1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){ 57 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 58 } 59 if( op==TK_SELECT ){ 60 assert( pExpr->flags&EP_xIsSelect ); 61 assert( pExpr->x.pSelect!=0 ); 62 assert( pExpr->x.pSelect->pEList!=0 ); 63 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 64 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 65 } 66 #ifndef SQLITE_OMIT_CAST 67 if( op==TK_CAST ){ 68 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 69 return sqlite3AffinityType(pExpr->u.zToken, 0); 70 } 71 #endif 72 if( op==TK_SELECT_COLUMN ){ 73 assert( pExpr->pLeft->flags&EP_xIsSelect ); 74 assert( pExpr->iColumn < pExpr->iTable ); 75 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 76 return sqlite3ExprAffinity( 77 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 78 ); 79 } 80 if( op==TK_VECTOR ){ 81 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 82 } 83 return pExpr->affExpr; 84 } 85 86 /* 87 ** Set the collating sequence for expression pExpr to be the collating 88 ** sequence named by pToken. Return a pointer to a new Expr node that 89 ** implements the COLLATE operator. 90 ** 91 ** If a memory allocation error occurs, that fact is recorded in pParse->db 92 ** and the pExpr parameter is returned unchanged. 93 */ 94 Expr *sqlite3ExprAddCollateToken( 95 const Parse *pParse, /* Parsing context */ 96 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 97 const Token *pCollName, /* Name of collating sequence */ 98 int dequote /* True to dequote pCollName */ 99 ){ 100 if( pCollName->n>0 ){ 101 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 102 if( pNew ){ 103 pNew->pLeft = pExpr; 104 pNew->flags |= EP_Collate|EP_Skip; 105 pExpr = pNew; 106 } 107 } 108 return pExpr; 109 } 110 Expr *sqlite3ExprAddCollateString( 111 const Parse *pParse, /* Parsing context */ 112 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 113 const char *zC /* The collating sequence name */ 114 ){ 115 Token s; 116 assert( zC!=0 ); 117 sqlite3TokenInit(&s, (char*)zC); 118 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 119 } 120 121 /* 122 ** Skip over any TK_COLLATE operators. 123 */ 124 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 125 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 126 assert( pExpr->op==TK_COLLATE ); 127 pExpr = pExpr->pLeft; 128 } 129 return pExpr; 130 } 131 132 /* 133 ** Skip over any TK_COLLATE operators and/or any unlikely() 134 ** or likelihood() or likely() functions at the root of an 135 ** expression. 136 */ 137 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 138 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 139 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 140 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 141 assert( pExpr->x.pList->nExpr>0 ); 142 assert( pExpr->op==TK_FUNCTION ); 143 pExpr = pExpr->x.pList->a[0].pExpr; 144 }else{ 145 assert( pExpr->op==TK_COLLATE ); 146 pExpr = pExpr->pLeft; 147 } 148 } 149 return pExpr; 150 } 151 152 /* 153 ** Return the collation sequence for the expression pExpr. If 154 ** there is no defined collating sequence, return NULL. 155 ** 156 ** See also: sqlite3ExprNNCollSeq() 157 ** 158 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 159 ** default collation if pExpr has no defined collation. 160 ** 161 ** The collating sequence might be determined by a COLLATE operator 162 ** or by the presence of a column with a defined collating sequence. 163 ** COLLATE operators take first precedence. Left operands take 164 ** precedence over right operands. 165 */ 166 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 167 sqlite3 *db = pParse->db; 168 CollSeq *pColl = 0; 169 const Expr *p = pExpr; 170 while( p ){ 171 int op = p->op; 172 if( op==TK_REGISTER ) op = p->op2; 173 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 174 && p->y.pTab!=0 175 ){ 176 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 177 ** a TK_COLUMN but was previously evaluated and cached in a register */ 178 int j = p->iColumn; 179 if( j>=0 ){ 180 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 181 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 182 } 183 break; 184 } 185 if( op==TK_CAST || op==TK_UPLUS ){ 186 p = p->pLeft; 187 continue; 188 } 189 if( op==TK_VECTOR ){ 190 p = p->x.pList->a[0].pExpr; 191 continue; 192 } 193 if( op==TK_COLLATE ){ 194 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 195 break; 196 } 197 if( p->flags & EP_Collate ){ 198 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 199 p = p->pLeft; 200 }else{ 201 Expr *pNext = p->pRight; 202 /* The Expr.x union is never used at the same time as Expr.pRight */ 203 assert( p->x.pList==0 || p->pRight==0 ); 204 if( p->x.pList!=0 205 && !db->mallocFailed 206 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 207 ){ 208 int i; 209 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 210 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 211 pNext = p->x.pList->a[i].pExpr; 212 break; 213 } 214 } 215 } 216 p = pNext; 217 } 218 }else{ 219 break; 220 } 221 } 222 if( sqlite3CheckCollSeq(pParse, pColl) ){ 223 pColl = 0; 224 } 225 return pColl; 226 } 227 228 /* 229 ** Return the collation sequence for the expression pExpr. If 230 ** there is no defined collating sequence, return a pointer to the 231 ** defautl collation sequence. 232 ** 233 ** See also: sqlite3ExprCollSeq() 234 ** 235 ** The sqlite3ExprCollSeq() routine works the same except that it 236 ** returns NULL if there is no defined collation. 237 */ 238 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 239 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 240 if( p==0 ) p = pParse->db->pDfltColl; 241 assert( p!=0 ); 242 return p; 243 } 244 245 /* 246 ** Return TRUE if the two expressions have equivalent collating sequences. 247 */ 248 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 249 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 250 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 251 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 252 } 253 254 /* 255 ** pExpr is an operand of a comparison operator. aff2 is the 256 ** type affinity of the other operand. This routine returns the 257 ** type affinity that should be used for the comparison operator. 258 */ 259 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 260 char aff1 = sqlite3ExprAffinity(pExpr); 261 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 262 /* Both sides of the comparison are columns. If one has numeric 263 ** affinity, use that. Otherwise use no affinity. 264 */ 265 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 266 return SQLITE_AFF_NUMERIC; 267 }else{ 268 return SQLITE_AFF_BLOB; 269 } 270 }else{ 271 /* One side is a column, the other is not. Use the columns affinity. */ 272 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 273 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 274 } 275 } 276 277 /* 278 ** pExpr is a comparison operator. Return the type affinity that should 279 ** be applied to both operands prior to doing the comparison. 280 */ 281 static char comparisonAffinity(const Expr *pExpr){ 282 char aff; 283 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 284 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 285 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 286 assert( pExpr->pLeft ); 287 aff = sqlite3ExprAffinity(pExpr->pLeft); 288 if( pExpr->pRight ){ 289 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 290 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 291 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 292 }else if( aff==0 ){ 293 aff = SQLITE_AFF_BLOB; 294 } 295 return aff; 296 } 297 298 /* 299 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 300 ** idx_affinity is the affinity of an indexed column. Return true 301 ** if the index with affinity idx_affinity may be used to implement 302 ** the comparison in pExpr. 303 */ 304 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 305 char aff = comparisonAffinity(pExpr); 306 if( aff<SQLITE_AFF_TEXT ){ 307 return 1; 308 } 309 if( aff==SQLITE_AFF_TEXT ){ 310 return idx_affinity==SQLITE_AFF_TEXT; 311 } 312 return sqlite3IsNumericAffinity(idx_affinity); 313 } 314 315 /* 316 ** Return the P5 value that should be used for a binary comparison 317 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 318 */ 319 static u8 binaryCompareP5( 320 const Expr *pExpr1, /* Left operand */ 321 const Expr *pExpr2, /* Right operand */ 322 int jumpIfNull /* Extra flags added to P5 */ 323 ){ 324 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 325 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 326 return aff; 327 } 328 329 /* 330 ** Return a pointer to the collation sequence that should be used by 331 ** a binary comparison operator comparing pLeft and pRight. 332 ** 333 ** If the left hand expression has a collating sequence type, then it is 334 ** used. Otherwise the collation sequence for the right hand expression 335 ** is used, or the default (BINARY) if neither expression has a collating 336 ** type. 337 ** 338 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 339 ** it is not considered. 340 */ 341 CollSeq *sqlite3BinaryCompareCollSeq( 342 Parse *pParse, 343 const Expr *pLeft, 344 const Expr *pRight 345 ){ 346 CollSeq *pColl; 347 assert( pLeft ); 348 if( pLeft->flags & EP_Collate ){ 349 pColl = sqlite3ExprCollSeq(pParse, pLeft); 350 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 351 pColl = sqlite3ExprCollSeq(pParse, pRight); 352 }else{ 353 pColl = sqlite3ExprCollSeq(pParse, pLeft); 354 if( !pColl ){ 355 pColl = sqlite3ExprCollSeq(pParse, pRight); 356 } 357 } 358 return pColl; 359 } 360 361 /* Expresssion p is a comparison operator. Return a collation sequence 362 ** appropriate for the comparison operator. 