1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; 26 return pTab->aCol[iCol].affinity; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( op==TK_COLUMN || op==TK_AGG_COLUMN ){ 57 assert( ExprUseYTab(pExpr) ); 58 if( pExpr->y.pTab ){ 59 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 60 } 61 } 62 if( op==TK_SELECT ){ 63 assert( ExprUseXSelect(pExpr) ); 64 assert( pExpr->x.pSelect!=0 ); 65 assert( pExpr->x.pSelect->pEList!=0 ); 66 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 67 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 68 } 69 #ifndef SQLITE_OMIT_CAST 70 if( op==TK_CAST ){ 71 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 72 return sqlite3AffinityType(pExpr->u.zToken, 0); 73 } 74 #endif 75 if( op==TK_SELECT_COLUMN ){ 76 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); 77 assert( pExpr->iColumn < pExpr->iTable ); 78 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 79 return sqlite3ExprAffinity( 80 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 81 ); 82 } 83 if( op==TK_VECTOR ){ 84 assert( ExprUseXList(pExpr) ); 85 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 86 } 87 return pExpr->affExpr; 88 } 89 90 /* 91 ** Set the collating sequence for expression pExpr to be the collating 92 ** sequence named by pToken. Return a pointer to a new Expr node that 93 ** implements the COLLATE operator. 94 ** 95 ** If a memory allocation error occurs, that fact is recorded in pParse->db 96 ** and the pExpr parameter is returned unchanged. 97 */ 98 Expr *sqlite3ExprAddCollateToken( 99 const Parse *pParse, /* Parsing context */ 100 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 101 const Token *pCollName, /* Name of collating sequence */ 102 int dequote /* True to dequote pCollName */ 103 ){ 104 if( pCollName->n>0 ){ 105 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 106 if( pNew ){ 107 pNew->pLeft = pExpr; 108 pNew->flags |= EP_Collate|EP_Skip; 109 pExpr = pNew; 110 } 111 } 112 return pExpr; 113 } 114 Expr *sqlite3ExprAddCollateString( 115 const Parse *pParse, /* Parsing context */ 116 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 117 const char *zC /* The collating sequence name */ 118 ){ 119 Token s; 120 assert( zC!=0 ); 121 sqlite3TokenInit(&s, (char*)zC); 122 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 123 } 124 125 /* 126 ** Skip over any TK_COLLATE operators. 127 */ 128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 129 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 130 assert( pExpr->op==TK_COLLATE ); 131 pExpr = pExpr->pLeft; 132 } 133 return pExpr; 134 } 135 136 /* 137 ** Skip over any TK_COLLATE operators and/or any unlikely() 138 ** or likelihood() or likely() functions at the root of an 139 ** expression. 140 */ 141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 142 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 143 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 144 assert( ExprUseXList(pExpr) ); 145 assert( pExpr->x.pList->nExpr>0 ); 146 assert( pExpr->op==TK_FUNCTION ); 147 pExpr = pExpr->x.pList->a[0].pExpr; 148 }else{ 149 assert( pExpr->op==TK_COLLATE ); 150 pExpr = pExpr->pLeft; 151 } 152 } 153 return pExpr; 154 } 155 156 /* 157 ** Return the collation sequence for the expression pExpr. If 158 ** there is no defined collating sequence, return NULL. 159 ** 160 ** See also: sqlite3ExprNNCollSeq() 161 ** 162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 163 ** default collation if pExpr has no defined collation. 164 ** 165 ** The collating sequence might be determined by a COLLATE operator 166 ** or by the presence of a column with a defined collating sequence. 167 ** COLLATE operators take first precedence. Left operands take 168 ** precedence over right operands. 169 */ 170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 171 sqlite3 *db = pParse->db; 172 CollSeq *pColl = 0; 173 const Expr *p = pExpr; 174 while( p ){ 175 int op = p->op; 176 if( op==TK_REGISTER ) op = p->op2; 177 if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){ 178 assert( ExprUseYTab(p) ); 179 if( p->y.pTab!=0 ){ 180 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 181 ** a TK_COLUMN but was previously evaluated and cached in a register */ 182 int j = p->iColumn; 183 if( j>=0 ){ 184 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 185 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 186 } 187 break; 188 } 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 assert( ExprUseXList(p) ); 196 p = p->x.pList->a[0].pExpr; 197 continue; 198 } 199 if( op==TK_COLLATE ){ 200 assert( !ExprHasProperty(p, EP_IntValue) ); 201 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 202 break; 203 } 204 if( p->flags & EP_Collate ){ 205 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 206 p = p->pLeft; 207 }else{ 208 Expr *pNext = p->pRight; 209 /* The Expr.x union is never used at the same time as Expr.pRight */ 210 assert( ExprUseXList(p) ); 211 assert( p->x.pList==0 || p->pRight==0 ); 212 if( p->x.pList!=0 && !db->mallocFailed ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprUseXSelect(pExpr) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(const Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(const Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 assert( ExprUseXList(pExpr) ); 436 return pExpr->x.pList->nExpr; 437 }else if( op==TK_SELECT ){ 438 assert( ExprUseXSelect(pExpr) ); 439 return pExpr->x.pSelect->pEList->nExpr; 440 }else{ 441 return 1; 442 } 443 } 444 445 /* 446 ** Return a pointer to a subexpression of pVector that is the i-th 447 ** column of the vector (numbered starting with 0). The caller must 448 ** ensure that i is within range. 449 ** 450 ** If pVector is really a scalar (and "scalar" here includes subqueries 451 ** that return a single column!) then return pVector unmodified. 452 ** 453 ** pVector retains ownership of the returned subexpression. 454 ** 455 ** If the vector is a (SELECT ...) then the expression returned is 456 ** just the expression for the i-th term of the result set, and may 457 ** not be ready for evaluation because the table cursor has not yet 458 ** been positioned. 459 */ 460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 461 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 462 if( sqlite3ExprIsVector(pVector) ){ 463 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 464 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 465 assert( ExprUseXSelect(pVector) ); 466 return pVector->x.pSelect->pEList->a[i].pExpr; 467 }else{ 468 assert( ExprUseXList(pVector) ); 469 return pVector->x.pList->a[i].pExpr; 470 } 471 } 472 return pVector; 473 } 474 475 /* 476 ** Compute and return a new Expr object which when passed to 477 ** sqlite3ExprCode() will generate all necessary code to compute 478 ** the iField-th column of the vector expression pVector. 479 ** 480 ** It is ok for pVector to be a scalar (as long as iField==0). 481 ** In that case, this routine works like sqlite3ExprDup(). 482 ** 483 ** The caller owns the returned Expr object and is responsible for 484 ** ensuring that the returned value eventually gets freed. 485 ** 486 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 487 ** then the returned object will reference pVector and so pVector must remain 488 ** valid for the life of the returned object. If pVector is a TK_VECTOR 489 ** or a scalar expression, then it can be deleted as soon as this routine 490 ** returns. 491 ** 492 ** A trick to cause a TK_SELECT pVector to be deleted together with 493 ** the returned Expr object is to attach the pVector to the pRight field 494 ** of the returned TK_SELECT_COLUMN Expr object. 495 */ 496 Expr *sqlite3ExprForVectorField( 497 Parse *pParse, /* Parsing context */ 498 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 499 int iField, /* Which column of the vector to return */ 500 int nField /* Total number of columns in the vector */ 501 ){ 502 Expr *pRet; 503 if( pVector->op==TK_SELECT ){ 504 assert( ExprUseXSelect(pVector) ); 505 /* The TK_SELECT_COLUMN Expr node: 506 ** 507 ** pLeft: pVector containing TK_SELECT. Not deleted. 508 ** pRight: not used. But recursively deleted. 509 ** iColumn: Index of a column in pVector 510 ** iTable: 0 or the number of columns on the LHS of an assignment 511 ** pLeft->iTable: First in an array of register holding result, or 0 512 ** if the result is not yet computed. 513 ** 514 ** sqlite3ExprDelete() specifically skips the recursive delete of 515 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 516 ** can be attached to pRight to cause this node to take ownership of 517 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 518 ** with the same pLeft pointer to the pVector, but only one of them 519 ** will own the pVector. 520 */ 521 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 522 if( pRet ){ 523 pRet->iTable = nField; 524 pRet->iColumn = iField; 525 pRet->pLeft = pVector; 526 } 527 }else{ 528 if( pVector->op==TK_VECTOR ){ 529 Expr **ppVector; 530 assert( ExprUseXList(pVector) ); 531 ppVector = &pVector->x.pList->a[iField].pExpr; 532 pVector = *ppVector; 533 if( IN_RENAME_OBJECT ){ 534 /* This must be a vector UPDATE inside a trigger */ 535 *ppVector = 0; 536 return pVector; 537 } 538 } 539 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 540 } 541 return pRet; 542 } 543 544 /* 545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 546 ** it. Return the register in which the result is stored (or, if the 547 ** sub-select returns more than one column, the first in an array 548 ** of registers in which the result is stored). 549 ** 550 ** If pExpr is not a TK_SELECT expression, return 0. 551 */ 552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 553 int reg = 0; 554 #ifndef SQLITE_OMIT_SUBQUERY 555 if( pExpr->op==TK_SELECT ){ 556 reg = sqlite3CodeSubselect(pParse, pExpr); 557 } 558 #endif 559 return reg; 560 } 561 562 /* 563 ** Argument pVector points to a vector expression - either a TK_VECTOR 564 ** or TK_SELECT that returns more than one column. This function returns 565 ** the register number of a register that contains the value of 566 ** element iField of the vector. 567 ** 568 ** If pVector is a TK_SELECT expression, then code for it must have 569 ** already been generated using the exprCodeSubselect() routine. In this 570 ** case parameter regSelect should be the first in an array of registers 571 ** containing the results of the sub-select. 572 ** 573 ** If pVector is of type TK_VECTOR, then code for the requested field 574 ** is generated. In this case (*pRegFree) may be set to the number of 575 ** a temporary register to be freed by the caller before returning. 576 ** 577 ** Before returning, output parameter (*ppExpr) is set to point to the 578 ** Expr object corresponding to element iElem of the vector. 579 */ 580 static int exprVectorRegister( 581 Parse *pParse, /* Parse context */ 582 Expr *pVector, /* Vector to extract element from */ 583 int iField, /* Field to extract from pVector */ 584 int regSelect, /* First in array of registers */ 585 Expr **ppExpr, /* OUT: Expression element */ 586 int *pRegFree /* OUT: Temp register to free */ 587 ){ 588 u8 op = pVector->op; 589 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 590 if( op==TK_REGISTER ){ 591 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 592 return pVector->iTable+iField; 593 } 594 if( op==TK_SELECT ){ 595 assert( ExprUseXSelect(pVector) ); 596 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 597 return regSelect+iField; 598 } 599 if( op==TK_VECTOR ){ 600 assert( ExprUseXList(pVector) ); 601 *ppExpr = pVector->x.pList->a[iField].pExpr; 602 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 603 } 604 return 0; 605 } 606 607 /* 608 ** Expression pExpr is a comparison between two vector values. Compute 609 ** the result of the comparison (1, 0, or NULL) and write that 610 ** result into register dest. 611 ** 612 ** The caller must satisfy the following preconditions: 613 ** 614 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 615 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 616 ** otherwise: op==pExpr->op and p5==0 617 */ 618 static void codeVectorCompare( 619 Parse *pParse, /* Code generator context */ 620 Expr *pExpr, /* The comparison operation */ 621 int dest, /* Write results into this register */ 622 u8 op, /* Comparison operator */ 623 u8 p5 /* SQLITE_NULLEQ or zero */ 624 ){ 625 Vdbe *v = pParse->pVdbe; 626 Expr *pLeft = pExpr->pLeft; 627 Expr *pRight = pExpr->pRight; 628 int nLeft = sqlite3ExprVectorSize(pLeft); 629 int i; 630 int regLeft = 0; 631 int regRight = 0; 632 u8 opx = op; 633 int addrCmp = 0; 634 int addrDone = sqlite3VdbeMakeLabel(pParse); 635 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 636 637 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 638 if( pParse->nErr ) return; 639 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 640 sqlite3ErrorMsg(pParse, "row value misused"); 641 return; 642 } 643 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 644 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 645 || pExpr->op==TK_LT || pExpr->op==TK_GT 646 || pExpr->op==TK_LE || pExpr->op==TK_GE 647 ); 648 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 649 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 650 assert( p5==0 || pExpr->op!=op ); 651 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 652 653 if( op==TK_LE ) opx = TK_LT; 654 if( op==TK_GE ) opx = TK_GT; 655 if( op==TK_NE ) opx = TK_EQ; 656 657 regLeft = exprCodeSubselect(pParse, pLeft); 658 regRight = exprCodeSubselect(pParse, pRight); 659 660 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 661 for(i=0; 1 /*Loop exits by "break"*/; i++){ 662 int regFree1 = 0, regFree2 = 0; 663 Expr *pL = 0, *pR = 0; 664 int r1, r2; 665 assert( i>=0 && i<nLeft ); 666 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 667 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 668 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 669 addrCmp = sqlite3VdbeCurrentAddr(v); 670 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 671 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 672 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 673 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 674 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 675 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 676 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 677 sqlite3ReleaseTempReg(pParse, regFree1); 678 sqlite3ReleaseTempReg(pParse, regFree2); 679 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 680 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 681 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 682 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 683 } 684 if( p5==SQLITE_NULLEQ ){ 685 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 686 }else{ 687 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 688 } 689 if( i==nLeft-1 ){ 690 break; 691 } 692 if( opx==TK_EQ ){ 693 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 694 }else{ 695 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 696 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 697 if( i==nLeft-2 ) opx = op; 698 } 699 } 700 sqlite3VdbeJumpHere(v, addrCmp); 701 sqlite3VdbeResolveLabel(v, addrDone); 702 if( op==TK_NE ){ 703 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 704 } 705 } 706 707 #if SQLITE_MAX_EXPR_DEPTH>0 708 /* 709 ** Check that argument nHeight is less than or equal to the maximum 710 ** expression depth allowed. If it is not, leave an error message in 711 ** pParse. 712 */ 713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 714 int rc = SQLITE_OK; 715 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 716 if( nHeight>mxHeight ){ 717 sqlite3ErrorMsg(pParse, 718 "Expression tree is too large (maximum depth %d)", mxHeight 719 ); 720 rc = SQLITE_ERROR; 721 } 722 return rc; 723 } 724 725 /* The following three functions, heightOfExpr(), heightOfExprList() 726 ** and heightOfSelect(), are used to determine the maximum height 727 ** of any expression tree referenced by the structure passed as the 728 ** first argument. 729 ** 730 ** If this maximum height is greater than the current value pointed 731 ** to by pnHeight, the second parameter, then set *pnHeight to that 732 ** value. 733 */ 734 static void heightOfExpr(const Expr *p, int *pnHeight){ 735 if( p ){ 736 if( p->nHeight>*pnHeight ){ 737 *pnHeight = p->nHeight; 738 } 739 } 740 } 741 static void heightOfExprList(const ExprList *p, int *pnHeight){ 742 if( p ){ 743 int i; 744 for(i=0; i<p->nExpr; i++){ 745 heightOfExpr(p->a[i].pExpr, pnHeight); 746 } 747 } 748 } 749 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 750 const Select *p; 751 for(p=pSelect; p; p=p->pPrior){ 752 heightOfExpr(p->pWhere, pnHeight); 753 heightOfExpr(p->pHaving, pnHeight); 754 heightOfExpr(p->pLimit, pnHeight); 755 heightOfExprList(p->pEList, pnHeight); 756 heightOfExprList(p->pGroupBy, pnHeight); 757 heightOfExprList(p->pOrderBy, pnHeight); 758 } 759 } 760 761 /* 762 ** Set the Expr.nHeight variable in the structure passed as an 763 ** argument. An expression with no children, Expr.pList or 764 ** Expr.pSelect member has a height of 1. Any other expression 765 ** has a height equal to the maximum height of any other 766 ** referenced Expr plus one. 767 ** 768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 769 ** if appropriate. 770 */ 771 static void exprSetHeight(Expr *p){ 772 int nHeight = p->pLeft ? p->pLeft->nHeight : 0; 773 if( p->pRight && p->pRight->nHeight>nHeight ) nHeight = p->pRight->nHeight; 774 if( ExprUseXSelect(p) ){ 775 heightOfSelect(p->x.pSelect, &nHeight); 776 }else if( p->x.pList ){ 777 heightOfExprList(p->x.pList, &nHeight); 778 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 779 } 780 p->nHeight = nHeight + 1; 781 } 782 783 /* 784 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 785 ** the height is greater than the maximum allowed expression depth, 786 ** leave an error in pParse. 787 ** 788 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 789 ** Expr.flags. 790 */ 791 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 792 if( pParse->nErr ) return; 793 exprSetHeight(p); 794 sqlite3ExprCheckHeight(pParse, p->nHeight); 795 } 796 797 /* 798 ** Return the maximum height of any expression tree referenced 799 ** by the select statement passed as an argument. 800 */ 801 int sqlite3SelectExprHeight(const Select *p){ 802 int nHeight = 0; 803 heightOfSelect(p, &nHeight); 804 return nHeight; 805 } 806 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 807 /* 808 ** Propagate all EP_Propagate flags from the Expr.x.pList into 809 ** Expr.flags. 810 */ 811 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 812 if( pParse->nErr ) return; 813 if( p && ExprUseXList(p) && p->x.pList ){ 814 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 815 } 816 } 817 #define exprSetHeight(y) 818 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 819 820 /* 821 ** This routine is the core allocator for Expr nodes. 822 ** 823 ** Construct a new expression node and return a pointer to it. Memory 824 ** for this node and for the pToken argument is a single allocation 825 ** obtained from sqlite3DbMalloc(). The calling function 826 ** is responsible for making sure the node eventually gets freed. 827 ** 828 ** If dequote is true, then the token (if it exists) is dequoted. 829 ** If dequote is false, no dequoting is performed. The deQuote 830 ** parameter is ignored if pToken is NULL or if the token does not 831 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 832 ** then the EP_DblQuoted flag is set on the expression node. 833 ** 834 ** Special case: If op==TK_INTEGER and pToken points to a string that 835 ** can be translated into a 32-bit integer, then the token is not 836 ** stored in u.zToken. Instead, the integer values is written 837 ** into u.iValue and the EP_IntValue flag is set. No extra storage 838 ** is allocated to hold the integer text and the dequote flag is ignored. 839 */ 840 Expr *sqlite3ExprAlloc( 841 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 842 int op, /* Expression opcode */ 843 const Token *pToken, /* Token argument. Might be NULL */ 844 int dequote /* True to dequote */ 845 ){ 846 Expr *pNew; 847 int nExtra = 0; 848 int iValue = 0; 849 850 assert( db!=0 ); 851 if( pToken ){ 852 if( op!=TK_INTEGER || pToken->z==0 853 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 854 nExtra = pToken->n+1; 855 assert( iValue>=0 ); 856 } 857 } 858 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 859 if( pNew ){ 860 memset(pNew, 0, sizeof(Expr)); 861 pNew->op = (u8)op; 862 pNew->iAgg = -1; 863 if( pToken ){ 864 if( nExtra==0 ){ 865 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 866 pNew->u.iValue = iValue; 867 }else{ 868 pNew->u.zToken = (char*)&pNew[1]; 869 assert( pToken->z!=0 || pToken->n==0 ); 870 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 871 pNew->u.zToken[pToken->n] = 0; 872 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 873 sqlite3DequoteExpr(pNew); 874 } 875 } 876 } 877 #if SQLITE_MAX_EXPR_DEPTH>0 878 pNew->nHeight = 1; 879 #endif 880 } 881 return pNew; 882 } 883 884 /* 885 ** Allocate a new expression node from a zero-terminated token that has 886 ** already been dequoted. 887 */ 888 Expr *sqlite3Expr( 889 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 890 int op, /* Expression opcode */ 891 const char *zToken /* Token argument. Might be NULL */ 892 ){ 893 Token x; 894 x.z = zToken; 895 x.n = sqlite3Strlen30(zToken); 896 return sqlite3ExprAlloc(db, op, &x, 0); 897 } 898 899 /* 900 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 901 ** 902 ** If pRoot==NULL that means that a memory allocation error has occurred. 903 ** In that case, delete the subtrees pLeft and pRight. 904 */ 905 void sqlite3ExprAttachSubtrees( 906 sqlite3 *db, 907 Expr *pRoot, 908 Expr *pLeft, 909 Expr *pRight 910 ){ 911 if( pRoot==0 ){ 912 assert( db->mallocFailed ); 913 sqlite3ExprDelete(db, pLeft); 914 sqlite3ExprDelete(db, pRight); 915 }else{ 916 if( pRight ){ 917 pRoot->pRight = pRight; 918 pRoot->flags |= EP_Propagate & pRight->flags; 919 } 920 if( pLeft ){ 921 pRoot->pLeft = pLeft; 922 pRoot->flags |= EP_Propagate & pLeft->flags; 923 } 924 exprSetHeight(pRoot); 925 } 926 } 927 928 /* 929 ** Allocate an Expr node which joins as many as two subtrees. 930 ** 931 ** One or both of the subtrees can be NULL. Return a pointer to the new 932 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 933 ** free the subtrees and return NULL. 934 */ 935 Expr *sqlite3PExpr( 936 Parse *pParse, /* Parsing context */ 937 int op, /* Expression opcode */ 938 Expr *pLeft, /* Left operand */ 939 Expr *pRight /* Right operand */ 940 ){ 941 Expr *p; 942 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 943 if( p ){ 944 memset(p, 0, sizeof(Expr)); 945 p->op = op & 0xff; 946 p->iAgg = -1; 947 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 948 sqlite3ExprCheckHeight(pParse, p->nHeight); 949 }else{ 950 sqlite3ExprDelete(pParse->db, pLeft); 951 sqlite3ExprDelete(pParse->db, pRight); 952 } 953 return p; 954 } 955 956 /* 957 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 958 ** do a memory allocation failure) then delete the pSelect object. 959 */ 960 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 961 if( pExpr ){ 962 pExpr->x.pSelect = pSelect; 963 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 964 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 965 }else{ 966 assert( pParse->db->mallocFailed ); 967 sqlite3SelectDelete(pParse->db, pSelect); 968 } 969 } 970 971 /* 972 ** Expression list pEList is a list of vector values. This function 973 ** converts the contents of pEList to a VALUES(...) Select statement 974 ** returning 1 row for each element of the list. For example, the 975 ** expression list: 976 ** 977 ** ( (1,2), (3,4) (5,6) ) 978 ** 979 ** is translated to the equivalent of: 980 ** 981 ** VALUES(1,2), (3,4), (5,6) 982 ** 983 ** Each of the vector values in pEList must contain exactly nElem terms. 984 ** If a list element that is not a vector or does not contain nElem terms, 985 ** an error message is left in pParse. 986 ** 987 ** This is used as part of processing IN(...) expressions with a list 988 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 989 */ 990 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 991 int ii; 992 Select *pRet = 0; 993 assert( nElem>1 ); 994 for(ii=0; ii<pEList->nExpr; ii++){ 995 Select *pSel; 996 Expr *pExpr = pEList->a[ii].pExpr; 997 int nExprElem; 998 if( pExpr->op==TK_VECTOR ){ 999 assert( ExprUseXList(pExpr) ); 1000 nExprElem = pExpr->x.pList->nExpr; 1001 }else{ 1002 nExprElem = 1; 1003 } 1004 if( nExprElem!=nElem ){ 1005 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 1006 nExprElem, nExprElem>1?"s":"", nElem 1007 ); 1008 break; 1009 } 1010 assert( ExprUseXList(pExpr) ); 1011 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 1012 pExpr->x.pList = 0; 1013 if( pSel ){ 1014 if( pRet ){ 1015 pSel->op = TK_ALL; 1016 pSel->pPrior = pRet; 1017 } 1018 pRet = pSel; 1019 } 1020 } 1021 1022 if( pRet && pRet->pPrior ){ 1023 pRet->selFlags |= SF_MultiValue; 1024 } 1025 sqlite3ExprListDelete(pParse->db, pEList); 1026 return pRet; 1027 } 1028 1029 /* 1030 ** Join two expressions using an AND operator. If either expression is 1031 ** NULL, then just return the other expression. 1032 ** 1033 ** If one side or the other of the AND is known to be false, then instead 1034 ** of returning an AND expression, just return a constant expression with 1035 ** a value of false. 1036 */ 1037 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1038 sqlite3 *db = pParse->db; 1039 if( pLeft==0 ){ 1040 return pRight; 1041 }else if( pRight==0 ){ 1042 return pLeft; 1043 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1044 && !IN_RENAME_OBJECT 1045 ){ 1046 sqlite3ExprDeferredDelete(pParse, pLeft); 1047 sqlite3ExprDeferredDelete(pParse, pRight); 1048 return sqlite3Expr(db, TK_INTEGER, "0"); 1049 }else{ 1050 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1051 } 1052 } 1053 1054 /* 1055 ** Construct a new expression node for a function with multiple 1056 ** arguments. 