xref: /sqlite-3.40.0/src/expr.c (revision f71a243a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   if( pExpr->flags & EP_Generic ) return 0;
48   while( ExprHasProperty(pExpr, EP_Skip) ){
49     assert( pExpr->op==TK_COLLATE );
50     pExpr = pExpr->pLeft;
51     assert( pExpr!=0 );
52   }
53   op = pExpr->op;
54   if( op==TK_SELECT ){
55     assert( pExpr->flags&EP_xIsSelect );
56     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
57   }
58   if( op==TK_REGISTER ) op = pExpr->op2;
59 #ifndef SQLITE_OMIT_CAST
60   if( op==TK_CAST ){
61     assert( !ExprHasProperty(pExpr, EP_IntValue) );
62     return sqlite3AffinityType(pExpr->u.zToken, 0);
63   }
64 #endif
65   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
66     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
67   }
68   if( op==TK_SELECT_COLUMN ){
69     assert( pExpr->pLeft->flags&EP_xIsSelect );
70     return sqlite3ExprAffinity(
71         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
72     );
73   }
74   return pExpr->affinity;
75 }
76 
77 /*
78 ** Set the collating sequence for expression pExpr to be the collating
79 ** sequence named by pToken.   Return a pointer to a new Expr node that
80 ** implements the COLLATE operator.
81 **
82 ** If a memory allocation error occurs, that fact is recorded in pParse->db
83 ** and the pExpr parameter is returned unchanged.
84 */
85 Expr *sqlite3ExprAddCollateToken(
86   Parse *pParse,           /* Parsing context */
87   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
88   const Token *pCollName,  /* Name of collating sequence */
89   int dequote              /* True to dequote pCollName */
90 ){
91   if( pCollName->n>0 ){
92     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
93     if( pNew ){
94       pNew->pLeft = pExpr;
95       pNew->flags |= EP_Collate|EP_Skip;
96       pExpr = pNew;
97     }
98   }
99   return pExpr;
100 }
101 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
102   Token s;
103   assert( zC!=0 );
104   sqlite3TokenInit(&s, (char*)zC);
105   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
106 }
107 
108 /*
109 ** Skip over any TK_COLLATE operators and any unlikely()
110 ** or likelihood() function at the root of an expression.
111 */
112 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
113   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
114     if( ExprHasProperty(pExpr, EP_Unlikely) ){
115       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
116       assert( pExpr->x.pList->nExpr>0 );
117       assert( pExpr->op==TK_FUNCTION );
118       pExpr = pExpr->x.pList->a[0].pExpr;
119     }else{
120       assert( pExpr->op==TK_COLLATE );
121       pExpr = pExpr->pLeft;
122     }
123   }
124   return pExpr;
125 }
126 
127 /*
128 ** Return the collation sequence for the expression pExpr. If
129 ** there is no defined collating sequence, return NULL.
130 **
131 ** See also: sqlite3ExprNNCollSeq()
132 **
133 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
134 ** default collation if pExpr has no defined collation.
135 **
136 ** The collating sequence might be determined by a COLLATE operator
137 ** or by the presence of a column with a defined collating sequence.
138 ** COLLATE operators take first precedence.  Left operands take
139 ** precedence over right operands.
140 */
141 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
142   sqlite3 *db = pParse->db;
143   CollSeq *pColl = 0;
144   Expr *p = pExpr;
145   while( p ){
146     int op = p->op;
147     if( p->flags & EP_Generic ) break;
148     if( op==TK_REGISTER ) op = p->op2;
149     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
150      && p->y.pTab!=0
151     ){
152       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
153       ** a TK_COLUMN but was previously evaluated and cached in a register */
154       int j = p->iColumn;
155       if( j>=0 ){
156         const char *zColl = p->y.pTab->aCol[j].zColl;
157         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
158       }
159       break;
160     }
161     if( op==TK_CAST || op==TK_UPLUS ){
162       p = p->pLeft;
163       continue;
164     }
165     if( op==TK_COLLATE ){
166       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
167       break;
168     }
169     if( p->flags & EP_Collate ){
170       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
171         p = p->pLeft;
172       }else{
173         Expr *pNext  = p->pRight;
174         /* The Expr.x union is never used at the same time as Expr.pRight */
175         assert( p->x.pList==0 || p->pRight==0 );
176         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
177         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
178         ** least one EP_Collate. Thus the following two ALWAYS. */
179         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
180           int i;
181           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
182             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
183               pNext = p->x.pList->a[i].pExpr;
184               break;
185             }
186           }
187         }
188         p = pNext;
189       }
190     }else{
191       break;
192     }
193   }
194   if( sqlite3CheckCollSeq(pParse, pColl) ){
195     pColl = 0;
196   }
197   return pColl;
198 }
199 
200 /*
201 ** Return the collation sequence for the expression pExpr. If
202 ** there is no defined collating sequence, return a pointer to the
203 ** defautl collation sequence.
204 **
205 ** See also: sqlite3ExprCollSeq()
206 **
207 ** The sqlite3ExprCollSeq() routine works the same except that it
208 ** returns NULL if there is no defined collation.
209 */
210 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
211   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
212   if( p==0 ) p = pParse->db->pDfltColl;
213   assert( p!=0 );
214   return p;
215 }
216 
217 /*
218 ** Return TRUE if the two expressions have equivalent collating sequences.
219 */
220 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
221   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
222   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
223   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
224 }
225 
226 /*
227 ** pExpr is an operand of a comparison operator.  aff2 is the
228 ** type affinity of the other operand.  This routine returns the
229 ** type affinity that should be used for the comparison operator.
230 */
231 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
232   char aff1 = sqlite3ExprAffinity(pExpr);
233   if( aff1 && aff2 ){
234     /* Both sides of the comparison are columns. If one has numeric
235     ** affinity, use that. Otherwise use no affinity.
236     */
237     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
238       return SQLITE_AFF_NUMERIC;
239     }else{
240       return SQLITE_AFF_BLOB;
241     }
242   }else if( !aff1 && !aff2 ){
243     /* Neither side of the comparison is a column.  Compare the
244     ** results directly.
245     */
246     return SQLITE_AFF_BLOB;
247   }else{
248     /* One side is a column, the other is not. Use the columns affinity. */
249     assert( aff1==0 || aff2==0 );
250     return (aff1 + aff2);
251   }
252 }
253 
254 /*
255 ** pExpr is a comparison operator.  Return the type affinity that should
256 ** be applied to both operands prior to doing the comparison.
257 */
258 static char comparisonAffinity(Expr *pExpr){
259   char aff;
260   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
261           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
262           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
263   assert( pExpr->pLeft );
264   aff = sqlite3ExprAffinity(pExpr->pLeft);
265   if( pExpr->pRight ){
266     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
267   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
268     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
269   }else if( aff==0 ){
270     aff = SQLITE_AFF_BLOB;
271   }
272   return aff;
273 }
274 
275 /*
276 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
277 ** idx_affinity is the affinity of an indexed column. Return true
278 ** if the index with affinity idx_affinity may be used to implement
279 ** the comparison in pExpr.
280 */
281 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
282   char aff = comparisonAffinity(pExpr);
283   switch( aff ){
284     case SQLITE_AFF_BLOB:
285       return 1;
286     case SQLITE_AFF_TEXT:
287       return idx_affinity==SQLITE_AFF_TEXT;
288     default:
289       return sqlite3IsNumericAffinity(idx_affinity);
290   }
291 }
292 
293 /*
294 ** Return the P5 value that should be used for a binary comparison
295 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
296 */
297 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
298   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
299   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
300   return aff;
301 }
302 
303 /*
304 ** Return a pointer to the collation sequence that should be used by
305 ** a binary comparison operator comparing pLeft and pRight.
306 **
307 ** If the left hand expression has a collating sequence type, then it is
308 ** used. Otherwise the collation sequence for the right hand expression
309 ** is used, or the default (BINARY) if neither expression has a collating
310 ** type.
311 **
312 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
313 ** it is not considered.
314 */
315 CollSeq *sqlite3BinaryCompareCollSeq(
316   Parse *pParse,
317   Expr *pLeft,
318   Expr *pRight
319 ){
320   CollSeq *pColl;
321   assert( pLeft );
322   if( pLeft->flags & EP_Collate ){
323     pColl = sqlite3ExprCollSeq(pParse, pLeft);
324   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
325     pColl = sqlite3ExprCollSeq(pParse, pRight);
326   }else{
327     pColl = sqlite3ExprCollSeq(pParse, pLeft);
328     if( !pColl ){
329       pColl = sqlite3ExprCollSeq(pParse, pRight);
330     }
331   }
332   return pColl;
333 }
334 
335 /*
336 ** Generate code for a comparison operator.
337 */
338 static int codeCompare(
339   Parse *pParse,    /* The parsing (and code generating) context */
340   Expr *pLeft,      /* The left operand */
341   Expr *pRight,     /* The right operand */
342   int opcode,       /* The comparison opcode */
343   int in1, int in2, /* Register holding operands */
344   int dest,         /* Jump here if true.  */
345   int jumpIfNull    /* If true, jump if either operand is NULL */
346 ){
347   int p5;
348   int addr;
349   CollSeq *p4;
350 
351   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
352   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
353   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
354                            (void*)p4, P4_COLLSEQ);
355   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
356   return addr;
357 }
358 
359 /*
360 ** Return true if expression pExpr is a vector, or false otherwise.
361 **
362 ** A vector is defined as any expression that results in two or more
363 ** columns of result.  Every TK_VECTOR node is an vector because the
364 ** parser will not generate a TK_VECTOR with fewer than two entries.
365 ** But a TK_SELECT might be either a vector or a scalar. It is only
366 ** considered a vector if it has two or more result columns.
367 */
368 int sqlite3ExprIsVector(Expr *pExpr){
369   return sqlite3ExprVectorSize(pExpr)>1;
370 }
371 
372 /*
373 ** If the expression passed as the only argument is of type TK_VECTOR
374 ** return the number of expressions in the vector. Or, if the expression
375 ** is a sub-select, return the number of columns in the sub-select. For
376 ** any other type of expression, return 1.
377 */
378 int sqlite3ExprVectorSize(Expr *pExpr){
379   u8 op = pExpr->op;
380   if( op==TK_REGISTER ) op = pExpr->op2;
381   if( op==TK_VECTOR ){
382     return pExpr->x.pList->nExpr;
383   }else if( op==TK_SELECT ){
384     return pExpr->x.pSelect->pEList->nExpr;
385   }else{
386     return 1;
387   }
388 }
389 
390 /*
391 ** Return a pointer to a subexpression of pVector that is the i-th
392 ** column of the vector (numbered starting with 0).  The caller must
393 ** ensure that i is within range.
394 **
395 ** If pVector is really a scalar (and "scalar" here includes subqueries
396 ** that return a single column!) then return pVector unmodified.
397 **
398 ** pVector retains ownership of the returned subexpression.
399 **
400 ** If the vector is a (SELECT ...) then the expression returned is
401 ** just the expression for the i-th term of the result set, and may
402 ** not be ready for evaluation because the table cursor has not yet
403 ** been positioned.
404 */
405 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
406   assert( i<sqlite3ExprVectorSize(pVector) );
407   if( sqlite3ExprIsVector(pVector) ){
408     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
409     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
410       return pVector->x.pSelect->pEList->a[i].pExpr;
411     }else{
412       return pVector->x.pList->a[i].pExpr;
413     }
414   }
415   return pVector;
416 }
417 
418 /*
419 ** Compute and return a new Expr object which when passed to
420 ** sqlite3ExprCode() will generate all necessary code to compute
421 ** the iField-th column of the vector expression pVector.
422 **
423 ** It is ok for pVector to be a scalar (as long as iField==0).
424 ** In that case, this routine works like sqlite3ExprDup().
425 **
426 ** The caller owns the returned Expr object and is responsible for
427 ** ensuring that the returned value eventually gets freed.
428 **
429 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
430 ** then the returned object will reference pVector and so pVector must remain
431 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
432 ** or a scalar expression, then it can be deleted as soon as this routine
433 ** returns.
434 **
435 ** A trick to cause a TK_SELECT pVector to be deleted together with
436 ** the returned Expr object is to attach the pVector to the pRight field
437 ** of the returned TK_SELECT_COLUMN Expr object.
438 */
439 Expr *sqlite3ExprForVectorField(
440   Parse *pParse,       /* Parsing context */
441   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
442   int iField           /* Which column of the vector to return */
443 ){
444   Expr *pRet;
445   if( pVector->op==TK_SELECT ){
446     assert( pVector->flags & EP_xIsSelect );
447     /* The TK_SELECT_COLUMN Expr node:
448     **
449     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
450     ** pRight:          not used.  But recursively deleted.
451     ** iColumn:         Index of a column in pVector
452     ** iTable:          0 or the number of columns on the LHS of an assignment
453     ** pLeft->iTable:   First in an array of register holding result, or 0
454     **                  if the result is not yet computed.
455     **
456     ** sqlite3ExprDelete() specifically skips the recursive delete of
457     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
458     ** can be attached to pRight to cause this node to take ownership of
459     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
460     ** with the same pLeft pointer to the pVector, but only one of them
461     ** will own the pVector.
462     */
463     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
464     if( pRet ){
465       pRet->iColumn = iField;
466       pRet->pLeft = pVector;
467     }
468     assert( pRet==0 || pRet->iTable==0 );
469   }else{
470     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
471     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
472     sqlite3RenameTokenRemap(pParse, pRet, pVector);
473   }
474   return pRet;
475 }
476 
477 /*
478 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
479 ** it. Return the register in which the result is stored (or, if the
480 ** sub-select returns more than one column, the first in an array
481 ** of registers in which the result is stored).
482 **
483 ** If pExpr is not a TK_SELECT expression, return 0.
484 */
485 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
486   int reg = 0;
487 #ifndef SQLITE_OMIT_SUBQUERY
488   if( pExpr->op==TK_SELECT ){
489     reg = sqlite3CodeSubselect(pParse, pExpr);
490   }
491 #endif
492   return reg;
493 }
494 
495 /*
496 ** Argument pVector points to a vector expression - either a TK_VECTOR
497 ** or TK_SELECT that returns more than one column. This function returns
498 ** the register number of a register that contains the value of
499 ** element iField of the vector.
500 **
501 ** If pVector is a TK_SELECT expression, then code for it must have
502 ** already been generated using the exprCodeSubselect() routine. In this
503 ** case parameter regSelect should be the first in an array of registers
504 ** containing the results of the sub-select.
505 **
506 ** If pVector is of type TK_VECTOR, then code for the requested field
507 ** is generated. In this case (*pRegFree) may be set to the number of
508 ** a temporary register to be freed by the caller before returning.
509 **
510 ** Before returning, output parameter (*ppExpr) is set to point to the
511 ** Expr object corresponding to element iElem of the vector.
512 */
513 static int exprVectorRegister(
514   Parse *pParse,                  /* Parse context */
515   Expr *pVector,                  /* Vector to extract element from */
516   int iField,                     /* Field to extract from pVector */
517   int regSelect,                  /* First in array of registers */
518   Expr **ppExpr,                  /* OUT: Expression element */
519   int *pRegFree                   /* OUT: Temp register to free */
520 ){
521   u8 op = pVector->op;
522   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
523   if( op==TK_REGISTER ){
524     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
525     return pVector->iTable+iField;
526   }
527   if( op==TK_SELECT ){
528     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
529      return regSelect+iField;
530   }
531   *ppExpr = pVector->x.pList->a[iField].pExpr;
532   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
533 }
534 
535 /*
536 ** Expression pExpr is a comparison between two vector values. Compute
537 ** the result of the comparison (1, 0, or NULL) and write that
538 ** result into register dest.
539 **
540 ** The caller must satisfy the following preconditions:
541 **
542 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
543 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
544 **    otherwise:                op==pExpr->op and p5==0
545 */
546 static void codeVectorCompare(
547   Parse *pParse,        /* Code generator context */
548   Expr *pExpr,          /* The comparison operation */
549   int dest,             /* Write results into this register */
550   u8 op,                /* Comparison operator */
551   u8 p5                 /* SQLITE_NULLEQ or zero */
552 ){
553   Vdbe *v = pParse->pVdbe;
554   Expr *pLeft = pExpr->pLeft;
555   Expr *pRight = pExpr->pRight;
556   int nLeft = sqlite3ExprVectorSize(pLeft);
557   int i;
558   int regLeft = 0;
559   int regRight = 0;
560   u8 opx = op;
561   int addrDone = sqlite3VdbeMakeLabel(pParse);
562 
563   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
564     sqlite3ErrorMsg(pParse, "row value misused");
565     return;
566   }
567   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
568        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
569        || pExpr->op==TK_LT || pExpr->op==TK_GT
570        || pExpr->op==TK_LE || pExpr->op==TK_GE
571   );
572   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
573             || (pExpr->op==TK_ISNOT && op==TK_NE) );
574   assert( p5==0 || pExpr->op!=op );
575   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
576 
577   p5 |= SQLITE_STOREP2;
578   if( opx==TK_LE ) opx = TK_LT;
579   if( opx==TK_GE ) opx = TK_GT;
580 
581   regLeft = exprCodeSubselect(pParse, pLeft);
582   regRight = exprCodeSubselect(pParse, pRight);
583 
584   for(i=0; 1 /*Loop exits by "break"*/; i++){
585     int regFree1 = 0, regFree2 = 0;
586     Expr *pL, *pR;
587     int r1, r2;
588     assert( i>=0 && i<nLeft );
589     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
590     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
591     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
592     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
593     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
594     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
595     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
596     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
597     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
598     sqlite3ReleaseTempReg(pParse, regFree1);
599     sqlite3ReleaseTempReg(pParse, regFree2);
600     if( i==nLeft-1 ){
601       break;
602     }
603     if( opx==TK_EQ ){
604       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
605       p5 |= SQLITE_KEEPNULL;
606     }else if( opx==TK_NE ){
607       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
608       p5 |= SQLITE_KEEPNULL;
609     }else{
610       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
611       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
612       VdbeCoverageIf(v, op==TK_LT);
613       VdbeCoverageIf(v, op==TK_GT);
614       VdbeCoverageIf(v, op==TK_LE);
615       VdbeCoverageIf(v, op==TK_GE);
616       if( i==nLeft-2 ) opx = op;
617     }
618   }
619   sqlite3VdbeResolveLabel(v, addrDone);
620 }
621 
622 #if SQLITE_MAX_EXPR_DEPTH>0
623 /*
624 ** Check that argument nHeight is less than or equal to the maximum
625 ** expression depth allowed. If it is not, leave an error message in
626 ** pParse.
627 */
628 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
629   int rc = SQLITE_OK;
630   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
631   if( nHeight>mxHeight ){
632     sqlite3ErrorMsg(pParse,
633        "Expression tree is too large (maximum depth %d)", mxHeight
634     );
635     rc = SQLITE_ERROR;
636   }
637   return rc;
638 }
639 
640 /* The following three functions, heightOfExpr(), heightOfExprList()
641 ** and heightOfSelect(), are used to determine the maximum height
642 ** of any expression tree referenced by the structure passed as the
643 ** first argument.
644 **
645 ** If this maximum height is greater than the current value pointed
646 ** to by pnHeight, the second parameter, then set *pnHeight to that
647 ** value.
648 */
649 static void heightOfExpr(Expr *p, int *pnHeight){
650   if( p ){
651     if( p->nHeight>*pnHeight ){
652       *pnHeight = p->nHeight;
653     }
654   }
655 }
656 static void heightOfExprList(ExprList *p, int *pnHeight){
657   if( p ){
658     int i;
659     for(i=0; i<p->nExpr; i++){
660       heightOfExpr(p->a[i].pExpr, pnHeight);
661     }
662   }
663 }
664 static void heightOfSelect(Select *pSelect, int *pnHeight){
665   Select *p;
666   for(p=pSelect; p; p=p->pPrior){
667     heightOfExpr(p->pWhere, pnHeight);
668     heightOfExpr(p->pHaving, pnHeight);
669     heightOfExpr(p->pLimit, pnHeight);
670     heightOfExprList(p->pEList, pnHeight);
671     heightOfExprList(p->pGroupBy, pnHeight);
672     heightOfExprList(p->pOrderBy, pnHeight);
673   }
674 }
675 
676 /*
677 ** Set the Expr.nHeight variable in the structure passed as an
678 ** argument. An expression with no children, Expr.pList or
679 ** Expr.pSelect member has a height of 1. Any other expression
680 ** has a height equal to the maximum height of any other
681 ** referenced Expr plus one.
682 **
683 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
684 ** if appropriate.
685 */
686 static void exprSetHeight(Expr *p){
687   int nHeight = 0;
688   heightOfExpr(p->pLeft, &nHeight);
689   heightOfExpr(p->pRight, &nHeight);
690   if( ExprHasProperty(p, EP_xIsSelect) ){
691     heightOfSelect(p->x.pSelect, &nHeight);
692   }else if( p->x.pList ){
693     heightOfExprList(p->x.pList, &nHeight);
694     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
695   }
696   p->nHeight = nHeight + 1;
697 }
698 
699 /*
700 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
701 ** the height is greater than the maximum allowed expression depth,
702 ** leave an error in pParse.
703 **
704 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
705 ** Expr.flags.
706 */
707 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
708   if( pParse->nErr ) return;
709   exprSetHeight(p);
710   sqlite3ExprCheckHeight(pParse, p->nHeight);
711 }
712 
713 /*
714 ** Return the maximum height of any expression tree referenced
715 ** by the select statement passed as an argument.
716 */
717 int sqlite3SelectExprHeight(Select *p){
718   int nHeight = 0;
719   heightOfSelect(p, &nHeight);
720   return nHeight;
721 }
722 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
723 /*
724 ** Propagate all EP_Propagate flags from the Expr.x.pList into
725 ** Expr.flags.
