1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName /* Name of collating sequence */ 73 ){ 74 if( pCollName->n>0 ){ 75 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); 76 if( pNew ){ 77 pNew->pLeft = pExpr; 78 pNew->flags |= EP_Collate|EP_Skip; 79 pExpr = pNew; 80 } 81 } 82 return pExpr; 83 } 84 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 85 Token s; 86 assert( zC!=0 ); 87 s.z = zC; 88 s.n = sqlite3Strlen30(s.z); 89 return sqlite3ExprAddCollateToken(pParse, pExpr, &s); 90 } 91 92 /* 93 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely() 94 ** or likelihood() function at the root of an expression. 95 */ 96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 97 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 98 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 99 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 100 assert( pExpr->x.pList->nExpr>0 ); 101 assert( pExpr->op==TK_FUNCTION ); 102 pExpr = pExpr->x.pList->a[0].pExpr; 103 }else{ 104 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS ); 105 pExpr = pExpr->pLeft; 106 } 107 } 108 return pExpr; 109 } 110 111 /* 112 ** Return the collation sequence for the expression pExpr. If 113 ** there is no defined collating sequence, return NULL. 114 ** 115 ** The collating sequence might be determined by a COLLATE operator 116 ** or by the presence of a column with a defined collating sequence. 117 ** COLLATE operators take first precedence. Left operands take 118 ** precedence over right operands. 119 */ 120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 121 sqlite3 *db = pParse->db; 122 CollSeq *pColl = 0; 123 Expr *p = pExpr; 124 while( p ){ 125 int op = p->op; 126 if( p->flags & EP_Generic ) break; 127 if( op==TK_CAST || op==TK_UPLUS ){ 128 p = p->pLeft; 129 continue; 130 } 131 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 132 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 133 break; 134 } 135 if( p->pTab!=0 136 && (op==TK_AGG_COLUMN || op==TK_COLUMN 137 || op==TK_REGISTER || op==TK_TRIGGER) 138 ){ 139 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 140 ** a TK_COLUMN but was previously evaluated and cached in a register */ 141 int j = p->iColumn; 142 if( j>=0 ){ 143 const char *zColl = p->pTab->aCol[j].zColl; 144 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 145 } 146 break; 147 } 148 if( p->flags & EP_Collate ){ 149 if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ 150 p = p->pLeft; 151 }else{ 152 p = p->pRight; 153 } 154 }else{ 155 break; 156 } 157 } 158 if( sqlite3CheckCollSeq(pParse, pColl) ){ 159 pColl = 0; 160 } 161 return pColl; 162 } 163 164 /* 165 ** pExpr is an operand of a comparison operator. aff2 is the 166 ** type affinity of the other operand. This routine returns the 167 ** type affinity that should be used for the comparison operator. 168 */ 169 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 170 char aff1 = sqlite3ExprAffinity(pExpr); 171 if( aff1 && aff2 ){ 172 /* Both sides of the comparison are columns. If one has numeric 173 ** affinity, use that. Otherwise use no affinity. 174 */ 175 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 176 return SQLITE_AFF_NUMERIC; 177 }else{ 178 return SQLITE_AFF_NONE; 179 } 180 }else if( !aff1 && !aff2 ){ 181 /* Neither side of the comparison is a column. Compare the 182 ** results directly. 183 */ 184 return SQLITE_AFF_NONE; 185 }else{ 186 /* One side is a column, the other is not. Use the columns affinity. */ 187 assert( aff1==0 || aff2==0 ); 188 return (aff1 + aff2); 189 } 190 } 191 192 /* 193 ** pExpr is a comparison operator. Return the type affinity that should 194 ** be applied to both operands prior to doing the comparison. 195 */ 196 static char comparisonAffinity(Expr *pExpr){ 197 char aff; 198 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 199 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 200 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 201 assert( pExpr->pLeft ); 202 aff = sqlite3ExprAffinity(pExpr->pLeft); 203 if( pExpr->pRight ){ 204 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 205 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 206 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 207 }else if( !aff ){ 208 aff = SQLITE_AFF_NONE; 209 } 210 return aff; 211 } 212 213 /* 214 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 215 ** idx_affinity is the affinity of an indexed column. Return true 216 ** if the index with affinity idx_affinity may be used to implement 217 ** the comparison in pExpr. 218 */ 219 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 220 char aff = comparisonAffinity(pExpr); 221 switch( aff ){ 222 case SQLITE_AFF_NONE: 223 return 1; 224 case SQLITE_AFF_TEXT: 225 return idx_affinity==SQLITE_AFF_TEXT; 226 default: 227 return sqlite3IsNumericAffinity(idx_affinity); 228 } 229 } 230 231 /* 232 ** Return the P5 value that should be used for a binary comparison 233 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 234 */ 235 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 236 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 237 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 238 return aff; 239 } 240 241 /* 242 ** Return a pointer to the collation sequence that should be used by 243 ** a binary comparison operator comparing pLeft and pRight. 244 ** 245 ** If the left hand expression has a collating sequence type, then it is 246 ** used. Otherwise the collation sequence for the right hand expression 247 ** is used, or the default (BINARY) if neither expression has a collating 248 ** type. 249 ** 250 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 251 ** it is not considered. 252 */ 253 CollSeq *sqlite3BinaryCompareCollSeq( 254 Parse *pParse, 255 Expr *pLeft, 256 Expr *pRight 257 ){ 258 CollSeq *pColl; 259 assert( pLeft ); 260 if( pLeft->flags & EP_Collate ){ 261 pColl = sqlite3ExprCollSeq(pParse, pLeft); 262 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 263 pColl = sqlite3ExprCollSeq(pParse, pRight); 264 }else{ 265 pColl = sqlite3ExprCollSeq(pParse, pLeft); 266 if( !pColl ){ 267 pColl = sqlite3ExprCollSeq(pParse, pRight); 268 } 269 } 270 return pColl; 271 } 272 273 /* 274 ** Generate code for a comparison operator. 275 */ 276 static int codeCompare( 277 Parse *pParse, /* The parsing (and code generating) context */ 278 Expr *pLeft, /* The left operand */ 279 Expr *pRight, /* The right operand */ 280 int opcode, /* The comparison opcode */ 281 int in1, int in2, /* Register holding operands */ 282 int dest, /* Jump here if true. */ 283 int jumpIfNull /* If true, jump if either operand is NULL */ 284 ){ 285 int p5; 286 int addr; 287 CollSeq *p4; 288 289 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 290 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 291 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 292 (void*)p4, P4_COLLSEQ); 293 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 294 return addr; 295 } 296 297 #if SQLITE_MAX_EXPR_DEPTH>0 298 /* 299 ** Check that argument nHeight is less than or equal to the maximum 300 ** expression depth allowed. If it is not, leave an error message in 301 ** pParse. 302 */ 303 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 304 int rc = SQLITE_OK; 305 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 306 if( nHeight>mxHeight ){ 307 sqlite3ErrorMsg(pParse, 308 "Expression tree is too large (maximum depth %d)", mxHeight 309 ); 310 rc = SQLITE_ERROR; 311 } 312 return rc; 313 } 314 315 /* The following three functions, heightOfExpr(), heightOfExprList() 316 ** and heightOfSelect(), are used to determine the maximum height 317 ** of any expression tree referenced by the structure passed as the 318 ** first argument. 319 ** 320 ** If this maximum height is greater than the current value pointed 321 ** to by pnHeight, the second parameter, then set *pnHeight to that 322 ** value. 323 */ 324 static void heightOfExpr(Expr *p, int *pnHeight){ 325 if( p ){ 326 if( p->nHeight>*pnHeight ){ 327 *pnHeight = p->nHeight; 328 } 329 } 330 } 331 static void heightOfExprList(ExprList *p, int *pnHeight){ 332 if( p ){ 333 int i; 334 for(i=0; i<p->nExpr; i++){ 335 heightOfExpr(p->a[i].pExpr, pnHeight); 336 } 337 } 338 } 339 static void heightOfSelect(Select *p, int *pnHeight){ 340 if( p ){ 341 heightOfExpr(p->pWhere, pnHeight); 342 heightOfExpr(p->pHaving, pnHeight); 343 heightOfExpr(p->pLimit, pnHeight); 344 heightOfExpr(p->pOffset, pnHeight); 345 heightOfExprList(p->pEList, pnHeight); 346 heightOfExprList(p->pGroupBy, pnHeight); 347 heightOfExprList(p->pOrderBy, pnHeight); 348 heightOfSelect(p->pPrior, pnHeight); 349 } 350 } 351 352 /* 353 ** Set the Expr.nHeight variable in the structure passed as an 354 ** argument. An expression with no children, Expr.pList or 355 ** Expr.pSelect member has a height of 1. Any other expression 356 ** has a height equal to the maximum height of any other 357 ** referenced Expr plus one. 358 */ 359 static void exprSetHeight(Expr *p){ 360 int nHeight = 0; 361 heightOfExpr(p->pLeft, &nHeight); 362 heightOfExpr(p->pRight, &nHeight); 363 if( ExprHasProperty(p, EP_xIsSelect) ){ 364 heightOfSelect(p->x.pSelect, &nHeight); 365 }else{ 366 heightOfExprList(p->x.pList, &nHeight); 367 } 368 p->nHeight = nHeight + 1; 369 } 370 371 /* 372 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 373 ** the height is greater than the maximum allowed expression depth, 374 ** leave an error in pParse. 375 */ 376 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 377 exprSetHeight(p); 378 sqlite3ExprCheckHeight(pParse, p->nHeight); 379 } 380 381 /* 382 ** Return the maximum height of any expression tree referenced 383 ** by the select statement passed as an argument. 384 */ 385 int sqlite3SelectExprHeight(Select *p){ 386 int nHeight = 0; 387 heightOfSelect(p, &nHeight); 388 return nHeight; 389 } 390 #else 391 #define exprSetHeight(y) 392 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 393 394 /* 395 ** This routine is the core allocator for Expr nodes. 396 ** 397 ** Construct a new expression node and return a pointer to it. Memory 398 ** for this node and for the pToken argument is a single allocation 399 ** obtained from sqlite3DbMalloc(). The calling function 400 ** is responsible for making sure the node eventually gets freed. 401 ** 402 ** If dequote is true, then the token (if it exists) is dequoted. 403 ** If dequote is false, no dequoting is performance. The deQuote 404 ** parameter is ignored if pToken is NULL or if the token does not 405 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 406 ** then the EP_DblQuoted flag is set on the expression node. 407 ** 408 ** Special case: If op==TK_INTEGER and pToken points to a string that 409 ** can be translated into a 32-bit integer, then the token is not 410 ** stored in u.zToken. Instead, the integer values is written 411 ** into u.iValue and the EP_IntValue flag is set. No extra storage 412 ** is allocated to hold the integer text and the dequote flag is ignored. 413 */ 414 Expr *sqlite3ExprAlloc( 415 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 416 int op, /* Expression opcode */ 417 const Token *pToken, /* Token argument. Might be NULL */ 418 int dequote /* True to dequote */ 419 ){ 420 Expr *pNew; 421 int nExtra = 0; 422 int iValue = 0; 423 424 if( pToken ){ 425 if( op!=TK_INTEGER || pToken->z==0 426 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 427 nExtra = pToken->n+1; 428 assert( iValue>=0 ); 429 } 430 } 431 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 432 if( pNew ){ 433 pNew->op = (u8)op; 434 pNew->iAgg = -1; 435 if( pToken ){ 436 if( nExtra==0 ){ 437 pNew->flags |= EP_IntValue; 438 pNew->u.iValue = iValue; 439 }else{ 440 int c; 441 pNew->u.zToken = (char*)&pNew[1]; 442 assert( pToken->z!=0 || pToken->n==0 ); 443 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 444 pNew->u.zToken[pToken->n] = 0; 445 if( dequote && nExtra>=3 446 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 447 sqlite3Dequote(pNew->u.zToken); 448 if( c=='"' ) pNew->flags |= EP_DblQuoted; 449 } 450 } 451 } 452 #if SQLITE_MAX_EXPR_DEPTH>0 453 pNew->nHeight = 1; 454 #endif 455 } 456 return pNew; 457 } 458 459 /* 460 ** Allocate a new expression node from a zero-terminated token that has 461 ** already been dequoted. 462 */ 463 Expr *sqlite3Expr( 464 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 465 int op, /* Expression opcode */ 466 const char *zToken /* Token argument. Might be NULL */ 467 ){ 468 Token x; 469 x.z = zToken; 470 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 471 return sqlite3ExprAlloc(db, op, &x, 0); 472 } 473 474 /* 475 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 476 ** 477 ** If pRoot==NULL that means that a memory allocation error has occurred. 478 ** In that case, delete the subtrees pLeft and pRight. 479 */ 480 void sqlite3ExprAttachSubtrees( 481 sqlite3 *db, 482 Expr *pRoot, 483 Expr *pLeft, 484 Expr *pRight 485 ){ 486 if( pRoot==0 ){ 487 assert( db->mallocFailed ); 488 sqlite3ExprDelete(db, pLeft); 489 sqlite3ExprDelete(db, pRight); 490 }else{ 491 if( pRight ){ 492 pRoot->pRight = pRight; 493 pRoot->flags |= EP_Collate & pRight->flags; 494 } 495 if( pLeft ){ 496 pRoot->pLeft = pLeft; 497 pRoot->flags |= EP_Collate & pLeft->flags; 498 } 499 exprSetHeight(pRoot); 500 } 501 } 502 503 /* 504 ** Allocate a Expr node which joins as many as two subtrees. 505 ** 506 ** One or both of the subtrees can be NULL. Return a pointer to the new 507 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 508 ** free the subtrees and return NULL. 509 */ 510 Expr *sqlite3PExpr( 511 Parse *pParse, /* Parsing context */ 512 int op, /* Expression opcode */ 513 Expr *pLeft, /* Left operand */ 514 Expr *pRight, /* Right operand */ 515 const Token *pToken /* Argument token */ 516 ){ 517 Expr *p; 518 if( op==TK_AND && pLeft && pRight ){ 519 /* Take advantage of short-circuit false optimization for AND */ 520 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 521 }else{ 522 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 523 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 524 } 525 if( p ) { 526 sqlite3ExprCheckHeight(pParse, p->nHeight); 527 } 528 return p; 529 } 530 531 /* 532 ** If the expression is always either TRUE or FALSE (respectively), 533 ** then return 1. If one cannot determine the truth value of the 534 ** expression at compile-time return 0. 535 ** 536 ** This is an optimization. If is OK to return 0 here even if 537 ** the expression really is always false or false (a false negative). 538 ** But it is a bug to return 1 if the expression might have different 539 ** boolean values in different circumstances (a false positive.) 540 ** 541 ** Note that if the expression is part of conditional for a 542 ** LEFT JOIN, then we cannot determine at compile-time whether or not 543 ** is it true or false, so always return 0. 544 */ 545 static int exprAlwaysTrue(Expr *p){ 546 int v = 0; 547 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 548 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 549 return v!=0; 550 } 551 static int exprAlwaysFalse(Expr *p){ 552 int v = 0; 553 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 554 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 555 return v==0; 556 } 557 558 /* 559 ** Join two expressions using an AND operator. If either expression is 560 ** NULL, then just return the other expression. 561 ** 562 ** If one side or the other of the AND is known to be false, then instead 563 ** of returning an AND expression, just return a constant expression with 564 ** a value of false. 565 */ 566 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 567 if( pLeft==0 ){ 568 return pRight; 569 }else if( pRight==0 ){ 570 return pLeft; 571 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 572 sqlite3ExprDelete(db, pLeft); 573 sqlite3ExprDelete(db, pRight); 574 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 575 }else{ 576 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 577 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 578 return pNew; 579 } 580 } 581 582 /* 583 ** Construct a new expression node for a function with multiple 584 ** arguments. 585 */ 586 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 587 Expr *pNew; 588 sqlite3 *db = pParse->db; 589 assert( pToken ); 590 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 591 if( pNew==0 ){ 592 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 593 return 0; 594 } 595 pNew->x.pList = pList; 596 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 597 sqlite3ExprSetHeight(pParse, pNew); 598 return pNew; 599 } 600 601 /* 602 ** Assign a variable number to an expression that encodes a wildcard 603 ** in the original SQL statement. 604 ** 605 ** Wildcards consisting of a single "?" are assigned the next sequential 606 ** variable number. 607 ** 608 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 609 ** sure "nnn" is not too be to avoid a denial of service attack when 610 ** the SQL statement comes from an external source. 611 ** 612 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 613 ** as the previous instance of the same wildcard. Or if this is the first 614 ** instance of the wildcard, the next sequenial variable number is 615 ** assigned. 616 */ 617 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 618 sqlite3 *db = pParse->db; 619 const char *z; 620 621 if( pExpr==0 ) return; 622 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 623 z = pExpr->u.zToken; 624 assert( z!=0 ); 625 assert( z[0]!