1057 */ 1058 Expr *sqlite3ExprFunction( 1059 Parse *pParse, /* Parsing context */ 1060 ExprList *pList, /* Argument list */ 1061 const Token *pToken, /* Name of the function */ 1062 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1063 ){ 1064 Expr *pNew; 1065 sqlite3 *db = pParse->db; 1066 assert( pToken ); 1067 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1068 if( pNew==0 ){ 1069 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1070 return 0; 1071 } 1072 assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) ); 1073 pNew->w.iOfst = (int)(pToken->z - pParse->zTail); 1074 if( pList 1075 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1076 && !pParse->nested 1077 ){ 1078 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1079 } 1080 pNew->x.pList = pList; 1081 ExprSetProperty(pNew, EP_HasFunc); 1082 assert( ExprUseXList(pNew) ); 1083 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1084 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1085 return pNew; 1086 } 1087 1088 /* 1089 ** Check to see if a function is usable according to current access 1090 ** rules: 1091 ** 1092 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1093 ** 1094 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1095 ** top-level SQL 1096 ** 1097 ** If the function is not usable, create an error. 1098 */ 1099 void sqlite3ExprFunctionUsable( 1100 Parse *pParse, /* Parsing and code generating context */ 1101 const Expr *pExpr, /* The function invocation */ 1102 const FuncDef *pDef /* The function being invoked */ 1103 ){ 1104 assert( !IN_RENAME_OBJECT ); 1105 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1106 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1107 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1108 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1109 ){ 1110 /* Functions prohibited in triggers and views if: 1111 ** (1) tagged with SQLITE_DIRECTONLY 1112 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1113 ** is tagged with SQLITE_FUNC_UNSAFE) and 1114 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1115 ** that the schema is possibly tainted). 1116 */ 1117 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); 1118 } 1119 } 1120 } 1121 1122 /* 1123 ** Assign a variable number to an expression that encodes a wildcard 1124 ** in the original SQL statement. 1125 ** 1126 ** Wildcards consisting of a single "?" are assigned the next sequential 1127 ** variable number. 1128 ** 1129 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1130 ** sure "nnn" is not too big to avoid a denial of service attack when 1131 ** the SQL statement comes from an external source. 1132 ** 1133 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1134 ** as the previous instance of the same wildcard. Or if this is the first 1135 ** instance of the wildcard, the next sequential variable number is 1136 ** assigned. 1137 */ 1138 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1139 sqlite3 *db = pParse->db; 1140 const char *z; 1141 ynVar x; 1142 1143 if( pExpr==0 ) return; 1144 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1145 z = pExpr->u.zToken; 1146 assert( z!=0 ); 1147 assert( z[0]!=0 ); 1148 assert( n==(u32)sqlite3Strlen30(z) ); 1149 if( z[1]==0 ){ 1150 /* Wildcard of the form "?". Assign the next variable number */ 1151 assert( z[0]=='?' ); 1152 x = (ynVar)(++pParse->nVar); 1153 }else{ 1154 int doAdd = 0; 1155 if( z[0]=='?' ){ 1156 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1157 ** use it as the variable number */ 1158 i64 i; 1159 int bOk; 1160 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1161 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1162 bOk = 1; 1163 }else{ 1164 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1165 } 1166 testcase( i==0 ); 1167 testcase( i==1 ); 1168 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1169 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1170 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1171 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1172 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1173 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1174 return; 1175 } 1176 x = (ynVar)i; 1177 if( x>pParse->nVar ){ 1178 pParse->nVar = (int)x; 1179 doAdd = 1; 1180 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1181 doAdd = 1; 1182 } 1183 }else{ 1184 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1185 ** number as the prior appearance of the same name, or if the name 1186 ** has never appeared before, reuse the same variable number 1187 */ 1188 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1189 if( x==0 ){ 1190 x = (ynVar)(++pParse->nVar); 1191 doAdd = 1; 1192 } 1193 } 1194 if( doAdd ){ 1195 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1196 } 1197 } 1198 pExpr->iColumn = x; 1199 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1200 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1201 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1202 } 1203 } 1204 1205 /* 1206 ** Recursively delete an expression tree. 1207 */ 1208 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1209 assert( p!=0 ); 1210 assert( !ExprUseUValue(p) || p->u.iValue>=0 ); 1211 assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); 1212 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); 1213 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); 1214 #ifdef SQLITE_DEBUG 1215 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1216 assert( p->pLeft==0 ); 1217 assert( p->pRight==0 ); 1218 assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); 1219 assert( !ExprUseXList(p) || p->x.pList==0 ); 1220 } 1221 #endif 1222 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1223 /* The Expr.x union is never used at the same time as Expr.pRight */ 1224 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); 1225 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1226 if( p->pRight ){ 1227 assert( !ExprHasProperty(p, EP_WinFunc) ); 1228 sqlite3ExprDeleteNN(db, p->pRight); 1229 }else if( ExprUseXSelect(p) ){ 1230 assert( !ExprHasProperty(p, EP_WinFunc) ); 1231 sqlite3SelectDelete(db, p->x.pSelect); 1232 }else{ 1233 sqlite3ExprListDelete(db, p->x.pList); 1234 #ifndef SQLITE_OMIT_WINDOWFUNC 1235 if( ExprHasProperty(p, EP_WinFunc) ){ 1236 sqlite3WindowDelete(db, p->y.pWin); 1237 } 1238 #endif 1239 } 1240 } 1241 if( !ExprHasProperty(p, EP_Static) ){ 1242 sqlite3DbFreeNN(db, p); 1243 } 1244 } 1245 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1246 if( p ) sqlite3ExprDeleteNN(db, p); 1247 } 1248 1249 /* 1250 ** Clear both elements of an OnOrUsing object 1251 */ 1252 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ 1253 if( p==0 ){ 1254 /* Nothing to clear */ 1255 }else if( p->pOn ){ 1256 sqlite3ExprDeleteNN(db, p->pOn); 1257 }else if( p->pUsing ){ 1258 sqlite3IdListDelete(db, p->pUsing); 1259 } 1260 } 1261 1262 /* 1263 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1264 ** This is similar to sqlite3ExprDelete() except that the delete is 1265 ** deferred untilthe pParse is deleted. 1266 ** 1267 ** The pExpr might be deleted immediately on an OOM error. 1268 ** 1269 ** The deferred delete is (currently) implemented by adding the 1270 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1271 */ 1272 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1273 sqlite3ParserAddCleanup(pParse, 1274 (void(*)(sqlite3*,void*))sqlite3ExprDelete, 1275 pExpr); 1276 } 1277 1278 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1279 ** expression. 1280 */ 1281 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1282 if( p ){ 1283 if( IN_RENAME_OBJECT ){ 1284 sqlite3RenameExprUnmap(pParse, p); 1285 } 1286 sqlite3ExprDeleteNN(pParse->db, p); 1287 } 1288 } 1289 1290 /* 1291 ** Return the number of bytes allocated for the expression structure 1292 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1293 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1294 */ 1295 static int exprStructSize(const Expr *p){ 1296 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1297 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1298 return EXPR_FULLSIZE; 1299 } 1300 1301 /* 1302 ** The dupedExpr*Size() routines each return the number of bytes required 1303 ** to store a copy of an expression or expression tree. They differ in 1304 ** how much of the tree is measured. 1305 ** 1306 ** dupedExprStructSize() Size of only the Expr structure 1307 ** dupedExprNodeSize() Size of Expr + space for token 1308 ** dupedExprSize() Expr + token + subtree components 1309 ** 1310 *************************************************************************** 1311 ** 1312 ** The dupedExprStructSize() function returns two values OR-ed together: 1313 ** (1) the space required for a copy of the Expr structure only and 1314 ** (2) the EP_xxx flags that indicate what the structure size should be. 1315 ** The return values is always one of: 1316 ** 1317 ** EXPR_FULLSIZE 1318 ** EXPR_REDUCEDSIZE | EP_Reduced 1319 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1320 ** 1321 ** The size of the structure can be found by masking the return value 1322 ** of this routine with 0xfff. The flags can be found by masking the 1323 ** return value with EP_Reduced|EP_TokenOnly. 1324 ** 1325 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1326 ** (unreduced) Expr objects as they or originally constructed by the parser. 1327 ** During expression analysis, extra information is computed and moved into 1328 ** later parts of the Expr object and that extra information might get chopped 1329 ** off if the expression is reduced. Note also that it does not work to 1330 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1331 ** to reduce a pristine expression tree from the parser. The implementation 1332 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1333 ** to enforce this constraint. 1334 */ 1335 static int dupedExprStructSize(const Expr *p, int flags){ 1336 int nSize; 1337 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1338 assert( EXPR_FULLSIZE<=0xfff ); 1339 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1340 if( 0==flags || p->op==TK_SELECT_COLUMN 1341 #ifndef SQLITE_OMIT_WINDOWFUNC 1342 || ExprHasProperty(p, EP_WinFunc) 1343 #endif 1344 ){ 1345 nSize = EXPR_FULLSIZE; 1346 }else{ 1347 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1348 assert( !ExprHasProperty(p, EP_OuterON) ); 1349 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1350 if( p->pLeft || p->x.pList ){ 1351 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1352 }else{ 1353 assert( p->pRight==0 ); 1354 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1355 } 1356 } 1357 return nSize; 1358 } 1359 1360 /* 1361 ** This function returns the space in bytes required to store the copy 1362 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1363 ** string is defined.) 1364 */ 1365 static int dupedExprNodeSize(const Expr *p, int flags){ 1366 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1367 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1368 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1369 } 1370 return ROUND8(nByte); 1371 } 1372 1373 /* 1374 ** Return the number of bytes required to create a duplicate of the 1375 ** expression passed as the first argument. The second argument is a 1376 ** mask containing EXPRDUP_XXX flags. 1377 ** 1378 ** The value returned includes space to create a copy of the Expr struct 1379 ** itself and the buffer referred to by Expr.u.zToken, if any. 1380 ** 1381 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1382 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1383 ** and Expr.pRight variables (but not for any structures pointed to or 1384 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1385 */ 1386 static int dupedExprSize(const Expr *p, int flags){ 1387 int nByte = 0; 1388 if( p ){ 1389 nByte = dupedExprNodeSize(p, flags); 1390 if( flags&EXPRDUP_REDUCE ){ 1391 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1392 } 1393 } 1394 return nByte; 1395 } 1396 1397 /* 1398 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1399 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1400 ** to store the copy of expression p, the copies of p->u.zToken 1401 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1402 ** if any. Before returning, *pzBuffer is set to the first byte past the 1403 ** portion of the buffer copied into by this function. 1404 */ 1405 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 1406 Expr *pNew; /* Value to return */ 1407 u8 *zAlloc; /* Memory space from which to build Expr object */ 1408 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1409 1410 assert( db!=0 ); 1411 assert( p ); 1412 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1413 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1414 1415 /* Figure out where to write the new Expr structure. */ 1416 if( pzBuffer ){ 1417 zAlloc = *pzBuffer; 1418 staticFlag = EP_Static; 1419 assert( zAlloc!=0 ); 1420 }else{ 1421 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1422 staticFlag = 0; 1423 } 1424 pNew = (Expr *)zAlloc; 1425 1426 if( pNew ){ 1427 /* Set nNewSize to the size allocated for the structure pointed to 1428 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1429 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1430 ** by the copy of the p->u.zToken string (if any). 1431 */ 1432 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1433 const int nNewSize = nStructSize & 0xfff; 1434 int nToken; 1435 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1436 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1437 }else{ 1438 nToken = 0; 1439 } 1440 if( dupFlags ){ 1441 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1442 memcpy(zAlloc, p, nNewSize); 1443 }else{ 1444 u32 nSize = (u32)exprStructSize(p); 1445 memcpy(zAlloc, p, nSize); 1446 if( nSize<EXPR_FULLSIZE ){ 1447 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1448 } 1449 } 1450 1451 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1452 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 1453 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1454 pNew->flags |= staticFlag; 1455 ExprClearVVAProperties(pNew); 1456 if( dupFlags ){ 1457 ExprSetVVAProperty(pNew, EP_Immutable); 1458 } 1459 1460 /* Copy the p->u.zToken string, if any. */ 1461 if( nToken ){ 1462 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1463 memcpy(zToken, p->u.zToken, nToken); 1464 } 1465 1466 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1467 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1468 if( ExprUseXSelect(p) ){ 1469 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1470 }else{ 1471 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1472 } 1473 } 1474 1475 /* Fill in pNew->pLeft and pNew->pRight. */ 1476 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1477 zAlloc += dupedExprNodeSize(p, dupFlags); 1478 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1479 pNew->pLeft = p->pLeft ? 1480 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1481 pNew->pRight = p->pRight ? 1482 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1483 } 1484 #ifndef SQLITE_OMIT_WINDOWFUNC 1485 if( ExprHasProperty(p, EP_WinFunc) ){ 1486 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1487 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1488 } 1489 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1490 if( pzBuffer ){ 1491 *pzBuffer = zAlloc; 1492 } 1493 }else{ 1494 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1495 if( pNew->op==TK_SELECT_COLUMN ){ 1496 pNew->pLeft = p->pLeft; 1497 assert( p->pRight==0 || p->pRight==p->pLeft 1498 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1499 }else{ 1500 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1501 } 1502 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1503 } 1504 } 1505 } 1506 return pNew; 1507 } 1508 1509 /* 1510 ** Create and return a deep copy of the object passed as the second 1511 ** argument. If an OOM condition is encountered, NULL is returned 1512 ** and the db->mallocFailed flag set. 1513 */ 1514 #ifndef SQLITE_OMIT_CTE 1515 With *sqlite3WithDup(sqlite3 *db, With *p){ 1516 With *pRet = 0; 1517 if( p ){ 1518 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1519 pRet = sqlite3DbMallocZero(db, nByte); 1520 if( pRet ){ 1521 int i; 1522 pRet->nCte = p->nCte; 1523 for(i=0; i<p->nCte; i++){ 1524 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1525 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1526 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1527 pRet->a[i].eM10d = p->a[i].eM10d; 1528 } 1529 } 1530 } 1531 return pRet; 1532 } 1533 #else 1534 # define sqlite3WithDup(x,y) 0 1535 #endif 1536 1537 #ifndef SQLITE_OMIT_WINDOWFUNC 1538 /* 1539 ** The gatherSelectWindows() procedure and its helper routine 1540 ** gatherSelectWindowsCallback() are used to scan all the expressions 1541 ** an a newly duplicated SELECT statement and gather all of the Window 1542 ** objects found there, assembling them onto the linked list at Select->pWin. 1543 */ 1544 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1545 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1546 Select *pSelect = pWalker->u.pSelect; 1547 Window *pWin = pExpr->y.pWin; 1548 assert( pWin ); 1549 assert( IsWindowFunc(pExpr) ); 1550 assert( pWin->ppThis==0 ); 1551 sqlite3WindowLink(pSelect, pWin); 1552 } 1553 return WRC_Continue; 1554 } 1555 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1556 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1557 } 1558 static void gatherSelectWindows(Select *p){ 1559 Walker w; 1560 w.xExprCallback = gatherSelectWindowsCallback; 1561 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1562 w.xSelectCallback2 = 0; 1563 w.pParse = 0; 1564 w.u.pSelect = p; 1565 sqlite3WalkSelect(&w, p); 1566 } 1567 #endif 1568 1569 1570 /* 1571 ** The following group of routines make deep copies of expressions, 1572 ** expression lists, ID lists, and select statements. The copies can 1573 ** be deleted (by being passed to their respective ...Delete() routines) 1574 ** without effecting the originals. 1575 ** 1576 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1577 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1578 ** by subsequent calls to sqlite*ListAppend() routines. 1579 ** 1580 ** Any tables that the SrcList might point to are not duplicated. 1581 ** 1582 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1583 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1584 ** truncated version of the usual Expr structure that will be stored as 1585 ** part of the in-memory representation of the database schema. 1586 */ 1587 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 1588 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1589 return p ? exprDup(db, p, flags, 0) : 0; 1590 } 1591 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 1592 ExprList *pNew; 1593 struct ExprList_item *pItem; 1594 const struct ExprList_item *pOldItem; 1595 int i; 1596 Expr *pPriorSelectColOld = 0; 1597 Expr *pPriorSelectColNew = 0; 1598 assert( db!=0 ); 1599 if( p==0 ) return 0; 1600 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1601 if( pNew==0 ) return 0; 1602 pNew->nExpr = p->nExpr; 1603 pNew->nAlloc = p->nAlloc; 1604 pItem = pNew->a; 1605 pOldItem = p->a; 1606 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1607 Expr *pOldExpr = pOldItem->pExpr; 1608 Expr *pNewExpr; 1609 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1610 if( pOldExpr 1611 && pOldExpr->op==TK_SELECT_COLUMN 1612 && (pNewExpr = pItem->pExpr)!=0 1613 ){ 1614 if( pNewExpr->pRight ){ 1615 pPriorSelectColOld = pOldExpr->pRight; 1616 pPriorSelectColNew = pNewExpr->pRight; 1617 pNewExpr->pLeft = pNewExpr->pRight; 1618 }else{ 1619 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1620 pPriorSelectColOld = pOldExpr->pLeft; 1621 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1622 pNewExpr->pRight = pPriorSelectColNew; 1623 } 1624 pNewExpr->pLeft = pPriorSelectColNew; 1625 } 1626 } 1627 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1628 pItem->fg = pOldItem->fg; 1629 pItem->fg.done = 0; 1630 pItem->u = pOldItem->u; 1631 } 1632 return pNew; 1633 } 1634 1635 /* 1636 ** If cursors, triggers, views and subqueries are all omitted from 1637 ** the build, then none of the following routines, except for 1638 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1639 ** called with a NULL argument. 1640 */ 1641 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1642 || !defined(SQLITE_OMIT_SUBQUERY) 1643 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 1644 SrcList *pNew; 1645 int i; 1646 int nByte; 1647 assert( db!=0 ); 1648 if( p==0 ) return 0; 1649 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1650 pNew = sqlite3DbMallocRawNN(db, nByte ); 1651 if( pNew==0 ) return 0; 1652 pNew->nSrc = pNew->nAlloc = p->nSrc; 1653 for(i=0; i<p->nSrc; i++){ 1654 SrcItem *pNewItem = &pNew->a[i]; 1655 const SrcItem *pOldItem = &p->a[i]; 1656 Table *pTab; 1657 pNewItem->pSchema = pOldItem->pSchema; 1658 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1659 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1660 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1661 pNewItem->fg = pOldItem->fg; 1662 pNewItem->iCursor = pOldItem->iCursor; 1663 pNewItem->addrFillSub = pOldItem->addrFillSub; 1664 pNewItem->regReturn = pOldItem->regReturn; 1665 if( pNewItem->fg.isIndexedBy ){ 1666 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1667 } 1668 pNewItem->u2 = pOldItem->u2; 1669 if( pNewItem->fg.isCte ){ 1670 pNewItem->u2.pCteUse->nUse++; 1671 } 1672 if( pNewItem->fg.isTabFunc ){ 1673 pNewItem->u1.pFuncArg = 1674 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1675 } 1676 pTab = pNewItem->pTab = pOldItem->pTab; 1677 if( pTab ){ 1678 pTab->nTabRef++; 1679 } 1680 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1681 if( pOldItem->fg.isUsing ){ 1682 assert( pNewItem->fg.isUsing ); 1683 pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); 1684 }else{ 1685 pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); 1686 } 1687 pNewItem->colUsed = pOldItem->colUsed; 1688 } 1689 return pNew; 1690 } 1691 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 1692 IdList *pNew; 1693 int i; 1694 assert( db!=0 ); 1695 if( p==0 ) return 0; 1696 assert( p->eU4!=EU4_EXPR ); 1697 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) ); 1698 if( pNew==0 ) return 0; 1699 pNew->nId = p->nId; 1700 pNew->eU4 = p->eU4; 1701 for(i=0; i<p->nId; i++){ 1702 struct IdList_item *pNewItem = &pNew->a[i]; 1703 const struct IdList_item *pOldItem = &p->a[i]; 1704 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1705 pNewItem->u4 = pOldItem->u4; 1706 } 1707 return pNew; 1708 } 1709 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 1710 Select *pRet = 0; 1711 Select *pNext = 0; 1712 Select **pp = &pRet; 1713 const Select *p; 1714 1715 assert( db!=0 ); 1716 for(p=pDup; p; p=p->pPrior){ 1717 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1718 if( pNew==0 ) break; 1719 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1720 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1721 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1722 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1723 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1724 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1725 pNew->op = p->op; 1726 pNew->pNext = pNext; 1727 pNew->pPrior = 0; 1728 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1729 pNew->iLimit = 0; 1730 pNew->iOffset = 0; 1731 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1732 pNew->addrOpenEphm[0] = -1; 1733 pNew->addrOpenEphm[1] = -1; 1734 pNew->nSelectRow = p->nSelectRow; 1735 pNew->pWith = sqlite3WithDup(db, p->pWith); 1736 #ifndef SQLITE_OMIT_WINDOWFUNC 1737 pNew->pWin = 0; 1738 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1739 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1740 #endif 1741 pNew->selId = p->selId; 1742 if( db->mallocFailed ){ 1743 /* Any prior OOM might have left the Select object incomplete. 1744 ** Delete the whole thing rather than allow an incomplete Select 1745 ** to be used by the code generator. */ 1746 pNew->pNext = 0; 1747 sqlite3SelectDelete(db, pNew); 1748 break; 1749 } 1750 *pp = pNew; 1751 pp = &pNew->pPrior; 1752 pNext = pNew; 1753 } 1754 1755 return pRet; 1756 } 1757 #else 1758 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ 1759 assert( p==0 ); 1760 return 0; 1761 } 1762 #endif 1763 1764 1765 /* 1766 ** Add a new element to the end of an expression list. If pList is 1767 ** initially NULL, then create a new expression list. 1768 ** 1769 ** The pList argument must be either NULL or a pointer to an ExprList 1770 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1771 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1772 ** Reason: This routine assumes that the number of slots in pList->a[] 1773 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1774 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1775 ** 1776 ** If a memory allocation error occurs, the entire list is freed and 1777 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1778 ** that the new entry was successfully appended. 1779 */ 1780 static const struct ExprList_item zeroItem = {0}; 1781 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1782 sqlite3 *db, /* Database handle. Used for memory allocation */ 1783 Expr *pExpr /* Expression to be appended. Might be NULL */ 1784 ){ 1785 struct ExprList_item *pItem; 1786 ExprList *pList; 1787 1788 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1789 if( pList==0 ){ 1790 sqlite3ExprDelete(db, pExpr); 1791 return 0; 1792 } 1793 pList->nAlloc = 4; 1794 pList->nExpr = 1; 1795 pItem = &pList->a[0]; 1796 *pItem = zeroItem; 1797 pItem->pExpr = pExpr; 1798 return pList; 1799 } 1800 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1801 sqlite3 *db, /* Database handle. Used for memory allocation */ 1802 ExprList *pList, /* List to which to append. Might be NULL */ 1803 Expr *pExpr /* Expression to be appended. Might be NULL */ 1804 ){ 1805 struct ExprList_item *pItem; 1806 ExprList *pNew; 1807 pList->nAlloc *= 2; 1808 pNew = sqlite3DbRealloc(db, pList, 1809 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1810 if( pNew==0 ){ 1811 sqlite3ExprListDelete(db, pList); 1812 sqlite3ExprDelete(db, pExpr); 1813 return 0; 1814 }else{ 1815 pList = pNew; 1816 } 1817 pItem = &pList->a[pList->nExpr++]; 1818 *pItem = zeroItem; 1819 pItem->pExpr = pExpr; 1820 return pList; 1821 } 1822 ExprList *sqlite3ExprListAppend( 1823 Parse *pParse, /* Parsing context */ 1824 ExprList *pList, /* List to which to append. Might be NULL */ 1825 Expr *pExpr /* Expression to be appended. Might be NULL */ 1826 ){ 1827 struct ExprList_item *pItem; 1828 if( pList==0 ){ 1829 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1830 } 1831 if( pList->nAlloc<pList->nExpr+1 ){ 1832 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1833 } 1834 pItem = &pList->a[pList->nExpr++]; 1835 *pItem = zeroItem; 1836 pItem->pExpr = pExpr; 1837 return pList; 1838 } 1839 1840 /* 1841 ** pColumns and pExpr form a vector assignment which is part of the SET 1842 ** clause of an UPDATE statement. Like this: 1843 ** 1844 ** (a,b,c) = (expr1,expr2,expr3) 1845 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1846 ** 1847 ** For each term of the vector assignment, append new entries to the 1848 ** expression list pList. In the case of a subquery on the RHS, append 1849 ** TK_SELECT_COLUMN expressions. 