726 */
727 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
728   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
729     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
730   }
731 }
732 #define exprSetHeight(y)
733 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
734 
735 /*
736 ** This routine is the core allocator for Expr nodes.
737 **
738 ** Construct a new expression node and return a pointer to it.  Memory
739 ** for this node and for the pToken argument is a single allocation
740 ** obtained from sqlite3DbMalloc().  The calling function
741 ** is responsible for making sure the node eventually gets freed.
742 **
743 ** If dequote is true, then the token (if it exists) is dequoted.
744 ** If dequote is false, no dequoting is performed.  The deQuote
745 ** parameter is ignored if pToken is NULL or if the token does not
746 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
747 ** then the EP_DblQuoted flag is set on the expression node.
748 **
749 ** Special case:  If op==TK_INTEGER and pToken points to a string that
750 ** can be translated into a 32-bit integer, then the token is not
751 ** stored in u.zToken.  Instead, the integer values is written
752 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
753 ** is allocated to hold the integer text and the dequote flag is ignored.
754 */
755 Expr *sqlite3ExprAlloc(
756   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
757   int op,                 /* Expression opcode */
758   const Token *pToken,    /* Token argument.  Might be NULL */
759   int dequote             /* True to dequote */
760 ){
761   Expr *pNew;
762   int nExtra = 0;
763   int iValue = 0;
764 
765   assert( db!=0 );
766   if( pToken ){
767     if( op!=TK_INTEGER || pToken->z==0
768           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
769       nExtra = pToken->n+1;
770       assert( iValue>=0 );
771     }
772   }
773   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
774   if( pNew ){
775     memset(pNew, 0, sizeof(Expr));
776     pNew->op = (u8)op;
777     pNew->iAgg = -1;
778     if( pToken ){
779       if( nExtra==0 ){
780         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
781         pNew->u.iValue = iValue;
782       }else{
783         pNew->u.zToken = (char*)&pNew[1];
784         assert( pToken->z!=0 || pToken->n==0 );
785         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
786         pNew->u.zToken[pToken->n] = 0;
787         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
788           sqlite3DequoteExpr(pNew);
789         }
790       }
791     }
792 #if SQLITE_MAX_EXPR_DEPTH>0
793     pNew->nHeight = 1;
794 #endif
795   }
796   return pNew;
797 }
798 
799 /*
800 ** Allocate a new expression node from a zero-terminated token that has
801 ** already been dequoted.
802 */
803 Expr *sqlite3Expr(
804   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
805   int op,                 /* Expression opcode */
806   const char *zToken      /* Token argument.  Might be NULL */
807 ){
808   Token x;
809   x.z = zToken;
810   x.n = sqlite3Strlen30(zToken);
811   return sqlite3ExprAlloc(db, op, &x, 0);
812 }
813 
814 /*
815 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
816 **
817 ** If pRoot==NULL that means that a memory allocation error has occurred.
818 ** In that case, delete the subtrees pLeft and pRight.
819 */
820 void sqlite3ExprAttachSubtrees(
821   sqlite3 *db,
822   Expr *pRoot,
823   Expr *pLeft,
824   Expr *pRight
825 ){
826   if( pRoot==0 ){
827     assert( db->mallocFailed );
828     sqlite3ExprDelete(db, pLeft);
829     sqlite3ExprDelete(db, pRight);
830   }else{
831     if( pRight ){
832       pRoot->pRight = pRight;
833       pRoot->flags |= EP_Propagate & pRight->flags;
834     }
835     if( pLeft ){
836       pRoot->pLeft = pLeft;
837       pRoot->flags |= EP_Propagate & pLeft->flags;
838     }
839     exprSetHeight(pRoot);
840   }
841 }
842 
843 /*
844 ** Allocate an Expr node which joins as many as two subtrees.
845 **
846 ** One or both of the subtrees can be NULL.  Return a pointer to the new
847 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
848 ** free the subtrees and return NULL.
849 */
850 Expr *sqlite3PExpr(
851   Parse *pParse,          /* Parsing context */
852   int op,                 /* Expression opcode */
853   Expr *pLeft,            /* Left operand */
854   Expr *pRight            /* Right operand */
855 ){
856   Expr *p;
857   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
858   if( p ){
859     memset(p, 0, sizeof(Expr));
860     p->op = op & 0xff;
861     p->iAgg = -1;
862     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
863     sqlite3ExprCheckHeight(pParse, p->nHeight);
864   }else{
865     sqlite3ExprDelete(pParse->db, pLeft);
866     sqlite3ExprDelete(pParse->db, pRight);
867   }
868   return p;
869 }
870 
871 /*
872 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
873 ** do a memory allocation failure) then delete the pSelect object.
874 */
875 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
876   if( pExpr ){
877     pExpr->x.pSelect = pSelect;
878     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
879     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
880   }else{
881     assert( pParse->db->mallocFailed );
882     sqlite3SelectDelete(pParse->db, pSelect);
883   }
884 }
885 
886 
887 /*
888 ** Join two expressions using an AND operator.  If either expression is
889 ** NULL, then just return the other expression.
890 **
891 ** If one side or the other of the AND is known to be false, then instead
892 ** of returning an AND expression, just return a constant expression with
893 ** a value of false.
894 */
895 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
896   sqlite3 *db = pParse->db;
897   if( pLeft==0  ){
898     return pRight;
899   }else if( pRight==0 ){
900     return pLeft;
901   }else if( ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight) ){
902     sqlite3ExprUnmapAndDelete(pParse, pLeft);
903     sqlite3ExprUnmapAndDelete(pParse, pRight);
904     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
905   }else{
906     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
907   }
908 }
909 
910 /*
911 ** Construct a new expression node for a function with multiple
912 ** arguments.
913 */
914 Expr *sqlite3ExprFunction(
915   Parse *pParse,        /* Parsing context */
916   ExprList *pList,      /* Argument list */
917   Token *pToken,        /* Name of the function */
918   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
919 ){
920   Expr *pNew;
921   sqlite3 *db = pParse->db;
922   assert( pToken );
923   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
924   if( pNew==0 ){
925     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
926     return 0;
927   }
928   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
929     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
930   }
931   pNew->x.pList = pList;
932   ExprSetProperty(pNew, EP_HasFunc);
933   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
934   sqlite3ExprSetHeightAndFlags(pParse, pNew);
935   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
936   return pNew;
937 }
938 
939 /*
940 ** Assign a variable number to an expression that encodes a wildcard
941 ** in the original SQL statement.
942 **
943 ** Wildcards consisting of a single "?" are assigned the next sequential
944 ** variable number.
945 **
946 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
947 ** sure "nnn" is not too big to avoid a denial of service attack when
948 ** the SQL statement comes from an external source.
949 **
950 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
951 ** as the previous instance of the same wildcard.  Or if this is the first
952 ** instance of the wildcard, the next sequential variable number is
953 ** assigned.
954 */
955 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
956   sqlite3 *db = pParse->db;
957   const char *z;
958   ynVar x;
959 
960   if( pExpr==0 ) return;
961   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
962   z = pExpr->u.zToken;
963   assert( z!=0 );
964   assert( z[0]!=0 );
965   assert( n==(u32)sqlite3Strlen30(z) );
966   if( z[1]==0 ){
967     /* Wildcard of the form "?".  Assign the next variable number */
968     assert( z[0]=='?' );
969     x = (ynVar)(++pParse->nVar);
970   }else{
971     int doAdd = 0;
972     if( z[0]=='?' ){
973       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
974       ** use it as the variable number */
975       i64 i;
976       int bOk;
977       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
978         i = z[1]-'0';  /* The common case of ?N for a single digit N */
979         bOk = 1;
980       }else{
981         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
982       }
983       testcase( i==0 );
984       testcase( i==1 );
985       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
986       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
987       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
988         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
989             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
990         return;
991       }
992       x = (ynVar)i;
993       if( x>pParse->nVar ){
994         pParse->nVar = (int)x;
995         doAdd = 1;
996       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
997         doAdd = 1;
998       }
999     }else{
1000       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1001       ** number as the prior appearance of the same name, or if the name
1002       ** has never appeared before, reuse the same variable number
1003       */
1004       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1005       if( x==0 ){
1006         x = (ynVar)(++pParse->nVar);
1007         doAdd = 1;
1008       }
1009     }
1010     if( doAdd ){
1011       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1012     }
1013   }
1014   pExpr->iColumn = x;
1015   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1016     sqlite3ErrorMsg(pParse, "too many SQL variables");
1017   }
1018 }
1019 
1020 /*
1021 ** Recursively delete an expression tree.
1022 */
1023 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1024   assert( p!=0 );
1025   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1026   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1027 
1028   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1029   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1030           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1031 #ifdef SQLITE_DEBUG
1032   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1033     assert( p->pLeft==0 );
1034     assert( p->pRight==0 );
1035     assert( p->x.pSelect==0 );
1036   }
1037 #endif
1038   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1039     /* The Expr.x union is never used at the same time as Expr.pRight */
1040     assert( p->x.pList==0 || p->pRight==0 );
1041     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1042     if( p->pRight ){
1043       assert( !ExprHasProperty(p, EP_WinFunc) );
1044       sqlite3ExprDeleteNN(db, p->pRight);
1045     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1046       assert( !ExprHasProperty(p, EP_WinFunc) );
1047       sqlite3SelectDelete(db, p->x.pSelect);
1048     }else{
1049       sqlite3ExprListDelete(db, p->x.pList);
1050 #ifndef SQLITE_OMIT_WINDOWFUNC
1051       if( ExprHasProperty(p, EP_WinFunc) ){
1052         sqlite3WindowDelete(db, p->y.pWin);
1053       }
1054 #endif
1055     }
1056   }
1057   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1058   if( !ExprHasProperty(p, EP_Static) ){
1059     sqlite3DbFreeNN(db, p);
1060   }
1061 }
1062 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1063   if( p ) sqlite3ExprDeleteNN(db, p);
1064 }
1065 
1066 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1067 ** expression.
1068 */
1069 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1070   if( p ){
1071     if( IN_RENAME_OBJECT ){
1072       sqlite3RenameExprUnmap(pParse, p);
1073     }
1074     sqlite3ExprDeleteNN(pParse->db, p);
1075   }
1076 }
1077 
1078 /*
1079 ** Return the number of bytes allocated for the expression structure
1080 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1081 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1082 */
1083 static int exprStructSize(Expr *p){
1084   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1085   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1086   return EXPR_FULLSIZE;
1087 }
1088 
1089 /*
1090 ** The dupedExpr*Size() routines each return the number of bytes required
1091 ** to store a copy of an expression or expression tree.  They differ in
1092 ** how much of the tree is measured.
1093 **
1094 **     dupedExprStructSize()     Size of only the Expr structure
1095 **     dupedExprNodeSize()       Size of Expr + space for token
1096 **     dupedExprSize()           Expr + token + subtree components
1097 **
1098 ***************************************************************************
1099 **
1100 ** The dupedExprStructSize() function returns two values OR-ed together:
1101 ** (1) the space required for a copy of the Expr structure only and
1102 ** (2) the EP_xxx flags that indicate what the structure size should be.
1103 ** The return values is always one of:
1104 **
1105 **      EXPR_FULLSIZE
1106 **      EXPR_REDUCEDSIZE   | EP_Reduced
1107 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1108 **
1109 ** The size of the structure can be found by masking the return value
1110 ** of this routine with 0xfff.  The flags can be found by masking the
1111 ** return value with EP_Reduced|EP_TokenOnly.
1112 **
1113 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1114 ** (unreduced) Expr objects as they or originally constructed by the parser.
1115 ** During expression analysis, extra information is computed and moved into
1116 ** later parts of the Expr object and that extra information might get chopped
1117 ** off if the expression is reduced.  Note also that it does not work to
1118 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1119 ** to reduce a pristine expression tree from the parser.  The implementation
1120 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1121 ** to enforce this constraint.
1122 */
1123 static int dupedExprStructSize(Expr *p, int flags){
1124   int nSize;
1125   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1126   assert( EXPR_FULLSIZE<=0xfff );
1127   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1128   if( 0==flags || p->op==TK_SELECT_COLUMN
1129 #ifndef SQLITE_OMIT_WINDOWFUNC
1130    || ExprHasProperty(p, EP_WinFunc)
1131 #endif
1132   ){
1133     nSize = EXPR_FULLSIZE;
1134   }else{
1135     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1136     assert( !ExprHasProperty(p, EP_FromJoin) );
1137     assert( !ExprHasProperty(p, EP_MemToken) );
1138     assert( !ExprHasProperty(p, EP_NoReduce) );
1139     if( p->pLeft || p->x.pList ){
1140       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1141     }else{
1142       assert( p->pRight==0 );
1143       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1144     }
1145   }
1146   return nSize;
1147 }
1148 
1149 /*
1150 ** This function returns the space in bytes required to store the copy
1151 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1152 ** string is defined.)
1153 */
1154 static int dupedExprNodeSize(Expr *p, int flags){
1155   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1156   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1157     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1158   }
1159   return ROUND8(nByte);
1160 }
1161 
1162 /*
1163 ** Return the number of bytes required to create a duplicate of the
1164 ** expression passed as the first argument. The second argument is a
1165 ** mask containing EXPRDUP_XXX flags.
1166 **
1167 ** The value returned includes space to create a copy of the Expr struct
1168 ** itself and the buffer referred to by Expr.u.zToken, if any.
1169 **
1170 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1171 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1172 ** and Expr.pRight variables (but not for any structures pointed to or
1173 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1174 */
1175 static int dupedExprSize(Expr *p, int flags){
1176   int nByte = 0;
1177   if( p ){
1178     nByte = dupedExprNodeSize(p, flags);
1179     if( flags&EXPRDUP_REDUCE ){
1180       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1181     }
1182   }
1183   return nByte;
1184 }
1185 
1186 /*
1187 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1188 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1189 ** to store the copy of expression p, the copies of p->u.zToken
1190 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1191 ** if any. Before returning, *pzBuffer is set to the first byte past the
1192 ** portion of the buffer copied into by this function.
1193 */
1194 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1195   Expr *pNew;           /* Value to return */
1196   u8 *zAlloc;           /* Memory space from which to build Expr object */
1197   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1198 
1199   assert( db!=0 );
1200   assert( p );
1201   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1202   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1203 
1204   /* Figure out where to write the new Expr structure. */
1205   if( pzBuffer ){
1206     zAlloc = *pzBuffer;
1207     staticFlag = EP_Static;
1208   }else{
1209     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1210     staticFlag = 0;
1211   }
1212   pNew = (Expr *)zAlloc;
1213 
1214   if( pNew ){
1215     /* Set nNewSize to the size allocated for the structure pointed to
1216     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1217     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1218     ** by the copy of the p->u.zToken string (if any).
1219     */
1220     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1221     const int nNewSize = nStructSize & 0xfff;
1222     int nToken;
1223     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1224       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1225     }else{
1226       nToken = 0;
1227     }
1228     if( dupFlags ){
1229       assert( ExprHasProperty(p, EP_Reduced)==0 );
1230       memcpy(zAlloc, p, nNewSize);
1231     }else{
1232       u32 nSize = (u32)exprStructSize(p);
1233       memcpy(zAlloc, p, nSize);
1234       if( nSize<EXPR_FULLSIZE ){
1235         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1236       }
1237     }
1238 
1239     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1240     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1241     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1242     pNew->flags |= staticFlag;
1243 
1244     /* Copy the p->u.zToken string, if any. */
1245     if( nToken ){
1246       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1247       memcpy(zToken, p->u.zToken, nToken);
1248     }
1249 
1250     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1251       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1252       if( ExprHasProperty(p, EP_xIsSelect) ){
1253         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1254       }else{
1255         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1256       }
1257     }
1258 
1259     /* Fill in pNew->pLeft and pNew->pRight. */
1260     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1261       zAlloc += dupedExprNodeSize(p, dupFlags);
1262       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1263         pNew->pLeft = p->pLeft ?
1264                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1265         pNew->pRight = p->pRight ?
1266                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1267       }
1268 #ifndef SQLITE_OMIT_WINDOWFUNC
1269       if( ExprHasProperty(p, EP_WinFunc) ){
1270         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1271         assert( ExprHasProperty(pNew, EP_WinFunc) );
1272       }
1273 #endif /* SQLITE_OMIT_WINDOWFUNC */
1274       if( pzBuffer ){
1275         *pzBuffer = zAlloc;
1276       }
1277     }else{
1278       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1279         if( pNew->op==TK_SELECT_COLUMN ){
1280           pNew->pLeft = p->pLeft;
1281           assert( p->iColumn==0 || p->pRight==0 );
1282           assert( p->pRight==0  || p->pRight==p->pLeft );
1283         }else{
1284           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1285         }
1286         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1287       }
1288     }
1289   }
1290   return pNew;
1291 }
1292 
1293 /*
1294 ** Create and return a deep copy of the object passed as the second
1295 ** argument. If an OOM condition is encountered, NULL is returned
1296 ** and the db->mallocFailed flag set.
1297 */
1298 #ifndef SQLITE_OMIT_CTE
1299 static With *withDup(sqlite3 *db, With *p){
1300   With *pRet = 0;
1301   if( p ){
1302     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1303     pRet = sqlite3DbMallocZero(db, nByte);
1304     if( pRet ){
1305       int i;
1306       pRet->nCte = p->nCte;
1307       for(i=0; i<p->nCte; i++){
1308         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1309         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1310         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1311       }
1312     }
1313   }
1314   return pRet;
1315 }
1316 #else
1317 # define withDup(x,y) 0
1318 #endif
1319 
1320 #ifndef SQLITE_OMIT_WINDOWFUNC
1321 /*
1322 ** The gatherSelectWindows() procedure and its helper routine
1323 ** gatherSelectWindowsCallback() are used to scan all the expressions
1324 ** an a newly duplicated SELECT statement and gather all of the Window
1325 ** objects found there, assembling them onto the linked list at Select->pWin.
1326 */
1327 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1328   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1329     Select *pSelect = pWalker->u.pSelect;
1330     Window *pWin = pExpr->y.pWin;
1331     assert( pWin );
1332     assert( IsWindowFunc(pExpr) );
1333     assert( pWin->ppThis==0 );
1334     if( pSelect->pWin ){
1335       pSelect->pWin->ppThis = &pWin->pNextWin;
1336     }
1337     pWin->pNextWin = pSelect->pWin;
1338     pWin->ppThis = &pSelect->pWin;
1339     pSelect->pWin = pWin;
1340   }
1341   return WRC_Continue;
1342 }
1343 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1344   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1345 }
1346 static void gatherSelectWindows(Select *p){
1347   Walker w;
1348   w.xExprCallback = gatherSelectWindowsCallback;
1349   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1350   w.xSelectCallback2 = 0;
1351   w.pParse = 0;
1352   w.u.pSelect = p;
1353   sqlite3WalkSelect(&w, p);
1354 }
1355 #endif
1356 
1357 
1358 /*
1359 ** The following group of routines make deep copies of expressions,
1360 ** expression lists, ID lists, and select statements.  The copies can
1361 ** be deleted (by being passed to their respective ...Delete() routines)
1362 ** without effecting the originals.
1363 **
1364 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1365 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1366 ** by subsequent calls to sqlite*ListAppend() routines.
1367 **
1368 ** Any tables that the SrcList might point to are not duplicated.
1369 **
1370 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1371 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1372 ** truncated version of the usual Expr structure that will be stored as
1373 ** part of the in-memory representation of the database schema.
1374 */
1375 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1376   assert( flags==0 || flags==EXPRDUP_REDUCE );
1377   return p ? exprDup(db, p, flags, 0) : 0;
1378 }
1379 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1380   ExprList *pNew;
1381   struct ExprList_item *pItem, *pOldItem;
1382   int i;
1383   Expr *pPriorSelectCol = 0;
1384   assert( db!=0 );
1385   if( p==0 ) return 0;
1386   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1387   if( pNew==0 ) return 0;
1388   pNew->nExpr = p->nExpr;
1389   pItem = pNew->a;
1390   pOldItem = p->a;
1391   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1392     Expr *pOldExpr = pOldItem->pExpr;
1393     Expr *pNewExpr;
1394     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1395     if( pOldExpr
1396      && pOldExpr->op==TK_SELECT_COLUMN
1397      && (pNewExpr = pItem->pExpr)!=0
1398     ){
1399       assert( pNewExpr->iColumn==0 || i>0 );
1400       if( pNewExpr->iColumn==0 ){
1401         assert( pOldExpr->pLeft==pOldExpr->pRight );
1402         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1403       }else{
1404         assert( i>0 );
1405         assert( pItem[-1].pExpr!=0 );
1406         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1407         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1408         pNewExpr->pLeft = pPriorSelectCol;
1409       }
1410     }
1411     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1412     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1413     pItem->sortOrder = pOldItem->sortOrder;
1414     pItem->done = 0;
1415     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1416     pItem->bSorterRef = pOldItem->bSorterRef;
1417     pItem->u = pOldItem->u;
1418   }
1419   return pNew;
1420 }
1421 
1422 /*
1423 ** If cursors, triggers, views and subqueries are all omitted from
1424 ** the build, then none of the following routines, except for
1425 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1426 ** called with a NULL argument.