363 ** 364 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 365 ** However, if the OP_Commuted flag is set, then the order of the operands 366 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 367 ** correct collating sequence is found. 368 */ 369 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 370 if( ExprHasProperty(p, EP_Commuted) ){ 371 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 372 }else{ 373 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 374 } 375 } 376 377 /* 378 ** Generate code for a comparison operator. 379 */ 380 static int codeCompare( 381 Parse *pParse, /* The parsing (and code generating) context */ 382 Expr *pLeft, /* The left operand */ 383 Expr *pRight, /* The right operand */ 384 int opcode, /* The comparison opcode */ 385 int in1, int in2, /* Register holding operands */ 386 int dest, /* Jump here if true. */ 387 int jumpIfNull, /* If true, jump if either operand is NULL */ 388 int isCommuted /* The comparison has been commuted */ 389 ){ 390 int p5; 391 int addr; 392 CollSeq *p4; 393 394 if( pParse->nErr ) return 0; 395 if( isCommuted ){ 396 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 397 }else{ 398 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 399 } 400 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 401 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 402 (void*)p4, P4_COLLSEQ); 403 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 404 return addr; 405 } 406 407 /* 408 ** Return true if expression pExpr is a vector, or false otherwise. 409 ** 410 ** A vector is defined as any expression that results in two or more 411 ** columns of result. Every TK_VECTOR node is an vector because the 412 ** parser will not generate a TK_VECTOR with fewer than two entries. 413 ** But a TK_SELECT might be either a vector or a scalar. It is only 414 ** considered a vector if it has two or more result columns. 415 */ 416 int sqlite3ExprIsVector(const Expr *pExpr){ 417 return sqlite3ExprVectorSize(pExpr)>1; 418 } 419 420 /* 421 ** If the expression passed as the only argument is of type TK_VECTOR 422 ** return the number of expressions in the vector. Or, if the expression 423 ** is a sub-select, return the number of columns in the sub-select. For 424 ** any other type of expression, return 1. 425 */ 426 int sqlite3ExprVectorSize(const Expr *pExpr){ 427 u8 op = pExpr->op; 428 if( op==TK_REGISTER ) op = pExpr->op2; 429 if( op==TK_VECTOR ){ 430 return pExpr->x.pList->nExpr; 431 }else if( op==TK_SELECT ){ 432 return pExpr->x.pSelect->pEList->nExpr; 433 }else{ 434 return 1; 435 } 436 } 437 438 /* 439 ** Return a pointer to a subexpression of pVector that is the i-th 440 ** column of the vector (numbered starting with 0). The caller must 441 ** ensure that i is within range. 442 ** 443 ** If pVector is really a scalar (and "scalar" here includes subqueries 444 ** that return a single column!) then return pVector unmodified. 445 ** 446 ** pVector retains ownership of the returned subexpression. 447 ** 448 ** If the vector is a (SELECT ...) then the expression returned is 449 ** just the expression for the i-th term of the result set, and may 450 ** not be ready for evaluation because the table cursor has not yet 451 ** been positioned. 452 */ 453 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 454 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 455 if( sqlite3ExprIsVector(pVector) ){ 456 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 457 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 458 return pVector->x.pSelect->pEList->a[i].pExpr; 459 }else{ 460 return pVector->x.pList->a[i].pExpr; 461 } 462 } 463 return pVector; 464 } 465 466 /* 467 ** Compute and return a new Expr object which when passed to 468 ** sqlite3ExprCode() will generate all necessary code to compute 469 ** the iField-th column of the vector expression pVector. 470 ** 471 ** It is ok for pVector to be a scalar (as long as iField==0). 472 ** In that case, this routine works like sqlite3ExprDup(). 473 ** 474 ** The caller owns the returned Expr object and is responsible for 475 ** ensuring that the returned value eventually gets freed. 476 ** 477 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 478 ** then the returned object will reference pVector and so pVector must remain 479 ** valid for the life of the returned object. If pVector is a TK_VECTOR 480 ** or a scalar expression, then it can be deleted as soon as this routine 481 ** returns. 482 ** 483 ** A trick to cause a TK_SELECT pVector to be deleted together with 484 ** the returned Expr object is to attach the pVector to the pRight field 485 ** of the returned TK_SELECT_COLUMN Expr object. 486 */ 487 Expr *sqlite3ExprForVectorField( 488 Parse *pParse, /* Parsing context */ 489 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 490 int iField, /* Which column of the vector to return */ 491 int nField /* Total number of columns in the vector */ 492 ){ 493 Expr *pRet; 494 if( pVector->op==TK_SELECT ){ 495 assert( pVector->flags & EP_xIsSelect ); 496 /* The TK_SELECT_COLUMN Expr node: 497 ** 498 ** pLeft: pVector containing TK_SELECT. Not deleted. 499 ** pRight: not used. But recursively deleted. 500 ** iColumn: Index of a column in pVector 501 ** iTable: 0 or the number of columns on the LHS of an assignment 502 ** pLeft->iTable: First in an array of register holding result, or 0 503 ** if the result is not yet computed. 504 ** 505 ** sqlite3ExprDelete() specifically skips the recursive delete of 506 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 507 ** can be attached to pRight to cause this node to take ownership of 508 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 509 ** with the same pLeft pointer to the pVector, but only one of them 510 ** will own the pVector. 511 */ 512 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 513 if( pRet ){ 514 pRet->iTable = nField; 515 pRet->iColumn = iField; 516 pRet->pLeft = pVector; 517 } 518 }else{ 519 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 520 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 521 if( pRet && IN_RENAME_OBJECT ){ 522 SWAP(Expr, *pRet, *pVector); 523 sqlite3RenameTokenRemap(pParse, pRet, pVector); 524 } 525 } 526 return pRet; 527 } 528 529 /* 530 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 531 ** it. Return the register in which the result is stored (or, if the 532 ** sub-select returns more than one column, the first in an array 533 ** of registers in which the result is stored). 534 ** 535 ** If pExpr is not a TK_SELECT expression, return 0. 536 */ 537 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 538 int reg = 0; 539 #ifndef SQLITE_OMIT_SUBQUERY 540 if( pExpr->op==TK_SELECT ){ 541 reg = sqlite3CodeSubselect(pParse, pExpr); 542 } 543 #endif 544 return reg; 545 } 546 547 /* 548 ** Argument pVector points to a vector expression - either a TK_VECTOR 549 ** or TK_SELECT that returns more than one column. This function returns 550 ** the register number of a register that contains the value of 551 ** element iField of the vector. 552 ** 553 ** If pVector is a TK_SELECT expression, then code for it must have 554 ** already been generated using the exprCodeSubselect() routine. In this 555 ** case parameter regSelect should be the first in an array of registers 556 ** containing the results of the sub-select. 557 ** 558 ** If pVector is of type TK_VECTOR, then code for the requested field 559 ** is generated. In this case (*pRegFree) may be set to the number of 560 ** a temporary register to be freed by the caller before returning. 561 ** 562 ** Before returning, output parameter (*ppExpr) is set to point to the 563 ** Expr object corresponding to element iElem of the vector. 564 */ 565 static int exprVectorRegister( 566 Parse *pParse, /* Parse context */ 567 Expr *pVector, /* Vector to extract element from */ 568 int iField, /* Field to extract from pVector */ 569 int regSelect, /* First in array of registers */ 570 Expr **ppExpr, /* OUT: Expression element */ 571 int *pRegFree /* OUT: Temp register to free */ 572 ){ 573 u8 op = pVector->op; 574 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 575 if( op==TK_REGISTER ){ 576 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 577 return pVector->iTable+iField; 578 } 579 if( op==TK_SELECT ){ 580 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 581 return regSelect+iField; 582 } 583 if( op==TK_VECTOR ){ 584 *ppExpr = pVector->x.pList->a[iField].pExpr; 585 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 586 } 587 return 0; 588 } 589 590 /* 591 ** Expression pExpr is a comparison between two vector values. Compute 592 ** the result of the comparison (1, 0, or NULL) and write that 593 ** result into register dest. 594 ** 595 ** The caller must satisfy the following preconditions: 596 ** 597 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 598 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 599 ** otherwise: op==pExpr->op and p5==0 600 */ 601 static void codeVectorCompare( 602 Parse *pParse, /* Code generator context */ 603 Expr *pExpr, /* The comparison operation */ 604 int dest, /* Write results into this register */ 605 u8 op, /* Comparison operator */ 606 u8 p5 /* SQLITE_NULLEQ or zero */ 607 ){ 608 Vdbe *v = pParse->pVdbe; 609 Expr *pLeft = pExpr->pLeft; 610 Expr *pRight = pExpr->pRight; 611 int nLeft = sqlite3ExprVectorSize(pLeft); 612 int i; 613 int regLeft = 0; 614 int regRight = 0; 615 u8 opx = op; 616 int addrCmp = 0; 617 int addrDone = sqlite3VdbeMakeLabel(pParse); 618 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 619 620 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 621 if( pParse->nErr ) return; 622 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 623 sqlite3ErrorMsg(pParse, "row value misused"); 624 return; 625 } 626 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 627 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 628 || pExpr->op==TK_LT || pExpr->op==TK_GT 629 || pExpr->op==TK_LE || pExpr->op==TK_GE 630 ); 631 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 632 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 633 assert( p5==0 || pExpr->op!