1850 */ 1851 ExprList *sqlite3ExprListAppendVector( 1852 Parse *pParse, /* Parsing context */ 1853 ExprList *pList, /* List to which to append. Might be NULL */ 1854 IdList *pColumns, /* List of names of LHS of the assignment */ 1855 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1856 ){ 1857 sqlite3 *db = pParse->db; 1858 int n; 1859 int i; 1860 int iFirst = pList ? pList->nExpr : 0; 1861 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1862 ** exit prior to this routine being invoked */ 1863 if( NEVER(pColumns==0) ) goto vector_append_error; 1864 if( pExpr==0 ) goto vector_append_error; 1865 1866 /* If the RHS is a vector, then we can immediately check to see that 1867 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1868 ** wildcards ("*") in the result set of the SELECT must be expanded before 1869 ** we can do the size check, so defer the size check until code generation. 1870 */ 1871 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1872 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1873 pColumns->nId, n); 1874 goto vector_append_error; 1875 } 1876 1877 for(i=0; i<pColumns->nId; i++){ 1878 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1879 assert( pSubExpr!=0 || db->mallocFailed ); 1880 if( pSubExpr==0 ) continue; 1881 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1882 if( pList ){ 1883 assert( pList->nExpr==iFirst+i+1 ); 1884 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1885 pColumns->a[i].zName = 0; 1886 } 1887 } 1888 1889 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1890 Expr *pFirst = pList->a[iFirst].pExpr; 1891 assert( pFirst!=0 ); 1892 assert( pFirst->op==TK_SELECT_COLUMN ); 1893 1894 /* Store the SELECT statement in pRight so it will be deleted when 1895 ** sqlite3ExprListDelete() is called */ 1896 pFirst->pRight = pExpr; 1897 pExpr = 0; 1898 1899 /* Remember the size of the LHS in iTable so that we can check that 1900 ** the RHS and LHS sizes match during code generation. */ 1901 pFirst->iTable = pColumns->nId; 1902 } 1903 1904 vector_append_error: 1905 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1906 sqlite3IdListDelete(db, pColumns); 1907 return pList; 1908 } 1909 1910 /* 1911 ** Set the sort order for the last element on the given ExprList. 1912 */ 1913 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1914 struct ExprList_item *pItem; 1915 if( p==0 ) return; 1916 assert( p->nExpr>0 ); 1917 1918 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1919 assert( iSortOrder==SQLITE_SO_UNDEFINED 1920 || iSortOrder==SQLITE_SO_ASC 1921 || iSortOrder==SQLITE_SO_DESC 1922 ); 1923 assert( eNulls==SQLITE_SO_UNDEFINED 1924 || eNulls==SQLITE_SO_ASC 1925 || eNulls==SQLITE_SO_DESC 1926 ); 1927 1928 pItem = &p->a[p->nExpr-1]; 1929 assert( pItem->fg.bNulls==0 ); 1930 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1931 iSortOrder = SQLITE_SO_ASC; 1932 } 1933 pItem->fg.sortFlags = (u8)iSortOrder; 1934 1935 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1936 pItem->fg.bNulls = 1; 1937 if( iSortOrder!=eNulls ){ 1938 pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL; 1939 } 1940 } 1941 } 1942 1943 /* 1944 ** Set the ExprList.a[].zEName element of the most recently added item 1945 ** on the expression list. 1946 ** 1947 ** pList might be NULL following an OOM error. But pName should never be 1948 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1949 ** is set. 1950 */ 1951 void sqlite3ExprListSetName( 1952 Parse *pParse, /* Parsing context */ 1953 ExprList *pList, /* List to which to add the span. */ 1954 const Token *pName, /* Name to be added */ 1955 int dequote /* True to cause the name to be dequoted */ 1956 ){ 1957 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1958 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1959 if( pList ){ 1960 struct ExprList_item *pItem; 1961 assert( pList->nExpr>0 ); 1962 pItem = &pList->a[pList->nExpr-1]; 1963 assert( pItem->zEName==0 ); 1964 assert( pItem->fg.eEName==ENAME_NAME ); 1965 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1966 if( dequote ){ 1967 /* If dequote==0, then pName->z does not point to part of a DDL 1968 ** statement handled by the parser. And so no token need be added 1969 ** to the token-map. */ 1970 sqlite3Dequote(pItem->zEName); 1971 if( IN_RENAME_OBJECT ){ 1972 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 1973 } 1974 } 1975 } 1976 } 1977 1978 /* 1979 ** Set the ExprList.a[].zSpan element of the most recently added item 1980 ** on the expression list. 1981 ** 1982 ** pList might be NULL following an OOM error. But pSpan should never be 1983 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1984 ** is set. 1985 */ 1986 void sqlite3ExprListSetSpan( 1987 Parse *pParse, /* Parsing context */ 1988 ExprList *pList, /* List to which to add the span. */ 1989 const char *zStart, /* Start of the span */ 1990 const char *zEnd /* End of the span */ 1991 ){ 1992 sqlite3 *db = pParse->db; 1993 assert( pList!=0 || db->mallocFailed!=0 ); 1994 if( pList ){ 1995 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1996 assert( pList->nExpr>0 ); 1997 if( pItem->zEName==0 ){ 1998 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1999 pItem->fg.eEName = ENAME_SPAN; 2000 } 2001 } 2002 } 2003 2004 /* 2005 ** If the expression list pEList contains more than iLimit elements, 2006 ** leave an error message in pParse. 2007 */ 2008 void sqlite3ExprListCheckLength( 2009 Parse *pParse, 2010 ExprList *pEList, 2011 const char *zObject 2012 ){ 2013 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 2014 testcase( pEList && pEList->nExpr==mx ); 2015 testcase( pEList && pEList->nExpr==mx+1 ); 2016 if( pEList && pEList->nExpr>mx ){ 2017 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 2018 } 2019 } 2020 2021 /* 2022 ** Delete an entire expression list. 2023 */ 2024 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 2025 int i = pList->nExpr; 2026 struct ExprList_item *pItem = pList->a; 2027 assert( pList->nExpr>0 ); 2028 do{ 2029 sqlite3ExprDelete(db, pItem->pExpr); 2030 sqlite3DbFree(db, pItem->zEName); 2031 pItem++; 2032 }while( --i>0 ); 2033 sqlite3DbFreeNN(db, pList); 2034 } 2035 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 2036 if( pList ) exprListDeleteNN(db, pList); 2037 } 2038 2039 /* 2040 ** Return the bitwise-OR of all Expr.flags fields in the given 2041 ** ExprList. 2042 */ 2043 u32 sqlite3ExprListFlags(const ExprList *pList){ 2044 int i; 2045 u32 m = 0; 2046 assert( pList!=0 ); 2047 for(i=0; i<pList->nExpr; i++){ 2048 Expr *pExpr = pList->a[i].pExpr; 2049 assert( pExpr!=0 ); 2050 m |= pExpr->flags; 2051 } 2052 return m; 2053 } 2054 2055 /* 2056 ** This is a SELECT-node callback for the expression walker that 2057 ** always "fails". By "fail" in this case, we mean set 2058 ** pWalker->eCode to zero and abort. 2059 ** 2060 ** This callback is used by multiple expression walkers. 2061 */ 2062 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2063 UNUSED_PARAMETER(NotUsed); 2064 pWalker->eCode = 0; 2065 return WRC_Abort; 2066 } 2067 2068 /* 2069 ** Check the input string to see if it is "true" or "false" (in any case). 2070 ** 2071 ** If the string is.... Return 2072 ** "true" EP_IsTrue 2073 ** "false" EP_IsFalse 2074 ** anything else 0 2075 */ 2076 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2077 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2078 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2079 return 0; 2080 } 2081 2082 2083 /* 2084 ** If the input expression is an ID with the name "true" or "false" 2085 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2086 ** the conversion happened, and zero if the expression is unaltered. 2087 */ 2088 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2089 u32 v; 2090 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2091 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) 2092 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2093 ){ 2094 pExpr->op = TK_TRUEFALSE; 2095 ExprSetProperty(pExpr, v); 2096 return 1; 2097 } 2098 return 0; 2099 } 2100 2101 /* 2102 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2103 ** and 0 if it is FALSE. 2104 */ 2105 int sqlite3ExprTruthValue(const Expr *pExpr){ 2106 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2107 assert( pExpr->op==TK_TRUEFALSE ); 2108 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2109 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2110 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2111 return pExpr->u.zToken[4]==0; 2112 } 2113 2114 /* 2115 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2116 ** terms that are always true or false. Return the simplified expression. 2117 ** Or return the original expression if no simplification is possible. 2118 ** 2119 ** Examples: 2120 ** 2121 ** (x<10) AND true => (x<10) 2122 ** (x<10) AND false => false 2123 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2124 ** (x<10) AND (y=22 OR true) => (x<10) 2125 ** (y=22) OR true => true 2126 */ 2127 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2128 assert( pExpr!=0 ); 2129 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2130 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2131 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2132 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2133 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2134 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2135 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2136 } 2137 } 2138 return pExpr; 2139 } 2140 2141 2142 /* 2143 ** These routines are Walker callbacks used to check expressions to 2144 ** see if they are "constant" for some definition of constant. The 2145 ** Walker.eCode value determines the type of "constant" we are looking 2146 ** for. 2147 ** 2148 ** These callback routines are used to implement the following: 2149 ** 2150 ** sqlite3ExprIsConstant() pWalker->eCode==1 2151 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2152 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2153 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2154 ** 2155 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2156 ** is found to not be a constant. 2157 ** 2158 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2159 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2160 ** when parsing an existing schema out of the sqlite_schema table and 4 2161 ** when processing a new CREATE TABLE statement. A bound parameter raises 2162 ** an error for new statements, but is silently converted 2163 ** to NULL for existing schemas. This allows sqlite_schema tables that 2164 ** contain a bound parameter because they were generated by older versions 2165 ** of SQLite to be parsed by newer versions of SQLite without raising a 2166 ** malformed schema error. 2167 */ 2168 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2169 2170 /* If pWalker->eCode is 2 then any term of the expression that comes from 2171 ** the ON or USING clauses of an outer join disqualifies the expression 2172 ** from being considered constant. */ 2173 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){ 2174 pWalker->eCode = 0; 2175 return WRC_Abort; 2176 } 2177 2178 switch( pExpr->op ){ 2179 /* Consider functions to be constant if all their arguments are constant 2180 ** and either pWalker->eCode==4 or 5 or the function has the 2181 ** SQLITE_FUNC_CONST flag. */ 2182 case TK_FUNCTION: 2183 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2184 && !ExprHasProperty(pExpr, EP_WinFunc) 2185 ){ 2186 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2187 return WRC_Continue; 2188 }else{ 2189 pWalker->eCode = 0; 2190 return WRC_Abort; 2191 } 2192 case TK_ID: 2193 /* Convert "true" or "false" in a DEFAULT clause into the 2194 ** appropriate TK_TRUEFALSE operator */ 2195 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2196 return WRC_Prune; 2197 } 2198 /* no break */ deliberate_fall_through 2199 case TK_COLUMN: 2200 case TK_AGG_FUNCTION: 2201 case TK_AGG_COLUMN: 2202 testcase( pExpr->op==TK_ID ); 2203 testcase( pExpr->op==TK_COLUMN ); 2204 testcase( pExpr->op==TK_AGG_FUNCTION ); 2205 testcase( pExpr->op==TK_AGG_COLUMN ); 2206 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2207 return WRC_Continue; 2208 } 2209 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2210 return WRC_Continue; 2211 } 2212 /* no break */ deliberate_fall_through 2213 case TK_IF_NULL_ROW: 2214 case TK_REGISTER: 2215 case TK_DOT: 2216 testcase( pExpr->op==TK_REGISTER ); 2217 testcase( pExpr->op==TK_IF_NULL_ROW ); 2218 testcase( pExpr->op==TK_DOT ); 2219 pWalker->eCode = 0; 2220 return WRC_Abort; 2221 case TK_VARIABLE: 2222 if( pWalker->eCode==5 ){ 2223 /* Silently convert bound parameters that appear inside of CREATE 2224 ** statements into a NULL when parsing the CREATE statement text out 2225 ** of the sqlite_schema table */ 2226 pExpr->op = TK_NULL; 2227 }else if( pWalker->eCode==4 ){ 2228 /* A bound parameter in a CREATE statement that originates from 2229 ** sqlite3_prepare() causes an error */ 2230 pWalker->eCode = 0; 2231 return WRC_Abort; 2232 } 2233 /* no break */ deliberate_fall_through 2234 default: 2235 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2236 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2237 return WRC_Continue; 2238 } 2239 } 2240 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2241 Walker w; 2242 w.eCode = initFlag; 2243 w.xExprCallback = exprNodeIsConstant; 2244 w.xSelectCallback = sqlite3SelectWalkFail; 2245 #ifdef SQLITE_DEBUG 2246 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2247 #endif 2248 w.u.iCur = iCur; 2249 sqlite3WalkExpr(&w, p); 2250 return w.eCode; 2251 } 2252 2253 /* 2254 ** Walk an expression tree. Return non-zero if the expression is constant 2255 ** and 0 if it involves variables or function calls. 2256 ** 2257 ** For the purposes of this function, a double-quoted string (ex: "abc") 2258 ** is considered a variable but a single-quoted string (ex: 'abc') is 2259 ** a constant. 2260 */ 2261 int sqlite3ExprIsConstant(Expr *p){ 2262 return exprIsConst(p, 1, 0); 2263 } 2264 2265 /* 2266 ** Walk an expression tree. Return non-zero if 2267 ** 2268 ** (1) the expression is constant, and 2269 ** (2) the expression does originate in the ON or USING clause 2270 ** of a LEFT JOIN, and 2271 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2272 ** operands created by the constant propagation optimization. 2273 ** 2274 ** When this routine returns true, it indicates that the expression 2275 ** can be added to the pParse->pConstExpr list and evaluated once when 2276 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2277 */ 2278 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2279 return exprIsConst(p, 2, 0); 2280 } 2281 2282 /* 2283 ** Walk an expression tree. Return non-zero if the expression is constant 2284 ** for any single row of the table with cursor iCur. In other words, the 2285 ** expression must not refer to any non-deterministic function nor any 2286 ** table other than iCur. 2287 */ 2288 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2289 return exprIsConst(p, 3, iCur); 2290 } 2291 2292 /* 2293 ** Check pExpr to see if it is an invariant constraint on data source pSrc. 2294 ** This is an optimization. False negatives will perhaps cause slower 2295 ** queries, but false positives will yield incorrect answers. So when in 2296 ** doubt, return 0. 2297 ** 2298 ** To be an invariant constraint, the following must be true: 2299 ** 2300 ** (1) pExpr cannot refer to any table other than pSrc->iCursor. 2301 ** 2302 ** (2) pExpr cannot use subqueries or non-deterministic functions. 2303 ** 2304 ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN. 2305 ** (Is there some way to relax this constraint?) 2306 ** 2307 ** (4) If pSrc is the right operand of a LEFT JOIN, then... 2308 ** (4a) pExpr must come from an ON clause.. 2309 (4b) and specifically the ON clause associated with the LEFT JOIN. 2310 ** 2311 ** (5) If pSrc is not the right operand of a LEFT JOIN or the left 2312 ** operand of a RIGHT JOIN, then pExpr must be from the WHERE 2313 ** clause, not an ON clause. 2314 */ 2315 int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){ 2316 if( pSrc->fg.jointype & JT_LTORJ ){ 2317 return 0; /* rule (3) */ 2318 } 2319 if( pSrc->fg.jointype & JT_LEFT ){ 2320 if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */ 2321 if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */ 2322 }else{ 2323 if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */ 2324 } 2325 return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */ 2326 } 2327 2328 2329 /* 2330 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2331 */ 2332 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2333 ExprList *pGroupBy = pWalker->u.pGroupBy; 2334 int i; 2335 2336 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2337 ** it constant. */ 2338 for(i=0; i<pGroupBy->nExpr; i++){ 2339 Expr *p = pGroupBy->a[i].pExpr; 2340 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2341 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2342 if( sqlite3IsBinary(pColl) ){ 2343 return WRC_Prune; 2344 } 2345 } 2346 } 2347 2348 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2349 if( ExprUseXSelect(pExpr) ){ 2350 pWalker->eCode = 0; 2351 return WRC_Abort; 2352 } 2353 2354 return exprNodeIsConstant(pWalker, pExpr); 2355 } 2356 2357 /* 2358 ** Walk the expression tree passed as the first argument. Return non-zero 2359 ** if the expression consists entirely of constants or copies of terms 2360 ** in pGroupBy that sort with the BINARY collation sequence. 2361 ** 2362 ** This routine is used to determine if a term of the HAVING clause can 2363 ** be promoted into the WHERE clause. In order for such a promotion to work, 2364 ** the value of the HAVING clause term must be the same for all members of 2365 ** a "group". The requirement that the GROUP BY term must be BINARY 2366 ** assumes that no other collating sequence will have a finer-grained 2367 ** grouping than binary. In other words (A=B COLLATE binary) implies 2368 ** A=B in every other collating sequence. The requirement that the 2369 ** GROUP BY be BINARY is stricter than necessary. It would also work 2370 ** to promote HAVING clauses that use the same alternative collating 2371 ** sequence as the GROUP BY term, but that is much harder to check, 2372 ** alternative collating sequences are uncommon, and this is only an 2373 ** optimization, so we take the easy way out and simply require the 2374 ** GROUP BY to use the BINARY collating sequence. 2375 */ 2376 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2377 Walker w; 2378 w.eCode = 1; 2379 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2380 w.xSelectCallback = 0; 2381 w.u.pGroupBy = pGroupBy; 2382 w.pParse = pParse; 2383 sqlite3WalkExpr(&w, p); 2384 return w.eCode; 2385 } 2386 2387 /* 2388 ** Walk an expression tree for the DEFAULT field of a column definition 2389 ** in a CREATE TABLE statement. Return non-zero if the expression is 2390 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2391 ** the expression is constant or a function call with constant arguments. 2392 ** Return and 0 if there are any variables. 2393 ** 2394 ** isInit is true when parsing from sqlite_schema. isInit is false when 2395 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2396 ** (such as ? or $abc) in the expression are converted into NULL. When 2397 ** isInit is false, parameters raise an error. Parameters should not be 2398 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2399 ** allowed it, so we need to support it when reading sqlite_schema for 2400 ** backwards compatibility. 2401 ** 2402 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2403 ** 2404 ** For the purposes of this function, a double-quoted string (ex: "abc") 2405 ** is considered a variable but a single-quoted string (ex: 'abc') is 2406 ** a constant. 2407 */ 2408 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2409 assert( isInit==0 || isInit==1 ); 2410 return exprIsConst(p, 4+isInit, 0); 2411 } 2412 2413 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2414 /* 2415 ** Walk an expression tree. Return 1 if the expression contains a 2416 ** subquery of some kind. Return 0 if there are no subqueries. 2417 */ 2418 int sqlite3ExprContainsSubquery(Expr *p){ 2419 Walker w; 2420 w.eCode = 1; 2421 w.xExprCallback = sqlite3ExprWalkNoop; 2422 w.xSelectCallback = sqlite3SelectWalkFail; 2423 #ifdef SQLITE_DEBUG 2424 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2425 #endif 2426 sqlite3WalkExpr(&w, p); 2427 return w.eCode==0; 2428 } 2429 #endif 2430 2431 /* 2432 ** If the expression p codes a constant integer that is small enough 2433 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2434 ** in *pValue. If the expression is not an integer or if it is too big 2435 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2436 */ 2437 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 2438 int rc = 0; 2439 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2440 2441 /* If an expression is an integer literal that fits in a signed 32-bit 2442 ** integer, then the EP_IntValue flag will have already been set */ 2443 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2444 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2445 2446 if( p->flags & EP_IntValue ){ 2447 *pValue = p->u.iValue; 2448 return 1; 2449 } 2450 switch( p->op ){ 2451 case TK_UPLUS: { 2452 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2453 break; 2454 } 2455 case TK_UMINUS: { 2456 int v = 0; 2457 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2458 assert( ((unsigned int)v)!=0x80000000 ); 2459 *pValue = -v; 2460 rc = 1; 2461 } 2462 break; 2463 } 2464 default: break; 2465 } 2466 return rc; 2467 } 2468 2469 /* 2470 ** Return FALSE if there is no chance that the expression can be NULL. 2471 ** 2472 ** If the expression might be NULL or if the expression is too complex 2473 ** to tell return TRUE. 2474 ** 2475 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2476 ** when we know that a value cannot be NULL. Hence, a false positive 2477 ** (returning TRUE when in fact the expression can never be NULL) might 2478 ** be a small performance hit but is otherwise harmless. On the other 2479 ** hand, a false negative (returning FALSE when the result could be NULL) 2480 ** will likely result in an incorrect answer. So when in doubt, return 2481 ** TRUE. 2482 */ 2483 int sqlite3ExprCanBeNull(const Expr *p){ 2484 u8 op; 2485 assert( p!=0 ); 2486 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2487 p = p->pLeft; 2488 assert( p!=0 ); 2489 } 2490 op = p->op; 2491 if( op==TK_REGISTER ) op = p->op2; 2492 switch( op ){ 2493 case TK_INTEGER: 2494 case TK_STRING: 2495 case TK_FLOAT: 2496 case TK_BLOB: 2497 return 0; 2498 case TK_COLUMN: 2499 assert( ExprUseYTab(p) ); 2500 return ExprHasProperty(p, EP_CanBeNull) || 2501 p->y.pTab==0 || /* Reference to column of index on expression */ 2502 (p->iColumn>=0 2503 && p->y.pTab->aCol!=0 /* Possible due to prior error */ 2504 && p->y.pTab->aCol[p->iColumn].notNull==0); 2505 default: 2506 return 1; 2507 } 2508 } 2509 2510 /* 2511 ** Return TRUE if the given expression is a constant which would be 2512 ** unchanged by OP_Affinity with the affinity given in the second 2513 ** argument. 2514 ** 2515 ** This routine is used to determine if the OP_Affinity operation 2516 ** can be omitted. When in doubt return FALSE. A false negative 2517 ** is harmless. A false positive, however, can result in the wrong 2518 ** answer. 2519 */ 2520 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2521 u8 op; 2522 int unaryMinus = 0; 2523 if( aff==SQLITE_AFF_BLOB ) return 1; 2524 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2525 if( p->op==TK_UMINUS ) unaryMinus = 1; 2526 p = p->pLeft; 2527 } 2528 op = p->op; 2529 if( op==TK_REGISTER ) op = p->op2; 2530 switch( op ){ 2531 case TK_INTEGER: { 2532 return aff>=SQLITE_AFF_NUMERIC; 2533 } 2534 case TK_FLOAT: { 2535 return aff>=SQLITE_AFF_NUMERIC; 2536 } 2537 case TK_STRING: { 2538 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2539 } 2540 case TK_BLOB: { 2541 return !unaryMinus; 2542 } 2543 case TK_COLUMN: { 2544 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2545 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2546 } 2547 default: { 2548 return 0; 2549 } 2550 } 2551 } 2552 2553 /* 2554 ** Return TRUE if the given string is a row-id column name. 2555 */ 2556 int sqlite3IsRowid(const char *z){ 2557 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2558 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2559 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2560 return 0; 2561 } 2562 2563 /* 2564 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2565 ** that can be simplified to a direct table access, then return 2566 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2567 ** or if the SELECT statement needs to be manifested into a transient 2568 ** table, then return NULL. 2569 */ 2570 #ifndef SQLITE_OMIT_SUBQUERY 2571 static Select *isCandidateForInOpt(const Expr *pX){ 2572 Select *p; 2573 SrcList *pSrc; 2574 ExprList *pEList; 2575 Table *pTab; 2576 int i; 2577 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ 2578 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2579 p = pX->x.pSelect; 2580 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2581 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2582 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2583 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2584 return 0; /* No DISTINCT keyword and no aggregate functions */ 2585 } 2586 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2587 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2588 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2589 pSrc = p->pSrc; 2590 assert( pSrc!=0 ); 2591 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2592 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2593 pTab = pSrc->a[0].pTab; 2594 assert( pTab!=0 ); 2595 assert( !IsView(pTab) ); /* FROM clause is not a view */ 2596 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2597 pEList = p->pEList; 2598 assert( pEList!=0 ); 2599 /* All SELECT results must be columns. */ 2600 for(i=0; i<pEList->nExpr; i++){ 2601 Expr *pRes = pEList->a[i].pExpr; 2602 if( pRes->op!=TK_COLUMN ) return 0; 2603 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2604 } 2605 return p; 2606 } 2607 #endif /* SQLITE_OMIT_SUBQUERY */ 2608 2609 #ifndef SQLITE_OMIT_SUBQUERY 2610 /* 2611 ** Generate code that checks the left-most column of index table iCur to see if 2612 ** it contains any NULL entries. Cause the register at regHasNull to be set 2613 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2614 ** to be set to NULL if iCur contains one or more NULL values. 