1427 */
1428 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1429  || !defined(SQLITE_OMIT_SUBQUERY)
1430 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1431   SrcList *pNew;
1432   int i;
1433   int nByte;
1434   assert( db!=0 );
1435   if( p==0 ) return 0;
1436   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1437   pNew = sqlite3DbMallocRawNN(db, nByte );
1438   if( pNew==0 ) return 0;
1439   pNew->nSrc = pNew->nAlloc = p->nSrc;
1440   for(i=0; i<p->nSrc; i++){
1441     struct SrcList_item *pNewItem = &pNew->a[i];
1442     struct SrcList_item *pOldItem = &p->a[i];
1443     Table *pTab;
1444     pNewItem->pSchema = pOldItem->pSchema;
1445     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1446     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1447     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1448     pNewItem->fg = pOldItem->fg;
1449     pNewItem->iCursor = pOldItem->iCursor;
1450     pNewItem->addrFillSub = pOldItem->addrFillSub;
1451     pNewItem->regReturn = pOldItem->regReturn;
1452     if( pNewItem->fg.isIndexedBy ){
1453       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1454     }
1455     pNewItem->pIBIndex = pOldItem->pIBIndex;
1456     if( pNewItem->fg.isTabFunc ){
1457       pNewItem->u1.pFuncArg =
1458           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1459     }
1460     pTab = pNewItem->pTab = pOldItem->pTab;
1461     if( pTab ){
1462       pTab->nTabRef++;
1463     }
1464     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1465     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1466     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1467     pNewItem->colUsed = pOldItem->colUsed;
1468   }
1469   return pNew;
1470 }
1471 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1472   IdList *pNew;
1473   int i;
1474   assert( db!=0 );
1475   if( p==0 ) return 0;
1476   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1477   if( pNew==0 ) return 0;
1478   pNew->nId = p->nId;
1479   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1480   if( pNew->a==0 ){
1481     sqlite3DbFreeNN(db, pNew);
1482     return 0;
1483   }
1484   /* Note that because the size of the allocation for p->a[] is not
1485   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1486   ** on the duplicate created by this function. */
1487   for(i=0; i<p->nId; i++){
1488     struct IdList_item *pNewItem = &pNew->a[i];
1489     struct IdList_item *pOldItem = &p->a[i];
1490     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1491     pNewItem->idx = pOldItem->idx;
1492   }
1493   return pNew;
1494 }
1495 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1496   Select *pRet = 0;
1497   Select *pNext = 0;
1498   Select **pp = &pRet;
1499   Select *p;
1500 
1501   assert( db!=0 );
1502   for(p=pDup; p; p=p->pPrior){
1503     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1504     if( pNew==0 ) break;
1505     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1506     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1507     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1508     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1509     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1510     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1511     pNew->op = p->op;
1512     pNew->pNext = pNext;
1513     pNew->pPrior = 0;
1514     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1515     pNew->iLimit = 0;
1516     pNew->iOffset = 0;
1517     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1518     pNew->addrOpenEphm[0] = -1;
1519     pNew->addrOpenEphm[1] = -1;
1520     pNew->nSelectRow = p->nSelectRow;
1521     pNew->pWith = withDup(db, p->pWith);
1522 #ifndef SQLITE_OMIT_WINDOWFUNC
1523     pNew->pWin = 0;
1524     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1525     if( p->pWin ) gatherSelectWindows(pNew);
1526 #endif
1527     pNew->selId = p->selId;
1528     *pp = pNew;
1529     pp = &pNew->pPrior;
1530     pNext = pNew;
1531   }
1532 
1533   return pRet;
1534 }
1535 #else
1536 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1537   assert( p==0 );
1538   return 0;
1539 }
1540 #endif
1541 
1542 
1543 /*
1544 ** Add a new element to the end of an expression list.  If pList is
1545 ** initially NULL, then create a new expression list.
1546 **
1547 ** The pList argument must be either NULL or a pointer to an ExprList
1548 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1549 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1550 ** Reason:  This routine assumes that the number of slots in pList->a[]
1551 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1552 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1553 **
1554 ** If a memory allocation error occurs, the entire list is freed and
1555 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1556 ** that the new entry was successfully appended.
1557 */
1558 ExprList *sqlite3ExprListAppend(
1559   Parse *pParse,          /* Parsing context */
1560   ExprList *pList,        /* List to which to append. Might be NULL */
1561   Expr *pExpr             /* Expression to be appended. Might be NULL */
1562 ){
1563   struct ExprList_item *pItem;
1564   sqlite3 *db = pParse->db;
1565   assert( db!=0 );
1566   if( pList==0 ){
1567     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1568     if( pList==0 ){
1569       goto no_mem;
1570     }
1571     pList->nExpr = 0;
1572   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1573     ExprList *pNew;
1574     pNew = sqlite3DbRealloc(db, pList,
1575          sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0]));
1576     if( pNew==0 ){
1577       goto no_mem;
1578     }
1579     pList = pNew;
1580   }
1581   pItem = &pList->a[pList->nExpr++];
1582   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1583   assert( offsetof(struct ExprList_item,pExpr)==0 );
1584   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1585   pItem->pExpr = pExpr;
1586   return pList;
1587 
1588 no_mem:
1589   /* Avoid leaking memory if malloc has failed. */
1590   sqlite3ExprDelete(db, pExpr);
1591   sqlite3ExprListDelete(db, pList);
1592   return 0;
1593 }
1594 
1595 /*
1596 ** pColumns and pExpr form a vector assignment which is part of the SET
1597 ** clause of an UPDATE statement.  Like this:
1598 **
1599 **        (a,b,c) = (expr1,expr2,expr3)
1600 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1601 **
1602 ** For each term of the vector assignment, append new entries to the
1603 ** expression list pList.  In the case of a subquery on the RHS, append
1604 ** TK_SELECT_COLUMN expressions.
1605 */
1606 ExprList *sqlite3ExprListAppendVector(
1607   Parse *pParse,         /* Parsing context */
1608   ExprList *pList,       /* List to which to append. Might be NULL */
1609   IdList *pColumns,      /* List of names of LHS of the assignment */
1610   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1611 ){
1612   sqlite3 *db = pParse->db;
1613   int n;
1614   int i;
1615   int iFirst = pList ? pList->nExpr : 0;
1616   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1617   ** exit prior to this routine being invoked */
1618   if( NEVER(pColumns==0) ) goto vector_append_error;
1619   if( pExpr==0 ) goto vector_append_error;
1620 
1621   /* If the RHS is a vector, then we can immediately check to see that
1622   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1623   ** wildcards ("*") in the result set of the SELECT must be expanded before
1624   ** we can do the size check, so defer the size check until code generation.
1625   */
1626   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1627     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1628                     pColumns->nId, n);
1629     goto vector_append_error;
1630   }
1631 
1632   for(i=0; i<pColumns->nId; i++){
1633     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1634     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1635     if( pList ){
1636       assert( pList->nExpr==iFirst+i+1 );
1637       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1638       pColumns->a[i].zName = 0;
1639     }
1640   }
1641 
1642   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1643     Expr *pFirst = pList->a[iFirst].pExpr;
1644     assert( pFirst!=0 );
1645     assert( pFirst->op==TK_SELECT_COLUMN );
1646 
1647     /* Store the SELECT statement in pRight so it will be deleted when
1648     ** sqlite3ExprListDelete() is called */
1649     pFirst->pRight = pExpr;
1650     pExpr = 0;
1651 
1652     /* Remember the size of the LHS in iTable so that we can check that
1653     ** the RHS and LHS sizes match during code generation. */
1654     pFirst->iTable = pColumns->nId;
1655   }
1656 
1657 vector_append_error:
1658   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1659   sqlite3IdListDelete(db, pColumns);
1660   return pList;
1661 }
1662 
1663 /*
1664 ** Set the sort order for the last element on the given ExprList.
1665 */
1666 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1667   if( p==0 ) return;
1668   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1669   assert( p->nExpr>0 );
1670   if( iSortOrder<0 ){
1671     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1672     return;
1673   }
1674   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1675 }
1676 
1677 /*
1678 ** Set the ExprList.a[].zName element of the most recently added item
1679 ** on the expression list.
1680 **
1681 ** pList might be NULL following an OOM error.  But pName should never be
1682 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1683 ** is set.
1684 */
1685 void sqlite3ExprListSetName(
1686   Parse *pParse,          /* Parsing context */
1687   ExprList *pList,        /* List to which to add the span. */
1688   Token *pName,           /* Name to be added */
1689   int dequote             /* True to cause the name to be dequoted */
1690 ){
1691   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1692   if( pList ){
1693     struct ExprList_item *pItem;
1694     assert( pList->nExpr>0 );
1695     pItem = &pList->a[pList->nExpr-1];
1696     assert( pItem->zName==0 );
1697     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1698     if( dequote ) sqlite3Dequote(pItem->zName);
1699     if( IN_RENAME_OBJECT ){
1700       sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName);
1701     }
1702   }
1703 }
1704 
1705 /*
1706 ** Set the ExprList.a[].zSpan element of the most recently added item
1707 ** on the expression list.
1708 **
1709 ** pList might be NULL following an OOM error.  But pSpan should never be
1710 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1711 ** is set.
1712 */
1713 void sqlite3ExprListSetSpan(
1714   Parse *pParse,          /* Parsing context */
1715   ExprList *pList,        /* List to which to add the span. */
1716   const char *zStart,     /* Start of the span */
1717   const char *zEnd        /* End of the span */
1718 ){
1719   sqlite3 *db = pParse->db;
1720   assert( pList!=0 || db->mallocFailed!=0 );
1721   if( pList ){
1722     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1723     assert( pList->nExpr>0 );
1724     sqlite3DbFree(db, pItem->zSpan);
1725     pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1726   }
1727 }
1728 
1729 /*
1730 ** If the expression list pEList contains more than iLimit elements,
1731 ** leave an error message in pParse.
1732 */
1733 void sqlite3ExprListCheckLength(
1734   Parse *pParse,
1735   ExprList *pEList,
1736   const char *zObject
1737 ){
1738   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1739   testcase( pEList && pEList->nExpr==mx );
1740   testcase( pEList && pEList->nExpr==mx+1 );
1741   if( pEList && pEList->nExpr>mx ){
1742     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1743   }
1744 }
1745 
1746 /*
1747 ** Delete an entire expression list.
1748 */
1749 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1750   int i = pList->nExpr;
1751   struct ExprList_item *pItem =  pList->a;
1752   assert( pList->nExpr>0 );
1753   do{
1754     sqlite3ExprDelete(db, pItem->pExpr);
1755     sqlite3DbFree(db, pItem->zName);
1756     sqlite3DbFree(db, pItem->zSpan);
1757     pItem++;
1758   }while( --i>0 );
1759   sqlite3DbFreeNN(db, pList);
1760 }
1761 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1762   if( pList ) exprListDeleteNN(db, pList);
1763 }
1764 
1765 /*
1766 ** Return the bitwise-OR of all Expr.flags fields in the given
1767 ** ExprList.
1768 */
1769 u32 sqlite3ExprListFlags(const ExprList *pList){
1770   int i;
1771   u32 m = 0;
1772   assert( pList!=0 );
1773   for(i=0; i<pList->nExpr; i++){
1774      Expr *pExpr = pList->a[i].pExpr;
1775      assert( pExpr!=0 );
1776      m |= pExpr->flags;
1777   }
1778   return m;
1779 }
1780 
1781 /*
1782 ** This is a SELECT-node callback for the expression walker that
1783 ** always "fails".  By "fail" in this case, we mean set
1784 ** pWalker->eCode to zero and abort.
1785 **
1786 ** This callback is used by multiple expression walkers.
1787 */
1788 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1789   UNUSED_PARAMETER(NotUsed);
1790   pWalker->eCode = 0;
1791   return WRC_Abort;
1792 }
1793 
1794 /*
1795 ** If the input expression is an ID with the name "true" or "false"
1796 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1797 ** the conversion happened, and zero if the expression is unaltered.
1798 */
1799 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1800   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1801   if( !ExprHasProperty(pExpr, EP_Quoted)
1802    && (sqlite3StrICmp(pExpr->u.zToken, "true")==0
1803        || sqlite3StrICmp(pExpr->u.zToken, "false")==0)
1804   ){
1805     pExpr->op = TK_TRUEFALSE;
1806     ExprSetProperty(pExpr, pExpr->u.zToken[4]==0 ? EP_IsTrue : EP_IsFalse);
1807     return 1;
1808   }
1809   return 0;
1810 }
1811 
1812 /*
1813 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1814 ** and 0 if it is FALSE.
1815 */
1816 int sqlite3ExprTruthValue(const Expr *pExpr){
1817   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
1818   assert( pExpr->op==TK_TRUEFALSE );
1819   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1820        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1821   return pExpr->u.zToken[4]==0;
1822 }
1823 
1824 /*
1825 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1826 ** terms that are always true or false.  Return the simplified expression.
1827 ** Or return the original expression if no simplification is possible.
1828 **
1829 ** Examples:
1830 **
1831 **     (x<10) AND true                =>   (x<10)
1832 **     (x<10) AND false               =>   false
1833 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
1834 **     (x<10) AND (y=22 OR true)      =>   (x<10)
1835 **     (y=22) OR true                 =>   true
1836 */
1837 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
1838   assert( pExpr!=0 );
1839   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
1840     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
1841     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
1842     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
1843       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
1844     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
1845       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
1846     }
1847   }
1848   return pExpr;
1849 }
1850 
1851 
1852 /*
1853 ** These routines are Walker callbacks used to check expressions to
1854 ** see if they are "constant" for some definition of constant.  The
1855 ** Walker.eCode value determines the type of "constant" we are looking
1856 ** for.
1857 **
1858 ** These callback routines are used to implement the following:
1859 **
1860 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1861 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1862 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1863 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1864 **
1865 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1866 ** is found to not be a constant.
1867 **
1868 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1869 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1870 ** an existing schema and 4 when processing a new statement.  A bound
1871 ** parameter raises an error for new statements, but is silently converted
1872 ** to NULL for existing schemas.  This allows sqlite_master tables that
1873 ** contain a bound parameter because they were generated by older versions
1874 ** of SQLite to be parsed by newer versions of SQLite without raising a
1875 ** malformed schema error.
1876 */
1877 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1878 
1879   /* If pWalker->eCode is 2 then any term of the expression that comes from
1880   ** the ON or USING clauses of a left join disqualifies the expression
1881   ** from being considered constant. */
1882   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1883     pWalker->eCode = 0;
1884     return WRC_Abort;
1885   }
1886 
1887   switch( pExpr->op ){
1888     /* Consider functions to be constant if all their arguments are constant
1889     ** and either pWalker->eCode==4 or 5 or the function has the
1890     ** SQLITE_FUNC_CONST flag. */
1891     case TK_FUNCTION:
1892       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1893         return WRC_Continue;
1894       }else{
1895         pWalker->eCode = 0;
1896         return WRC_Abort;
1897       }
1898     case TK_ID:
1899       /* Convert "true" or "false" in a DEFAULT clause into the
1900       ** appropriate TK_TRUEFALSE operator */
1901       if( sqlite3ExprIdToTrueFalse(pExpr) ){
1902         return WRC_Prune;
1903       }
1904       /* Fall thru */
1905     case TK_COLUMN:
1906     case TK_AGG_FUNCTION:
1907     case TK_AGG_COLUMN:
1908       testcase( pExpr->op==TK_ID );
1909       testcase( pExpr->op==TK_COLUMN );
1910       testcase( pExpr->op==TK_AGG_FUNCTION );
1911       testcase( pExpr->op==TK_AGG_COLUMN );
1912       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
1913         return WRC_Continue;
1914       }
1915       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1916         return WRC_Continue;
1917       }
1918       /* Fall through */
1919     case TK_IF_NULL_ROW:
1920     case TK_REGISTER:
1921       testcase( pExpr->op==TK_REGISTER );
1922       testcase( pExpr->op==TK_IF_NULL_ROW );
1923       pWalker->eCode = 0;
1924       return WRC_Abort;
1925     case TK_VARIABLE:
1926       if( pWalker->eCode==5 ){
1927         /* Silently convert bound parameters that appear inside of CREATE
1928         ** statements into a NULL when parsing the CREATE statement text out
1929         ** of the sqlite_master table */
1930         pExpr->op = TK_NULL;
1931       }else if( pWalker->eCode==4 ){
1932         /* A bound parameter in a CREATE statement that originates from
1933         ** sqlite3_prepare() causes an error */
1934         pWalker->eCode = 0;
1935         return WRC_Abort;
1936       }
1937       /* Fall through */
1938     default:
1939       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1940       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1941       return WRC_Continue;
1942   }
1943 }
1944 static int exprIsConst(Expr *p, int initFlag, int iCur){
1945   Walker w;
1946   w.eCode = initFlag;
1947   w.xExprCallback = exprNodeIsConstant;
1948   w.xSelectCallback = sqlite3SelectWalkFail;
1949 #ifdef SQLITE_DEBUG
1950   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1951 #endif
1952   w.u.iCur = iCur;
1953   sqlite3WalkExpr(&w, p);
1954   return w.eCode;
1955 }
1956 
1957 /*
1958 ** Walk an expression tree.  Return non-zero if the expression is constant
1959 ** and 0 if it involves variables or function calls.
1960 **
1961 ** For the purposes of this function, a double-quoted string (ex: "abc")
1962 ** is considered a variable but a single-quoted string (ex: 'abc') is
1963 ** a constant.
1964 */
1965 int sqlite3ExprIsConstant(Expr *p){
1966   return exprIsConst(p, 1, 0);
1967 }
1968 
1969 /*
1970 ** Walk an expression tree.  Return non-zero if
1971 **
1972 **   (1) the expression is constant, and
1973 **   (2) the expression does originate in the ON or USING clause
1974 **       of a LEFT JOIN, and
1975 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
1976 **       operands created by the constant propagation optimization.
1977 **
1978 ** When this routine returns true, it indicates that the expression
1979 ** can be added to the pParse->pConstExpr list and evaluated once when
1980 ** the prepared statement starts up.  See sqlite3ExprCodeAtInit().
1981 */
1982 int sqlite3ExprIsConstantNotJoin(Expr *p){
1983   return exprIsConst(p, 2, 0);
1984 }
1985 
1986 /*
1987 ** Walk an expression tree.  Return non-zero if the expression is constant
1988 ** for any single row of the table with cursor iCur.  In other words, the
1989 ** expression must not refer to any non-deterministic function nor any
1990 ** table other than iCur.
1991 */
1992 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1993   return exprIsConst(p, 3, iCur);
1994 }
1995 
1996 
1997 /*
1998 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1999 */
2000 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2001   ExprList *pGroupBy = pWalker->u.pGroupBy;
2002   int i;
2003 
2004   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2005   ** it constant.  */
2006   for(i=0; i<pGroupBy->nExpr; i++){
2007     Expr *p = pGroupBy->a[i].pExpr;
2008     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2009       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2010       if( sqlite3IsBinary(pColl) ){
2011         return WRC_Prune;
2012       }
2013     }
2014   }
2015 
2016   /* Check if pExpr is a sub-select. If so, consider it variable. */
2017   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2018     pWalker->eCode = 0;
2019     return WRC_Abort;
2020   }
2021 
2022   return exprNodeIsConstant(pWalker, pExpr);
2023 }
2024 
2025 /*
2026 ** Walk the expression tree passed as the first argument. Return non-zero
2027 ** if the expression consists entirely of constants or copies of terms
2028 ** in pGroupBy that sort with the BINARY collation sequence.
2029 **
2030 ** This routine is used to determine if a term of the HAVING clause can
2031 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2032 ** the value of the HAVING clause term must be the same for all members of
2033 ** a "group".  The requirement that the GROUP BY term must be BINARY
2034 ** assumes that no other collating sequence will have a finer-grained
2035 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2036 ** A=B in every other collating sequence.  The requirement that the
2037 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2038 ** to promote HAVING clauses that use the same alternative collating
2039 ** sequence as the GROUP BY term, but that is much harder to check,
2040 ** alternative collating sequences are uncommon, and this is only an
2041 ** optimization, so we take the easy way out and simply require the
2042 ** GROUP BY to use the BINARY collating sequence.
2043 */
2044 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2045   Walker w;
2046   w.eCode = 1;
2047   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2048   w.xSelectCallback = 0;
2049   w.u.pGroupBy = pGroupBy;
2050   w.pParse = pParse;
2051   sqlite3WalkExpr(&w, p);
2052   return w.eCode;
2053 }
2054 
2055 /*
2056 ** Walk an expression tree.  Return non-zero if the expression is constant
2057 ** or a function call with constant arguments.  Return and 0 if there
2058 ** are any variables.
2059 **
2060 ** For the purposes of this function, a double-quoted string (ex: "abc")
2061 ** is considered a variable but a single-quoted string (ex: 'abc') is
2062 ** a constant.
2063 */
2064 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2065   assert( isInit==0 || isInit==1 );
2066   return exprIsConst(p, 4+isInit, 0);
2067 }
2068 
2069 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2070 /*
2071 ** Walk an expression tree.  Return 1 if the expression contains a
2072 ** subquery of some kind.  Return 0 if there are no subqueries.
2073 */
2074 int sqlite3ExprContainsSubquery(Expr *p){
2075   Walker w;
2076   w.eCode = 1;
2077   w.xExprCallback = sqlite3ExprWalkNoop;
2078   w.xSelectCallback = sqlite3SelectWalkFail;
2079 #ifdef SQLITE_DEBUG
2080   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2081 #endif
2082   sqlite3WalkExpr(&w, p);
2083   return w.eCode==0;
2084 }
2085 #endif
2086 
2087 /*
2088 ** If the expression p codes a constant integer that is small enough
2089 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2090 ** in *pValue.  If the expression is not an integer or if it is too big
2091 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2092 */
2093 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2094   int rc = 0;
2095   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2096 
2097   /* If an expression is an integer literal that fits in a signed 32-bit
2098   ** integer, then the EP_IntValue flag will have already been set */
2099   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2100            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2101 
2102   if( p->flags & EP_IntValue ){
2103     *pValue = p->u.iValue;
2104     return 1;
2105   }
2106   switch( p->op ){
2107     case TK_UPLUS: {
2108       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2109       break;
2110     }
2111     case TK_UMINUS: {
2112       int v;
2113       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2114         assert( v!=(-2147483647-1) );
2115         *pValue = -v;
2116         rc = 1;
2117       }
2118       break;
2119     }
2120     default: break;
2121   }
2122   return rc;
2123 }
2124 
2125 /*
2126 ** Return FALSE if there is no chance that the expression can be NULL.
