xref: /sqlite-3.40.0/src/expr.c (revision edf5b165)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName   /* Name of collating sequence */
73 ){
74   if( pCollName->n>0 ){
75     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
76     if( pNew ){
77       pNew->pLeft = pExpr;
78       pNew->flags |= EP_Collate|EP_Skip;
79       pExpr = pNew;
80     }
81   }
82   return pExpr;
83 }
84 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
85   Token s;
86   assert( zC!=0 );
87   s.z = zC;
88   s.n = sqlite3Strlen30(s.z);
89   return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
90 }
91 
92 /*
93 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
94 ** or likelihood() function at the root of an expression.
95 */
96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
97   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
98     if( ExprHasProperty(pExpr, EP_Unlikely) ){
99       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
100       assert( pExpr->x.pList->nExpr>0 );
101       assert( pExpr->op==TK_FUNCTION );
102       pExpr = pExpr->x.pList->a[0].pExpr;
103     }else{
104       assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
105       pExpr = pExpr->pLeft;
106     }
107   }
108   return pExpr;
109 }
110 
111 /*
112 ** Return the collation sequence for the expression pExpr. If
113 ** there is no defined collating sequence, return NULL.
114 **
115 ** The collating sequence might be determined by a COLLATE operator
116 ** or by the presence of a column with a defined collating sequence.
117 ** COLLATE operators take first precedence.  Left operands take
118 ** precedence over right operands.
119 */
120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
121   sqlite3 *db = pParse->db;
122   CollSeq *pColl = 0;
123   Expr *p = pExpr;
124   while( p ){
125     int op = p->op;
126     if( p->flags & EP_Generic ) break;
127     if( op==TK_CAST || op==TK_UPLUS ){
128       p = p->pLeft;
129       continue;
130     }
131     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
132       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
133       break;
134     }
135     if( p->pTab!=0
136      && (op==TK_AGG_COLUMN || op==TK_COLUMN
137           || op==TK_REGISTER || op==TK_TRIGGER)
138     ){
139       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
140       ** a TK_COLUMN but was previously evaluated and cached in a register */
141       int j = p->iColumn;
142       if( j>=0 ){
143         const char *zColl = p->pTab->aCol[j].zColl;
144         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
145       }
146       break;
147     }
148     if( p->flags & EP_Collate ){
149       if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
150         p = p->pLeft;
151       }else{
152         p = p->pRight;
153       }
154     }else{
155       break;
156     }
157   }
158   if( sqlite3CheckCollSeq(pParse, pColl) ){
159     pColl = 0;
160   }
161   return pColl;
162 }
163 
164 /*
165 ** pExpr is an operand of a comparison operator.  aff2 is the
166 ** type affinity of the other operand.  This routine returns the
167 ** type affinity that should be used for the comparison operator.
168 */
169 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
170   char aff1 = sqlite3ExprAffinity(pExpr);
171   if( aff1 && aff2 ){
172     /* Both sides of the comparison are columns. If one has numeric
173     ** affinity, use that. Otherwise use no affinity.
174     */
175     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
176       return SQLITE_AFF_NUMERIC;
177     }else{
178       return SQLITE_AFF_NONE;
179     }
180   }else if( !aff1 && !aff2 ){
181     /* Neither side of the comparison is a column.  Compare the
182     ** results directly.
183     */
184     return SQLITE_AFF_NONE;
185   }else{
186     /* One side is a column, the other is not. Use the columns affinity. */
187     assert( aff1==0 || aff2==0 );
188     return (aff1 + aff2);
189   }
190 }
191 
192 /*
193 ** pExpr is a comparison operator.  Return the type affinity that should
194 ** be applied to both operands prior to doing the comparison.
195 */
196 static char comparisonAffinity(Expr *pExpr){
197   char aff;
198   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
199           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
200           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
201   assert( pExpr->pLeft );
202   aff = sqlite3ExprAffinity(pExpr->pLeft);
203   if( pExpr->pRight ){
204     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
205   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
206     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
207   }else if( !aff ){
208     aff = SQLITE_AFF_NONE;
209   }
210   return aff;
211 }
212 
213 /*
214 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
215 ** idx_affinity is the affinity of an indexed column. Return true
216 ** if the index with affinity idx_affinity may be used to implement
217 ** the comparison in pExpr.
218 */
219 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
220   char aff = comparisonAffinity(pExpr);
221   switch( aff ){
222     case SQLITE_AFF_NONE:
223       return 1;
224     case SQLITE_AFF_TEXT:
225       return idx_affinity==SQLITE_AFF_TEXT;
226     default:
227       return sqlite3IsNumericAffinity(idx_affinity);
228   }
229 }
230 
231 /*
232 ** Return the P5 value that should be used for a binary comparison
233 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
234 */
235 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
236   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
237   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
238   return aff;
239 }
240 
241 /*
242 ** Return a pointer to the collation sequence that should be used by
243 ** a binary comparison operator comparing pLeft and pRight.
244 **
245 ** If the left hand expression has a collating sequence type, then it is
246 ** used. Otherwise the collation sequence for the right hand expression
247 ** is used, or the default (BINARY) if neither expression has a collating
248 ** type.
249 **
250 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
251 ** it is not considered.
252 */
253 CollSeq *sqlite3BinaryCompareCollSeq(
254   Parse *pParse,
255   Expr *pLeft,
256   Expr *pRight
257 ){
258   CollSeq *pColl;
259   assert( pLeft );
260   if( pLeft->flags & EP_Collate ){
261     pColl = sqlite3ExprCollSeq(pParse, pLeft);
262   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
263     pColl = sqlite3ExprCollSeq(pParse, pRight);
264   }else{
265     pColl = sqlite3ExprCollSeq(pParse, pLeft);
266     if( !pColl ){
267       pColl = sqlite3ExprCollSeq(pParse, pRight);
268     }
269   }
270   return pColl;
271 }
272 
273 /*
274 ** Generate code for a comparison operator.
275 */
276 static int codeCompare(
277   Parse *pParse,    /* The parsing (and code generating) context */
278   Expr *pLeft,      /* The left operand */
279   Expr *pRight,     /* The right operand */
280   int opcode,       /* The comparison opcode */
281   int in1, int in2, /* Register holding operands */
282   int dest,         /* Jump here if true.  */
283   int jumpIfNull    /* If true, jump if either operand is NULL */
284 ){
285   int p5;
286   int addr;
287   CollSeq *p4;
288 
289   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
290   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
291   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
292                            (void*)p4, P4_COLLSEQ);
293   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
294   return addr;
295 }
296 
297 #if SQLITE_MAX_EXPR_DEPTH>0
298 /*
299 ** Check that argument nHeight is less than or equal to the maximum
300 ** expression depth allowed. If it is not, leave an error message in
301 ** pParse.
302 */
303 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
304   int rc = SQLITE_OK;
305   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
306   if( nHeight>mxHeight ){
307     sqlite3ErrorMsg(pParse,
308        "Expression tree is too large (maximum depth %d)", mxHeight
309     );
310     rc = SQLITE_ERROR;
311   }
312   return rc;
313 }
314 
315 /* The following three functions, heightOfExpr(), heightOfExprList()
316 ** and heightOfSelect(), are used to determine the maximum height
317 ** of any expression tree referenced by the structure passed as the
318 ** first argument.
319 **
320 ** If this maximum height is greater than the current value pointed
321 ** to by pnHeight, the second parameter, then set *pnHeight to that
322 ** value.
323 */
324 static void heightOfExpr(Expr *p, int *pnHeight){
325   if( p ){
326     if( p->nHeight>*pnHeight ){
327       *pnHeight = p->nHeight;
328     }
329   }
330 }
331 static void heightOfExprList(ExprList *p, int *pnHeight){
332   if( p ){
333     int i;
334     for(i=0; i<p->nExpr; i++){
335       heightOfExpr(p->a[i].pExpr, pnHeight);
336     }
337   }
338 }
339 static void heightOfSelect(Select *p, int *pnHeight){
340   if( p ){
341     heightOfExpr(p->pWhere, pnHeight);
342     heightOfExpr(p->pHaving, pnHeight);
343     heightOfExpr(p->pLimit, pnHeight);
344     heightOfExpr(p->pOffset, pnHeight);
345     heightOfExprList(p->pEList, pnHeight);
346     heightOfExprList(p->pGroupBy, pnHeight);
347     heightOfExprList(p->pOrderBy, pnHeight);
348     heightOfSelect(p->pPrior, pnHeight);
349   }
350 }
351 
352 /*
353 ** Set the Expr.nHeight variable in the structure passed as an
354 ** argument. An expression with no children, Expr.pList or
355 ** Expr.pSelect member has a height of 1. Any other expression
356 ** has a height equal to the maximum height of any other
357 ** referenced Expr plus one.
358 */
359 static void exprSetHeight(Expr *p){
360   int nHeight = 0;
361   heightOfExpr(p->pLeft, &nHeight);
362   heightOfExpr(p->pRight, &nHeight);
363   if( ExprHasProperty(p, EP_xIsSelect) ){
364     heightOfSelect(p->x.pSelect, &nHeight);
365   }else{
366     heightOfExprList(p->x.pList, &nHeight);
367   }
368   p->nHeight = nHeight + 1;
369 }
370 
371 /*
372 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
373 ** the height is greater than the maximum allowed expression depth,
374 ** leave an error in pParse.
375 */
376 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
377   exprSetHeight(p);
378   sqlite3ExprCheckHeight(pParse, p->nHeight);
379 }
380 
381 /*
382 ** Return the maximum height of any expression tree referenced
383 ** by the select statement passed as an argument.
384 */
385 int sqlite3SelectExprHeight(Select *p){
386   int nHeight = 0;
387   heightOfSelect(p, &nHeight);
388   return nHeight;
389 }
390 #else
391   #define exprSetHeight(y)
392 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
393 
394 /*
395 ** This routine is the core allocator for Expr nodes.
396 **
397 ** Construct a new expression node and return a pointer to it.  Memory
398 ** for this node and for the pToken argument is a single allocation
399 ** obtained from sqlite3DbMalloc().  The calling function
400 ** is responsible for making sure the node eventually gets freed.
401 **
402 ** If dequote is true, then the token (if it exists) is dequoted.
403 ** If dequote is false, no dequoting is performance.  The deQuote
404 ** parameter is ignored if pToken is NULL or if the token does not
405 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
406 ** then the EP_DblQuoted flag is set on the expression node.
407 **
408 ** Special case:  If op==TK_INTEGER and pToken points to a string that
409 ** can be translated into a 32-bit integer, then the token is not
410 ** stored in u.zToken.  Instead, the integer values is written
411 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
412 ** is allocated to hold the integer text and the dequote flag is ignored.
413 */
414 Expr *sqlite3ExprAlloc(
415   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
416   int op,                 /* Expression opcode */
417   const Token *pToken,    /* Token argument.  Might be NULL */
418   int dequote             /* True to dequote */
419 ){
420   Expr *pNew;
421   int nExtra = 0;
422   int iValue = 0;
423 
424   if( pToken ){
425     if( op!=TK_INTEGER || pToken->z==0
426           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
427       nExtra = pToken->n+1;
428       assert( iValue>=0 );
429     }
430   }
431   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
432   if( pNew ){
433     pNew->op = (u8)op;
434     pNew->iAgg = -1;
435     if( pToken ){
436       if( nExtra==0 ){
437         pNew->flags |= EP_IntValue;
438         pNew->u.iValue = iValue;
439       }else{
440         int c;
441         pNew->u.zToken = (char*)&pNew[1];
442         assert( pToken->z!=0 || pToken->n==0 );
443         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
444         pNew->u.zToken[pToken->n] = 0;
445         if( dequote && nExtra>=3
446              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
447           sqlite3Dequote(pNew->u.zToken);
448           if( c=='"' ) pNew->flags |= EP_DblQuoted;
449         }
450       }
451     }
452 #if SQLITE_MAX_EXPR_DEPTH>0
453     pNew->nHeight = 1;
454 #endif
455   }
456   return pNew;
457 }
458 
459 /*
460 ** Allocate a new expression node from a zero-terminated token that has
461 ** already been dequoted.
462 */
463 Expr *sqlite3Expr(
464   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
465   int op,                 /* Expression opcode */
466   const char *zToken      /* Token argument.  Might be NULL */
467 ){
468   Token x;
469   x.z = zToken;
470   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
471   return sqlite3ExprAlloc(db, op, &x, 0);
472 }
473 
474 /*
475 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
476 **
477 ** If pRoot==NULL that means that a memory allocation error has occurred.
478 ** In that case, delete the subtrees pLeft and pRight.
479 */
480 void sqlite3ExprAttachSubtrees(
481   sqlite3 *db,
482   Expr *pRoot,
483   Expr *pLeft,
484   Expr *pRight
485 ){
486   if( pRoot==0 ){
487     assert( db->mallocFailed );
488     sqlite3ExprDelete(db, pLeft);
489     sqlite3ExprDelete(db, pRight);
490   }else{
491     if( pRight ){
492       pRoot->pRight = pRight;
493       pRoot->flags |= EP_Collate & pRight->flags;
494     }
495     if( pLeft ){
496       pRoot->pLeft = pLeft;
497       pRoot->flags |= EP_Collate & pLeft->flags;
498     }
499     exprSetHeight(pRoot);
500   }
501 }
502 
503 /*
504 ** Allocate a Expr node which joins as many as two subtrees.
505 **
506 ** One or both of the subtrees can be NULL.  Return a pointer to the new
507 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
508 ** free the subtrees and return NULL.
509 */
510 Expr *sqlite3PExpr(
511   Parse *pParse,          /* Parsing context */
512   int op,                 /* Expression opcode */
513   Expr *pLeft,            /* Left operand */
514   Expr *pRight,           /* Right operand */
515   const Token *pToken     /* Argument token */
516 ){
517   Expr *p;
518   if( op==TK_AND && pLeft && pRight ){
519     /* Take advantage of short-circuit false optimization for AND */
520     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
521   }else{
522     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
523     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
524   }
525   if( p ) {
526     sqlite3ExprCheckHeight(pParse, p->nHeight);
527   }
528   return p;
529 }
530 
531 /*
532 ** If the expression is always either TRUE or FALSE (respectively),
533 ** then return 1.  If one cannot determine the truth value of the
534 ** expression at compile-time return 0.
535 **
536 ** This is an optimization.  If is OK to return 0 here even if
537 ** the expression really is always false or false (a false negative).
538 ** But it is a bug to return 1 if the expression might have different
539 ** boolean values in different circumstances (a false positive.)
540 **
541 ** Note that if the expression is part of conditional for a
542 ** LEFT JOIN, then we cannot determine at compile-time whether or not
543 ** is it true or false, so always return 0.
544 */
545 static int exprAlwaysTrue(Expr *p){
546   int v = 0;
547   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
548   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
549   return v!=0;
550 }
551 static int exprAlwaysFalse(Expr *p){
552   int v = 0;
553   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
554   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
555   return v==0;
556 }
557 
558 /*
559 ** Join two expressions using an AND operator.  If either expression is
560 ** NULL, then just return the other expression.
561 **
562 ** If one side or the other of the AND is known to be false, then instead
563 ** of returning an AND expression, just return a constant expression with
564 ** a value of false.
565 */
566 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
567   if( pLeft==0 ){
568     return pRight;
569   }else if( pRight==0 ){
570     return pLeft;
571   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
572     sqlite3ExprDelete(db, pLeft);
573     sqlite3ExprDelete(db, pRight);
574     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
575   }else{
576     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
577     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
578     return pNew;
579   }
580 }
581 
582 /*
583 ** Construct a new expression node for a function with multiple
584 ** arguments.
585 */
586 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
587   Expr *pNew;
588   sqlite3 *db = pParse->db;
589   assert( pToken );
590   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
591   if( pNew==0 ){
592     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
593     return 0;
594   }
595   pNew->x.pList = pList;
596   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
597   sqlite3ExprSetHeight(pParse, pNew);
598   return pNew;
599 }
600 
601 /*
602 ** Assign a variable number to an expression that encodes a wildcard
603 ** in the original SQL statement.
604 **
605 ** Wildcards consisting of a single "?" are assigned the next sequential
606 ** variable number.
607 **
608 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
609 ** sure "nnn" is not too be to avoid a denial of service attack when
610 ** the SQL statement comes from an external source.
611 **
612 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
613 ** as the previous instance of the same wildcard.  Or if this is the first
614 ** instance of the wildcard, the next sequenial variable number is
615 ** assigned.