=op ); 634 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 635 636 if( op==TK_LE ) opx = TK_LT; 637 if( op==TK_GE ) opx = TK_GT; 638 if( op==TK_NE ) opx = TK_EQ; 639 640 regLeft = exprCodeSubselect(pParse, pLeft); 641 regRight = exprCodeSubselect(pParse, pRight); 642 643 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 644 for(i=0; 1 /*Loop exits by "break"*/; i++){ 645 int regFree1 = 0, regFree2 = 0; 646 Expr *pL = 0, *pR = 0; 647 int r1, r2; 648 assert( i>=0 && i<nLeft ); 649 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 650 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 651 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 652 addrCmp = sqlite3VdbeCurrentAddr(v); 653 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 654 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 655 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 656 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 657 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 658 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 659 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 660 sqlite3ReleaseTempReg(pParse, regFree1); 661 sqlite3ReleaseTempReg(pParse, regFree2); 662 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 663 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 664 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 665 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 666 } 667 if( p5==SQLITE_NULLEQ ){ 668 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 669 }else{ 670 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 671 } 672 if( i==nLeft-1 ){ 673 break; 674 } 675 if( opx==TK_EQ ){ 676 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 677 }else{ 678 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 679 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 680 if( i==nLeft-2 ) opx = op; 681 } 682 } 683 sqlite3VdbeJumpHere(v, addrCmp); 684 sqlite3VdbeResolveLabel(v, addrDone); 685 if( op==TK_NE ){ 686 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 687 } 688 } 689 690 #if SQLITE_MAX_EXPR_DEPTH>0 691 /* 692 ** Check that argument nHeight is less than or equal to the maximum 693 ** expression depth allowed. If it is not, leave an error message in 694 ** pParse. 695 */ 696 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 697 int rc = SQLITE_OK; 698 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 699 if( nHeight>mxHeight ){ 700 sqlite3ErrorMsg(pParse, 701 "Expression tree is too large (maximum depth %d)", mxHeight 702 ); 703 rc = SQLITE_ERROR; 704 } 705 return rc; 706 } 707 708 /* The following three functions, heightOfExpr(), heightOfExprList() 709 ** and heightOfSelect(), are used to determine the maximum height 710 ** of any expression tree referenced by the structure passed as the 711 ** first argument. 712 ** 713 ** If this maximum height is greater than the current value pointed 714 ** to by pnHeight, the second parameter, then set *pnHeight to that 715 ** value. 716 */ 717 static void heightOfExpr(const Expr *p, int *pnHeight){ 718 if( p ){ 719 if( p->nHeight>*pnHeight ){ 720 *pnHeight = p->nHeight; 721 } 722 } 723 } 724 static void heightOfExprList(const ExprList *p, int *pnHeight){ 725 if( p ){ 726 int i; 727 for(i=0; i<p->nExpr; i++){ 728 heightOfExpr(p->a[i].pExpr, pnHeight); 729 } 730 } 731 } 732 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 733 const Select *p; 734 for(p=pSelect; p; p=p->pPrior){ 735 heightOfExpr(p->pWhere, pnHeight); 736 heightOfExpr(p->pHaving, pnHeight); 737 heightOfExpr(p->pLimit, pnHeight); 738 heightOfExprList(p->pEList, pnHeight); 739 heightOfExprList(p->pGroupBy, pnHeight); 740 heightOfExprList(p->pOrderBy, pnHeight); 741 } 742 } 743 744 /* 745 ** Set the Expr.nHeight variable in the structure passed as an 746 ** argument. An expression with no children, Expr.pList or 747 ** Expr.pSelect member has a height of 1. Any other expression 748 ** has a height equal to the maximum height of any other 749 ** referenced Expr plus one. 750 ** 751 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 752 ** if appropriate. 753 */ 754 static void exprSetHeight(Expr *p){ 755 int nHeight = 0; 756 heightOfExpr(p->pLeft, &nHeight); 757 heightOfExpr(p->pRight, &nHeight); 758 if( ExprHasProperty(p, EP_xIsSelect) ){ 759 heightOfSelect(p->x.pSelect, &nHeight); 760 }else if( p->x.pList ){ 761 heightOfExprList(p->x.pList, &nHeight); 762 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 763 } 764 p->nHeight = nHeight + 1; 765 } 766 767 /* 768 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 769 ** the height is greater than the maximum allowed expression depth, 770 ** leave an error in pParse. 771 ** 772 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 773 ** Expr.flags. 774 */ 775 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 776 if( pParse->nErr ) return; 777 exprSetHeight(p); 778 sqlite3ExprCheckHeight(pParse, p->nHeight); 779 } 780 781 /* 782 ** Return the maximum height of any expression tree referenced 783 ** by the select statement passed as an argument. 784 */ 785 int sqlite3SelectExprHeight(const Select *p){ 786 int nHeight = 0; 787 heightOfSelect(p, &nHeight); 788 return nHeight; 789 } 790 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 791 /* 792 ** Propagate all EP_Propagate flags from the Expr.x.pList into 793 ** Expr.flags. 794 */ 795 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 796 if( pParse->nErr ) return; 797 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 798 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 799 } 800 } 801 #define exprSetHeight(y) 802 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 803 804 /* 805 ** This routine is the core allocator for Expr nodes. 806 ** 807 ** Construct a new expression node and return a pointer to it. Memory 808 ** for this node and for the pToken argument is a single allocation 809 ** obtained from sqlite3DbMalloc(). The calling function 810 ** is responsible for making sure the node eventually gets freed. 811 ** 812 ** If dequote is true, then the token (if it exists) is dequoted. 813 ** If dequote is false, no dequoting is performed. The deQuote 814 ** parameter is ignored if pToken is NULL or if the token does not 815 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 816 ** then the EP_DblQuoted flag is set on the expression node. 817 ** 818 ** Special case: If op==TK_INTEGER and pToken points to a string that 819 ** can be translated into a 32-bit integer, then the token is not 820 ** stored in u.zToken. Instead, the integer values is written 821 ** into u.iValue and the EP_IntValue flag is set. No extra storage 822 ** is allocated to hold the integer text and the dequote flag is ignored. 823 */ 824 Expr *sqlite3ExprAlloc( 825 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 826 int op, /* Expression opcode */ 827 const Token *pToken, /* Token argument. Might be NULL */ 828 int dequote /* True to dequote */ 829 ){ 830 Expr *pNew; 831 int nExtra = 0; 832 int iValue = 0; 833 834 assert( db!=0 ); 835 if( pToken ){ 836 if( op!=TK_INTEGER || pToken->z==0 837 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 838 nExtra = pToken->n+1; 839 assert( iValue>=0 ); 840 } 841 } 842 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 843 if( pNew ){ 844 memset(pNew, 0, sizeof(Expr)); 845 pNew->op = (u8)op; 846 pNew->iAgg = -1; 847 if( pToken ){ 848 if( nExtra==0 ){ 849 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 850 pNew->u.iValue = iValue; 851 }else{ 852 pNew->u.zToken = (char*)&pNew[1]; 853 assert( pToken->z!=0 || pToken->n==0 ); 854 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 855 pNew->u.zToken[pToken->n] = 0; 856 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 857 sqlite3DequoteExpr(pNew); 858 } 859 } 860 } 861 #if SQLITE_MAX_EXPR_DEPTH>0 862 pNew->nHeight = 1; 863 #endif 864 } 865 return pNew; 866 } 867 868 /* 869 ** Allocate a new expression node from a zero-terminated token that has 870 ** already been dequoted. 871 */ 872 Expr *sqlite3Expr( 873 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 874 int op, /* Expression opcode */ 875 const char *zToken /* Token argument. Might be NULL */ 876 ){ 877 Token x; 878 x.z = zToken; 879 x.n = sqlite3Strlen30(zToken); 880 return sqlite3ExprAlloc(db, op, &x, 0); 881 } 882 883 /* 884 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 885 ** 886 ** If pRoot==NULL that means that a memory allocation error has occurred. 887 ** In that case, delete the subtrees pLeft and pRight. 