2127 **
2128 ** If the expression might be NULL or if the expression is too complex
2129 ** to tell return TRUE.
2130 **
2131 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2132 ** when we know that a value cannot be NULL.  Hence, a false positive
2133 ** (returning TRUE when in fact the expression can never be NULL) might
2134 ** be a small performance hit but is otherwise harmless.  On the other
2135 ** hand, a false negative (returning FALSE when the result could be NULL)
2136 ** will likely result in an incorrect answer.  So when in doubt, return
2137 ** TRUE.
2138 */
2139 int sqlite3ExprCanBeNull(const Expr *p){
2140   u8 op;
2141   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2142     p = p->pLeft;
2143   }
2144   op = p->op;
2145   if( op==TK_REGISTER ) op = p->op2;
2146   switch( op ){
2147     case TK_INTEGER:
2148     case TK_STRING:
2149     case TK_FLOAT:
2150     case TK_BLOB:
2151       return 0;
2152     case TK_COLUMN:
2153       return ExprHasProperty(p, EP_CanBeNull) ||
2154              p->y.pTab==0 ||  /* Reference to column of index on expression */
2155              (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0);
2156     default:
2157       return 1;
2158   }
2159 }
2160 
2161 /*
2162 ** Return TRUE if the given expression is a constant which would be
2163 ** unchanged by OP_Affinity with the affinity given in the second
2164 ** argument.
2165 **
2166 ** This routine is used to determine if the OP_Affinity operation
2167 ** can be omitted.  When in doubt return FALSE.  A false negative
2168 ** is harmless.  A false positive, however, can result in the wrong
2169 ** answer.
2170 */
2171 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2172   u8 op;
2173   if( aff==SQLITE_AFF_BLOB ) return 1;
2174   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2175   op = p->op;
2176   if( op==TK_REGISTER ) op = p->op2;
2177   switch( op ){
2178     case TK_INTEGER: {
2179       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2180     }
2181     case TK_FLOAT: {
2182       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2183     }
2184     case TK_STRING: {
2185       return aff==SQLITE_AFF_TEXT;
2186     }
2187     case TK_BLOB: {
2188       return 1;
2189     }
2190     case TK_COLUMN: {
2191       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2192       return p->iColumn<0
2193           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2194     }
2195     default: {
2196       return 0;
2197     }
2198   }
2199 }
2200 
2201 /*
2202 ** Return TRUE if the given string is a row-id column name.
2203 */
2204 int sqlite3IsRowid(const char *z){
2205   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2206   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2207   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2208   return 0;
2209 }
2210 
2211 /*
2212 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2213 ** that can be simplified to a direct table access, then return
2214 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2215 ** or if the SELECT statement needs to be manifested into a transient
2216 ** table, then return NULL.
2217 */
2218 #ifndef SQLITE_OMIT_SUBQUERY
2219 static Select *isCandidateForInOpt(Expr *pX){
2220   Select *p;
2221   SrcList *pSrc;
2222   ExprList *pEList;
2223   Table *pTab;
2224   int i;
2225   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2226   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2227   p = pX->x.pSelect;
2228   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2229   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2230     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2231     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2232     return 0; /* No DISTINCT keyword and no aggregate functions */
2233   }
2234   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2235   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2236   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2237   pSrc = p->pSrc;
2238   assert( pSrc!=0 );
2239   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2240   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2241   pTab = pSrc->a[0].pTab;
2242   assert( pTab!=0 );
2243   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2244   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2245   pEList = p->pEList;
2246   assert( pEList!=0 );
2247   /* All SELECT results must be columns. */
2248   for(i=0; i<pEList->nExpr; i++){
2249     Expr *pRes = pEList->a[i].pExpr;
2250     if( pRes->op!=TK_COLUMN ) return 0;
2251     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2252   }
2253   return p;
2254 }
2255 #endif /* SQLITE_OMIT_SUBQUERY */
2256 
2257 #ifndef SQLITE_OMIT_SUBQUERY
2258 /*
2259 ** Generate code that checks the left-most column of index table iCur to see if
2260 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2261 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2262 ** to be set to NULL if iCur contains one or more NULL values.
2263 */
2264 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2265   int addr1;
2266   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2267   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2268   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2269   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2270   VdbeComment((v, "first_entry_in(%d)", iCur));
2271   sqlite3VdbeJumpHere(v, addr1);
2272 }
2273 #endif
2274 
2275 
2276 #ifndef SQLITE_OMIT_SUBQUERY
2277 /*
2278 ** The argument is an IN operator with a list (not a subquery) on the
2279 ** right-hand side.  Return TRUE if that list is constant.
2280 */
2281 static int sqlite3InRhsIsConstant(Expr *pIn){
2282   Expr *pLHS;
2283   int res;
2284   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2285   pLHS = pIn->pLeft;
2286   pIn->pLeft = 0;
2287   res = sqlite3ExprIsConstant(pIn);
2288   pIn->pLeft = pLHS;
2289   return res;
2290 }
2291 #endif
2292 
2293 /*
2294 ** This function is used by the implementation of the IN (...) operator.
2295 ** The pX parameter is the expression on the RHS of the IN operator, which
2296 ** might be either a list of expressions or a subquery.
2297 **
2298 ** The job of this routine is to find or create a b-tree object that can
2299 ** be used either to test for membership in the RHS set or to iterate through
2300 ** all members of the RHS set, skipping duplicates.
2301 **
2302 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2303 ** and pX->iTable is set to the index of that cursor.
2304 **
2305 ** The returned value of this function indicates the b-tree type, as follows:
2306 **
2307 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2308 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2309 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2310 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2311 **                         populated epheremal table.
2312 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2313 **                         implemented as a sequence of comparisons.
2314 **
2315 ** An existing b-tree might be used if the RHS expression pX is a simple
2316 ** subquery such as:
2317 **
2318 **     SELECT <column1>, <column2>... FROM <table>
2319 **
2320 ** If the RHS of the IN operator is a list or a more complex subquery, then
2321 ** an ephemeral table might need to be generated from the RHS and then
2322 ** pX->iTable made to point to the ephemeral table instead of an
2323 ** existing table.
2324 **
2325 ** The inFlags parameter must contain, at a minimum, one of the bits
2326 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2327 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2328 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2329 ** be used to loop over all values of the RHS of the IN operator.
2330 **
2331 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2332 ** through the set members) then the b-tree must not contain duplicates.
2333 ** An epheremal table will be created unless the selected columns are guaranteed
2334 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2335 ** a UNIQUE constraint or index.
2336 **
2337 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2338 ** for fast set membership tests) then an epheremal table must
2339 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2340 ** index can be found with the specified <columns> as its left-most.
2341 **
2342 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2343 ** if the RHS of the IN operator is a list (not a subquery) then this
2344 ** routine might decide that creating an ephemeral b-tree for membership
2345 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2346 ** calling routine should implement the IN operator using a sequence
2347 ** of Eq or Ne comparison operations.
2348 **
2349 ** When the b-tree is being used for membership tests, the calling function
2350 ** might need to know whether or not the RHS side of the IN operator
2351 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2352 ** if there is any chance that the (...) might contain a NULL value at
2353 ** runtime, then a register is allocated and the register number written
2354 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2355 ** NULL value, then *prRhsHasNull is left unchanged.
2356 **
2357 ** If a register is allocated and its location stored in *prRhsHasNull, then
2358 ** the value in that register will be NULL if the b-tree contains one or more
2359 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2360 ** NULL values.
2361 **
2362 ** If the aiMap parameter is not NULL, it must point to an array containing
2363 ** one element for each column returned by the SELECT statement on the RHS
2364 ** of the IN(...) operator. The i'th entry of the array is populated with the
2365 ** offset of the index column that matches the i'th column returned by the
2366 ** SELECT. For example, if the expression and selected index are:
2367 **
2368 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2369 **   CREATE INDEX i1 ON t1(b, c, a);
2370 **
2371 ** then aiMap[] is populated with {2, 0, 1}.
2372 */
2373 #ifndef SQLITE_OMIT_SUBQUERY
2374 int sqlite3FindInIndex(
2375   Parse *pParse,             /* Parsing context */
2376   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2377   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2378   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2379   int *aiMap,                /* Mapping from Index fields to RHS fields */
2380   int *piTab                 /* OUT: index to use */
2381 ){
2382   Select *p;                            /* SELECT to the right of IN operator */
2383   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2384   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2385   int mustBeUnique;                     /* True if RHS must be unique */
2386   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2387 
2388   assert( pX->op==TK_IN );
2389   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2390 
2391   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2392   ** whether or not the SELECT result contains NULL values, check whether
2393   ** or not NULL is actually possible (it may not be, for example, due
2394   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2395   ** set prRhsHasNull to 0 before continuing.  */
2396   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2397     int i;
2398     ExprList *pEList = pX->x.pSelect->pEList;
2399     for(i=0; i<pEList->nExpr; i++){
2400       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2401     }
2402     if( i==pEList->nExpr ){
2403       prRhsHasNull = 0;
2404     }
2405   }
2406 
2407   /* Check to see if an existing table or index can be used to
2408   ** satisfy the query.  This is preferable to generating a new
2409   ** ephemeral table.  */
2410   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2411     sqlite3 *db = pParse->db;              /* Database connection */
2412     Table *pTab;                           /* Table <table>. */
2413     i16 iDb;                               /* Database idx for pTab */
2414     ExprList *pEList = p->pEList;
2415     int nExpr = pEList->nExpr;
2416 
2417     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2418     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2419     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2420     pTab = p->pSrc->a[0].pTab;
2421 
2422     /* Code an OP_Transaction and OP_TableLock for <table>. */
2423     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2424     sqlite3CodeVerifySchema(pParse, iDb);
2425     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2426 
2427     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2428     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2429       /* The "x IN (SELECT rowid FROM table)" case */
2430       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2431       VdbeCoverage(v);
2432 
2433       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2434       eType = IN_INDEX_ROWID;
2435       ExplainQueryPlan((pParse, 0,
2436             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2437       sqlite3VdbeJumpHere(v, iAddr);
2438     }else{
2439       Index *pIdx;                         /* Iterator variable */
2440       int affinity_ok = 1;
2441       int i;
2442 
2443       /* Check that the affinity that will be used to perform each
2444       ** comparison is the same as the affinity of each column in table
2445       ** on the RHS of the IN operator.  If it not, it is not possible to
2446       ** use any index of the RHS table.  */
2447       for(i=0; i<nExpr && affinity_ok; i++){
2448         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2449         int iCol = pEList->a[i].pExpr->iColumn;
2450         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2451         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2452         testcase( cmpaff==SQLITE_AFF_BLOB );
2453         testcase( cmpaff==SQLITE_AFF_TEXT );
2454         switch( cmpaff ){
2455           case SQLITE_AFF_BLOB:
2456             break;
2457           case SQLITE_AFF_TEXT:
2458             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2459             ** other has no affinity and the other side is TEXT.  Hence,
2460             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2461             ** and for the term on the LHS of the IN to have no affinity. */
2462             assert( idxaff==SQLITE_AFF_TEXT );
2463             break;
2464           default:
2465             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2466         }
2467       }
2468 
2469       if( affinity_ok ){
2470         /* Search for an existing index that will work for this IN operator */
2471         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2472           Bitmask colUsed;      /* Columns of the index used */
2473           Bitmask mCol;         /* Mask for the current column */
2474           if( pIdx->nColumn<nExpr ) continue;
2475           if( pIdx->pPartIdxWhere!=0 ) continue;
2476           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2477           ** BITMASK(nExpr) without overflowing */
2478           testcase( pIdx->nColumn==BMS-2 );
2479           testcase( pIdx->nColumn==BMS-1 );
2480           if( pIdx->nColumn>=BMS-1 ) continue;
2481           if( mustBeUnique ){
2482             if( pIdx->nKeyCol>nExpr
2483              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2484             ){
2485               continue;  /* This index is not unique over the IN RHS columns */
2486             }
2487           }
2488 
2489           colUsed = 0;   /* Columns of index used so far */
2490           for(i=0; i<nExpr; i++){
2491             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2492             Expr *pRhs = pEList->a[i].pExpr;
2493             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2494             int j;
2495 
2496             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2497             for(j=0; j<nExpr; j++){
2498               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2499               assert( pIdx->azColl[j] );
2500               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2501                 continue;
2502               }
2503               break;
2504             }
2505             if( j==nExpr ) break;
2506             mCol = MASKBIT(j);
2507             if( mCol & colUsed ) break; /* Each column used only once */
2508             colUsed |= mCol;
2509             if( aiMap ) aiMap[i] = j;
2510           }
2511 
2512           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2513           if( colUsed==(MASKBIT(nExpr)-1) ){
2514             /* If we reach this point, that means the index pIdx is usable */
2515             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2516             ExplainQueryPlan((pParse, 0,
2517                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2518             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2519             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2520             VdbeComment((v, "%s", pIdx->zName));
2521             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2522             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2523 
2524             if( prRhsHasNull ){
2525 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2526               i64 mask = (1<<nExpr)-1;
2527               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2528                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2529 #endif
2530               *prRhsHasNull = ++pParse->nMem;
2531               if( nExpr==1 ){
2532                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2533               }
2534             }
2535             sqlite3VdbeJumpHere(v, iAddr);
2536           }
2537         } /* End loop over indexes */
2538       } /* End if( affinity_ok ) */
2539     } /* End if not an rowid index */
2540   } /* End attempt to optimize using an index */
2541 
2542   /* If no preexisting index is available for the IN clause
2543   ** and IN_INDEX_NOOP is an allowed reply
2544   ** and the RHS of the IN operator is a list, not a subquery
2545   ** and the RHS is not constant or has two or fewer terms,
2546   ** then it is not worth creating an ephemeral table to evaluate
2547   ** the IN operator so return IN_INDEX_NOOP.
2548   */
2549   if( eType==0
2550    && (inFlags & IN_INDEX_NOOP_OK)
2551    && !ExprHasProperty(pX, EP_xIsSelect)
2552    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2553   ){
2554     eType = IN_INDEX_NOOP;
2555   }
2556 
2557   if( eType==0 ){
2558     /* Could not find an existing table or index to use as the RHS b-tree.
2559     ** We will have to generate an ephemeral table to do the job.
2560     */
2561     u32 savedNQueryLoop = pParse->nQueryLoop;
2562     int rMayHaveNull = 0;
2563     eType = IN_INDEX_EPH;
2564     if( inFlags & IN_INDEX_LOOP ){
2565       pParse->nQueryLoop = 0;
2566     }else if( prRhsHasNull ){
2567       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2568     }
2569     assert( pX->op==TK_IN );
2570     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2571     if( rMayHaveNull ){
2572       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2573     }
2574     pParse->nQueryLoop = savedNQueryLoop;
2575   }
2576 
2577   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2578     int i, n;
2579     n = sqlite3ExprVectorSize(pX->pLeft);
2580     for(i=0; i<n; i++) aiMap[i] = i;
2581   }
2582   *piTab = iTab;
2583   return eType;
2584 }
2585 #endif
2586 
2587 #ifndef SQLITE_OMIT_SUBQUERY
2588 /*
2589 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2590 ** function allocates and returns a nul-terminated string containing
2591 ** the affinities to be used for each column of the comparison.
2592 **
2593 ** It is the responsibility of the caller to ensure that the returned
2594 ** string is eventually freed using sqlite3DbFree().
2595 */
2596 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2597   Expr *pLeft = pExpr->pLeft;
2598   int nVal = sqlite3ExprVectorSize(pLeft);
2599   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2600   char *zRet;
2601 
2602   assert( pExpr->op==TK_IN );
2603   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2604   if( zRet ){
2605     int i;
2606     for(i=0; i<nVal; i++){
2607       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2608       char a = sqlite3ExprAffinity(pA);
2609       if( pSelect ){
2610         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2611       }else{
2612         zRet[i] = a;
2613       }
2614     }
2615     zRet[nVal] = '\0';
2616   }
2617   return zRet;
2618 }
2619 #endif
2620 
2621 #ifndef SQLITE_OMIT_SUBQUERY
2622 /*
2623 ** Load the Parse object passed as the first argument with an error
2624 ** message of the form:
2625 **
2626 **   "sub-select returns N columns - expected M"
2627 */
2628 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2629   const char *zFmt = "sub-select returns %d columns - expected %d";
2630   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2631 }
2632 #endif
2633 
2634 /*
2635 ** Expression pExpr is a vector that has been used in a context where
2636 ** it is not permitted. If pExpr is a sub-select vector, this routine
2637 ** loads the Parse object with a message of the form:
2638 **
2639 **   "sub-select returns N columns - expected 1"
2640 **
2641 ** Or, if it is a regular scalar vector:
2642 **
2643 **   "row value misused"
2644 */
2645 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2646 #ifndef SQLITE_OMIT_SUBQUERY
2647   if( pExpr->flags & EP_xIsSelect ){
2648     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2649   }else
2650 #endif
2651   {
2652     sqlite3ErrorMsg(pParse, "row value misused");
2653   }
2654 }
2655 
2656 #ifndef SQLITE_OMIT_SUBQUERY
2657 /*
2658 ** Generate code that will construct an ephemeral table containing all terms
2659 ** in the RHS of an IN operator.  The IN operator can be in either of two
2660 ** forms:
2661 **
2662 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2663 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2664 **
2665 ** The pExpr parameter is the IN operator.  The cursor number for the
2666 ** constructed ephermeral table is returned.  The first time the ephemeral
2667 ** table is computed, the cursor number is also stored in pExpr->iTable,
2668 ** however the cursor number returned might not be the same, as it might
2669 ** have been duplicated using OP_OpenDup.
2670 **
2671 ** If the LHS expression ("x" in the examples) is a column value, or
2672 ** the SELECT statement returns a column value, then the affinity of that
2673 ** column is used to build the index keys. If both 'x' and the
2674 ** SELECT... statement are columns, then numeric affinity is used
2675 ** if either column has NUMERIC or INTEGER affinity. If neither
2676 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2677 ** is used.
2678 */
2679 void sqlite3CodeRhsOfIN(
2680   Parse *pParse,          /* Parsing context */
2681   Expr *pExpr,            /* The IN operator */
2682   int iTab                /* Use this cursor number */
2683 ){
2684   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2685   int addr;                   /* Address of OP_OpenEphemeral instruction */
2686   Expr *pLeft;                /* the LHS of the IN operator */
2687   KeyInfo *pKeyInfo = 0;      /* Key information */
2688   int nVal;                   /* Size of vector pLeft */
2689   Vdbe *v;                    /* The prepared statement under construction */
2690 
2691   v = pParse->pVdbe;
2692   assert( v!=0 );
2693 
2694   /* The evaluation of the IN must be repeated every time it
2695   ** is encountered if any of the following is true:
2696   **
2697   **    *  The right-hand side is a correlated subquery
2698   **    *  The right-hand side is an expression list containing variables
2699   **    *  We are inside a trigger
2700   **
2701   ** If all of the above are false, then we can compute the RHS just once
2702   ** and reuse it many names.
2703   */
2704   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2705     /* Reuse of the RHS is allowed */
2706     /* If this routine has already been coded, but the previous code
2707     ** might not have been invoked yet, so invoke it now as a subroutine.
2708     */
2709     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2710       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2711       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2712         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2713               pExpr->x.pSelect->selId));
2714       }
2715       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2716                         pExpr->y.sub.iAddr);
2717       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2718       sqlite3VdbeJumpHere(v, addrOnce);
2719       return;
2720     }
2721 
2722     /* Begin coding the subroutine */
2723     ExprSetProperty(pExpr, EP_Subrtn);
2724     pExpr->y.sub.regReturn = ++pParse->nMem;
2725     pExpr->y.sub.iAddr =
2726       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2727     VdbeComment((v, "return address"));
2728 
2729     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2730   }
2731 
2732   /* Check to see if this is a vector IN operator */
2733   pLeft = pExpr->pLeft;
2734   nVal = sqlite3ExprVectorSize(pLeft);
2735 
2736   /* Construct the ephemeral table that will contain the content of
2737   ** RHS of the IN operator.
2738   */
2739   pExpr->iTable = iTab;
2740   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2741 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2742   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2743     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2744   }else{
2745     VdbeComment((v, "RHS of IN operator"));
2746   }
2747 #endif
2748   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2749 
2750   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2751     /* Case 1:     expr IN (SELECT ...)
2752     **
2753     ** Generate code to write the results of the select into the temporary
2754     ** table allocated and opened above.
2755     */
2756     Select *pSelect = pExpr->x.pSelect;
2757     ExprList *pEList = pSelect->pEList;
2758 
2759     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2760         addrOnce?"":"CORRELATED ", pSelect->selId
2761     ));
2762     /* If the LHS and RHS of the IN operator do not match, that
2763     ** error will have been caught long before we reach this point. */
2764     if( ALWAYS(pEList->nExpr==nVal) ){
2765       SelectDest dest;
2766       int i;
2767       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2768       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2769       pSelect->iLimit = 0;
2770       testcase( pSelect->selFlags & SF_Distinct );
2771       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2772       if( sqlite3Select(pParse, pSelect, &dest) ){
2773         sqlite3DbFree(pParse->db, dest.zAffSdst);
2774         sqlite3KeyInfoUnref(pKeyInfo);
2775         return;
2776       }
2777       sqlite3DbFree(pParse->db, dest.zAffSdst);
2778       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2779       assert( pEList!=0 );
2780       assert( pEList->nExpr>0 );
2781       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2782       for(i=0; i<nVal; i++){
2783         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2784         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2785             pParse, p, pEList->a[i].pExpr
2786         );
2787       }
2788     }
2789   }else if( ALWAYS(pExpr->x.pList!=0) ){
2790     /* Case 2:     expr IN (exprlist)
2791     **
2792     ** For each expression, build an index key from the evaluation and
2793     ** store it in the temporary table. If <expr> is a column, then use
2794     ** that columns affinity when building index keys. If <expr> is not
2795     ** a column, use numeric affinity.