=0 ); 626 if( z[1]==0 ){ 627 /* Wildcard of the form "?". Assign the next variable number */ 628 assert( z[0]=='?' ); 629 pExpr->iColumn = (ynVar)(++pParse->nVar); 630 }else{ 631 ynVar x = 0; 632 u32 n = sqlite3Strlen30(z); 633 if( z[0]=='?' ){ 634 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 635 ** use it as the variable number */ 636 i64 i; 637 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 638 pExpr->iColumn = x = (ynVar)i; 639 testcase( i==0 ); 640 testcase( i==1 ); 641 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 642 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 643 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 644 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 645 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 646 x = 0; 647 } 648 if( i>pParse->nVar ){ 649 pParse->nVar = (int)i; 650 } 651 }else{ 652 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 653 ** number as the prior appearance of the same name, or if the name 654 ** has never appeared before, reuse the same variable number 655 */ 656 ynVar i; 657 for(i=0; i<pParse->nzVar; i++){ 658 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 659 pExpr->iColumn = x = (ynVar)i+1; 660 break; 661 } 662 } 663 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 664 } 665 if( x>0 ){ 666 if( x>pParse->nzVar ){ 667 char **a; 668 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 669 if( a==0 ) return; /* Error reported through db->mallocFailed */ 670 pParse->azVar = a; 671 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 672 pParse->nzVar = x; 673 } 674 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 675 sqlite3DbFree(db, pParse->azVar[x-1]); 676 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 677 } 678 } 679 } 680 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 681 sqlite3ErrorMsg(pParse, "too many SQL variables"); 682 } 683 } 684 685 /* 686 ** Recursively delete an expression tree. 687 */ 688 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 689 if( p==0 ) return; 690 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 691 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 692 if( !ExprHasProperty(p, EP_TokenOnly) ){ 693 /* The Expr.x union is never used at the same time as Expr.pRight */ 694 assert( p->x.pList==0 || p->pRight==0 ); 695 sqlite3ExprDelete(db, p->pLeft); 696 sqlite3ExprDelete(db, p->pRight); 697 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 698 if( ExprHasProperty(p, EP_xIsSelect) ){ 699 sqlite3SelectDelete(db, p->x.pSelect); 700 }else{ 701 sqlite3ExprListDelete(db, p->x.pList); 702 } 703 } 704 if( !ExprHasProperty(p, EP_Static) ){ 705 sqlite3DbFree(db, p); 706 } 707 } 708 709 /* 710 ** Return the number of bytes allocated for the expression structure 711 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 712 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 713 */ 714 static int exprStructSize(Expr *p){ 715 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 716 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 717 return EXPR_FULLSIZE; 718 } 719 720 /* 721 ** The dupedExpr*Size() routines each return the number of bytes required 722 ** to store a copy of an expression or expression tree. They differ in 723 ** how much of the tree is measured. 724 ** 725 ** dupedExprStructSize() Size of only the Expr structure 726 ** dupedExprNodeSize() Size of Expr + space for token 727 ** dupedExprSize() Expr + token + subtree components 728 ** 729 *************************************************************************** 730 ** 731 ** The dupedExprStructSize() function returns two values OR-ed together: 732 ** (1) the space required for a copy of the Expr structure only and 733 ** (2) the EP_xxx flags that indicate what the structure size should be. 734 ** The return values is always one of: 735 ** 736 ** EXPR_FULLSIZE 737 ** EXPR_REDUCEDSIZE | EP_Reduced 738 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 739 ** 740 ** The size of the structure can be found by masking the return value 741 ** of this routine with 0xfff. The flags can be found by masking the 742 ** return value with EP_Reduced|EP_TokenOnly. 743 ** 744 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 745 ** (unreduced) Expr objects as they or originally constructed by the parser. 746 ** During expression analysis, extra information is computed and moved into 747 ** later parts of teh Expr object and that extra information might get chopped 748 ** off if the expression is reduced. Note also that it does not work to 749 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 750 ** to reduce a pristine expression tree from the parser. The implementation 751 ** of dupedExprStructSize() contain multiple assert() statements that attempt 752 ** to enforce this constraint. 753 */ 754 static int dupedExprStructSize(Expr *p, int flags){ 755 int nSize; 756 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 757 assert( EXPR_FULLSIZE<=0xfff ); 758 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 759 if( 0==(flags&EXPRDUP_REDUCE) ){ 760 nSize = EXPR_FULLSIZE; 761 }else{ 762 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 763 assert( !ExprHasProperty(p, EP_FromJoin) ); 764 assert( !ExprHasProperty(p, EP_MemToken) ); 765 assert( !ExprHasProperty(p, EP_NoReduce) ); 766 if( p->pLeft || p->x.pList ){ 767 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 768 }else{ 769 assert( p->pRight==0 ); 770 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 771 } 772 } 773 return nSize; 774 } 775 776 /* 777 ** This function returns the space in bytes required to store the copy 778 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 779 ** string is defined.) 780 */ 781 static int dupedExprNodeSize(Expr *p, int flags){ 782 int nByte = dupedExprStructSize(p, flags) & 0xfff; 783 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 784 nByte += sqlite3Strlen30(p->u.zToken)+1; 785 } 786 return ROUND8(nByte); 787 } 788 789 /* 790 ** Return the number of bytes required to create a duplicate of the 791 ** expression passed as the first argument. The second argument is a 792 ** mask containing EXPRDUP_XXX flags. 793 ** 794 ** The value returned includes space to create a copy of the Expr struct 795 ** itself and the buffer referred to by Expr.u.zToken, if any. 796 ** 797 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 798 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 799 ** and Expr.pRight variables (but not for any structures pointed to or 800 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 801 */ 802 static int dupedExprSize(Expr *p, int flags){ 803 int nByte = 0; 804 if( p ){ 805 nByte = dupedExprNodeSize(p, flags); 806 if( flags&EXPRDUP_REDUCE ){ 807 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 808 } 809 } 810 return nByte; 811 } 812 813 /* 814 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 815 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 816 ** to store the copy of expression p, the copies of p->u.zToken 817 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 818 ** if any. Before returning, *pzBuffer is set to the first byte passed the 819 ** portion of the buffer copied into by this function. 820 */ 821 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 822 Expr *pNew = 0; /* Value to return */ 823 if( p ){ 824 const int isReduced = (flags&EXPRDUP_REDUCE); 825 u8 *zAlloc; 826 u32 staticFlag = 0; 827 828 assert( pzBuffer==0 || isReduced ); 829 830 /* Figure out where to write the new Expr structure. */ 831 if( pzBuffer ){ 832 zAlloc = *pzBuffer; 833 staticFlag = EP_Static; 834 }else{ 835 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 836 } 837 pNew = (Expr *)zAlloc; 838 839 if( pNew ){ 840 /* Set nNewSize to the size allocated for the structure pointed to 841 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 842 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 843 ** by the copy of the p->u.zToken string (if any). 844 */ 845 const unsigned nStructSize = dupedExprStructSize(p, flags); 846 const int nNewSize = nStructSize & 0xfff; 847 int nToken; 848 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 849 nToken = sqlite3Strlen30(p->u.zToken) + 1; 850 }else{ 851 nToken = 0; 852 } 853 if( isReduced ){ 854 assert( ExprHasProperty(p, EP_Reduced)==0 ); 855 memcpy(zAlloc, p, nNewSize); 856 }else{ 857 int nSize = exprStructSize(p); 858 memcpy(zAlloc, p, nSize); 859 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 860 } 861 862 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 863 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 864 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 865 pNew->flags |= staticFlag; 866 867 /* Copy the p->u.zToken string, if any. */ 868 if( nToken ){ 869 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 870 memcpy(zToken, p->u.zToken, nToken); 871 } 872 873 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 874 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 875 if( ExprHasProperty(p, EP_xIsSelect) ){ 876 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 877 }else{ 878 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 879 } 880 } 881 882 /* Fill in pNew->pLeft and pNew->pRight. */ 883 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 884 zAlloc += dupedExprNodeSize(p, flags); 885 if( ExprHasProperty(pNew, EP_Reduced) ){ 886 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 887 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 888 } 889 if( pzBuffer ){ 890 *pzBuffer = zAlloc; 891 } 892 }else{ 893 if( !ExprHasProperty(p, EP_TokenOnly) ){ 894 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 895 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 896 } 897 } 898 899 } 900 } 901 return pNew; 902 } 903 904 /* 905 ** Create and return a deep copy of the object passed as the second 906 ** argument. If an OOM condition is encountered, NULL is returned 907 ** and the db->mallocFailed flag set. 908 */ 909 #ifndef SQLITE_OMIT_CTE 910 static With *withDup(sqlite3 *db, With *p){ 911 With *pRet = 0; 912 if( p ){ 913 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 914 pRet = sqlite3DbMallocZero(db, nByte); 915 if( pRet ){ 916 int i; 917 pRet->nCte = p->nCte; 918 for(i=0; i<p->nCte; i++){ 919 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 920 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 921 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 922 } 923 } 924 } 925 return pRet; 926 } 927 #else 928 # define withDup(x,y) 0 929 #endif 930 931 /* 932 ** The following group of routines make deep copies of expressions, 933 ** expression lists, ID lists, and select statements. The copies can 934 ** be deleted (by being passed to their respective ...Delete() routines) 935 ** without effecting the originals. 936 ** 937 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 938 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 939 ** by subsequent calls to sqlite*ListAppend() routines. 940 ** 941 ** Any tables that the SrcList might point to are not duplicated. 942 ** 943 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 944 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 945 ** truncated version of the usual Expr structure that will be stored as 946 ** part of the in-memory representation of the database schema. 947 */ 948 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 949 return exprDup(db, p, flags, 0); 950 } 951 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 952 ExprList *pNew; 953 struct ExprList_item *pItem, *pOldItem; 954 int i; 955 if( p==0 ) return 0; 956 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 957 if( pNew==0 ) return 0; 958 pNew->nExpr = i = p->nExpr; 959 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 960 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 961 if( pItem==0 ){ 962 sqlite3DbFree(db, pNew); 963 return 0; 964 } 965 pOldItem = p->a; 966 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 967 Expr *pOldExpr = pOldItem->pExpr; 968 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 969 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 970 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 971 pItem->sortOrder = pOldItem->sortOrder; 972 pItem->done = 0; 973 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 974 pItem->u = pOldItem->u; 975 } 976 return pNew; 977 } 978 979 /* 980 ** If cursors, triggers, views and subqueries are all omitted from 981 ** the build, then none of the following routines, except for 982 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 983 ** called with a NULL argument. 984 */ 985 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 986 || !defined(SQLITE_OMIT_SUBQUERY) 987 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 988 SrcList *pNew; 989 int i; 990 int nByte; 991 if( p==0 ) return 0; 992 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 993 pNew = sqlite3DbMallocRaw(db, nByte ); 994 if( pNew==0 ) return 0; 995 pNew->nSrc = pNew->nAlloc = p->nSrc; 996 for(i=0; i<p->nSrc; i++){ 997 struct SrcList_item *pNewItem = &pNew->a[i]; 998 struct SrcList_item *pOldItem = &p->a[i]; 999 Table *pTab; 1000 pNewItem->pSchema = pOldItem->pSchema; 1001 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1002 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1003 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1004 pNewItem->jointype = pOldItem->jointype; 1005 pNewItem->iCursor = pOldItem->iCursor; 1006 pNewItem->addrFillSub = pOldItem->addrFillSub; 1007 pNewItem->regReturn = pOldItem->regReturn; 1008 pNewItem->isCorrelated = pOldItem->isCorrelated; 1009 pNewItem->viaCoroutine = pOldItem->viaCoroutine; 1010 pNewItem->isRecursive = pOldItem->isRecursive; 1011 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 1012 pNewItem->notIndexed = pOldItem->notIndexed; 1013 pNewItem->pIndex = pOldItem->pIndex; 1014 pTab = pNewItem->pTab = pOldItem->pTab; 1015 if( pTab ){ 1016 pTab->nRef++; 1017 } 1018 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1019 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1020 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1021 pNewItem->colUsed = pOldItem->colUsed; 1022 } 1023 return pNew; 1024 } 1025 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1026 IdList *pNew; 1027 int i; 1028 if( p==0 ) return 0; 1029 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1030 if( pNew==0 ) return 0; 1031 pNew->nId = p->nId; 1032 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1033 if( pNew->a==0 ){ 1034 sqlite3DbFree(db, pNew); 1035 return 0; 1036 } 1037 /* Note that because the size of the allocation for p->a[] is not 1038 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1039 ** on the duplicate created by this function. */ 1040 for(i=0; i<p->nId; i++){ 1041 struct IdList_item *pNewItem = &pNew->a[i]; 1042 struct IdList_item *pOldItem = &p->a[i]; 1043 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1044 pNewItem->idx = pOldItem->idx; 1045 } 1046 return pNew; 1047 } 1048 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1049 Select *pNew, *pPrior; 1050 if( p==0 ) return 0; 1051 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1052 if( pNew==0 ) return 0; 1053 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1054 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1055 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1056 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1057 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1058 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1059 pNew->op = p->op; 1060 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1061 if( pPrior ) pPrior->pNext = pNew; 1062 pNew->pNext = 0; 1063 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1064 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1065 pNew->iLimit = 0; 1066 pNew->iOffset = 0; 1067 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1068 pNew->addrOpenEphm[0] = -1; 1069 pNew->addrOpenEphm[1] = -1; 1070 pNew->nSelectRow = p->nSelectRow; 1071 pNew->pWith = withDup(db, p->pWith); 1072 return pNew; 1073 } 1074 #else 1075 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1076 assert( p==0 ); 1077 return 0; 1078 } 1079 #endif 1080 1081 1082 /* 1083 ** Add a new element to the end of an expression list. If pList is 1084 ** initially NULL, then create a new expression list. 1085 ** 1086 ** If a memory allocation error occurs, the entire list is freed and 1087 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1088 ** that the new entry was successfully appended. 1089 */ 1090 ExprList *sqlite3ExprListAppend( 1091 Parse *pParse, /* Parsing context */ 1092 ExprList *pList, /* List to which to append. Might be NULL */ 1093 Expr *pExpr /* Expression to be appended. Might be NULL */ 1094 ){ 1095 sqlite3 *db = pParse->db; 1096 if( pList==0 ){ 1097 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1098 if( pList==0 ){ 1099 goto no_mem; 1100 } 1101 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1102 if( pList->a==0 ) goto no_mem; 1103 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1104 struct ExprList_item *a; 1105 assert( pList->nExpr>0 ); 1106 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1107 if( a==0 ){ 1108 goto no_mem; 1109 } 1110 pList->a = a; 1111 } 1112 assert( pList->a!=0 ); 1113 if( 1 ){ 1114 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1115 memset(pItem, 0, sizeof(*pItem)); 1116 pItem->pExpr = pExpr; 1117 } 1118 return pList; 1119 1120 no_mem: 1121 /* Avoid leaking memory if malloc has failed. */ 1122 sqlite3ExprDelete(db, pExpr); 1123 sqlite3ExprListDelete(db, pList); 1124 return 0; 1125 } 1126 1127 /* 1128 ** Set the ExprList.a[].zName element of the most recently added item 1129 ** on the expression list. 1130 ** 1131 ** pList might be NULL following an OOM error. But pName should never be 1132 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1133 ** is set. 1134 */ 1135 void sqlite3ExprListSetName( 1136 Parse *pParse, /* Parsing context */ 1137 ExprList *pList, /* List to which to add the span. */ 1138 Token *pName, /* Name to be added */ 1139 int dequote /* True to cause the name to be dequoted */ 1140 ){ 1141 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1142 if( pList ){ 1143 struct ExprList_item *pItem; 1144 assert( pList->nExpr>0 ); 1145 pItem = &pList->a[pList->nExpr-1]; 1146 assert( pItem->zName==0 ); 1147 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1148 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1149 } 1150 } 1151 1152 /* 1153 ** Set the ExprList.a[].zSpan element of the most recently added item 1154 ** on the expression list. 1155 ** 1156 ** pList might be NULL following an OOM error. But pSpan should never be 1157 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1158 ** is set. 1159 */ 1160 void sqlite3ExprListSetSpan( 1161 Parse *pParse, /* Parsing context */ 1162 ExprList *pList, /* List to which to add the span. */ 1163 ExprSpan *pSpan /* The span to be added */ 1164 ){ 1165 sqlite3 *db = pParse->db; 1166 assert( pList!