2615 */ 2616 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2617 int addr1; 2618 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2619 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2620 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2621 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2622 VdbeComment((v, "first_entry_in(%d)", iCur)); 2623 sqlite3VdbeJumpHere(v, addr1); 2624 } 2625 #endif 2626 2627 2628 #ifndef SQLITE_OMIT_SUBQUERY 2629 /* 2630 ** The argument is an IN operator with a list (not a subquery) on the 2631 ** right-hand side. Return TRUE if that list is constant. 2632 */ 2633 static int sqlite3InRhsIsConstant(Expr *pIn){ 2634 Expr *pLHS; 2635 int res; 2636 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2637 pLHS = pIn->pLeft; 2638 pIn->pLeft = 0; 2639 res = sqlite3ExprIsConstant(pIn); 2640 pIn->pLeft = pLHS; 2641 return res; 2642 } 2643 #endif 2644 2645 /* 2646 ** This function is used by the implementation of the IN (...) operator. 2647 ** The pX parameter is the expression on the RHS of the IN operator, which 2648 ** might be either a list of expressions or a subquery. 2649 ** 2650 ** The job of this routine is to find or create a b-tree object that can 2651 ** be used either to test for membership in the RHS set or to iterate through 2652 ** all members of the RHS set, skipping duplicates. 2653 ** 2654 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2655 ** and the *piTab parameter is set to the index of that cursor. 2656 ** 2657 ** The returned value of this function indicates the b-tree type, as follows: 2658 ** 2659 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2660 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2661 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2662 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2663 ** populated epheremal table. 2664 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2665 ** implemented as a sequence of comparisons. 2666 ** 2667 ** An existing b-tree might be used if the RHS expression pX is a simple 2668 ** subquery such as: 2669 ** 2670 ** SELECT <column1>, <column2>... FROM <table> 2671 ** 2672 ** If the RHS of the IN operator is a list or a more complex subquery, then 2673 ** an ephemeral table might need to be generated from the RHS and then 2674 ** pX->iTable made to point to the ephemeral table instead of an 2675 ** existing table. In this case, the creation and initialization of the 2676 ** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag 2677 ** will be set on pX and the pX->y.sub fields will be set to show where 2678 ** the subroutine is coded. 2679 ** 2680 ** The inFlags parameter must contain, at a minimum, one of the bits 2681 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2682 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2683 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2684 ** be used to loop over all values of the RHS of the IN operator. 2685 ** 2686 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2687 ** through the set members) then the b-tree must not contain duplicates. 2688 ** An epheremal table will be created unless the selected columns are guaranteed 2689 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2690 ** a UNIQUE constraint or index. 2691 ** 2692 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2693 ** for fast set membership tests) then an epheremal table must 2694 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2695 ** index can be found with the specified <columns> as its left-most. 2696 ** 2697 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2698 ** if the RHS of the IN operator is a list (not a subquery) then this 2699 ** routine might decide that creating an ephemeral b-tree for membership 2700 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2701 ** calling routine should implement the IN operator using a sequence 2702 ** of Eq or Ne comparison operations. 2703 ** 2704 ** When the b-tree is being used for membership tests, the calling function 2705 ** might need to know whether or not the RHS side of the IN operator 2706 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2707 ** if there is any chance that the (...) might contain a NULL value at 2708 ** runtime, then a register is allocated and the register number written 2709 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2710 ** NULL value, then *prRhsHasNull is left unchanged. 2711 ** 2712 ** If a register is allocated and its location stored in *prRhsHasNull, then 2713 ** the value in that register will be NULL if the b-tree contains one or more 2714 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2715 ** NULL values. 2716 ** 2717 ** If the aiMap parameter is not NULL, it must point to an array containing 2718 ** one element for each column returned by the SELECT statement on the RHS 2719 ** of the IN(...) operator. The i'th entry of the array is populated with the 2720 ** offset of the index column that matches the i'th column returned by the 2721 ** SELECT. For example, if the expression and selected index are: 2722 ** 2723 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2724 ** CREATE INDEX i1 ON t1(b, c, a); 2725 ** 2726 ** then aiMap[] is populated with {2, 0, 1}. 2727 */ 2728 #ifndef SQLITE_OMIT_SUBQUERY 2729 int sqlite3FindInIndex( 2730 Parse *pParse, /* Parsing context */ 2731 Expr *pX, /* The IN expression */ 2732 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2733 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2734 int *aiMap, /* Mapping from Index fields to RHS fields */ 2735 int *piTab /* OUT: index to use */ 2736 ){ 2737 Select *p; /* SELECT to the right of IN operator */ 2738 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2739 int iTab; /* Cursor of the RHS table */ 2740 int mustBeUnique; /* True if RHS must be unique */ 2741 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2742 2743 assert( pX->op==TK_IN ); 2744 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2745 iTab = pParse->nTab++; 2746 2747 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2748 ** whether or not the SELECT result contains NULL values, check whether 2749 ** or not NULL is actually possible (it may not be, for example, due 2750 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2751 ** set prRhsHasNull to 0 before continuing. */ 2752 if( prRhsHasNull && ExprUseXSelect(pX) ){ 2753 int i; 2754 ExprList *pEList = pX->x.pSelect->pEList; 2755 for(i=0; i<pEList->nExpr; i++){ 2756 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2757 } 2758 if( i==pEList->nExpr ){ 2759 prRhsHasNull = 0; 2760 } 2761 } 2762 2763 /* Check to see if an existing table or index can be used to 2764 ** satisfy the query. This is preferable to generating a new 2765 ** ephemeral table. */ 2766 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2767 sqlite3 *db = pParse->db; /* Database connection */ 2768 Table *pTab; /* Table <table>. */ 2769 int iDb; /* Database idx for pTab */ 2770 ExprList *pEList = p->pEList; 2771 int nExpr = pEList->nExpr; 2772 2773 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2774 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2775 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2776 pTab = p->pSrc->a[0].pTab; 2777 2778 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2779 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2780 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2781 sqlite3CodeVerifySchema(pParse, iDb); 2782 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2783 2784 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2785 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2786 /* The "x IN (SELECT rowid FROM table)" case */ 2787 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2788 VdbeCoverage(v); 2789 2790 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2791 eType = IN_INDEX_ROWID; 2792 ExplainQueryPlan((pParse, 0, 2793 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2794 sqlite3VdbeJumpHere(v, iAddr); 2795 }else{ 2796 Index *pIdx; /* Iterator variable */ 2797 int affinity_ok = 1; 2798 int i; 2799 2800 /* Check that the affinity that will be used to perform each 2801 ** comparison is the same as the affinity of each column in table 2802 ** on the RHS of the IN operator. If it not, it is not possible to 2803 ** use any index of the RHS table. */ 2804 for(i=0; i<nExpr && affinity_ok; i++){ 2805 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2806 int iCol = pEList->a[i].pExpr->iColumn; 2807 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2808 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2809 testcase( cmpaff==SQLITE_AFF_BLOB ); 2810 testcase( cmpaff==SQLITE_AFF_TEXT ); 2811 switch( cmpaff ){ 2812 case SQLITE_AFF_BLOB: 2813 break; 2814 case SQLITE_AFF_TEXT: 2815 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2816 ** other has no affinity and the other side is TEXT. Hence, 2817 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2818 ** and for the term on the LHS of the IN to have no affinity. */ 2819 assert( idxaff==SQLITE_AFF_TEXT ); 2820 break; 2821 default: 2822 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2823 } 2824 } 2825 2826 if( affinity_ok ){ 2827 /* Search for an existing index that will work for this IN operator */ 2828 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2829 Bitmask colUsed; /* Columns of the index used */ 2830 Bitmask mCol; /* Mask for the current column */ 2831 if( pIdx->nColumn<nExpr ) continue; 2832 if( pIdx->pPartIdxWhere!=0 ) continue; 2833 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2834 ** BITMASK(nExpr) without overflowing */ 2835 testcase( pIdx->nColumn==BMS-2 ); 2836 testcase( pIdx->nColumn==BMS-1 ); 2837 if( pIdx->nColumn>=BMS-1 ) continue; 2838 if( mustBeUnique ){ 2839 if( pIdx->nKeyCol>nExpr 2840 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2841 ){ 2842 continue; /* This index is not unique over the IN RHS columns */ 2843 } 2844 } 2845 2846 colUsed = 0; /* Columns of index used so far */ 2847 for(i=0; i<nExpr; i++){ 2848 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2849 Expr *pRhs = pEList->a[i].pExpr; 2850 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2851 int j; 2852 2853 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2854 for(j=0; j<nExpr; j++){ 2855 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2856 assert( pIdx->azColl[j] ); 2857 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2858 continue; 2859 } 2860 break; 2861 } 2862 if( j==nExpr ) break; 2863 mCol = MASKBIT(j); 2864 if( mCol & colUsed ) break; /* Each column used only once */ 2865 colUsed |= mCol; 2866 if( aiMap ) aiMap[i] = j; 2867 } 2868 2869 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2870 if( colUsed==(MASKBIT(nExpr)-1) ){ 2871 /* If we reach this point, that means the index pIdx is usable */ 2872 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2873 ExplainQueryPlan((pParse, 0, 2874 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2875 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2876 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2877 VdbeComment((v, "%s", pIdx->zName)); 2878 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2879 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2880 2881 if( prRhsHasNull ){ 2882 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2883 i64 mask = (1<<nExpr)-1; 2884 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2885 iTab, 0, 0, (u8*)&mask, P4_INT64); 2886 #endif 2887 *prRhsHasNull = ++pParse->nMem; 2888 if( nExpr==1 ){ 2889 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2890 } 2891 } 2892 sqlite3VdbeJumpHere(v, iAddr); 2893 } 2894 } /* End loop over indexes */ 2895 } /* End if( affinity_ok ) */ 2896 } /* End if not an rowid index */ 2897 } /* End attempt to optimize using an index */ 2898 2899 /* If no preexisting index is available for the IN clause 2900 ** and IN_INDEX_NOOP is an allowed reply 2901 ** and the RHS of the IN operator is a list, not a subquery 2902 ** and the RHS is not constant or has two or fewer terms, 2903 ** then it is not worth creating an ephemeral table to evaluate 2904 ** the IN operator so return IN_INDEX_NOOP. 2905 */ 2906 if( eType==0 2907 && (inFlags & IN_INDEX_NOOP_OK) 2908 && ExprUseXList(pX) 2909 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2910 ){ 2911 pParse->nTab--; /* Back out the allocation of the unused cursor */ 2912 iTab = -1; /* Cursor is not allocated */ 2913 eType = IN_INDEX_NOOP; 2914 } 2915 2916 if( eType==0 ){ 2917 /* Could not find an existing table or index to use as the RHS b-tree. 2918 ** We will have to generate an ephemeral table to do the job. 2919 */ 2920 u32 savedNQueryLoop = pParse->nQueryLoop; 2921 int rMayHaveNull = 0; 2922 eType = IN_INDEX_EPH; 2923 if( inFlags & IN_INDEX_LOOP ){ 2924 pParse->nQueryLoop = 0; 2925 }else if( prRhsHasNull ){ 2926 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2927 } 2928 assert( pX->op==TK_IN ); 2929 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2930 if( rMayHaveNull ){ 2931 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2932 } 2933 pParse->nQueryLoop = savedNQueryLoop; 2934 } 2935 2936 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2937 int i, n; 2938 n = sqlite3ExprVectorSize(pX->pLeft); 2939 for(i=0; i<n; i++) aiMap[i] = i; 2940 } 2941 *piTab = iTab; 2942 return eType; 2943 } 2944 #endif 2945 2946 #ifndef SQLITE_OMIT_SUBQUERY 2947 /* 2948 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2949 ** function allocates and returns a nul-terminated string containing 2950 ** the affinities to be used for each column of the comparison. 2951 ** 2952 ** It is the responsibility of the caller to ensure that the returned 2953 ** string is eventually freed using sqlite3DbFree(). 2954 */ 2955 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 2956 Expr *pLeft = pExpr->pLeft; 2957 int nVal = sqlite3ExprVectorSize(pLeft); 2958 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; 2959 char *zRet; 2960 2961 assert( pExpr->op==TK_IN ); 2962 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2963 if( zRet ){ 2964 int i; 2965 for(i=0; i<nVal; i++){ 2966 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2967 char a = sqlite3ExprAffinity(pA); 2968 if( pSelect ){ 2969 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2970 }else{ 2971 zRet[i] = a; 2972 } 2973 } 2974 zRet[nVal] = '\0'; 2975 } 2976 return zRet; 2977 } 2978 #endif 2979 2980 #ifndef SQLITE_OMIT_SUBQUERY 2981 /* 2982 ** Load the Parse object passed as the first argument with an error 2983 ** message of the form: 2984 ** 2985 ** "sub-select returns N columns - expected M" 2986 */ 2987 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2988 if( pParse->nErr==0 ){ 2989 const char *zFmt = "sub-select returns %d columns - expected %d"; 2990 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2991 } 2992 } 2993 #endif 2994 2995 /* 2996 ** Expression pExpr is a vector that has been used in a context where 2997 ** it is not permitted. If pExpr is a sub-select vector, this routine 2998 ** loads the Parse object with a message of the form: 2999 ** 3000 ** "sub-select returns N columns - expected 1" 3001 ** 3002 ** Or, if it is a regular scalar vector: 3003 ** 3004 ** "row value misused" 3005 */ 3006 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 3007 #ifndef SQLITE_OMIT_SUBQUERY 3008 if( ExprUseXSelect(pExpr) ){ 3009 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 3010 }else 3011 #endif 3012 { 3013 sqlite3ErrorMsg(pParse, "row value misused"); 3014 } 3015 } 3016 3017 #ifndef SQLITE_OMIT_SUBQUERY 3018 /* 3019 ** Generate code that will construct an ephemeral table containing all terms 3020 ** in the RHS of an IN operator. The IN operator can be in either of two 3021 ** forms: 3022 ** 3023 ** x IN (4,5,11) -- IN operator with list on right-hand side 3024 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 3025 ** 3026 ** The pExpr parameter is the IN operator. The cursor number for the 3027 ** constructed ephermeral table is returned. The first time the ephemeral 3028 ** table is computed, the cursor number is also stored in pExpr->iTable, 3029 ** however the cursor number returned might not be the same, as it might 3030 ** have been duplicated using OP_OpenDup. 3031 ** 3032 ** If the LHS expression ("x" in the examples) is a column value, or 3033 ** the SELECT statement returns a column value, then the affinity of that 3034 ** column is used to build the index keys. If both 'x' and the 3035 ** SELECT... statement are columns, then numeric affinity is used 3036 ** if either column has NUMERIC or INTEGER affinity. If neither 3037 ** 'x' nor the SELECT... statement are columns, then numeric affinity 3038 ** is used. 3039 */ 3040 void sqlite3CodeRhsOfIN( 3041 Parse *pParse, /* Parsing context */ 3042 Expr *pExpr, /* The IN operator */ 3043 int iTab /* Use this cursor number */ 3044 ){ 3045 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 3046 int addr; /* Address of OP_OpenEphemeral instruction */ 3047 Expr *pLeft; /* the LHS of the IN operator */ 3048 KeyInfo *pKeyInfo = 0; /* Key information */ 3049 int nVal; /* Size of vector pLeft */ 3050 Vdbe *v; /* The prepared statement under construction */ 3051 3052 v = pParse->pVdbe; 3053 assert( v!=0 ); 3054 3055 /* The evaluation of the IN must be repeated every time it 3056 ** is encountered if any of the following is true: 3057 ** 3058 ** * The right-hand side is a correlated subquery 3059 ** * The right-hand side is an expression list containing variables 3060 ** * We are inside a trigger 3061 ** 3062 ** If all of the above are false, then we can compute the RHS just once 3063 ** and reuse it many names. 3064 */ 3065 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 3066 /* Reuse of the RHS is allowed */ 3067 /* If this routine has already been coded, but the previous code 3068 ** might not have been invoked yet, so invoke it now as a subroutine. 3069 */ 3070 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3071 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3072 if( ExprUseXSelect(pExpr) ){ 3073 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 3074 pExpr->x.pSelect->selId)); 3075 } 3076 assert( ExprUseYSub(pExpr) ); 3077 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3078 pExpr->y.sub.iAddr); 3079 assert( iTab!=pExpr->iTable ); 3080 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 3081 sqlite3VdbeJumpHere(v, addrOnce); 3082 return; 3083 } 3084 3085 /* Begin coding the subroutine */ 3086 assert( !ExprUseYWin(pExpr) ); 3087 ExprSetProperty(pExpr, EP_Subrtn); 3088 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3089 pExpr->y.sub.regReturn = ++pParse->nMem; 3090 pExpr->y.sub.iAddr = 3091 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3092 3093 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3094 } 3095 3096 /* Check to see if this is a vector IN operator */ 3097 pLeft = pExpr->pLeft; 3098 nVal = sqlite3ExprVectorSize(pLeft); 3099 3100 /* Construct the ephemeral table that will contain the content of 3101 ** RHS of the IN operator. 3102 */ 3103 pExpr->iTable = iTab; 3104 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3105 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3106 if( ExprUseXSelect(pExpr) ){ 3107 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3108 }else{ 3109 VdbeComment((v, "RHS of IN operator")); 3110 } 3111 #endif 3112 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3113 3114 if( ExprUseXSelect(pExpr) ){ 3115 /* Case 1: expr IN (SELECT ...) 3116 ** 3117 ** Generate code to write the results of the select into the temporary 3118 ** table allocated and opened above. 3119 */ 3120 Select *pSelect = pExpr->x.pSelect; 3121 ExprList *pEList = pSelect->pEList; 3122 3123 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3124 addrOnce?"":"CORRELATED ", pSelect->selId 3125 )); 3126 /* If the LHS and RHS of the IN operator do not match, that 3127 ** error will have been caught long before we reach this point. */ 3128 if( ALWAYS(pEList->nExpr==nVal) ){ 3129 Select *pCopy; 3130 SelectDest dest; 3131 int i; 3132 int rc; 3133 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3134 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3135 pSelect->iLimit = 0; 3136 testcase( pSelect->selFlags & SF_Distinct ); 3137 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3138 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3139 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3140 sqlite3SelectDelete(pParse->db, pCopy); 3141 sqlite3DbFree(pParse->db, dest.zAffSdst); 3142 if( rc ){ 3143 sqlite3KeyInfoUnref(pKeyInfo); 3144 return; 3145 } 3146 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3147 assert( pEList!=0 ); 3148 assert( pEList->nExpr>0 ); 3149 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3150 for(i=0; i<nVal; i++){ 3151 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3152 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3153 pParse, p, pEList->a[i].pExpr 3154 ); 3155 } 3156 } 3157 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3158 /* Case 2: expr IN (exprlist) 3159 ** 3160 ** For each expression, build an index key from the evaluation and 3161 ** store it in the temporary table. If <expr> is a column, then use 3162 ** that columns affinity when building index keys. If <expr> is not 3163 ** a column, use numeric affinity. 3164 */ 3165 char affinity; /* Affinity of the LHS of the IN */ 3166 int i; 3167 ExprList *pList = pExpr->x.pList; 3168 struct ExprList_item *pItem; 3169 int r1, r2; 3170 affinity = sqlite3ExprAffinity(pLeft); 3171 if( affinity<=SQLITE_AFF_NONE ){ 3172 affinity = SQLITE_AFF_BLOB; 3173 }else if( affinity==SQLITE_AFF_REAL ){ 3174 affinity = SQLITE_AFF_NUMERIC; 3175 } 3176 if( pKeyInfo ){ 3177 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3178 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3179 } 3180 3181 /* Loop through each expression in <exprlist>. */ 3182 r1 = sqlite3GetTempReg(pParse); 3183 r2 = sqlite3GetTempReg(pParse); 3184 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3185 Expr *pE2 = pItem->pExpr; 3186 3187 /* If the expression is not constant then we will need to 3188 ** disable the test that was generated above that makes sure 3189 ** this code only executes once. Because for a non-constant 3190 ** expression we need to rerun this code each time. 3191 */ 3192 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3193 sqlite3VdbeChangeToNoop(v, addrOnce-1); 3194 sqlite3VdbeChangeToNoop(v, addrOnce); 3195 ExprClearProperty(pExpr, EP_Subrtn); 3196 addrOnce = 0; 3197 } 3198 3199 /* Evaluate the expression and insert it into the temp table */ 3200 sqlite3ExprCode(pParse, pE2, r1); 3201 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3202 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3203 } 3204 sqlite3ReleaseTempReg(pParse, r1); 3205 sqlite3ReleaseTempReg(pParse, r2); 3206 } 3207 if( pKeyInfo ){ 3208 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3209 } 3210 if( addrOnce ){ 3211 sqlite3VdbeJumpHere(v, addrOnce); 3212 /* Subroutine return */ 3213 assert( ExprUseYSub(pExpr) ); 3214 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3215 || pParse->nErr ); 3216 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3217 pExpr->y.sub.iAddr, 1); 3218 VdbeCoverage(v); 3219 sqlite3ClearTempRegCache(pParse); 3220 } 3221 } 3222 #endif /* SQLITE_OMIT_SUBQUERY */ 3223 3224 /* 3225 ** Generate code for scalar subqueries used as a subquery expression 3226 ** or EXISTS operator: 3227 ** 3228 ** (SELECT a FROM b) -- subquery 3229 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3230 ** 3231 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3232 ** 3233 ** Return the register that holds the result. For a multi-column SELECT, 3234 ** the result is stored in a contiguous array of registers and the 3235 ** return value is the register of the left-most result column. 3236 ** Return 0 if an error occurs. 3237 */ 3238 #ifndef SQLITE_OMIT_SUBQUERY 3239 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3240 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3241 int rReg = 0; /* Register storing resulting */ 3242 Select *pSel; /* SELECT statement to encode */ 3243 SelectDest dest; /* How to deal with SELECT result */ 3244 int nReg; /* Registers to allocate */ 3245 Expr *pLimit; /* New limit expression */ 3246 3247 Vdbe *v = pParse->pVdbe; 3248 assert( v!=0 ); 3249 if( pParse->nErr ) return 0; 3250 testcase( pExpr->op==TK_EXISTS ); 3251 testcase( pExpr->op==TK_SELECT ); 3252 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3253 assert( ExprUseXSelect(pExpr) ); 3254 pSel = pExpr->x.pSelect; 3255 3256 /* If this routine has already been coded, then invoke it as a 3257 ** subroutine. */ 3258 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3259 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3260 assert( ExprUseYSub(pExpr) ); 3261 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3262 pExpr->y.sub.iAddr); 3263 return pExpr->iTable; 3264 } 3265 3266 /* Begin coding the subroutine */ 3267 assert( !ExprUseYWin(pExpr) ); 3268 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); 3269 ExprSetProperty(pExpr, EP_Subrtn); 3270 pExpr->y.sub.regReturn = ++pParse->nMem; 3271 pExpr->y.sub.iAddr = 3272 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3273 3274 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3275 ** is encountered if any of the following is true: 3276 ** 3277 ** * The right-hand side is a correlated subquery 3278 ** * The right-hand side is an expression list containing variables 3279 ** * We are inside a trigger 3280 ** 3281 ** If all of the above are false, then we can run this code just once 3282 ** save the results, and reuse the same result on subsequent invocations. 3283 */ 3284 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3285 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3286 } 3287 3288 /* For a SELECT, generate code to put the values for all columns of 3289 ** the first row into an array of registers and return the index of 3290 ** the first register. 3291 ** 3292 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3293 ** into a register and return that register number. 3294 ** 3295 ** In both cases, the query is augmented with "LIMIT 1". Any 3296 ** preexisting limit is discarded in place of the new LIMIT 1. 