2796     */
2797     char affinity;            /* Affinity of the LHS of the IN */
2798     int i;
2799     ExprList *pList = pExpr->x.pList;
2800     struct ExprList_item *pItem;
2801     int r1, r2, r3;
2802     affinity = sqlite3ExprAffinity(pLeft);
2803     if( !affinity ){
2804       affinity = SQLITE_AFF_BLOB;
2805     }
2806     if( pKeyInfo ){
2807       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2808       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2809     }
2810 
2811     /* Loop through each expression in <exprlist>. */
2812     r1 = sqlite3GetTempReg(pParse);
2813     r2 = sqlite3GetTempReg(pParse);
2814     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2815       Expr *pE2 = pItem->pExpr;
2816 
2817       /* If the expression is not constant then we will need to
2818       ** disable the test that was generated above that makes sure
2819       ** this code only executes once.  Because for a non-constant
2820       ** expression we need to rerun this code each time.
2821       */
2822       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
2823         sqlite3VdbeChangeToNoop(v, addrOnce);
2824         ExprClearProperty(pExpr, EP_Subrtn);
2825         addrOnce = 0;
2826       }
2827 
2828       /* Evaluate the expression and insert it into the temp table */
2829       r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2830       sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2831       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r3, 1);
2832     }
2833     sqlite3ReleaseTempReg(pParse, r1);
2834     sqlite3ReleaseTempReg(pParse, r2);
2835   }
2836   if( pKeyInfo ){
2837     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2838   }
2839   if( addrOnce ){
2840     sqlite3VdbeJumpHere(v, addrOnce);
2841     /* Subroutine return */
2842     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2843     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2844   }
2845 }
2846 #endif /* SQLITE_OMIT_SUBQUERY */
2847 
2848 /*
2849 ** Generate code for scalar subqueries used as a subquery expression
2850 ** or EXISTS operator:
2851 **
2852 **     (SELECT a FROM b)          -- subquery
2853 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2854 **
2855 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
2856 **
2857 ** The register that holds the result.  For a multi-column SELECT,
2858 ** the result is stored in a contiguous array of registers and the
2859 ** return value is the register of the left-most result column.
2860 ** Return 0 if an error occurs.
2861 */
2862 #ifndef SQLITE_OMIT_SUBQUERY
2863 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
2864   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
2865   int rReg = 0;               /* Register storing resulting */
2866   Select *pSel;               /* SELECT statement to encode */
2867   SelectDest dest;            /* How to deal with SELECT result */
2868   int nReg;                   /* Registers to allocate */
2869   Expr *pLimit;               /* New limit expression */
2870 
2871   Vdbe *v = pParse->pVdbe;
2872   assert( v!=0 );
2873   testcase( pExpr->op==TK_EXISTS );
2874   testcase( pExpr->op==TK_SELECT );
2875   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2876   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2877   pSel = pExpr->x.pSelect;
2878 
2879   /* The evaluation of the EXISTS/SELECT must be repeated every time it
2880   ** is encountered if any of the following is true:
2881   **
2882   **    *  The right-hand side is a correlated subquery
2883   **    *  The right-hand side is an expression list containing variables
2884   **    *  We are inside a trigger
2885   **
2886   ** If all of the above are false, then we can run this code just once
2887   ** save the results, and reuse the same result on subsequent invocations.
2888   */
2889   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2890     /* If this routine has already been coded, then invoke it as a
2891     ** subroutine. */
2892     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2893       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
2894       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2895                         pExpr->y.sub.iAddr);
2896       return pExpr->iTable;
2897     }
2898 
2899     /* Begin coding the subroutine */
2900     ExprSetProperty(pExpr, EP_Subrtn);
2901     pExpr->y.sub.regReturn = ++pParse->nMem;
2902     pExpr->y.sub.iAddr =
2903       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2904     VdbeComment((v, "return address"));
2905 
2906     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2907   }
2908 
2909   /* For a SELECT, generate code to put the values for all columns of
2910   ** the first row into an array of registers and return the index of
2911   ** the first register.
2912   **
2913   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2914   ** into a register and return that register number.
2915   **
2916   ** In both cases, the query is augmented with "LIMIT 1".  Any
2917   ** preexisting limit is discarded in place of the new LIMIT 1.
2918   */
2919   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
2920         addrOnce?"":"CORRELATED ", pSel->selId));
2921   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2922   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2923   pParse->nMem += nReg;
2924   if( pExpr->op==TK_SELECT ){
2925     dest.eDest = SRT_Mem;
2926     dest.iSdst = dest.iSDParm;
2927     dest.nSdst = nReg;
2928     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2929     VdbeComment((v, "Init subquery result"));
2930   }else{
2931     dest.eDest = SRT_Exists;
2932     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2933     VdbeComment((v, "Init EXISTS result"));
2934   }
2935   pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0);
2936   if( pSel->pLimit ){
2937     sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft);
2938     pSel->pLimit->pLeft = pLimit;
2939   }else{
2940     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
2941   }
2942   pSel->iLimit = 0;
2943   if( sqlite3Select(pParse, pSel, &dest) ){
2944     return 0;
2945   }
2946   pExpr->iTable = rReg = dest.iSDParm;
2947   ExprSetVVAProperty(pExpr, EP_NoReduce);
2948   if( addrOnce ){
2949     sqlite3VdbeJumpHere(v, addrOnce);
2950 
2951     /* Subroutine return */
2952     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2953     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2954   }
2955 
2956   return rReg;
2957 }
2958 #endif /* SQLITE_OMIT_SUBQUERY */
2959 
2960 #ifndef SQLITE_OMIT_SUBQUERY
2961 /*
2962 ** Expr pIn is an IN(...) expression. This function checks that the
2963 ** sub-select on the RHS of the IN() operator has the same number of
2964 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2965 ** a sub-query, that the LHS is a vector of size 1.
2966 */
2967 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2968   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2969   if( (pIn->flags & EP_xIsSelect) ){
2970     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2971       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2972       return 1;
2973     }
2974   }else if( nVector!=1 ){
2975     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2976     return 1;
2977   }
2978   return 0;
2979 }
2980 #endif
2981 
2982 #ifndef SQLITE_OMIT_SUBQUERY
2983 /*
2984 ** Generate code for an IN expression.
2985 **
2986 **      x IN (SELECT ...)
2987 **      x IN (value, value, ...)
2988 **
2989 ** The left-hand side (LHS) is a scalar or vector expression.  The
2990 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2991 ** subquery.  If the RHS is a subquery, the number of result columns must
2992 ** match the number of columns in the vector on the LHS.  If the RHS is
2993 ** a list of values, the LHS must be a scalar.
2994 **
2995 ** The IN operator is true if the LHS value is contained within the RHS.
2996 ** The result is false if the LHS is definitely not in the RHS.  The
2997 ** result is NULL if the presence of the LHS in the RHS cannot be
2998 ** determined due to NULLs.
2999 **
3000 ** This routine generates code that jumps to destIfFalse if the LHS is not
3001 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3002 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3003 ** within the RHS then fall through.
3004 **
3005 ** See the separate in-operator.md documentation file in the canonical
3006 ** SQLite source tree for additional information.
3007 */
3008 static void sqlite3ExprCodeIN(
3009   Parse *pParse,        /* Parsing and code generating context */
3010   Expr *pExpr,          /* The IN expression */
3011   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3012   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3013 ){
3014   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3015   int eType;            /* Type of the RHS */
3016   int rLhs;             /* Register(s) holding the LHS values */
3017   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3018   Vdbe *v;              /* Statement under construction */
3019   int *aiMap = 0;       /* Map from vector field to index column */
3020   char *zAff = 0;       /* Affinity string for comparisons */
3021   int nVector;          /* Size of vectors for this IN operator */
3022   int iDummy;           /* Dummy parameter to exprCodeVector() */
3023   Expr *pLeft;          /* The LHS of the IN operator */
3024   int i;                /* loop counter */
3025   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3026   int destStep6 = 0;    /* Start of code for Step 6 */
3027   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3028   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3029   int addrTop;          /* Top of the step-6 loop */
3030   int iTab = 0;         /* Index to use */
3031 
3032   pLeft = pExpr->pLeft;
3033   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3034   zAff = exprINAffinity(pParse, pExpr);
3035   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3036   aiMap = (int*)sqlite3DbMallocZero(
3037       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3038   );
3039   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3040 
3041   /* Attempt to compute the RHS. After this step, if anything other than
3042   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3043   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3044   ** the RHS has not yet been coded.  */
3045   v = pParse->pVdbe;
3046   assert( v!=0 );       /* OOM detected prior to this routine */
3047   VdbeNoopComment((v, "begin IN expr"));
3048   eType = sqlite3FindInIndex(pParse, pExpr,
3049                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3050                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3051                              aiMap, &iTab);
3052 
3053   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3054        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3055   );
3056 #ifdef SQLITE_DEBUG
3057   /* Confirm that aiMap[] contains nVector integer values between 0 and
3058   ** nVector-1. */
3059   for(i=0; i<nVector; i++){
3060     int j, cnt;
3061     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3062     assert( cnt==1 );
3063   }
3064 #endif
3065 
3066   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3067   ** vector, then it is stored in an array of nVector registers starting
3068   ** at r1.
3069   **
3070   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3071   ** so that the fields are in the same order as an existing index.   The
3072   ** aiMap[] array contains a mapping from the original LHS field order to
3073   ** the field order that matches the RHS index.
3074   */
3075   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3076   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3077   if( i==nVector ){
3078     /* LHS fields are not reordered */
3079     rLhs = rLhsOrig;
3080   }else{
3081     /* Need to reorder the LHS fields according to aiMap */
3082     rLhs = sqlite3GetTempRange(pParse, nVector);
3083     for(i=0; i<nVector; i++){
3084       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3085     }
3086   }
3087 
3088   /* If sqlite3FindInIndex() did not find or create an index that is
3089   ** suitable for evaluating the IN operator, then evaluate using a
3090   ** sequence of comparisons.
3091   **
3092   ** This is step (1) in the in-operator.md optimized algorithm.
3093   */
3094   if( eType==IN_INDEX_NOOP ){
3095     ExprList *pList = pExpr->x.pList;
3096     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3097     int labelOk = sqlite3VdbeMakeLabel(pParse);
3098     int r2, regToFree;
3099     int regCkNull = 0;
3100     int ii;
3101     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3102     if( destIfNull!=destIfFalse ){
3103       regCkNull = sqlite3GetTempReg(pParse);
3104       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3105     }
3106     for(ii=0; ii<pList->nExpr; ii++){
3107       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3108       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3109         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3110       }
3111       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3112         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
3113                           (void*)pColl, P4_COLLSEQ);
3114         VdbeCoverageIf(v, ii<pList->nExpr-1);
3115         VdbeCoverageIf(v, ii==pList->nExpr-1);
3116         sqlite3VdbeChangeP5(v, zAff[0]);
3117       }else{
3118         assert( destIfNull==destIfFalse );
3119         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
3120                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
3121         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3122       }
3123       sqlite3ReleaseTempReg(pParse, regToFree);
3124     }
3125     if( regCkNull ){
3126       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3127       sqlite3VdbeGoto(v, destIfFalse);
3128     }
3129     sqlite3VdbeResolveLabel(v, labelOk);
3130     sqlite3ReleaseTempReg(pParse, regCkNull);
3131     goto sqlite3ExprCodeIN_finished;
3132   }
3133 
3134   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3135   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3136   ** We will then skip the binary search of the RHS.
3137   */
3138   if( destIfNull==destIfFalse ){
3139     destStep2 = destIfFalse;
3140   }else{
3141     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3142   }
3143   for(i=0; i<nVector; i++){
3144     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3145     if( sqlite3ExprCanBeNull(p) ){
3146       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3147       VdbeCoverage(v);
3148     }
3149   }
3150 
3151   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3152   ** of the RHS using the LHS as a probe.  If found, the result is
3153   ** true.
3154   */
3155   if( eType==IN_INDEX_ROWID ){
3156     /* In this case, the RHS is the ROWID of table b-tree and so we also
3157     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3158     ** into a single opcode. */
3159     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3160     VdbeCoverage(v);
3161     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3162   }else{
3163     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3164     if( destIfFalse==destIfNull ){
3165       /* Combine Step 3 and Step 5 into a single opcode */
3166       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3167                            rLhs, nVector); VdbeCoverage(v);
3168       goto sqlite3ExprCodeIN_finished;
3169     }
3170     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3171     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3172                                       rLhs, nVector); VdbeCoverage(v);
3173   }
3174 
3175   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3176   ** an match on the search above, then the result must be FALSE.
3177   */
3178   if( rRhsHasNull && nVector==1 ){
3179     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3180     VdbeCoverage(v);
3181   }
3182 
3183   /* Step 5.  If we do not care about the difference between NULL and
3184   ** FALSE, then just return false.
3185   */
3186   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3187 
3188   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3189   ** If any comparison is NULL, then the result is NULL.  If all
3190   ** comparisons are FALSE then the final result is FALSE.
3191   **
3192   ** For a scalar LHS, it is sufficient to check just the first row
3193   ** of the RHS.
3194   */
3195   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3196   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3197   VdbeCoverage(v);
3198   if( nVector>1 ){
3199     destNotNull = sqlite3VdbeMakeLabel(pParse);
3200   }else{
3201     /* For nVector==1, combine steps 6 and 7 by immediately returning
3202     ** FALSE if the first comparison is not NULL */
3203     destNotNull = destIfFalse;
3204   }
3205   for(i=0; i<nVector; i++){
3206     Expr *p;
3207     CollSeq *pColl;
3208     int r3 = sqlite3GetTempReg(pParse);
3209     p = sqlite3VectorFieldSubexpr(pLeft, i);
3210     pColl = sqlite3ExprCollSeq(pParse, p);
3211     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3212     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3213                       (void*)pColl, P4_COLLSEQ);
3214     VdbeCoverage(v);
3215     sqlite3ReleaseTempReg(pParse, r3);
3216   }
3217   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3218   if( nVector>1 ){
3219     sqlite3VdbeResolveLabel(v, destNotNull);
3220     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3221     VdbeCoverage(v);
3222 
3223     /* Step 7:  If we reach this point, we know that the result must
3224     ** be false. */
3225     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3226   }
3227 
3228   /* Jumps here in order to return true. */
3229   sqlite3VdbeJumpHere(v, addrTruthOp);
3230 
3231 sqlite3ExprCodeIN_finished:
3232   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3233   VdbeComment((v, "end IN expr"));
3234 sqlite3ExprCodeIN_oom_error:
3235   sqlite3DbFree(pParse->db, aiMap);
3236   sqlite3DbFree(pParse->db, zAff);
3237 }
3238 #endif /* SQLITE_OMIT_SUBQUERY */
3239 
3240 #ifndef SQLITE_OMIT_FLOATING_POINT
3241 /*
3242 ** Generate an instruction that will put the floating point
3243 ** value described by z[0..n-1] into register iMem.
3244 **
3245 ** The z[] string will probably not be zero-terminated.  But the
3246 ** z[n] character is guaranteed to be something that does not look
3247 ** like the continuation of the number.
3248 */
3249 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3250   if( ALWAYS(z!=0) ){
3251     double value;
3252     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3253     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3254     if( negateFlag ) value = -value;
3255     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3256   }
3257 }
3258 #endif
3259 
3260 
3261 /*
3262 ** Generate an instruction that will put the integer describe by
3263 ** text z[0..n-1] into register iMem.
3264 **
3265 ** Expr.u.zToken is always UTF8 and zero-terminated.
3266 */
3267 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3268   Vdbe *v = pParse->pVdbe;
3269   if( pExpr->flags & EP_IntValue ){
3270     int i = pExpr->u.iValue;
3271     assert( i>=0 );
3272     if( negFlag ) i = -i;
3273     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3274   }else{
3275     int c;
3276     i64 value;
3277     const char *z = pExpr->u.zToken;
3278     assert( z!=0 );
3279     c = sqlite3DecOrHexToI64(z, &value);
3280     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3281 #ifdef SQLITE_OMIT_FLOATING_POINT
3282       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3283 #else
3284 #ifndef SQLITE_OMIT_HEX_INTEGER
3285       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3286         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3287       }else
3288 #endif
3289       {
3290         codeReal(v, z, negFlag, iMem);
3291       }
3292 #endif
3293     }else{
3294       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3295       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3296     }
3297   }
3298 }
3299 
3300 
3301 /* Generate code that will load into register regOut a value that is
3302 ** appropriate for the iIdxCol-th column of index pIdx.
3303 */
3304 void sqlite3ExprCodeLoadIndexColumn(
3305   Parse *pParse,  /* The parsing context */
3306   Index *pIdx,    /* The index whose column is to be loaded */
3307   int iTabCur,    /* Cursor pointing to a table row */
3308   int iIdxCol,    /* The column of the index to be loaded */
3309   int regOut      /* Store the index column value in this register */
3310 ){
3311   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3312   if( iTabCol==XN_EXPR ){
3313     assert( pIdx->aColExpr );
3314     assert( pIdx->aColExpr->nExpr>iIdxCol );
3315     pParse->iSelfTab = iTabCur + 1;
3316     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3317     pParse->iSelfTab = 0;
3318   }else{
3319     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3320                                     iTabCol, regOut);
3321   }
3322 }
3323 
3324 /*
3325 ** Generate code to extract the value of the iCol-th column of a table.
3326 */
3327 void sqlite3ExprCodeGetColumnOfTable(
3328   Vdbe *v,        /* The VDBE under construction */
3329   Table *pTab,    /* The table containing the value */
3330   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3331   int iCol,       /* Index of the column to extract */
3332   int regOut      /* Extract the value into this register */
3333 ){
3334   if( pTab==0 ){
3335     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3336     return;
3337   }
3338   if( iCol<0 || iCol==pTab->iPKey ){
3339     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3340   }else{
3341     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3342     int x = iCol;
3343     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3344       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3345     }
3346     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3347   }
3348   if( iCol>=0 ){
3349     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3350   }
3351 }
3352 
3353 /*
3354 ** Generate code that will extract the iColumn-th column from
3355 ** table pTab and store the column value in register iReg.
3356 **
3357 ** There must be an open cursor to pTab in iTable when this routine
3358 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3359 */
3360 int sqlite3ExprCodeGetColumn(
3361   Parse *pParse,   /* Parsing and code generating context */
3362   Table *pTab,     /* Description of the table we are reading from */
3363   int iColumn,     /* Index of the table column */
3364   int iTable,      /* The cursor pointing to the table */
3365   int iReg,        /* Store results here */
3366   u8 p5            /* P5 value for OP_Column + FLAGS */
3367 ){
3368   Vdbe *v = pParse->pVdbe;
3369   assert( v!=0 );
3370   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3371   if( p5 ){
3372     sqlite3VdbeChangeP5(v, p5);
3373   }
3374   return iReg;
3375 }
3376 
3377 /*
3378 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3379 ** over to iTo..iTo+nReg-1.
3380 */
3381 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3382   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3383   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3384 }
3385 
3386 /*
3387 ** Convert a scalar expression node to a TK_REGISTER referencing
3388 ** register iReg.  The caller must ensure that iReg already contains
3389 ** the correct value for the expression.
3390 */
3391 static void exprToRegister(Expr *pExpr, int iReg){
3392   Expr *p = sqlite3ExprSkipCollate(pExpr);
3393   p->op2 = p->op;
3394   p->op = TK_REGISTER;
3395   p->iTable = iReg;
3396   ExprClearProperty(p, EP_Skip);
3397 }
3398 
3399 /*
3400 ** Evaluate an expression (either a vector or a scalar expression) and store
3401 ** the result in continguous temporary registers.  Return the index of
3402 ** the first register used to store the result.
3403 **
3404 ** If the returned result register is a temporary scalar, then also write
3405 ** that register number into *piFreeable.  If the returned result register
3406 ** is not a temporary or if the expression is a vector set *piFreeable
3407 ** to 0.
3408 */
3409 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3410   int iResult;
3411   int nResult = sqlite3ExprVectorSize(p);
3412   if( nResult==1 ){
3413     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3414   }else{
3415     *piFreeable = 0;
3416     if( p->op==TK_SELECT ){
3417 #if SQLITE_OMIT_SUBQUERY
3418       iResult = 0;
3419 #else
3420       iResult = sqlite3CodeSubselect(pParse, p);
3421 #endif
3422     }else{
3423       int i;
3424       iResult = pParse->nMem+1;
3425       pParse->nMem += nResult;
3426       for(i=0; i<nResult; i++){
3427         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3428       }
3429     }
3430   }
3431   return iResult;
3432 }
3433 
3434 
3435 /*
3436 ** Generate code into the current Vdbe to evaluate the given
3437 ** expression.  Attempt to store the results in register "target".
3438 ** Return the register where results are stored.
3439 **
3440 ** With this routine, there is no guarantee that results will
3441 ** be stored in target.  The result might be stored in some other
3442 ** register if it is convenient to do so.  The calling function
3443 ** must check the return code and move the results to the desired
3444 ** register.