616 */
617 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
618   sqlite3 *db = pParse->db;
619   const char *z;
620 
621   if( pExpr==0 ) return;
622   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
623   z = pExpr->u.zToken;
624   assert( z!=0 );
625   assert( z[0]!=0 );
626   if( z[1]==0 ){
627     /* Wildcard of the form "?".  Assign the next variable number */
628     assert( z[0]=='?' );
629     pExpr->iColumn = (ynVar)(++pParse->nVar);
630   }else{
631     ynVar x = 0;
632     u32 n = sqlite3Strlen30(z);
633     if( z[0]=='?' ){
634       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
635       ** use it as the variable number */
636       i64 i;
637       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
638       pExpr->iColumn = x = (ynVar)i;
639       testcase( i==0 );
640       testcase( i==1 );
641       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
642       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
643       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
644         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
645             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
646         x = 0;
647       }
648       if( i>pParse->nVar ){
649         pParse->nVar = (int)i;
650       }
651     }else{
652       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
653       ** number as the prior appearance of the same name, or if the name
654       ** has never appeared before, reuse the same variable number
655       */
656       ynVar i;
657       for(i=0; i<pParse->nzVar; i++){
658         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
659           pExpr->iColumn = x = (ynVar)i+1;
660           break;
661         }
662       }
663       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
664     }
665     if( x>0 ){
666       if( x>pParse->nzVar ){
667         char **a;
668         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
669         if( a==0 ) return;  /* Error reported through db->mallocFailed */
670         pParse->azVar = a;
671         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
672         pParse->nzVar = x;
673       }
674       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
675         sqlite3DbFree(db, pParse->azVar[x-1]);
676         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
677       }
678     }
679   }
680   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
681     sqlite3ErrorMsg(pParse, "too many SQL variables");
682   }
683 }
684 
685 /*
686 ** Recursively delete an expression tree.
687 */
688 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
689   if( p==0 ) return;
690   /* Sanity check: Assert that the IntValue is non-negative if it exists */
691   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
692   if( !ExprHasProperty(p, EP_TokenOnly) ){
693     /* The Expr.x union is never used at the same time as Expr.pRight */
694     assert( p->x.pList==0 || p->pRight==0 );
695     sqlite3ExprDelete(db, p->pLeft);
696     sqlite3ExprDelete(db, p->pRight);
697     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
698     if( ExprHasProperty(p, EP_xIsSelect) ){
699       sqlite3SelectDelete(db, p->x.pSelect);
700     }else{
701       sqlite3ExprListDelete(db, p->x.pList);
702     }
703   }
704   if( !ExprHasProperty(p, EP_Static) ){
705     sqlite3DbFree(db, p);
706   }
707 }
708 
709 /*
710 ** Return the number of bytes allocated for the expression structure
711 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
712 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
713 */
714 static int exprStructSize(Expr *p){
715   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
716   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
717   return EXPR_FULLSIZE;
718 }
719 
720 /*
721 ** The dupedExpr*Size() routines each return the number of bytes required
722 ** to store a copy of an expression or expression tree.  They differ in
723 ** how much of the tree is measured.
724 **
725 **     dupedExprStructSize()     Size of only the Expr structure
726 **     dupedExprNodeSize()       Size of Expr + space for token
727 **     dupedExprSize()           Expr + token + subtree components
728 **
729 ***************************************************************************
730 **
731 ** The dupedExprStructSize() function returns two values OR-ed together:
732 ** (1) the space required for a copy of the Expr structure only and
733 ** (2) the EP_xxx flags that indicate what the structure size should be.
734 ** The return values is always one of:
735 **
736 **      EXPR_FULLSIZE
737 **      EXPR_REDUCEDSIZE   | EP_Reduced
738 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
739 **
740 ** The size of the structure can be found by masking the return value
741 ** of this routine with 0xfff.  The flags can be found by masking the
742 ** return value with EP_Reduced|EP_TokenOnly.
743 **
744 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
745 ** (unreduced) Expr objects as they or originally constructed by the parser.
746 ** During expression analysis, extra information is computed and moved into
747 ** later parts of teh Expr object and that extra information might get chopped
748 ** off if the expression is reduced.  Note also that it does not work to
749 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
750 ** to reduce a pristine expression tree from the parser.  The implementation
751 ** of dupedExprStructSize() contain multiple assert() statements that attempt
752 ** to enforce this constraint.
753 */
754 static int dupedExprStructSize(Expr *p, int flags){
755   int nSize;
756   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
757   assert( EXPR_FULLSIZE<=0xfff );
758   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
759   if( 0==(flags&EXPRDUP_REDUCE) ){
760     nSize = EXPR_FULLSIZE;
761   }else{
762     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
763     assert( !ExprHasProperty(p, EP_FromJoin) );
764     assert( !ExprHasProperty(p, EP_MemToken) );
765     assert( !ExprHasProperty(p, EP_NoReduce) );
766     if( p->pLeft || p->x.pList ){
767       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
768     }else{
769       assert( p->pRight==0 );
770       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
771     }
772   }
773   return nSize;
774 }
775 
776 /*
777 ** This function returns the space in bytes required to store the copy
778 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
779 ** string is defined.)
780 */
781 static int dupedExprNodeSize(Expr *p, int flags){
782   int nByte = dupedExprStructSize(p, flags) & 0xfff;
783   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
784     nByte += sqlite3Strlen30(p->u.zToken)+1;
785   }
786   return ROUND8(nByte);
787 }
788 
789 /*
790 ** Return the number of bytes required to create a duplicate of the
791 ** expression passed as the first argument. The second argument is a
792 ** mask containing EXPRDUP_XXX flags.
793 **
794 ** The value returned includes space to create a copy of the Expr struct
795 ** itself and the buffer referred to by Expr.u.zToken, if any.
796 **
797 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
798 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
799 ** and Expr.pRight variables (but not for any structures pointed to or
800 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
801 */
802 static int dupedExprSize(Expr *p, int flags){
803   int nByte = 0;
804   if( p ){
805     nByte = dupedExprNodeSize(p, flags);
806     if( flags&EXPRDUP_REDUCE ){
807       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
808     }
809   }
810   return nByte;
811 }
812 
813 /*
814 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
815 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
816 ** to store the copy of expression p, the copies of p->u.zToken
817 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
818 ** if any. Before returning, *pzBuffer is set to the first byte passed the
819 ** portion of the buffer copied into by this function.
820 */
821 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
822   Expr *pNew = 0;                      /* Value to return */
823   if( p ){
824     const int isReduced = (flags&EXPRDUP_REDUCE);
825     u8 *zAlloc;
826     u32 staticFlag = 0;
827 
828     assert( pzBuffer==0 || isReduced );
829 
830     /* Figure out where to write the new Expr structure. */
831     if( pzBuffer ){
832       zAlloc = *pzBuffer;
833       staticFlag = EP_Static;
834     }else{
835       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
836     }
837     pNew = (Expr *)zAlloc;
838 
839     if( pNew ){
840       /* Set nNewSize to the size allocated for the structure pointed to
841       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
842       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
843       ** by the copy of the p->u.zToken string (if any).
844       */
845       const unsigned nStructSize = dupedExprStructSize(p, flags);
846       const int nNewSize = nStructSize & 0xfff;
847       int nToken;
848       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
849         nToken = sqlite3Strlen30(p->u.zToken) + 1;
850       }else{
851         nToken = 0;
852       }
853       if( isReduced ){
854         assert( ExprHasProperty(p, EP_Reduced)==0 );
855         memcpy(zAlloc, p, nNewSize);
856       }else{
857         int nSize = exprStructSize(p);
858         memcpy(zAlloc, p, nSize);
859         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
860       }
861 
862       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
863       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
864       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
865       pNew->flags |= staticFlag;
866 
867       /* Copy the p->u.zToken string, if any. */
868       if( nToken ){
869         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
870         memcpy(zToken, p->u.zToken, nToken);
871       }
872 
873       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
874         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
875         if( ExprHasProperty(p, EP_xIsSelect) ){
876           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
877         }else{
878           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
879         }
880       }
881 
882       /* Fill in pNew->pLeft and pNew->pRight. */
883       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
884         zAlloc += dupedExprNodeSize(p, flags);
885         if( ExprHasProperty(pNew, EP_Reduced) ){
886           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
887           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
888         }
889         if( pzBuffer ){
890           *pzBuffer = zAlloc;
891         }
892       }else{
893         if( !ExprHasProperty(p, EP_TokenOnly) ){
894           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
895           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
896         }
897       }
898 
899     }
900   }
901   return pNew;
902 }
903 
904 /*
905 ** Create and return a deep copy of the object passed as the second
906 ** argument. If an OOM condition is encountered, NULL is returned
907 ** and the db->mallocFailed flag set.
908 */
909 #ifndef SQLITE_OMIT_CTE
910 static With *withDup(sqlite3 *db, With *p){
911   With *pRet = 0;
912   if( p ){
913     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
914     pRet = sqlite3DbMallocZero(db, nByte);
915     if( pRet ){
916       int i;
917       pRet->nCte = p->nCte;
918       for(i=0; i<p->nCte; i++){
919         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
920         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
921         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
922       }
923     }
924   }
925   return pRet;
926 }
927 #else
928 # define withDup(x,y) 0
929 #endif
930 
931 /*
932 ** The following group of routines make deep copies of expressions,
933 ** expression lists, ID lists, and select statements.  The copies can
934 ** be deleted (by being passed to their respective ...Delete() routines)
935 ** without effecting the originals.
936 **
937 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
938 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
939 ** by subsequent calls to sqlite*ListAppend() routines.
940 **
941 ** Any tables that the SrcList might point to are not duplicated.
942 **
943 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
944 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
945 ** truncated version of the usual Expr structure that will be stored as
946 ** part of the in-memory representation of the database schema.
947 */
948 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
949   return exprDup(db, p, flags, 0);
950 }
951 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
952   ExprList *pNew;
953   struct ExprList_item *pItem, *pOldItem;
954   int i;
955   if( p==0 ) return 0;
956   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
957   if( pNew==0 ) return 0;
958   pNew->nExpr = i = p->nExpr;
959   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
960   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
961   if( pItem==0 ){
962     sqlite3DbFree(db, pNew);
963     return 0;
964   }
965   pOldItem = p->a;
966   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
967     Expr *pOldExpr = pOldItem->pExpr;
968     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
969     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
970     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
971     pItem->sortOrder = pOldItem->sortOrder;
972     pItem->done = 0;
973     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
974     pItem->u = pOldItem->u;
975   }
976   return pNew;
977 }
978 
979 /*
980 ** If cursors, triggers, views and subqueries are all omitted from
981 ** the build, then none of the following routines, except for
982 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
983 ** called with a NULL argument.
984 */
985 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
986  || !defined(SQLITE_OMIT_SUBQUERY)
987 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
988   SrcList *pNew;
989   int i;
990   int nByte;
991   if( p==0 ) return 0;
992   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
993   pNew = sqlite3DbMallocRaw(db, nByte );
994   if( pNew==0 ) return 0;
995   pNew->nSrc = pNew->nAlloc = p->nSrc;
996   for(i=0; i<p->nSrc; i++){
997     struct SrcList_item *pNewItem = &pNew->a[i];
998     struct SrcList_item *pOldItem = &p->a[i];
999     Table *pTab;
1000     pNewItem->pSchema = pOldItem->pSchema;
1001     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1002     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1003     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1004     pNewItem->jointype = pOldItem->jointype;
1005     pNewItem->iCursor = pOldItem->iCursor;
1006     pNewItem->addrFillSub = pOldItem->addrFillSub;
1007     pNewItem->regReturn = pOldItem->regReturn;
1008     pNewItem->isCorrelated = pOldItem->isCorrelated;
1009     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
1010     pNewItem->isRecursive = pOldItem->isRecursive;
1011     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
1012     pNewItem->notIndexed = pOldItem->notIndexed;
1013     pNewItem->pIndex = pOldItem->pIndex;
1014     pTab = pNewItem->pTab = pOldItem->pTab;
1015     if( pTab ){
1016       pTab->nRef++;
1017     }
1018     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1019     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1020     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1021     pNewItem->colUsed = pOldItem->colUsed;
1022   }
1023   return pNew;
1024 }
1025 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1026   IdList *pNew;
1027   int i;
1028   if( p==0 ) return 0;
1029   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1030   if( pNew==0 ) return 0;
1031   pNew->nId = p->nId;
1032   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1033   if( pNew->a==0 ){
1034     sqlite3DbFree(db, pNew);
1035     return 0;
1036   }
1037   /* Note that because the size of the allocation for p->a[] is not
1038   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1039   ** on the duplicate created by this function. */
1040   for(i=0; i<p->nId; i++){
1041     struct IdList_item *pNewItem = &pNew->a[i];
1042     struct IdList_item *pOldItem = &p->a[i];
1043     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1044     pNewItem->idx = pOldItem->idx;
1045   }
1046   return pNew;
1047 }
1048 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1049   Select *pNew, *pPrior;
1050   if( p==0 ) return 0;
1051   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1052   if( pNew==0 ) return 0;
1053   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1054   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1055   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1056   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1057   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1058   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1059   pNew->op = p->op;
1060   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1061   if( pPrior ) pPrior->pNext = pNew;
1062   pNew->pNext = 0;
1063   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1064   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1065   pNew->iLimit = 0;
1066   pNew->iOffset = 0;
1067   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1068   pNew->addrOpenEphm[0] = -1;
1069   pNew->addrOpenEphm[1] = -1;
1070   pNew->nSelectRow = p->nSelectRow;
1071   pNew->pWith = withDup(db, p->pWith);
1072   return pNew;
1073 }
1074 #else
1075 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1076   assert( p==0 );
1077   return 0;
1078 }
1079 #endif
1080 
1081 
1082 /*
1083 ** Add a new element to the end of an expression list.  If pList is
1084 ** initially NULL, then create a new expression list.
1085 **
1086 ** If a memory allocation error occurs, the entire list is freed and
1087 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1088 ** that the new entry was successfully appended.
1089 */
1090 ExprList *sqlite3ExprListAppend(
1091   Parse *pParse,          /* Parsing context */
1092   ExprList *pList,        /* List to which to append. Might be NULL */
1093   Expr *pExpr             /* Expression to be appended. Might be NULL */
1094 ){
1095   sqlite3 *db = pParse->db;
1096   if( pList==0 ){
1097     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1098     if( pList==0 ){
1099       goto no_mem;
1100     }
1101     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1102     if( pList->a==0 ) goto no_mem;
1103   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1104     struct ExprList_item *a;
1105     assert( pList->nExpr>0 );
1106     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1107     if( a==0 ){
1108       goto no_mem;
1109     }
1110     pList->a = a;
1111   }
1112   assert( pList->a!=0 );
1113   if( 1 ){
1114     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1115     memset(pItem, 0, sizeof(*pItem));
1116     pItem->pExpr = pExpr;
1117   }
1118   return pList;
1119 
1120 no_mem:
1121   /* Avoid leaking memory if malloc has failed. */
1122   sqlite3ExprDelete(db, pExpr);
1123   sqlite3ExprListDelete(db, pList);
1124   return 0;
1125 }
1126 
1127 /*
1128 ** Set the ExprList.a[].zName element of the most recently added item
1129 ** on the expression list.
1130 **
1131 ** pList might be NULL following an OOM error.  But pName should never be
1132 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1133 ** is set.
1134 */
1135 void sqlite3ExprListSetName(
1136   Parse *pParse,          /* Parsing context */
1137   ExprList *pList,        /* List to which to add the span. */
1138   Token *pName,           /* Name to be added */
1139   int dequote             /* True to cause the name to be dequoted */
1140 ){
1141   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1142   if( pList ){
1143     struct ExprList_item *pItem;
1144     assert( pList->nExpr>0 );
1145     pItem = &pList->a[pList->nExpr-1];
1146     assert( pItem->zName==0 );
1147     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1148     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1149   }
1150 }
1151 
1152 /*
1153 ** Set the ExprList.a[].zSpan element of the most recently added item
1154 ** on the expression list.
1155 **
1156 ** pList might be NULL following an OOM error.  But pSpan should never be
1157 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1158 ** is set.
1159 */
1160 void sqlite3ExprListSetSpan(
1161   Parse *pParse,          /* Parsing context */
1162   ExprList *pList,        /* List to which to add the span. */
1163   ExprSpan *pSpan         /* The span to be added */
1164 ){
1165   sqlite3 *db = pParse->db;
1166   assert( pList!=0 || db->mallocFailed!=0 );
1167   if( pList ){
1168     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1169     assert( pList->nExpr>0 );
1170     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1171     sqlite3DbFree(db, pItem->zSpan);
1172     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1173                                     (int)(pSpan->zEnd - pSpan->zStart));
1174   }
1175 }
1176 
1177 /*
1178 ** If the expression list pEList contains more than iLimit elements,
1179 ** leave an error message in pParse.
