  Return false if we cannot complete the proof or if pE2 might
4975 ** be false.  Examples:
4976 **
4977 **     pE1: x==5       pE2: x==5             Result: true
4978 **     pE1: x>0        pE2: x==5             Result: false
4979 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4980 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4981 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4982 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4983 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4984 **
4985 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4986 ** Expr.iTable<0 then assume a table number given by iTab.
4987 **
4988 ** If pParse is not NULL, then the values of bound variables in pE1 are
4989 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
4990 ** modified to record which bound variables are referenced.  If pParse
4991 ** is NULL, then false will be returned if pE1 contains any bound variables.
4992 **
4993 ** When in doubt, return false.  Returning true might give a performance
4994 ** improvement.  Returning false might cause a performance reduction, but
4995 ** it will always give the correct answer and is hence always safe.
4996 */
4997 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
4998   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
4999     return 1;
5000   }
5001   if( pE2->op==TK_OR
5002    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5003              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5004   ){
5005     return 1;
5006   }
5007   if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
5008     Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
5009     testcase( pX!=pE1->pLeft );
5010     if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1;
5011   }
5012   return 0;
5013 }
5014 
5015 /*
5016 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
5017 ** If the expression node requires that the table at pWalker->iCur
5018 ** have a non-NULL column, then set pWalker->eCode to 1 and abort.
5019 */
5020 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5021   /* This routine is only called for WHERE clause expressions and so it
5022   ** cannot have any TK_AGG_COLUMN entries because those are only found
5023   ** in HAVING clauses.  We can get a TK_AGG_FUNCTION in a WHERE clause,
5024   ** but that is an illegal construct and the query will be rejected at
5025   ** a later stage of processing, so the TK_AGG_FUNCTION case does not
5026   ** need to be considered here. */
5027   assert( pExpr->op!=TK_AGG_COLUMN );
5028   testcase( pExpr->op==TK_AGG_FUNCTION );
5029 
5030   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5031   switch( pExpr->op ){
5032     case TK_ISNOT:
5033     case TK_NOT:
5034     case TK_ISNULL:
5035     case TK_IS:
5036     case TK_OR:
5037     case TK_CASE:
5038     case TK_IN:
5039     case TK_FUNCTION:
5040       testcase( pExpr->op==TK_ISNOT );
5041       testcase( pExpr->op==TK_NOT );
5042       testcase( pExpr->op==TK_ISNULL );
5043       testcase( pExpr->op==TK_IS );
5044       testcase( pExpr->op==TK_OR );
5045       testcase( pExpr->op==TK_CASE );
5046       testcase( pExpr->op==TK_IN );
5047       testcase( pExpr->op==TK_FUNCTION );
5048       return WRC_Prune;
5049     case TK_COLUMN:
5050       if( pWalker->u.iCur==pExpr->iTable ){
5051         pWalker->eCode = 1;
5052         return WRC_Abort;
5053       }
5054       return WRC_Prune;
5055 
5056     /* Virtual tables are allowed to use constraints like x=NULL.  So
5057     ** a term of the form x=y does not prove that y is not null if x
5058     ** is the column of a virtual table */
5059     case TK_EQ:
5060     case TK_NE:
5061     case TK_LT:
5062     case TK_LE:
5063     case TK_GT:
5064     case TK_GE:
5065       testcase( pExpr->op==TK_EQ );
5066       testcase( pExpr->op==TK_NE );
5067       testcase( pExpr->op==TK_LT );
5068       testcase( pExpr->op==TK_LE );
5069       testcase( pExpr->op==TK_GT );
5070       testcase( pExpr->op==TK_GE );
5071       if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->pTab))
5072        || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->pTab))
5073       ){
5074        return WRC_Prune;
5075       }
5076     default:
5077       return WRC_Continue;
5078   }
5079 }
5080 
5081 /*
5082 ** Return true (non-zero) if expression p can only be true if at least
5083 ** one column of table iTab is non-null.  In other words, return true
5084 ** if expression p will always be NULL or false if every column of iTab
5085 ** is NULL.
5086 **
5087 ** False negatives are acceptable.  In other words, it is ok to return
5088 ** zero even if expression p will never be true of every column of iTab
5089 ** is NULL.  A false negative is merely a missed optimization opportunity.
5090 **
5091 ** False positives are not allowed, however.  A false positive may result
5092 ** in an incorrect answer.
5093 **
5094 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5095 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5096 **
5097 ** This routine is used to check if a LEFT JOIN can be converted into
5098 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5099 ** clause requires that some column of the right table of the LEFT JOIN
5100 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5101 ** ordinary join.