=0 || db->mallocFailed!=0 ); 1167 if( pList ){ 1168 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1169 assert( pList->nExpr>0 ); 1170 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1171 sqlite3DbFree(db, pItem->zSpan); 1172 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1173 (int)(pSpan->zEnd - pSpan->zStart)); 1174 } 1175 } 1176 1177 /* 1178 ** If the expression list pEList contains more than iLimit elements, 1179 ** leave an error message in pParse. 1180 */ 1181 void sqlite3ExprListCheckLength( 1182 Parse *pParse, 1183 ExprList *pEList, 1184 const char *zObject 1185 ){ 1186 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1187 testcase( pEList && pEList->nExpr==mx ); 1188 testcase( pEList && pEList->nExpr==mx+1 ); 1189 if( pEList && pEList->nExpr>mx ){ 1190 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1191 } 1192 } 1193 1194 /* 1195 ** Delete an entire expression list. 1196 */ 1197 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1198 int i; 1199 struct ExprList_item *pItem; 1200 if( pList==0 ) return; 1201 assert( pList->a!=0 || pList->nExpr==0 ); 1202 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1203 sqlite3ExprDelete(db, pItem->pExpr); 1204 sqlite3DbFree(db, pItem->zName); 1205 sqlite3DbFree(db, pItem->zSpan); 1206 } 1207 sqlite3DbFree(db, pList->a); 1208 sqlite3DbFree(db, pList); 1209 } 1210 1211 /* 1212 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1213 ** to an integer. These routines are checking an expression to see 1214 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1215 ** not constant. 1216 ** 1217 ** These callback routines are used to implement the following: 1218 ** 1219 ** sqlite3ExprIsConstant() 1220 ** sqlite3ExprIsConstantNotJoin() 1221 ** sqlite3ExprIsConstantOrFunction() 1222 ** 1223 */ 1224 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1225 1226 /* If pWalker->u.i is 3 then any term of the expression that comes from 1227 ** the ON or USING clauses of a join disqualifies the expression 1228 ** from being considered constant. */ 1229 if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1230 pWalker->u.i = 0; 1231 return WRC_Abort; 1232 } 1233 1234 switch( pExpr->op ){ 1235 /* Consider functions to be constant if all their arguments are constant 1236 ** and either pWalker->u.i==2 or the function as the SQLITE_FUNC_CONST 1237 ** flag. */ 1238 case TK_FUNCTION: 1239 if( pWalker->u.i==2 || ExprHasProperty(pExpr,EP_Constant) ){ 1240 return WRC_Continue; 1241 } 1242 /* Fall through */ 1243 case TK_ID: 1244 case TK_COLUMN: 1245 case TK_AGG_FUNCTION: 1246 case TK_AGG_COLUMN: 1247 testcase( pExpr->op==TK_ID ); 1248 testcase( pExpr->op==TK_COLUMN ); 1249 testcase( pExpr->op==TK_AGG_FUNCTION ); 1250 testcase( pExpr->op==TK_AGG_COLUMN ); 1251 pWalker->u.i = 0; 1252 return WRC_Abort; 1253 default: 1254 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1255 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1256 return WRC_Continue; 1257 } 1258 } 1259 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1260 UNUSED_PARAMETER(NotUsed); 1261 pWalker->u.i = 0; 1262 return WRC_Abort; 1263 } 1264 static int exprIsConst(Expr *p, int initFlag){ 1265 Walker w; 1266 memset(&w, 0, sizeof(w)); 1267 w.u.i = initFlag; 1268 w.xExprCallback = exprNodeIsConstant; 1269 w.xSelectCallback = selectNodeIsConstant; 1270 sqlite3WalkExpr(&w, p); 1271 return w.u.i; 1272 } 1273 1274 /* 1275 ** Walk an expression tree. Return 1 if the expression is constant 1276 ** and 0 if it involves variables or function calls. 1277 ** 1278 ** For the purposes of this function, a double-quoted string (ex: "abc") 1279 ** is considered a variable but a single-quoted string (ex: 'abc') is 1280 ** a constant. 1281 */ 1282 int sqlite3ExprIsConstant(Expr *p){ 1283 return exprIsConst(p, 1); 1284 } 1285 1286 /* 1287 ** Walk an expression tree. Return 1 if the expression is constant 1288 ** that does no originate from the ON or USING clauses of a join. 1289 ** Return 0 if it involves variables or function calls or terms from 1290 ** an ON or USING clause. 1291 */ 1292 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1293 return exprIsConst(p, 3); 1294 } 1295 1296 /* 1297 ** Walk an expression tree. Return 1 if the expression is constant 1298 ** or a function call with constant arguments. Return and 0 if there 1299 ** are any variables. 1300 ** 1301 ** For the purposes of this function, a double-quoted string (ex: "abc") 1302 ** is considered a variable but a single-quoted string (ex: 'abc') is 1303 ** a constant. 1304 */ 1305 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1306 return exprIsConst(p, 2); 1307 } 1308 1309 /* 1310 ** If the expression p codes a constant integer that is small enough 1311 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1312 ** in *pValue. If the expression is not an integer or if it is too big 1313 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1314 */ 1315 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1316 int rc = 0; 1317 1318 /* If an expression is an integer literal that fits in a signed 32-bit 1319 ** integer, then the EP_IntValue flag will have already been set */ 1320 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1321 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1322 1323 if( p->flags & EP_IntValue ){ 1324 *pValue = p->u.iValue; 1325 return 1; 1326 } 1327 switch( p->op ){ 1328 case TK_UPLUS: { 1329 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1330 break; 1331 } 1332 case TK_UMINUS: { 1333 int v; 1334 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1335 assert( v!=(-2147483647-1) ); 1336 *pValue = -v; 1337 rc = 1; 1338 } 1339 break; 1340 } 1341 default: break; 1342 } 1343 return rc; 1344 } 1345 1346 /* 1347 ** Return FALSE if there is no chance that the expression can be NULL. 1348 ** 1349 ** If the expression might be NULL or if the expression is too complex 1350 ** to tell return TRUE. 1351 ** 1352 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1353 ** when we know that a value cannot be NULL. Hence, a false positive 1354 ** (returning TRUE when in fact the expression can never be NULL) might 1355 ** be a small performance hit but is otherwise harmless. On the other 1356 ** hand, a false negative (returning FALSE when the result could be NULL) 1357 ** will likely result in an incorrect answer. So when in doubt, return 1358 ** TRUE. 1359 */ 1360 int sqlite3ExprCanBeNull(const Expr *p){ 1361 u8 op; 1362 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1363 op = p->op; 1364 if( op==TK_REGISTER ) op = p->op2; 1365 switch( op ){ 1366 case TK_INTEGER: 1367 case TK_STRING: 1368 case TK_FLOAT: 1369 case TK_BLOB: 1370 return 0; 1371 case TK_COLUMN: 1372 assert( p->pTab!=0 ); 1373 return p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0; 1374 default: 1375 return 1; 1376 } 1377 } 1378 1379 /* 1380 ** Return TRUE if the given expression is a constant which would be 1381 ** unchanged by OP_Affinity with the affinity given in the second 1382 ** argument. 1383 ** 1384 ** This routine is used to determine if the OP_Affinity operation 1385 ** can be omitted. When in doubt return FALSE. A false negative 1386 ** is harmless. A false positive, however, can result in the wrong 1387 ** answer. 1388 */ 1389 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1390 u8 op; 1391 if( aff==SQLITE_AFF_NONE ) return 1; 1392 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1393 op = p->op; 1394 if( op==TK_REGISTER ) op = p->op2; 1395 switch( op ){ 1396 case TK_INTEGER: { 1397 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1398 } 1399 case TK_FLOAT: { 1400 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1401 } 1402 case TK_STRING: { 1403 return aff==SQLITE_AFF_TEXT; 1404 } 1405 case TK_BLOB: { 1406 return 1; 1407 } 1408 case TK_COLUMN: { 1409 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1410 return p->iColumn<0 1411 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1412 } 1413 default: { 1414 return 0; 1415 } 1416 } 1417 } 1418 1419 /* 1420 ** Return TRUE if the given string is a row-id column name. 1421 */ 1422 int sqlite3IsRowid(const char *z){ 1423 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1424 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1425 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1426 return 0; 1427 } 1428 1429 /* 1430 ** Return true if we are able to the IN operator optimization on a 1431 ** query of the form 1432 ** 1433 ** x IN (SELECT ...) 1434 ** 1435 ** Where the SELECT... clause is as specified by the parameter to this 1436 ** routine. 1437 ** 1438 ** The Select object passed in has already been preprocessed and no 1439 ** errors have been found. 1440 */ 1441 #ifndef SQLITE_OMIT_SUBQUERY 1442 static int isCandidateForInOpt(Select *p){ 1443 SrcList *pSrc; 1444 ExprList *pEList; 1445 Table *pTab; 1446 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1447 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1448 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1449 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1450 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1451 return 0; /* No DISTINCT keyword and no aggregate functions */ 1452 } 1453 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1454 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1455 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1456 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1457 pSrc = p->pSrc; 1458 assert( pSrc!=0 ); 1459 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1460 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1461 pTab = pSrc->a[0].pTab; 1462 if( NEVER(pTab==0) ) return 0; 1463 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1464 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1465 pEList = p->pEList; 1466 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1467 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1468 return 1; 1469 } 1470 #endif /* SQLITE_OMIT_SUBQUERY */ 1471 1472 /* 1473 ** Code an OP_Once instruction and allocate space for its flag. Return the 1474 ** address of the new instruction. 1475 */ 1476 int sqlite3CodeOnce(Parse *pParse){ 1477 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1478 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1479 } 1480 1481 /* 1482 ** Generate code that checks the left-most column of index table iCur to see if 1483 ** it contains any NULL entries. Cause the register at regHasNull to be set 1484 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1485 ** to be set to NULL if iCur contains one or more NULL values. 1486 */ 1487 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1488 int j1; 1489 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1490 j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1491 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1492 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1493 VdbeComment((v, "first_entry_in(%d)", iCur)); 1494 sqlite3VdbeJumpHere(v, j1); 1495 } 1496 1497 1498 #ifndef SQLITE_OMIT_SUBQUERY 1499 /* 1500 ** The argument is an IN operator with a list (not a subquery) on the 1501 ** right-hand side. Return TRUE if that list is constant. 1502 */ 1503 static int sqlite3InRhsIsConstant(Expr *pIn){ 1504 Expr *pLHS; 1505 int res; 1506 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1507 pLHS = pIn->pLeft; 1508 pIn->pLeft = 0; 1509 res = sqlite3ExprIsConstant(pIn); 1510 pIn->pLeft = pLHS; 1511 return res; 1512 } 1513 #endif 1514 1515 /* 1516 ** This function is used by the implementation of the IN (...) operator. 1517 ** The pX parameter is the expression on the RHS of the IN operator, which 1518 ** might be either a list of expressions or a subquery. 1519 ** 1520 ** The job of this routine is to find or create a b-tree object that can 1521 ** be used either to test for membership in the RHS set or to iterate through 1522 ** all members of the RHS set, skipping duplicates. 1523 ** 1524 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1525 ** and pX->iTable is set to the index of that cursor. 1526 ** 1527 ** The returned value of this function indicates the b-tree type, as follows: 1528 ** 1529 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1530 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1531 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1532 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1533 ** populated epheremal table. 1534 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1535 ** implemented as a sequence of comparisons. 1536 ** 1537 ** An existing b-tree might be used if the RHS expression pX is a simple 1538 ** subquery such as: 1539 ** 1540 ** SELECT <column> FROM <table> 1541 ** 1542 ** If the RHS of the IN operator is a list or a more complex subquery, then 1543 ** an ephemeral table might need to be generated from the RHS and then 1544 ** pX->iTable made to point to the ephermeral table instead of an 1545 ** existing table. 1546 ** 1547 ** The inFlags parameter must contain exactly one of the bits 1548 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1549 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1550 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1551 ** IN index will be used to loop over all values of the RHS of the 1552 ** IN operator. 1553 ** 1554 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1555 ** through the set members) then the b-tree must not contain duplicates. 1556 ** An epheremal table must be used unless the selected <column> is guaranteed 1557 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1558 ** has a UNIQUE constraint or UNIQUE index. 1559 ** 1560 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1561 ** for fast set membership tests) then an epheremal table must 1562 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1563 ** be found with <column> as its left-most column. 1564 ** 1565 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1566 ** if the RHS of the IN operator is a list (not a subquery) then this 1567 ** routine might decide that creating an ephemeral b-tree for membership 1568 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1569 ** calling routine should implement the IN operator using a sequence 1570 ** of Eq or Ne comparison operations. 1571 ** 1572 ** When the b-tree is being used for membership tests, the calling function 1573 ** might need to know whether or not the RHS side of the IN operator 1574 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1575 ** if there is any chance that the (...) might contain a NULL value at 1576 ** runtime, then a register is allocated and the register number written 1577 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1578 ** NULL value, then *prRhsHasNull is left unchanged. 1579 ** 1580 ** If a register is allocated and its location stored in *prRhsHasNull, then 1581 ** the value in that register will be NULL if the b-tree contains one or more 1582 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1583 ** NULL values. 1584 */ 1585 #ifndef SQLITE_OMIT_SUBQUERY 1586 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1587 Select *p; /* SELECT to the right of IN operator */ 1588 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1589 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1590 int mustBeUnique; /* True if RHS must be unique */ 1591 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1592 1593 assert( pX->op==TK_IN ); 1594 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1595 1596 /* Check to see if an existing table or index can be used to 1597 ** satisfy the query. This is preferable to generating a new 1598 ** ephemeral table. 1599 */ 1600 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1601 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1602 sqlite3 *db = pParse->db; /* Database connection */ 1603 Table *pTab; /* Table <table>. */ 1604 Expr *pExpr; /* Expression <column> */ 1605 i16 iCol; /* Index of column <column> */ 1606 i16 iDb; /* Database idx for pTab */ 1607 1608 assert( p ); /* Because of isCandidateForInOpt(p) */ 1609 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1610 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1611 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1612 pTab = p->pSrc->a[0].pTab; 1613 pExpr = p->pEList->a[0].pExpr; 1614 iCol = (i16)pExpr->iColumn; 1615 1616 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1617 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1618 sqlite3CodeVerifySchema(pParse, iDb); 1619 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1620 1621 /* This function is only called from two places. In both cases the vdbe 1622 ** has already been allocated. So assume sqlite3GetVdbe() is always 1623 ** successful here. 1624 */ 1625 assert(v); 1626 if( iCol<0 ){ 1627 int iAddr = sqlite3CodeOnce(pParse); 1628 VdbeCoverage(v); 1629 1630 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1631 eType = IN_INDEX_ROWID; 1632 1633 sqlite3VdbeJumpHere(v, iAddr); 1634 }else{ 1635 Index *pIdx; /* Iterator variable */ 1636 1637 /* The collation sequence used by the comparison. If an index is to 1638 ** be used in place of a temp-table, it must be ordered according 1639 ** to this collation sequence. */ 1640 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1641 1642 /* Check that the affinity that will be used to perform the 1643 ** comparison is the same as the affinity of the column. If 1644 ** it is not, it is not possible to use any index. 