3297 */ 3298 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3299 addrOnce?"":"CORRELATED ", pSel->selId)); 3300 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3301 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3302 pParse->nMem += nReg; 3303 if( pExpr->op==TK_SELECT ){ 3304 dest.eDest = SRT_Mem; 3305 dest.iSdst = dest.iSDParm; 3306 dest.nSdst = nReg; 3307 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3308 VdbeComment((v, "Init subquery result")); 3309 }else{ 3310 dest.eDest = SRT_Exists; 3311 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3312 VdbeComment((v, "Init EXISTS result")); 3313 } 3314 if( pSel->pLimit ){ 3315 /* The subquery already has a limit. If the pre-existing limit is X 3316 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3317 sqlite3 *db = pParse->db; 3318 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3319 if( pLimit ){ 3320 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3321 pLimit = sqlite3PExpr(pParse, TK_NE, 3322 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3323 } 3324 sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft); 3325 pSel->pLimit->pLeft = pLimit; 3326 }else{ 3327 /* If there is no pre-existing limit add a limit of 1 */ 3328 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3329 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3330 } 3331 pSel->iLimit = 0; 3332 if( sqlite3Select(pParse, pSel, &dest) ){ 3333 pExpr->op2 = pExpr->op; 3334 pExpr->op = TK_ERROR; 3335 return 0; 3336 } 3337 pExpr->iTable = rReg = dest.iSDParm; 3338 ExprSetVVAProperty(pExpr, EP_NoReduce); 3339 if( addrOnce ){ 3340 sqlite3VdbeJumpHere(v, addrOnce); 3341 } 3342 3343 /* Subroutine return */ 3344 assert( ExprUseYSub(pExpr) ); 3345 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3346 || pParse->nErr ); 3347 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3348 pExpr->y.sub.iAddr, 1); 3349 VdbeCoverage(v); 3350 sqlite3ClearTempRegCache(pParse); 3351 return rReg; 3352 } 3353 #endif /* SQLITE_OMIT_SUBQUERY */ 3354 3355 #ifndef SQLITE_OMIT_SUBQUERY 3356 /* 3357 ** Expr pIn is an IN(...) expression. This function checks that the 3358 ** sub-select on the RHS of the IN() operator has the same number of 3359 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3360 ** a sub-query, that the LHS is a vector of size 1. 3361 */ 3362 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3363 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3364 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ 3365 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3366 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3367 return 1; 3368 } 3369 }else if( nVector!=1 ){ 3370 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3371 return 1; 3372 } 3373 return 0; 3374 } 3375 #endif 3376 3377 #ifndef SQLITE_OMIT_SUBQUERY 3378 /* 3379 ** Generate code for an IN expression. 3380 ** 3381 ** x IN (SELECT ...) 3382 ** x IN (value, value, ...) 3383 ** 3384 ** The left-hand side (LHS) is a scalar or vector expression. The 3385 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3386 ** subquery. If the RHS is a subquery, the number of result columns must 3387 ** match the number of columns in the vector on the LHS. If the RHS is 3388 ** a list of values, the LHS must be a scalar. 3389 ** 3390 ** The IN operator is true if the LHS value is contained within the RHS. 3391 ** The result is false if the LHS is definitely not in the RHS. The 3392 ** result is NULL if the presence of the LHS in the RHS cannot be 3393 ** determined due to NULLs. 3394 ** 3395 ** This routine generates code that jumps to destIfFalse if the LHS is not 3396 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3397 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3398 ** within the RHS then fall through. 3399 ** 3400 ** See the separate in-operator.md documentation file in the canonical 3401 ** SQLite source tree for additional information. 3402 */ 3403 static void sqlite3ExprCodeIN( 3404 Parse *pParse, /* Parsing and code generating context */ 3405 Expr *pExpr, /* The IN expression */ 3406 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3407 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3408 ){ 3409 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3410 int eType; /* Type of the RHS */ 3411 int rLhs; /* Register(s) holding the LHS values */ 3412 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3413 Vdbe *v; /* Statement under construction */ 3414 int *aiMap = 0; /* Map from vector field to index column */ 3415 char *zAff = 0; /* Affinity string for comparisons */ 3416 int nVector; /* Size of vectors for this IN operator */ 3417 int iDummy; /* Dummy parameter to exprCodeVector() */ 3418 Expr *pLeft; /* The LHS of the IN operator */ 3419 int i; /* loop counter */ 3420 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3421 int destStep6 = 0; /* Start of code for Step 6 */ 3422 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3423 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3424 int addrTop; /* Top of the step-6 loop */ 3425 int iTab = 0; /* Index to use */ 3426 u8 okConstFactor = pParse->okConstFactor; 3427 3428 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3429 pLeft = pExpr->pLeft; 3430 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3431 zAff = exprINAffinity(pParse, pExpr); 3432 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3433 aiMap = (int*)sqlite3DbMallocZero( 3434 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3435 ); 3436 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3437 3438 /* Attempt to compute the RHS. After this step, if anything other than 3439 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3440 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3441 ** the RHS has not yet been coded. */ 3442 v = pParse->pVdbe; 3443 assert( v!=0 ); /* OOM detected prior to this routine */ 3444 VdbeNoopComment((v, "begin IN expr")); 3445 eType = sqlite3FindInIndex(pParse, pExpr, 3446 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3447 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3448 aiMap, &iTab); 3449 3450 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3451 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3452 ); 3453 #ifdef SQLITE_DEBUG 3454 /* Confirm that aiMap[] contains nVector integer values between 0 and 3455 ** nVector-1. */ 3456 for(i=0; i<nVector; i++){ 3457 int j, cnt; 3458 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3459 assert( cnt==1 ); 3460 } 3461 #endif 3462 3463 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3464 ** vector, then it is stored in an array of nVector registers starting 3465 ** at r1. 3466 ** 3467 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3468 ** so that the fields are in the same order as an existing index. The 3469 ** aiMap[] array contains a mapping from the original LHS field order to 3470 ** the field order that matches the RHS index. 3471 ** 3472 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3473 ** even if it is constant, as OP_Affinity may be used on the register 3474 ** by code generated below. */ 3475 assert( pParse->okConstFactor==okConstFactor ); 3476 pParse->okConstFactor = 0; 3477 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3478 pParse->okConstFactor = okConstFactor; 3479 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3480 if( i==nVector ){ 3481 /* LHS fields are not reordered */ 3482 rLhs = rLhsOrig; 3483 }else{ 3484 /* Need to reorder the LHS fields according to aiMap */ 3485 rLhs = sqlite3GetTempRange(pParse, nVector); 3486 for(i=0; i<nVector; i++){ 3487 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3488 } 3489 } 3490 3491 /* If sqlite3FindInIndex() did not find or create an index that is 3492 ** suitable for evaluating the IN operator, then evaluate using a 3493 ** sequence of comparisons. 3494 ** 3495 ** This is step (1) in the in-operator.md optimized algorithm. 3496 */ 3497 if( eType==IN_INDEX_NOOP ){ 3498 ExprList *pList; 3499 CollSeq *pColl; 3500 int labelOk = sqlite3VdbeMakeLabel(pParse); 3501 int r2, regToFree; 3502 int regCkNull = 0; 3503 int ii; 3504 assert( ExprUseXList(pExpr) ); 3505 pList = pExpr->x.pList; 3506 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3507 if( destIfNull!=destIfFalse ){ 3508 regCkNull = sqlite3GetTempReg(pParse); 3509 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3510 } 3511 for(ii=0; ii<pList->nExpr; ii++){ 3512 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3513 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3514 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3515 } 3516 sqlite3ReleaseTempReg(pParse, regToFree); 3517 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3518 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3519 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3520 (void*)pColl, P4_COLLSEQ); 3521 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3522 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3523 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3524 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3525 sqlite3VdbeChangeP5(v, zAff[0]); 3526 }else{ 3527 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3528 assert( destIfNull==destIfFalse ); 3529 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3530 (void*)pColl, P4_COLLSEQ); 3531 VdbeCoverageIf(v, op==OP_Ne); 3532 VdbeCoverageIf(v, op==OP_IsNull); 3533 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3534 } 3535 } 3536 if( regCkNull ){ 3537 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3538 sqlite3VdbeGoto(v, destIfFalse); 3539 } 3540 sqlite3VdbeResolveLabel(v, labelOk); 3541 sqlite3ReleaseTempReg(pParse, regCkNull); 3542 goto sqlite3ExprCodeIN_finished; 3543 } 3544 3545 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3546 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3547 ** We will then skip the binary search of the RHS. 3548 */ 3549 if( destIfNull==destIfFalse ){ 3550 destStep2 = destIfFalse; 3551 }else{ 3552 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3553 } 3554 for(i=0; i<nVector; i++){ 3555 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3556 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; 3557 if( sqlite3ExprCanBeNull(p) ){ 3558 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3559 VdbeCoverage(v); 3560 } 3561 } 3562 3563 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3564 ** of the RHS using the LHS as a probe. If found, the result is 3565 ** true. 3566 */ 3567 if( eType==IN_INDEX_ROWID ){ 3568 /* In this case, the RHS is the ROWID of table b-tree and so we also 3569 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3570 ** into a single opcode. */ 3571 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3572 VdbeCoverage(v); 3573 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3574 }else{ 3575 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3576 if( destIfFalse==destIfNull ){ 3577 /* Combine Step 3 and Step 5 into a single opcode */ 3578 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3579 rLhs, nVector); VdbeCoverage(v); 3580 goto sqlite3ExprCodeIN_finished; 3581 } 3582 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3583 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3584 rLhs, nVector); VdbeCoverage(v); 3585 } 3586 3587 /* Step 4. If the RHS is known to be non-NULL and we did not find 3588 ** an match on the search above, then the result must be FALSE. 3589 */ 3590 if( rRhsHasNull && nVector==1 ){ 3591 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3592 VdbeCoverage(v); 3593 } 3594 3595 /* Step 5. If we do not care about the difference between NULL and 3596 ** FALSE, then just return false. 3597 */ 3598 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3599 3600 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3601 ** If any comparison is NULL, then the result is NULL. If all 3602 ** comparisons are FALSE then the final result is FALSE. 3603 ** 3604 ** For a scalar LHS, it is sufficient to check just the first row 3605 ** of the RHS. 3606 */ 3607 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3608 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3609 VdbeCoverage(v); 3610 if( nVector>1 ){ 3611 destNotNull = sqlite3VdbeMakeLabel(pParse); 3612 }else{ 3613 /* For nVector==1, combine steps 6 and 7 by immediately returning 3614 ** FALSE if the first comparison is not NULL */ 3615 destNotNull = destIfFalse; 3616 } 3617 for(i=0; i<nVector; i++){ 3618 Expr *p; 3619 CollSeq *pColl; 3620 int r3 = sqlite3GetTempReg(pParse); 3621 p = sqlite3VectorFieldSubexpr(pLeft, i); 3622 pColl = sqlite3ExprCollSeq(pParse, p); 3623 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3624 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3625 (void*)pColl, P4_COLLSEQ); 3626 VdbeCoverage(v); 3627 sqlite3ReleaseTempReg(pParse, r3); 3628 } 3629 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3630 if( nVector>1 ){ 3631 sqlite3VdbeResolveLabel(v, destNotNull); 3632 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3633 VdbeCoverage(v); 3634 3635 /* Step 7: If we reach this point, we know that the result must 3636 ** be false. */ 3637 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3638 } 3639 3640 /* Jumps here in order to return true. */ 3641 sqlite3VdbeJumpHere(v, addrTruthOp); 3642 3643 sqlite3ExprCodeIN_finished: 3644 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3645 VdbeComment((v, "end IN expr")); 3646 sqlite3ExprCodeIN_oom_error: 3647 sqlite3DbFree(pParse->db, aiMap); 3648 sqlite3DbFree(pParse->db, zAff); 3649 } 3650 #endif /* SQLITE_OMIT_SUBQUERY */ 3651 3652 #ifndef SQLITE_OMIT_FLOATING_POINT 3653 /* 3654 ** Generate an instruction that will put the floating point 3655 ** value described by z[0..n-1] into register iMem. 3656 ** 3657 ** The z[] string will probably not be zero-terminated. But the 3658 ** z[n] character is guaranteed to be something that does not look 3659 ** like the continuation of the number. 3660 */ 3661 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3662 if( ALWAYS(z!=0) ){ 3663 double value; 3664 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3665 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3666 if( negateFlag ) value = -value; 3667 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3668 } 3669 } 3670 #endif 3671 3672 3673 /* 3674 ** Generate an instruction that will put the integer describe by 3675 ** text z[0..n-1] into register iMem. 3676 ** 3677 ** Expr.u.zToken is always UTF8 and zero-terminated. 3678 */ 3679 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3680 Vdbe *v = pParse->pVdbe; 3681 if( pExpr->flags & EP_IntValue ){ 3682 int i = pExpr->u.iValue; 3683 assert( i>=0 ); 3684 if( negFlag ) i = -i; 3685 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3686 }else{ 3687 int c; 3688 i64 value; 3689 const char *z = pExpr->u.zToken; 3690 assert( z!=0 ); 3691 c = sqlite3DecOrHexToI64(z, &value); 3692 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3693 #ifdef SQLITE_OMIT_FLOATING_POINT 3694 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); 3695 #else 3696 #ifndef SQLITE_OMIT_HEX_INTEGER 3697 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3698 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", 3699 negFlag?"-":"",pExpr); 3700 }else 3701 #endif 3702 { 3703 codeReal(v, z, negFlag, iMem); 3704 } 3705 #endif 3706 }else{ 3707 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3708 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3709 } 3710 } 3711 } 3712 3713 3714 /* Generate code that will load into register regOut a value that is 3715 ** appropriate for the iIdxCol-th column of index pIdx. 3716 */ 3717 void sqlite3ExprCodeLoadIndexColumn( 3718 Parse *pParse, /* The parsing context */ 3719 Index *pIdx, /* The index whose column is to be loaded */ 3720 int iTabCur, /* Cursor pointing to a table row */ 3721 int iIdxCol, /* The column of the index to be loaded */ 3722 int regOut /* Store the index column value in this register */ 3723 ){ 3724 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3725 if( iTabCol==XN_EXPR ){ 3726 assert( pIdx->aColExpr ); 3727 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3728 pParse->iSelfTab = iTabCur + 1; 3729 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3730 pParse->iSelfTab = 0; 3731 }else{ 3732 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3733 iTabCol, regOut); 3734 } 3735 } 3736 3737 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3738 /* 3739 ** Generate code that will compute the value of generated column pCol 3740 ** and store the result in register regOut 3741 */ 3742 void sqlite3ExprCodeGeneratedColumn( 3743 Parse *pParse, /* Parsing context */ 3744 Table *pTab, /* Table containing the generated column */ 3745 Column *pCol, /* The generated column */ 3746 int regOut /* Put the result in this register */ 3747 ){ 3748 int iAddr; 3749 Vdbe *v = pParse->pVdbe; 3750 assert( v!=0 ); 3751 assert( pParse->iSelfTab!=0 ); 3752 if( pParse->iSelfTab>0 ){ 3753 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3754 }else{ 3755 iAddr = 0; 3756 } 3757 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 3758 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3759 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3760 } 3761 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3762 } 3763 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3764 3765 /* 3766 ** Generate code to extract the value of the iCol-th column of a table. 3767 */ 3768 void sqlite3ExprCodeGetColumnOfTable( 3769 Vdbe *v, /* Parsing context */ 3770 Table *pTab, /* The table containing the value */ 3771 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3772 int iCol, /* Index of the column to extract */ 3773 int regOut /* Extract the value into this register */ 3774 ){ 3775 Column *pCol; 3776 assert( v!=0 ); 3777 if( pTab==0 ){ 3778 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3779 return; 3780 } 3781 if( iCol<0 || iCol==pTab->iPKey ){ 3782 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3783 VdbeComment((v, "%s.rowid", pTab->zName)); 3784 }else{ 3785 int op; 3786 int x; 3787 if( IsVirtual(pTab) ){ 3788 op = OP_VColumn; 3789 x = iCol; 3790 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3791 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3792 Parse *pParse = sqlite3VdbeParser(v); 3793 if( pCol->colFlags & COLFLAG_BUSY ){ 3794 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3795 pCol->zCnName); 3796 }else{ 3797 int savedSelfTab = pParse->iSelfTab; 3798 pCol->colFlags |= COLFLAG_BUSY; 3799 pParse->iSelfTab = iTabCur+1; 3800 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 3801 pParse->iSelfTab = savedSelfTab; 3802 pCol->colFlags &= ~COLFLAG_BUSY; 3803 } 3804 return; 3805 #endif 3806 }else if( !HasRowid(pTab) ){ 3807 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3808 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3809 op = OP_Column; 3810 }else{ 3811 x = sqlite3TableColumnToStorage(pTab,iCol); 3812 testcase( x!=iCol ); 3813 op = OP_Column; 3814 } 3815 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3816 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3817 } 3818 } 3819 3820 /* 3821 ** Generate code that will extract the iColumn-th column from 3822 ** table pTab and store the column value in register iReg. 3823 ** 3824 ** There must be an open cursor to pTab in iTable when this routine 3825 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3826 */ 3827 int sqlite3ExprCodeGetColumn( 3828 Parse *pParse, /* Parsing and code generating context */ 3829 Table *pTab, /* Description of the table we are reading from */ 3830 int iColumn, /* Index of the table column */ 3831 int iTable, /* The cursor pointing to the table */ 3832 int iReg, /* Store results here */ 3833 u8 p5 /* P5 value for OP_Column + FLAGS */ 3834 ){ 3835 assert( pParse->pVdbe!=0 ); 3836 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3837 if( p5 ){ 3838 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3839 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3840 } 3841 return iReg; 3842 } 3843 3844 /* 3845 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3846 ** over to iTo..iTo+nReg-1. 3847 */ 3848 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3849 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3850 } 3851 3852 /* 3853 ** Convert a scalar expression node to a TK_REGISTER referencing 3854 ** register iReg. The caller must ensure that iReg already contains 3855 ** the correct value for the expression. 3856 */ 3857 static void exprToRegister(Expr *pExpr, int iReg){ 3858 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3859 if( NEVER(p==0) ) return; 3860 p->op2 = p->op; 3861 p->op = TK_REGISTER; 3862 p->iTable = iReg; 3863 ExprClearProperty(p, EP_Skip); 3864 } 3865 3866 /* 3867 ** Evaluate an expression (either a vector or a scalar expression) and store 3868 ** the result in continguous temporary registers. Return the index of 3869 ** the first register used to store the result. 3870 ** 3871 ** If the returned result register is a temporary scalar, then also write 3872 ** that register number into *piFreeable. If the returned result register 3873 ** is not a temporary or if the expression is a vector set *piFreeable 3874 ** to 0. 3875 */ 3876 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3877 int iResult; 3878 int nResult = sqlite3ExprVectorSize(p); 3879 if( nResult==1 ){ 3880 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3881 }else{ 3882 *piFreeable = 0; 3883 if( p->op==TK_SELECT ){ 3884 #if SQLITE_OMIT_SUBQUERY 3885 iResult = 0; 3886 #else 3887 iResult = sqlite3CodeSubselect(pParse, p); 3888 #endif 3889 }else{ 3890 int i; 3891 iResult = pParse->nMem+1; 3892 pParse->nMem += nResult; 3893 assert( ExprUseXList(p) ); 3894 for(i=0; i<nResult; i++){ 3895 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3896 } 3897 } 3898 } 3899 return iResult; 3900 } 3901 3902 /* 3903 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3904 ** so that a subsequent copy will not be merged into this one. 3905 */ 3906 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3907 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3908 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3909 } 3910 } 3911 3912 /* 3913 ** Generate code to implement special SQL functions that are implemented 3914 ** in-line rather than by using the usual callbacks. 3915 */ 3916 static int exprCodeInlineFunction( 3917 Parse *pParse, /* Parsing context */ 3918 ExprList *pFarg, /* List of function arguments */ 3919 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3920 int target /* Store function result in this register */ 3921 ){ 3922 int nFarg; 3923 Vdbe *v = pParse->pVdbe; 3924 assert( v!=0 ); 3925 assert( pFarg!=0 ); 3926 nFarg = pFarg->nExpr; 3927 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3928 switch( iFuncId ){ 3929 case INLINEFUNC_coalesce: { 3930 /* Attempt a direct implementation of the built-in COALESCE() and 3931 ** IFNULL() functions. This avoids unnecessary evaluation of 3932 ** arguments past the first non-NULL argument. 3933 */ 3934 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3935 int i; 3936 assert( nFarg>=2 ); 3937 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3938 for(i=1; i<nFarg; i++){ 3939 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3940 VdbeCoverage(v); 3941 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3942 } 3943 setDoNotMergeFlagOnCopy(v); 3944 sqlite3VdbeResolveLabel(v, endCoalesce); 3945 break; 3946 } 3947 case INLINEFUNC_iif: { 3948 Expr caseExpr; 3949 memset(&caseExpr, 0, sizeof(caseExpr)); 3950 caseExpr.op = TK_CASE; 3951 caseExpr.x.pList = pFarg; 3952 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3953 } 3954 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3955 case INLINEFUNC_sqlite_offset: { 3956 Expr *pArg = pFarg->a[0].pExpr; 3957 if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){ 3958 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3959 }else{ 3960 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3961 } 3962 break; 3963 } 3964 #endif 3965 default: { 3966 /* The UNLIKELY() function is a no-op. The result is the value 3967 ** of the first argument. 3968 */ 3969 assert( nFarg==1 || nFarg==2 ); 3970 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3971 break; 3972 } 3973 3974 /*********************************************************************** 3975 ** Test-only SQL functions that are only usable if enabled 3976 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3977 */ 3978 #if !defined(SQLITE_UNTESTABLE) 3979 case INLINEFUNC_expr_compare: { 3980 /* Compare two expressions using sqlite3ExprCompare() */ 3981 assert( nFarg==2 ); 3982 sqlite3VdbeAddOp2(v, OP_Integer, 3983 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3984 target); 3985 break; 3986 } 3987 3988 case INLINEFUNC_expr_implies_expr: { 3989 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3990 assert( nFarg==2 ); 3991 sqlite3VdbeAddOp2(v, OP_Integer, 3992 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3993 target); 3994 break; 3995 } 3996 3997 case INLINEFUNC_implies_nonnull_row: { 3998 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3999 Expr *pA1; 4000 assert( nFarg==2 ); 4001 pA1 = pFarg->a[1].pExpr; 4002 if( pA1->op==TK_COLUMN ){ 4003 sqlite3VdbeAddOp2(v, OP_Integer, 4004 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 4005 target); 4006 }else{ 4007 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4008 } 4009 break; 4010 } 4011 4012 case INLINEFUNC_affinity: { 4013 /* The AFFINITY() function evaluates to a string that describes 4014 ** the type affinity of the argument. This is used for testing of 4015 ** the SQLite type logic. 4016 */ 4017 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 4018 char aff; 4019 assert( nFarg==1 ); 4020 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 4021 sqlite3VdbeLoadString(v, target, 4022 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 4023 break; 4024 } 4025 #endif /* !defined(SQLITE_UNTESTABLE) */ 4026 } 4027 return target; 4028 } 4029 4030 4031 /* 4032 ** Generate code into the current Vdbe to evaluate the given 4033 ** expression. Attempt to store the results in register "target". 4034 ** Return the register where results are stored. 4035 ** 4036 ** With this routine, there is no guarantee that results will 4037 ** be stored in target. The result might be stored in some other 4038 ** register if it is convenient to do so. The calling function 4039 ** must check the return code and move the results to the desired 4040 ** register. 4041 */ 4042 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 4043 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 4044 int op; /* The opcode being coded */ 4045 int inReg = target; /* Results stored in register inReg */ 4046 int regFree1 = 0; /* If non-zero free this temporary register */ 4047 int regFree2 = 0; /* If non-zero free this temporary register */ 4048 int r1, r2; /* Various register numbers */ 4049 Expr tempX; /* Temporary expression node */ 4050 int p5 = 0; 4051 4052 assert( target>0 && target<=pParse->nMem ); 4053 assert( v!