3445 */
3446 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3447   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3448   int op;                   /* The opcode being coded */
3449   int inReg = target;       /* Results stored in register inReg */
3450   int regFree1 = 0;         /* If non-zero free this temporary register */
3451   int regFree2 = 0;         /* If non-zero free this temporary register */
3452   int r1, r2;               /* Various register numbers */
3453   Expr tempX;               /* Temporary expression node */
3454   int p5 = 0;
3455 
3456   assert( target>0 && target<=pParse->nMem );
3457   if( v==0 ){
3458     assert( pParse->db->mallocFailed );
3459     return 0;
3460   }
3461 
3462 expr_code_doover:
3463   if( pExpr==0 ){
3464     op = TK_NULL;
3465   }else{
3466     op = pExpr->op;
3467   }
3468   switch( op ){
3469     case TK_AGG_COLUMN: {
3470       AggInfo *pAggInfo = pExpr->pAggInfo;
3471       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3472       if( !pAggInfo->directMode ){
3473         assert( pCol->iMem>0 );
3474         return pCol->iMem;
3475       }else if( pAggInfo->useSortingIdx ){
3476         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3477                               pCol->iSorterColumn, target);
3478         return target;
3479       }
3480       /* Otherwise, fall thru into the TK_COLUMN case */
3481     }
3482     case TK_COLUMN: {
3483       int iTab = pExpr->iTable;
3484       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3485         /* This COLUMN expression is really a constant due to WHERE clause
3486         ** constraints, and that constant is coded by the pExpr->pLeft
3487         ** expresssion.  However, make sure the constant has the correct
3488         ** datatype by applying the Affinity of the table column to the
3489         ** constant.
3490         */
3491         int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3492         int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3493         if( aff!=SQLITE_AFF_BLOB ){
3494           static const char zAff[] = "B\000C\000D\000E";
3495           assert( SQLITE_AFF_BLOB=='A' );
3496           assert( SQLITE_AFF_TEXT=='B' );
3497           if( iReg!=target ){
3498             sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
3499             iReg = target;
3500           }
3501           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3502                             &zAff[(aff-'B')*2], P4_STATIC);
3503         }
3504         return iReg;
3505       }
3506       if( iTab<0 ){
3507         if( pParse->iSelfTab<0 ){
3508           /* Generating CHECK constraints or inserting into partial index */
3509           return pExpr->iColumn - pParse->iSelfTab;
3510         }else{
3511           /* Coding an expression that is part of an index where column names
3512           ** in the index refer to the table to which the index belongs */
3513           iTab = pParse->iSelfTab - 1;
3514         }
3515       }
3516       return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3517                                pExpr->iColumn, iTab, target,
3518                                pExpr->op2);
3519     }
3520     case TK_INTEGER: {
3521       codeInteger(pParse, pExpr, 0, target);
3522       return target;
3523     }
3524     case TK_TRUEFALSE: {
3525       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3526       return target;
3527     }
3528 #ifndef SQLITE_OMIT_FLOATING_POINT
3529     case TK_FLOAT: {
3530       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3531       codeReal(v, pExpr->u.zToken, 0, target);
3532       return target;
3533     }
3534 #endif
3535     case TK_STRING: {
3536       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3537       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3538       return target;
3539     }
3540     case TK_NULL: {
3541       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3542       return target;
3543     }
3544 #ifndef SQLITE_OMIT_BLOB_LITERAL
3545     case TK_BLOB: {
3546       int n;
3547       const char *z;
3548       char *zBlob;
3549       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3550       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3551       assert( pExpr->u.zToken[1]=='\'' );
3552       z = &pExpr->u.zToken[2];
3553       n = sqlite3Strlen30(z) - 1;
3554       assert( z[n]=='\'' );
3555       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3556       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3557       return target;
3558     }
3559 #endif
3560     case TK_VARIABLE: {
3561       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3562       assert( pExpr->u.zToken!=0 );
3563       assert( pExpr->u.zToken[0]!=0 );
3564       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3565       if( pExpr->u.zToken[1]!=0 ){
3566         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3567         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3568         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3569         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3570       }
3571       return target;
3572     }
3573     case TK_REGISTER: {
3574       return pExpr->iTable;
3575     }
3576 #ifndef SQLITE_OMIT_CAST
3577     case TK_CAST: {
3578       /* Expressions of the form:   CAST(pLeft AS token) */
3579       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3580       if( inReg!=target ){
3581         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3582         inReg = target;
3583       }
3584       sqlite3VdbeAddOp2(v, OP_Cast, target,
3585                         sqlite3AffinityType(pExpr->u.zToken, 0));
3586       return inReg;
3587     }
3588 #endif /* SQLITE_OMIT_CAST */
3589     case TK_IS:
3590     case TK_ISNOT:
3591       op = (op==TK_IS) ? TK_EQ : TK_NE;
3592       p5 = SQLITE_NULLEQ;
3593       /* fall-through */
3594     case TK_LT:
3595     case TK_LE:
3596     case TK_GT:
3597     case TK_GE:
3598     case TK_NE:
3599     case TK_EQ: {
3600       Expr *pLeft = pExpr->pLeft;
3601       if( sqlite3ExprIsVector(pLeft) ){
3602         codeVectorCompare(pParse, pExpr, target, op, p5);
3603       }else{
3604         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3605         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3606         codeCompare(pParse, pLeft, pExpr->pRight, op,
3607             r1, r2, inReg, SQLITE_STOREP2 | p5);
3608         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3609         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3610         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3611         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3612         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3613         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3614         testcase( regFree1==0 );
3615         testcase( regFree2==0 );
3616       }
3617       break;
3618     }
3619     case TK_AND:
3620     case TK_OR:
3621     case TK_PLUS:
3622     case TK_STAR:
3623     case TK_MINUS:
3624     case TK_REM:
3625     case TK_BITAND:
3626     case TK_BITOR:
3627     case TK_SLASH:
3628     case TK_LSHIFT:
3629     case TK_RSHIFT:
3630     case TK_CONCAT: {
3631       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3632       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3633       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3634       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3635       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3636       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3637       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3638       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3639       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3640       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3641       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3642       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3643       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3644       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3645       testcase( regFree1==0 );
3646       testcase( regFree2==0 );
3647       break;
3648     }
3649     case TK_UMINUS: {
3650       Expr *pLeft = pExpr->pLeft;
3651       assert( pLeft );
3652       if( pLeft->op==TK_INTEGER ){
3653         codeInteger(pParse, pLeft, 1, target);
3654         return target;
3655 #ifndef SQLITE_OMIT_FLOATING_POINT
3656       }else if( pLeft->op==TK_FLOAT ){
3657         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3658         codeReal(v, pLeft->u.zToken, 1, target);
3659         return target;
3660 #endif
3661       }else{
3662         tempX.op = TK_INTEGER;
3663         tempX.flags = EP_IntValue|EP_TokenOnly;
3664         tempX.u.iValue = 0;
3665         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3666         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3667         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3668         testcase( regFree2==0 );
3669       }
3670       break;
3671     }
3672     case TK_BITNOT:
3673     case TK_NOT: {
3674       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3675       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3676       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3677       testcase( regFree1==0 );
3678       sqlite3VdbeAddOp2(v, op, r1, inReg);
3679       break;
3680     }
3681     case TK_TRUTH: {
3682       int isTrue;    /* IS TRUE or IS NOT TRUE */
3683       int bNormal;   /* IS TRUE or IS FALSE */
3684       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3685       testcase( regFree1==0 );
3686       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3687       bNormal = pExpr->op2==TK_IS;
3688       testcase( isTrue && bNormal);
3689       testcase( !isTrue && bNormal);
3690       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3691       break;
3692     }
3693     case TK_ISNULL:
3694     case TK_NOTNULL: {
3695       int addr;
3696       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3697       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3698       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3699       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3700       testcase( regFree1==0 );
3701       addr = sqlite3VdbeAddOp1(v, op, r1);
3702       VdbeCoverageIf(v, op==TK_ISNULL);
3703       VdbeCoverageIf(v, op==TK_NOTNULL);
3704       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3705       sqlite3VdbeJumpHere(v, addr);
3706       break;
3707     }
3708     case TK_AGG_FUNCTION: {
3709       AggInfo *pInfo = pExpr->pAggInfo;
3710       if( pInfo==0 ){
3711         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3712         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3713       }else{
3714         return pInfo->aFunc[pExpr->iAgg].iMem;
3715       }
3716       break;
3717     }
3718     case TK_FUNCTION: {
3719       ExprList *pFarg;       /* List of function arguments */
3720       int nFarg;             /* Number of function arguments */
3721       FuncDef *pDef;         /* The function definition object */
3722       const char *zId;       /* The function name */
3723       u32 constMask = 0;     /* Mask of function arguments that are constant */
3724       int i;                 /* Loop counter */
3725       sqlite3 *db = pParse->db;  /* The database connection */
3726       u8 enc = ENC(db);      /* The text encoding used by this database */
3727       CollSeq *pColl = 0;    /* A collating sequence */
3728 
3729 #ifndef SQLITE_OMIT_WINDOWFUNC
3730       if( ExprHasProperty(pExpr, EP_WinFunc) ){
3731         return pExpr->y.pWin->regResult;
3732       }
3733 #endif
3734 
3735       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3736         /* SQL functions can be expensive. So try to move constant functions
3737         ** out of the inner loop, even if that means an extra OP_Copy. */
3738         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3739       }
3740       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3741       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3742         pFarg = 0;
3743       }else{
3744         pFarg = pExpr->x.pList;
3745       }
3746       nFarg = pFarg ? pFarg->nExpr : 0;
3747       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3748       zId = pExpr->u.zToken;
3749       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3750 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3751       if( pDef==0 && pParse->explain ){
3752         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3753       }
3754 #endif
3755       if( pDef==0 || pDef->xFinalize!=0 ){
3756         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3757         break;
3758       }
3759 
3760       /* Attempt a direct implementation of the built-in COALESCE() and
3761       ** IFNULL() functions.  This avoids unnecessary evaluation of
3762       ** arguments past the first non-NULL argument.
3763       */
3764       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3765         int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3766         assert( nFarg>=2 );
3767         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3768         for(i=1; i<nFarg; i++){
3769           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3770           VdbeCoverage(v);
3771           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3772         }
3773         sqlite3VdbeResolveLabel(v, endCoalesce);
3774         break;
3775       }
3776 
3777       /* The UNLIKELY() function is a no-op.  The result is the value
3778       ** of the first argument.
3779       */
3780       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3781         assert( nFarg>=1 );
3782         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3783       }
3784 
3785 #ifdef SQLITE_DEBUG
3786       /* The AFFINITY() function evaluates to a string that describes
3787       ** the type affinity of the argument.  This is used for testing of
3788       ** the SQLite type logic.
3789       */
3790       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3791         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3792         char aff;
3793         assert( nFarg==1 );
3794         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3795         sqlite3VdbeLoadString(v, target,
3796                               aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3797         return target;
3798       }
3799 #endif
3800 
3801       for(i=0; i<nFarg; i++){
3802         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3803           testcase( i==31 );
3804           constMask |= MASKBIT32(i);
3805         }
3806         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3807           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3808         }
3809       }
3810       if( pFarg ){
3811         if( constMask ){
3812           r1 = pParse->nMem+1;
3813           pParse->nMem += nFarg;
3814         }else{
3815           r1 = sqlite3GetTempRange(pParse, nFarg);
3816         }
3817 
3818         /* For length() and typeof() functions with a column argument,
3819         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3820         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3821         ** loading.
3822         */
3823         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3824           u8 exprOp;
3825           assert( nFarg==1 );
3826           assert( pFarg->a[0].pExpr!=0 );
3827           exprOp = pFarg->a[0].pExpr->op;
3828           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3829             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3830             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3831             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3832             pFarg->a[0].pExpr->op2 =
3833                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3834           }
3835         }
3836 
3837         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3838                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3839       }else{
3840         r1 = 0;
3841       }
3842 #ifndef SQLITE_OMIT_VIRTUALTABLE
3843       /* Possibly overload the function if the first argument is
3844       ** a virtual table column.
3845       **
3846       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3847       ** second argument, not the first, as the argument to test to
3848       ** see if it is a column in a virtual table.  This is done because
3849       ** the left operand of infix functions (the operand we want to
3850       ** control overloading) ends up as the second argument to the
3851       ** function.  The expression "A glob B" is equivalent to
3852       ** "glob(B,A).  We want to use the A in "A glob B" to test
3853       ** for function overloading.  But we use the B term in "glob(B,A)".
3854       */
3855       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
3856         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3857       }else if( nFarg>0 ){
3858         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3859       }
3860 #endif
3861       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3862         if( !pColl ) pColl = db->pDfltColl;
3863         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3864       }
3865 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3866       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
3867         Expr *pArg = pFarg->a[0].pExpr;
3868         if( pArg->op==TK_COLUMN ){
3869           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3870         }else{
3871           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3872         }
3873       }else
3874 #endif
3875       {
3876         sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3877                           constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3878         sqlite3VdbeChangeP5(v, (u8)nFarg);
3879       }
3880       if( nFarg && constMask==0 ){
3881         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3882       }
3883       return target;
3884     }
3885 #ifndef SQLITE_OMIT_SUBQUERY
3886     case TK_EXISTS:
3887     case TK_SELECT: {
3888       int nCol;
3889       testcase( op==TK_EXISTS );
3890       testcase( op==TK_SELECT );
3891       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3892         sqlite3SubselectError(pParse, nCol, 1);
3893       }else{
3894         return sqlite3CodeSubselect(pParse, pExpr);
3895       }
3896       break;
3897     }
3898     case TK_SELECT_COLUMN: {
3899       int n;
3900       if( pExpr->pLeft->iTable==0 ){
3901         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
3902       }
3903       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3904       if( pExpr->iTable
3905        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3906       ){
3907         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3908                                 pExpr->iTable, n);
3909       }
3910       return pExpr->pLeft->iTable + pExpr->iColumn;
3911     }
3912     case TK_IN: {
3913       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
3914       int destIfNull = sqlite3VdbeMakeLabel(pParse);
3915       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3916       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3917       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3918       sqlite3VdbeResolveLabel(v, destIfFalse);
3919       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3920       sqlite3VdbeResolveLabel(v, destIfNull);
3921       return target;
3922     }
3923 #endif /* SQLITE_OMIT_SUBQUERY */
3924 
3925 
3926     /*
3927     **    x BETWEEN y AND z
3928     **
3929     ** This is equivalent to
3930     **
3931     **    x>=y AND x<=z
3932     **
3933     ** X is stored in pExpr->pLeft.
3934     ** Y is stored in pExpr->pList->a[0].pExpr.
3935     ** Z is stored in pExpr->pList->a[1].pExpr.
3936     */
3937     case TK_BETWEEN: {
3938       exprCodeBetween(pParse, pExpr, target, 0, 0);
3939       return target;
3940     }
3941     case TK_SPAN:
3942     case TK_COLLATE:
3943     case TK_UPLUS: {
3944       pExpr = pExpr->pLeft;
3945       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
3946     }
3947 
3948     case TK_TRIGGER: {
3949       /* If the opcode is TK_TRIGGER, then the expression is a reference
3950       ** to a column in the new.* or old.* pseudo-tables available to
3951       ** trigger programs. In this case Expr.iTable is set to 1 for the
3952       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3953       ** is set to the column of the pseudo-table to read, or to -1 to
3954       ** read the rowid field.
3955       **
3956       ** The expression is implemented using an OP_Param opcode. The p1
3957       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3958       ** to reference another column of the old.* pseudo-table, where
3959       ** i is the index of the column. For a new.rowid reference, p1 is
3960       ** set to (n+1), where n is the number of columns in each pseudo-table.
3961       ** For a reference to any other column in the new.* pseudo-table, p1
3962       ** is set to (n+2+i), where n and i are as defined previously. For
3963       ** example, if the table on which triggers are being fired is
3964       ** declared as:
3965       **
3966       **   CREATE TABLE t1(a, b);
3967       **
3968       ** Then p1 is interpreted as follows:
3969       **
3970       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3971       **   p1==1   ->    old.a         p1==4   ->    new.a
3972       **   p1==2   ->    old.b         p1==5   ->    new.b
3973       */
3974       Table *pTab = pExpr->y.pTab;
3975       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3976 
3977       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3978       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3979       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3980       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3981 
3982       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3983       VdbeComment((v, "r[%d]=%s.%s", target,
3984         (pExpr->iTable ? "new" : "old"),
3985         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName)
3986       ));
3987 
3988 #ifndef SQLITE_OMIT_FLOATING_POINT
3989       /* If the column has REAL affinity, it may currently be stored as an
3990       ** integer. Use OP_RealAffinity to make sure it is really real.
3991       **
3992       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3993       ** floating point when extracting it from the record.  */
3994       if( pExpr->iColumn>=0
3995        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3996       ){
3997         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3998       }
3999 #endif
4000       break;
4001     }
4002 
4003     case TK_VECTOR: {
4004       sqlite3ErrorMsg(pParse, "row value misused");
4005       break;
4006     }
4007 
4008     case TK_IF_NULL_ROW: {
4009       int addrINR;
4010       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4011       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4012       sqlite3VdbeJumpHere(v, addrINR);
4013       sqlite3VdbeChangeP3(v, addrINR, inReg);
4014       break;
4015     }
4016 
4017     /*
4018     ** Form A:
4019     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4020     **
4021     ** Form B:
4022     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4023     **
4024     ** Form A is can be transformed into the equivalent form B as follows:
4025     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4026     **        WHEN x=eN THEN rN ELSE y END
4027     **
4028     ** X (if it exists) is in pExpr->pLeft.
4029     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4030     ** odd.  The Y is also optional.  If the number of elements in x.pList
4031     ** is even, then Y is omitted and the "otherwise" result is NULL.
4032     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4033     **
4034     ** The result of the expression is the Ri for the first matching Ei,
4035     ** or if there is no matching Ei, the ELSE term Y, or if there is
4036     ** no ELSE term, NULL.
4037     */
4038     default: assert( op==TK_CASE ); {
4039       int endLabel;                     /* GOTO label for end of CASE stmt */
4040       int nextCase;                     /* GOTO label for next WHEN clause */
4041       int nExpr;                        /* 2x number of WHEN terms */
4042       int i;                            /* Loop counter */
4043       ExprList *pEList;                 /* List of WHEN terms */
4044       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4045       Expr opCompare;                   /* The X==Ei expression */
4046       Expr *pX;                         /* The X expression */
4047       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4048       Expr *pDel = 0;
4049       sqlite3 *db = pParse->db;
4050 
4051       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4052       assert(pExpr->x.pList->nExpr > 0);
4053       pEList = pExpr->x.pList;
4054       aListelem = pEList->a;
4055       nExpr = pEList->nExpr;
4056       endLabel = sqlite3VdbeMakeLabel(pParse);
4057       if( (pX = pExpr->pLeft)!=0 ){
4058         pDel = sqlite3ExprDup(db, pX, 0);
4059         if( db->mallocFailed ){
4060           sqlite3ExprDelete(db, pDel);
4061           break;
4062         }
4063         testcase( pX->op==TK_COLUMN );
4064         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4065         testcase( regFree1==0 );
4066         memset(&opCompare, 0, sizeof(opCompare));
4067         opCompare.op = TK_EQ;
4068         opCompare.pLeft = pDel;
4069         pTest = &opCompare;
4070         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4071         ** The value in regFree1 might get SCopy-ed into the file result.
4072         ** So make sure that the regFree1 register is not reused for other
4073         ** purposes and possibly overwritten.  */
4074         regFree1 = 0;
4075       }
4076       for(i=0; i<nExpr-1; i=i+2){
4077         if( pX ){
4078           assert( pTest!=0 );
4079           opCompare.pRight = aListelem[i].pExpr;
4080         }else{
4081           pTest = aListelem[i].pExpr;
4082         }
4083         nextCase = sqlite3VdbeMakeLabel(pParse);
4084         testcase( pTest->op==TK_COLUMN );
4085         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4086         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4087         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4088         sqlite3VdbeGoto(v, endLabel);
4089         sqlite3VdbeResolveLabel(v, nextCase);
4090       }
4091       if( (nExpr&1)!=0 ){
4092         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4093       }else{
4094         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4095       }
4096       sqlite3ExprDelete(db, pDel);
4097       sqlite3VdbeResolveLabel(v, endLabel);
4098       break;
4099     }
4100 #ifndef SQLITE_OMIT_TRIGGER
4101     case TK_RAISE: {
4102       assert( pExpr->affinity==OE_Rollback
4103            || pExpr->affinity==OE_Abort
4104            || pExpr->affinity==OE_Fail
4105            || pExpr->affinity==OE_Ignore
4106       );
4107       if( !pParse->pTriggerTab ){
4108         sqlite3ErrorMsg(pParse,
4109                        "RAISE() may only be used within a trigger-program");
4110         return 0;
4111       }
4112       if( pExpr->affinity==OE_Abort ){
4113         sqlite3MayAbort(pParse);
4114       }
4115       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4116       if( pExpr->affinity==OE_Ignore ){
4117         sqlite3VdbeAddOp4(
4118             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4119         VdbeCoverage(v);
4120       }else{
4121         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4122                               pExpr->affinity, pExpr->u.zToken, 0, 0);
4123       }
4124 
4125       break;
4126     }
4127 #endif
4128   }
4129   sqlite3ReleaseTempReg(pParse, regFree1);
4130   sqlite3ReleaseTempReg(pParse, regFree2);
4131   return inReg;
4132 }
4133 
4134 /*
4135 ** Factor out the code of the given expression to initialization time.
4136 **
4137 ** If regDest>=0 then the result is always stored in that register and the
4138 ** result is not reusable.  If regDest<0 then this routine is free to
4139 ** store the value whereever it wants.  The register where the expression
4140 ** is stored is returned.  When regDest<0, two identical expressions will
4141 ** code to the same register.