888 */ 889 void sqlite3ExprAttachSubtrees( 890 sqlite3 *db, 891 Expr *pRoot, 892 Expr *pLeft, 893 Expr *pRight 894 ){ 895 if( pRoot==0 ){ 896 assert( db->mallocFailed ); 897 sqlite3ExprDelete(db, pLeft); 898 sqlite3ExprDelete(db, pRight); 899 }else{ 900 if( pRight ){ 901 pRoot->pRight = pRight; 902 pRoot->flags |= EP_Propagate & pRight->flags; 903 } 904 if( pLeft ){ 905 pRoot->pLeft = pLeft; 906 pRoot->flags |= EP_Propagate & pLeft->flags; 907 } 908 exprSetHeight(pRoot); 909 } 910 } 911 912 /* 913 ** Allocate an Expr node which joins as many as two subtrees. 914 ** 915 ** One or both of the subtrees can be NULL. Return a pointer to the new 916 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 917 ** free the subtrees and return NULL. 918 */ 919 Expr *sqlite3PExpr( 920 Parse *pParse, /* Parsing context */ 921 int op, /* Expression opcode */ 922 Expr *pLeft, /* Left operand */ 923 Expr *pRight /* Right operand */ 924 ){ 925 Expr *p; 926 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 927 if( p ){ 928 memset(p, 0, sizeof(Expr)); 929 p->op = op & 0xff; 930 p->iAgg = -1; 931 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 932 sqlite3ExprCheckHeight(pParse, p->nHeight); 933 }else{ 934 sqlite3ExprDelete(pParse->db, pLeft); 935 sqlite3ExprDelete(pParse->db, pRight); 936 } 937 return p; 938 } 939 940 /* 941 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 942 ** do a memory allocation failure) then delete the pSelect object. 943 */ 944 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 945 if( pExpr ){ 946 pExpr->x.pSelect = pSelect; 947 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 948 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 949 }else{ 950 assert( pParse->db->mallocFailed ); 951 sqlite3SelectDelete(pParse->db, pSelect); 952 } 953 } 954 955 /* 956 ** Expression list pEList is a list of vector values. This function 957 ** converts the contents of pEList to a VALUES(...) Select statement 958 ** returning 1 row for each element of the list. For example, the 959 ** expression list: 960 ** 961 ** ( (1,2), (3,4) (5,6) ) 962 ** 963 ** is translated to the equivalent of: 964 ** 965 ** VALUES(1,2), (3,4), (5,6) 966 ** 967 ** Each of the vector values in pEList must contain exactly nElem terms. 968 ** If a list element that is not a vector or does not contain nElem terms, 969 ** an error message is left in pParse. 970 ** 971 ** This is used as part of processing IN(...) expressions with a list 972 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 973 */ 974 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 975 int ii; 976 Select *pRet = 0; 977 assert( nElem>1 ); 978 for(ii=0; ii<pEList->nExpr; ii++){ 979 Select *pSel; 980 Expr *pExpr = pEList->a[ii].pExpr; 981 int nExprElem = (pExpr->op==TK_VECTOR ? pExpr->x.pList->nExpr : 1); 982 if( nExprElem!=nElem ){ 983 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 984 nExprElem, nExprElem>1?"s":"", nElem 985 ); 986 break; 987 } 988 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 989 pExpr->x.pList = 0; 990 if( pSel ){ 991 if( pRet ){ 992 pSel->op = TK_ALL; 993 pSel->pPrior = pRet; 994 } 995 pRet = pSel; 996 } 997 } 998 999 if( pRet && pRet->pPrior ){ 1000 pRet->selFlags |= SF_MultiValue; 1001 } 1002 sqlite3ExprListDelete(pParse->db, pEList); 1003 return pRet; 1004 } 1005 1006 /* 1007 ** Join two expressions using an AND operator. If either expression is 1008 ** NULL, then just return the other expression. 1009 ** 1010 ** If one side or the other of the AND is known to be false, then instead 1011 ** of returning an AND expression, just return a constant expression with 1012 ** a value of false. 1013 */ 1014 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1015 sqlite3 *db = pParse->db; 1016 if( pLeft==0 ){ 1017 return pRight; 1018 }else if( pRight==0 ){ 1019 return pLeft; 1020 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1021 && !IN_RENAME_OBJECT 1022 ){ 1023 sqlite3ExprDeferredDelete(pParse, pLeft); 1024 sqlite3ExprDeferredDelete(pParse, pRight); 1025 return sqlite3Expr(db, TK_INTEGER, "0"); 1026 }else{ 1027 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1028 } 1029 } 1030 1031 /* 1032 ** Construct a new expression node for a function with multiple 1033 ** arguments. 1034 */ 1035 Expr *sqlite3ExprFunction( 1036 Parse *pParse, /* Parsing context */ 1037 ExprList *pList, /* Argument list */ 1038 const Token *pToken, /* Name of the function */ 1039 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1040 ){ 1041 Expr *pNew; 1042 sqlite3 *db = pParse->db; 1043 assert( pToken ); 1044 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1045 if( pNew==0 ){ 1046 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1047 return 0; 1048 } 1049 if( pList 1050 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1051 && !pParse->nested 1052 ){ 1053 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1054 } 1055 pNew->x.pList = pList; 1056 ExprSetProperty(pNew, EP_HasFunc); 1057 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 1058 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1059 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1060 return pNew; 1061 } 1062 1063 /* 1064 ** Check to see if a function is usable according to current access 1065 ** rules: 1066 ** 1067 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1068 ** 1069 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1070 ** top-level SQL 1071 ** 1072 ** If the function is not usable, create an error. 1073 */ 1074 void sqlite3ExprFunctionUsable( 1075 Parse *pParse, /* Parsing and code generating context */ 1076 const Expr *pExpr, /* The function invocation */ 1077 const FuncDef *pDef /* The function being invoked */ 1078 ){ 1079 assert( !IN_RENAME_OBJECT ); 1080 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1081 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1082 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1083 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1084 ){ 1085 /* Functions prohibited in triggers and views if: 1086 ** (1) tagged with SQLITE_DIRECTONLY 1087 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1088 ** is tagged with SQLITE_FUNC_UNSAFE) and 1089 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1090 ** that the schema is possibly tainted). 1091 */ 1092 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1093 } 1094 } 1095 } 1096 1097 /* 1098 ** Assign a variable number to an expression that encodes a wildcard 1099 ** in the original SQL statement. 1100 ** 1101 ** Wildcards consisting of a single "?" are assigned the next sequential 1102 ** variable number. 1103 ** 1104 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1105 ** sure "nnn" is not too big to avoid a denial of service attack when 1106 ** the SQL statement comes from an external source. 1107 ** 1108 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1109 ** as the previous instance of the same wildcard. Or if this is the first 1110 ** instance of the wildcard, the next sequential variable number is 1111 ** assigned. 1112 */ 1113 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1114 sqlite3 *db = pParse->db; 1115 const char *z; 1116 ynVar x; 1117 1118 if( pExpr==0 ) return; 1119 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1120 z = pExpr->u.zToken; 1121 assert( z!=0 ); 1122 assert( z[0]!=0 ); 1123 assert( n==(u32)sqlite3Strlen30(z) ); 1124 if( z[1]==0 ){ 1125 /* Wildcard of the form "?". Assign the next variable number */ 1126 assert( z[0]=='?' ); 1127 x = (ynVar)(++pParse->nVar); 1128 }else{ 1129 int doAdd = 0; 1130 if( z[0]=='?' ){ 1131 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1132 ** use it as the variable number */ 1133 i64 i; 1134 int bOk; 1135 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1136 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1137 bOk = 1; 1138 }else{ 1139 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1140 } 1141 testcase( i==0 ); 1142 testcase( i==1 ); 1143 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1144 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1145 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1146 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1147 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1148 return; 1149 } 1150 x = (ynVar)i; 1151 if( x>pParse->nVar ){ 1152 pParse->nVar = (int)x; 1153 doAdd = 1; 1154 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1155 doAdd = 1; 1156 } 1157 }else{ 1158 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1159 ** number as the prior appearance of the same name, or if the name 1160 ** has never appeared before, reuse the same variable number 1161 */ 1162 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1163 if( x==0 ){ 1164 x = (ynVar)(++pParse->nVar); 1165 doAdd = 1; 1166 } 1167 } 1168 if( doAdd ){ 1169 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1170 } 1171 } 1172 pExpr->iColumn = x; 1173 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1174 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1175 } 1176 } 1177 1178 /* 1179 ** Recursively delete an expression tree. 1180 */ 1181 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1182 assert( p!