5102 */
5103 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5104   Walker w;
5105   w.xExprCallback = impliesNotNullRow;
5106   w.xSelectCallback = 0;
5107   w.xSelectCallback2 = 0;
5108   w.eCode = 0;
5109   w.u.iCur = iTab;
5110   sqlite3WalkExpr(&w, p);
5111   return w.eCode;
5112 }
5113 
5114 /*
5115 ** An instance of the following structure is used by the tree walker
5116 ** to determine if an expression can be evaluated by reference to the
5117 ** index only, without having to do a search for the corresponding
5118 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5119 ** is the cursor for the table.
5120 */
5121 struct IdxCover {
5122   Index *pIdx;     /* The index to be tested for coverage */
5123   int iCur;        /* Cursor number for the table corresponding to the index */
5124 };
5125 
5126 /*
5127 ** Check to see if there are references to columns in table
5128 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5129 ** pWalker->u.pIdxCover->pIdx.
5130 */
5131 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5132   if( pExpr->op==TK_COLUMN
5133    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5134    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5135   ){
5136     pWalker->eCode = 1;
5137     return WRC_Abort;
5138   }
5139   return WRC_Continue;
5140 }
5141 
5142 /*
5143 ** Determine if an index pIdx on table with cursor iCur contains will
5144 ** the expression pExpr.  Return true if the index does cover the
5145 ** expression and false if the pExpr expression references table columns
5146 ** that are not found in the index pIdx.
5147 **
5148 ** An index covering an expression means that the expression can be
5149 ** evaluated using only the index and without having to lookup the
5150 ** corresponding table entry.
5151 */
5152 int sqlite3ExprCoveredByIndex(
5153   Expr *pExpr,        /* The index to be tested */
5154   int iCur,           /* The cursor number for the corresponding table */
5155   Index *pIdx         /* The index that might be used for coverage */
5156 ){
5157   Walker w;
5158   struct IdxCover xcov;
5159   memset(&w, 0, sizeof(w));
5160   xcov.iCur = iCur;
5161   xcov.pIdx = pIdx;
5162   w.xExprCallback = exprIdxCover;
5163   w.u.pIdxCover = &xcov;
5164   sqlite3WalkExpr(&w, pExpr);
5165   return !w.eCode;
5166 }
5167 
5168 
5169 /*
5170 ** An instance of the following structure is used by the tree walker
5171 ** to count references to table columns in the arguments of an
5172 ** aggregate function, in order to implement the
5173 ** sqlite3FunctionThisSrc() routine.
5174 */
5175 struct SrcCount {
5176   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5177   int nThis;       /* Number of references to columns in pSrcList */
5178   int nOther;      /* Number of references to columns in other FROM clauses */
5179 };
5180 
5181 /*
5182 ** Count the number of references to columns.
5183 */
5184 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5185   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
5186   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
5187   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
5188   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
5189   ** NEVER() will need to be removed. */
5190   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
5191     int i;
5192     struct SrcCount *p = pWalker->u.pSrcCount;
5193     SrcList *pSrc = p->pSrc;
5194     int nSrc = pSrc ? pSrc->nSrc : 0;
5195     for(i=0; i<nSrc; i++){
5196       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5197     }
5198     if( i<nSrc ){
5199       p->nThis++;
5200     }else{
5201       p->nOther++;
5202     }
5203   }
5204   return WRC_Continue;
5205 }
5206 
5207 /*
5208 ** Determine if any of the arguments to the pExpr Function reference
5209 ** pSrcList.  Return true if they do.  Also return true if the function
5210 ** has no arguments or has only constant arguments.  Return false if pExpr
5211 ** references columns but not columns of tables found in pSrcList.
5212 */
5213 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5214   Walker w;
5215   struct SrcCount cnt;
5216   assert( pExpr->op==TK_AGG_FUNCTION );
5217   w.xExprCallback = exprSrcCount;
5218   w.xSelectCallback = 0;
5219   w.u.pSrcCount = &cnt;
5220   cnt.pSrc = pSrcList;
5221   cnt.nThis = 0;
5222   cnt.nOther = 0;
5223   sqlite3WalkExprList(&w, pExpr->x.pList);
5224   return cnt.nThis>0 || cnt.nOther==0;
5225 }
5226 
5227 /*
5228 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5229 ** the new element.  Return a negative number if malloc fails.
5230 */
5231 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5232   int i;
5233   pInfo->aCol = sqlite3ArrayAllocate(
5234        db,
5235        pInfo->aCol,
5236        sizeof(pInfo->aCol[0]),
5237        &pInfo->nColumn,
5238        &i
5239   );
5240   return i;
5241 }
5242 
5243 /*
5244 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5245 ** the new element.  Return a negative number if malloc fails.