4142 */
4143 int sqlite3ExprCodeAtInit(
4144   Parse *pParse,    /* Parsing context */
4145   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4146   int regDest       /* Store the value in this register */
4147 ){
4148   ExprList *p;
4149   assert( ConstFactorOk(pParse) );
4150   p = pParse->pConstExpr;
4151   if( regDest<0 && p ){
4152     struct ExprList_item *pItem;
4153     int i;
4154     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4155       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4156         return pItem->u.iConstExprReg;
4157       }
4158     }
4159   }
4160   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4161   p = sqlite3ExprListAppend(pParse, p, pExpr);
4162   if( p ){
4163      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4164      pItem->reusable = regDest<0;
4165      if( regDest<0 ) regDest = ++pParse->nMem;
4166      pItem->u.iConstExprReg = regDest;
4167   }
4168   pParse->pConstExpr = p;
4169   return regDest;
4170 }
4171 
4172 /*
4173 ** Generate code to evaluate an expression and store the results
4174 ** into a register.  Return the register number where the results
4175 ** are stored.
4176 **
4177 ** If the register is a temporary register that can be deallocated,
4178 ** then write its number into *pReg.  If the result register is not
4179 ** a temporary, then set *pReg to zero.
4180 **
4181 ** If pExpr is a constant, then this routine might generate this
4182 ** code to fill the register in the initialization section of the
4183 ** VDBE program, in order to factor it out of the evaluation loop.
4184 */
4185 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4186   int r2;
4187   pExpr = sqlite3ExprSkipCollate(pExpr);
4188   if( ConstFactorOk(pParse)
4189    && pExpr->op!=TK_REGISTER
4190    && sqlite3ExprIsConstantNotJoin(pExpr)
4191   ){
4192     *pReg  = 0;
4193     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4194   }else{
4195     int r1 = sqlite3GetTempReg(pParse);
4196     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4197     if( r2==r1 ){
4198       *pReg = r1;
4199     }else{
4200       sqlite3ReleaseTempReg(pParse, r1);
4201       *pReg = 0;
4202     }
4203   }
4204   return r2;
4205 }
4206 
4207 /*
4208 ** Generate code that will evaluate expression pExpr and store the
4209 ** results in register target.  The results are guaranteed to appear
4210 ** in register target.
4211 */
4212 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4213   int inReg;
4214 
4215   assert( target>0 && target<=pParse->nMem );
4216   if( pExpr && pExpr->op==TK_REGISTER ){
4217     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4218   }else{
4219     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4220     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4221     if( inReg!=target && pParse->pVdbe ){
4222       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4223     }
4224   }
4225 }
4226 
4227 /*
4228 ** Make a transient copy of expression pExpr and then code it using
4229 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4230 ** except that the input expression is guaranteed to be unchanged.
4231 */
4232 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4233   sqlite3 *db = pParse->db;
4234   pExpr = sqlite3ExprDup(db, pExpr, 0);
4235   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4236   sqlite3ExprDelete(db, pExpr);
4237 }
4238 
4239 /*
4240 ** Generate code that will evaluate expression pExpr and store the
4241 ** results in register target.  The results are guaranteed to appear
4242 ** in register target.  If the expression is constant, then this routine
4243 ** might choose to code the expression at initialization time.
4244 */
4245 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4246   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4247     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4248   }else{
4249     sqlite3ExprCode(pParse, pExpr, target);
4250   }
4251 }
4252 
4253 /*
4254 ** Generate code that evaluates the given expression and puts the result
4255 ** in register target.
4256 **
4257 ** Also make a copy of the expression results into another "cache" register
4258 ** and modify the expression so that the next time it is evaluated,
4259 ** the result is a copy of the cache register.
4260 **
4261 ** This routine is used for expressions that are used multiple
4262 ** times.  They are evaluated once and the results of the expression
4263 ** are reused.
4264 */
4265 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4266   Vdbe *v = pParse->pVdbe;
4267   int iMem;
4268 
4269   assert( target>0 );
4270   assert( pExpr->op!=TK_REGISTER );
4271   sqlite3ExprCode(pParse, pExpr, target);
4272   iMem = ++pParse->nMem;
4273   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4274   exprToRegister(pExpr, iMem);
4275 }
4276 
4277 /*
4278 ** Generate code that pushes the value of every element of the given
4279 ** expression list into a sequence of registers beginning at target.
4280 **
4281 ** Return the number of elements evaluated.  The number returned will
4282 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4283 ** is defined.
4284 **
4285 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4286 ** filled using OP_SCopy.  OP_Copy must be used instead.
4287 **
4288 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4289 ** factored out into initialization code.
4290 **
4291 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4292 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4293 ** in registers at srcReg, and so the value can be copied from there.
4294 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4295 ** are simply omitted rather than being copied from srcReg.
4296 */
4297 int sqlite3ExprCodeExprList(
4298   Parse *pParse,     /* Parsing context */
4299   ExprList *pList,   /* The expression list to be coded */
4300   int target,        /* Where to write results */
4301   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4302   u8 flags           /* SQLITE_ECEL_* flags */
4303 ){
4304   struct ExprList_item *pItem;
4305   int i, j, n;
4306   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4307   Vdbe *v = pParse->pVdbe;
4308   assert( pList!=0 );
4309   assert( target>0 );
4310   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4311   n = pList->nExpr;
4312   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4313   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4314     Expr *pExpr = pItem->pExpr;
4315 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4316     if( pItem->bSorterRef ){
4317       i--;
4318       n--;
4319     }else
4320 #endif
4321     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4322       if( flags & SQLITE_ECEL_OMITREF ){
4323         i--;
4324         n--;
4325       }else{
4326         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4327       }
4328     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4329            && sqlite3ExprIsConstantNotJoin(pExpr)
4330     ){
4331       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4332     }else{
4333       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4334       if( inReg!=target+i ){
4335         VdbeOp *pOp;
4336         if( copyOp==OP_Copy
4337          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4338          && pOp->p1+pOp->p3+1==inReg
4339          && pOp->p2+pOp->p3+1==target+i
4340         ){
4341           pOp->p3++;
4342         }else{
4343           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4344         }
4345       }
4346     }
4347   }
4348   return n;
4349 }
4350 
4351 /*
4352 ** Generate code for a BETWEEN operator.
4353 **
4354 **    x BETWEEN y AND z
4355 **
4356 ** The above is equivalent to
4357 **
4358 **    x>=y AND x<=z
4359 **
4360 ** Code it as such, taking care to do the common subexpression
4361 ** elimination of x.
4362 **
4363 ** The xJumpIf parameter determines details:
4364 **
4365 **    NULL:                   Store the boolean result in reg[dest]
4366 **    sqlite3ExprIfTrue:      Jump to dest if true
4367 **    sqlite3ExprIfFalse:     Jump to dest if false
4368 **
4369 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4370 */
4371 static void exprCodeBetween(
4372   Parse *pParse,    /* Parsing and code generating context */
4373   Expr *pExpr,      /* The BETWEEN expression */
4374   int dest,         /* Jump destination or storage location */
4375   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4376   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4377 ){
4378   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4379   Expr compLeft;    /* The  x>=y  term */
4380   Expr compRight;   /* The  x<=z  term */
4381   int regFree1 = 0; /* Temporary use register */
4382   Expr *pDel = 0;
4383   sqlite3 *db = pParse->db;
4384 
4385   memset(&compLeft, 0, sizeof(Expr));
4386   memset(&compRight, 0, sizeof(Expr));
4387   memset(&exprAnd, 0, sizeof(Expr));
4388 
4389   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4390   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4391   if( db->mallocFailed==0 ){
4392     exprAnd.op = TK_AND;
4393     exprAnd.pLeft = &compLeft;
4394     exprAnd.pRight = &compRight;
4395     compLeft.op = TK_GE;
4396     compLeft.pLeft = pDel;
4397     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4398     compRight.op = TK_LE;
4399     compRight.pLeft = pDel;
4400     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4401     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4402     if( xJump ){
4403       xJump(pParse, &exprAnd, dest, jumpIfNull);
4404     }else{
4405       /* Mark the expression is being from the ON or USING clause of a join
4406       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4407       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4408       ** for clarity, but we are out of bits in the Expr.flags field so we
4409       ** have to reuse the EP_FromJoin bit.  Bummer. */
4410       pDel->flags |= EP_FromJoin;
4411       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4412     }
4413     sqlite3ReleaseTempReg(pParse, regFree1);
4414   }
4415   sqlite3ExprDelete(db, pDel);
4416 
4417   /* Ensure adequate test coverage */
4418   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4419   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4420   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4421   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4422   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4423   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4424   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4425   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4426   testcase( xJump==0 );
4427 }
4428 
4429 /*
4430 ** Generate code for a boolean expression such that a jump is made
4431 ** to the label "dest" if the expression is true but execution
4432 ** continues straight thru if the expression is false.
4433 **
4434 ** If the expression evaluates to NULL (neither true nor false), then
4435 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4436 **
4437 ** This code depends on the fact that certain token values (ex: TK_EQ)
4438 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4439 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4440 ** the make process cause these values to align.  Assert()s in the code
4441 ** below verify that the numbers are aligned correctly.
4442 */
4443 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4444   Vdbe *v = pParse->pVdbe;
4445   int op = 0;
4446   int regFree1 = 0;
4447   int regFree2 = 0;
4448   int r1, r2;
4449 
4450   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4451   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4452   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4453   op = pExpr->op;
4454   switch( op ){
4455     case TK_AND:
4456     case TK_OR: {
4457       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4458       if( pAlt!=pExpr ){
4459         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4460       }else if( op==TK_AND ){
4461         int d2 = sqlite3VdbeMakeLabel(pParse);
4462         testcase( jumpIfNull==0 );
4463         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4464                            jumpIfNull^SQLITE_JUMPIFNULL);
4465         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4466         sqlite3VdbeResolveLabel(v, d2);
4467       }else{
4468         testcase( jumpIfNull==0 );
4469         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4470         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4471       }
4472       break;
4473     }
4474     case TK_NOT: {
4475       testcase( jumpIfNull==0 );
4476       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4477       break;
4478     }
4479     case TK_TRUTH: {
4480       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4481       int isTrue;     /* IS TRUE or IS NOT TRUE */
4482       testcase( jumpIfNull==0 );
4483       isNot = pExpr->op2==TK_ISNOT;
4484       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4485       testcase( isTrue && isNot );
4486       testcase( !isTrue && isNot );
4487       if( isTrue ^ isNot ){
4488         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4489                           isNot ? SQLITE_JUMPIFNULL : 0);
4490       }else{
4491         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4492                            isNot ? SQLITE_JUMPIFNULL : 0);
4493       }
4494       break;
4495     }
4496     case TK_IS:
4497     case TK_ISNOT:
4498       testcase( op==TK_IS );
4499       testcase( op==TK_ISNOT );
4500       op = (op==TK_IS) ? TK_EQ : TK_NE;
4501       jumpIfNull = SQLITE_NULLEQ;
4502       /* Fall thru */
4503     case TK_LT:
4504     case TK_LE:
4505     case TK_GT:
4506     case TK_GE:
4507     case TK_NE:
4508     case TK_EQ: {
4509       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4510       testcase( jumpIfNull==0 );
4511       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4512       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4513       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4514                   r1, r2, dest, jumpIfNull);
4515       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4516       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4517       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4518       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4519       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4520       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4521       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4522       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4523       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4524       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4525       testcase( regFree1==0 );
4526       testcase( regFree2==0 );
4527       break;
4528     }
4529     case TK_ISNULL:
4530     case TK_NOTNULL: {
4531       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4532       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4533       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4534       sqlite3VdbeAddOp2(v, op, r1, dest);
4535       VdbeCoverageIf(v, op==TK_ISNULL);
4536       VdbeCoverageIf(v, op==TK_NOTNULL);
4537       testcase( regFree1==0 );
4538       break;
4539     }
4540     case TK_BETWEEN: {
4541       testcase( jumpIfNull==0 );
4542       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4543       break;
4544     }
4545 #ifndef SQLITE_OMIT_SUBQUERY
4546     case TK_IN: {
4547       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4548       int destIfNull = jumpIfNull ? dest : destIfFalse;
4549       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4550       sqlite3VdbeGoto(v, dest);
4551       sqlite3VdbeResolveLabel(v, destIfFalse);
4552       break;
4553     }
4554 #endif
4555     default: {
4556     default_expr:
4557       if( ExprAlwaysTrue(pExpr) ){
4558         sqlite3VdbeGoto(v, dest);
4559       }else if( ExprAlwaysFalse(pExpr) ){
4560         /* No-op */
4561       }else{
4562         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4563         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4564         VdbeCoverage(v);
4565         testcase( regFree1==0 );
4566         testcase( jumpIfNull==0 );
4567       }
4568       break;
4569     }
4570   }
4571   sqlite3ReleaseTempReg(pParse, regFree1);
4572   sqlite3ReleaseTempReg(pParse, regFree2);
4573 }
4574 
4575 /*
4576 ** Generate code for a boolean expression such that a jump is made
4577 ** to the label "dest" if the expression is false but execution
4578 ** continues straight thru if the expression is true.
4579 **
4580 ** If the expression evaluates to NULL (neither true nor false) then
4581 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4582 ** is 0.
4583 */
4584 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4585   Vdbe *v = pParse->pVdbe;
4586   int op = 0;
4587   int regFree1 = 0;
4588   int regFree2 = 0;
4589   int r1, r2;
4590 
4591   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4592   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4593   if( pExpr==0 )    return;
4594 
4595   /* The value of pExpr->op and op are related as follows:
4596   **
4597   **       pExpr->op            op
4598   **       ---------          ----------
4599   **       TK_ISNULL          OP_NotNull
4600   **       TK_NOTNULL         OP_IsNull
4601   **       TK_NE              OP_Eq
4602   **       TK_EQ              OP_Ne
4603   **       TK_GT              OP_Le
4604   **       TK_LE              OP_Gt
4605   **       TK_GE              OP_Lt
4606   **       TK_LT              OP_Ge
4607   **
4608   ** For other values of pExpr->op, op is undefined and unused.
4609   ** The value of TK_ and OP_ constants are arranged such that we
4610   ** can compute the mapping above using the following expression.
4611   ** Assert()s verify that the computation is correct.
4612   */
4613   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4614 
4615   /* Verify correct alignment of TK_ and OP_ constants
4616   */
4617   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4618   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4619   assert( pExpr->op!=TK_NE || op==OP_Eq );
4620   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4621   assert( pExpr->op!=TK_LT || op==OP_Ge );
4622   assert( pExpr->op!=TK_LE || op==OP_Gt );
4623   assert( pExpr->op!=TK_GT || op==OP_Le );
4624   assert( pExpr->op!=TK_GE || op==OP_Lt );
4625 
4626   switch( pExpr->op ){
4627     case TK_AND:
4628     case TK_OR: {
4629       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4630       if( pAlt!=pExpr ){
4631         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
4632       }else if( pExpr->op==TK_AND ){
4633         testcase( jumpIfNull==0 );
4634         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4635         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4636       }else{
4637         int d2 = sqlite3VdbeMakeLabel(pParse);
4638         testcase( jumpIfNull==0 );
4639         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
4640                           jumpIfNull^SQLITE_JUMPIFNULL);
4641         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4642         sqlite3VdbeResolveLabel(v, d2);
4643       }
4644       break;
4645     }
4646     case TK_NOT: {
4647       testcase( jumpIfNull==0 );
4648       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4649       break;
4650     }
4651     case TK_TRUTH: {
4652       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
4653       int isTrue;  /* IS TRUE or IS NOT TRUE */
4654       testcase( jumpIfNull==0 );
4655       isNot = pExpr->op2==TK_ISNOT;
4656       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4657       testcase( isTrue && isNot );
4658       testcase( !isTrue && isNot );
4659       if( isTrue ^ isNot ){
4660         /* IS TRUE and IS NOT FALSE */
4661         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4662                            isNot ? 0 : SQLITE_JUMPIFNULL);
4663 
4664       }else{
4665         /* IS FALSE and IS NOT TRUE */
4666         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4667                           isNot ? 0 : SQLITE_JUMPIFNULL);
4668       }
4669       break;
4670     }
4671     case TK_IS:
4672     case TK_ISNOT:
4673       testcase( pExpr->op==TK_IS );
4674       testcase( pExpr->op==TK_ISNOT );
4675       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4676       jumpIfNull = SQLITE_NULLEQ;
4677       /* Fall thru */
4678     case TK_LT:
4679     case TK_LE:
4680     case TK_GT:
4681     case TK_GE:
4682     case TK_NE:
4683     case TK_EQ: {
4684       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4685       testcase( jumpIfNull==0 );
4686       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4687       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4688       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4689                   r1, r2, dest, jumpIfNull);
4690       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4691       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4692       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4693       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4694       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4695       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4696       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4697       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4698       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4699       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4700       testcase( regFree1==0 );
4701       testcase( regFree2==0 );
4702       break;
4703     }
4704     case TK_ISNULL:
4705     case TK_NOTNULL: {
4706       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4707       sqlite3VdbeAddOp2(v, op, r1, dest);
4708       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4709       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4710       testcase( regFree1==0 );
4711       break;
4712     }
4713     case TK_BETWEEN: {
4714       testcase( jumpIfNull==0 );
4715       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4716       break;
4717     }
4718 #ifndef SQLITE_OMIT_SUBQUERY
4719     case TK_IN: {
4720       if( jumpIfNull ){
4721         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4722       }else{
4723         int destIfNull = sqlite3VdbeMakeLabel(pParse);
4724         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4725         sqlite3VdbeResolveLabel(v, destIfNull);
4726       }
4727       break;
4728     }
4729 #endif
4730     default: {
4731     default_expr:
4732       if( ExprAlwaysFalse(pExpr) ){
4733         sqlite3VdbeGoto(v, dest);
4734       }else if( ExprAlwaysTrue(pExpr) ){
4735         /* no-op */
4736       }else{
4737         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4738         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4739         VdbeCoverage(v);
4740         testcase( regFree1==0 );
4741         testcase( jumpIfNull==0 );
4742       }
4743       break;
4744     }
4745   }
4746   sqlite3ReleaseTempReg(pParse, regFree1);
4747   sqlite3ReleaseTempReg(pParse, regFree2);
4748 }
4749 
4750 /*
4751 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4752 ** code generation, and that copy is deleted after code generation. This
4753 ** ensures that the original pExpr is unchanged.
4754 */
4755 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4756   sqlite3 *db = pParse->db;
4757   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4758   if( db->mallocFailed==0 ){
4759     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4760   }
4761   sqlite3ExprDelete(db, pCopy);
4762 }
4763 
4764 /*
4765 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4766 ** type of expression.
4767 **
4768 ** If pExpr is a simple SQL value - an integer, real, string, blob
4769 ** or NULL value - then the VDBE currently being prepared is configured
4770 ** to re-prepare each time a new value is bound to variable pVar.
4771 **
4772 ** Additionally, if pExpr is a simple SQL value and the value is the
4773 ** same as that currently bound to variable pVar, non-zero is returned.
4774 ** Otherwise, if the values are not the same or if pExpr is not a simple
4775 ** SQL value, zero is returned.
4776 */
4777 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4778   int res = 0;
4779   int iVar;
4780   sqlite3_value *pL, *pR = 0;
4781 
4782   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4783   if( pR ){
4784     iVar = pVar->iColumn;
4785     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4786     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4787     if( pL ){
4788       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4789         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4790       }
4791       res =  0==sqlite3MemCompare(pL, pR, 0);
4792     }
4793     sqlite3ValueFree(pR);
4794     sqlite3ValueFree(pL);
4795   }
4796 
4797   return res;
4798 }
4799 
4800 /*
4801 ** Do a deep comparison of two expression trees.  Return 0 if the two
4802 ** expressions are completely identical.  Return 1 if they differ only
4803 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4804 ** other than the top-level COLLATE operator.
4805 **
4806 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4807 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4808 **
4809 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4810 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4811 **
4812 ** Sometimes this routine will return 2 even if the two expressions
4813 ** really are equivalent.  If we cannot prove that the expressions are
4814 ** identical, we return 2 just to be safe.  So if this routine
4815 ** returns 2, then you do not really know for certain if the two
4816 ** expressions are the same.  But if you get a 0 or 1 return, then you
4817 ** can be sure the expressions are the same.  In the places where
4818 ** this routine is used, it does not hurt to get an extra 2 - that
4819 ** just might result in some slightly slower code.  But returning
4820 ** an incorrect 0 or 1 could lead to a malfunction.
4821 **
4822 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4823 ** pParse->pReprepare can be matched against literals in pB.  The
4824 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4825 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4826 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4827 ** pB causes a return value of 2.
4828 */
4829 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4830   u32 combinedFlags;
4831   if( pA==0 || pB==0 ){
4832     return pB==pA ? 0 : 2;
4833   }
4834   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4835     return 0;
4836   }
4837   combinedFlags = pA->flags | pB->flags;
4838   if( combinedFlags & EP_IntValue ){
4839     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4840       return 0;
4841     }
4842     return 2;
4843   }
4844   if( pA->op!=pB->op || pA->op==TK_RAISE ){
4845     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4846       return 1;
4847     }
4848     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4849       return 1;
4850     }
4851     return 2;
4852   }
4853   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4854     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
4855       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4856 #ifndef SQLITE_OMIT_WINDOWFUNC
4857       assert( pA->op==pB->op );
4858       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
4859         return 2;
4860       }
4861       if( ExprHasProperty(pA,EP_WinFunc) ){
4862         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
4863           return 2;
4864         }
4865       }
4866 #endif
4867     }else if( pA->op==TK_NULL ){
4868       return 0;
4869     }else if( pA->op==TK_COLLATE ){
4870       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4871     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4872       return 2;
4873     }
4874   }
4875   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4876   if( (combinedFlags & EP_TokenOnly)==0 ){
4877     if( combinedFlags & EP_xIsSelect ) return 2;
4878     if( (combinedFlags & EP_FixedCol)==0
4879      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4880     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4881     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4882     if( pA->op!=TK_STRING
4883      && pA->op!=TK_TRUEFALSE
4884      && (combinedFlags & EP_Reduced)==0
4885     ){
4886       if( pA->iColumn!=pB->iColumn ) return 2;
4887       if( pA->op2!=pB->op2 ) return 2;
4888       if( pA->iTable!=pB->iTable
4889        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4890     }
4891   }
4892   return 0;
4893 }
4894 
4895 /*
4896 ** Compare two ExprList objects.  Return 0 if they are identical and
4897 ** non-zero if they differ in any way.