=0 ); 1183 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1184 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1185 1186 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1187 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1188 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1189 #ifdef SQLITE_DEBUG 1190 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1191 assert( p->pLeft==0 ); 1192 assert( p->pRight==0 ); 1193 assert( p->x.pSelect==0 ); 1194 } 1195 #endif 1196 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1197 /* The Expr.x union is never used at the same time as Expr.pRight */ 1198 assert( p->x.pList==0 || p->pRight==0 ); 1199 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1200 if( p->pRight ){ 1201 assert( !ExprHasProperty(p, EP_WinFunc) ); 1202 sqlite3ExprDeleteNN(db, p->pRight); 1203 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1204 assert( !ExprHasProperty(p, EP_WinFunc) ); 1205 sqlite3SelectDelete(db, p->x.pSelect); 1206 }else{ 1207 sqlite3ExprListDelete(db, p->x.pList); 1208 #ifndef SQLITE_OMIT_WINDOWFUNC 1209 if( ExprHasProperty(p, EP_WinFunc) ){ 1210 sqlite3WindowDelete(db, p->y.pWin); 1211 } 1212 #endif 1213 } 1214 } 1215 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1216 if( !ExprHasProperty(p, EP_Static) ){ 1217 sqlite3DbFreeNN(db, p); 1218 } 1219 } 1220 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1221 if( p ) sqlite3ExprDeleteNN(db, p); 1222 } 1223 1224 1225 /* 1226 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1227 ** This is similar to sqlite3ExprDelete() except that the delete is 1228 ** deferred untilthe pParse is deleted. 1229 ** 1230 ** The pExpr might be deleted immediately on an OOM error. 1231 ** 1232 ** The deferred delete is (currently) implemented by adding the 1233 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1234 */ 1235 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1236 pParse->pConstExpr = 1237 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1238 } 1239 1240 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1241 ** expression. 1242 */ 1243 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1244 if( p ){ 1245 if( IN_RENAME_OBJECT ){ 1246 sqlite3RenameExprUnmap(pParse, p); 1247 } 1248 sqlite3ExprDeleteNN(pParse->db, p); 1249 } 1250 } 1251 1252 /* 1253 ** Return the number of bytes allocated for the expression structure 1254 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1255 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1256 */ 1257 static int exprStructSize(const Expr *p){ 1258 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1259 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1260 return EXPR_FULLSIZE; 1261 } 1262 1263 /* 1264 ** The dupedExpr*Size() routines each return the number of bytes required 1265 ** to store a copy of an expression or expression tree. They differ in 1266 ** how much of the tree is measured. 1267 ** 1268 ** dupedExprStructSize() Size of only the Expr structure 1269 ** dupedExprNodeSize() Size of Expr + space for token 1270 ** dupedExprSize() Expr + token + subtree components 1271 ** 1272 *************************************************************************** 1273 ** 1274 ** The dupedExprStructSize() function returns two values OR-ed together: 1275 ** (1) the space required for a copy of the Expr structure only and 1276 ** (2) the EP_xxx flags that indicate what the structure size should be. 1277 ** The return values is always one of: 1278 ** 1279 ** EXPR_FULLSIZE 1280 ** EXPR_REDUCEDSIZE | EP_Reduced 1281 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1282 ** 1283 ** The size of the structure can be found by masking the return value 1284 ** of this routine with 0xfff. The flags can be found by masking the 1285 ** return value with EP_Reduced|EP_TokenOnly. 1286 ** 1287 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1288 ** (unreduced) Expr objects as they or originally constructed by the parser. 1289 ** During expression analysis, extra information is computed and moved into 1290 ** later parts of the Expr object and that extra information might get chopped 1291 ** off if the expression is reduced. Note also that it does not work to 1292 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1293 ** to reduce a pristine expression tree from the parser. The implementation 1294 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1295 ** to enforce this constraint. 1296 */ 1297 static int dupedExprStructSize(const Expr *p, int flags){ 1298 int nSize; 1299 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1300 assert( EXPR_FULLSIZE<=0xfff ); 1301 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1302 if( 0==flags || p->op==TK_SELECT_COLUMN 1303 #ifndef SQLITE_OMIT_WINDOWFUNC 1304 || ExprHasProperty(p, EP_WinFunc) 1305 #endif 1306 ){ 1307 nSize = EXPR_FULLSIZE; 1308 }else{ 1309 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1310 assert( !ExprHasProperty(p, EP_FromJoin) ); 1311 assert( !ExprHasProperty(p, EP_MemToken) ); 1312 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1313 if( p->pLeft || p->x.pList ){ 1314 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1315 }else{ 1316 assert( p->pRight==0 ); 1317 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1318 } 1319 } 1320 return nSize; 1321 } 1322 1323 /* 1324 ** This function returns the space in bytes required to store the copy 1325 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1326 ** string is defined.) 1327 */ 1328 static int dupedExprNodeSize(const Expr *p, int flags){ 1329 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1330 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1331 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1332 } 1333 return ROUND8(nByte); 1334 } 1335 1336 /* 1337 ** Return the number of bytes required to create a duplicate of the 1338 ** expression passed as the first argument. The second argument is a 1339 ** mask containing EXPRDUP_XXX flags. 1340 ** 1341 ** The value returned includes space to create a copy of the Expr struct 1342 ** itself and the buffer referred to by Expr.u.zToken, if any. 1343 ** 1344 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1345 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1346 ** and Expr.pRight variables (but not for any structures pointed to or 1347 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1348 */ 1349 static int dupedExprSize(const Expr *p, int flags){ 1350 int nByte = 0; 1351 if( p ){ 1352 nByte = dupedExprNodeSize(p, flags); 1353 if( flags&EXPRDUP_REDUCE ){ 1354 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1355 } 1356 } 1357 return nByte; 1358 } 1359 1360 /* 1361 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1362 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1363 ** to store the copy of expression p, the copies of p->u.zToken 1364 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1365 ** if any. Before returning, *pzBuffer is set to the first byte past the 1366 ** portion of the buffer copied into by this function. 1367 */ 1368 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 1369 Expr *pNew; /* Value to return */ 1370 u8 *zAlloc; /* Memory space from which to build Expr object */ 1371 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1372 1373 assert( db!=0 ); 1374 assert( p ); 1375 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1376 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1377 1378 /* Figure out where to write the new Expr structure. */ 1379 if( pzBuffer ){ 1380 zAlloc = *pzBuffer; 1381 staticFlag = EP_Static; 1382 assert( zAlloc!=0 ); 1383 }else{ 1384 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1385 staticFlag = 0; 1386 } 1387 pNew = (Expr *)zAlloc; 1388 1389 if( pNew ){ 1390 /* Set nNewSize to the size allocated for the structure pointed to 1391 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1392 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1393 ** by the copy of the p->u.zToken string (if any). 1394 */ 1395 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1396 const int nNewSize = nStructSize & 0xfff; 1397 int nToken; 1398 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1399 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1400 }else{ 1401 nToken = 0; 1402 } 1403 if( dupFlags ){ 1404 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1405 memcpy(zAlloc, p, nNewSize); 1406 }else{ 1407 u32 nSize = (u32)exprStructSize(p); 1408 memcpy(zAlloc, p, nSize); 1409 if( nSize<EXPR_FULLSIZE ){ 1410 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1411 } 1412 } 1413 1414 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1415 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1416 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1417 pNew->flags |= staticFlag; 1418 ExprClearVVAProperties(pNew); 1419 if( dupFlags ){ 1420 ExprSetVVAProperty(pNew, EP_Immutable); 1421 } 1422 1423 /* Copy the p->u.zToken string, if any. */ 1424 if( nToken ){ 1425 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1426 memcpy(zToken, p->u.zToken, nToken); 1427 } 1428 1429 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1430 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1431 if( ExprHasProperty(p, EP_xIsSelect) ){ 1432 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1433 }else{ 1434 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1435 } 1436 } 1437 1438 /* Fill in pNew->pLeft and pNew->pRight. */ 1439 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1440 zAlloc += dupedExprNodeSize(p, dupFlags); 1441 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1442 pNew->pLeft = p->pLeft ? 1443 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1444 pNew->pRight = p->pRight ? 