1180 */
1181 void sqlite3ExprListCheckLength(
1182   Parse *pParse,
1183   ExprList *pEList,
1184   const char *zObject
1185 ){
1186   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1187   testcase( pEList && pEList->nExpr==mx );
1188   testcase( pEList && pEList->nExpr==mx+1 );
1189   if( pEList && pEList->nExpr>mx ){
1190     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1191   }
1192 }
1193 
1194 /*
1195 ** Delete an entire expression list.
1196 */
1197 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1198   int i;
1199   struct ExprList_item *pItem;
1200   if( pList==0 ) return;
1201   assert( pList->a!=0 || pList->nExpr==0 );
1202   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1203     sqlite3ExprDelete(db, pItem->pExpr);
1204     sqlite3DbFree(db, pItem->zName);
1205     sqlite3DbFree(db, pItem->zSpan);
1206   }
1207   sqlite3DbFree(db, pList->a);
1208   sqlite3DbFree(db, pList);
1209 }
1210 
1211 /*
1212 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1213 ** to an integer.  These routines are checking an expression to see
1214 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1215 ** not constant.
1216 **
1217 ** These callback routines are used to implement the following:
1218 **
1219 **     sqlite3ExprIsConstant()
1220 **     sqlite3ExprIsConstantNotJoin()
1221 **     sqlite3ExprIsConstantOrFunction()
1222 **
1223 */
1224 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1225 
1226   /* If pWalker->u.i is 3 then any term of the expression that comes from
1227   ** the ON or USING clauses of a join disqualifies the expression
1228   ** from being considered constant. */
1229   if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){
1230     pWalker->u.i = 0;
1231     return WRC_Abort;
1232   }
1233 
1234   switch( pExpr->op ){
1235     /* Consider functions to be constant if all their arguments are constant
1236     ** and either pWalker->u.i==2 or the function as the SQLITE_FUNC_CONST
1237     ** flag. */
1238     case TK_FUNCTION:
1239       if( pWalker->u.i==2 || ExprHasProperty(pExpr,EP_Constant) ){
1240         return WRC_Continue;
1241       }
1242       /* Fall through */
1243     case TK_ID:
1244     case TK_COLUMN:
1245     case TK_AGG_FUNCTION:
1246     case TK_AGG_COLUMN:
1247       testcase( pExpr->op==TK_ID );
1248       testcase( pExpr->op==TK_COLUMN );
1249       testcase( pExpr->op==TK_AGG_FUNCTION );
1250       testcase( pExpr->op==TK_AGG_COLUMN );
1251       pWalker->u.i = 0;
1252       return WRC_Abort;
1253     default:
1254       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1255       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1256       return WRC_Continue;
1257   }
1258 }
1259 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1260   UNUSED_PARAMETER(NotUsed);
1261   pWalker->u.i = 0;
1262   return WRC_Abort;
1263 }
1264 static int exprIsConst(Expr *p, int initFlag){
1265   Walker w;
1266   memset(&w, 0, sizeof(w));
1267   w.u.i = initFlag;
1268   w.xExprCallback = exprNodeIsConstant;
1269   w.xSelectCallback = selectNodeIsConstant;
1270   sqlite3WalkExpr(&w, p);
1271   return w.u.i;
1272 }
1273 
1274 /*
1275 ** Walk an expression tree.  Return 1 if the expression is constant
1276 ** and 0 if it involves variables or function calls.
1277 **
1278 ** For the purposes of this function, a double-quoted string (ex: "abc")
1279 ** is considered a variable but a single-quoted string (ex: 'abc') is
1280 ** a constant.
1281 */
1282 int sqlite3ExprIsConstant(Expr *p){
1283   return exprIsConst(p, 1);
1284 }
1285 
1286 /*
1287 ** Walk an expression tree.  Return 1 if the expression is constant
1288 ** that does no originate from the ON or USING clauses of a join.
1289 ** Return 0 if it involves variables or function calls or terms from
1290 ** an ON or USING clause.
1291 */
1292 int sqlite3ExprIsConstantNotJoin(Expr *p){
1293   return exprIsConst(p, 3);
1294 }
1295 
1296 /*
1297 ** Walk an expression tree.  Return 1 if the expression is constant
1298 ** or a function call with constant arguments.  Return and 0 if there
1299 ** are any variables.
1300 **
1301 ** For the purposes of this function, a double-quoted string (ex: "abc")
1302 ** is considered a variable but a single-quoted string (ex: 'abc') is
1303 ** a constant.
1304 */
1305 int sqlite3ExprIsConstantOrFunction(Expr *p){
1306   return exprIsConst(p, 2);
1307 }
1308 
1309 /*
1310 ** If the expression p codes a constant integer that is small enough
1311 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1312 ** in *pValue.  If the expression is not an integer or if it is too big
1313 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1314 */
1315 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1316   int rc = 0;
1317 
1318   /* If an expression is an integer literal that fits in a signed 32-bit
1319   ** integer, then the EP_IntValue flag will have already been set */
1320   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1321            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1322 
1323   if( p->flags & EP_IntValue ){
1324     *pValue = p->u.iValue;
1325     return 1;
1326   }
1327   switch( p->op ){
1328     case TK_UPLUS: {
1329       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1330       break;
1331     }
1332     case TK_UMINUS: {
1333       int v;
1334       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1335         assert( v!=(-2147483647-1) );
1336         *pValue = -v;
1337         rc = 1;
1338       }
1339       break;
1340     }
1341     default: break;
1342   }
1343   return rc;
1344 }
1345 
1346 /*
1347 ** Return FALSE if there is no chance that the expression can be NULL.
1348 **
1349 ** If the expression might be NULL or if the expression is too complex
1350 ** to tell return TRUE.
1351 **
1352 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1353 ** when we know that a value cannot be NULL.  Hence, a false positive
1354 ** (returning TRUE when in fact the expression can never be NULL) might
1355 ** be a small performance hit but is otherwise harmless.  On the other
1356 ** hand, a false negative (returning FALSE when the result could be NULL)
1357 ** will likely result in an incorrect answer.  So when in doubt, return
1358 ** TRUE.
1359 */
1360 int sqlite3ExprCanBeNull(const Expr *p){
1361   u8 op;
1362   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1363   op = p->op;
1364   if( op==TK_REGISTER ) op = p->op2;
1365   switch( op ){
1366     case TK_INTEGER:
1367     case TK_STRING:
1368     case TK_FLOAT:
1369     case TK_BLOB:
1370       return 0;
1371     case TK_COLUMN:
1372       assert( p->pTab!=0 );
1373       return p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0;
1374     default:
1375       return 1;
1376   }
1377 }
1378 
1379 /*
1380 ** Return TRUE if the given expression is a constant which would be
1381 ** unchanged by OP_Affinity with the affinity given in the second
1382 ** argument.
1383 **
1384 ** This routine is used to determine if the OP_Affinity operation
1385 ** can be omitted.  When in doubt return FALSE.  A false negative
1386 ** is harmless.  A false positive, however, can result in the wrong
1387 ** answer.
1388 */
1389 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1390   u8 op;
1391   if( aff==SQLITE_AFF_NONE ) return 1;
1392   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1393   op = p->op;
1394   if( op==TK_REGISTER ) op = p->op2;
1395   switch( op ){
1396     case TK_INTEGER: {
1397       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1398     }
1399     case TK_FLOAT: {
1400       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1401     }
1402     case TK_STRING: {
1403       return aff==SQLITE_AFF_TEXT;
1404     }
1405     case TK_BLOB: {
1406       return 1;
1407     }
1408     case TK_COLUMN: {
1409       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1410       return p->iColumn<0
1411           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1412     }
1413     default: {
1414       return 0;
1415     }
1416   }
1417 }
1418 
1419 /*
1420 ** Return TRUE if the given string is a row-id column name.
1421 */
1422 int sqlite3IsRowid(const char *z){
1423   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1424   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1425   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1426   return 0;
1427 }
1428 
1429 /*
1430 ** Return true if we are able to the IN operator optimization on a
1431 ** query of the form
1432 **
1433 **       x IN (SELECT ...)
1434 **
1435 ** Where the SELECT... clause is as specified by the parameter to this
1436 ** routine.
1437 **
1438 ** The Select object passed in has already been preprocessed and no
1439 ** errors have been found.
1440 */
1441 #ifndef SQLITE_OMIT_SUBQUERY
1442 static int isCandidateForInOpt(Select *p){
1443   SrcList *pSrc;
1444   ExprList *pEList;
1445   Table *pTab;
1446   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1447   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1448   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1449     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1450     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1451     return 0; /* No DISTINCT keyword and no aggregate functions */
1452   }
1453   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1454   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1455   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1456   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1457   pSrc = p->pSrc;
1458   assert( pSrc!=0 );
1459   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1460   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1461   pTab = pSrc->a[0].pTab;
1462   if( NEVER(pTab==0) ) return 0;
1463   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1464   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1465   pEList = p->pEList;
1466   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1467   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1468   return 1;
1469 }
1470 #endif /* SQLITE_OMIT_SUBQUERY */
1471 
1472 /*
1473 ** Code an OP_Once instruction and allocate space for its flag. Return the
1474 ** address of the new instruction.
1475 */
1476 int sqlite3CodeOnce(Parse *pParse){
1477   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1478   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1479 }
1480 
1481 /*
1482 ** Generate code that checks the left-most column of index table iCur to see if
1483 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1484 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1485 ** to be set to NULL if iCur contains one or more NULL values.
1486 */
1487 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1488   int j1;
1489   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1490   j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1491   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1492   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1493   VdbeComment((v, "first_entry_in(%d)", iCur));
1494   sqlite3VdbeJumpHere(v, j1);
1495 }
1496 
1497 
1498 #ifndef SQLITE_OMIT_SUBQUERY
1499 /*
1500 ** The argument is an IN operator with a list (not a subquery) on the
1501 ** right-hand side.  Return TRUE if that list is constant.
1502 */
1503 static int sqlite3InRhsIsConstant(Expr *pIn){
1504   Expr *pLHS;
1505   int res;
1506   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1507   pLHS = pIn->pLeft;
1508   pIn->pLeft = 0;
1509   res = sqlite3ExprIsConstant(pIn);
1510   pIn->pLeft = pLHS;
1511   return res;
1512 }
1513 #endif
1514 
1515 /*
1516 ** This function is used by the implementation of the IN (...) operator.
1517 ** The pX parameter is the expression on the RHS of the IN operator, which
1518 ** might be either a list of expressions or a subquery.
1519 **
1520 ** The job of this routine is to find or create a b-tree object that can
1521 ** be used either to test for membership in the RHS set or to iterate through
1522 ** all members of the RHS set, skipping duplicates.
1523 **
1524 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1525 ** and pX->iTable is set to the index of that cursor.
1526 **
1527 ** The returned value of this function indicates the b-tree type, as follows:
1528 **
1529 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1530 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1531 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1532 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1533 **                         populated epheremal table.
1534 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1535 **                         implemented as a sequence of comparisons.
1536 **
1537 ** An existing b-tree might be used if the RHS expression pX is a simple
1538 ** subquery such as:
1539 **
1540 **     SELECT <column> FROM <table>
1541 **
1542 ** If the RHS of the IN operator is a list or a more complex subquery, then
1543 ** an ephemeral table might need to be generated from the RHS and then
1544 ** pX->iTable made to point to the ephermeral table instead of an
1545 ** existing table.
1546 **
1547 ** The inFlags parameter must contain exactly one of the bits
1548 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1549 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1550 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1551 ** IN index will be used to loop over all values of the RHS of the
1552 ** IN operator.
1553 **
1554 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1555 ** through the set members) then the b-tree must not contain duplicates.
1556 ** An epheremal table must be used unless the selected <column> is guaranteed
1557 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1558 ** has a UNIQUE constraint or UNIQUE index.
1559 **
1560 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1561 ** for fast set membership tests) then an epheremal table must
1562 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1563 ** be found with <column> as its left-most column.
1564 **
1565 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1566 ** if the RHS of the IN operator is a list (not a subquery) then this
1567 ** routine might decide that creating an ephemeral b-tree for membership
1568 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1569 ** calling routine should implement the IN operator using a sequence
1570 ** of Eq or Ne comparison operations.
1571 **
1572 ** When the b-tree is being used for membership tests, the calling function
1573 ** might need to know whether or not the RHS side of the IN operator
1574 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1575 ** if there is any chance that the (...) might contain a NULL value at
1576 ** runtime, then a register is allocated and the register number written
1577 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1578 ** NULL value, then *prRhsHasNull is left unchanged.
1579 **
1580 ** If a register is allocated and its location stored in *prRhsHasNull, then
1581 ** the value in that register will be NULL if the b-tree contains one or more
1582 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1583 ** NULL values.
1584 */
1585 #ifndef SQLITE_OMIT_SUBQUERY
1586 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1587   Select *p;                            /* SELECT to the right of IN operator */
1588   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1589   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1590   int mustBeUnique;                     /* True if RHS must be unique */
1591   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1592 
1593   assert( pX->op==TK_IN );
1594   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1595 
1596   /* Check to see if an existing table or index can be used to
1597   ** satisfy the query.  This is preferable to generating a new
1598   ** ephemeral table.
1599   */
1600   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1601   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1602     sqlite3 *db = pParse->db;              /* Database connection */
1603     Table *pTab;                           /* Table <table>. */
1604     Expr *pExpr;                           /* Expression <column> */
1605     i16 iCol;                              /* Index of column <column> */
1606     i16 iDb;                               /* Database idx for pTab */
1607 
1608     assert( p );                        /* Because of isCandidateForInOpt(p) */
1609     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1610     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1611     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1612     pTab = p->pSrc->a[0].pTab;
1613     pExpr = p->pEList->a[0].pExpr;
1614     iCol = (i16)pExpr->iColumn;
1615 
1616     /* Code an OP_Transaction and OP_TableLock for <table>. */
1617     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1618     sqlite3CodeVerifySchema(pParse, iDb);
1619     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1620 
1621     /* This function is only called from two places. In both cases the vdbe
1622     ** has already been allocated. So assume sqlite3GetVdbe() is always
1623     ** successful here.
1624     */
1625     assert(v);
1626     if( iCol<0 ){
1627       int iAddr = sqlite3CodeOnce(pParse);
1628       VdbeCoverage(v);
1629 
1630       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1631       eType = IN_INDEX_ROWID;
1632 
1633       sqlite3VdbeJumpHere(v, iAddr);
1634     }else{
1635       Index *pIdx;                         /* Iterator variable */
1636 
1637       /* The collation sequence used by the comparison. If an index is to
1638       ** be used in place of a temp-table, it must be ordered according
1639       ** to this collation sequence.  */
1640       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1641 
1642       /* Check that the affinity that will be used to perform the
1643       ** comparison is the same as the affinity of the column. If
1644       ** it is not, it is not possible to use any index.
1645       */
1646       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1647 
1648       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1649         if( (pIdx->aiColumn[0]==iCol)
1650          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1651          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1652         ){
1653           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1654           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1655           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1656           VdbeComment((v, "%s", pIdx->zName));
1657           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1658           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1659 
1660           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1661             *prRhsHasNull = ++pParse->nMem;
1662             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1663           }
1664           sqlite3VdbeJumpHere(v, iAddr);
1665         }
1666       }
1667     }
1668   }
1669 
1670   /* If no preexisting index is available for the IN clause
1671   ** and IN_INDEX_NOOP is an allowed reply
1672   ** and the RHS of the IN operator is a list, not a subquery
1673   ** and the RHS is not contant or has two or fewer terms,
1674   ** then it is not worth creating an ephermeral table to evaluate
1675   ** the IN operator so return IN_INDEX_NOOP.
1676   */
1677   if( eType==0
1678    && (inFlags & IN_INDEX_NOOP_OK)
1679    && !ExprHasProperty(pX, EP_xIsSelect)
1680    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1681   ){
1682     eType = IN_INDEX_NOOP;
1683   }
1684 
1685 
1686   if( eType==0 ){
1687     /* Could not find an existing table or index to use as the RHS b-tree.
1688     ** We will have to generate an ephemeral table to do the job.