=0 ); 4054 4055 expr_code_doover: 4056 if( pExpr==0 ){ 4057 op = TK_NULL; 4058 }else{ 4059 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4060 op = pExpr->op; 4061 } 4062 switch( op ){ 4063 case TK_AGG_COLUMN: { 4064 AggInfo *pAggInfo = pExpr->pAggInfo; 4065 struct AggInfo_col *pCol; 4066 assert( pAggInfo!=0 ); 4067 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 4068 pCol = &pAggInfo->aCol[pExpr->iAgg]; 4069 if( !pAggInfo->directMode ){ 4070 assert( pCol->iMem>0 ); 4071 return pCol->iMem; 4072 }else if( pAggInfo->useSortingIdx ){ 4073 Table *pTab = pCol->pTab; 4074 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 4075 pCol->iSorterColumn, target); 4076 if( pCol->iColumn<0 ){ 4077 VdbeComment((v,"%s.rowid",pTab->zName)); 4078 }else{ 4079 VdbeComment((v,"%s.%s", 4080 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 4081 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 4082 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4083 } 4084 } 4085 return target; 4086 } 4087 /* Otherwise, fall thru into the TK_COLUMN case */ 4088 /* no break */ deliberate_fall_through 4089 } 4090 case TK_COLUMN: { 4091 int iTab = pExpr->iTable; 4092 int iReg; 4093 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 4094 /* This COLUMN expression is really a constant due to WHERE clause 4095 ** constraints, and that constant is coded by the pExpr->pLeft 4096 ** expresssion. However, make sure the constant has the correct 4097 ** datatype by applying the Affinity of the table column to the 4098 ** constant. 4099 */ 4100 int aff; 4101 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 4102 assert( ExprUseYTab(pExpr) ); 4103 if( pExpr->y.pTab ){ 4104 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 4105 }else{ 4106 aff = pExpr->affExpr; 4107 } 4108 if( aff>SQLITE_AFF_BLOB ){ 4109 static const char zAff[] = "B\000C\000D\000E"; 4110 assert( SQLITE_AFF_BLOB=='A' ); 4111 assert( SQLITE_AFF_TEXT=='B' ); 4112 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 4113 &zAff[(aff-'B')*2], P4_STATIC); 4114 } 4115 return iReg; 4116 } 4117 if( iTab<0 ){ 4118 if( pParse->iSelfTab<0 ){ 4119 /* Other columns in the same row for CHECK constraints or 4120 ** generated columns or for inserting into partial index. 4121 ** The row is unpacked into registers beginning at 4122 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4123 ** immediately prior to the first column. 4124 */ 4125 Column *pCol; 4126 Table *pTab; 4127 int iSrc; 4128 int iCol = pExpr->iColumn; 4129 assert( ExprUseYTab(pExpr) ); 4130 pTab = pExpr->y.pTab; 4131 assert( pTab!=0 ); 4132 assert( iCol>=XN_ROWID ); 4133 assert( iCol<pTab->nCol ); 4134 if( iCol<0 ){ 4135 return -1-pParse->iSelfTab; 4136 } 4137 pCol = pTab->aCol + iCol; 4138 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4139 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4140 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4141 if( pCol->colFlags & COLFLAG_GENERATED ){ 4142 if( pCol->colFlags & COLFLAG_BUSY ){ 4143 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4144 pCol->zCnName); 4145 return 0; 4146 } 4147 pCol->colFlags |= COLFLAG_BUSY; 4148 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4149 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 4150 } 4151 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4152 return iSrc; 4153 }else 4154 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4155 if( pCol->affinity==SQLITE_AFF_REAL ){ 4156 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4157 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4158 return target; 4159 }else{ 4160 return iSrc; 4161 } 4162 }else{ 4163 /* Coding an expression that is part of an index where column names 4164 ** in the index refer to the table to which the index belongs */ 4165 iTab = pParse->iSelfTab - 1; 4166 } 4167 } 4168 assert( ExprUseYTab(pExpr) ); 4169 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4170 pExpr->iColumn, iTab, target, 4171 pExpr->op2); 4172 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4173 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4174 } 4175 return iReg; 4176 } 4177 case TK_INTEGER: { 4178 codeInteger(pParse, pExpr, 0, target); 4179 return target; 4180 } 4181 case TK_TRUEFALSE: { 4182 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4183 return target; 4184 } 4185 #ifndef SQLITE_OMIT_FLOATING_POINT 4186 case TK_FLOAT: { 4187 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4188 codeReal(v, pExpr->u.zToken, 0, target); 4189 return target; 4190 } 4191 #endif 4192 case TK_STRING: { 4193 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4194 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4195 return target; 4196 } 4197 default: { 4198 /* Make NULL the default case so that if a bug causes an illegal 4199 ** Expr node to be passed into this function, it will be handled 4200 ** sanely and not crash. But keep the assert() to bring the problem 4201 ** to the attention of the developers. */ 4202 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4203 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4204 return target; 4205 } 4206 #ifndef SQLITE_OMIT_BLOB_LITERAL 4207 case TK_BLOB: { 4208 int n; 4209 const char *z; 4210 char *zBlob; 4211 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4212 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4213 assert( pExpr->u.zToken[1]=='\'' ); 4214 z = &pExpr->u.zToken[2]; 4215 n = sqlite3Strlen30(z) - 1; 4216 assert( z[n]=='\'' ); 4217 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4218 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4219 return target; 4220 } 4221 #endif 4222 case TK_VARIABLE: { 4223 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4224 assert( pExpr->u.zToken!=0 ); 4225 assert( pExpr->u.zToken[0]!=0 ); 4226 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4227 if( pExpr->u.zToken[1]!=0 ){ 4228 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4229 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4230 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4231 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4232 } 4233 return target; 4234 } 4235 case TK_REGISTER: { 4236 return pExpr->iTable; 4237 } 4238 #ifndef SQLITE_OMIT_CAST 4239 case TK_CAST: { 4240 /* Expressions of the form: CAST(pLeft AS token) */ 4241 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4242 if( inReg!=target ){ 4243 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4244 inReg = target; 4245 } 4246 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4247 sqlite3VdbeAddOp2(v, OP_Cast, target, 4248 sqlite3AffinityType(pExpr->u.zToken, 0)); 4249 return inReg; 4250 } 4251 #endif /* SQLITE_OMIT_CAST */ 4252 case TK_IS: 4253 case TK_ISNOT: 4254 op = (op==TK_IS) ? TK_EQ : TK_NE; 4255 p5 = SQLITE_NULLEQ; 4256 /* fall-through */ 4257 case TK_LT: 4258 case TK_LE: 4259 case TK_GT: 4260 case TK_GE: 4261 case TK_NE: 4262 case TK_EQ: { 4263 Expr *pLeft = pExpr->pLeft; 4264 if( sqlite3ExprIsVector(pLeft) ){ 4265 codeVectorCompare(pParse, pExpr, target, op, p5); 4266 }else{ 4267 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4268 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4269 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4270 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4271 sqlite3VdbeCurrentAddr(v)+2, p5, 4272 ExprHasProperty(pExpr,EP_Commuted)); 4273 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4274 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4275 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4276 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4277 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4278 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4279 if( p5==SQLITE_NULLEQ ){ 4280 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4281 }else{ 4282 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4283 } 4284 testcase( regFree1==0 ); 4285 testcase( regFree2==0 ); 4286 } 4287 break; 4288 } 4289 case TK_AND: 4290 case TK_OR: 4291 case TK_PLUS: 4292 case TK_STAR: 4293 case TK_MINUS: 4294 case TK_REM: 4295 case TK_BITAND: 4296 case TK_BITOR: 4297 case TK_SLASH: 4298 case TK_LSHIFT: 4299 case TK_RSHIFT: 4300 case TK_CONCAT: { 4301 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4302 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4303 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4304 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4305 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4306 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4307 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4308 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4309 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4310 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4311 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4312 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4313 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4314 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4315 testcase( regFree1==0 ); 4316 testcase( regFree2==0 ); 4317 break; 4318 } 4319 case TK_UMINUS: { 4320 Expr *pLeft = pExpr->pLeft; 4321 assert( pLeft ); 4322 if( pLeft->op==TK_INTEGER ){ 4323 codeInteger(pParse, pLeft, 1, target); 4324 return target; 4325 #ifndef SQLITE_OMIT_FLOATING_POINT 4326 }else if( pLeft->op==TK_FLOAT ){ 4327 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4328 codeReal(v, pLeft->u.zToken, 1, target); 4329 return target; 4330 #endif 4331 }else{ 4332 tempX.op = TK_INTEGER; 4333 tempX.flags = EP_IntValue|EP_TokenOnly; 4334 tempX.u.iValue = 0; 4335 ExprClearVVAProperties(&tempX); 4336 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4337 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4338 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4339 testcase( regFree2==0 ); 4340 } 4341 break; 4342 } 4343 case TK_BITNOT: 4344 case TK_NOT: { 4345 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4346 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4347 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4348 testcase( regFree1==0 ); 4349 sqlite3VdbeAddOp2(v, op, r1, inReg); 4350 break; 4351 } 4352 case TK_TRUTH: { 4353 int isTrue; /* IS TRUE or IS NOT TRUE */ 4354 int bNormal; /* IS TRUE or IS FALSE */ 4355 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4356 testcase( regFree1==0 ); 4357 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4358 bNormal = pExpr->op2==TK_IS; 4359 testcase( isTrue && bNormal); 4360 testcase( !isTrue && bNormal); 4361 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4362 break; 4363 } 4364 case TK_ISNULL: 4365 case TK_NOTNULL: { 4366 int addr; 4367 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4368 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4369 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4370 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4371 testcase( regFree1==0 ); 4372 addr = sqlite3VdbeAddOp1(v, op, r1); 4373 VdbeCoverageIf(v, op==TK_ISNULL); 4374 VdbeCoverageIf(v, op==TK_NOTNULL); 4375 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4376 sqlite3VdbeJumpHere(v, addr); 4377 break; 4378 } 4379 case TK_AGG_FUNCTION: { 4380 AggInfo *pInfo = pExpr->pAggInfo; 4381 if( pInfo==0 4382 || NEVER(pExpr->iAgg<0) 4383 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4384 ){ 4385 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4386 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); 4387 }else{ 4388 return pInfo->aFunc[pExpr->iAgg].iMem; 4389 } 4390 break; 4391 } 4392 case TK_FUNCTION: { 4393 ExprList *pFarg; /* List of function arguments */ 4394 int nFarg; /* Number of function arguments */ 4395 FuncDef *pDef; /* The function definition object */ 4396 const char *zId; /* The function name */ 4397 u32 constMask = 0; /* Mask of function arguments that are constant */ 4398 int i; /* Loop counter */ 4399 sqlite3 *db = pParse->db; /* The database connection */ 4400 u8 enc = ENC(db); /* The text encoding used by this database */ 4401 CollSeq *pColl = 0; /* A collating sequence */ 4402 4403 #ifndef SQLITE_OMIT_WINDOWFUNC 4404 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4405 return pExpr->y.pWin->regResult; 4406 } 4407 #endif 4408 4409 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4410 /* SQL functions can be expensive. So try to avoid running them 4411 ** multiple times if we know they always give the same result */ 4412 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4413 } 4414 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4415 assert( ExprUseXList(pExpr) ); 4416 pFarg = pExpr->x.pList; 4417 nFarg = pFarg ? pFarg->nExpr : 0; 4418 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4419 zId = pExpr->u.zToken; 4420 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4421 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4422 if( pDef==0 && pParse->explain ){ 4423 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4424 } 4425 #endif 4426 if( pDef==0 || pDef->xFinalize!=0 ){ 4427 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); 4428 break; 4429 } 4430 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4431 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4432 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4433 return exprCodeInlineFunction(pParse, pFarg, 4434 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4435 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4436 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4437 } 4438 4439 for(i=0; i<nFarg; i++){ 4440 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4441 testcase( i==31 ); 4442 constMask |= MASKBIT32(i); 4443 } 4444 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4445 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4446 } 4447 } 4448 if( pFarg ){ 4449 if( constMask ){ 4450 r1 = pParse->nMem+1; 4451 pParse->nMem += nFarg; 4452 }else{ 4453 r1 = sqlite3GetTempRange(pParse, nFarg); 4454 } 4455 4456 /* For length() and typeof() functions with a column argument, 4457 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4458 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4459 ** loading. 4460 */ 4461 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4462 u8 exprOp; 4463 assert( nFarg==1 ); 4464 assert( pFarg->a[0].pExpr!=0 ); 4465 exprOp = pFarg->a[0].pExpr->op; 4466 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4467 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4468 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4469 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4470 pFarg->a[0].pExpr->op2 = 4471 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4472 } 4473 } 4474 4475 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4476 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4477 }else{ 4478 r1 = 0; 4479 } 4480 #ifndef SQLITE_OMIT_VIRTUALTABLE 4481 /* Possibly overload the function if the first argument is 4482 ** a virtual table column. 4483 ** 4484 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4485 ** second argument, not the first, as the argument to test to 4486 ** see if it is a column in a virtual table. This is done because 4487 ** the left operand of infix functions (the operand we want to 4488 ** control overloading) ends up as the second argument to the 4489 ** function. The expression "A glob B" is equivalent to 4490 ** "glob(B,A). We want to use the A in "A glob B" to test 4491 ** for function overloading. But we use the B term in "glob(B,A)". 4492 */ 4493 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4494 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4495 }else if( nFarg>0 ){ 4496 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4497 } 4498 #endif 4499 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4500 if( !pColl ) pColl = db->pDfltColl; 4501 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4502 } 4503 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4504 pDef, pExpr->op2); 4505 if( nFarg ){ 4506 if( constMask==0 ){ 4507 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4508 }else{ 4509 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4510 } 4511 } 4512 return target; 4513 } 4514 #ifndef SQLITE_OMIT_SUBQUERY 4515 case TK_EXISTS: 4516 case TK_SELECT: { 4517 int nCol; 4518 testcase( op==TK_EXISTS ); 4519 testcase( op==TK_SELECT ); 4520 if( pParse->db->mallocFailed ){ 4521 return 0; 4522 }else if( op==TK_SELECT 4523 && ALWAYS( ExprUseXSelect(pExpr) ) 4524 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 4525 ){ 4526 sqlite3SubselectError(pParse, nCol, 1); 4527 }else{ 4528 return sqlite3CodeSubselect(pParse, pExpr); 4529 } 4530 break; 4531 } 4532 case TK_SELECT_COLUMN: { 4533 int n; 4534 Expr *pLeft = pExpr->pLeft; 4535 if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){ 4536 pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft); 4537 pLeft->op2 = pParse->withinRJSubrtn; 4538 } 4539 assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR ); 4540 n = sqlite3ExprVectorSize(pLeft); 4541 if( pExpr->iTable!=n ){ 4542 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4543 pExpr->iTable, n); 4544 } 4545 return pLeft->iTable + pExpr->iColumn; 4546 } 4547 case TK_IN: { 4548 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4549 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4550 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4551 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4552 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4553 sqlite3VdbeResolveLabel(v, destIfFalse); 4554 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4555 sqlite3VdbeResolveLabel(v, destIfNull); 4556 return target; 4557 } 4558 #endif /* SQLITE_OMIT_SUBQUERY */ 4559 4560 4561 /* 4562 ** x BETWEEN y AND z 4563 ** 4564 ** This is equivalent to 4565 ** 4566 ** x>=y AND x<=z 4567 ** 4568 ** X is stored in pExpr->pLeft. 4569 ** Y is stored in pExpr->pList->a[0].pExpr. 4570 ** Z is stored in pExpr->pList->a[1].pExpr. 4571 */ 4572 case TK_BETWEEN: { 4573 exprCodeBetween(pParse, pExpr, target, 0, 0); 4574 return target; 4575 } 4576 case TK_COLLATE: { 4577 if( !ExprHasProperty(pExpr, EP_Collate) 4578 && ALWAYS(pExpr->pLeft) 4579 && pExpr->pLeft->op==TK_FUNCTION 4580 ){ 4581 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4582 if( inReg!=target ){ 4583 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4584 inReg = target; 4585 } 4586 sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg); 4587 return inReg; 4588 }else{ 4589 pExpr = pExpr->pLeft; 4590 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */ 4591 } 4592 } 4593 case TK_SPAN: 4594 case TK_UPLUS: { 4595 pExpr = pExpr->pLeft; 4596 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4597 } 4598 4599 case TK_TRIGGER: { 4600 /* If the opcode is TK_TRIGGER, then the expression is a reference 4601 ** to a column in the new.* or old.* pseudo-tables available to 4602 ** trigger programs. In this case Expr.iTable is set to 1 for the 4603 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4604 ** is set to the column of the pseudo-table to read, or to -1 to 4605 ** read the rowid field. 4606 ** 4607 ** The expression is implemented using an OP_Param opcode. The p1 4608 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4609 ** to reference another column of the old.* pseudo-table, where 4610 ** i is the index of the column. For a new.rowid reference, p1 is 4611 ** set to (n+1), where n is the number of columns in each pseudo-table. 4612 ** For a reference to any other column in the new.* pseudo-table, p1 4613 ** is set to (n+2+i), where n and i are as defined previously. For 4614 ** example, if the table on which triggers are being fired is 4615 ** declared as: 4616 ** 4617 ** CREATE TABLE t1(a, b); 4618 ** 4619 ** Then p1 is interpreted as follows: 4620 ** 4621 ** p1==0 -> old.rowid p1==3 -> new.rowid 4622 ** p1==1 -> old.a p1==4 -> new.a 4623 ** p1==2 -> old.b p1==5 -> new.b 4624 */ 4625 Table *pTab; 4626 int iCol; 4627 int p1; 4628 4629 assert( ExprUseYTab(pExpr) ); 4630 pTab = pExpr->y.pTab; 4631 iCol = pExpr->iColumn; 4632 p1 = pExpr->iTable * (pTab->nCol+1) + 1 4633 + sqlite3TableColumnToStorage(pTab, iCol); 4634 4635 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4636 assert( iCol>=-1 && iCol<pTab->nCol ); 4637 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4638 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4639 4640 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4641 VdbeComment((v, "r[%d]=%s.%s", target, 4642 (pExpr->iTable ? "new" : "old"), 4643 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 4644 )); 4645 4646 #ifndef SQLITE_OMIT_FLOATING_POINT 4647 /* If the column has REAL affinity, it may currently be stored as an 4648 ** integer. Use OP_RealAffinity to make sure it is really real. 4649 ** 4650 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4651 ** floating point when extracting it from the record. */ 4652 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4653 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4654 } 4655 #endif 4656 break; 4657 } 4658 4659 case TK_VECTOR: { 4660 sqlite3ErrorMsg(pParse, "row value misused"); 4661 break; 4662 } 4663 4664 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4665 ** that derive from the right-hand table of a LEFT JOIN. The 4666 ** Expr.iTable value is the table number for the right-hand table. 4667 ** The expression is only evaluated if that table is not currently 4668 ** on a LEFT JOIN NULL row. 4669 */ 4670 case TK_IF_NULL_ROW: { 4671 int addrINR; 4672 u8 okConstFactor = pParse->okConstFactor; 4673 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4674 /* Temporarily disable factoring of constant expressions, since 4675 ** even though expressions may appear to be constant, they are not 4676 ** really constant because they originate from the right-hand side 4677 ** of a LEFT JOIN. */ 4678 pParse->okConstFactor = 0; 4679 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4680 pParse->okConstFactor = okConstFactor; 4681 sqlite3VdbeJumpHere(v, addrINR); 4682 sqlite3VdbeChangeP3(v, addrINR, inReg); 4683 break; 4684 } 4685 4686 /* 4687 ** Form A: 4688 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4689 ** 4690 ** Form B: 4691 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4692 ** 4693 ** Form A is can be transformed into the equivalent form B as follows: 4694 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4695 ** WHEN x=eN THEN rN ELSE y END 4696 ** 4697 ** X (if it exists) is in pExpr->pLeft. 4698 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4699 ** odd. The Y is also optional. If the number of elements in x.pList 4700 ** is even, then Y is omitted and the "otherwise" result is NULL. 4701 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4702 ** 4703 ** The result of the expression is the Ri for the first matching Ei, 4704 ** or if there is no matching Ei, the ELSE term Y, or if there is 4705 ** no ELSE term, NULL. 4706 */ 4707 case TK_CASE: { 4708 int endLabel; /* GOTO label for end of CASE stmt */ 4709 int nextCase; /* GOTO label for next WHEN clause */ 4710 int nExpr; /* 2x number of WHEN terms */ 4711 int i; /* Loop counter */ 4712 ExprList *pEList; /* List of WHEN terms */ 4713 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4714 Expr opCompare; /* The X==Ei expression */ 4715 Expr *pX; /* The X expression */ 4716 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4717 Expr *pDel = 0; 4718 sqlite3 *db = pParse->db; 4719 4720 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); 4721 assert(pExpr->x.pList->nExpr > 0); 4722 pEList = pExpr->x.pList; 4723 aListelem = pEList->a; 4724 nExpr = pEList->nExpr; 4725 endLabel = sqlite3VdbeMakeLabel(pParse); 4726 if( (pX = pExpr->pLeft)!=0 ){ 4727 pDel = sqlite3ExprDup(db, pX, 0); 4728 if( db->mallocFailed ){ 4729 sqlite3ExprDelete(db, pDel); 4730 break; 4731 } 4732 testcase( pX->op==TK_COLUMN ); 4733 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4734 testcase( regFree1==0 ); 4735 memset(&opCompare, 0, sizeof(opCompare)); 4736 opCompare.op = TK_EQ; 4737 opCompare.pLeft = pDel; 4738 pTest = &opCompare; 4739 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4740 ** The value in regFree1 might get SCopy-ed into the file result. 4741 ** So make sure that the regFree1 register is not reused for other 4742 ** purposes and possibly overwritten. */ 4743 regFree1 = 0; 4744 } 4745 for(i=0; i<nExpr-1; i=i+2){ 4746 if( pX ){ 4747 assert( pTest!=0 ); 4748 opCompare.pRight = aListelem[i].pExpr; 4749 }else{ 4750 pTest = aListelem[i].pExpr; 4751 } 4752 nextCase = sqlite3VdbeMakeLabel(pParse); 4753 testcase( pTest->op==TK_COLUMN ); 4754 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4755 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4756 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4757 sqlite3VdbeGoto(v, endLabel); 4758 sqlite3VdbeResolveLabel(v, nextCase); 4759 } 4760 if( (nExpr&1)!=0 ){ 4761 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4762 }else{ 4763 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4764 } 4765 sqlite3ExprDelete(db, pDel); 4766 setDoNotMergeFlagOnCopy(v); 4767 sqlite3VdbeResolveLabel(v, endLabel); 4768 break; 4769 } 4770 #ifndef SQLITE_OMIT_TRIGGER 4771 case TK_RAISE: { 4772 assert( pExpr->affExpr==OE_Rollback 4773 || pExpr->affExpr==OE_Abort 4774 || pExpr->affExpr==OE_Fail 4775 || pExpr->affExpr==OE_Ignore 4776 ); 4777 if( !pParse->pTriggerTab && !pParse->nested ){ 4778 sqlite3ErrorMsg(pParse, 4779 "RAISE() may only be used within a trigger-program"); 4780 return 0; 4781 } 4782 if( pExpr->affExpr==OE_Abort ){ 4783 sqlite3MayAbort(pParse); 4784 } 4785 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4786 if( pExpr->affExpr==OE_Ignore ){ 4787 sqlite3VdbeAddOp4( 4788 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4789 VdbeCoverage(v); 4790 }else{ 4791 sqlite3HaltConstraint(pParse, 4792 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4793 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4794 } 4795 4796 break; 4797 } 4798 #endif 4799 } 4800 sqlite3ReleaseTempReg(pParse, regFree1); 4801 sqlite3ReleaseTempReg(pParse, regFree2); 4802 return inReg; 4803 } 4804 4805 /* 4806 ** Generate code that will evaluate expression pExpr just one time 4807 ** per prepared statement execution. 4808 ** 4809 ** If the expression uses functions (that might throw an exception) then 4810 ** guard them with an OP_Once opcode to ensure that the code is only executed 4811 ** once. If no functions are involved, then factor the code out and put it at 4812 ** the end of the prepared statement in the initialization section. 