1445 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1446 } 1447 #ifndef SQLITE_OMIT_WINDOWFUNC 1448 if( ExprHasProperty(p, EP_WinFunc) ){ 1449 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1450 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1451 } 1452 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1453 if( pzBuffer ){ 1454 *pzBuffer = zAlloc; 1455 } 1456 }else{ 1457 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1458 if( pNew->op==TK_SELECT_COLUMN ){ 1459 pNew->pLeft = p->pLeft; 1460 assert( p->pRight==0 || p->pRight==p->pLeft 1461 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1462 }else{ 1463 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1464 } 1465 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1466 } 1467 } 1468 } 1469 return pNew; 1470 } 1471 1472 /* 1473 ** Create and return a deep copy of the object passed as the second 1474 ** argument. If an OOM condition is encountered, NULL is returned 1475 ** and the db->mallocFailed flag set. 1476 */ 1477 #ifndef SQLITE_OMIT_CTE 1478 With *sqlite3WithDup(sqlite3 *db, With *p){ 1479 With *pRet = 0; 1480 if( p ){ 1481 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1482 pRet = sqlite3DbMallocZero(db, nByte); 1483 if( pRet ){ 1484 int i; 1485 pRet->nCte = p->nCte; 1486 for(i=0; i<p->nCte; i++){ 1487 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1488 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1489 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1490 } 1491 } 1492 } 1493 return pRet; 1494 } 1495 #else 1496 # define sqlite3WithDup(x,y) 0 1497 #endif 1498 1499 #ifndef SQLITE_OMIT_WINDOWFUNC 1500 /* 1501 ** The gatherSelectWindows() procedure and its helper routine 1502 ** gatherSelectWindowsCallback() are used to scan all the expressions 1503 ** an a newly duplicated SELECT statement and gather all of the Window 1504 ** objects found there, assembling them onto the linked list at Select->pWin. 1505 */ 1506 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1507 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1508 Select *pSelect = pWalker->u.pSelect; 1509 Window *pWin = pExpr->y.pWin; 1510 assert( pWin ); 1511 assert( IsWindowFunc(pExpr) ); 1512 assert( pWin->ppThis==0 ); 1513 sqlite3WindowLink(pSelect, pWin); 1514 } 1515 return WRC_Continue; 1516 } 1517 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1518 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1519 } 1520 static void gatherSelectWindows(Select *p){ 1521 Walker w; 1522 w.xExprCallback = gatherSelectWindowsCallback; 1523 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1524 w.xSelectCallback2 = 0; 1525 w.pParse = 0; 1526 w.u.pSelect = p; 1527 sqlite3WalkSelect(&w, p); 1528 } 1529 #endif 1530 1531 1532 /* 1533 ** The following group of routines make deep copies of expressions, 1534 ** expression lists, ID lists, and select statements. The copies can 1535 ** be deleted (by being passed to their respective ...Delete() routines) 1536 ** without effecting the originals. 1537 ** 1538 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1539 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1540 ** by subsequent calls to sqlite*ListAppend() routines. 1541 ** 1542 ** Any tables that the SrcList might point to are not duplicated. 1543 ** 1544 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1545 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1546 ** truncated version of the usual Expr structure that will be stored as 1547 ** part of the in-memory representation of the database schema. 1548 */ 1549 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 1550 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1551 return p ? exprDup(db, p, flags, 0) : 0; 1552 } 1553 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 1554 ExprList *pNew; 1555 struct ExprList_item *pItem; 1556 const struct ExprList_item *pOldItem; 1557 int i; 1558 Expr *pPriorSelectColOld = 0; 1559 Expr *pPriorSelectColNew = 0; 1560 assert( db!=0 ); 1561 if( p==0 ) return 0; 1562 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1563 if( pNew==0 ) return 0; 1564 pNew->nExpr = p->nExpr; 1565 pNew->nAlloc = p->nAlloc; 1566 pItem = pNew->a; 1567 pOldItem = p->a; 1568 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1569 Expr *pOldExpr = pOldItem->pExpr; 1570 Expr *pNewExpr; 1571 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1572 if( pOldExpr 1573 && pOldExpr->op==TK_SELECT_COLUMN 1574 && (pNewExpr = pItem->pExpr)!=0 1575 ){ 1576 if( pNewExpr->pRight ){ 1577 pPriorSelectColOld = pOldExpr->pRight; 1578 pPriorSelectColNew = pNewExpr->pRight; 1579 pNewExpr->pLeft = pNewExpr->pRight; 1580 }else{ 1581 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1582 pPriorSelectColOld = pOldExpr->pLeft; 1583 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1584 pNewExpr->pRight = pPriorSelectColNew; 1585 } 1586 pNewExpr->pLeft = pPriorSelectColNew; 1587 } 1588 } 1589 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1590 pItem->sortFlags = pOldItem->sortFlags; 1591 pItem->eEName = pOldItem->eEName; 1592 pItem->done = 0; 1593 pItem->bNulls = pOldItem->bNulls; 1594 pItem->bSorterRef = pOldItem->bSorterRef; 1595 pItem->u = pOldItem->u; 1596 } 1597 return pNew; 1598 } 1599 1600 /* 1601 ** If cursors, triggers, views and subqueries are all omitted from 1602 ** the build, then none of the following routines, except for 1603 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1604 ** called with a NULL argument. 1605 */ 1606 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1607 || !defined(SQLITE_OMIT_SUBQUERY) 1608 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 1609 SrcList *pNew; 1610 int i; 1611 int nByte; 1612 assert( db!=0 ); 1613 if( p==0 ) return 0; 1614 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1615 pNew = sqlite3DbMallocRawNN(db, nByte ); 1616 if( pNew==0 ) return 0; 1617 pNew->nSrc = pNew->nAlloc = p->nSrc; 1618 for(i=0; i<p->nSrc; i++){ 1619 SrcItem *pNewItem = &pNew->a[i]; 1620 const SrcItem *pOldItem = &p->a[i]; 1621 Table *pTab; 1622 pNewItem->pSchema = pOldItem->pSchema; 1623 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1624 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1625 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1626 pNewItem->fg = pOldItem->fg; 1627 pNewItem->iCursor = pOldItem->iCursor; 1628 pNewItem->addrFillSub = pOldItem->addrFillSub; 1629 pNewItem->regReturn = pOldItem->regReturn; 1630 if( pNewItem->fg.isIndexedBy ){ 1631 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1632 } 1633 pNewItem->u2 = pOldItem->u2; 1634 if( pNewItem->fg.isCte ){ 1635 pNewItem->u2.pCteUse->nUse++; 1636 } 1637 if( pNewItem->fg.isTabFunc ){ 1638 pNewItem->u1.pFuncArg = 1639 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1640 } 1641 pTab = pNewItem->pTab = pOldItem->pTab; 1642 if( pTab ){ 1643 pTab->nTabRef++; 1644 } 1645 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1646 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1647 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1648 pNewItem->colUsed = pOldItem->colUsed; 1649 } 1650 return pNew; 1651 } 1652 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 1653 IdList *pNew; 1654 int i; 1655 assert( db!=0 ); 1656 if( p==0 ) return 0; 1657 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1658 if( pNew==0 ) return 0; 1659 pNew->nId = p->nId; 1660 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1661 if( pNew->a==0 ){ 1662 sqlite3DbFreeNN(db, pNew); 1663 return 0; 1664 } 1665 /* Note that because the size of the allocation for p->a[] is not 1666 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1667 ** on the duplicate created by this function. */ 1668 for(i=0; i<p->nId; i++){ 1669 struct IdList_item *pNewItem = &pNew->a[i]; 1670 struct IdList_item *pOldItem = &p->a[i]; 1671 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1672 pNewItem->idx = pOldItem->idx; 1673 } 1674 return pNew; 1675 } 1676 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 1677 Select *pRet = 0; 1678 Select *pNext = 0; 1679 Select **pp = &pRet; 1680 const Select *p; 1681 1682 assert( db!=0 ); 1683 for(p=pDup; p; p=p->pPrior){ 1684 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1685 if( pNew==0 ) break; 1686 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1687 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1688 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1689 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1690 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1691 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1692 pNew->op = p->op; 1693 pNew->pNext = pNext; 1694 pNew->pPrior = 0; 1695 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1696 pNew->iLimit = 0; 1697 pNew->iOffset = 0; 1698 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1699 pNew->addrOpenEphm[0] = -1; 1700 pNew->addrOpenEphm[1] = -1; 1701 pNew->nSelectRow = p->nSelectRow; 1702 pNew->pWith = sqlite3WithDup(db, p->pWith); 1703 #ifndef SQLITE_OMIT_WINDOWFUNC 1704 pNew->pWin = 0; 1705 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1706 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1707 #endif 1708 pNew->selId = p->selId; 1709 if( db->mallocFailed ){ 1710 /* Any prior OOM might have left the Select object incomplete. 