1645 */ 1646 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1647 1648 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1649 if( (pIdx->aiColumn[0]==iCol) 1650 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1651 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1652 ){ 1653 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1654 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1655 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1656 VdbeComment((v, "%s", pIdx->zName)); 1657 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1658 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1659 1660 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1661 *prRhsHasNull = ++pParse->nMem; 1662 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1663 } 1664 sqlite3VdbeJumpHere(v, iAddr); 1665 } 1666 } 1667 } 1668 } 1669 1670 /* If no preexisting index is available for the IN clause 1671 ** and IN_INDEX_NOOP is an allowed reply 1672 ** and the RHS of the IN operator is a list, not a subquery 1673 ** and the RHS is not contant or has two or fewer terms, 1674 ** then it is not worth creating an ephermeral table to evaluate 1675 ** the IN operator so return IN_INDEX_NOOP. 1676 */ 1677 if( eType==0 1678 && (inFlags & IN_INDEX_NOOP_OK) 1679 && !ExprHasProperty(pX, EP_xIsSelect) 1680 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1681 ){ 1682 eType = IN_INDEX_NOOP; 1683 } 1684 1685 1686 if( eType==0 ){ 1687 /* Could not find an existing table or index to use as the RHS b-tree. 1688 ** We will have to generate an ephemeral table to do the job. 1689 */ 1690 u32 savedNQueryLoop = pParse->nQueryLoop; 1691 int rMayHaveNull = 0; 1692 eType = IN_INDEX_EPH; 1693 if( inFlags & IN_INDEX_LOOP ){ 1694 pParse->nQueryLoop = 0; 1695 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1696 eType = IN_INDEX_ROWID; 1697 } 1698 }else if( prRhsHasNull ){ 1699 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1700 } 1701 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1702 pParse->nQueryLoop = savedNQueryLoop; 1703 }else{ 1704 pX->iTable = iTab; 1705 } 1706 return eType; 1707 } 1708 #endif 1709 1710 /* 1711 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1712 ** or IN operators. Examples: 1713 ** 1714 ** (SELECT a FROM b) -- subquery 1715 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1716 ** x IN (4,5,11) -- IN operator with list on right-hand side 1717 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1718 ** 1719 ** The pExpr parameter describes the expression that contains the IN 1720 ** operator or subquery. 1721 ** 1722 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1723 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1724 ** to some integer key column of a table B-Tree. In this case, use an 1725 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1726 ** (slower) variable length keys B-Tree. 1727 ** 1728 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1729 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1730 ** All this routine does is initialize the register given by rMayHaveNull 1731 ** to NULL. Calling routines will take care of changing this register 1732 ** value to non-NULL if the RHS is NULL-free. 1733 ** 1734 ** For a SELECT or EXISTS operator, return the register that holds the 1735 ** result. For IN operators or if an error occurs, the return value is 0. 1736 */ 1737 #ifndef SQLITE_OMIT_SUBQUERY 1738 int sqlite3CodeSubselect( 1739 Parse *pParse, /* Parsing context */ 1740 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1741 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1742 int isRowid /* If true, LHS of IN operator is a rowid */ 1743 ){ 1744 int jmpIfDynamic = -1; /* One-time test address */ 1745 int rReg = 0; /* Register storing resulting */ 1746 Vdbe *v = sqlite3GetVdbe(pParse); 1747 if( NEVER(v==0) ) return 0; 1748 sqlite3ExprCachePush(pParse); 1749 1750 /* This code must be run in its entirety every time it is encountered 1751 ** if any of the following is true: 1752 ** 1753 ** * The right-hand side is a correlated subquery 1754 ** * The right-hand side is an expression list containing variables 1755 ** * We are inside a trigger 1756 ** 1757 ** If all of the above are false, then we can run this code just once 1758 ** save the results, and reuse the same result on subsequent invocations. 1759 */ 1760 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1761 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1762 } 1763 1764 #ifndef SQLITE_OMIT_EXPLAIN 1765 if( pParse->explain==2 ){ 1766 char *zMsg = sqlite3MPrintf( 1767 pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ", 1768 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1769 ); 1770 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1771 } 1772 #endif 1773 1774 switch( pExpr->op ){ 1775 case TK_IN: { 1776 char affinity; /* Affinity of the LHS of the IN */ 1777 int addr; /* Address of OP_OpenEphemeral instruction */ 1778 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1779 KeyInfo *pKeyInfo = 0; /* Key information */ 1780 1781 affinity = sqlite3ExprAffinity(pLeft); 1782 1783 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1784 ** expression it is handled the same way. An ephemeral table is 1785 ** filled with single-field index keys representing the results 1786 ** from the SELECT or the <exprlist>. 1787 ** 1788 ** If the 'x' expression is a column value, or the SELECT... 1789 ** statement returns a column value, then the affinity of that 1790 ** column is used to build the index keys. If both 'x' and the 1791 ** SELECT... statement are columns, then numeric affinity is used 1792 ** if either column has NUMERIC or INTEGER affinity. If neither 1793 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1794 ** is used. 1795 */ 1796 pExpr->iTable = pParse->nTab++; 1797 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1798 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1799 1800 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1801 /* Case 1: expr IN (SELECT ...) 1802 ** 1803 ** Generate code to write the results of the select into the temporary 1804 ** table allocated and opened above. 1805 */ 1806 Select *pSelect = pExpr->x.pSelect; 1807 SelectDest dest; 1808 ExprList *pEList; 1809 1810 assert( !isRowid ); 1811 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1812 dest.affSdst = (u8)affinity; 1813 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1814 pSelect->iLimit = 0; 1815 testcase( pSelect->selFlags & SF_Distinct ); 1816 pSelect->selFlags &= ~SF_Distinct; 1817 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1818 if( sqlite3Select(pParse, pSelect, &dest) ){ 1819 sqlite3KeyInfoUnref(pKeyInfo); 1820 return 0; 1821 } 1822 pEList = pSelect->pEList; 1823 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1824 assert( pEList!=0 ); 1825 assert( pEList->nExpr>0 ); 1826 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1827 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1828 pEList->a[0].pExpr); 1829 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1830 /* Case 2: expr IN (exprlist) 1831 ** 1832 ** For each expression, build an index key from the evaluation and 1833 ** store it in the temporary table. If <expr> is a column, then use 1834 ** that columns affinity when building index keys. If <expr> is not 1835 ** a column, use numeric affinity. 1836 */ 1837 int i; 1838 ExprList *pList = pExpr->x.pList; 1839 struct ExprList_item *pItem; 1840 int r1, r2, r3; 1841 1842 if( !affinity ){ 1843 affinity = SQLITE_AFF_NONE; 1844 } 1845 if( pKeyInfo ){ 1846 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1847 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1848 } 1849 1850 /* Loop through each expression in <exprlist>. */ 1851 r1 = sqlite3GetTempReg(pParse); 1852 r2 = sqlite3GetTempReg(pParse); 1853 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1854 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1855 Expr *pE2 = pItem->pExpr; 1856 int iValToIns; 1857 1858 /* If the expression is not constant then we will need to 1859 ** disable the test that was generated above that makes sure 1860 ** this code only executes once. Because for a non-constant 1861 ** expression we need to rerun this code each time. 1862 */ 1863 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 1864 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 1865 jmpIfDynamic = -1; 1866 } 1867 1868 /* Evaluate the expression and insert it into the temp table */ 1869 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1870 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1871 }else{ 1872 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1873 if( isRowid ){ 1874 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1875 sqlite3VdbeCurrentAddr(v)+2); 1876 VdbeCoverage(v); 1877 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1878 }else{ 1879 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1880 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1881 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1882 } 1883 } 1884 } 1885 sqlite3ReleaseTempReg(pParse, r1); 1886 sqlite3ReleaseTempReg(pParse, r2); 1887 } 1888 if( pKeyInfo ){ 1889 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 1890 } 1891 break; 1892 } 1893 1894 case TK_EXISTS: 1895 case TK_SELECT: 1896 default: { 1897 /* If this has to be a scalar SELECT. Generate code to put the 1898 ** value of this select in a memory cell and record the number 1899 ** of the memory cell in iColumn. If this is an EXISTS, write 1900 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1901 ** and record that memory cell in iColumn. 1902 */ 1903 Select *pSel; /* SELECT statement to encode */ 1904 SelectDest dest; /* How to deal with SELECt result */ 1905 1906 testcase( pExpr->op==TK_EXISTS ); 1907 testcase( pExpr->op==TK_SELECT ); 1908 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1909 1910 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1911 pSel = pExpr->x.pSelect; 1912 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1913 if( pExpr->op==TK_SELECT ){ 1914 dest.eDest = SRT_Mem; 1915 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 1916 VdbeComment((v, "Init subquery result")); 1917 }else{ 1918 dest.eDest = SRT_Exists; 1919 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 1920 VdbeComment((v, "Init EXISTS result")); 1921 } 1922 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1923 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1924 &sqlite3IntTokens[1]); 1925 pSel->iLimit = 0; 1926 if( sqlite3Select(pParse, pSel, &dest) ){ 1927 return 0; 1928 } 1929 rReg = dest.iSDParm; 1930 ExprSetVVAProperty(pExpr, EP_NoReduce); 1931 break; 1932 } 1933 } 1934 1935 if( rHasNullFlag ){ 1936 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 1937 } 1938 1939 if( jmpIfDynamic>=0 ){ 1940 sqlite3VdbeJumpHere(v, jmpIfDynamic); 1941 } 1942 sqlite3ExprCachePop(pParse); 1943 1944 return rReg; 1945 } 1946 #endif /* SQLITE_OMIT_SUBQUERY */ 1947 1948 #ifndef SQLITE_OMIT_SUBQUERY 1949 /* 1950 ** Generate code for an IN expression. 1951 ** 1952 ** x IN (SELECT ...) 1953 ** x IN (value, value, ...) 1954 ** 1955 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1956 ** is an array of zero or more values. The expression is true if the LHS is 1957 ** contained within the RHS. The value of the expression is unknown (NULL) 1958 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1959 ** RHS contains one or more NULL values. 1960 ** 1961 ** This routine generates code that jumps to destIfFalse if the LHS is not 1962 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1963 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1964 ** within the RHS then fall through. 1965 */ 1966 static void sqlite3ExprCodeIN( 1967 Parse *pParse, /* Parsing and code generating context */ 1968 Expr *pExpr, /* The IN expression */ 1969 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1970 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1971 ){ 1972 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1973 char affinity; /* Comparison affinity to use */ 1974 int eType; /* Type of the RHS */ 1975 int r1; /* Temporary use register */ 1976 Vdbe *v; /* Statement under construction */ 1977 1978 /* Compute the RHS. After this step, the table with cursor 1979 ** pExpr->iTable will contains the values that make up the RHS. 1980 */ 1981 v = pParse->pVdbe; 1982 assert( v!=0 ); /* OOM detected prior to this routine */ 1983 VdbeNoopComment((v, "begin IN expr")); 1984 eType = sqlite3FindInIndex(pParse, pExpr, 1985 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 1986 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 1987 1988 /* Figure out the affinity to use to create a key from the results 1989 ** of the expression. affinityStr stores a static string suitable for 1990 ** P4 of OP_MakeRecord. 1991 */ 1992 affinity = comparisonAffinity(pExpr); 1993 1994 /* Code the LHS, the <expr> from "<expr> IN (...)". 1995 */ 1996 sqlite3ExprCachePush(pParse); 1997 r1 = sqlite3GetTempReg(pParse); 1998 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1999 2000 /* If sqlite3FindInIndex() did not find or create an index that is 2001 ** suitable for evaluating the IN operator, then evaluate using a 2002 ** sequence of comparisons. 2003 */ 2004 if( eType==IN_INDEX_NOOP ){ 2005 ExprList *pList = pExpr->x.pList; 2006 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2007 int labelOk = sqlite3VdbeMakeLabel(v); 2008 int r2, regToFree; 2009 int regCkNull = 0; 2010 int ii; 2011 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2012 if( destIfNull!=destIfFalse ){ 2013 regCkNull = sqlite3GetTempReg(pParse); 2014 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2015 } 2016 for(ii=0; ii<pList->nExpr; ii++){ 2017 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2018 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2019 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2020 } 2021 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2022 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2023 (void*)pColl, P4_COLLSEQ); 2024 VdbeCoverageIf(v, ii<pList->nExpr-1); 2025 VdbeCoverageIf(v, ii==pList->nExpr-1); 2026 sqlite3VdbeChangeP5(v, affinity); 2027 }else{ 2028 assert( destIfNull==destIfFalse ); 2029 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2030 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2031 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2032 } 2033 sqlite3ReleaseTempReg(pParse, regToFree); 2034 } 2035 if( regCkNull ){ 2036 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2037 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2038 } 2039 sqlite3VdbeResolveLabel(v, labelOk); 2040 sqlite3ReleaseTempReg(pParse, regCkNull); 2041 }else{ 2042 2043 /* If the LHS is NULL, then the result is either false or NULL depending 2044 ** on whether the RHS is empty or not, respectively. 2045 */ 2046 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2047 if( destIfNull==destIfFalse ){ 2048 /* Shortcut for the common case where the false and NULL outcomes are 2049 ** the same. */ 2050 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2051 }else{ 2052 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2053 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2054 VdbeCoverage(v); 2055 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 2056 sqlite3VdbeJumpHere(v, addr1); 2057 } 2058 } 2059 2060 if( eType==IN_INDEX_ROWID ){ 2061 /* In this case, the RHS is the ROWID of table b-tree 2062 */ 2063 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 2064 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2065 VdbeCoverage(v); 2066 }else{ 2067 /* In this case, the RHS is an index b-tree. 2068 */ 2069 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2070 2071 /* If the set membership test fails, then the result of the 2072 ** "x IN (...)" expression must be either 0 or NULL. If the set 2073 ** contains no NULL values, then the result is 0. If the set 2074 ** contains one or more NULL values, then the result of the 2075 ** expression is also NULL. 2076 */ 2077 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2078 if( rRhsHasNull==0 ){ 2079 /* This branch runs if it is known at compile time that the RHS 2080 ** cannot contain NULL values. This happens as the result 2081 ** of a "NOT NULL" constraint in the database schema. 2082 ** 2083 ** Also run this branch if NULL is equivalent to FALSE 2084 ** for this particular IN operator. 2085 */ 2086 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2087 VdbeCoverage(v); 2088 }else{ 2089 /* In this branch, the RHS of the IN might contain a NULL and 2090 ** the presence of a NULL on the RHS makes a difference in the 2091 ** outcome. 2092 */ 2093 int j1; 2094 2095 /* First check to see if the LHS is contained in the RHS. If so, 2096 ** then the answer is TRUE the presence of NULLs in the RHS does 2097 ** not matter. If the LHS is not contained in the RHS, then the 2098 ** answer is NULL if the RHS contains NULLs and the answer is 2099 ** FALSE if the RHS is NULL-free. 2100 */ 2101 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2102 VdbeCoverage(v); 2103 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2104 VdbeCoverage(v); 2105 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2106 sqlite3VdbeJumpHere(v, j1); 2107 } 2108 } 2109 } 2110 sqlite3ReleaseTempReg(pParse, r1); 2111 sqlite3ExprCachePop(pParse); 2112 VdbeComment((v, "end IN expr")); 2113 } 2114 #endif /* SQLITE_OMIT_SUBQUERY */ 2115 2116 /* 2117 ** Duplicate an 8-byte value 2118 */ 2119 static char *dup8bytes(Vdbe *v, const char *in){ 2120 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 2121 if( out ){ 2122 memcpy(out, in, 8); 2123 } 2124 return out; 2125 } 2126 2127 #ifndef SQLITE_OMIT_FLOATING_POINT 2128 /* 2129 ** Generate an instruction that will put the floating point 2130 ** value described by z[0..n-1] into register iMem. 2131 ** 2132 ** The z[] string will probably not be zero-terminated. But the 2133 ** z[n] character is guaranteed to be something that does not look 2134 ** like the continuation of the number. 2135 */ 2136 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2137 if( ALWAYS(z!=0) ){ 2138 double value; 2139 char *zV; 2140 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2141 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2142 if( negateFlag ) value = -value; 2143 zV = dup8bytes(v, (char*)&value); 2144 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2145 } 2146 } 2147 #endif 2148 2149 2150 /* 2151 ** Generate an instruction that will put the integer describe by 2152 ** text z[0..n-1] into register iMem. 2153 ** 2154 ** Expr.u.zToken is always UTF8 and zero-terminated. 