1689     */
1690     u32 savedNQueryLoop = pParse->nQueryLoop;
1691     int rMayHaveNull = 0;
1692     eType = IN_INDEX_EPH;
1693     if( inFlags & IN_INDEX_LOOP ){
1694       pParse->nQueryLoop = 0;
1695       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1696         eType = IN_INDEX_ROWID;
1697       }
1698     }else if( prRhsHasNull ){
1699       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1700     }
1701     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1702     pParse->nQueryLoop = savedNQueryLoop;
1703   }else{
1704     pX->iTable = iTab;
1705   }
1706   return eType;
1707 }
1708 #endif
1709 
1710 /*
1711 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1712 ** or IN operators.  Examples:
1713 **
1714 **     (SELECT a FROM b)          -- subquery
1715 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1716 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1717 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1718 **
1719 ** The pExpr parameter describes the expression that contains the IN
1720 ** operator or subquery.
1721 **
1722 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1723 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1724 ** to some integer key column of a table B-Tree. In this case, use an
1725 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1726 ** (slower) variable length keys B-Tree.
1727 **
1728 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1729 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1730 ** All this routine does is initialize the register given by rMayHaveNull
1731 ** to NULL.  Calling routines will take care of changing this register
1732 ** value to non-NULL if the RHS is NULL-free.
1733 **
1734 ** For a SELECT or EXISTS operator, return the register that holds the
1735 ** result.  For IN operators or if an error occurs, the return value is 0.
1736 */
1737 #ifndef SQLITE_OMIT_SUBQUERY
1738 int sqlite3CodeSubselect(
1739   Parse *pParse,          /* Parsing context */
1740   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1741   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1742   int isRowid             /* If true, LHS of IN operator is a rowid */
1743 ){
1744   int jmpIfDynamic = -1;                      /* One-time test address */
1745   int rReg = 0;                           /* Register storing resulting */
1746   Vdbe *v = sqlite3GetVdbe(pParse);
1747   if( NEVER(v==0) ) return 0;
1748   sqlite3ExprCachePush(pParse);
1749 
1750   /* This code must be run in its entirety every time it is encountered
1751   ** if any of the following is true:
1752   **
1753   **    *  The right-hand side is a correlated subquery
1754   **    *  The right-hand side is an expression list containing variables
1755   **    *  We are inside a trigger
1756   **
1757   ** If all of the above are false, then we can run this code just once
1758   ** save the results, and reuse the same result on subsequent invocations.
1759   */
1760   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1761     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1762   }
1763 
1764 #ifndef SQLITE_OMIT_EXPLAIN
1765   if( pParse->explain==2 ){
1766     char *zMsg = sqlite3MPrintf(
1767         pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
1768         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1769     );
1770     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1771   }
1772 #endif
1773 
1774   switch( pExpr->op ){
1775     case TK_IN: {
1776       char affinity;              /* Affinity of the LHS of the IN */
1777       int addr;                   /* Address of OP_OpenEphemeral instruction */
1778       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1779       KeyInfo *pKeyInfo = 0;      /* Key information */
1780 
1781       affinity = sqlite3ExprAffinity(pLeft);
1782 
1783       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1784       ** expression it is handled the same way.  An ephemeral table is
1785       ** filled with single-field index keys representing the results
1786       ** from the SELECT or the <exprlist>.
1787       **
1788       ** If the 'x' expression is a column value, or the SELECT...
1789       ** statement returns a column value, then the affinity of that
1790       ** column is used to build the index keys. If both 'x' and the
1791       ** SELECT... statement are columns, then numeric affinity is used
1792       ** if either column has NUMERIC or INTEGER affinity. If neither
1793       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1794       ** is used.
1795       */
1796       pExpr->iTable = pParse->nTab++;
1797       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1798       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1799 
1800       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1801         /* Case 1:     expr IN (SELECT ...)
1802         **
1803         ** Generate code to write the results of the select into the temporary
1804         ** table allocated and opened above.
1805         */
1806         Select *pSelect = pExpr->x.pSelect;
1807         SelectDest dest;
1808         ExprList *pEList;
1809 
1810         assert( !isRowid );
1811         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1812         dest.affSdst = (u8)affinity;
1813         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1814         pSelect->iLimit = 0;
1815         testcase( pSelect->selFlags & SF_Distinct );
1816         pSelect->selFlags &= ~SF_Distinct;
1817         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1818         if( sqlite3Select(pParse, pSelect, &dest) ){
1819           sqlite3KeyInfoUnref(pKeyInfo);
1820           return 0;
1821         }
1822         pEList = pSelect->pEList;
1823         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1824         assert( pEList!=0 );
1825         assert( pEList->nExpr>0 );
1826         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1827         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1828                                                          pEList->a[0].pExpr);
1829       }else if( ALWAYS(pExpr->x.pList!=0) ){
1830         /* Case 2:     expr IN (exprlist)
1831         **
1832         ** For each expression, build an index key from the evaluation and
1833         ** store it in the temporary table. If <expr> is a column, then use
1834         ** that columns affinity when building index keys. If <expr> is not
1835         ** a column, use numeric affinity.
1836         */
1837         int i;
1838         ExprList *pList = pExpr->x.pList;
1839         struct ExprList_item *pItem;
1840         int r1, r2, r3;
1841 
1842         if( !affinity ){
1843           affinity = SQLITE_AFF_NONE;
1844         }
1845         if( pKeyInfo ){
1846           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1847           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1848         }
1849 
1850         /* Loop through each expression in <exprlist>. */
1851         r1 = sqlite3GetTempReg(pParse);
1852         r2 = sqlite3GetTempReg(pParse);
1853         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1854         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1855           Expr *pE2 = pItem->pExpr;
1856           int iValToIns;
1857 
1858           /* If the expression is not constant then we will need to
1859           ** disable the test that was generated above that makes sure
1860           ** this code only executes once.  Because for a non-constant
1861           ** expression we need to rerun this code each time.
1862           */
1863           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1864             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1865             jmpIfDynamic = -1;
1866           }
1867 
1868           /* Evaluate the expression and insert it into the temp table */
1869           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1870             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1871           }else{
1872             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1873             if( isRowid ){
1874               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1875                                 sqlite3VdbeCurrentAddr(v)+2);
1876               VdbeCoverage(v);
1877               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1878             }else{
1879               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1880               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1881               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1882             }
1883           }
1884         }
1885         sqlite3ReleaseTempReg(pParse, r1);
1886         sqlite3ReleaseTempReg(pParse, r2);
1887       }
1888       if( pKeyInfo ){
1889         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
1890       }
1891       break;
1892     }
1893 
1894     case TK_EXISTS:
1895     case TK_SELECT:
1896     default: {
1897       /* If this has to be a scalar SELECT.  Generate code to put the
1898       ** value of this select in a memory cell and record the number
1899       ** of the memory cell in iColumn.  If this is an EXISTS, write
1900       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1901       ** and record that memory cell in iColumn.
1902       */
1903       Select *pSel;                         /* SELECT statement to encode */
1904       SelectDest dest;                      /* How to deal with SELECt result */
1905 
1906       testcase( pExpr->op==TK_EXISTS );
1907       testcase( pExpr->op==TK_SELECT );
1908       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1909 
1910       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1911       pSel = pExpr->x.pSelect;
1912       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1913       if( pExpr->op==TK_SELECT ){
1914         dest.eDest = SRT_Mem;
1915         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
1916         VdbeComment((v, "Init subquery result"));
1917       }else{
1918         dest.eDest = SRT_Exists;
1919         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
1920         VdbeComment((v, "Init EXISTS result"));
1921       }
1922       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1923       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1924                                   &sqlite3IntTokens[1]);
1925       pSel->iLimit = 0;
1926       if( sqlite3Select(pParse, pSel, &dest) ){
1927         return 0;
1928       }
1929       rReg = dest.iSDParm;
1930       ExprSetVVAProperty(pExpr, EP_NoReduce);
1931       break;
1932     }
1933   }
1934 
1935   if( rHasNullFlag ){
1936     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
1937   }
1938 
1939   if( jmpIfDynamic>=0 ){
1940     sqlite3VdbeJumpHere(v, jmpIfDynamic);
1941   }
1942   sqlite3ExprCachePop(pParse);
1943 
1944   return rReg;
1945 }
1946 #endif /* SQLITE_OMIT_SUBQUERY */
1947 
1948 #ifndef SQLITE_OMIT_SUBQUERY
1949 /*
1950 ** Generate code for an IN expression.
1951 **
1952 **      x IN (SELECT ...)
1953 **      x IN (value, value, ...)
1954 **
1955 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1956 ** is an array of zero or more values.  The expression is true if the LHS is
1957 ** contained within the RHS.  The value of the expression is unknown (NULL)
1958 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1959 ** RHS contains one or more NULL values.
1960 **
1961 ** This routine generates code that jumps to destIfFalse if the LHS is not
1962 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1963 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1964 ** within the RHS then fall through.
1965 */
1966 static void sqlite3ExprCodeIN(
1967   Parse *pParse,        /* Parsing and code generating context */
1968   Expr *pExpr,          /* The IN expression */
1969   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1970   int destIfNull        /* Jump here if the results are unknown due to NULLs */
1971 ){
1972   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1973   char affinity;        /* Comparison affinity to use */
1974   int eType;            /* Type of the RHS */
1975   int r1;               /* Temporary use register */
1976   Vdbe *v;              /* Statement under construction */
1977 
1978   /* Compute the RHS.   After this step, the table with cursor
1979   ** pExpr->iTable will contains the values that make up the RHS.
1980   */
1981   v = pParse->pVdbe;
1982   assert( v!=0 );       /* OOM detected prior to this routine */
1983   VdbeNoopComment((v, "begin IN expr"));
1984   eType = sqlite3FindInIndex(pParse, pExpr,
1985                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
1986                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
1987 
1988   /* Figure out the affinity to use to create a key from the results
1989   ** of the expression. affinityStr stores a static string suitable for
1990   ** P4 of OP_MakeRecord.
1991   */
1992   affinity = comparisonAffinity(pExpr);
1993 
1994   /* Code the LHS, the <expr> from "<expr> IN (...)".
1995   */
1996   sqlite3ExprCachePush(pParse);
1997   r1 = sqlite3GetTempReg(pParse);
1998   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1999 
2000   /* If sqlite3FindInIndex() did not find or create an index that is
2001   ** suitable for evaluating the IN operator, then evaluate using a
2002   ** sequence of comparisons.
2003   */
2004   if( eType==IN_INDEX_NOOP ){
2005     ExprList *pList = pExpr->x.pList;
2006     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2007     int labelOk = sqlite3VdbeMakeLabel(v);
2008     int r2, regToFree;
2009     int regCkNull = 0;
2010     int ii;
2011     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2012     if( destIfNull!=destIfFalse ){
2013       regCkNull = sqlite3GetTempReg(pParse);
2014       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2015     }
2016     for(ii=0; ii<pList->nExpr; ii++){
2017       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2018       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2019         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2020       }
2021       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2022         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2023                           (void*)pColl, P4_COLLSEQ);
2024         VdbeCoverageIf(v, ii<pList->nExpr-1);
2025         VdbeCoverageIf(v, ii==pList->nExpr-1);
2026         sqlite3VdbeChangeP5(v, affinity);
2027       }else{
2028         assert( destIfNull==destIfFalse );
2029         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2030                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2031         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2032       }
2033       sqlite3ReleaseTempReg(pParse, regToFree);
2034     }
2035     if( regCkNull ){
2036       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2037       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2038     }
2039     sqlite3VdbeResolveLabel(v, labelOk);
2040     sqlite3ReleaseTempReg(pParse, regCkNull);
2041   }else{
2042 
2043     /* If the LHS is NULL, then the result is either false or NULL depending
2044     ** on whether the RHS is empty or not, respectively.
2045     */
2046     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2047       if( destIfNull==destIfFalse ){
2048         /* Shortcut for the common case where the false and NULL outcomes are
2049         ** the same. */
2050         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2051       }else{
2052         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2053         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2054         VdbeCoverage(v);
2055         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
2056         sqlite3VdbeJumpHere(v, addr1);
2057       }
2058     }
2059 
2060     if( eType==IN_INDEX_ROWID ){
2061       /* In this case, the RHS is the ROWID of table b-tree
2062       */
2063       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2064       sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2065       VdbeCoverage(v);
2066     }else{
2067       /* In this case, the RHS is an index b-tree.
2068       */
2069       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2070 
2071       /* If the set membership test fails, then the result of the
2072       ** "x IN (...)" expression must be either 0 or NULL. If the set
2073       ** contains no NULL values, then the result is 0. If the set
2074       ** contains one or more NULL values, then the result of the
2075       ** expression is also NULL.
2076       */
2077       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2078       if( rRhsHasNull==0 ){
2079         /* This branch runs if it is known at compile time that the RHS
2080         ** cannot contain NULL values. This happens as the result
2081         ** of a "NOT NULL" constraint in the database schema.
2082         **
2083         ** Also run this branch if NULL is equivalent to FALSE
2084         ** for this particular IN operator.
2085         */
2086         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2087         VdbeCoverage(v);
2088       }else{
2089         /* In this branch, the RHS of the IN might contain a NULL and
2090         ** the presence of a NULL on the RHS makes a difference in the
2091         ** outcome.
2092         */
2093         int j1;
2094 
2095         /* First check to see if the LHS is contained in the RHS.  If so,
2096         ** then the answer is TRUE the presence of NULLs in the RHS does
2097         ** not matter.  If the LHS is not contained in the RHS, then the
2098         ** answer is NULL if the RHS contains NULLs and the answer is
2099         ** FALSE if the RHS is NULL-free.
2100         */
2101         j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2102         VdbeCoverage(v);
2103         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2104         VdbeCoverage(v);
2105         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2106         sqlite3VdbeJumpHere(v, j1);
2107       }
2108     }
2109   }
2110   sqlite3ReleaseTempReg(pParse, r1);
2111   sqlite3ExprCachePop(pParse);
2112   VdbeComment((v, "end IN expr"));
2113 }
2114 #endif /* SQLITE_OMIT_SUBQUERY */
2115 
2116 /*
2117 ** Duplicate an 8-byte value
2118 */
2119 static char *dup8bytes(Vdbe *v, const char *in){
2120   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
2121   if( out ){
2122     memcpy(out, in, 8);
2123   }
2124   return out;
2125 }
2126 
2127 #ifndef SQLITE_OMIT_FLOATING_POINT
2128 /*
2129 ** Generate an instruction that will put the floating point
2130 ** value described by z[0..n-1] into register iMem.
2131 **
2132 ** The z[] string will probably not be zero-terminated.  But the
2133 ** z[n] character is guaranteed to be something that does not look
2134 ** like the continuation of the number.
2135 */
2136 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2137   if( ALWAYS(z!=0) ){
2138     double value;
2139     char *zV;
2140     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2141     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2142     if( negateFlag ) value = -value;
2143     zV = dup8bytes(v, (char*)&value);
2144     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2145   }
2146 }
2147 #endif
2148 
2149 
2150 /*
2151 ** Generate an instruction that will put the integer describe by
2152 ** text z[0..n-1] into register iMem.
2153 **
2154 ** Expr.u.zToken is always UTF8 and zero-terminated.
2155 */
2156 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2157   Vdbe *v = pParse->pVdbe;
2158   if( pExpr->flags & EP_IntValue ){
2159     int i = pExpr->u.iValue;
2160     assert( i>=0 );
2161     if( negFlag ) i = -i;
2162     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2163   }else{
2164     int c;
2165     i64 value;
2166     const char *z = pExpr->u.zToken;
2167     assert( z!=0 );
2168     c = sqlite3DecOrHexToI64(z, &value);
2169     if( c==0 || (c==2 && negFlag) ){
2170       char *zV;
2171       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2172       zV = dup8bytes(v, (char*)&value);
2173       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2174     }else{
2175 #ifdef SQLITE_OMIT_FLOATING_POINT
2176       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2177 #else
2178 #ifndef SQLITE_OMIT_HEX_INTEGER
2179       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2180         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2181       }else
2182 #endif
2183       {
2184         codeReal(v, z, negFlag, iMem);
2185       }
2186 #endif
2187     }
2188   }
2189 }
2190 
2191 /*
2192 ** Clear a cache entry.
2193 */
2194 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2195   if( p->tempReg ){
2196     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2197       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2198     }
2199     p->tempReg = 0;
2200   }
2201 }
2202 
2203 
2204 /*
2205 ** Record in the column cache that a particular column from a
2206 ** particular table is stored in a particular register.