1711 ** Delete the whole thing rather than allow an incomplete Select 1712 ** to be used by the code generator. */ 1713 pNew->pNext = 0; 1714 sqlite3SelectDelete(db, pNew); 1715 break; 1716 } 1717 *pp = pNew; 1718 pp = &pNew->pPrior; 1719 pNext = pNew; 1720 } 1721 1722 return pRet; 1723 } 1724 #else 1725 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1726 assert( p==0 ); 1727 return 0; 1728 } 1729 #endif 1730 1731 1732 /* 1733 ** Add a new element to the end of an expression list. If pList is 1734 ** initially NULL, then create a new expression list. 1735 ** 1736 ** The pList argument must be either NULL or a pointer to an ExprList 1737 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1738 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1739 ** Reason: This routine assumes that the number of slots in pList->a[] 1740 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1741 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1742 ** 1743 ** If a memory allocation error occurs, the entire list is freed and 1744 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1745 ** that the new entry was successfully appended. 1746 */ 1747 static const struct ExprList_item zeroItem = {0}; 1748 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1749 sqlite3 *db, /* Database handle. Used for memory allocation */ 1750 Expr *pExpr /* Expression to be appended. Might be NULL */ 1751 ){ 1752 struct ExprList_item *pItem; 1753 ExprList *pList; 1754 1755 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1756 if( pList==0 ){ 1757 sqlite3ExprDelete(db, pExpr); 1758 return 0; 1759 } 1760 pList->nAlloc = 4; 1761 pList->nExpr = 1; 1762 pItem = &pList->a[0]; 1763 *pItem = zeroItem; 1764 pItem->pExpr = pExpr; 1765 return pList; 1766 } 1767 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1768 sqlite3 *db, /* Database handle. Used for memory allocation */ 1769 ExprList *pList, /* List to which to append. Might be NULL */ 1770 Expr *pExpr /* Expression to be appended. Might be NULL */ 1771 ){ 1772 struct ExprList_item *pItem; 1773 ExprList *pNew; 1774 pList->nAlloc *= 2; 1775 pNew = sqlite3DbRealloc(db, pList, 1776 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1777 if( pNew==0 ){ 1778 sqlite3ExprListDelete(db, pList); 1779 sqlite3ExprDelete(db, pExpr); 1780 return 0; 1781 }else{ 1782 pList = pNew; 1783 } 1784 pItem = &pList->a[pList->nExpr++]; 1785 *pItem = zeroItem; 1786 pItem->pExpr = pExpr; 1787 return pList; 1788 } 1789 ExprList *sqlite3ExprListAppend( 1790 Parse *pParse, /* Parsing context */ 1791 ExprList *pList, /* List to which to append. Might be NULL */ 1792 Expr *pExpr /* Expression to be appended. Might be NULL */ 1793 ){ 1794 struct ExprList_item *pItem; 1795 if( pList==0 ){ 1796 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1797 } 1798 if( pList->nAlloc<pList->nExpr+1 ){ 1799 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1800 } 1801 pItem = &pList->a[pList->nExpr++]; 1802 *pItem = zeroItem; 1803 pItem->pExpr = pExpr; 1804 return pList; 1805 } 1806 1807 /* 1808 ** pColumns and pExpr form a vector assignment which is part of the SET 1809 ** clause of an UPDATE statement. Like this: 1810 ** 1811 ** (a,b,c) = (expr1,expr2,expr3) 1812 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1813 ** 1814 ** For each term of the vector assignment, append new entries to the 1815 ** expression list pList. In the case of a subquery on the RHS, append 1816 ** TK_SELECT_COLUMN expressions. 1817 */ 1818 ExprList *sqlite3ExprListAppendVector( 1819 Parse *pParse, /* Parsing context */ 1820 ExprList *pList, /* List to which to append. Might be NULL */ 1821 IdList *pColumns, /* List of names of LHS of the assignment */ 1822 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1823 ){ 1824 sqlite3 *db = pParse->db; 1825 int n; 1826 int i; 1827 int iFirst = pList ? pList->nExpr : 0; 1828 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1829 ** exit prior to this routine being invoked */ 1830 if( NEVER(pColumns==0) ) goto vector_append_error; 1831 if( pExpr==0 ) goto vector_append_error; 1832 1833 /* If the RHS is a vector, then we can immediately check to see that 1834 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1835 ** wildcards ("*") in the result set of the SELECT must be expanded before 1836 ** we can do the size check, so defer the size check until code generation. 1837 */ 1838 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1839 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1840 pColumns->nId, n); 1841 goto vector_append_error; 1842 } 1843 1844 for(i=0; i<pColumns->nId; i++){ 1845 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1846 assert( pSubExpr!=0 || db->mallocFailed ); 1847 if( pSubExpr==0 ) continue; 1848 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1849 if( pList ){ 1850 assert( pList->nExpr==iFirst+i+1 ); 1851 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1852 pColumns->a[i].zName = 0; 1853 } 1854 } 1855 1856 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1857 Expr *pFirst = pList->a[iFirst].pExpr; 1858 assert( pFirst!=0 ); 1859 assert( pFirst->op==TK_SELECT_COLUMN ); 1860 1861 /* Store the SELECT statement in pRight so it will be deleted when 1862 ** sqlite3ExprListDelete() is called */ 1863 pFirst->pRight = pExpr; 1864 pExpr = 0; 1865 1866 /* Remember the size of the LHS in iTable so that we can check that 1867 ** the RHS and LHS sizes match during code generation. */ 1868 pFirst->iTable = pColumns->nId; 1869 } 1870 1871 vector_append_error: 1872 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1873 sqlite3IdListDelete(db, pColumns); 1874 return pList; 1875 } 1876 1877 /* 1878 ** Set the sort order for the last element on the given ExprList. 1879 */ 1880 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1881 struct ExprList_item *pItem; 1882 if( p==0 ) return; 1883 assert( p->nExpr>0 ); 1884 1885 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1886 assert( iSortOrder==SQLITE_SO_UNDEFINED 1887 || iSortOrder==SQLITE_SO_ASC 1888 || iSortOrder==SQLITE_SO_DESC 1889 ); 1890 assert( eNulls==SQLITE_SO_UNDEFINED 1891 || eNulls==SQLITE_SO_ASC 1892 || eNulls==SQLITE_SO_DESC 1893 ); 1894 1895 pItem = &p->a[p->nExpr-1]; 1896 assert( pItem->bNulls==0 ); 1897 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1898 iSortOrder = SQLITE_SO_ASC; 1899 } 1900 pItem->sortFlags = (u8)iSortOrder; 1901 1902 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1903 pItem->bNulls = 1; 1904 if( iSortOrder!=eNulls ){ 1905 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1906 } 1907 } 1908 } 1909 1910 /* 1911 ** Set the ExprList.a[].zEName element of the most recently added item 1912 ** on the expression list. 1913 ** 1914 ** pList might be NULL following an OOM error. But pName should never be 1915 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1916 ** is set. 1917 */ 1918 void sqlite3ExprListSetName( 1919 Parse *pParse, /* Parsing context */ 1920 ExprList *pList, /* List to which to add the span. */ 1921 const Token *pName, /* Name to be added */ 1922 int dequote /* True to cause the name to be dequoted */ 1923 ){ 1924 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1925 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1926 if( pList ){ 1927 struct ExprList_item *pItem; 1928 assert( pList->nExpr>0 ); 1929 pItem = &pList->a[pList->nExpr-1]; 1930 assert( pItem->zEName==0 ); 1931 assert( pItem->eEName==ENAME_NAME ); 1932 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1933 if( dequote ){ 1934 /* If dequote==0, then pName->z does not point to part of a DDL 1935 ** statement handled by the parser. And so no token need be added 1936 ** to the token-map. */ 1937 sqlite3Dequote(pItem->zEName); 1938 if( IN_RENAME_OBJECT ){ 1939 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 1940 } 1941 } 1942 } 1943 } 1944 1945 /* 1946 ** Set the ExprList.a[].zSpan element of the most recently added item 1947 ** on the expression list. 1948 ** 1949 ** pList might be NULL following an OOM error. But pSpan should never be 1950 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1951 ** is set. 1952 */ 1953 void sqlite3ExprListSetSpan( 1954 Parse *pParse, /* Parsing context */ 1955 ExprList *pList, /* List to which to add the span. */ 1956 const char *zStart, /* Start of the span */ 1957 const char *zEnd /* End of the span */ 1958 ){ 1959 sqlite3 *db = pParse->db; 1960 assert( pList!=0 || db->mallocFailed!=0 ); 1961 if( pList ){ 1962 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1963 assert( pList->nExpr>0 ); 1964 if( pItem->zEName==0 ){ 1965 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1966 pItem->eEName = ENAME_SPAN; 1967 } 1968 } 1969 } 1970 1971 /* 1972 ** If the expression list pEList contains more than iLimit elements, 1973 ** leave an error message in pParse. 1974 */ 1975 void sqlite3ExprListCheckLength( 1976 Parse *pParse, 1977 ExprList *pEList, 1978 const char *zObject 1979 ){ 1980 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1981 testcase( pEList && pEList->nExpr==mx ); 1982 testcase( pEList && pEList->nExpr==mx+1 ); 1983 if( pEList && pEList->nExpr>mx ){ 1984 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1985 } 1986 } 1987 1988 /* 1989 ** Delete an entire expression list. 1990 */ 1991 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1992 int i = pList->nExpr; 1993 struct ExprList_item *pItem = pList->a; 1994 assert( pList->nExpr>0 ); 1995 do{ 1996 sqlite3ExprDelete(db, pItem->pExpr); 1997 sqlite3DbFree(db, pItem->zEName); 1998 pItem++; 1999 }while( --i>0 ); 2000 sqlite3DbFreeNN(db, pList); 2001 } 2002 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 2003 if( pList ) exprListDeleteNN(db, pList); 2004 } 2005 2006 /* 2007 ** Return the bitwise-OR of all Expr.flags fields in the given 2008 ** ExprList. 