4813 ** 4814 ** If regDest>=0 then the result is always stored in that register and the 4815 ** result is not reusable. If regDest<0 then this routine is free to 4816 ** store the value whereever it wants. The register where the expression 4817 ** is stored is returned. When regDest<0, two identical expressions might 4818 ** code to the same register, if they do not contain function calls and hence 4819 ** are factored out into the initialization section at the end of the 4820 ** prepared statement. 4821 */ 4822 int sqlite3ExprCodeRunJustOnce( 4823 Parse *pParse, /* Parsing context */ 4824 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4825 int regDest /* Store the value in this register */ 4826 ){ 4827 ExprList *p; 4828 assert( ConstFactorOk(pParse) ); 4829 p = pParse->pConstExpr; 4830 if( regDest<0 && p ){ 4831 struct ExprList_item *pItem; 4832 int i; 4833 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4834 if( pItem->fg.reusable 4835 && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 4836 ){ 4837 return pItem->u.iConstExprReg; 4838 } 4839 } 4840 } 4841 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4842 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4843 Vdbe *v = pParse->pVdbe; 4844 int addr; 4845 assert( v ); 4846 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4847 pParse->okConstFactor = 0; 4848 if( !pParse->db->mallocFailed ){ 4849 if( regDest<0 ) regDest = ++pParse->nMem; 4850 sqlite3ExprCode(pParse, pExpr, regDest); 4851 } 4852 pParse->okConstFactor = 1; 4853 sqlite3ExprDelete(pParse->db, pExpr); 4854 sqlite3VdbeJumpHere(v, addr); 4855 }else{ 4856 p = sqlite3ExprListAppend(pParse, p, pExpr); 4857 if( p ){ 4858 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4859 pItem->fg.reusable = regDest<0; 4860 if( regDest<0 ) regDest = ++pParse->nMem; 4861 pItem->u.iConstExprReg = regDest; 4862 } 4863 pParse->pConstExpr = p; 4864 } 4865 return regDest; 4866 } 4867 4868 /* 4869 ** Generate code to evaluate an expression and store the results 4870 ** into a register. Return the register number where the results 4871 ** are stored. 4872 ** 4873 ** If the register is a temporary register that can be deallocated, 4874 ** then write its number into *pReg. If the result register is not 4875 ** a temporary, then set *pReg to zero. 4876 ** 4877 ** If pExpr is a constant, then this routine might generate this 4878 ** code to fill the register in the initialization section of the 4879 ** VDBE program, in order to factor it out of the evaluation loop. 4880 */ 4881 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4882 int r2; 4883 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4884 if( ConstFactorOk(pParse) 4885 && ALWAYS(pExpr!=0) 4886 && pExpr->op!=TK_REGISTER 4887 && sqlite3ExprIsConstantNotJoin(pExpr) 4888 ){ 4889 *pReg = 0; 4890 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4891 }else{ 4892 int r1 = sqlite3GetTempReg(pParse); 4893 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4894 if( r2==r1 ){ 4895 *pReg = r1; 4896 }else{ 4897 sqlite3ReleaseTempReg(pParse, r1); 4898 *pReg = 0; 4899 } 4900 } 4901 return r2; 4902 } 4903 4904 /* 4905 ** Generate code that will evaluate expression pExpr and store the 4906 ** results in register target. The results are guaranteed to appear 4907 ** in register target. 4908 */ 4909 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4910 int inReg; 4911 4912 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4913 assert( target>0 && target<=pParse->nMem ); 4914 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4915 if( pParse->pVdbe==0 ) return; 4916 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4917 if( inReg!=target ){ 4918 u8 op; 4919 if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){ 4920 op = OP_Copy; 4921 }else{ 4922 op = OP_SCopy; 4923 } 4924 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4925 } 4926 } 4927 4928 /* 4929 ** Make a transient copy of expression pExpr and then code it using 4930 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4931 ** except that the input expression is guaranteed to be unchanged. 4932 */ 4933 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4934 sqlite3 *db = pParse->db; 4935 pExpr = sqlite3ExprDup(db, pExpr, 0); 4936 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4937 sqlite3ExprDelete(db, pExpr); 4938 } 4939 4940 /* 4941 ** Generate code that will evaluate expression pExpr and store the 4942 ** results in register target. The results are guaranteed to appear 4943 ** in register target. If the expression is constant, then this routine 4944 ** might choose to code the expression at initialization time. 4945 */ 4946 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4947 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4948 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4949 }else{ 4950 sqlite3ExprCodeCopy(pParse, pExpr, target); 4951 } 4952 } 4953 4954 /* 4955 ** Generate code that pushes the value of every element of the given 4956 ** expression list into a sequence of registers beginning at target. 4957 ** 4958 ** Return the number of elements evaluated. The number returned will 4959 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4960 ** is defined. 4961 ** 4962 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4963 ** filled using OP_SCopy. OP_Copy must be used instead. 4964 ** 4965 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4966 ** factored out into initialization code. 4967 ** 4968 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4969 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4970 ** in registers at srcReg, and so the value can be copied from there. 4971 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4972 ** are simply omitted rather than being copied from srcReg. 4973 */ 4974 int sqlite3ExprCodeExprList( 4975 Parse *pParse, /* Parsing context */ 4976 ExprList *pList, /* The expression list to be coded */ 4977 int target, /* Where to write results */ 4978 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4979 u8 flags /* SQLITE_ECEL_* flags */ 4980 ){ 4981 struct ExprList_item *pItem; 4982 int i, j, n; 4983 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4984 Vdbe *v = pParse->pVdbe; 4985 assert( pList!=0 ); 4986 assert( target>0 ); 4987 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4988 n = pList->nExpr; 4989 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4990 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4991 Expr *pExpr = pItem->pExpr; 4992 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4993 if( pItem->fg.bSorterRef ){ 4994 i--; 4995 n--; 4996 }else 4997 #endif 4998 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4999 if( flags & SQLITE_ECEL_OMITREF ){ 5000 i--; 5001 n--; 5002 }else{ 5003 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 5004 } 5005 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 5006 && sqlite3ExprIsConstantNotJoin(pExpr) 5007 ){ 5008 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 5009 }else{ 5010 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 5011 if( inReg!=target+i ){ 5012 VdbeOp *pOp; 5013 if( copyOp==OP_Copy 5014 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 5015 && pOp->p1+pOp->p3+1==inReg 5016 && pOp->p2+pOp->p3+1==target+i 5017 && pOp->p5==0 /* The do-not-merge flag must be clear */ 5018 ){ 5019 pOp->p3++; 5020 }else{ 5021 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 5022 } 5023 } 5024 } 5025 } 5026 return n; 5027 } 5028 5029 /* 5030 ** Generate code for a BETWEEN operator. 5031 ** 5032 ** x BETWEEN y AND z 5033 ** 5034 ** The above is equivalent to 5035 ** 5036 ** x>=y AND x<=z 5037 ** 5038 ** Code it as such, taking care to do the common subexpression 5039 ** elimination of x. 5040 ** 5041 ** The xJumpIf parameter determines details: 5042 ** 5043 ** NULL: Store the boolean result in reg[dest] 5044 ** sqlite3ExprIfTrue: Jump to dest if true 5045 ** sqlite3ExprIfFalse: Jump to dest if false 5046 ** 5047 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 5048 */ 5049 static void exprCodeBetween( 5050 Parse *pParse, /* Parsing and code generating context */ 5051 Expr *pExpr, /* The BETWEEN expression */ 5052 int dest, /* Jump destination or storage location */ 5053 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 5054 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 5055 ){ 5056 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 5057 Expr compLeft; /* The x>=y term */ 5058 Expr compRight; /* The x<=z term */ 5059 int regFree1 = 0; /* Temporary use register */ 5060 Expr *pDel = 0; 5061 sqlite3 *db = pParse->db; 5062 5063 memset(&compLeft, 0, sizeof(Expr)); 5064 memset(&compRight, 0, sizeof(Expr)); 5065 memset(&exprAnd, 0, sizeof(Expr)); 5066 5067 assert( ExprUseXList(pExpr) ); 5068 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 5069 if( db->mallocFailed==0 ){ 5070 exprAnd.op = TK_AND; 5071 exprAnd.pLeft = &compLeft; 5072 exprAnd.pRight = &compRight; 5073 compLeft.op = TK_GE; 5074 compLeft.pLeft = pDel; 5075 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 5076 compRight.op = TK_LE; 5077 compRight.pLeft = pDel; 5078 compRight.pRight = pExpr->x.pList->a[1].pExpr; 5079 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 5080 if( xJump ){ 5081 xJump(pParse, &exprAnd, dest, jumpIfNull); 5082 }else{ 5083 /* Mark the expression is being from the ON or USING clause of a join 5084 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 5085 ** it into the Parse.pConstExpr list. We should use a new bit for this, 5086 ** for clarity, but we are out of bits in the Expr.flags field so we 5087 ** have to reuse the EP_OuterON bit. Bummer. */ 5088 pDel->flags |= EP_OuterON; 5089 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 5090 } 5091 sqlite3ReleaseTempReg(pParse, regFree1); 5092 } 5093 sqlite3ExprDelete(db, pDel); 5094 5095 /* Ensure adequate test coverage */ 5096 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 5097 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 5098 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 5099 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 5100 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 5101 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 5102 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 5103 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 5104 testcase( xJump==0 ); 5105 } 5106 5107 /* 5108 ** Generate code for a boolean expression such that a jump is made 5109 ** to the label "dest" if the expression is true but execution 5110 ** continues straight thru if the expression is false. 5111 ** 5112 ** If the expression evaluates to NULL (neither true nor false), then 5113 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 5114 ** 5115 ** This code depends on the fact that certain token values (ex: TK_EQ) 5116 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 5117 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 5118 ** the make process cause these values to align. Assert()s in the code 5119 ** below verify that the numbers are aligned correctly. 5120 */ 5121 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5122 Vdbe *v = pParse->pVdbe; 5123 int op = 0; 5124 int regFree1 = 0; 5125 int regFree2 = 0; 5126 int r1, r2; 5127 5128 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5129 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5130 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 5131 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 5132 op = pExpr->op; 5133 switch( op ){ 5134 case TK_AND: 5135 case TK_OR: { 5136 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5137 if( pAlt!=pExpr ){ 5138 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5139 }else if( op==TK_AND ){ 5140 int d2 = sqlite3VdbeMakeLabel(pParse); 5141 testcase( jumpIfNull==0 ); 5142 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5143 jumpIfNull^SQLITE_JUMPIFNULL); 5144 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5145 sqlite3VdbeResolveLabel(v, d2); 5146 }else{ 5147 testcase( jumpIfNull==0 ); 5148 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5149 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5150 } 5151 break; 5152 } 5153 case TK_NOT: { 5154 testcase( jumpIfNull==0 ); 5155 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5156 break; 5157 } 5158 case TK_TRUTH: { 5159 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5160 int isTrue; /* IS TRUE or IS NOT TRUE */ 5161 testcase( jumpIfNull==0 ); 5162 isNot = pExpr->op2==TK_ISNOT; 5163 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5164 testcase( isTrue && isNot ); 5165 testcase( !isTrue && isNot ); 5166 if( isTrue ^ isNot ){ 5167 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5168 isNot ? SQLITE_JUMPIFNULL : 0); 5169 }else{ 5170 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5171 isNot ? SQLITE_JUMPIFNULL : 0); 5172 } 5173 break; 5174 } 5175 case TK_IS: 5176 case TK_ISNOT: 5177 testcase( op==TK_IS ); 5178 testcase( op==TK_ISNOT ); 5179 op = (op==TK_IS) ? TK_EQ : TK_NE; 5180 jumpIfNull = SQLITE_NULLEQ; 5181 /* no break */ deliberate_fall_through 5182 case TK_LT: 5183 case TK_LE: 5184 case TK_GT: 5185 case TK_GE: 5186 case TK_NE: 5187 case TK_EQ: { 5188 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5189 testcase( jumpIfNull==0 ); 5190 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5191 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5192 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5193 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5194 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5195 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5196 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5197 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5198 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5199 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5200 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5201 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5202 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5203 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5204 testcase( regFree1==0 ); 5205 testcase( regFree2==0 ); 5206 break; 5207 } 5208 case TK_ISNULL: 5209 case TK_NOTNULL: { 5210 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5211 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5212 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5213 sqlite3VdbeAddOp2(v, op, r1, dest); 5214 VdbeCoverageIf(v, op==TK_ISNULL); 5215 VdbeCoverageIf(v, op==TK_NOTNULL); 5216 testcase( regFree1==0 ); 5217 break; 5218 } 5219 case TK_BETWEEN: { 5220 testcase( jumpIfNull==0 ); 5221 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5222 break; 5223 } 5224 #ifndef SQLITE_OMIT_SUBQUERY 5225 case TK_IN: { 5226 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5227 int destIfNull = jumpIfNull ? dest : destIfFalse; 5228 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5229 sqlite3VdbeGoto(v, dest); 5230 sqlite3VdbeResolveLabel(v, destIfFalse); 5231 break; 5232 } 5233 #endif 5234 default: { 5235 default_expr: 5236 if( ExprAlwaysTrue(pExpr) ){ 5237 sqlite3VdbeGoto(v, dest); 5238 }else if( ExprAlwaysFalse(pExpr) ){ 5239 /* No-op */ 5240 }else{ 5241 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5242 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5243 VdbeCoverage(v); 5244 testcase( regFree1==0 ); 5245 testcase( jumpIfNull==0 ); 5246 } 5247 break; 5248 } 5249 } 5250 sqlite3ReleaseTempReg(pParse, regFree1); 5251 sqlite3ReleaseTempReg(pParse, regFree2); 5252 } 5253 5254 /* 5255 ** Generate code for a boolean expression such that a jump is made 5256 ** to the label "dest" if the expression is false but execution 5257 ** continues straight thru if the expression is true. 5258 ** 5259 ** If the expression evaluates to NULL (neither true nor false) then 5260 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5261 ** is 0. 5262 */ 5263 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5264 Vdbe *v = pParse->pVdbe; 5265 int op = 0; 5266 int regFree1 = 0; 5267 int regFree2 = 0; 5268 int r1, r2; 5269 5270 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5271 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5272 if( pExpr==0 ) return; 5273 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5274 5275 /* The value of pExpr->op and op are related as follows: 5276 ** 5277 ** pExpr->op op 5278 ** --------- ---------- 5279 ** TK_ISNULL OP_NotNull 5280 ** TK_NOTNULL OP_IsNull 5281 ** TK_NE OP_Eq 5282 ** TK_EQ OP_Ne 5283 ** TK_GT OP_Le 5284 ** TK_LE OP_Gt 5285 ** TK_GE OP_Lt 5286 ** TK_LT OP_Ge 5287 ** 5288 ** For other values of pExpr->op, op is undefined and unused. 5289 ** The value of TK_ and OP_ constants are arranged such that we 5290 ** can compute the mapping above using the following expression. 5291 ** Assert()s verify that the computation is correct. 5292 */ 5293 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5294 5295 /* Verify correct alignment of TK_ and OP_ constants 5296 */ 5297 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5298 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5299 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5300 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5301 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5302 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5303 assert( pExpr->op!=TK_GT || op==OP_Le ); 5304 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5305 5306 switch( pExpr->op ){ 5307 case TK_AND: 5308 case TK_OR: { 5309 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5310 if( pAlt!=pExpr ){ 5311 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5312 }else if( pExpr->op==TK_AND ){ 5313 testcase( jumpIfNull==0 ); 5314 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5315 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5316 }else{ 5317 int d2 = sqlite3VdbeMakeLabel(pParse); 5318 testcase( jumpIfNull==0 ); 5319 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5320 jumpIfNull^SQLITE_JUMPIFNULL); 5321 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5322 sqlite3VdbeResolveLabel(v, d2); 5323 } 5324 break; 5325 } 5326 case TK_NOT: { 5327 testcase( jumpIfNull==0 ); 5328 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5329 break; 5330 } 5331 case TK_TRUTH: { 5332 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5333 int isTrue; /* IS TRUE or IS NOT TRUE */ 5334 testcase( jumpIfNull==0 ); 5335 isNot = pExpr->op2==TK_ISNOT; 5336 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5337 testcase( isTrue && isNot ); 5338 testcase( !isTrue && isNot ); 5339 if( isTrue ^ isNot ){ 5340 /* IS TRUE and IS NOT FALSE */ 5341 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5342 isNot ? 0 : SQLITE_JUMPIFNULL); 5343 5344 }else{ 5345 /* IS FALSE and IS NOT TRUE */ 5346 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5347 isNot ? 0 : SQLITE_JUMPIFNULL); 5348 } 5349 break; 5350 } 5351 case TK_IS: 5352 case TK_ISNOT: 5353 testcase( pExpr->op==TK_IS ); 5354 testcase( pExpr->op==TK_ISNOT ); 5355 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5356 jumpIfNull = SQLITE_NULLEQ; 5357 /* no break */ deliberate_fall_through 5358 case TK_LT: 5359 case TK_LE: 5360 case TK_GT: 5361 case TK_GE: 5362 case TK_NE: 5363 case TK_EQ: { 5364 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5365 testcase( jumpIfNull==0 ); 5366 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5367 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5368 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5369 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5370 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5371 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5372 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5373 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5374 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5375 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5376 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5377 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5378 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5379 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5380 testcase( regFree1==0 ); 5381 testcase( regFree2==0 ); 5382 break; 5383 } 5384 case TK_ISNULL: 5385 case TK_NOTNULL: { 5386 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5387 sqlite3VdbeAddOp2(v, op, r1, dest); 5388 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5389 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5390 testcase( regFree1==0 ); 5391 break; 5392 } 5393 case TK_BETWEEN: { 5394 testcase( jumpIfNull==0 ); 5395 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5396 break; 5397 } 5398 #ifndef SQLITE_OMIT_SUBQUERY 5399 case TK_IN: { 5400 if( jumpIfNull ){ 5401 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5402 }else{ 5403 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5404 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5405 sqlite3VdbeResolveLabel(v, destIfNull); 5406 } 5407 break; 5408 } 5409 #endif 5410 default: { 5411 default_expr: 5412 if( ExprAlwaysFalse(pExpr) ){ 5413 sqlite3VdbeGoto(v, dest); 5414 }else if( ExprAlwaysTrue(pExpr) ){ 5415 /* no-op */ 5416 }else{ 5417 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5418 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5419 VdbeCoverage(v); 5420 testcase( regFree1==0 ); 5421 testcase( jumpIfNull==0 ); 5422 } 5423 break; 5424 } 5425 } 5426 sqlite3ReleaseTempReg(pParse, regFree1); 5427 sqlite3ReleaseTempReg(pParse, regFree2); 5428 } 5429 5430 /* 5431 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5432 ** code generation, and that copy is deleted after code generation. This 5433 ** ensures that the original pExpr is unchanged. 5434 */ 5435 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5436 sqlite3 *db = pParse->db; 5437 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5438 if( db->mallocFailed==0 ){ 5439 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5440 } 5441 sqlite3ExprDelete(db, pCopy); 5442 } 5443 5444 /* 5445 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5446 ** type of expression. 5447 ** 5448 ** If pExpr is a simple SQL value - an integer, real, string, blob 5449 ** or NULL value - then the VDBE currently being prepared is configured 5450 ** to re-prepare each time a new value is bound to variable pVar. 5451 ** 5452 ** Additionally, if pExpr is a simple SQL value and the value is the 5453 ** same as that currently bound to variable pVar, non-zero is returned. 5454 ** Otherwise, if the values are not the same or if pExpr is not a simple 5455 ** SQL value, zero is returned. 5456 */ 5457 static int exprCompareVariable( 5458 const Parse *pParse, 5459 const Expr *pVar, 5460 const Expr *pExpr 5461 ){ 5462 int res = 0; 5463 int iVar; 5464 sqlite3_value *pL, *pR = 0; 5465 5466 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5467 if( pR ){ 5468 iVar = pVar->iColumn; 5469 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5470 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5471 if( pL ){ 5472 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5473 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5474 } 5475 res = 0==sqlite3MemCompare(pL, pR, 0); 5476 } 5477 sqlite3ValueFree(pR); 5478 sqlite3ValueFree(pL); 5479 } 5480 5481 return res; 5482 } 5483 5484 /* 5485 ** Do a deep comparison of two expression trees. Return 0 if the two 5486 ** expressions are completely identical. Return 1 if they differ only 5487 ** by a COLLATE operator at the top level. Return 2 if there are differences 5488 ** other than the top-level COLLATE operator. 5489 ** 5490 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5491 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5492 ** 5493 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5494 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5495 ** 5496 ** Sometimes this routine will return 2 even if the two expressions 5497 ** really are equivalent. If we cannot prove that the expressions are 5498 ** identical, we return 2 just to be safe. So if this routine 5499 ** returns 2, then you do not really know for certain if the two 5500 ** expressions are the same. But if you get a 0 or 1 return, then you 5501 ** can be sure the expressions are the same. In the places where 5502 ** this routine is used, it does not hurt to get an extra 2 - that 5503 ** just might result in some slightly slower code. But returning 5504 ** an incorrect 0 or 1 could lead to a malfunction. 5505 ** 5506 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5507 ** pParse->pReprepare can be matched against literals in pB. The 5508 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5509 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5510 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5511 ** pB causes a return value of 2. 5512 */ 5513 int sqlite3ExprCompare( 5514 const Parse *pParse, 5515 const Expr *pA, 5516 const Expr *pB, 5517 int iTab 5518 ){ 5519 u32 combinedFlags; 5520 if( pA==0 || pB==0 ){ 5521 return pB==pA ? 0 : 2; 5522 } 5523 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5524 return 0; 5525 } 5526 combinedFlags = pA->flags | pB->flags; 5527 if( combinedFlags & EP_IntValue ){ 5528 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5529 return 0; 5530 } 5531 return 2; 5532 } 5533 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5534 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5535 return 1; 5536 } 5537 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5538 return 1; 5539 } 5540 return 2; 5541 } 5542 assert( !ExprHasProperty(pA, EP_IntValue) ); 5543 assert( !ExprHasProperty(pB, EP_IntValue) ); 5544 if( pA->u.zToken ){ 5545 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5546 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5547 #ifndef SQLITE_OMIT_WINDOWFUNC 5548 assert( pA->op==pB->op ); 5549 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5550 return 2; 5551 } 5552 if( ExprHasProperty(pA,EP_WinFunc) ){ 5553 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5554 return 2; 5555 } 5556 } 5557 #endif 5558 }else if( pA->op==TK_NULL ){ 5559 return 0; 5560 }else if( pA->op==TK_COLLATE ){ 5561 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5562 }else 5563 if( pB->u.zToken!=0 5564 && pA->op!=TK_COLUMN 5565 && pA->op!=TK_AGG_COLUMN 5566 && strcmp(pA->u.zToken,pB->u.zToken)!=0 5567 ){ 5568 return 2; 5569 } 5570 } 5571 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5572 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5573 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5574 if( combinedFlags & EP_xIsSelect ) return 2; 5575 if( (combinedFlags & EP_FixedCol)==0 5576 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5577 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5578 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5579 if( pA->op!