2155 */ 2156 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2157 Vdbe *v = pParse->pVdbe; 2158 if( pExpr->flags & EP_IntValue ){ 2159 int i = pExpr->u.iValue; 2160 assert( i>=0 ); 2161 if( negFlag ) i = -i; 2162 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2163 }else{ 2164 int c; 2165 i64 value; 2166 const char *z = pExpr->u.zToken; 2167 assert( z!=0 ); 2168 c = sqlite3DecOrHexToI64(z, &value); 2169 if( c==0 || (c==2 && negFlag) ){ 2170 char *zV; 2171 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2172 zV = dup8bytes(v, (char*)&value); 2173 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2174 }else{ 2175 #ifdef SQLITE_OMIT_FLOATING_POINT 2176 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2177 #else 2178 #ifndef SQLITE_OMIT_HEX_INTEGER 2179 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2180 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2181 }else 2182 #endif 2183 { 2184 codeReal(v, z, negFlag, iMem); 2185 } 2186 #endif 2187 } 2188 } 2189 } 2190 2191 /* 2192 ** Clear a cache entry. 2193 */ 2194 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2195 if( p->tempReg ){ 2196 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2197 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2198 } 2199 p->tempReg = 0; 2200 } 2201 } 2202 2203 2204 /* 2205 ** Record in the column cache that a particular column from a 2206 ** particular table is stored in a particular register. 2207 */ 2208 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2209 int i; 2210 int minLru; 2211 int idxLru; 2212 struct yColCache *p; 2213 2214 assert( iReg>0 ); /* Register numbers are always positive */ 2215 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2216 2217 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2218 ** for testing only - to verify that SQLite always gets the same answer 2219 ** with and without the column cache. 2220 */ 2221 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2222 2223 /* First replace any existing entry. 2224 ** 2225 ** Actually, the way the column cache is currently used, we are guaranteed 2226 ** that the object will never already be in cache. Verify this guarantee. 2227 */ 2228 #ifndef NDEBUG 2229 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2230 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2231 } 2232 #endif 2233 2234 /* Find an empty slot and replace it */ 2235 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2236 if( p->iReg==0 ){ 2237 p->iLevel = pParse->iCacheLevel; 2238 p->iTable = iTab; 2239 p->iColumn = iCol; 2240 p->iReg = iReg; 2241 p->tempReg = 0; 2242 p->lru = pParse->iCacheCnt++; 2243 return; 2244 } 2245 } 2246 2247 /* Replace the last recently used */ 2248 minLru = 0x7fffffff; 2249 idxLru = -1; 2250 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2251 if( p->lru<minLru ){ 2252 idxLru = i; 2253 minLru = p->lru; 2254 } 2255 } 2256 if( ALWAYS(idxLru>=0) ){ 2257 p = &pParse->aColCache[idxLru]; 2258 p->iLevel = pParse->iCacheLevel; 2259 p->iTable = iTab; 2260 p->iColumn = iCol; 2261 p->iReg = iReg; 2262 p->tempReg = 0; 2263 p->lru = pParse->iCacheCnt++; 2264 return; 2265 } 2266 } 2267 2268 /* 2269 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2270 ** Purge the range of registers from the column cache. 2271 */ 2272 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2273 int i; 2274 int iLast = iReg + nReg - 1; 2275 struct yColCache *p; 2276 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2277 int r = p->iReg; 2278 if( r>=iReg && r<=iLast ){ 2279 cacheEntryClear(pParse, p); 2280 p->iReg = 0; 2281 } 2282 } 2283 } 2284 2285 /* 2286 ** Remember the current column cache context. Any new entries added 2287 ** added to the column cache after this call are removed when the 2288 ** corresponding pop occurs. 2289 */ 2290 void sqlite3ExprCachePush(Parse *pParse){ 2291 pParse->iCacheLevel++; 2292 #ifdef SQLITE_DEBUG 2293 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2294 printf("PUSH to %d\n", pParse->iCacheLevel); 2295 } 2296 #endif 2297 } 2298 2299 /* 2300 ** Remove from the column cache any entries that were added since the 2301 ** the previous sqlite3ExprCachePush operation. In other words, restore 2302 ** the cache to the state it was in prior the most recent Push. 2303 */ 2304 void sqlite3ExprCachePop(Parse *pParse){ 2305 int i; 2306 struct yColCache *p; 2307 assert( pParse->iCacheLevel>=1 ); 2308 pParse->iCacheLevel--; 2309 #ifdef SQLITE_DEBUG 2310 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2311 printf("POP to %d\n", pParse->iCacheLevel); 2312 } 2313 #endif 2314 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2315 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2316 cacheEntryClear(pParse, p); 2317 p->iReg = 0; 2318 } 2319 } 2320 } 2321 2322 /* 2323 ** When a cached column is reused, make sure that its register is 2324 ** no longer available as a temp register. ticket #3879: that same 2325 ** register might be in the cache in multiple places, so be sure to 2326 ** get them all. 2327 */ 2328 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2329 int i; 2330 struct yColCache *p; 2331 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2332 if( p->iReg==iReg ){ 2333 p->tempReg = 0; 2334 } 2335 } 2336 } 2337 2338 /* 2339 ** Generate code to extract the value of the iCol-th column of a table. 2340 */ 2341 void sqlite3ExprCodeGetColumnOfTable( 2342 Vdbe *v, /* The VDBE under construction */ 2343 Table *pTab, /* The table containing the value */ 2344 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2345 int iCol, /* Index of the column to extract */ 2346 int regOut /* Extract the value into this register */ 2347 ){ 2348 if( iCol<0 || iCol==pTab->iPKey ){ 2349 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2350 }else{ 2351 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2352 int x = iCol; 2353 if( !HasRowid(pTab) ){ 2354 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2355 } 2356 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2357 } 2358 if( iCol>=0 ){ 2359 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2360 } 2361 } 2362 2363 /* 2364 ** Generate code that will extract the iColumn-th column from 2365 ** table pTab and store the column value in a register. An effort 2366 ** is made to store the column value in register iReg, but this is 2367 ** not guaranteed. The location of the column value is returned. 2368 ** 2369 ** There must be an open cursor to pTab in iTable when this routine 2370 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2371 */ 2372 int sqlite3ExprCodeGetColumn( 2373 Parse *pParse, /* Parsing and code generating context */ 2374 Table *pTab, /* Description of the table we are reading from */ 2375 int iColumn, /* Index of the table column */ 2376 int iTable, /* The cursor pointing to the table */ 2377 int iReg, /* Store results here */ 2378 u8 p5 /* P5 value for OP_Column */ 2379 ){ 2380 Vdbe *v = pParse->pVdbe; 2381 int i; 2382 struct yColCache *p; 2383 2384 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2385 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2386 p->lru = pParse->iCacheCnt++; 2387 sqlite3ExprCachePinRegister(pParse, p->iReg); 2388 return p->iReg; 2389 } 2390 } 2391 assert( v!=0 ); 2392 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2393 if( p5 ){ 2394 sqlite3VdbeChangeP5(v, p5); 2395 }else{ 2396 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2397 } 2398 return iReg; 2399 } 2400 2401 /* 2402 ** Clear all column cache entries. 2403 */ 2404 void sqlite3ExprCacheClear(Parse *pParse){ 2405 int i; 2406 struct yColCache *p; 2407 2408 #if SQLITE_DEBUG 2409 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2410 printf("CLEAR\n"); 2411 } 2412 #endif 2413 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2414 if( p->iReg ){ 2415 cacheEntryClear(pParse, p); 2416 p->iReg = 0; 2417 } 2418 } 2419 } 2420 2421 /* 2422 ** Record the fact that an affinity change has occurred on iCount 2423 ** registers starting with iStart. 2424 */ 2425 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2426 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2427 } 2428 2429 /* 2430 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2431 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2432 */ 2433 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2434 int i; 2435 struct yColCache *p; 2436 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2437 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2438 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2439 int x = p->iReg; 2440 if( x>=iFrom && x<iFrom+nReg ){ 2441 p->iReg += iTo-iFrom; 2442 } 2443 } 2444 } 2445 2446 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2447 /* 2448 ** Return true if any register in the range iFrom..iTo (inclusive) 2449 ** is used as part of the column cache. 2450 ** 2451 ** This routine is used within assert() and testcase() macros only 2452 ** and does not appear in a normal build. 2453 */ 2454 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2455 int i; 2456 struct yColCache *p; 2457 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2458 int r = p->iReg; 2459 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2460 } 2461 return 0; 2462 } 2463 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2464 2465 /* 2466 ** Convert an expression node to a TK_REGISTER 2467 */ 2468 static void exprToRegister(Expr *p, int iReg){ 2469 p->op2 = p->op; 2470 p->op = TK_REGISTER; 2471 p->iTable = iReg; 2472 ExprClearProperty(p, EP_Skip); 2473 } 2474 2475 /* 2476 ** Generate code into the current Vdbe to evaluate the given 2477 ** expression. Attempt to store the results in register "target". 2478 ** Return the register where results are stored. 2479 ** 2480 ** With this routine, there is no guarantee that results will 2481 ** be stored in target. The result might be stored in some other 2482 ** register if it is convenient to do so. The calling function 2483 ** must check the return code and move the results to the desired 2484 ** register. 2485 */ 2486 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2487 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2488 int op; /* The opcode being coded */ 2489 int inReg = target; /* Results stored in register inReg */ 2490 int regFree1 = 0; /* If non-zero free this temporary register */ 2491 int regFree2 = 0; /* If non-zero free this temporary register */ 2492 int r1, r2, r3, r4; /* Various register numbers */ 2493 sqlite3 *db = pParse->db; /* The database connection */ 2494 Expr tempX; /* Temporary expression node */ 2495 2496 assert( target>0 && target<=pParse->nMem ); 2497 if( v==0 ){ 2498 assert( pParse->db->mallocFailed ); 2499 return 0; 2500 } 2501 2502 if( pExpr==0 ){ 2503 op = TK_NULL; 2504 }else{ 2505 op = pExpr->op; 2506 } 2507 switch( op ){ 2508 case TK_AGG_COLUMN: { 2509 AggInfo *pAggInfo = pExpr->pAggInfo; 2510 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2511 if( !pAggInfo->directMode ){ 2512 assert( pCol->iMem>0 ); 2513 inReg = pCol->iMem; 2514 break; 2515 }else if( pAggInfo->useSortingIdx ){ 2516 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2517 pCol->iSorterColumn, target); 2518 break; 2519 } 2520 /* Otherwise, fall thru into the TK_COLUMN case */ 2521 } 2522 case TK_COLUMN: { 2523 int iTab = pExpr->iTable; 2524 if( iTab<0 ){ 2525 if( pParse->ckBase>0 ){ 2526 /* Generating CHECK constraints or inserting into partial index */ 2527 inReg = pExpr->iColumn + pParse->ckBase; 2528 break; 2529 }else{ 2530 /* Deleting from a partial index */ 2531 iTab = pParse->iPartIdxTab; 2532 } 2533 } 2534 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2535 pExpr->iColumn, iTab, target, 2536 pExpr->op2); 2537 break; 2538 } 2539 case TK_INTEGER: { 2540 codeInteger(pParse, pExpr, 0, target); 2541 break; 2542 } 2543 #ifndef SQLITE_OMIT_FLOATING_POINT 2544 case TK_FLOAT: { 2545 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2546 codeReal(v, pExpr->u.zToken, 0, target); 2547 break; 2548 } 2549 #endif 2550 case TK_STRING: { 2551 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2552 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2553 break; 2554 } 2555 case TK_NULL: { 2556 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2557 break; 2558 } 2559 #ifndef SQLITE_OMIT_BLOB_LITERAL 2560 case TK_BLOB: { 2561 int n; 2562 const char *z; 2563 char *zBlob; 2564 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2565 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2566 assert( pExpr->u.zToken[1]=='\'' ); 2567 z = &pExpr->u.zToken[2]; 2568 n = sqlite3Strlen30(z) - 1; 2569 assert( z[n]=='\'' ); 2570 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2571 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2572 break; 2573 } 2574 #endif 2575 case TK_VARIABLE: { 2576 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2577 assert( pExpr->u.zToken!=0 ); 2578 assert( pExpr->u.zToken[0]!=0 ); 2579 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2580 if( pExpr->u.zToken[1]!=0 ){ 2581 assert( pExpr->u.zToken[0]=='?' 2582 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2583 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2584 } 2585 break; 2586 } 2587 case TK_REGISTER: { 2588 inReg = pExpr->iTable; 2589 break; 2590 } 2591 case TK_AS: { 2592 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2593 break; 2594 } 2595 #ifndef SQLITE_OMIT_CAST 2596 case TK_CAST: { 2597 /* Expressions of the form: CAST(pLeft AS token) */ 2598 int aff, to_op; 2599 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2600 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2601 aff = sqlite3AffinityType(pExpr->u.zToken, 0); 2602 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2603 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2604 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2605 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2606 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2607 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2608 testcase( to_op==OP_ToText ); 2609 testcase( to_op==OP_ToBlob ); 2610 testcase( to_op==OP_ToNumeric ); 2611 testcase( to_op==OP_ToInt ); 2612 testcase( to_op==OP_ToReal ); 2613 if( inReg!=target ){ 2614 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2615 inReg = target; 2616 } 2617 sqlite3VdbeAddOp1(v, to_op, inReg); 2618 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2619 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2620 break; 2621 } 2622 #endif /* SQLITE_OMIT_CAST */ 2623 case TK_LT: 2624 case TK_LE: 2625 case TK_GT: 2626 case TK_GE: 2627 case TK_NE: 2628 case TK_EQ: { 2629 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2630 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2631 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2632 r1, r2, inReg, SQLITE_STOREP2); 2633 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2634 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2635 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2636 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2637 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2638 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2639 testcase( regFree1==0 ); 2640 testcase( regFree2==0 ); 2641 break; 2642 } 2643 case TK_IS: 2644 case TK_ISNOT: { 2645 testcase( op==TK_IS ); 2646 testcase( op==TK_ISNOT ); 2647 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2648 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2649 op = (op==TK_IS) ? TK_EQ : TK_NE; 2650 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2651 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2652 VdbeCoverageIf(v, op==TK_EQ); 2653 VdbeCoverageIf(v, op==TK_NE); 2654 testcase( regFree1==0 ); 2655 testcase( regFree2==0 ); 2656 break; 2657 } 2658 case TK_AND: 2659 case TK_OR: 2660 case TK_PLUS: 2661 case TK_STAR: 2662 case TK_MINUS: 2663 case TK_REM: 2664 case TK_BITAND: 2665 case TK_BITOR: 2666 case TK_SLASH: 2667 case TK_LSHIFT: 2668 case TK_RSHIFT: 2669 case TK_CONCAT: { 2670 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2671 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2672 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2673 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2674 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2675 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2676 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2677 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2678 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2679 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2680 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2681 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2682 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2683 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2684 testcase( regFree1==0 ); 2685 testcase( regFree2==0 ); 2686 break; 2687 } 2688 case TK_UMINUS: { 2689 Expr *pLeft = pExpr->pLeft; 2690 assert( pLeft ); 2691 if( pLeft->op==TK_INTEGER ){ 2692 codeInteger(pParse, pLeft, 1, target); 2693 #ifndef SQLITE_OMIT_FLOATING_POINT 2694 }else if( pLeft->op==TK_FLOAT ){ 2695 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2696 codeReal(v, pLeft->u.zToken, 1, target); 2697 #endif 2698 }else{ 2699 tempX.op = TK_INTEGER; 2700 tempX.flags = EP_IntValue|EP_TokenOnly; 2701 tempX.u.iValue = 0; 2702 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2703 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2704 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2705 testcase( regFree2==0 ); 2706 } 2707 inReg = target; 2708 break; 2709 } 2710 case TK_BITNOT: 2711 case TK_NOT: { 2712 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2713 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2714 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2715 testcase( regFree1==0 ); 2716 inReg = target; 2717 sqlite3VdbeAddOp2(v, op, r1, inReg); 2718 break; 2719 } 2720 case TK_ISNULL: 2721 case TK_NOTNULL: { 2722 int addr; 2723 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2724 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2725 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2726 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2727 testcase( regFree1==0 ); 2728 addr = sqlite3VdbeAddOp1(v, op, r1); 2729 VdbeCoverageIf(v, op==TK_ISNULL); 2730 VdbeCoverageIf(v, op==TK_NOTNULL); 2731 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2732 sqlite3VdbeJumpHere(v, addr); 2733 break; 2734 } 2735 case TK_AGG_FUNCTION: { 2736 AggInfo *pInfo = pExpr->pAggInfo; 2737 if( pInfo==0 ){ 2738 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2739 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2740 }else{ 2741 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2742 } 2743 break; 2744 } 2745 case TK_FUNCTION: { 2746 ExprList *pFarg; /* List of function arguments */ 2747 int nFarg; /* Number of function arguments */ 2748 FuncDef *pDef; /* The function definition object */ 2749 int nId; /* Length of the function name in bytes */ 2750 const char *zId; /* The function name */ 2751 u32 constMask = 0; /* Mask of function arguments that are constant */ 2752 int i; /* Loop counter */ 2753 u8 enc = ENC(db); /* The text encoding used by this database */ 2754 CollSeq *pColl = 0; /* A collating sequence */ 2755 2756 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2757 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2758 pFarg = 0; 2759 }else{ 2760 pFarg = pExpr->x.pList; 2761 } 2762 nFarg = pFarg ? pFarg->nExpr : 0; 2763 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2764 zId = pExpr->u.zToken; 2765 nId = sqlite3Strlen30(zId); 2766 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2767 if( pDef==0 || pDef->xFunc==0 ){ 2768 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2769 break; 2770 } 2771 2772 /* Attempt a direct implementation of the built-in COALESCE() and 2773 ** IFNULL() functions. This avoids unnecessary evalation of 2774 ** arguments past the first non-NULL argument. 