2207 */
2208 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2209   int i;
2210   int minLru;
2211   int idxLru;
2212   struct yColCache *p;
2213 
2214   assert( iReg>0 );  /* Register numbers are always positive */
2215   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2216 
2217   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2218   ** for testing only - to verify that SQLite always gets the same answer
2219   ** with and without the column cache.
2220   */
2221   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2222 
2223   /* First replace any existing entry.
2224   **
2225   ** Actually, the way the column cache is currently used, we are guaranteed
2226   ** that the object will never already be in cache.  Verify this guarantee.
2227   */
2228 #ifndef NDEBUG
2229   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2230     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2231   }
2232 #endif
2233 
2234   /* Find an empty slot and replace it */
2235   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2236     if( p->iReg==0 ){
2237       p->iLevel = pParse->iCacheLevel;
2238       p->iTable = iTab;
2239       p->iColumn = iCol;
2240       p->iReg = iReg;
2241       p->tempReg = 0;
2242       p->lru = pParse->iCacheCnt++;
2243       return;
2244     }
2245   }
2246 
2247   /* Replace the last recently used */
2248   minLru = 0x7fffffff;
2249   idxLru = -1;
2250   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2251     if( p->lru<minLru ){
2252       idxLru = i;
2253       minLru = p->lru;
2254     }
2255   }
2256   if( ALWAYS(idxLru>=0) ){
2257     p = &pParse->aColCache[idxLru];
2258     p->iLevel = pParse->iCacheLevel;
2259     p->iTable = iTab;
2260     p->iColumn = iCol;
2261     p->iReg = iReg;
2262     p->tempReg = 0;
2263     p->lru = pParse->iCacheCnt++;
2264     return;
2265   }
2266 }
2267 
2268 /*
2269 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2270 ** Purge the range of registers from the column cache.
2271 */
2272 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2273   int i;
2274   int iLast = iReg + nReg - 1;
2275   struct yColCache *p;
2276   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2277     int r = p->iReg;
2278     if( r>=iReg && r<=iLast ){
2279       cacheEntryClear(pParse, p);
2280       p->iReg = 0;
2281     }
2282   }
2283 }
2284 
2285 /*
2286 ** Remember the current column cache context.  Any new entries added
2287 ** added to the column cache after this call are removed when the
2288 ** corresponding pop occurs.
2289 */
2290 void sqlite3ExprCachePush(Parse *pParse){
2291   pParse->iCacheLevel++;
2292 #ifdef SQLITE_DEBUG
2293   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2294     printf("PUSH to %d\n", pParse->iCacheLevel);
2295   }
2296 #endif
2297 }
2298 
2299 /*
2300 ** Remove from the column cache any entries that were added since the
2301 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2302 ** the cache to the state it was in prior the most recent Push.
2303 */
2304 void sqlite3ExprCachePop(Parse *pParse){
2305   int i;
2306   struct yColCache *p;
2307   assert( pParse->iCacheLevel>=1 );
2308   pParse->iCacheLevel--;
2309 #ifdef SQLITE_DEBUG
2310   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2311     printf("POP  to %d\n", pParse->iCacheLevel);
2312   }
2313 #endif
2314   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2315     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2316       cacheEntryClear(pParse, p);
2317       p->iReg = 0;
2318     }
2319   }
2320 }
2321 
2322 /*
2323 ** When a cached column is reused, make sure that its register is
2324 ** no longer available as a temp register.  ticket #3879:  that same
2325 ** register might be in the cache in multiple places, so be sure to
2326 ** get them all.
2327 */
2328 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2329   int i;
2330   struct yColCache *p;
2331   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2332     if( p->iReg==iReg ){
2333       p->tempReg = 0;
2334     }
2335   }
2336 }
2337 
2338 /*
2339 ** Generate code to extract the value of the iCol-th column of a table.
2340 */
2341 void sqlite3ExprCodeGetColumnOfTable(
2342   Vdbe *v,        /* The VDBE under construction */
2343   Table *pTab,    /* The table containing the value */
2344   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2345   int iCol,       /* Index of the column to extract */
2346   int regOut      /* Extract the value into this register */
2347 ){
2348   if( iCol<0 || iCol==pTab->iPKey ){
2349     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2350   }else{
2351     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2352     int x = iCol;
2353     if( !HasRowid(pTab) ){
2354       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2355     }
2356     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2357   }
2358   if( iCol>=0 ){
2359     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2360   }
2361 }
2362 
2363 /*
2364 ** Generate code that will extract the iColumn-th column from
2365 ** table pTab and store the column value in a register.  An effort
2366 ** is made to store the column value in register iReg, but this is
2367 ** not guaranteed.  The location of the column value is returned.
2368 **
2369 ** There must be an open cursor to pTab in iTable when this routine
2370 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2371 */
2372 int sqlite3ExprCodeGetColumn(
2373   Parse *pParse,   /* Parsing and code generating context */
2374   Table *pTab,     /* Description of the table we are reading from */
2375   int iColumn,     /* Index of the table column */
2376   int iTable,      /* The cursor pointing to the table */
2377   int iReg,        /* Store results here */
2378   u8 p5            /* P5 value for OP_Column */
2379 ){
2380   Vdbe *v = pParse->pVdbe;
2381   int i;
2382   struct yColCache *p;
2383 
2384   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2385     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2386       p->lru = pParse->iCacheCnt++;
2387       sqlite3ExprCachePinRegister(pParse, p->iReg);
2388       return p->iReg;
2389     }
2390   }
2391   assert( v!=0 );
2392   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2393   if( p5 ){
2394     sqlite3VdbeChangeP5(v, p5);
2395   }else{
2396     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2397   }
2398   return iReg;
2399 }
2400 
2401 /*
2402 ** Clear all column cache entries.
2403 */
2404 void sqlite3ExprCacheClear(Parse *pParse){
2405   int i;
2406   struct yColCache *p;
2407 
2408 #if SQLITE_DEBUG
2409   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2410     printf("CLEAR\n");
2411   }
2412 #endif
2413   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2414     if( p->iReg ){
2415       cacheEntryClear(pParse, p);
2416       p->iReg = 0;
2417     }
2418   }
2419 }
2420 
2421 /*
2422 ** Record the fact that an affinity change has occurred on iCount
2423 ** registers starting with iStart.
2424 */
2425 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2426   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2427 }
2428 
2429 /*
2430 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2431 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2432 */
2433 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2434   int i;
2435   struct yColCache *p;
2436   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2437   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2438   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2439     int x = p->iReg;
2440     if( x>=iFrom && x<iFrom+nReg ){
2441       p->iReg += iTo-iFrom;
2442     }
2443   }
2444 }
2445 
2446 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2447 /*
2448 ** Return true if any register in the range iFrom..iTo (inclusive)
2449 ** is used as part of the column cache.
2450 **
2451 ** This routine is used within assert() and testcase() macros only
2452 ** and does not appear in a normal build.
2453 */
2454 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2455   int i;
2456   struct yColCache *p;
2457   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2458     int r = p->iReg;
2459     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2460   }
2461   return 0;
2462 }
2463 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2464 
2465 /*
2466 ** Convert an expression node to a TK_REGISTER
2467 */
2468 static void exprToRegister(Expr *p, int iReg){
2469   p->op2 = p->op;
2470   p->op = TK_REGISTER;
2471   p->iTable = iReg;
2472   ExprClearProperty(p, EP_Skip);
2473 }
2474 
2475 /*
2476 ** Generate code into the current Vdbe to evaluate the given
2477 ** expression.  Attempt to store the results in register "target".
2478 ** Return the register where results are stored.
2479 **
2480 ** With this routine, there is no guarantee that results will
2481 ** be stored in target.  The result might be stored in some other
2482 ** register if it is convenient to do so.  The calling function
2483 ** must check the return code and move the results to the desired
2484 ** register.
2485 */
2486 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2487   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2488   int op;                   /* The opcode being coded */
2489   int inReg = target;       /* Results stored in register inReg */
2490   int regFree1 = 0;         /* If non-zero free this temporary register */
2491   int regFree2 = 0;         /* If non-zero free this temporary register */
2492   int r1, r2, r3, r4;       /* Various register numbers */
2493   sqlite3 *db = pParse->db; /* The database connection */
2494   Expr tempX;               /* Temporary expression node */
2495 
2496   assert( target>0 && target<=pParse->nMem );
2497   if( v==0 ){
2498     assert( pParse->db->mallocFailed );
2499     return 0;
2500   }
2501 
2502   if( pExpr==0 ){
2503     op = TK_NULL;
2504   }else{
2505     op = pExpr->op;
2506   }
2507   switch( op ){
2508     case TK_AGG_COLUMN: {
2509       AggInfo *pAggInfo = pExpr->pAggInfo;
2510       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2511       if( !pAggInfo->directMode ){
2512         assert( pCol->iMem>0 );
2513         inReg = pCol->iMem;
2514         break;
2515       }else if( pAggInfo->useSortingIdx ){
2516         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2517                               pCol->iSorterColumn, target);
2518         break;
2519       }
2520       /* Otherwise, fall thru into the TK_COLUMN case */
2521     }
2522     case TK_COLUMN: {
2523       int iTab = pExpr->iTable;
2524       if( iTab<0 ){
2525         if( pParse->ckBase>0 ){
2526           /* Generating CHECK constraints or inserting into partial index */
2527           inReg = pExpr->iColumn + pParse->ckBase;
2528           break;
2529         }else{
2530           /* Deleting from a partial index */
2531           iTab = pParse->iPartIdxTab;
2532         }
2533       }
2534       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2535                                pExpr->iColumn, iTab, target,
2536                                pExpr->op2);
2537       break;
2538     }
2539     case TK_INTEGER: {
2540       codeInteger(pParse, pExpr, 0, target);
2541       break;
2542     }
2543 #ifndef SQLITE_OMIT_FLOATING_POINT
2544     case TK_FLOAT: {
2545       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2546       codeReal(v, pExpr->u.zToken, 0, target);
2547       break;
2548     }
2549 #endif
2550     case TK_STRING: {
2551       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2552       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2553       break;
2554     }
2555     case TK_NULL: {
2556       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2557       break;
2558     }
2559 #ifndef SQLITE_OMIT_BLOB_LITERAL
2560     case TK_BLOB: {
2561       int n;
2562       const char *z;
2563       char *zBlob;
2564       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2565       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2566       assert( pExpr->u.zToken[1]=='\'' );
2567       z = &pExpr->u.zToken[2];
2568       n = sqlite3Strlen30(z) - 1;
2569       assert( z[n]=='\'' );
2570       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2571       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2572       break;
2573     }
2574 #endif
2575     case TK_VARIABLE: {
2576       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2577       assert( pExpr->u.zToken!=0 );
2578       assert( pExpr->u.zToken[0]!=0 );
2579       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2580       if( pExpr->u.zToken[1]!=0 ){
2581         assert( pExpr->u.zToken[0]=='?'
2582              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2583         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2584       }
2585       break;
2586     }
2587     case TK_REGISTER: {
2588       inReg = pExpr->iTable;
2589       break;
2590     }
2591     case TK_AS: {
2592       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2593       break;
2594     }
2595 #ifndef SQLITE_OMIT_CAST
2596     case TK_CAST: {
2597       /* Expressions of the form:   CAST(pLeft AS token) */
2598       int aff, to_op;
2599       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2600       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2601       aff = sqlite3AffinityType(pExpr->u.zToken, 0);
2602       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2603       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2604       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2605       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2606       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2607       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2608       testcase( to_op==OP_ToText );
2609       testcase( to_op==OP_ToBlob );
2610       testcase( to_op==OP_ToNumeric );
2611       testcase( to_op==OP_ToInt );
2612       testcase( to_op==OP_ToReal );
2613       if( inReg!=target ){
2614         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2615         inReg = target;
2616       }
2617       sqlite3VdbeAddOp1(v, to_op, inReg);
2618       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2619       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2620       break;
2621     }
2622 #endif /* SQLITE_OMIT_CAST */
2623     case TK_LT:
2624     case TK_LE:
2625     case TK_GT:
2626     case TK_GE:
2627     case TK_NE:
2628     case TK_EQ: {
2629       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2630       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2631       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2632                   r1, r2, inReg, SQLITE_STOREP2);
2633       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2634       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2635       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2636       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2637       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2638       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2639       testcase( regFree1==0 );
2640       testcase( regFree2==0 );
2641       break;
2642     }
2643     case TK_IS:
2644     case TK_ISNOT: {
2645       testcase( op==TK_IS );
2646       testcase( op==TK_ISNOT );
2647       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2648       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2649       op = (op==TK_IS) ? TK_EQ : TK_NE;
2650       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2651                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2652       VdbeCoverageIf(v, op==TK_EQ);
2653       VdbeCoverageIf(v, op==TK_NE);
2654       testcase( regFree1==0 );
2655       testcase( regFree2==0 );
2656       break;
2657     }
2658     case TK_AND:
2659     case TK_OR:
2660     case TK_PLUS:
2661     case TK_STAR:
2662     case TK_MINUS:
2663     case TK_REM:
2664     case TK_BITAND:
2665     case TK_BITOR:
2666     case TK_SLASH:
2667     case TK_LSHIFT:
2668     case TK_RSHIFT:
2669     case TK_CONCAT: {
2670       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2671       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2672       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2673       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2674       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2675       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2676       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2677       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2678       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2679       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2680       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2681       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2682       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2683       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2684       testcase( regFree1==0 );
2685       testcase( regFree2==0 );
2686       break;
2687     }
2688     case TK_UMINUS: {
2689       Expr *pLeft = pExpr->pLeft;
2690       assert( pLeft );
2691       if( pLeft->op==TK_INTEGER ){
2692         codeInteger(pParse, pLeft, 1, target);
2693 #ifndef SQLITE_OMIT_FLOATING_POINT
2694       }else if( pLeft->op==TK_FLOAT ){
2695         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2696         codeReal(v, pLeft->u.zToken, 1, target);
2697 #endif
2698       }else{
2699         tempX.op = TK_INTEGER;
2700         tempX.flags = EP_IntValue|EP_TokenOnly;
2701         tempX.u.iValue = 0;
2702         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2703         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2704         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2705         testcase( regFree2==0 );
2706       }
2707       inReg = target;
2708       break;
2709     }
2710     case TK_BITNOT:
2711     case TK_NOT: {
2712       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2713       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2714       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2715       testcase( regFree1==0 );
2716       inReg = target;
2717       sqlite3VdbeAddOp2(v, op, r1, inReg);
2718       break;
2719     }
2720     case TK_ISNULL:
2721     case TK_NOTNULL: {
2722       int addr;
2723       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2724       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2725       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2726       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2727       testcase( regFree1==0 );
2728       addr = sqlite3VdbeAddOp1(v, op, r1);
2729       VdbeCoverageIf(v, op==TK_ISNULL);
2730       VdbeCoverageIf(v, op==TK_NOTNULL);
2731       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2732       sqlite3VdbeJumpHere(v, addr);
2733       break;
2734     }
2735     case TK_AGG_FUNCTION: {
2736       AggInfo *pInfo = pExpr->pAggInfo;
2737       if( pInfo==0 ){
2738         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2739         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2740       }else{
2741         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2742       }
2743       break;
2744     }
2745     case TK_FUNCTION: {
2746       ExprList *pFarg;       /* List of function arguments */
2747       int nFarg;             /* Number of function arguments */
2748       FuncDef *pDef;         /* The function definition object */
2749       int nId;               /* Length of the function name in bytes */
2750       const char *zId;       /* The function name */
2751       u32 constMask = 0;     /* Mask of function arguments that are constant */
2752       int i;                 /* Loop counter */
2753       u8 enc = ENC(db);      /* The text encoding used by this database */
2754       CollSeq *pColl = 0;    /* A collating sequence */
2755 
2756       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2757       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2758         pFarg = 0;
2759       }else{
2760         pFarg = pExpr->x.pList;
2761       }
2762       nFarg = pFarg ? pFarg->nExpr : 0;
2763       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2764       zId = pExpr->u.zToken;
2765       nId = sqlite3Strlen30(zId);
2766       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2767       if( pDef==0 || pDef->xFunc==0 ){
2768         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2769         break;
2770       }
2771 
2772       /* Attempt a direct implementation of the built-in COALESCE() and
2773       ** IFNULL() functions.  This avoids unnecessary evalation of
2774       ** arguments past the first non-NULL argument.