=TK_STRING 5580 && pA->op!=TK_TRUEFALSE 5581 && ALWAYS((combinedFlags & EP_Reduced)==0) 5582 ){ 5583 if( pA->iColumn!=pB->iColumn ) return 2; 5584 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5585 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5586 return 2; 5587 } 5588 } 5589 } 5590 return 0; 5591 } 5592 5593 /* 5594 ** Compare two ExprList objects. Return 0 if they are identical, 1 5595 ** if they are certainly different, or 2 if it is not possible to 5596 ** determine if they are identical or not. 5597 ** 5598 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5599 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5600 ** 5601 ** This routine might return non-zero for equivalent ExprLists. The 5602 ** only consequence will be disabled optimizations. But this routine 5603 ** must never return 0 if the two ExprList objects are different, or 5604 ** a malfunction will result. 5605 ** 5606 ** Two NULL pointers are considered to be the same. But a NULL pointer 5607 ** always differs from a non-NULL pointer. 5608 */ 5609 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 5610 int i; 5611 if( pA==0 && pB==0 ) return 0; 5612 if( pA==0 || pB==0 ) return 1; 5613 if( pA->nExpr!=pB->nExpr ) return 1; 5614 for(i=0; i<pA->nExpr; i++){ 5615 int res; 5616 Expr *pExprA = pA->a[i].pExpr; 5617 Expr *pExprB = pB->a[i].pExpr; 5618 if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1; 5619 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5620 } 5621 return 0; 5622 } 5623 5624 /* 5625 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5626 ** are ignored. 5627 */ 5628 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 5629 return sqlite3ExprCompare(0, 5630 sqlite3ExprSkipCollateAndLikely(pA), 5631 sqlite3ExprSkipCollateAndLikely(pB), 5632 iTab); 5633 } 5634 5635 /* 5636 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5637 ** 5638 ** Or if seenNot is true, return non-zero if Expr p can only be 5639 ** non-NULL if pNN is not NULL 5640 */ 5641 static int exprImpliesNotNull( 5642 const Parse *pParse,/* Parsing context */ 5643 const Expr *p, /* The expression to be checked */ 5644 const Expr *pNN, /* The expression that is NOT NULL */ 5645 int iTab, /* Table being evaluated */ 5646 int seenNot /* Return true only if p can be any non-NULL value */ 5647 ){ 5648 assert( p ); 5649 assert( pNN ); 5650 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5651 return pNN->op!=TK_NULL; 5652 } 5653 switch( p->op ){ 5654 case TK_IN: { 5655 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5656 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5657 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5658 } 5659 case TK_BETWEEN: { 5660 ExprList *pList; 5661 assert( ExprUseXList(p) ); 5662 pList = p->x.pList; 5663 assert( pList!=0 ); 5664 assert( pList->nExpr==2 ); 5665 if( seenNot ) return 0; 5666 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5667 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5668 ){ 5669 return 1; 5670 } 5671 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5672 } 5673 case TK_EQ: 5674 case TK_NE: 5675 case TK_LT: 5676 case TK_LE: 5677 case TK_GT: 5678 case TK_GE: 5679 case TK_PLUS: 5680 case TK_MINUS: 5681 case TK_BITOR: 5682 case TK_LSHIFT: 5683 case TK_RSHIFT: 5684 case TK_CONCAT: 5685 seenNot = 1; 5686 /* no break */ deliberate_fall_through 5687 case TK_STAR: 5688 case TK_REM: 5689 case TK_BITAND: 5690 case TK_SLASH: { 5691 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5692 /* no break */ deliberate_fall_through 5693 } 5694 case TK_SPAN: 5695 case TK_COLLATE: 5696 case TK_UPLUS: 5697 case TK_UMINUS: { 5698 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5699 } 5700 case TK_TRUTH: { 5701 if( seenNot ) return 0; 5702 if( p->op2!=TK_IS ) return 0; 5703 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5704 } 5705 case TK_BITNOT: 5706 case TK_NOT: { 5707 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5708 } 5709 } 5710 return 0; 5711 } 5712 5713 /* 5714 ** Return true if we can prove the pE2 will always be true if pE1 is 5715 ** true. Return false if we cannot complete the proof or if pE2 might 5716 ** be false. Examples: 5717 ** 5718 ** pE1: x==5 pE2: x==5 Result: true 5719 ** pE1: x>0 pE2: x==5 Result: false 5720 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5721 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5722 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5723 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5724 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5725 ** 5726 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5727 ** Expr.iTable<0 then assume a table number given by iTab. 5728 ** 5729 ** If pParse is not NULL, then the values of bound variables in pE1 are 5730 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5731 ** modified to record which bound variables are referenced. If pParse 5732 ** is NULL, then false will be returned if pE1 contains any bound variables. 5733 ** 5734 ** When in doubt, return false. Returning true might give a performance 5735 ** improvement. Returning false might cause a performance reduction, but 5736 ** it will always give the correct answer and is hence always safe. 5737 */ 5738 int sqlite3ExprImpliesExpr( 5739 const Parse *pParse, 5740 const Expr *pE1, 5741 const Expr *pE2, 5742 int iTab 5743 ){ 5744 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5745 return 1; 5746 } 5747 if( pE2->op==TK_OR 5748 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5749 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5750 ){ 5751 return 1; 5752 } 5753 if( pE2->op==TK_NOTNULL 5754 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5755 ){ 5756 return 1; 5757 } 5758 return 0; 5759 } 5760 5761 /* 5762 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5763 ** If the expression node requires that the table at pWalker->iCur 5764 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5765 ** 5766 ** This routine controls an optimization. False positives (setting 5767 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5768 ** (never setting pWalker->eCode) is a harmless missed optimization. 5769 */ 5770 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5771 testcase( pExpr->op==TK_AGG_COLUMN ); 5772 testcase( pExpr->op==TK_AGG_FUNCTION ); 5773 if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune; 5774 switch( pExpr->op ){ 5775 case TK_ISNOT: 5776 case TK_ISNULL: 5777 case TK_NOTNULL: 5778 case TK_IS: 5779 case TK_OR: 5780 case TK_VECTOR: 5781 case TK_CASE: 5782 case TK_IN: 5783 case TK_FUNCTION: 5784 case TK_TRUTH: 5785 testcase( pExpr->op==TK_ISNOT ); 5786 testcase( pExpr->op==TK_ISNULL ); 5787 testcase( pExpr->op==TK_NOTNULL ); 5788 testcase( pExpr->op==TK_IS ); 5789 testcase( pExpr->op==TK_OR ); 5790 testcase( pExpr->op==TK_VECTOR ); 5791 testcase( pExpr->op==TK_CASE ); 5792 testcase( pExpr->op==TK_IN ); 5793 testcase( pExpr->op==TK_FUNCTION ); 5794 testcase( pExpr->op==TK_TRUTH ); 5795 return WRC_Prune; 5796 case TK_COLUMN: 5797 if( pWalker->u.iCur==pExpr->iTable ){ 5798 pWalker->eCode = 1; 5799 return WRC_Abort; 5800 } 5801 return WRC_Prune; 5802 5803 case TK_AND: 5804 if( pWalker->eCode==0 ){ 5805 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5806 if( pWalker->eCode ){ 5807 pWalker->eCode = 0; 5808 sqlite3WalkExpr(pWalker, pExpr->pRight); 5809 } 5810 } 5811 return WRC_Prune; 5812 5813 case TK_BETWEEN: 5814 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5815 assert( pWalker->eCode ); 5816 return WRC_Abort; 5817 } 5818 return WRC_Prune; 5819 5820 /* Virtual tables are allowed to use constraints like x=NULL. So 5821 ** a term of the form x=y does not prove that y is not null if x 5822 ** is the column of a virtual table */ 5823 case TK_EQ: 5824 case TK_NE: 5825 case TK_LT: 5826 case TK_LE: 5827 case TK_GT: 5828 case TK_GE: { 5829 Expr *pLeft = pExpr->pLeft; 5830 Expr *pRight = pExpr->pRight; 5831 testcase( pExpr->op==TK_EQ ); 5832 testcase( pExpr->op==TK_NE ); 5833 testcase( pExpr->op==TK_LT ); 5834 testcase( pExpr->op==TK_LE ); 5835 testcase( pExpr->op==TK_GT ); 5836 testcase( pExpr->op==TK_GE ); 5837 /* The y.pTab=0 assignment in wherecode.c always happens after the 5838 ** impliesNotNullRow() test */ 5839 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); 5840 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); 5841 if( (pLeft->op==TK_COLUMN 5842 && pLeft->y.pTab!=0 5843 && IsVirtual(pLeft->y.pTab)) 5844 || (pRight->op==TK_COLUMN 5845 && pRight->y.pTab!=0 5846 && IsVirtual(pRight->y.pTab)) 5847 ){ 5848 return WRC_Prune; 5849 } 5850 /* no break */ deliberate_fall_through 5851 } 5852 default: 5853 return WRC_Continue; 5854 } 5855 } 5856 5857 /* 5858 ** Return true (non-zero) if expression p can only be true if at least 5859 ** one column of table iTab is non-null. In other words, return true 5860 ** if expression p will always be NULL or false if every column of iTab 5861 ** is NULL. 5862 ** 5863 ** False negatives are acceptable. In other words, it is ok to return 5864 ** zero even if expression p will never be true of every column of iTab 5865 ** is NULL. A false negative is merely a missed optimization opportunity. 5866 ** 5867 ** False positives are not allowed, however. A false positive may result 5868 ** in an incorrect answer. 5869 ** 5870 ** Terms of p that are marked with EP_OuterON (and hence that come from 5871 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis. 5872 ** 5873 ** This routine is used to check if a LEFT JOIN can be converted into 5874 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5875 ** clause requires that some column of the right table of the LEFT JOIN 5876 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5877 ** ordinary join. 5878 */ 5879 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5880 Walker w; 5881 p = sqlite3ExprSkipCollateAndLikely(p); 5882 if( p==0 ) return 0; 5883 if( p->op==TK_NOTNULL ){ 5884 p = p->pLeft; 5885 }else{ 5886 while( p->op==TK_AND ){ 5887 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5888 p = p->pRight; 5889 } 5890 } 5891 w.xExprCallback = impliesNotNullRow; 5892 w.xSelectCallback = 0; 5893 w.xSelectCallback2 = 0; 5894 w.eCode = 0; 5895 w.u.iCur = iTab; 5896 sqlite3WalkExpr(&w, p); 5897 return w.eCode; 5898 } 5899 5900 /* 5901 ** An instance of the following structure is used by the tree walker 5902 ** to determine if an expression can be evaluated by reference to the 5903 ** index only, without having to do a search for the corresponding 5904 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5905 ** is the cursor for the table. 5906 */ 5907 struct IdxCover { 5908 Index *pIdx; /* The index to be tested for coverage */ 5909 int iCur; /* Cursor number for the table corresponding to the index */ 5910 }; 5911 5912 /* 5913 ** Check to see if there are references to columns in table 5914 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5915 ** pWalker->u.pIdxCover->pIdx. 5916 */ 5917 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5918 if( pExpr->op==TK_COLUMN 5919 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5920 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5921 ){ 5922 pWalker->eCode = 1; 5923 return WRC_Abort; 5924 } 5925 return WRC_Continue; 5926 } 5927 5928 /* 5929 ** Determine if an index pIdx on table with cursor iCur contains will 5930 ** the expression pExpr. Return true if the index does cover the 5931 ** expression and false if the pExpr expression references table columns 5932 ** that are not found in the index pIdx. 5933 ** 5934 ** An index covering an expression means that the expression can be 5935 ** evaluated using only the index and without having to lookup the 5936 ** corresponding table entry. 5937 */ 5938 int sqlite3ExprCoveredByIndex( 5939 Expr *pExpr, /* The index to be tested */ 5940 int iCur, /* The cursor number for the corresponding table */ 5941 Index *pIdx /* The index that might be used for coverage */ 5942 ){ 5943 Walker w; 5944 struct IdxCover xcov; 5945 memset(&w, 0, sizeof(w)); 5946 xcov.iCur = iCur; 5947 xcov.pIdx = pIdx; 5948 w.xExprCallback = exprIdxCover; 5949 w.u.pIdxCover = &xcov; 5950 sqlite3WalkExpr(&w, pExpr); 5951 return !w.eCode; 5952 } 5953 5954 5955 /* Structure used to pass information throught the Walker in order to 5956 ** implement sqlite3ReferencesSrcList(). 5957 */ 5958 struct RefSrcList { 5959 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ 5960 SrcList *pRef; /* Looking for references to these tables */ 5961 i64 nExclude; /* Number of tables to exclude from the search */ 5962 int *aiExclude; /* Cursor IDs for tables to exclude from the search */ 5963 }; 5964 5965 /* 5966 ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). 5967 ** 5968 ** When entering a new subquery on the pExpr argument, add all FROM clause 5969 ** entries for that subquery to the exclude list. 5970 ** 5971 ** When leaving the subquery, remove those entries from the exclude list. 5972 */ 5973 static int selectRefEnter(Walker *pWalker, Select *pSelect){ 5974 struct RefSrcList *p = pWalker->u.pRefSrcList; 5975 SrcList *pSrc = pSelect->pSrc; 5976 i64 i, j; 5977 int *piNew; 5978 if( pSrc->nSrc==0 ) return WRC_Continue; 5979 j = p->nExclude; 5980 p->nExclude += pSrc->nSrc; 5981 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); 5982 if( piNew==0 ){ 5983 p->nExclude = 0; 5984 return WRC_Abort; 5985 }else{ 5986 p->aiExclude = piNew; 5987 } 5988 for(i=0; i<pSrc->nSrc; i++, j++){ 5989 p->aiExclude[j] = pSrc->a[i].iCursor; 5990 } 5991 return WRC_Continue; 5992 } 5993 static void selectRefLeave(Walker *pWalker, Select *pSelect){ 5994 struct RefSrcList *p = pWalker->u.pRefSrcList; 5995 SrcList *pSrc = pSelect->pSrc; 5996 if( p->nExclude ){ 5997 assert( p->nExclude>=pSrc->nSrc ); 5998 p->nExclude -= pSrc->nSrc; 5999 } 6000 } 6001 6002 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). 6003 ** 6004 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any 6005 ** of the tables shown in RefSrcList.pRef. 6006 ** 6007 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a 6008 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. 6009 */ 6010 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ 6011 if( pExpr->op==TK_COLUMN 6012 || pExpr->op==TK_AGG_COLUMN 6013 ){ 6014 int i; 6015 struct RefSrcList *p = pWalker->u.pRefSrcList; 6016 SrcList *pSrc = p->pRef; 6017 int nSrc = pSrc ? pSrc->nSrc : 0; 6018 for(i=0; i<nSrc; i++){ 6019 if( pExpr->iTable==pSrc->a[i].iCursor ){ 6020 pWalker->eCode |= 1; 6021 return WRC_Continue; 6022 } 6023 } 6024 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} 6025 if( i>=p->nExclude ){ 6026 pWalker->eCode |= 2; 6027 } 6028 } 6029 return WRC_Continue; 6030 } 6031 6032 /* 6033 ** Check to see if pExpr references any tables in pSrcList. 6034 ** Possible return values: 6035 ** 6036 ** 1 pExpr does references a table in pSrcList. 6037 ** 6038 ** 0 pExpr references some table that is not defined in either 6039 ** pSrcList or in subqueries of pExpr itself. 6040 ** 6041 ** -1 pExpr only references no tables at all, or it only 6042 ** references tables defined in subqueries of pExpr itself. 6043 ** 6044 ** As currently used, pExpr is always an aggregate function call. That 6045 ** fact is exploited for efficiency. 6046 */ 6047 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ 6048 Walker w; 6049 struct RefSrcList x; 6050 memset(&w, 0, sizeof(w)); 6051 memset(&x, 0, sizeof(x)); 6052 w.xExprCallback = exprRefToSrcList; 6053 w.xSelectCallback = selectRefEnter; 6054 w.xSelectCallback2 = selectRefLeave; 6055 w.u.pRefSrcList = &x; 6056 x.db = pParse->db; 6057 x.pRef = pSrcList; 6058 assert( pExpr->op==TK_AGG_FUNCTION ); 6059 assert( ExprUseXList(pExpr) ); 6060 sqlite3WalkExprList(&w, pExpr->x.pList); 6061 #ifndef SQLITE_OMIT_WINDOWFUNC 6062 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6063 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 6064 } 6065 #endif 6066 sqlite3DbFree(pParse->db, x.aiExclude); 6067 if( w.eCode & 0x01 ){ 6068 return 1; 6069 }else if( w.eCode ){ 6070 return 0; 6071 }else{ 6072 return -1; 6073 } 6074 } 6075 6076 /* 6077 ** This is a Walker expression node callback. 6078 ** 6079 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 6080 ** object that is referenced does not refer directly to the Expr. If 6081 ** it does, make a copy. This is done because the pExpr argument is 6082 ** subject to change. 6083 ** 6084 ** The copy is stored on pParse->pConstExpr with a register number of 0. 6085 ** This will cause the expression to be deleted automatically when the 6086 ** Parse object is destroyed, but the zero register number means that it 6087 ** will not generate any code in the preamble. 6088 */ 6089 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 6090 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 6091 && pExpr->pAggInfo!=0 6092 ){ 6093 AggInfo *pAggInfo = pExpr->pAggInfo; 6094 int iAgg = pExpr->iAgg; 6095 Parse *pParse = pWalker->pParse; 6096 sqlite3 *db = pParse->db; 6097 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 6098 if( pExpr->op==TK_AGG_COLUMN ){ 6099 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 6100 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 6101 pExpr = sqlite3ExprDup(db, pExpr, 0); 6102 if( pExpr ){ 6103 pAggInfo->aCol[iAgg].pCExpr = pExpr; 6104 sqlite3ExprDeferredDelete(pParse, pExpr); 6105 } 6106 } 6107 }else{ 6108 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 6109 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 6110 pExpr = sqlite3ExprDup(db, pExpr, 0); 6111 if( pExpr ){ 6112 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 6113 sqlite3ExprDeferredDelete(pParse, pExpr); 6114 } 6115 } 6116 } 6117 } 6118 return WRC_Continue; 6119 } 6120 6121 /* 6122 ** Initialize a Walker object so that will persist AggInfo entries referenced 6123 ** by the tree that is walked. 6124 */ 6125 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 6126 memset(pWalker, 0, sizeof(*pWalker)); 6127 pWalker->pParse = pParse; 6128 pWalker->xExprCallback = agginfoPersistExprCb; 6129 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 6130 } 6131 6132 /* 6133 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 6134 ** the new element. Return a negative number if malloc fails. 6135 */ 6136 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 6137 int i; 6138 pInfo->aCol = sqlite3ArrayAllocate( 6139 db, 6140 pInfo->aCol, 6141 sizeof(pInfo->aCol[0]), 6142 &pInfo->nColumn, 6143 &i 6144 ); 6145 return i; 6146 } 6147 6148 /* 6149 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 6150 ** the new element. Return a negative number if malloc fails. 6151 */ 6152 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 6153 int i; 6154 pInfo->aFunc = sqlite3ArrayAllocate( 6155 db, 6156 pInfo->aFunc, 6157 sizeof(pInfo->aFunc[0]), 6158 &pInfo->nFunc, 6159 &i 6160 ); 6161 return i; 6162 } 6163 6164 /* 6165 ** This is the xExprCallback for a tree walker. It is used to 6166 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 6167 ** for additional information. 6168 */ 6169 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 6170 int i; 6171 NameContext *pNC = pWalker->u.pNC; 6172 Parse *pParse = pNC->pParse; 6173 SrcList *pSrcList = pNC->pSrcList; 6174 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 6175 6176 assert( pNC->ncFlags & NC_UAggInfo ); 6177 switch( pExpr->op ){ 6178 case TK_AGG_COLUMN: 6179 case TK_COLUMN: { 6180 testcase( pExpr->op==TK_AGG_COLUMN ); 6181 testcase( pExpr->op==TK_COLUMN ); 6182 /* Check to see if the column is in one of the tables in the FROM 6183 ** clause of the aggregate query */ 6184 if( ALWAYS(pSrcList!=0) ){ 6185 SrcItem *pItem = pSrcList->a; 6186 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 6187 struct AggInfo_col *pCol; 6188 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6189 if( pExpr->iTable==pItem->iCursor ){ 6190 /* If we reach this point, it means that pExpr refers to a table 6191 ** that is in the FROM clause of the aggregate query. 6192 ** 6193 ** Make an entry for the column in pAggInfo->aCol[] if there 6194 ** is not an entry there already. 6195 */ 6196 int k; 6197 pCol = pAggInfo->aCol; 6198 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6199 if( pCol->iTable==pExpr->iTable && 6200 pCol->iColumn==pExpr->iColumn ){ 6201 break; 6202 } 6203 } 6204 if( (k>=pAggInfo->nColumn) 6205 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6206 ){ 6207 pCol = &pAggInfo->aCol[k]; 6208 assert( ExprUseYTab(pExpr) ); 6209 pCol->pTab = pExpr->y.pTab; 6210 pCol->iTable = pExpr->iTable; 6211 pCol->iColumn = pExpr->iColumn; 6212 pCol->iMem = ++pParse->nMem; 6213 pCol->iSorterColumn = -1; 6214 pCol->pCExpr = pExpr; 6215 if( pAggInfo->pGroupBy ){ 6216 int j, n; 6217 ExprList *pGB = pAggInfo->pGroupBy; 6218 struct ExprList_item *pTerm = pGB->a; 6219 n = pGB->nExpr; 6220 for(j=0; j<n; j++, pTerm++){ 6221 Expr *pE = pTerm->pExpr; 6222 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 6223 pE->iColumn==pExpr->iColumn ){ 6224 pCol->iSorterColumn = j; 6225 break; 6226 } 6227 } 6228 } 6229 if( pCol->iSorterColumn<0 ){ 6230 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6231 } 6232 } 6233 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6234 ** because it was there before or because we just created it). 6235 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6236 ** pAggInfo->aCol[] entry. 6237 */ 6238 ExprSetVVAProperty(pExpr, EP_NoReduce); 6239 pExpr->pAggInfo = pAggInfo; 6240 pExpr->op = TK_AGG_COLUMN; 6241 pExpr->iAgg = (i16)k; 6242 break; 6243 } /* endif pExpr->iTable==pItem->iCursor */ 6244 } /* end loop over pSrcList */ 6245 } 6246 return WRC_Prune; 6247 } 6248 case TK_AGG_FUNCTION: { 6249 if( (pNC->ncFlags & NC_InAggFunc)==0 6250 && pWalker->walkerDepth==pExpr->op2 6251 ){ 6252 /* Check to see if pExpr is a duplicate of another aggregate 6253 ** function that is already in the pAggInfo structure 6254 */ 6255 struct AggInfo_func *pItem = pAggInfo->aFunc; 6256 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6257 if( pItem->pFExpr==pExpr ) break; 6258 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6259 break; 6260 } 6261 } 6262 if( i>=pAggInfo->nFunc ){ 6263 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6264 */ 6265 u8 enc = ENC(pParse->db); 6266 i = addAggInfoFunc(pParse->db, pAggInfo); 6267 if( i>=0 ){ 6268 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6269 pItem = &pAggInfo->aFunc[i]; 6270 pItem->pFExpr = pExpr; 6271 pItem->iMem = ++pParse->nMem; 6272 assert( ExprUseUToken(pExpr) ); 6273 pItem->pFunc = sqlite3FindFunction(pParse->db, 6274 pExpr->u.zToken, 6275 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6276 if( pExpr->flags & EP_Distinct ){ 6277 pItem->iDistinct = pParse->nTab++; 6278 }else{ 6279 pItem->iDistinct = -1; 6280 } 6281 } 6282 } 6283 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6284 */ 6285 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6286 ExprSetVVAProperty(pExpr, EP_NoReduce); 6287 pExpr->iAgg = (i16)i; 6288 pExpr->pAggInfo = pAggInfo; 6289 return WRC_Prune; 6290 }else{ 6291 return WRC_Continue; 6292 } 6293 } 6294 } 6295 return WRC_Continue; 6296 } 6297 6298 /* 6299 ** Analyze the pExpr expression looking for aggregate functions and 6300 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6301 ** points to. Additional entries are made on the AggInfo object as 6302 ** necessary. 6303 ** 6304 ** This routine should only be called after the expression has been 6305 ** analyzed by sqlite3ResolveExprNames(). 6306 */ 6307 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6308 Walker w; 6309 w.xExprCallback = analyzeAggregate; 6310 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6311 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6312 w.walkerDepth = 0; 6313 w.u.pNC = pNC; 6314 w.pParse = 0; 6315 assert( pNC->pSrcList!=0 ); 6316 sqlite3WalkExpr(&w, pExpr); 6317 } 6318 6319 /* 6320 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6321 ** expression list. Return the number of errors. 6322 ** 6323 ** If an error is found, the analysis is cut short. 6324 */ 6325 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6326 struct ExprList_item *pItem; 6327 int i; 6328 if( pList ){ 6329 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6330 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6331 } 6332 } 6333 } 6334 6335 /* 6336 ** Allocate a single new register for use to hold some intermediate result. 6337 */ 6338 int sqlite3GetTempReg(Parse *pParse){ 6339 if( pParse->nTempReg==0 ){ 6340 return ++pParse->nMem; 6341 } 6342 return pParse->aTempReg[--pParse->nTempReg]; 6343 } 6344 6345 /* 6346 ** Deallocate a register, making available for reuse for some other 6347 ** purpose. 6348 */ 6349 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6350 if( iReg ){ 6351 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6352 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6353 pParse->aTempReg[pParse->nTempReg++] = iReg; 6354 } 6355 } 6356 } 6357 6358 /* 6359 ** Allocate or deallocate a block of nReg consecutive registers. 6360 */ 6361 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6362 int i, n; 6363 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6364 i = pParse->iRangeReg; 6365 n = pParse->nRangeReg; 6366 if( nReg<=n ){ 6367 pParse->iRangeReg += nReg; 6368 pParse->nRangeReg -= nReg; 6369 }else{ 6370 i = pParse->nMem+1; 6371 pParse->nMem += nReg; 6372 } 6373 return i; 6374 } 6375 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6376 if( nReg==1 ){ 6377 sqlite3ReleaseTempReg(pParse, iReg); 6378 return; 6379 } 6380 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6381 if( nReg>pParse->nRangeReg ){ 6382 pParse->nRangeReg = nReg; 6383 pParse->iRangeReg = iReg; 6384 } 6385 } 6386 6387 /* 6388 ** Mark all temporary registers as being unavailable for reuse. 6389 ** 6390 ** Always invoke this procedure after coding a subroutine or co-routine 6391 ** that might be invoked from other parts of the code, to ensure that 6392 ** the sub/co-routine does not use registers in common with the code that 6393 ** invokes the sub/co-routine. 6394 */ 6395 void sqlite3ClearTempRegCache(Parse *pParse){ 6396 pParse->nTempReg = 0; 6397 pParse->nRangeReg = 0; 6398 } 6399 6400 /* 6401 ** Validate that no temporary register falls within the range of 6402 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6403 ** statements. 6404 */ 6405 #ifdef SQLITE_DEBUG 6406 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6407 int i; 6408 if( pParse->nRangeReg>0 6409 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6410 && pParse->iRangeReg <= iLast 6411 ){ 6412 return 0; 6413 } 6414 for(i=0; i<pParse->nTempReg; i++){ 6415 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6416 return 0; 6417 } 6418 } 6419 return 1; 6420 } 6421 #endif /* SQLITE_DEBUG */ 6422