2775 */ 2776 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2777 int endCoalesce = sqlite3VdbeMakeLabel(v); 2778 assert( nFarg>=2 ); 2779 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2780 for(i=1; i<nFarg; i++){ 2781 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2782 VdbeCoverage(v); 2783 sqlite3ExprCacheRemove(pParse, target, 1); 2784 sqlite3ExprCachePush(pParse); 2785 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2786 sqlite3ExprCachePop(pParse); 2787 } 2788 sqlite3VdbeResolveLabel(v, endCoalesce); 2789 break; 2790 } 2791 2792 /* The UNLIKELY() function is a no-op. The result is the value 2793 ** of the first argument. 2794 */ 2795 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2796 assert( nFarg>=1 ); 2797 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2798 break; 2799 } 2800 2801 for(i=0; i<nFarg; i++){ 2802 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2803 testcase( i==31 ); 2804 constMask |= MASKBIT32(i); 2805 } 2806 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2807 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2808 } 2809 } 2810 if( pFarg ){ 2811 if( constMask ){ 2812 r1 = pParse->nMem+1; 2813 pParse->nMem += nFarg; 2814 }else{ 2815 r1 = sqlite3GetTempRange(pParse, nFarg); 2816 } 2817 2818 /* For length() and typeof() functions with a column argument, 2819 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2820 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2821 ** loading. 2822 */ 2823 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2824 u8 exprOp; 2825 assert( nFarg==1 ); 2826 assert( pFarg->a[0].pExpr!=0 ); 2827 exprOp = pFarg->a[0].pExpr->op; 2828 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2829 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2830 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2831 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2832 pFarg->a[0].pExpr->op2 = 2833 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2834 } 2835 } 2836 2837 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2838 sqlite3ExprCodeExprList(pParse, pFarg, r1, 2839 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2840 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 2841 }else{ 2842 r1 = 0; 2843 } 2844 #ifndef SQLITE_OMIT_VIRTUALTABLE 2845 /* Possibly overload the function if the first argument is 2846 ** a virtual table column. 2847 ** 2848 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2849 ** second argument, not the first, as the argument to test to 2850 ** see if it is a column in a virtual table. This is done because 2851 ** the left operand of infix functions (the operand we want to 2852 ** control overloading) ends up as the second argument to the 2853 ** function. The expression "A glob B" is equivalent to 2854 ** "glob(B,A). We want to use the A in "A glob B" to test 2855 ** for function overloading. But we use the B term in "glob(B,A)". 2856 */ 2857 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2858 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2859 }else if( nFarg>0 ){ 2860 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2861 } 2862 #endif 2863 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2864 if( !pColl ) pColl = db->pDfltColl; 2865 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2866 } 2867 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2868 (char*)pDef, P4_FUNCDEF); 2869 sqlite3VdbeChangeP5(v, (u8)nFarg); 2870 if( nFarg && constMask==0 ){ 2871 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2872 } 2873 break; 2874 } 2875 #ifndef SQLITE_OMIT_SUBQUERY 2876 case TK_EXISTS: 2877 case TK_SELECT: { 2878 testcase( op==TK_EXISTS ); 2879 testcase( op==TK_SELECT ); 2880 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2881 break; 2882 } 2883 case TK_IN: { 2884 int destIfFalse = sqlite3VdbeMakeLabel(v); 2885 int destIfNull = sqlite3VdbeMakeLabel(v); 2886 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2887 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2888 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2889 sqlite3VdbeResolveLabel(v, destIfFalse); 2890 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2891 sqlite3VdbeResolveLabel(v, destIfNull); 2892 break; 2893 } 2894 #endif /* SQLITE_OMIT_SUBQUERY */ 2895 2896 2897 /* 2898 ** x BETWEEN y AND z 2899 ** 2900 ** This is equivalent to 2901 ** 2902 ** x>=y AND x<=z 2903 ** 2904 ** X is stored in pExpr->pLeft. 2905 ** Y is stored in pExpr->pList->a[0].pExpr. 2906 ** Z is stored in pExpr->pList->a[1].pExpr. 2907 */ 2908 case TK_BETWEEN: { 2909 Expr *pLeft = pExpr->pLeft; 2910 struct ExprList_item *pLItem = pExpr->x.pList->a; 2911 Expr *pRight = pLItem->pExpr; 2912 2913 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2914 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2915 testcase( regFree1==0 ); 2916 testcase( regFree2==0 ); 2917 r3 = sqlite3GetTempReg(pParse); 2918 r4 = sqlite3GetTempReg(pParse); 2919 codeCompare(pParse, pLeft, pRight, OP_Ge, 2920 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 2921 pLItem++; 2922 pRight = pLItem->pExpr; 2923 sqlite3ReleaseTempReg(pParse, regFree2); 2924 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2925 testcase( regFree2==0 ); 2926 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2927 VdbeCoverage(v); 2928 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2929 sqlite3ReleaseTempReg(pParse, r3); 2930 sqlite3ReleaseTempReg(pParse, r4); 2931 break; 2932 } 2933 case TK_COLLATE: 2934 case TK_UPLUS: { 2935 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2936 break; 2937 } 2938 2939 case TK_TRIGGER: { 2940 /* If the opcode is TK_TRIGGER, then the expression is a reference 2941 ** to a column in the new.* or old.* pseudo-tables available to 2942 ** trigger programs. In this case Expr.iTable is set to 1 for the 2943 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2944 ** is set to the column of the pseudo-table to read, or to -1 to 2945 ** read the rowid field. 2946 ** 2947 ** The expression is implemented using an OP_Param opcode. The p1 2948 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2949 ** to reference another column of the old.* pseudo-table, where 2950 ** i is the index of the column. For a new.rowid reference, p1 is 2951 ** set to (n+1), where n is the number of columns in each pseudo-table. 2952 ** For a reference to any other column in the new.* pseudo-table, p1 2953 ** is set to (n+2+i), where n and i are as defined previously. For 2954 ** example, if the table on which triggers are being fired is 2955 ** declared as: 2956 ** 2957 ** CREATE TABLE t1(a, b); 2958 ** 2959 ** Then p1 is interpreted as follows: 2960 ** 2961 ** p1==0 -> old.rowid p1==3 -> new.rowid 2962 ** p1==1 -> old.a p1==4 -> new.a 2963 ** p1==2 -> old.b p1==5 -> new.b 2964 */ 2965 Table *pTab = pExpr->pTab; 2966 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2967 2968 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2969 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2970 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2971 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2972 2973 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2974 VdbeComment((v, "%s.%s -> $%d", 2975 (pExpr->iTable ? "new" : "old"), 2976 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2977 target 2978 )); 2979 2980 #ifndef SQLITE_OMIT_FLOATING_POINT 2981 /* If the column has REAL affinity, it may currently be stored as an 2982 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2983 if( pExpr->iColumn>=0 2984 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2985 ){ 2986 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2987 } 2988 #endif 2989 break; 2990 } 2991 2992 2993 /* 2994 ** Form A: 2995 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2996 ** 2997 ** Form B: 2998 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2999 ** 3000 ** Form A is can be transformed into the equivalent form B as follows: 3001 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3002 ** WHEN x=eN THEN rN ELSE y END 3003 ** 3004 ** X (if it exists) is in pExpr->pLeft. 3005 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3006 ** odd. The Y is also optional. If the number of elements in x.pList 3007 ** is even, then Y is omitted and the "otherwise" result is NULL. 3008 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3009 ** 3010 ** The result of the expression is the Ri for the first matching Ei, 3011 ** or if there is no matching Ei, the ELSE term Y, or if there is 3012 ** no ELSE term, NULL. 3013 */ 3014 default: assert( op==TK_CASE ); { 3015 int endLabel; /* GOTO label for end of CASE stmt */ 3016 int nextCase; /* GOTO label for next WHEN clause */ 3017 int nExpr; /* 2x number of WHEN terms */ 3018 int i; /* Loop counter */ 3019 ExprList *pEList; /* List of WHEN terms */ 3020 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3021 Expr opCompare; /* The X==Ei expression */ 3022 Expr *pX; /* The X expression */ 3023 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3024 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3025 3026 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3027 assert(pExpr->x.pList->nExpr > 0); 3028 pEList = pExpr->x.pList; 3029 aListelem = pEList->a; 3030 nExpr = pEList->nExpr; 3031 endLabel = sqlite3VdbeMakeLabel(v); 3032 if( (pX = pExpr->pLeft)!=0 ){ 3033 tempX = *pX; 3034 testcase( pX->op==TK_COLUMN ); 3035 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3036 testcase( regFree1==0 ); 3037 opCompare.op = TK_EQ; 3038 opCompare.pLeft = &tempX; 3039 pTest = &opCompare; 3040 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3041 ** The value in regFree1 might get SCopy-ed into the file result. 3042 ** So make sure that the regFree1 register is not reused for other 3043 ** purposes and possibly overwritten. */ 3044 regFree1 = 0; 3045 } 3046 for(i=0; i<nExpr-1; i=i+2){ 3047 sqlite3ExprCachePush(pParse); 3048 if( pX ){ 3049 assert( pTest!=0 ); 3050 opCompare.pRight = aListelem[i].pExpr; 3051 }else{ 3052 pTest = aListelem[i].pExpr; 3053 } 3054 nextCase = sqlite3VdbeMakeLabel(v); 3055 testcase( pTest->op==TK_COLUMN ); 3056 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3057 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3058 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3059 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 3060 sqlite3ExprCachePop(pParse); 3061 sqlite3VdbeResolveLabel(v, nextCase); 3062 } 3063 if( (nExpr&1)!=0 ){ 3064 sqlite3ExprCachePush(pParse); 3065 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3066 sqlite3ExprCachePop(pParse); 3067 }else{ 3068 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3069 } 3070 assert( db->mallocFailed || pParse->nErr>0 3071 || pParse->iCacheLevel==iCacheLevel ); 3072 sqlite3VdbeResolveLabel(v, endLabel); 3073 break; 3074 } 3075 #ifndef SQLITE_OMIT_TRIGGER 3076 case TK_RAISE: { 3077 assert( pExpr->affinity==OE_Rollback 3078 || pExpr->affinity==OE_Abort 3079 || pExpr->affinity==OE_Fail 3080 || pExpr->affinity==OE_Ignore 3081 ); 3082 if( !pParse->pTriggerTab ){ 3083 sqlite3ErrorMsg(pParse, 3084 "RAISE() may only be used within a trigger-program"); 3085 return 0; 3086 } 3087 if( pExpr->affinity==OE_Abort ){ 3088 sqlite3MayAbort(pParse); 3089 } 3090 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3091 if( pExpr->affinity==OE_Ignore ){ 3092 sqlite3VdbeAddOp4( 3093 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3094 VdbeCoverage(v); 3095 }else{ 3096 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3097 pExpr->affinity, pExpr->u.zToken, 0, 0); 3098 } 3099 3100 break; 3101 } 3102 #endif 3103 } 3104 sqlite3ReleaseTempReg(pParse, regFree1); 3105 sqlite3ReleaseTempReg(pParse, regFree2); 3106 return inReg; 3107 } 3108 3109 /* 3110 ** Factor out the code of the given expression to initialization time. 3111 */ 3112 void sqlite3ExprCodeAtInit( 3113 Parse *pParse, /* Parsing context */ 3114 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3115 int regDest, /* Store the value in this register */ 3116 u8 reusable /* True if this expression is reusable */ 3117 ){ 3118 ExprList *p; 3119 assert( ConstFactorOk(pParse) ); 3120 p = pParse->pConstExpr; 3121 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3122 p = sqlite3ExprListAppend(pParse, p, pExpr); 3123 if( p ){ 3124 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3125 pItem->u.iConstExprReg = regDest; 3126 pItem->reusable = reusable; 3127 } 3128 pParse->pConstExpr = p; 3129 } 3130 3131 /* 3132 ** Generate code to evaluate an expression and store the results 3133 ** into a register. Return the register number where the results 3134 ** are stored. 3135 ** 3136 ** If the register is a temporary register that can be deallocated, 3137 ** then write its number into *pReg. If the result register is not 3138 ** a temporary, then set *pReg to zero. 3139 ** 3140 ** If pExpr is a constant, then this routine might generate this 3141 ** code to fill the register in the initialization section of the 3142 ** VDBE program, in order to factor it out of the evaluation loop. 3143 */ 3144 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3145 int r2; 3146 pExpr = sqlite3ExprSkipCollate(pExpr); 3147 if( ConstFactorOk(pParse) 3148 && pExpr->op!=TK_REGISTER 3149 && sqlite3ExprIsConstantNotJoin(pExpr) 3150 ){ 3151 ExprList *p = pParse->pConstExpr; 3152 int i; 3153 *pReg = 0; 3154 if( p ){ 3155 struct ExprList_item *pItem; 3156 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3157 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3158 return pItem->u.iConstExprReg; 3159 } 3160 } 3161 } 3162 r2 = ++pParse->nMem; 3163 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3164 }else{ 3165 int r1 = sqlite3GetTempReg(pParse); 3166 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3167 if( r2==r1 ){ 3168 *pReg = r1; 3169 }else{ 3170 sqlite3ReleaseTempReg(pParse, r1); 3171 *pReg = 0; 3172 } 3173 } 3174 return r2; 3175 } 3176 3177 /* 3178 ** Generate code that will evaluate expression pExpr and store the 3179 ** results in register target. The results are guaranteed to appear 3180 ** in register target. 3181 */ 3182 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3183 int inReg; 3184 3185 assert( target>0 && target<=pParse->nMem ); 3186 if( pExpr && pExpr->op==TK_REGISTER ){ 3187 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3188 }else{ 3189 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3190 assert( pParse->pVdbe || pParse->db->mallocFailed ); 3191 if( inReg!=target && pParse->pVdbe ){ 3192 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3193 } 3194 } 3195 } 3196 3197 /* 3198 ** Generate code that will evaluate expression pExpr and store the 3199 ** results in register target. The results are guaranteed to appear 3200 ** in register target. If the expression is constant, then this routine 3201 ** might choose to code the expression at initialization time. 3202 */ 3203 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3204 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3205 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3206 }else{ 3207 sqlite3ExprCode(pParse, pExpr, target); 3208 } 3209 } 3210 3211 /* 3212 ** Generate code that evalutes the given expression and puts the result 3213 ** in register target. 3214 ** 3215 ** Also make a copy of the expression results into another "cache" register 3216 ** and modify the expression so that the next time it is evaluated, 3217 ** the result is a copy of the cache register. 3218 ** 3219 ** This routine is used for expressions that are used multiple 3220 ** times. They are evaluated once and the results of the expression 3221 ** are reused. 3222 */ 3223 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3224 Vdbe *v = pParse->pVdbe; 3225 int iMem; 3226 3227 assert( target>0 ); 3228 assert( pExpr->op!