2775       */
2776       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2777         int endCoalesce = sqlite3VdbeMakeLabel(v);
2778         assert( nFarg>=2 );
2779         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2780         for(i=1; i<nFarg; i++){
2781           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2782           VdbeCoverage(v);
2783           sqlite3ExprCacheRemove(pParse, target, 1);
2784           sqlite3ExprCachePush(pParse);
2785           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2786           sqlite3ExprCachePop(pParse);
2787         }
2788         sqlite3VdbeResolveLabel(v, endCoalesce);
2789         break;
2790       }
2791 
2792       /* The UNLIKELY() function is a no-op.  The result is the value
2793       ** of the first argument.
2794       */
2795       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2796         assert( nFarg>=1 );
2797         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2798         break;
2799       }
2800 
2801       for(i=0; i<nFarg; i++){
2802         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2803           testcase( i==31 );
2804           constMask |= MASKBIT32(i);
2805         }
2806         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2807           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2808         }
2809       }
2810       if( pFarg ){
2811         if( constMask ){
2812           r1 = pParse->nMem+1;
2813           pParse->nMem += nFarg;
2814         }else{
2815           r1 = sqlite3GetTempRange(pParse, nFarg);
2816         }
2817 
2818         /* For length() and typeof() functions with a column argument,
2819         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2820         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2821         ** loading.
2822         */
2823         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2824           u8 exprOp;
2825           assert( nFarg==1 );
2826           assert( pFarg->a[0].pExpr!=0 );
2827           exprOp = pFarg->a[0].pExpr->op;
2828           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2829             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2830             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2831             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2832             pFarg->a[0].pExpr->op2 =
2833                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2834           }
2835         }
2836 
2837         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2838         sqlite3ExprCodeExprList(pParse, pFarg, r1,
2839                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2840         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
2841       }else{
2842         r1 = 0;
2843       }
2844 #ifndef SQLITE_OMIT_VIRTUALTABLE
2845       /* Possibly overload the function if the first argument is
2846       ** a virtual table column.
2847       **
2848       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2849       ** second argument, not the first, as the argument to test to
2850       ** see if it is a column in a virtual table.  This is done because
2851       ** the left operand of infix functions (the operand we want to
2852       ** control overloading) ends up as the second argument to the
2853       ** function.  The expression "A glob B" is equivalent to
2854       ** "glob(B,A).  We want to use the A in "A glob B" to test
2855       ** for function overloading.  But we use the B term in "glob(B,A)".
2856       */
2857       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2858         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2859       }else if( nFarg>0 ){
2860         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2861       }
2862 #endif
2863       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2864         if( !pColl ) pColl = db->pDfltColl;
2865         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2866       }
2867       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2868                         (char*)pDef, P4_FUNCDEF);
2869       sqlite3VdbeChangeP5(v, (u8)nFarg);
2870       if( nFarg && constMask==0 ){
2871         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2872       }
2873       break;
2874     }
2875 #ifndef SQLITE_OMIT_SUBQUERY
2876     case TK_EXISTS:
2877     case TK_SELECT: {
2878       testcase( op==TK_EXISTS );
2879       testcase( op==TK_SELECT );
2880       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2881       break;
2882     }
2883     case TK_IN: {
2884       int destIfFalse = sqlite3VdbeMakeLabel(v);
2885       int destIfNull = sqlite3VdbeMakeLabel(v);
2886       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2887       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2888       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2889       sqlite3VdbeResolveLabel(v, destIfFalse);
2890       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2891       sqlite3VdbeResolveLabel(v, destIfNull);
2892       break;
2893     }
2894 #endif /* SQLITE_OMIT_SUBQUERY */
2895 
2896 
2897     /*
2898     **    x BETWEEN y AND z
2899     **
2900     ** This is equivalent to
2901     **
2902     **    x>=y AND x<=z
2903     **
2904     ** X is stored in pExpr->pLeft.
2905     ** Y is stored in pExpr->pList->a[0].pExpr.
2906     ** Z is stored in pExpr->pList->a[1].pExpr.
2907     */
2908     case TK_BETWEEN: {
2909       Expr *pLeft = pExpr->pLeft;
2910       struct ExprList_item *pLItem = pExpr->x.pList->a;
2911       Expr *pRight = pLItem->pExpr;
2912 
2913       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2914       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2915       testcase( regFree1==0 );
2916       testcase( regFree2==0 );
2917       r3 = sqlite3GetTempReg(pParse);
2918       r4 = sqlite3GetTempReg(pParse);
2919       codeCompare(pParse, pLeft, pRight, OP_Ge,
2920                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
2921       pLItem++;
2922       pRight = pLItem->pExpr;
2923       sqlite3ReleaseTempReg(pParse, regFree2);
2924       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2925       testcase( regFree2==0 );
2926       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2927       VdbeCoverage(v);
2928       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2929       sqlite3ReleaseTempReg(pParse, r3);
2930       sqlite3ReleaseTempReg(pParse, r4);
2931       break;
2932     }
2933     case TK_COLLATE:
2934     case TK_UPLUS: {
2935       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2936       break;
2937     }
2938 
2939     case TK_TRIGGER: {
2940       /* If the opcode is TK_TRIGGER, then the expression is a reference
2941       ** to a column in the new.* or old.* pseudo-tables available to
2942       ** trigger programs. In this case Expr.iTable is set to 1 for the
2943       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2944       ** is set to the column of the pseudo-table to read, or to -1 to
2945       ** read the rowid field.
2946       **
2947       ** The expression is implemented using an OP_Param opcode. The p1
2948       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2949       ** to reference another column of the old.* pseudo-table, where
2950       ** i is the index of the column. For a new.rowid reference, p1 is
2951       ** set to (n+1), where n is the number of columns in each pseudo-table.
2952       ** For a reference to any other column in the new.* pseudo-table, p1
2953       ** is set to (n+2+i), where n and i are as defined previously. For
2954       ** example, if the table on which triggers are being fired is
2955       ** declared as:
2956       **
2957       **   CREATE TABLE t1(a, b);
2958       **
2959       ** Then p1 is interpreted as follows:
2960       **
2961       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2962       **   p1==1   ->    old.a         p1==4   ->    new.a
2963       **   p1==2   ->    old.b         p1==5   ->    new.b
2964       */
2965       Table *pTab = pExpr->pTab;
2966       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2967 
2968       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2969       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2970       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2971       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2972 
2973       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2974       VdbeComment((v, "%s.%s -> $%d",
2975         (pExpr->iTable ? "new" : "old"),
2976         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2977         target
2978       ));
2979 
2980 #ifndef SQLITE_OMIT_FLOATING_POINT
2981       /* If the column has REAL affinity, it may currently be stored as an
2982       ** integer. Use OP_RealAffinity to make sure it is really real.  */
2983       if( pExpr->iColumn>=0
2984        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2985       ){
2986         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2987       }
2988 #endif
2989       break;
2990     }
2991 
2992 
2993     /*
2994     ** Form A:
2995     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2996     **
2997     ** Form B:
2998     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2999     **
3000     ** Form A is can be transformed into the equivalent form B as follows:
3001     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3002     **        WHEN x=eN THEN rN ELSE y END
3003     **
3004     ** X (if it exists) is in pExpr->pLeft.
3005     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3006     ** odd.  The Y is also optional.  If the number of elements in x.pList
3007     ** is even, then Y is omitted and the "otherwise" result is NULL.
3008     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3009     **
3010     ** The result of the expression is the Ri for the first matching Ei,
3011     ** or if there is no matching Ei, the ELSE term Y, or if there is
3012     ** no ELSE term, NULL.
3013     */
3014     default: assert( op==TK_CASE ); {
3015       int endLabel;                     /* GOTO label for end of CASE stmt */
3016       int nextCase;                     /* GOTO label for next WHEN clause */
3017       int nExpr;                        /* 2x number of WHEN terms */
3018       int i;                            /* Loop counter */
3019       ExprList *pEList;                 /* List of WHEN terms */
3020       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3021       Expr opCompare;                   /* The X==Ei expression */
3022       Expr *pX;                         /* The X expression */
3023       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3024       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3025 
3026       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3027       assert(pExpr->x.pList->nExpr > 0);
3028       pEList = pExpr->x.pList;
3029       aListelem = pEList->a;
3030       nExpr = pEList->nExpr;
3031       endLabel = sqlite3VdbeMakeLabel(v);
3032       if( (pX = pExpr->pLeft)!=0 ){
3033         tempX = *pX;
3034         testcase( pX->op==TK_COLUMN );
3035         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3036         testcase( regFree1==0 );
3037         opCompare.op = TK_EQ;
3038         opCompare.pLeft = &tempX;
3039         pTest = &opCompare;
3040         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3041         ** The value in regFree1 might get SCopy-ed into the file result.
3042         ** So make sure that the regFree1 register is not reused for other
3043         ** purposes and possibly overwritten.  */
3044         regFree1 = 0;
3045       }
3046       for(i=0; i<nExpr-1; i=i+2){
3047         sqlite3ExprCachePush(pParse);
3048         if( pX ){
3049           assert( pTest!=0 );
3050           opCompare.pRight = aListelem[i].pExpr;
3051         }else{
3052           pTest = aListelem[i].pExpr;
3053         }
3054         nextCase = sqlite3VdbeMakeLabel(v);
3055         testcase( pTest->op==TK_COLUMN );
3056         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3057         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3058         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3059         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
3060         sqlite3ExprCachePop(pParse);
3061         sqlite3VdbeResolveLabel(v, nextCase);
3062       }
3063       if( (nExpr&1)!=0 ){
3064         sqlite3ExprCachePush(pParse);
3065         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3066         sqlite3ExprCachePop(pParse);
3067       }else{
3068         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3069       }
3070       assert( db->mallocFailed || pParse->nErr>0
3071            || pParse->iCacheLevel==iCacheLevel );
3072       sqlite3VdbeResolveLabel(v, endLabel);
3073       break;
3074     }
3075 #ifndef SQLITE_OMIT_TRIGGER
3076     case TK_RAISE: {
3077       assert( pExpr->affinity==OE_Rollback
3078            || pExpr->affinity==OE_Abort
3079            || pExpr->affinity==OE_Fail
3080            || pExpr->affinity==OE_Ignore
3081       );
3082       if( !pParse->pTriggerTab ){
3083         sqlite3ErrorMsg(pParse,
3084                        "RAISE() may only be used within a trigger-program");
3085         return 0;
3086       }
3087       if( pExpr->affinity==OE_Abort ){
3088         sqlite3MayAbort(pParse);
3089       }
3090       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3091       if( pExpr->affinity==OE_Ignore ){
3092         sqlite3VdbeAddOp4(
3093             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3094         VdbeCoverage(v);
3095       }else{
3096         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3097                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3098       }
3099 
3100       break;
3101     }
3102 #endif
3103   }
3104   sqlite3ReleaseTempReg(pParse, regFree1);
3105   sqlite3ReleaseTempReg(pParse, regFree2);
3106   return inReg;
3107 }
3108 
3109 /*
3110 ** Factor out the code of the given expression to initialization time.
3111 */
3112 void sqlite3ExprCodeAtInit(
3113   Parse *pParse,    /* Parsing context */
3114   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3115   int regDest,      /* Store the value in this register */
3116   u8 reusable       /* True if this expression is reusable */
3117 ){
3118   ExprList *p;
3119   assert( ConstFactorOk(pParse) );
3120   p = pParse->pConstExpr;
3121   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3122   p = sqlite3ExprListAppend(pParse, p, pExpr);
3123   if( p ){
3124      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3125      pItem->u.iConstExprReg = regDest;
3126      pItem->reusable = reusable;
3127   }
3128   pParse->pConstExpr = p;
3129 }
3130 
3131 /*
3132 ** Generate code to evaluate an expression and store the results
3133 ** into a register.  Return the register number where the results
3134 ** are stored.
3135 **
3136 ** If the register is a temporary register that can be deallocated,
3137 ** then write its number into *pReg.  If the result register is not
3138 ** a temporary, then set *pReg to zero.
3139 **
3140 ** If pExpr is a constant, then this routine might generate this
3141 ** code to fill the register in the initialization section of the
3142 ** VDBE program, in order to factor it out of the evaluation loop.
3143 */
3144 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3145   int r2;
3146   pExpr = sqlite3ExprSkipCollate(pExpr);
3147   if( ConstFactorOk(pParse)
3148    && pExpr->op!=TK_REGISTER
3149    && sqlite3ExprIsConstantNotJoin(pExpr)
3150   ){
3151     ExprList *p = pParse->pConstExpr;
3152     int i;
3153     *pReg  = 0;
3154     if( p ){
3155       struct ExprList_item *pItem;
3156       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3157         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3158           return pItem->u.iConstExprReg;
3159         }
3160       }
3161     }
3162     r2 = ++pParse->nMem;
3163     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3164   }else{
3165     int r1 = sqlite3GetTempReg(pParse);
3166     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3167     if( r2==r1 ){
3168       *pReg = r1;
3169     }else{
3170       sqlite3ReleaseTempReg(pParse, r1);
3171       *pReg = 0;
3172     }
3173   }
3174   return r2;
3175 }
3176 
3177 /*
3178 ** Generate code that will evaluate expression pExpr and store the
3179 ** results in register target.  The results are guaranteed to appear
3180 ** in register target.
3181 */
3182 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3183   int inReg;
3184 
3185   assert( target>0 && target<=pParse->nMem );
3186   if( pExpr && pExpr->op==TK_REGISTER ){
3187     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3188   }else{
3189     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3190     assert( pParse->pVdbe || pParse->db->mallocFailed );
3191     if( inReg!=target && pParse->pVdbe ){
3192       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3193     }
3194   }
3195 }
3196 
3197 /*
3198 ** Generate code that will evaluate expression pExpr and store the
3199 ** results in register target.  The results are guaranteed to appear
3200 ** in register target.  If the expression is constant, then this routine
3201 ** might choose to code the expression at initialization time.
3202 */
3203 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3204   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3205     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3206   }else{
3207     sqlite3ExprCode(pParse, pExpr, target);
3208   }
3209 }
3210 
3211 /*
3212 ** Generate code that evalutes the given expression and puts the result
3213 ** in register target.
3214 **
3215 ** Also make a copy of the expression results into another "cache" register
3216 ** and modify the expression so that the next time it is evaluated,
3217 ** the result is a copy of the cache register.
3218 **
3219 ** This routine is used for expressions that are used multiple
3220 ** times.  They are evaluated once and the results of the expression
3221 ** are reused.
3222 */
3223 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3224   Vdbe *v = pParse->pVdbe;
3225   int iMem;
3226 
3227   assert( target>0 );
3228   assert( pExpr->op!=TK_REGISTER );
3229   sqlite3ExprCode(pParse, pExpr, target);
3230   iMem = ++pParse->nMem;
3231   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3232   exprToRegister(pExpr, iMem);
3233 }
3234 
3235 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3236 /*
3237 ** Generate a human-readable explanation of an expression tree.