5246 */
5247 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5248   int i;
5249   pInfo->aFunc = sqlite3ArrayAllocate(
5250        db,
5251        pInfo->aFunc,
5252        sizeof(pInfo->aFunc[0]),
5253        &pInfo->nFunc,
5254        &i
5255   );
5256   return i;
5257 }
5258 
5259 /*
5260 ** This is the xExprCallback for a tree walker.  It is used to
5261 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5262 ** for additional information.
5263 */
5264 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5265   int i;
5266   NameContext *pNC = pWalker->u.pNC;
5267   Parse *pParse = pNC->pParse;
5268   SrcList *pSrcList = pNC->pSrcList;
5269   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5270 
5271   assert( pNC->ncFlags & NC_UAggInfo );
5272   switch( pExpr->op ){
5273     case TK_AGG_COLUMN:
5274     case TK_COLUMN: {
5275       testcase( pExpr->op==TK_AGG_COLUMN );
5276       testcase( pExpr->op==TK_COLUMN );
5277       /* Check to see if the column is in one of the tables in the FROM
5278       ** clause of the aggregate query */
5279       if( ALWAYS(pSrcList!=0) ){
5280         struct SrcList_item *pItem = pSrcList->a;
5281         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5282           struct AggInfo_col *pCol;
5283           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5284           if( pExpr->iTable==pItem->iCursor ){
5285             /* If we reach this point, it means that pExpr refers to a table
5286             ** that is in the FROM clause of the aggregate query.
5287             **
5288             ** Make an entry for the column in pAggInfo->aCol[] if there
5289             ** is not an entry there already.
5290             */
5291             int k;
5292             pCol = pAggInfo->aCol;
5293             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5294               if( pCol->iTable==pExpr->iTable &&
5295                   pCol->iColumn==pExpr->iColumn ){
5296                 break;
5297               }
5298             }
5299             if( (k>=pAggInfo->nColumn)
5300              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5301             ){
5302               pCol = &pAggInfo->aCol[k];
5303               pCol->pTab = pExpr->pTab;
5304               pCol->iTable = pExpr->iTable;
5305               pCol->iColumn = pExpr->iColumn;
5306               pCol->iMem = ++pParse->nMem;
5307               pCol->iSorterColumn = -1;
5308               pCol->pExpr = pExpr;
5309               if( pAggInfo->pGroupBy ){
5310                 int j, n;
5311                 ExprList *pGB = pAggInfo->pGroupBy;
5312                 struct ExprList_item *pTerm = pGB->a;
5313                 n = pGB->nExpr;
5314                 for(j=0; j<n; j++, pTerm++){
5315                   Expr *pE = pTerm->pExpr;
5316                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5317                       pE->iColumn==pExpr->iColumn ){
5318                     pCol->iSorterColumn = j;
5319                     break;
5320                   }
5321                 }
5322               }
5323               if( pCol->iSorterColumn<0 ){
5324                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5325               }
5326             }
5327             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5328             ** because it was there before or because we just created it).
5329             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5330             ** pAggInfo->aCol[] entry.
5331             */
5332             ExprSetVVAProperty(pExpr, EP_NoReduce);
5333             pExpr->pAggInfo = pAggInfo;
5334             pExpr->op = TK_AGG_COLUMN;
5335             pExpr->iAgg = (i16)k;
5336             break;
5337           } /* endif pExpr->iTable==pItem->iCursor */
5338         } /* end loop over pSrcList */
5339       }
5340       return WRC_Prune;
5341     }
5342     case TK_AGG_FUNCTION: {
5343       if( (pNC->ncFlags & NC_InAggFunc)==0
5344        && pWalker->walkerDepth==pExpr->op2
5345       ){
5346         /* Check to see if pExpr is a duplicate of another aggregate
5347         ** function that is already in the pAggInfo structure
5348         */
5349         struct AggInfo_func *pItem = pAggInfo->aFunc;
5350         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5351           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5352             break;
5353           }
5354         }
5355         if( i>=pAggInfo->nFunc ){
5356           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5357           */
5358           u8 enc = ENC(pParse->db);
5359           i = addAggInfoFunc(pParse->db, pAggInfo);
5360           if( i>=0 ){
5361             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5362             pItem = &pAggInfo->aFunc[i];
5363             pItem->pExpr = pExpr;
5364             pItem->iMem = ++pParse->nMem;
5365             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5366             pItem->pFunc = sqlite3FindFunction(pParse->db,
5367                    pExpr->u.zToken,
5368                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5369             if( pExpr->flags & EP_Distinct ){
5370               pItem->iDistinct = pParse->nTab++;
5371             }else{
5372               pItem->iDistinct = -1;
5373             }
5374           }
5375         }
5376         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5377         */
5378         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5379         ExprSetVVAProperty(pExpr, EP_NoReduce);
5380         pExpr->iAgg = (i16)i;
5381         pExpr->pAggInfo = pAggInfo;
5382         return WRC_Prune;
5383       }else{
5384         return WRC_Continue;
5385       }
5386     }
5387   }
5388   return WRC_Continue;
5389 }
5390 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5391   UNUSED_PARAMETER(pSelect);
5392   pWalker->walkerDepth++;
5393   return WRC_Continue;
5394 }
5395 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5396   UNUSED_PARAMETER(pSelect);
5397   pWalker->walkerDepth--;
5398 }
5399 
5400 /*
5401 ** Analyze the pExpr expression looking for aggregate functions and
5402 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5403 ** points to.  Additional entries are made on the AggInfo object as
5404 ** necessary.