=TK_REGISTER ); 3229 sqlite3ExprCode(pParse, pExpr, target); 3230 iMem = ++pParse->nMem; 3231 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3232 exprToRegister(pExpr, iMem); 3233 } 3234 3235 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3236 /* 3237 ** Generate a human-readable explanation of an expression tree. 3238 */ 3239 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ 3240 int op; /* The opcode being coded */ 3241 const char *zBinOp = 0; /* Binary operator */ 3242 const char *zUniOp = 0; /* Unary operator */ 3243 if( pExpr==0 ){ 3244 op = TK_NULL; 3245 }else{ 3246 op = pExpr->op; 3247 } 3248 switch( op ){ 3249 case TK_AGG_COLUMN: { 3250 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", 3251 pExpr->iTable, pExpr->iColumn); 3252 break; 3253 } 3254 case TK_COLUMN: { 3255 if( pExpr->iTable<0 ){ 3256 /* This only happens when coding check constraints */ 3257 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); 3258 }else{ 3259 sqlite3ExplainPrintf(pOut, "{%d:%d}", 3260 pExpr->iTable, pExpr->iColumn); 3261 } 3262 break; 3263 } 3264 case TK_INTEGER: { 3265 if( pExpr->flags & EP_IntValue ){ 3266 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); 3267 }else{ 3268 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); 3269 } 3270 break; 3271 } 3272 #ifndef SQLITE_OMIT_FLOATING_POINT 3273 case TK_FLOAT: { 3274 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3275 break; 3276 } 3277 #endif 3278 case TK_STRING: { 3279 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); 3280 break; 3281 } 3282 case TK_NULL: { 3283 sqlite3ExplainPrintf(pOut,"NULL"); 3284 break; 3285 } 3286 #ifndef SQLITE_OMIT_BLOB_LITERAL 3287 case TK_BLOB: { 3288 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3289 break; 3290 } 3291 #endif 3292 case TK_VARIABLE: { 3293 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", 3294 pExpr->u.zToken, pExpr->iColumn); 3295 break; 3296 } 3297 case TK_REGISTER: { 3298 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); 3299 break; 3300 } 3301 case TK_AS: { 3302 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3303 break; 3304 } 3305 #ifndef SQLITE_OMIT_CAST 3306 case TK_CAST: { 3307 /* Expressions of the form: CAST(pLeft AS token) */ 3308 const char *zAff = "unk"; 3309 switch( sqlite3AffinityType(pExpr->u.zToken, 0) ){ 3310 case SQLITE_AFF_TEXT: zAff = "TEXT"; break; 3311 case SQLITE_AFF_NONE: zAff = "NONE"; break; 3312 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; 3313 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; 3314 case SQLITE_AFF_REAL: zAff = "REAL"; break; 3315 } 3316 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); 3317 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3318 sqlite3ExplainPrintf(pOut, ")"); 3319 break; 3320 } 3321 #endif /* SQLITE_OMIT_CAST */ 3322 case TK_LT: zBinOp = "LT"; break; 3323 case TK_LE: zBinOp = "LE"; break; 3324 case TK_GT: zBinOp = "GT"; break; 3325 case TK_GE: zBinOp = "GE"; break; 3326 case TK_NE: zBinOp = "NE"; break; 3327 case TK_EQ: zBinOp = "EQ"; break; 3328 case TK_IS: zBinOp = "IS"; break; 3329 case TK_ISNOT: zBinOp = "ISNOT"; break; 3330 case TK_AND: zBinOp = "AND"; break; 3331 case TK_OR: zBinOp = "OR"; break; 3332 case TK_PLUS: zBinOp = "ADD"; break; 3333 case TK_STAR: zBinOp = "MUL"; break; 3334 case TK_MINUS: zBinOp = "SUB"; break; 3335 case TK_REM: zBinOp = "REM"; break; 3336 case TK_BITAND: zBinOp = "BITAND"; break; 3337 case TK_BITOR: zBinOp = "BITOR"; break; 3338 case TK_SLASH: zBinOp = "DIV"; break; 3339 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3340 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3341 case TK_CONCAT: zBinOp = "CONCAT"; break; 3342 3343 case TK_UMINUS: zUniOp = "UMINUS"; break; 3344 case TK_UPLUS: zUniOp = "UPLUS"; break; 3345 case TK_BITNOT: zUniOp = "BITNOT"; break; 3346 case TK_NOT: zUniOp = "NOT"; break; 3347 case TK_ISNULL: zUniOp = "ISNULL"; break; 3348 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3349 3350 case TK_COLLATE: { 3351 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3352 sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken); 3353 break; 3354 } 3355 3356 case TK_AGG_FUNCTION: 3357 case TK_FUNCTION: { 3358 ExprList *pFarg; /* List of function arguments */ 3359 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3360 pFarg = 0; 3361 }else{ 3362 pFarg = pExpr->x.pList; 3363 } 3364 if( op==TK_AGG_FUNCTION ){ 3365 sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(", 3366 pExpr->op2, pExpr->u.zToken); 3367 }else{ 3368 sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken); 3369 } 3370 if( pFarg ){ 3371 sqlite3ExplainExprList(pOut, pFarg); 3372 } 3373 sqlite3ExplainPrintf(pOut, ")"); 3374 break; 3375 } 3376 #ifndef SQLITE_OMIT_SUBQUERY 3377 case TK_EXISTS: { 3378 sqlite3ExplainPrintf(pOut, "EXISTS("); 3379 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3380 sqlite3ExplainPrintf(pOut,")"); 3381 break; 3382 } 3383 case TK_SELECT: { 3384 sqlite3ExplainPrintf(pOut, "("); 3385 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3386 sqlite3ExplainPrintf(pOut, ")"); 3387 break; 3388 } 3389 case TK_IN: { 3390 sqlite3ExplainPrintf(pOut, "IN("); 3391 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3392 sqlite3ExplainPrintf(pOut, ","); 3393 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3394 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3395 }else{ 3396 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3397 } 3398 sqlite3ExplainPrintf(pOut, ")"); 3399 break; 3400 } 3401 #endif /* SQLITE_OMIT_SUBQUERY */ 3402 3403 /* 3404 ** x BETWEEN y AND z 3405 ** 3406 ** This is equivalent to 3407 ** 3408 ** x>=y AND x<=z 3409 ** 3410 ** X is stored in pExpr->pLeft. 3411 ** Y is stored in pExpr->pList->a[0].pExpr. 3412 ** Z is stored in pExpr->pList->a[1].pExpr. 3413 */ 3414 case TK_BETWEEN: { 3415 Expr *pX = pExpr->pLeft; 3416 Expr *pY = pExpr->x.pList->a[0].pExpr; 3417 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3418 sqlite3ExplainPrintf(pOut, "BETWEEN("); 3419 sqlite3ExplainExpr(pOut, pX); 3420 sqlite3ExplainPrintf(pOut, ","); 3421 sqlite3ExplainExpr(pOut, pY); 3422 sqlite3ExplainPrintf(pOut, ","); 3423 sqlite3ExplainExpr(pOut, pZ); 3424 sqlite3ExplainPrintf(pOut, ")"); 3425 break; 3426 } 3427 case TK_TRIGGER: { 3428 /* If the opcode is TK_TRIGGER, then the expression is a reference 3429 ** to a column in the new.* or old.* pseudo-tables available to 3430 ** trigger programs. In this case Expr.iTable is set to 1 for the 3431 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3432 ** is set to the column of the pseudo-table to read, or to -1 to 3433 ** read the rowid field. 3434 */ 3435 sqlite3ExplainPrintf(pOut, "%s(%d)", 3436 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3437 break; 3438 } 3439 case TK_CASE: { 3440 sqlite3ExplainPrintf(pOut, "CASE("); 3441 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3442 sqlite3ExplainPrintf(pOut, ","); 3443 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3444 break; 3445 } 3446 #ifndef SQLITE_OMIT_TRIGGER 3447 case TK_RAISE: { 3448 const char *zType = "unk"; 3449 switch( pExpr->affinity ){ 3450 case OE_Rollback: zType = "rollback"; break; 3451 case OE_Abort: zType = "abort"; break; 3452 case OE_Fail: zType = "fail"; break; 3453 case OE_Ignore: zType = "ignore"; break; 3454 } 3455 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); 3456 break; 3457 } 3458 #endif 3459 } 3460 if( zBinOp ){ 3461 sqlite3ExplainPrintf(pOut,"%s(", zBinOp); 3462 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3463 sqlite3ExplainPrintf(pOut,","); 3464 sqlite3ExplainExpr(pOut, pExpr->pRight); 3465 sqlite3ExplainPrintf(pOut,")"); 3466 }else if( zUniOp ){ 3467 sqlite3ExplainPrintf(pOut,"%s(", zUniOp); 3468 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3469 sqlite3ExplainPrintf(pOut,")"); 3470 } 3471 } 3472 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 3473 3474 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3475 /* 3476 ** Generate a human-readable explanation of an expression list. 3477 */ 3478 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ 3479 int i; 3480 if( pList==0 || pList->nExpr==0 ){ 3481 sqlite3ExplainPrintf(pOut, "(empty-list)"); 3482 return; 3483 }else if( pList->nExpr==1 ){ 3484 sqlite3ExplainExpr(pOut, pList->a[0].pExpr); 3485 }else{ 3486 sqlite3ExplainPush(pOut); 3487 for(i=0; i<pList->nExpr; i++){ 3488 sqlite3ExplainPrintf(pOut, "item[%d] = ", i); 3489 sqlite3ExplainPush(pOut); 3490 sqlite3ExplainExpr(pOut, pList->a[i].pExpr); 3491 sqlite3ExplainPop(pOut); 3492 if( pList->a[i].zName ){ 3493 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); 3494 } 3495 if( pList->a[i].bSpanIsTab ){ 3496 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); 3497 } 3498 if( i<pList->nExpr-1 ){ 3499 sqlite3ExplainNL(pOut); 3500 } 3501 } 3502 sqlite3ExplainPop(pOut); 3503 } 3504 } 3505 #endif /* SQLITE_DEBUG */ 3506 3507 /* 3508 ** Generate code that pushes the value of every element of the given 3509 ** expression list into a sequence of registers beginning at target. 3510 ** 3511 ** Return the number of elements evaluated. 3512 ** 3513 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3514 ** filled using OP_SCopy. OP_Copy must be used instead. 3515 ** 3516 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3517 ** factored out into initialization code. 3518 */ 3519 int sqlite3ExprCodeExprList( 3520 Parse *pParse, /* Parsing context */ 3521 ExprList *pList, /* The expression list to be coded */ 3522 int target, /* Where to write results */ 3523 u8 flags /* SQLITE_ECEL_* flags */ 3524 ){ 3525 struct ExprList_item *pItem; 3526 int i, n; 3527 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3528 assert( pList!=0 ); 3529 assert( target>0 ); 3530 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3531 n = pList->nExpr; 3532 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3533 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3534 Expr *pExpr = pItem->pExpr; 3535 if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3536 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3537 }else{ 3538 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3539 if( inReg!=target+i ){ 3540 VdbeOp *pOp; 3541 Vdbe *v = pParse->pVdbe; 3542 if( copyOp==OP_Copy 3543 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3544 && pOp->p1+pOp->p3+1==inReg 3545 && pOp->p2+pOp->p3+1==target+i 3546 ){ 3547 pOp->p3++; 3548 }else{ 3549 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3550 } 3551 } 3552 } 3553 } 3554 return n; 3555 } 3556 3557 /* 3558 ** Generate code for a BETWEEN operator. 3559 ** 3560 ** x BETWEEN y AND z 3561 ** 3562 ** The above is equivalent to 3563 ** 3564 ** x>=y AND x<=z 3565 ** 3566 ** Code it as such, taking care to do the common subexpression 3567 ** elementation of x. 3568 */ 3569 static void exprCodeBetween( 3570 Parse *pParse, /* Parsing and code generating context */ 3571 Expr *pExpr, /* The BETWEEN expression */ 3572 int dest, /* Jump here if the jump is taken */ 3573 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3574 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3575 ){ 3576 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3577 Expr compLeft; /* The x>=y term */ 3578 Expr compRight; /* The x<=z term */ 3579 Expr exprX; /* The x subexpression */ 3580 int regFree1 = 0; /* Temporary use register */ 3581 3582 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3583 exprX = *pExpr->pLeft; 3584 exprAnd.op = TK_AND; 3585 exprAnd.pLeft = &compLeft; 3586 exprAnd.pRight = &compRight; 3587 compLeft.op = TK_GE; 3588 compLeft.pLeft = &exprX; 3589 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3590 compRight.op = TK_LE; 3591 compRight.pLeft = &exprX; 3592 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3593 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3594 if( jumpIfTrue ){ 3595 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3596 }else{ 3597 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3598 } 3599 sqlite3ReleaseTempReg(pParse, regFree1); 3600 3601 /* Ensure adequate test coverage */ 3602 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3603 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3604 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3605 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3606 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3607 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3608 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3609 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3610 } 3611 3612 /* 3613 ** Generate code for a boolean expression such that a jump is made 3614 ** to the label "dest" if the expression is true but execution 3615 ** continues straight thru if the expression is false. 3616 ** 3617 ** If the expression evaluates to NULL (neither true nor false), then 3618 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3619 ** 3620 ** This code depends on the fact that certain token values (ex: TK_EQ) 3621 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3622 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3623 ** the make process cause these values to align. Assert()s in the code 3624 ** below verify that the numbers are aligned correctly. 3625 */ 3626 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3627 Vdbe *v = pParse->pVdbe; 3628 int op = 0; 3629 int regFree1 = 0; 3630 int regFree2 = 0; 3631 int r1, r2; 3632 3633 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3634 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3635 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3636 op = pExpr->op; 3637 switch( op ){ 3638 case TK_AND: { 3639 int d2 = sqlite3VdbeMakeLabel(v); 3640 testcase( jumpIfNull==0 ); 3641 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3642 sqlite3ExprCachePush(pParse); 3643 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3644 sqlite3VdbeResolveLabel(v, d2); 3645 sqlite3ExprCachePop(pParse); 3646 break; 3647 } 3648 case TK_OR: { 3649 testcase( jumpIfNull==0 ); 3650 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3651 sqlite3ExprCachePush(pParse); 3652 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3653 sqlite3ExprCachePop(pParse); 3654 break; 3655 } 3656 case TK_NOT: { 3657 testcase( jumpIfNull==0 ); 3658 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3659 break; 3660 } 3661 case TK_LT: 3662 case TK_LE: 3663 case TK_GT: 3664 case TK_GE: 3665 case TK_NE: 3666 case TK_EQ: { 3667 testcase( jumpIfNull==0 ); 3668 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3669 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3670 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3671 r1, r2, dest, jumpIfNull); 3672 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3673 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3674 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3675 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3676 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3677 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3678 testcase( regFree1==0 ); 3679 testcase( regFree2==0 ); 3680 break; 3681 } 3682 case TK_IS: 3683 case TK_ISNOT: { 3684 testcase( op==TK_IS ); 3685 testcase( op==TK_ISNOT ); 3686 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3687 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3688 op = (op==TK_IS) ? TK_EQ : TK_NE; 3689 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3690 r1, r2, dest, SQLITE_NULLEQ); 3691 VdbeCoverageIf(v, op==TK_EQ); 3692 VdbeCoverageIf(v, op==TK_NE); 3693 testcase( regFree1==0 ); 3694 testcase( regFree2==0 ); 3695 break; 3696 } 3697 case TK_ISNULL: 3698 case TK_NOTNULL: { 3699 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3700 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3701 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3702 sqlite3VdbeAddOp2(v, op, r1, dest); 3703 VdbeCoverageIf(v, op==TK_ISNULL); 3704 VdbeCoverageIf(v, op==TK_NOTNULL); 3705 testcase( regFree1==0 ); 3706 break; 3707 } 3708 case TK_BETWEEN: { 3709 testcase( jumpIfNull==0 ); 3710 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3711 break; 3712 } 3713 #ifndef SQLITE_OMIT_SUBQUERY 3714 case TK_IN: { 3715 int destIfFalse = sqlite3VdbeMakeLabel(v); 3716 int destIfNull = jumpIfNull ? dest : destIfFalse; 3717 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3718 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3719 sqlite3VdbeResolveLabel(v, destIfFalse); 3720 break; 3721 } 3722 #endif 3723 default: { 3724 if( exprAlwaysTrue(pExpr) ){ 3725 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3726 }else if( exprAlwaysFalse(pExpr) ){ 3727 /* No-op */ 3728 }else{ 3729 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3730 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3731 VdbeCoverage(v); 3732 testcase( regFree1==0 ); 3733 testcase( jumpIfNull==0 ); 3734 } 3735 break; 3736 } 3737 } 3738 sqlite3ReleaseTempReg(pParse, regFree1); 3739 sqlite3ReleaseTempReg(pParse, regFree2); 3740 } 3741 3742 /* 3743 ** Generate code for a boolean expression such that a jump is made 3744 ** to the label "dest" if the expression is false but execution 3745 ** continues straight thru if the expression is true. 3746 ** 3747 ** If the expression evaluates to NULL (neither true nor false) then 3748 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3749 ** is 0. 3750 */ 3751 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3752 Vdbe *v = pParse->pVdbe; 3753 int op = 0; 3754 int regFree1 = 0; 3755 int regFree2 = 0; 3756 int r1, r2; 3757 3758 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3759 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3760 if( pExpr==0 ) return; 3761 3762 /* The value of pExpr->op and op are related as follows: 3763 ** 3764 ** pExpr->op op 3765 ** --------- ---------- 3766 ** TK_ISNULL OP_NotNull 3767 ** TK_NOTNULL OP_IsNull 3768 ** TK_NE OP_Eq 3769 ** TK_EQ OP_Ne 3770 ** TK_GT OP_Le 3771 ** TK_LE OP_Gt 3772 ** TK_GE OP_Lt 3773 ** TK_LT OP_Ge 3774 ** 3775 ** For other values of pExpr->op, op is undefined and unused. 3776 ** The value of TK_ and OP_ constants are arranged such that we 3777 ** can compute the mapping above using the following expression. 3778 ** Assert()s verify that the computation is correct. 3779 */ 3780 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3781 3782 /* Verify correct alignment of TK_ and OP_ constants 3783 */ 3784 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3785 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3786 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3787 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3788 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3789 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3790 assert( pExpr->op!