3238 */
3239 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
3240   int op;                   /* The opcode being coded */
3241   const char *zBinOp = 0;   /* Binary operator */
3242   const char *zUniOp = 0;   /* Unary operator */
3243   if( pExpr==0 ){
3244     op = TK_NULL;
3245   }else{
3246     op = pExpr->op;
3247   }
3248   switch( op ){
3249     case TK_AGG_COLUMN: {
3250       sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
3251             pExpr->iTable, pExpr->iColumn);
3252       break;
3253     }
3254     case TK_COLUMN: {
3255       if( pExpr->iTable<0 ){
3256         /* This only happens when coding check constraints */
3257         sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
3258       }else{
3259         sqlite3ExplainPrintf(pOut, "{%d:%d}",
3260                              pExpr->iTable, pExpr->iColumn);
3261       }
3262       break;
3263     }
3264     case TK_INTEGER: {
3265       if( pExpr->flags & EP_IntValue ){
3266         sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
3267       }else{
3268         sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
3269       }
3270       break;
3271     }
3272 #ifndef SQLITE_OMIT_FLOATING_POINT
3273     case TK_FLOAT: {
3274       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3275       break;
3276     }
3277 #endif
3278     case TK_STRING: {
3279       sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
3280       break;
3281     }
3282     case TK_NULL: {
3283       sqlite3ExplainPrintf(pOut,"NULL");
3284       break;
3285     }
3286 #ifndef SQLITE_OMIT_BLOB_LITERAL
3287     case TK_BLOB: {
3288       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3289       break;
3290     }
3291 #endif
3292     case TK_VARIABLE: {
3293       sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
3294                            pExpr->u.zToken, pExpr->iColumn);
3295       break;
3296     }
3297     case TK_REGISTER: {
3298       sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
3299       break;
3300     }
3301     case TK_AS: {
3302       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3303       break;
3304     }
3305 #ifndef SQLITE_OMIT_CAST
3306     case TK_CAST: {
3307       /* Expressions of the form:   CAST(pLeft AS token) */
3308       const char *zAff = "unk";
3309       switch( sqlite3AffinityType(pExpr->u.zToken, 0) ){
3310         case SQLITE_AFF_TEXT:    zAff = "TEXT";     break;
3311         case SQLITE_AFF_NONE:    zAff = "NONE";     break;
3312         case SQLITE_AFF_NUMERIC: zAff = "NUMERIC";  break;
3313         case SQLITE_AFF_INTEGER: zAff = "INTEGER";  break;
3314         case SQLITE_AFF_REAL:    zAff = "REAL";     break;
3315       }
3316       sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
3317       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3318       sqlite3ExplainPrintf(pOut, ")");
3319       break;
3320     }
3321 #endif /* SQLITE_OMIT_CAST */
3322     case TK_LT:      zBinOp = "LT";     break;
3323     case TK_LE:      zBinOp = "LE";     break;
3324     case TK_GT:      zBinOp = "GT";     break;
3325     case TK_GE:      zBinOp = "GE";     break;
3326     case TK_NE:      zBinOp = "NE";     break;
3327     case TK_EQ:      zBinOp = "EQ";     break;
3328     case TK_IS:      zBinOp = "IS";     break;
3329     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3330     case TK_AND:     zBinOp = "AND";    break;
3331     case TK_OR:      zBinOp = "OR";     break;
3332     case TK_PLUS:    zBinOp = "ADD";    break;
3333     case TK_STAR:    zBinOp = "MUL";    break;
3334     case TK_MINUS:   zBinOp = "SUB";    break;
3335     case TK_REM:     zBinOp = "REM";    break;
3336     case TK_BITAND:  zBinOp = "BITAND"; break;
3337     case TK_BITOR:   zBinOp = "BITOR";  break;
3338     case TK_SLASH:   zBinOp = "DIV";    break;
3339     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3340     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3341     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3342 
3343     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3344     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3345     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3346     case TK_NOT:     zUniOp = "NOT";    break;
3347     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3348     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3349 
3350     case TK_COLLATE: {
3351       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3352       sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken);
3353       break;
3354     }
3355 
3356     case TK_AGG_FUNCTION:
3357     case TK_FUNCTION: {
3358       ExprList *pFarg;       /* List of function arguments */
3359       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3360         pFarg = 0;
3361       }else{
3362         pFarg = pExpr->x.pList;
3363       }
3364       if( op==TK_AGG_FUNCTION ){
3365         sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(",
3366                              pExpr->op2, pExpr->u.zToken);
3367       }else{
3368         sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken);
3369       }
3370       if( pFarg ){
3371         sqlite3ExplainExprList(pOut, pFarg);
3372       }
3373       sqlite3ExplainPrintf(pOut, ")");
3374       break;
3375     }
3376 #ifndef SQLITE_OMIT_SUBQUERY
3377     case TK_EXISTS: {
3378       sqlite3ExplainPrintf(pOut, "EXISTS(");
3379       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3380       sqlite3ExplainPrintf(pOut,")");
3381       break;
3382     }
3383     case TK_SELECT: {
3384       sqlite3ExplainPrintf(pOut, "(");
3385       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3386       sqlite3ExplainPrintf(pOut, ")");
3387       break;
3388     }
3389     case TK_IN: {
3390       sqlite3ExplainPrintf(pOut, "IN(");
3391       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3392       sqlite3ExplainPrintf(pOut, ",");
3393       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3394         sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3395       }else{
3396         sqlite3ExplainExprList(pOut, pExpr->x.pList);
3397       }
3398       sqlite3ExplainPrintf(pOut, ")");
3399       break;
3400     }
3401 #endif /* SQLITE_OMIT_SUBQUERY */
3402 
3403     /*
3404     **    x BETWEEN y AND z
3405     **
3406     ** This is equivalent to
3407     **
3408     **    x>=y AND x<=z
3409     **
3410     ** X is stored in pExpr->pLeft.
3411     ** Y is stored in pExpr->pList->a[0].pExpr.
3412     ** Z is stored in pExpr->pList->a[1].pExpr.
3413     */
3414     case TK_BETWEEN: {
3415       Expr *pX = pExpr->pLeft;
3416       Expr *pY = pExpr->x.pList->a[0].pExpr;
3417       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3418       sqlite3ExplainPrintf(pOut, "BETWEEN(");
3419       sqlite3ExplainExpr(pOut, pX);
3420       sqlite3ExplainPrintf(pOut, ",");
3421       sqlite3ExplainExpr(pOut, pY);
3422       sqlite3ExplainPrintf(pOut, ",");
3423       sqlite3ExplainExpr(pOut, pZ);
3424       sqlite3ExplainPrintf(pOut, ")");
3425       break;
3426     }
3427     case TK_TRIGGER: {
3428       /* If the opcode is TK_TRIGGER, then the expression is a reference
3429       ** to a column in the new.* or old.* pseudo-tables available to
3430       ** trigger programs. In this case Expr.iTable is set to 1 for the
3431       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3432       ** is set to the column of the pseudo-table to read, or to -1 to
3433       ** read the rowid field.
3434       */
3435       sqlite3ExplainPrintf(pOut, "%s(%d)",
3436           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3437       break;
3438     }
3439     case TK_CASE: {
3440       sqlite3ExplainPrintf(pOut, "CASE(");
3441       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3442       sqlite3ExplainPrintf(pOut, ",");
3443       sqlite3ExplainExprList(pOut, pExpr->x.pList);
3444       break;
3445     }
3446 #ifndef SQLITE_OMIT_TRIGGER
3447     case TK_RAISE: {
3448       const char *zType = "unk";
3449       switch( pExpr->affinity ){
3450         case OE_Rollback:   zType = "rollback";  break;
3451         case OE_Abort:      zType = "abort";     break;
3452         case OE_Fail:       zType = "fail";      break;
3453         case OE_Ignore:     zType = "ignore";    break;
3454       }
3455       sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
3456       break;
3457     }
3458 #endif
3459   }
3460   if( zBinOp ){
3461     sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
3462     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3463     sqlite3ExplainPrintf(pOut,",");
3464     sqlite3ExplainExpr(pOut, pExpr->pRight);
3465     sqlite3ExplainPrintf(pOut,")");
3466   }else if( zUniOp ){
3467     sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
3468     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3469     sqlite3ExplainPrintf(pOut,")");
3470   }
3471 }
3472 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
3473 
3474 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3475 /*
3476 ** Generate a human-readable explanation of an expression list.
3477 */
3478 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
3479   int i;
3480   if( pList==0 || pList->nExpr==0 ){
3481     sqlite3ExplainPrintf(pOut, "(empty-list)");
3482     return;
3483   }else if( pList->nExpr==1 ){
3484     sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
3485   }else{
3486     sqlite3ExplainPush(pOut);
3487     for(i=0; i<pList->nExpr; i++){
3488       sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
3489       sqlite3ExplainPush(pOut);
3490       sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
3491       sqlite3ExplainPop(pOut);
3492       if( pList->a[i].zName ){
3493         sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3494       }
3495       if( pList->a[i].bSpanIsTab ){
3496         sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3497       }
3498       if( i<pList->nExpr-1 ){
3499         sqlite3ExplainNL(pOut);
3500       }
3501     }
3502     sqlite3ExplainPop(pOut);
3503   }
3504 }
3505 #endif /* SQLITE_DEBUG */
3506 
3507 /*
3508 ** Generate code that pushes the value of every element of the given
3509 ** expression list into a sequence of registers beginning at target.
3510 **
3511 ** Return the number of elements evaluated.
3512 **
3513 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3514 ** filled using OP_SCopy.  OP_Copy must be used instead.
3515 **
3516 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3517 ** factored out into initialization code.
3518 */
3519 int sqlite3ExprCodeExprList(
3520   Parse *pParse,     /* Parsing context */
3521   ExprList *pList,   /* The expression list to be coded */
3522   int target,        /* Where to write results */
3523   u8 flags           /* SQLITE_ECEL_* flags */
3524 ){
3525   struct ExprList_item *pItem;
3526   int i, n;
3527   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3528   assert( pList!=0 );
3529   assert( target>0 );
3530   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3531   n = pList->nExpr;
3532   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3533   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3534     Expr *pExpr = pItem->pExpr;
3535     if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3536       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3537     }else{
3538       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3539       if( inReg!=target+i ){
3540         VdbeOp *pOp;
3541         Vdbe *v = pParse->pVdbe;
3542         if( copyOp==OP_Copy
3543          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3544          && pOp->p1+pOp->p3+1==inReg
3545          && pOp->p2+pOp->p3+1==target+i
3546         ){
3547           pOp->p3++;
3548         }else{
3549           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3550         }
3551       }
3552     }
3553   }
3554   return n;
3555 }
3556 
3557 /*
3558 ** Generate code for a BETWEEN operator.
3559 **
3560 **    x BETWEEN y AND z
3561 **
3562 ** The above is equivalent to
3563 **
3564 **    x>=y AND x<=z
3565 **
3566 ** Code it as such, taking care to do the common subexpression
3567 ** elementation of x.
3568 */
3569 static void exprCodeBetween(
3570   Parse *pParse,    /* Parsing and code generating context */
3571   Expr *pExpr,      /* The BETWEEN expression */
3572   int dest,         /* Jump here if the jump is taken */
3573   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3574   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3575 ){
3576   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3577   Expr compLeft;    /* The  x>=y  term */
3578   Expr compRight;   /* The  x<=z  term */
3579   Expr exprX;       /* The  x  subexpression */
3580   int regFree1 = 0; /* Temporary use register */
3581 
3582   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3583   exprX = *pExpr->pLeft;
3584   exprAnd.op = TK_AND;
3585   exprAnd.pLeft = &compLeft;
3586   exprAnd.pRight = &compRight;
3587   compLeft.op = TK_GE;
3588   compLeft.pLeft = &exprX;
3589   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3590   compRight.op = TK_LE;
3591   compRight.pLeft = &exprX;
3592   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3593   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3594   if( jumpIfTrue ){
3595     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3596   }else{
3597     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3598   }
3599   sqlite3ReleaseTempReg(pParse, regFree1);
3600 
3601   /* Ensure adequate test coverage */
3602   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3603   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3604   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3605   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3606   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3607   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3608   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3609   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3610 }
3611 
3612 /*
3613 ** Generate code for a boolean expression such that a jump is made
3614 ** to the label "dest" if the expression is true but execution
3615 ** continues straight thru if the expression is false.
3616 **
3617 ** If the expression evaluates to NULL (neither true nor false), then
3618 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3619 **
3620 ** This code depends on the fact that certain token values (ex: TK_EQ)
3621 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3622 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3623 ** the make process cause these values to align.  Assert()s in the code
3624 ** below verify that the numbers are aligned correctly.
3625 */
3626 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3627   Vdbe *v = pParse->pVdbe;
3628   int op = 0;
3629   int regFree1 = 0;
3630   int regFree2 = 0;
3631   int r1, r2;
3632 
3633   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3634   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3635   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3636   op = pExpr->op;
3637   switch( op ){
3638     case TK_AND: {
3639       int d2 = sqlite3VdbeMakeLabel(v);
3640       testcase( jumpIfNull==0 );
3641       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3642       sqlite3ExprCachePush(pParse);
3643       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3644       sqlite3VdbeResolveLabel(v, d2);
3645       sqlite3ExprCachePop(pParse);
3646       break;
3647     }
3648     case TK_OR: {
3649       testcase( jumpIfNull==0 );
3650       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3651       sqlite3ExprCachePush(pParse);
3652       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3653       sqlite3ExprCachePop(pParse);
3654       break;
3655     }
3656     case TK_NOT: {
3657       testcase( jumpIfNull==0 );
3658       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3659       break;
3660     }
3661     case TK_LT:
3662     case TK_LE:
3663     case TK_GT:
3664     case TK_GE:
3665     case TK_NE:
3666     case TK_EQ: {
3667       testcase( jumpIfNull==0 );
3668       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3669       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3670       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3671                   r1, r2, dest, jumpIfNull);
3672       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3673       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3674       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3675       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3676       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3677       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3678       testcase( regFree1==0 );
3679       testcase( regFree2==0 );
3680       break;
3681     }
3682     case TK_IS:
3683     case TK_ISNOT: {
3684       testcase( op==TK_IS );
3685       testcase( op==TK_ISNOT );
3686       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3687       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3688       op = (op==TK_IS) ? TK_EQ : TK_NE;
3689       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3690                   r1, r2, dest, SQLITE_NULLEQ);
3691       VdbeCoverageIf(v, op==TK_EQ);
3692       VdbeCoverageIf(v, op==TK_NE);
3693       testcase( regFree1==0 );
3694       testcase( regFree2==0 );
3695       break;
3696     }
3697     case TK_ISNULL:
3698     case TK_NOTNULL: {
3699       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3700       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3701       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3702       sqlite3VdbeAddOp2(v, op, r1, dest);
3703       VdbeCoverageIf(v, op==TK_ISNULL);
3704       VdbeCoverageIf(v, op==TK_NOTNULL);
3705       testcase( regFree1==0 );
3706       break;
3707     }
3708     case TK_BETWEEN: {
3709       testcase( jumpIfNull==0 );
3710       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3711       break;
3712     }
3713 #ifndef SQLITE_OMIT_SUBQUERY
3714     case TK_IN: {
3715       int destIfFalse = sqlite3VdbeMakeLabel(v);
3716       int destIfNull = jumpIfNull ? dest : destIfFalse;
3717       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3718       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3719       sqlite3VdbeResolveLabel(v, destIfFalse);
3720       break;
3721     }
3722 #endif
3723     default: {
3724       if( exprAlwaysTrue(pExpr) ){
3725         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3726       }else if( exprAlwaysFalse(pExpr) ){
3727         /* No-op */
3728       }else{
3729         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3730         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3731         VdbeCoverage(v);
3732         testcase( regFree1==0 );
3733         testcase( jumpIfNull==0 );
3734       }
3735       break;
3736     }
3737   }
3738   sqlite3ReleaseTempReg(pParse, regFree1);
3739   sqlite3ReleaseTempReg(pParse, regFree2);
3740 }
3741 
3742 /*
3743 ** Generate code for a boolean expression such that a jump is made
3744 ** to the label "dest" if the expression is false but execution
3745 ** continues straight thru if the expression is true.
3746 **
3747 ** If the expression evaluates to NULL (neither true nor false) then
3748 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3749 ** is 0.
3750 */
3751 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3752   Vdbe *v = pParse->pVdbe;
3753   int op = 0;
3754   int regFree1 = 0;
3755   int regFree2 = 0;
3756   int r1, r2;
3757 
3758   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3759   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3760   if( pExpr==0 )    return;
3761 
3762   /* The value of pExpr->op and op are related as follows:
3763   **
3764   **       pExpr->op            op
3765   **       ---------          ----------
3766   **       TK_ISNULL          OP_NotNull
3767   **       TK_NOTNULL         OP_IsNull
3768   **       TK_NE              OP_Eq
3769   **       TK_EQ              OP_Ne
3770   **       TK_GT              OP_Le
3771   **       TK_LE              OP_Gt
3772   **       TK_GE              OP_Lt
3773   **       TK_LT              OP_Ge
3774   **
3775   ** For other values of pExpr->op, op is undefined and unused.
3776   ** The value of TK_ and OP_ constants are arranged such that we
3777   ** can compute the mapping above using the following expression.
3778   ** Assert()s verify that the computation is correct.