5405 **
5406 ** This routine should only be called after the expression has been
5407 ** analyzed by sqlite3ResolveExprNames().
5408 */
5409 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5410   Walker w;
5411   w.xExprCallback = analyzeAggregate;
5412   w.xSelectCallback = analyzeAggregatesInSelect;
5413   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5414   w.walkerDepth = 0;
5415   w.u.pNC = pNC;
5416   assert( pNC->pSrcList!=0 );
5417   sqlite3WalkExpr(&w, pExpr);
5418 }
5419 
5420 /*
5421 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5422 ** expression list.  Return the number of errors.
5423 **
5424 ** If an error is found, the analysis is cut short.
5425 */
5426 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5427   struct ExprList_item *pItem;
5428   int i;
5429   if( pList ){
5430     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5431       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5432     }
5433   }
5434 }
5435 
5436 /*
5437 ** Allocate a single new register for use to hold some intermediate result.
5438 */
5439 int sqlite3GetTempReg(Parse *pParse){
5440   if( pParse->nTempReg==0 ){
5441     return ++pParse->nMem;
5442   }
5443   return pParse->aTempReg[--pParse->nTempReg];
5444 }
5445 
5446 /*
5447 ** Deallocate a register, making available for reuse for some other
5448 ** purpose.
5449 **
5450 ** If a register is currently being used by the column cache, then
5451 ** the deallocation is deferred until the column cache line that uses
5452 ** the register becomes stale.
5453 */
5454 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5455   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5456     int i;
5457     struct yColCache *p;
5458     for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
5459       if( p->iReg==iReg ){
5460         p->tempReg = 1;
5461         return;
5462       }
5463     }
5464     pParse->aTempReg[pParse->nTempReg++] = iReg;
5465   }
5466 }
5467 
5468 /*
5469 ** Allocate or deallocate a block of nReg consecutive registers.
5470 */
5471 int sqlite3GetTempRange(Parse *pParse, int nReg){
5472   int i, n;
5473   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5474   i = pParse->iRangeReg;
5475   n = pParse->nRangeReg;
5476   if( nReg<=n ){
5477     assert( !usedAsColumnCache(pParse, i, i+n-1) );
5478     pParse->iRangeReg += nReg;
5479     pParse->nRangeReg -= nReg;
5480   }else{
5481     i = pParse->nMem+1;
5482     pParse->nMem += nReg;
5483   }
5484   return i;
5485 }
5486 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5487   if( nReg==1 ){
5488     sqlite3ReleaseTempReg(pParse, iReg);
5489     return;
5490   }
5491   sqlite3ExprCacheRemove(pParse, iReg, nReg);
5492   if( nReg>pParse->nRangeReg ){
5493     pParse->nRangeReg = nReg;
5494     pParse->iRangeReg = iReg;
5495   }
5496 }
5497 
5498 /*
5499 ** Mark all temporary registers as being unavailable for reuse.
5500 */
5501 void sqlite3ClearTempRegCache(Parse *pParse){
5502   pParse->nTempReg = 0;
5503   pParse->nRangeReg = 0;
5504 }
5505 
5506 /*
5507 ** Validate that no temporary register falls within the range of
5508 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5509 ** statements.
5510 */
5511 #ifdef SQLITE_DEBUG
5512 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5513   int i;
5514   if( pParse->nRangeReg>0
5515    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5516    && pParse->iRangeReg <= iLast
5517   ){
5518      return 0;
5519   }
5520   for(i=0; i<pParse->nTempReg; i++){
5521     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5522       return 0;
5523     }
5524   }
5525   return 1;
5526 }
5527 #endif /* SQLITE_DEBUG */
5528