=TK_GT || op==OP_Le ); 3791 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3792 3793 switch( pExpr->op ){ 3794 case TK_AND: { 3795 testcase( jumpIfNull==0 ); 3796 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3797 sqlite3ExprCachePush(pParse); 3798 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3799 sqlite3ExprCachePop(pParse); 3800 break; 3801 } 3802 case TK_OR: { 3803 int d2 = sqlite3VdbeMakeLabel(v); 3804 testcase( jumpIfNull==0 ); 3805 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3806 sqlite3ExprCachePush(pParse); 3807 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3808 sqlite3VdbeResolveLabel(v, d2); 3809 sqlite3ExprCachePop(pParse); 3810 break; 3811 } 3812 case TK_NOT: { 3813 testcase( jumpIfNull==0 ); 3814 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3815 break; 3816 } 3817 case TK_LT: 3818 case TK_LE: 3819 case TK_GT: 3820 case TK_GE: 3821 case TK_NE: 3822 case TK_EQ: { 3823 testcase( jumpIfNull==0 ); 3824 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3825 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3826 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3827 r1, r2, dest, jumpIfNull); 3828 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3829 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3830 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3831 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3832 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3833 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3834 testcase( regFree1==0 ); 3835 testcase( regFree2==0 ); 3836 break; 3837 } 3838 case TK_IS: 3839 case TK_ISNOT: { 3840 testcase( pExpr->op==TK_IS ); 3841 testcase( pExpr->op==TK_ISNOT ); 3842 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3843 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3844 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3845 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3846 r1, r2, dest, SQLITE_NULLEQ); 3847 VdbeCoverageIf(v, op==TK_EQ); 3848 VdbeCoverageIf(v, op==TK_NE); 3849 testcase( regFree1==0 ); 3850 testcase( regFree2==0 ); 3851 break; 3852 } 3853 case TK_ISNULL: 3854 case TK_NOTNULL: { 3855 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3856 sqlite3VdbeAddOp2(v, op, r1, dest); 3857 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3858 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3859 testcase( regFree1==0 ); 3860 break; 3861 } 3862 case TK_BETWEEN: { 3863 testcase( jumpIfNull==0 ); 3864 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3865 break; 3866 } 3867 #ifndef SQLITE_OMIT_SUBQUERY 3868 case TK_IN: { 3869 if( jumpIfNull ){ 3870 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3871 }else{ 3872 int destIfNull = sqlite3VdbeMakeLabel(v); 3873 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3874 sqlite3VdbeResolveLabel(v, destIfNull); 3875 } 3876 break; 3877 } 3878 #endif 3879 default: { 3880 if( exprAlwaysFalse(pExpr) ){ 3881 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3882 }else if( exprAlwaysTrue(pExpr) ){ 3883 /* no-op */ 3884 }else{ 3885 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3886 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3887 VdbeCoverage(v); 3888 testcase( regFree1==0 ); 3889 testcase( jumpIfNull==0 ); 3890 } 3891 break; 3892 } 3893 } 3894 sqlite3ReleaseTempReg(pParse, regFree1); 3895 sqlite3ReleaseTempReg(pParse, regFree2); 3896 } 3897 3898 /* 3899 ** Do a deep comparison of two expression trees. Return 0 if the two 3900 ** expressions are completely identical. Return 1 if they differ only 3901 ** by a COLLATE operator at the top level. Return 2 if there are differences 3902 ** other than the top-level COLLATE operator. 3903 ** 3904 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3905 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3906 ** 3907 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3908 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3909 ** 3910 ** Sometimes this routine will return 2 even if the two expressions 3911 ** really are equivalent. If we cannot prove that the expressions are 3912 ** identical, we return 2 just to be safe. So if this routine 3913 ** returns 2, then you do not really know for certain if the two 3914 ** expressions are the same. But if you get a 0 or 1 return, then you 3915 ** can be sure the expressions are the same. In the places where 3916 ** this routine is used, it does not hurt to get an extra 2 - that 3917 ** just might result in some slightly slower code. But returning 3918 ** an incorrect 0 or 1 could lead to a malfunction. 3919 */ 3920 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3921 u32 combinedFlags; 3922 if( pA==0 || pB==0 ){ 3923 return pB==pA ? 0 : 2; 3924 } 3925 combinedFlags = pA->flags | pB->flags; 3926 if( combinedFlags & EP_IntValue ){ 3927 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3928 return 0; 3929 } 3930 return 2; 3931 } 3932 if( pA->op!=pB->op ){ 3933 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3934 return 1; 3935 } 3936 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3937 return 1; 3938 } 3939 return 2; 3940 } 3941 if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ 3942 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3943 return pA->op==TK_COLLATE ? 1 : 2; 3944 } 3945 } 3946 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3947 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3948 if( combinedFlags & EP_xIsSelect ) return 2; 3949 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3950 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3951 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3952 if( ALWAYS((combinedFlags & EP_Reduced)==0) ){ 3953 if( pA->iColumn!=pB->iColumn ) return 2; 3954 if( pA->iTable!=pB->iTable 3955 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3956 } 3957 } 3958 return 0; 3959 } 3960 3961 /* 3962 ** Compare two ExprList objects. Return 0 if they are identical and 3963 ** non-zero if they differ in any way. 3964 ** 3965 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3966 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3967 ** 3968 ** This routine might return non-zero for equivalent ExprLists. The 3969 ** only consequence will be disabled optimizations. But this routine 3970 ** must never return 0 if the two ExprList objects are different, or 3971 ** a malfunction will result. 3972 ** 3973 ** Two NULL pointers are considered to be the same. But a NULL pointer 3974 ** always differs from a non-NULL pointer. 3975 */ 3976 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3977 int i; 3978 if( pA==0 && pB==0 ) return 0; 3979 if( pA==0 || pB==0 ) return 1; 3980 if( pA->nExpr!=pB->nExpr ) return 1; 3981 for(i=0; i<pA->nExpr; i++){ 3982 Expr *pExprA = pA->a[i].pExpr; 3983 Expr *pExprB = pB->a[i].pExpr; 3984 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3985 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3986 } 3987 return 0; 3988 } 3989 3990 /* 3991 ** Return true if we can prove the pE2 will always be true if pE1 is 3992 ** true. Return false if we cannot complete the proof or if pE2 might 3993 ** be false. Examples: 3994 ** 3995 ** pE1: x==5 pE2: x==5 Result: true 3996 ** pE1: x>0 pE2: x==5 Result: false 3997 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3998 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3999 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4000 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4001 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4002 ** 4003 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4004 ** Expr.iTable<0 then assume a table number given by iTab. 4005 ** 4006 ** When in doubt, return false. Returning true might give a performance 4007 ** improvement. Returning false might cause a performance reduction, but 4008 ** it will always give the correct answer and is hence always safe. 4009 */ 4010 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 4011 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 4012 return 1; 4013 } 4014 if( pE2->op==TK_OR 4015 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 4016 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 4017 ){ 4018 return 1; 4019 } 4020 if( pE2->op==TK_NOTNULL 4021 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 4022 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 4023 ){ 4024 return 1; 4025 } 4026 return 0; 4027 } 4028 4029 /* 4030 ** An instance of the following structure is used by the tree walker 4031 ** to count references to table columns in the arguments of an 4032 ** aggregate function, in order to implement the 4033 ** sqlite3FunctionThisSrc() routine. 4034 */ 4035 struct SrcCount { 4036 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4037 int nThis; /* Number of references to columns in pSrcList */ 4038 int nOther; /* Number of references to columns in other FROM clauses */ 4039 }; 4040 4041 /* 4042 ** Count the number of references to columns. 4043 */ 4044 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4045 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4046 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4047 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4048 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4049 ** NEVER() will need to be removed. */ 4050 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4051 int i; 4052 struct SrcCount *p = pWalker->u.pSrcCount; 4053 SrcList *pSrc = p->pSrc; 4054 for(i=0; i<pSrc->nSrc; i++){ 4055 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4056 } 4057 if( i<pSrc->nSrc ){ 4058 p->nThis++; 4059 }else{ 4060 p->nOther++; 4061 } 4062 } 4063 return WRC_Continue; 4064 } 4065 4066 /* 4067 ** Determine if any of the arguments to the pExpr Function reference 4068 ** pSrcList. Return true if they do. Also return true if the function 4069 ** has no arguments or has only constant arguments. Return false if pExpr 4070 ** references columns but not columns of tables found in pSrcList. 4071 */ 4072 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4073 Walker w; 4074 struct SrcCount cnt; 4075 assert( pExpr->op==TK_AGG_FUNCTION ); 4076 memset(&w, 0, sizeof(w)); 4077 w.xExprCallback = exprSrcCount; 4078 w.u.pSrcCount = &cnt; 4079 cnt.pSrc = pSrcList; 4080 cnt.nThis = 0; 4081 cnt.nOther = 0; 4082 sqlite3WalkExprList(&w, pExpr->x.pList); 4083 return cnt.nThis>0 || cnt.nOther==0; 4084 } 4085 4086 /* 4087 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4088 ** the new element. Return a negative number if malloc fails. 4089 */ 4090 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4091 int i; 4092 pInfo->aCol = sqlite3ArrayAllocate( 4093 db, 4094 pInfo->aCol, 4095 sizeof(pInfo->aCol[0]), 4096 &pInfo->nColumn, 4097 &i 4098 ); 4099 return i; 4100 } 4101 4102 /* 4103 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4104 ** the new element. Return a negative number if malloc fails. 4105 */ 4106 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4107 int i; 4108 pInfo->aFunc = sqlite3ArrayAllocate( 4109 db, 4110 pInfo->aFunc, 4111 sizeof(pInfo->aFunc[0]), 4112 &pInfo->nFunc, 4113 &i 4114 ); 4115 return i; 4116 } 4117 4118 /* 4119 ** This is the xExprCallback for a tree walker. It is used to 4120 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4121 ** for additional information. 4122 */ 4123 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4124 int i; 4125 NameContext *pNC = pWalker->u.pNC; 4126 Parse *pParse = pNC->pParse; 4127 SrcList *pSrcList = pNC->pSrcList; 4128 AggInfo *pAggInfo = pNC->pAggInfo; 4129 4130 switch( pExpr->op ){ 4131 case TK_AGG_COLUMN: 4132 case TK_COLUMN: { 4133 testcase( pExpr->op==TK_AGG_COLUMN ); 4134 testcase( pExpr->op==TK_COLUMN ); 4135 /* Check to see if the column is in one of the tables in the FROM 4136 ** clause of the aggregate query */ 4137 if( ALWAYS(pSrcList!=0) ){ 4138 struct SrcList_item *pItem = pSrcList->a; 4139 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4140 struct AggInfo_col *pCol; 4141 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4142 if( pExpr->iTable==pItem->iCursor ){ 4143 /* If we reach this point, it means that pExpr refers to a table 4144 ** that is in the FROM clause of the aggregate query. 4145 ** 4146 ** Make an entry for the column in pAggInfo->aCol[] if there 4147 ** is not an entry there already. 4148 */ 4149 int k; 4150 pCol = pAggInfo->aCol; 4151 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4152 if( pCol->iTable==pExpr->iTable && 4153 pCol->iColumn==pExpr->iColumn ){ 4154 break; 4155 } 4156 } 4157 if( (k>=pAggInfo->nColumn) 4158 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4159 ){ 4160 pCol = &pAggInfo->aCol[k]; 4161 pCol->pTab = pExpr->pTab; 4162 pCol->iTable = pExpr->iTable; 4163 pCol->iColumn = pExpr->iColumn; 4164 pCol->iMem = ++pParse->nMem; 4165 pCol->iSorterColumn = -1; 4166 pCol->pExpr = pExpr; 4167 if( pAggInfo->pGroupBy ){ 4168 int j, n; 4169 ExprList *pGB = pAggInfo->pGroupBy; 4170 struct ExprList_item *pTerm = pGB->a; 4171 n = pGB->nExpr; 4172 for(j=0; j<n; j++, pTerm++){ 4173 Expr *pE = pTerm->pExpr; 4174 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4175 pE->iColumn==pExpr->iColumn ){ 4176 pCol->iSorterColumn = j; 4177 break; 4178 } 4179 } 4180 } 4181 if( pCol->iSorterColumn<0 ){ 4182 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4183 } 4184 } 4185 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4186 ** because it was there before or because we just created it). 4187 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4188 ** pAggInfo->aCol[] entry. 4189 */ 4190 ExprSetVVAProperty(pExpr, EP_NoReduce); 4191 pExpr->pAggInfo = pAggInfo; 4192 pExpr->op = TK_AGG_COLUMN; 4193 pExpr->iAgg = (i16)k; 4194 break; 4195 } /* endif pExpr->iTable==pItem->iCursor */ 4196 } /* end loop over pSrcList */ 4197 } 4198 return WRC_Prune; 4199 } 4200 case TK_AGG_FUNCTION: { 4201 if( (pNC->ncFlags & NC_InAggFunc)==0 4202 && pWalker->walkerDepth==pExpr->op2 4203 ){ 4204 /* Check to see if pExpr is a duplicate of another aggregate 4205 ** function that is already in the pAggInfo structure 4206 */ 4207 struct AggInfo_func *pItem = pAggInfo->aFunc; 4208 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4209 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4210 break; 4211 } 4212 } 4213 if( i>=pAggInfo->nFunc ){ 4214 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4215 */ 4216 u8 enc = ENC(pParse->db); 4217 i = addAggInfoFunc(pParse->db, pAggInfo); 4218 if( i>=0 ){ 4219 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4220 pItem = &pAggInfo->aFunc[i]; 4221 pItem->pExpr = pExpr; 4222 pItem->iMem = ++pParse->nMem; 4223 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4224 pItem->pFunc = sqlite3FindFunction(pParse->db, 4225 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4226 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4227 if( pExpr->flags & EP_Distinct ){ 4228 pItem->iDistinct = pParse->nTab++; 4229 }else{ 4230 pItem->iDistinct = -1; 4231 } 4232 } 4233 } 4234 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4235 */ 4236 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4237 ExprSetVVAProperty(pExpr, EP_NoReduce); 4238 pExpr->iAgg = (i16)i; 4239 pExpr->pAggInfo = pAggInfo; 4240 return WRC_Prune; 4241 }else{ 4242 return WRC_Continue; 4243 } 4244 } 4245 } 4246 return WRC_Continue; 4247 } 4248 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4249 UNUSED_PARAMETER(pWalker); 4250 UNUSED_PARAMETER(pSelect); 4251 return WRC_Continue; 4252 } 4253 4254 /* 4255 ** Analyze the pExpr expression looking for aggregate functions and 4256 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4257 ** points to. Additional entries are made on the AggInfo object as 4258 ** necessary. 4259 ** 4260 ** This routine should only be called after the expression has been 4261 ** analyzed by sqlite3ResolveExprNames(). 4262 */ 4263 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4264 Walker w; 4265 memset(&w, 0, sizeof(w)); 4266 w.xExprCallback = analyzeAggregate; 4267 w.xSelectCallback = analyzeAggregatesInSelect; 4268 w.u.pNC = pNC; 4269 assert( pNC->pSrcList!=0 ); 4270 sqlite3WalkExpr(&w, pExpr); 4271 } 4272 4273 /* 4274 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4275 ** expression list. Return the number of errors. 4276 ** 4277 ** If an error is found, the analysis is cut short. 4278 */ 4279 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4280 struct ExprList_item *pItem; 4281 int i; 4282 if( pList ){ 4283 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4284 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4285 } 4286 } 4287 } 4288 4289 /* 4290 ** Allocate a single new register for use to hold some intermediate result. 4291 */ 4292 int sqlite3GetTempReg(Parse *pParse){ 4293 if( pParse->nTempReg==0 ){ 4294 return ++pParse->nMem; 4295 } 4296 return pParse->aTempReg[--pParse->nTempReg]; 4297 } 4298 4299 /* 4300 ** Deallocate a register, making available for reuse for some other 4301 ** purpose. 4302 ** 4303 ** If a register is currently being used by the column cache, then 4304 ** the dallocation is deferred until the column cache line that uses 4305 ** the register becomes stale. 4306 */ 4307 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4308 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4309 int i; 4310 struct yColCache *p; 4311 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4312 if( p->iReg==iReg ){ 4313 p->tempReg = 1; 4314 return; 4315 } 4316 } 4317 pParse->aTempReg[pParse->nTempReg++] = iReg; 4318 } 4319 } 4320 4321 /* 4322 ** Allocate or deallocate a block of nReg consecutive registers 4323 */ 4324 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4325 int i, n; 4326 i = pParse->iRangeReg; 4327 n = pParse->nRangeReg; 4328 if( nReg<=n ){ 4329 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4330 pParse->iRangeReg += nReg; 4331 pParse->nRangeReg -= nReg; 4332 }else{ 4333 i = pParse->nMem+1; 4334 pParse->nMem += nReg; 4335 } 4336 return i; 4337 } 4338 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4339 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4340 if( nReg>pParse->nRangeReg ){ 4341 pParse->nRangeReg = nReg; 4342 pParse->iRangeReg = iReg; 4343 } 4344 } 4345 4346 /* 4347 ** Mark all temporary registers as being unavailable for reuse. 4348 */ 4349 void sqlite3ClearTempRegCache(Parse *pParse){ 4350 pParse->nTempReg = 0; 4351 pParse->nRangeReg = 0; 4352 } 4353