3779   */
3780   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3781 
3782   /* Verify correct alignment of TK_ and OP_ constants
3783   */
3784   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3785   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3786   assert( pExpr->op!=TK_NE || op==OP_Eq );
3787   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3788   assert( pExpr->op!=TK_LT || op==OP_Ge );
3789   assert( pExpr->op!=TK_LE || op==OP_Gt );
3790   assert( pExpr->op!=TK_GT || op==OP_Le );
3791   assert( pExpr->op!=TK_GE || op==OP_Lt );
3792 
3793   switch( pExpr->op ){
3794     case TK_AND: {
3795       testcase( jumpIfNull==0 );
3796       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3797       sqlite3ExprCachePush(pParse);
3798       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3799       sqlite3ExprCachePop(pParse);
3800       break;
3801     }
3802     case TK_OR: {
3803       int d2 = sqlite3VdbeMakeLabel(v);
3804       testcase( jumpIfNull==0 );
3805       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3806       sqlite3ExprCachePush(pParse);
3807       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3808       sqlite3VdbeResolveLabel(v, d2);
3809       sqlite3ExprCachePop(pParse);
3810       break;
3811     }
3812     case TK_NOT: {
3813       testcase( jumpIfNull==0 );
3814       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3815       break;
3816     }
3817     case TK_LT:
3818     case TK_LE:
3819     case TK_GT:
3820     case TK_GE:
3821     case TK_NE:
3822     case TK_EQ: {
3823       testcase( jumpIfNull==0 );
3824       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3825       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3826       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3827                   r1, r2, dest, jumpIfNull);
3828       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3829       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3830       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3831       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3832       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3833       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3834       testcase( regFree1==0 );
3835       testcase( regFree2==0 );
3836       break;
3837     }
3838     case TK_IS:
3839     case TK_ISNOT: {
3840       testcase( pExpr->op==TK_IS );
3841       testcase( pExpr->op==TK_ISNOT );
3842       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3843       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3844       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3845       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3846                   r1, r2, dest, SQLITE_NULLEQ);
3847       VdbeCoverageIf(v, op==TK_EQ);
3848       VdbeCoverageIf(v, op==TK_NE);
3849       testcase( regFree1==0 );
3850       testcase( regFree2==0 );
3851       break;
3852     }
3853     case TK_ISNULL:
3854     case TK_NOTNULL: {
3855       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3856       sqlite3VdbeAddOp2(v, op, r1, dest);
3857       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3858       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3859       testcase( regFree1==0 );
3860       break;
3861     }
3862     case TK_BETWEEN: {
3863       testcase( jumpIfNull==0 );
3864       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3865       break;
3866     }
3867 #ifndef SQLITE_OMIT_SUBQUERY
3868     case TK_IN: {
3869       if( jumpIfNull ){
3870         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3871       }else{
3872         int destIfNull = sqlite3VdbeMakeLabel(v);
3873         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3874         sqlite3VdbeResolveLabel(v, destIfNull);
3875       }
3876       break;
3877     }
3878 #endif
3879     default: {
3880       if( exprAlwaysFalse(pExpr) ){
3881         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3882       }else if( exprAlwaysTrue(pExpr) ){
3883         /* no-op */
3884       }else{
3885         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3886         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3887         VdbeCoverage(v);
3888         testcase( regFree1==0 );
3889         testcase( jumpIfNull==0 );
3890       }
3891       break;
3892     }
3893   }
3894   sqlite3ReleaseTempReg(pParse, regFree1);
3895   sqlite3ReleaseTempReg(pParse, regFree2);
3896 }
3897 
3898 /*
3899 ** Do a deep comparison of two expression trees.  Return 0 if the two
3900 ** expressions are completely identical.  Return 1 if they differ only
3901 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3902 ** other than the top-level COLLATE operator.
3903 **
3904 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3905 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3906 **
3907 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3908 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3909 **
3910 ** Sometimes this routine will return 2 even if the two expressions
3911 ** really are equivalent.  If we cannot prove that the expressions are
3912 ** identical, we return 2 just to be safe.  So if this routine
3913 ** returns 2, then you do not really know for certain if the two
3914 ** expressions are the same.  But if you get a 0 or 1 return, then you
3915 ** can be sure the expressions are the same.  In the places where
3916 ** this routine is used, it does not hurt to get an extra 2 - that
3917 ** just might result in some slightly slower code.  But returning
3918 ** an incorrect 0 or 1 could lead to a malfunction.
3919 */
3920 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3921   u32 combinedFlags;
3922   if( pA==0 || pB==0 ){
3923     return pB==pA ? 0 : 2;
3924   }
3925   combinedFlags = pA->flags | pB->flags;
3926   if( combinedFlags & EP_IntValue ){
3927     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3928       return 0;
3929     }
3930     return 2;
3931   }
3932   if( pA->op!=pB->op ){
3933     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3934       return 1;
3935     }
3936     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3937       return 1;
3938     }
3939     return 2;
3940   }
3941   if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
3942     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3943       return pA->op==TK_COLLATE ? 1 : 2;
3944     }
3945   }
3946   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3947   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3948     if( combinedFlags & EP_xIsSelect ) return 2;
3949     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3950     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3951     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3952     if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
3953       if( pA->iColumn!=pB->iColumn ) return 2;
3954       if( pA->iTable!=pB->iTable
3955        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3956     }
3957   }
3958   return 0;
3959 }
3960 
3961 /*
3962 ** Compare two ExprList objects.  Return 0 if they are identical and
3963 ** non-zero if they differ in any way.
3964 **
3965 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3966 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3967 **
3968 ** This routine might return non-zero for equivalent ExprLists.  The
3969 ** only consequence will be disabled optimizations.  But this routine
3970 ** must never return 0 if the two ExprList objects are different, or
3971 ** a malfunction will result.
3972 **
3973 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3974 ** always differs from a non-NULL pointer.
3975 */
3976 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3977   int i;
3978   if( pA==0 && pB==0 ) return 0;
3979   if( pA==0 || pB==0 ) return 1;
3980   if( pA->nExpr!=pB->nExpr ) return 1;
3981   for(i=0; i<pA->nExpr; i++){
3982     Expr *pExprA = pA->a[i].pExpr;
3983     Expr *pExprB = pB->a[i].pExpr;
3984     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3985     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3986   }
3987   return 0;
3988 }
3989 
3990 /*
3991 ** Return true if we can prove the pE2 will always be true if pE1 is
3992 ** true.  Return false if we cannot complete the proof or if pE2 might
3993 ** be false.  Examples:
3994 **
3995 **     pE1: x==5       pE2: x==5             Result: true
3996 **     pE1: x>0        pE2: x==5             Result: false
3997 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
3998 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
3999 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4000 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4001 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4002 **
4003 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4004 ** Expr.iTable<0 then assume a table number given by iTab.
4005 **
4006 ** When in doubt, return false.  Returning true might give a performance
4007 ** improvement.  Returning false might cause a performance reduction, but
4008 ** it will always give the correct answer and is hence always safe.
4009 */
4010 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
4011   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
4012     return 1;
4013   }
4014   if( pE2->op==TK_OR
4015    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
4016              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
4017   ){
4018     return 1;
4019   }
4020   if( pE2->op==TK_NOTNULL
4021    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
4022    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
4023   ){
4024     return 1;
4025   }
4026   return 0;
4027 }
4028 
4029 /*
4030 ** An instance of the following structure is used by the tree walker
4031 ** to count references to table columns in the arguments of an
4032 ** aggregate function, in order to implement the
4033 ** sqlite3FunctionThisSrc() routine.
4034 */
4035 struct SrcCount {
4036   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4037   int nThis;       /* Number of references to columns in pSrcList */
4038   int nOther;      /* Number of references to columns in other FROM clauses */
4039 };
4040 
4041 /*
4042 ** Count the number of references to columns.
4043 */
4044 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4045   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4046   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4047   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4048   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4049   ** NEVER() will need to be removed. */
4050   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4051     int i;
4052     struct SrcCount *p = pWalker->u.pSrcCount;
4053     SrcList *pSrc = p->pSrc;
4054     for(i=0; i<pSrc->nSrc; i++){
4055       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4056     }
4057     if( i<pSrc->nSrc ){
4058       p->nThis++;
4059     }else{
4060       p->nOther++;
4061     }
4062   }
4063   return WRC_Continue;
4064 }
4065 
4066 /*
4067 ** Determine if any of the arguments to the pExpr Function reference
4068 ** pSrcList.  Return true if they do.  Also return true if the function
4069 ** has no arguments or has only constant arguments.  Return false if pExpr
4070 ** references columns but not columns of tables found in pSrcList.
4071 */
4072 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4073   Walker w;
4074   struct SrcCount cnt;
4075   assert( pExpr->op==TK_AGG_FUNCTION );
4076   memset(&w, 0, sizeof(w));
4077   w.xExprCallback = exprSrcCount;
4078   w.u.pSrcCount = &cnt;
4079   cnt.pSrc = pSrcList;
4080   cnt.nThis = 0;
4081   cnt.nOther = 0;
4082   sqlite3WalkExprList(&w, pExpr->x.pList);
4083   return cnt.nThis>0 || cnt.nOther==0;
4084 }
4085 
4086 /*
4087 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4088 ** the new element.  Return a negative number if malloc fails.
4089 */
4090 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4091   int i;
4092   pInfo->aCol = sqlite3ArrayAllocate(
4093        db,
4094        pInfo->aCol,
4095        sizeof(pInfo->aCol[0]),
4096        &pInfo->nColumn,
4097        &i
4098   );
4099   return i;
4100 }
4101 
4102 /*
4103 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4104 ** the new element.  Return a negative number if malloc fails.
4105 */
4106 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4107   int i;
4108   pInfo->aFunc = sqlite3ArrayAllocate(
4109        db,
4110        pInfo->aFunc,
4111        sizeof(pInfo->aFunc[0]),
4112        &pInfo->nFunc,
4113        &i
4114   );
4115   return i;
4116 }
4117 
4118 /*
4119 ** This is the xExprCallback for a tree walker.  It is used to
4120 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4121 ** for additional information.
4122 */
4123 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4124   int i;
4125   NameContext *pNC = pWalker->u.pNC;
4126   Parse *pParse = pNC->pParse;
4127   SrcList *pSrcList = pNC->pSrcList;
4128   AggInfo *pAggInfo = pNC->pAggInfo;
4129 
4130   switch( pExpr->op ){
4131     case TK_AGG_COLUMN:
4132     case TK_COLUMN: {
4133       testcase( pExpr->op==TK_AGG_COLUMN );
4134       testcase( pExpr->op==TK_COLUMN );
4135       /* Check to see if the column is in one of the tables in the FROM
4136       ** clause of the aggregate query */
4137       if( ALWAYS(pSrcList!=0) ){
4138         struct SrcList_item *pItem = pSrcList->a;
4139         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4140           struct AggInfo_col *pCol;
4141           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4142           if( pExpr->iTable==pItem->iCursor ){
4143             /* If we reach this point, it means that pExpr refers to a table
4144             ** that is in the FROM clause of the aggregate query.
4145             **
4146             ** Make an entry for the column in pAggInfo->aCol[] if there
4147             ** is not an entry there already.
4148             */
4149             int k;
4150             pCol = pAggInfo->aCol;
4151             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4152               if( pCol->iTable==pExpr->iTable &&
4153                   pCol->iColumn==pExpr->iColumn ){
4154                 break;
4155               }
4156             }
4157             if( (k>=pAggInfo->nColumn)
4158              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4159             ){
4160               pCol = &pAggInfo->aCol[k];
4161               pCol->pTab = pExpr->pTab;
4162               pCol->iTable = pExpr->iTable;
4163               pCol->iColumn = pExpr->iColumn;
4164               pCol->iMem = ++pParse->nMem;
4165               pCol->iSorterColumn = -1;
4166               pCol->pExpr = pExpr;
4167               if( pAggInfo->pGroupBy ){
4168                 int j, n;
4169                 ExprList *pGB = pAggInfo->pGroupBy;
4170                 struct ExprList_item *pTerm = pGB->a;
4171                 n = pGB->nExpr;
4172                 for(j=0; j<n; j++, pTerm++){
4173                   Expr *pE = pTerm->pExpr;
4174                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4175                       pE->iColumn==pExpr->iColumn ){
4176                     pCol->iSorterColumn = j;
4177                     break;
4178                   }
4179                 }
4180               }
4181               if( pCol->iSorterColumn<0 ){
4182                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4183               }
4184             }
4185             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4186             ** because it was there before or because we just created it).
4187             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4188             ** pAggInfo->aCol[] entry.
4189             */
4190             ExprSetVVAProperty(pExpr, EP_NoReduce);
4191             pExpr->pAggInfo = pAggInfo;
4192             pExpr->op = TK_AGG_COLUMN;
4193             pExpr->iAgg = (i16)k;
4194             break;
4195           } /* endif pExpr->iTable==pItem->iCursor */
4196         } /* end loop over pSrcList */
4197       }
4198       return WRC_Prune;
4199     }
4200     case TK_AGG_FUNCTION: {
4201       if( (pNC->ncFlags & NC_InAggFunc)==0
4202        && pWalker->walkerDepth==pExpr->op2
4203       ){
4204         /* Check to see if pExpr is a duplicate of another aggregate
4205         ** function that is already in the pAggInfo structure
4206         */
4207         struct AggInfo_func *pItem = pAggInfo->aFunc;
4208         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4209           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4210             break;
4211           }
4212         }
4213         if( i>=pAggInfo->nFunc ){
4214           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4215           */
4216           u8 enc = ENC(pParse->db);
4217           i = addAggInfoFunc(pParse->db, pAggInfo);
4218           if( i>=0 ){
4219             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4220             pItem = &pAggInfo->aFunc[i];
4221             pItem->pExpr = pExpr;
4222             pItem->iMem = ++pParse->nMem;
4223             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4224             pItem->pFunc = sqlite3FindFunction(pParse->db,
4225                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4226                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4227             if( pExpr->flags & EP_Distinct ){
4228               pItem->iDistinct = pParse->nTab++;
4229             }else{
4230               pItem->iDistinct = -1;
4231             }
4232           }
4233         }
4234         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4235         */
4236         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4237         ExprSetVVAProperty(pExpr, EP_NoReduce);
4238         pExpr->iAgg = (i16)i;
4239         pExpr->pAggInfo = pAggInfo;
4240         return WRC_Prune;
4241       }else{
4242         return WRC_Continue;
4243       }
4244     }
4245   }
4246   return WRC_Continue;
4247 }
4248 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4249   UNUSED_PARAMETER(pWalker);
4250   UNUSED_PARAMETER(pSelect);
4251   return WRC_Continue;
4252 }
4253 
4254 /*
4255 ** Analyze the pExpr expression looking for aggregate functions and
4256 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4257 ** points to.  Additional entries are made on the AggInfo object as
4258 ** necessary.
4259 **
4260 ** This routine should only be called after the expression has been
4261 ** analyzed by sqlite3ResolveExprNames().
4262 */
4263 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4264   Walker w;
4265   memset(&w, 0, sizeof(w));
4266   w.xExprCallback = analyzeAggregate;
4267   w.xSelectCallback = analyzeAggregatesInSelect;
4268   w.u.pNC = pNC;
4269   assert( pNC->pSrcList!=0 );
4270   sqlite3WalkExpr(&w, pExpr);
4271 }
4272 
4273 /*
4274 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4275 ** expression list.  Return the number of errors.
4276 **
4277 ** If an error is found, the analysis is cut short.
4278 */
4279 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4280   struct ExprList_item *pItem;
4281   int i;
4282   if( pList ){
4283     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4284       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4285     }
4286   }
4287 }
4288 
4289 /*
4290 ** Allocate a single new register for use to hold some intermediate result.
4291 */
4292 int sqlite3GetTempReg(Parse *pParse){
4293   if( pParse->nTempReg==0 ){
4294     return ++pParse->nMem;
4295   }
4296   return pParse->aTempReg[--pParse->nTempReg];
4297 }
4298 
4299 /*
4300 ** Deallocate a register, making available for reuse for some other
4301 ** purpose.
4302 **
4303 ** If a register is currently being used by the column cache, then
4304 ** the dallocation is deferred until the column cache line that uses
4305 ** the register becomes stale.
4306 */
4307 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4308   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4309     int i;
4310     struct yColCache *p;
4311     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4312       if( p->iReg==iReg ){
4313         p->tempReg = 1;
4314         return;
4315       }
4316     }
4317     pParse->aTempReg[pParse->nTempReg++] = iReg;
4318   }
4319 }
4320 
4321 /*
4322 ** Allocate or deallocate a block of nReg consecutive registers
4323 */
4324 int sqlite3GetTempRange(Parse *pParse, int nReg){
4325   int i, n;
4326   i = pParse->iRangeReg;
4327   n = pParse->nRangeReg;
4328   if( nReg<=n ){
4329     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4330     pParse->iRangeReg += nReg;
4331     pParse->nRangeReg -= nReg;
4332   }else{
4333     i = pParse->nMem+1;
4334     pParse->nMem += nReg;
4335   }
4336   return i;
4337 }
4338 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4339   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4340   if( nReg>pParse->nRangeReg ){
4341     pParse->nRangeReg = nReg;
4342     pParse->iRangeReg = iReg;
4343   }
4344 }
4345 
4346 /*
4347 ** Mark all temporary registers as being unavailable for reuse.
4348 */
4349 void sqlite3ClearTempRegCache(Parse *pParse){
4350   pParse->nTempReg = 0;
4351   pParse->nRangeReg = 0;
4352 }
4353