4898 **
4899 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4900 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4901 **
4902 ** This routine might return non-zero for equivalent ExprLists.  The
4903 ** only consequence will be disabled optimizations.  But this routine
4904 ** must never return 0 if the two ExprList objects are different, or
4905 ** a malfunction will result.
4906 **
4907 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4908 ** always differs from a non-NULL pointer.
4909 */
4910 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4911   int i;
4912   if( pA==0 && pB==0 ) return 0;
4913   if( pA==0 || pB==0 ) return 1;
4914   if( pA->nExpr!=pB->nExpr ) return 1;
4915   for(i=0; i<pA->nExpr; i++){
4916     Expr *pExprA = pA->a[i].pExpr;
4917     Expr *pExprB = pB->a[i].pExpr;
4918     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4919     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4920   }
4921   return 0;
4922 }
4923 
4924 /*
4925 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4926 ** are ignored.
4927 */
4928 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4929   return sqlite3ExprCompare(0,
4930              sqlite3ExprSkipCollate(pA),
4931              sqlite3ExprSkipCollate(pB),
4932              iTab);
4933 }
4934 
4935 /*
4936 ** Return non-zero if Expr p can only be true if pNN is not NULL.
4937 */
4938 static int exprImpliesNotNull(
4939   Parse *pParse,      /* Parsing context */
4940   Expr *p,            /* The expression to be checked */
4941   Expr *pNN,          /* The expression that is NOT NULL */
4942   int iTab,           /* Table being evaluated */
4943   int seenNot         /* True if p is an operand of NOT */
4944 ){
4945   assert( p );
4946   assert( pNN );
4947   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ) return 1;
4948   switch( p->op ){
4949     case TK_IN: {
4950       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
4951       assert( ExprHasProperty(p,EP_xIsSelect)
4952            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
4953       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
4954     }
4955     case TK_BETWEEN: {
4956       ExprList *pList = p->x.pList;
4957       assert( pList!=0 );
4958       assert( pList->nExpr==2 );
4959       if( seenNot ) return 0;
4960       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, seenNot)
4961        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, seenNot)
4962       ){
4963         return 1;
4964       }
4965       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
4966     }
4967     case TK_EQ:
4968     case TK_NE:
4969     case TK_LT:
4970     case TK_LE:
4971     case TK_GT:
4972     case TK_GE:
4973     case TK_PLUS:
4974     case TK_MINUS:
4975     case TK_STAR:
4976     case TK_REM:
4977     case TK_BITAND:
4978     case TK_BITOR:
4979     case TK_SLASH:
4980     case TK_LSHIFT:
4981     case TK_RSHIFT:
4982     case TK_CONCAT: {
4983       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
4984       /* Fall thru into the next case */
4985     }
4986     case TK_SPAN:
4987     case TK_COLLATE:
4988     case TK_BITNOT:
4989     case TK_UPLUS:
4990     case TK_UMINUS: {
4991       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
4992     }
4993     case TK_TRUTH: {
4994       if( seenNot ) return 0;
4995       if( p->op2!=TK_IS ) return 0;
4996       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
4997     }
4998     case TK_NOT: {
4999       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5000     }
5001   }
5002   return 0;
5003 }
5004 
5005 /*
5006 ** Return true if we can prove the pE2 will always be true if pE1 is
5007 ** true.  Return false if we cannot complete the proof or if pE2 might
5008 ** be false.  Examples:
5009 **
5010 **     pE1: x==5       pE2: x==5             Result: true
5011 **     pE1: x>0        pE2: x==5             Result: false
5012 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5013 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5014 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5015 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5016 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5017 **
5018 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5019 ** Expr.iTable<0 then assume a table number given by iTab.
5020 **
5021 ** If pParse is not NULL, then the values of bound variables in pE1 are
5022 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5023 ** modified to record which bound variables are referenced.  If pParse
5024 ** is NULL, then false will be returned if pE1 contains any bound variables.
5025 **
5026 ** When in doubt, return false.  Returning true might give a performance
5027 ** improvement.  Returning false might cause a performance reduction, but
5028 ** it will always give the correct answer and is hence always safe.
5029 */
5030 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5031   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5032     return 1;
5033   }
5034   if( pE2->op==TK_OR
5035    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5036              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5037   ){
5038     return 1;
5039   }
5040   if( pE2->op==TK_NOTNULL
5041    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5042   ){
5043     return 1;
5044   }
5045   return 0;
5046 }
5047 
5048 /*
5049 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
5050 ** If the expression node requires that the table at pWalker->iCur
5051 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5052 **
5053 ** This routine controls an optimization.  False positives (setting
5054 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5055 ** (never setting pWalker->eCode) is a harmless missed optimization.
5056 */
5057 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5058   testcase( pExpr->op==TK_AGG_COLUMN );
5059   testcase( pExpr->op==TK_AGG_FUNCTION );
5060   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5061   switch( pExpr->op ){
5062     case TK_ISNOT:
5063     case TK_NOT:
5064     case TK_ISNULL:
5065     case TK_NOTNULL:
5066     case TK_IS:
5067     case TK_OR:
5068     case TK_CASE:
5069     case TK_IN:
5070     case TK_FUNCTION:
5071       testcase( pExpr->op==TK_ISNOT );
5072       testcase( pExpr->op==TK_NOT );
5073       testcase( pExpr->op==TK_ISNULL );
5074       testcase( pExpr->op==TK_NOTNULL );
5075       testcase( pExpr->op==TK_IS );
5076       testcase( pExpr->op==TK_OR );
5077       testcase( pExpr->op==TK_CASE );
5078       testcase( pExpr->op==TK_IN );
5079       testcase( pExpr->op==TK_FUNCTION );
5080       return WRC_Prune;
5081     case TK_COLUMN:
5082       if( pWalker->u.iCur==pExpr->iTable ){
5083         pWalker->eCode = 1;
5084         return WRC_Abort;
5085       }
5086       return WRC_Prune;
5087 
5088     /* Virtual tables are allowed to use constraints like x=NULL.  So
5089     ** a term of the form x=y does not prove that y is not null if x
5090     ** is the column of a virtual table */
5091     case TK_EQ:
5092     case TK_NE:
5093     case TK_LT:
5094     case TK_LE:
5095     case TK_GT:
5096     case TK_GE:
5097       testcase( pExpr->op==TK_EQ );
5098       testcase( pExpr->op==TK_NE );
5099       testcase( pExpr->op==TK_LT );
5100       testcase( pExpr->op==TK_LE );
5101       testcase( pExpr->op==TK_GT );
5102       testcase( pExpr->op==TK_GE );
5103       if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab))
5104        || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab))
5105       ){
5106        return WRC_Prune;
5107       }
5108     default:
5109       return WRC_Continue;
5110   }
5111 }
5112 
5113 /*
5114 ** Return true (non-zero) if expression p can only be true if at least
5115 ** one column of table iTab is non-null.  In other words, return true
5116 ** if expression p will always be NULL or false if every column of iTab
5117 ** is NULL.
5118 **
5119 ** False negatives are acceptable.  In other words, it is ok to return
5120 ** zero even if expression p will never be true of every column of iTab
5121 ** is NULL.  A false negative is merely a missed optimization opportunity.
5122 **
5123 ** False positives are not allowed, however.  A false positive may result
5124 ** in an incorrect answer.
5125 **
5126 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5127 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5128 **
5129 ** This routine is used to check if a LEFT JOIN can be converted into
5130 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5131 ** clause requires that some column of the right table of the LEFT JOIN
5132 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5133 ** ordinary join.
5134 */
5135 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5136   Walker w;
5137   p = sqlite3ExprSkipCollate(p);
5138   while( p ){
5139     if( p->op==TK_NOTNULL ){
5140       p = p->pLeft;
5141     }else if( p->op==TK_AND ){
5142       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5143       p = p->pRight;
5144     }else{
5145       break;
5146     }
5147   }
5148   w.xExprCallback = impliesNotNullRow;
5149   w.xSelectCallback = 0;
5150   w.xSelectCallback2 = 0;
5151   w.eCode = 0;
5152   w.u.iCur = iTab;
5153   sqlite3WalkExpr(&w, p);
5154   return w.eCode;
5155 }
5156 
5157 /*
5158 ** An instance of the following structure is used by the tree walker
5159 ** to determine if an expression can be evaluated by reference to the
5160 ** index only, without having to do a search for the corresponding
5161 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5162 ** is the cursor for the table.
5163 */
5164 struct IdxCover {
5165   Index *pIdx;     /* The index to be tested for coverage */
5166   int iCur;        /* Cursor number for the table corresponding to the index */
5167 };
5168 
5169 /*
5170 ** Check to see if there are references to columns in table
5171 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5172 ** pWalker->u.pIdxCover->pIdx.
5173 */
5174 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5175   if( pExpr->op==TK_COLUMN
5176    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5177    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5178   ){
5179     pWalker->eCode = 1;
5180     return WRC_Abort;
5181   }
5182   return WRC_Continue;
5183 }
5184 
5185 /*
5186 ** Determine if an index pIdx on table with cursor iCur contains will
5187 ** the expression pExpr.  Return true if the index does cover the
5188 ** expression and false if the pExpr expression references table columns
5189 ** that are not found in the index pIdx.
5190 **
5191 ** An index covering an expression means that the expression can be
5192 ** evaluated using only the index and without having to lookup the
5193 ** corresponding table entry.
5194 */
5195 int sqlite3ExprCoveredByIndex(
5196   Expr *pExpr,        /* The index to be tested */
5197   int iCur,           /* The cursor number for the corresponding table */
5198   Index *pIdx         /* The index that might be used for coverage */
5199 ){
5200   Walker w;
5201   struct IdxCover xcov;
5202   memset(&w, 0, sizeof(w));
5203   xcov.iCur = iCur;
5204   xcov.pIdx = pIdx;
5205   w.xExprCallback = exprIdxCover;
5206   w.u.pIdxCover = &xcov;
5207   sqlite3WalkExpr(&w, pExpr);
5208   return !w.eCode;
5209 }
5210 
5211 
5212 /*
5213 ** An instance of the following structure is used by the tree walker
5214 ** to count references to table columns in the arguments of an
5215 ** aggregate function, in order to implement the
5216 ** sqlite3FunctionThisSrc() routine.
5217 */
5218 struct SrcCount {
5219   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5220   int nThis;       /* Number of references to columns in pSrcList */
5221   int nOther;      /* Number of references to columns in other FROM clauses */
5222 };
5223 
5224 /*
5225 ** Count the number of references to columns.
5226 */
5227 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5228   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
5229   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
5230   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
5231   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
5232   ** NEVER() will need to be removed. */
5233   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
5234     int i;
5235     struct SrcCount *p = pWalker->u.pSrcCount;
5236     SrcList *pSrc = p->pSrc;
5237     int nSrc = pSrc ? pSrc->nSrc : 0;
5238     for(i=0; i<nSrc; i++){
5239       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5240     }
5241     if( i<nSrc ){
5242       p->nThis++;
5243     }else{
5244       p->nOther++;
5245     }
5246   }
5247   return WRC_Continue;
5248 }
5249 
5250 /*
5251 ** Determine if any of the arguments to the pExpr Function reference
5252 ** pSrcList.  Return true if they do.  Also return true if the function
5253 ** has no arguments or has only constant arguments.  Return false if pExpr
5254 ** references columns but not columns of tables found in pSrcList.
5255 */
5256 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5257   Walker w;
5258   struct SrcCount cnt;
5259   assert( pExpr->op==TK_AGG_FUNCTION );
5260   w.xExprCallback = exprSrcCount;
5261   w.xSelectCallback = 0;
5262   w.u.pSrcCount = &cnt;
5263   cnt.pSrc = pSrcList;
5264   cnt.nThis = 0;
5265   cnt.nOther = 0;
5266   sqlite3WalkExprList(&w, pExpr->x.pList);
5267   return cnt.nThis>0 || cnt.nOther==0;
5268 }
5269 
5270 /*
5271 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5272 ** the new element.  Return a negative number if malloc fails.
5273 */
5274 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5275   int i;
5276   pInfo->aCol = sqlite3ArrayAllocate(
5277        db,
5278        pInfo->aCol,
5279        sizeof(pInfo->aCol[0]),
5280        &pInfo->nColumn,
5281        &i
5282   );
5283   return i;
5284 }
5285 
5286 /*
5287 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5288 ** the new element.  Return a negative number if malloc fails.
5289 */
5290 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5291   int i;
5292   pInfo->aFunc = sqlite3ArrayAllocate(
5293        db,
5294        pInfo->aFunc,
5295        sizeof(pInfo->aFunc[0]),
5296        &pInfo->nFunc,
5297        &i
5298   );
5299   return i;
5300 }
5301 
5302 /*
5303 ** This is the xExprCallback for a tree walker.  It is used to
5304 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5305 ** for additional information.
5306 */
5307 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5308   int i;
5309   NameContext *pNC = pWalker->u.pNC;
5310   Parse *pParse = pNC->pParse;
5311   SrcList *pSrcList = pNC->pSrcList;
5312   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5313 
5314   assert( pNC->ncFlags & NC_UAggInfo );
5315   switch( pExpr->op ){
5316     case TK_AGG_COLUMN:
5317     case TK_COLUMN: {
5318       testcase( pExpr->op==TK_AGG_COLUMN );
5319       testcase( pExpr->op==TK_COLUMN );
5320       /* Check to see if the column is in one of the tables in the FROM
5321       ** clause of the aggregate query */
5322       if( ALWAYS(pSrcList!=0) ){
5323         struct SrcList_item *pItem = pSrcList->a;
5324         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5325           struct AggInfo_col *pCol;
5326           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5327           if( pExpr->iTable==pItem->iCursor ){
5328             /* If we reach this point, it means that pExpr refers to a table
5329             ** that is in the FROM clause of the aggregate query.
5330             **
5331             ** Make an entry for the column in pAggInfo->aCol[] if there
5332             ** is not an entry there already.
5333             */
5334             int k;
5335             pCol = pAggInfo->aCol;
5336             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5337               if( pCol->iTable==pExpr->iTable &&
5338                   pCol->iColumn==pExpr->iColumn ){
5339                 break;
5340               }
5341             }
5342             if( (k>=pAggInfo->nColumn)
5343              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5344             ){
5345               pCol = &pAggInfo->aCol[k];
5346               pCol->pTab = pExpr->y.pTab;
5347               pCol->iTable = pExpr->iTable;
5348               pCol->iColumn = pExpr->iColumn;
5349               pCol->iMem = ++pParse->nMem;
5350               pCol->iSorterColumn = -1;
5351               pCol->pExpr = pExpr;
5352               if( pAggInfo->pGroupBy ){
5353                 int j, n;
5354                 ExprList *pGB = pAggInfo->pGroupBy;
5355                 struct ExprList_item *pTerm = pGB->a;
5356                 n = pGB->nExpr;
5357                 for(j=0; j<n; j++, pTerm++){
5358                   Expr *pE = pTerm->pExpr;
5359                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5360                       pE->iColumn==pExpr->iColumn ){
5361                     pCol->iSorterColumn = j;
5362                     break;
5363                   }
5364                 }
5365               }
5366               if( pCol->iSorterColumn<0 ){
5367                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5368               }
5369             }
5370             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5371             ** because it was there before or because we just created it).
5372             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5373             ** pAggInfo->aCol[] entry.
5374             */
5375             ExprSetVVAProperty(pExpr, EP_NoReduce);
5376             pExpr->pAggInfo = pAggInfo;
5377             pExpr->op = TK_AGG_COLUMN;
5378             pExpr->iAgg = (i16)k;
5379             break;
5380           } /* endif pExpr->iTable==pItem->iCursor */
5381         } /* end loop over pSrcList */
5382       }
5383       return WRC_Prune;
5384     }
5385     case TK_AGG_FUNCTION: {
5386       if( (pNC->ncFlags & NC_InAggFunc)==0
5387        && pWalker->walkerDepth==pExpr->op2
5388       ){
5389         /* Check to see if pExpr is a duplicate of another aggregate
5390         ** function that is already in the pAggInfo structure
5391         */
5392         struct AggInfo_func *pItem = pAggInfo->aFunc;
5393         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5394           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5395             break;
5396           }
5397         }
5398         if( i>=pAggInfo->nFunc ){
5399           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5400           */
5401           u8 enc = ENC(pParse->db);
5402           i = addAggInfoFunc(pParse->db, pAggInfo);
5403           if( i>=0 ){
5404             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5405             pItem = &pAggInfo->aFunc[i];
5406             pItem->pExpr = pExpr;
5407             pItem->iMem = ++pParse->nMem;
5408             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5409             pItem->pFunc = sqlite3FindFunction(pParse->db,
5410                    pExpr->u.zToken,
5411                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5412             if( pExpr->flags & EP_Distinct ){
5413               pItem->iDistinct = pParse->nTab++;
5414             }else{
5415               pItem->iDistinct = -1;
5416             }
5417           }
5418         }
5419         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5420         */
5421         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5422         ExprSetVVAProperty(pExpr, EP_NoReduce);
5423         pExpr->iAgg = (i16)i;
5424         pExpr->pAggInfo = pAggInfo;
5425         return WRC_Prune;
5426       }else{
5427         return WRC_Continue;
5428       }
5429     }
5430   }
5431   return WRC_Continue;
5432 }
5433 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5434   UNUSED_PARAMETER(pSelect);
5435   pWalker->walkerDepth++;
5436   return WRC_Continue;
5437 }
5438 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5439   UNUSED_PARAMETER(pSelect);
5440   pWalker->walkerDepth--;
5441 }
5442 
5443 /*
5444 ** Analyze the pExpr expression looking for aggregate functions and
5445 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5446 ** points to.  Additional entries are made on the AggInfo object as
5447 ** necessary.
5448 **
5449 ** This routine should only be called after the expression has been
5450 ** analyzed by sqlite3ResolveExprNames().
5451 */
5452 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5453   Walker w;
5454   w.xExprCallback = analyzeAggregate;
5455   w.xSelectCallback = analyzeAggregatesInSelect;
5456   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5457   w.walkerDepth = 0;
5458   w.u.pNC = pNC;
5459   w.pParse = 0;
5460   assert( pNC->pSrcList!=0 );
5461   sqlite3WalkExpr(&w, pExpr);
5462 }
5463 
5464 /*
5465 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5466 ** expression list.  Return the number of errors.
5467 **
5468 ** If an error is found, the analysis is cut short.
5469 */
5470 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5471   struct ExprList_item *pItem;
5472   int i;
5473   if( pList ){
5474     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5475       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5476     }
5477   }
5478 }
5479 
5480 /*
5481 ** Allocate a single new register for use to hold some intermediate result.
5482 */
5483 int sqlite3GetTempReg(Parse *pParse){
5484   if( pParse->nTempReg==0 ){
5485     return ++pParse->nMem;
5486   }
5487   return pParse->aTempReg[--pParse->nTempReg];
5488 }
5489 
5490 /*
5491 ** Deallocate a register, making available for reuse for some other
5492 ** purpose.
5493 */
5494 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5495   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5496     pParse->aTempReg[pParse->nTempReg++] = iReg;
5497   }
5498 }
5499 
5500 /*
5501 ** Allocate or deallocate a block of nReg consecutive registers.
5502 */
5503 int sqlite3GetTempRange(Parse *pParse, int nReg){
5504   int i, n;
5505   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5506   i = pParse->iRangeReg;
5507   n = pParse->nRangeReg;
5508   if( nReg<=n ){
5509     pParse->iRangeReg += nReg;
5510     pParse->nRangeReg -= nReg;
5511   }else{
5512     i = pParse->nMem+1;
5513     pParse->nMem += nReg;
5514   }
5515   return i;
5516 }
5517 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5518   if( nReg==1 ){
5519     sqlite3ReleaseTempReg(pParse, iReg);
5520     return;
5521   }
5522   if( nReg>pParse->nRangeReg ){
5523     pParse->nRangeReg = nReg;
5524     pParse->iRangeReg = iReg;
5525   }
5526 }
5527 
5528 /*
5529 ** Mark all temporary registers as being unavailable for reuse.
5530 */
5531 void sqlite3ClearTempRegCache(Parse *pParse){
5532   pParse->nTempReg = 0;
5533   pParse->nRangeReg = 0;
5534 }
5535 
5536 /*
5537 ** Validate that no temporary register falls within the range of
5538 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5539 ** statements.
5540 */
5541 #ifdef SQLITE_DEBUG
5542 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5543   int i;
5544   if( pParse->nRangeReg>0
5545    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5546    && pParse->iRangeReg <= iLast
5547   ){
5548      return 0;
5549   }
5550   for(i=0; i<pParse->nTempReg; i++){
5551     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5552       return 0;
5553     }
5554   }
5555   return 1;
5556 }
5557 #endif /* SQLITE_DEBUG */
5558