2009 */ 2010 u32 sqlite3ExprListFlags(const ExprList *pList){ 2011 int i; 2012 u32 m = 0; 2013 assert( pList!=0 ); 2014 for(i=0; i<pList->nExpr; i++){ 2015 Expr *pExpr = pList->a[i].pExpr; 2016 assert( pExpr!=0 ); 2017 m |= pExpr->flags; 2018 } 2019 return m; 2020 } 2021 2022 /* 2023 ** This is a SELECT-node callback for the expression walker that 2024 ** always "fails". By "fail" in this case, we mean set 2025 ** pWalker->eCode to zero and abort. 2026 ** 2027 ** This callback is used by multiple expression walkers. 2028 */ 2029 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2030 UNUSED_PARAMETER(NotUsed); 2031 pWalker->eCode = 0; 2032 return WRC_Abort; 2033 } 2034 2035 /* 2036 ** Check the input string to see if it is "true" or "false" (in any case). 2037 ** 2038 ** If the string is.... Return 2039 ** "true" EP_IsTrue 2040 ** "false" EP_IsFalse 2041 ** anything else 0 2042 */ 2043 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2044 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2045 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2046 return 0; 2047 } 2048 2049 2050 /* 2051 ** If the input expression is an ID with the name "true" or "false" 2052 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2053 ** the conversion happened, and zero if the expression is unaltered. 2054 */ 2055 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2056 u32 v; 2057 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2058 if( !ExprHasProperty(pExpr, EP_Quoted) 2059 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2060 ){ 2061 pExpr->op = TK_TRUEFALSE; 2062 ExprSetProperty(pExpr, v); 2063 return 1; 2064 } 2065 return 0; 2066 } 2067 2068 /* 2069 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2070 ** and 0 if it is FALSE. 2071 */ 2072 int sqlite3ExprTruthValue(const Expr *pExpr){ 2073 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2074 assert( pExpr->op==TK_TRUEFALSE ); 2075 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2076 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2077 return pExpr->u.zToken[4]==0; 2078 } 2079 2080 /* 2081 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2082 ** terms that are always true or false. Return the simplified expression. 2083 ** Or return the original expression if no simplification is possible. 2084 ** 2085 ** Examples: 2086 ** 2087 ** (x<10) AND true => (x<10) 2088 ** (x<10) AND false => false 2089 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2090 ** (x<10) AND (y=22 OR true) => (x<10) 2091 ** (y=22) OR true => true 2092 */ 2093 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2094 assert( pExpr!=0 ); 2095 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2096 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2097 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2098 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2099 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2100 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2101 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2102 } 2103 } 2104 return pExpr; 2105 } 2106 2107 2108 /* 2109 ** These routines are Walker callbacks used to check expressions to 2110 ** see if they are "constant" for some definition of constant. The 2111 ** Walker.eCode value determines the type of "constant" we are looking 2112 ** for. 2113 ** 2114 ** These callback routines are used to implement the following: 2115 ** 2116 ** sqlite3ExprIsConstant() pWalker->eCode==1 2117 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2118 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2119 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2120 ** 2121 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2122 ** is found to not be a constant. 2123 ** 2124 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2125 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2126 ** when parsing an existing schema out of the sqlite_schema table and 4 2127 ** when processing a new CREATE TABLE statement. A bound parameter raises 2128 ** an error for new statements, but is silently converted 2129 ** to NULL for existing schemas. This allows sqlite_schema tables that 2130 ** contain a bound parameter because they were generated by older versions 2131 ** of SQLite to be parsed by newer versions of SQLite without raising a 2132 ** malformed schema error. 2133 */ 2134 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2135 2136 /* If pWalker->eCode is 2 then any term of the expression that comes from 2137 ** the ON or USING clauses of a left join disqualifies the expression 2138 ** from being considered constant. */ 2139 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2140 pWalker->eCode = 0; 2141 return WRC_Abort; 2142 } 2143 2144 switch( pExpr->op ){ 2145 /* Consider functions to be constant if all their arguments are constant 2146 ** and either pWalker->eCode==4 or 5 or the function has the 2147 ** SQLITE_FUNC_CONST flag. */ 2148 case TK_FUNCTION: 2149 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2150 && !ExprHasProperty(pExpr, EP_WinFunc) 2151 ){ 2152 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2153 return WRC_Continue; 2154 }else{ 2155 pWalker->eCode = 0; 2156 return WRC_Abort; 2157 } 2158 case TK_ID: 2159 /* Convert "true" or "false" in a DEFAULT clause into the 2160 ** appropriate TK_TRUEFALSE operator */ 2161 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2162 return WRC_Prune; 2163 } 2164 /* no break */ deliberate_fall_through 2165 case TK_COLUMN: 2166 case TK_AGG_FUNCTION: 2167 case TK_AGG_COLUMN: 2168 testcase( pExpr->op==TK_ID ); 2169 testcase( pExpr->op==TK_COLUMN ); 2170 testcase( pExpr->op==TK_AGG_FUNCTION ); 2171 testcase( pExpr->op==TK_AGG_COLUMN ); 2172 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2173 return WRC_Continue; 2174 } 2175 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2176 return WRC_Continue; 2177 } 2178 /* no break */ deliberate_fall_through 2179 case TK_IF_NULL_ROW: 2180 case TK_REGISTER: 2181 case TK_DOT: 2182 testcase( pExpr->op==TK_REGISTER ); 2183 testcase( pExpr->op==TK_IF_NULL_ROW ); 2184 testcase( pExpr->op==TK_DOT ); 2185 pWalker->eCode = 0; 2186 return WRC_Abort; 2187 case TK_VARIABLE: 2188 if( pWalker->eCode==5 ){ 2189 /* Silently convert bound parameters that appear inside of CREATE 2190 ** statements into a NULL when parsing the CREATE statement text out 2191 ** of the sqlite_schema table */ 2192 pExpr->op = TK_NULL; 2193 }else if( pWalker->eCode==4 ){ 2194 /* A bound parameter in a CREATE statement that originates from 2195 ** sqlite3_prepare() causes an error */ 2196 pWalker->eCode = 0; 2197 return WRC_Abort; 2198 } 2199 /* no break */ deliberate_fall_through 2200 default: 2201 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2202 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2203 return WRC_Continue; 2204 } 2205 } 2206 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2207 Walker w; 2208 w.eCode = initFlag; 2209 w.xExprCallback = exprNodeIsConstant; 2210 w.xSelectCallback = sqlite3SelectWalkFail; 2211 #ifdef SQLITE_DEBUG 2212 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2213 #endif 2214 w.u.iCur = iCur; 2215 sqlite3WalkExpr(&w, p); 2216 return w.eCode; 2217 } 2218 2219 /* 2220 ** Walk an expression tree. Return non-zero if the expression is constant 2221 ** and 0 if it involves variables or function calls. 2222 ** 2223 ** For the purposes of this function, a double-quoted string (ex: "abc") 2224 ** is considered a variable but a single-quoted string (ex: 'abc') is 2225 ** a constant. 2226 */ 2227 int sqlite3ExprIsConstant(Expr *p){ 2228 return exprIsConst(p, 1, 0); 2229 } 2230 2231 /* 2232 ** Walk an expression tree. Return non-zero if 2233 ** 2234 ** (1) the expression is constant, and 2235 ** (2) the expression does originate in the ON or USING clause 2236 ** of a LEFT JOIN, and 2237 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2238 ** operands created by the constant propagation optimization. 2239 ** 2240 ** When this routine returns true, it indicates that the expression 2241 ** can be added to the pParse->pConstExpr list and evaluated once when 2242 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2243 */ 2244 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2245 return exprIsConst(p, 2, 0); 2246 } 2247 2248 /* 2249 ** Walk an expression tree. Return non-zero if the expression is constant 2250 ** for any single row of the table with cursor iCur. In other words, the 2251 ** expression must not refer to any non-deterministic function nor any 2252 ** table other than iCur. 2253 */ 2254 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2255 return exprIsConst(p, 3, iCur); 2256 } 2257 2258 2259 /* 2260 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2261 */ 2262 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2263 ExprList *pGroupBy = pWalker->u.pGroupBy; 2264 int i; 2265 2266 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2267 ** it constant. */ 2268 for(i=0; i<pGroupBy->nExpr; i++){ 2269 Expr *p = pGroupBy->a[i].pExpr; 2270 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2271 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2272 if( sqlite3IsBinary(pColl) ){ 2273 return WRC_Prune; 2274 } 2275 } 2276 } 2277 2278 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2279 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2280 pWalker->eCode = 0; 2281 return WRC_Abort; 2282 } 2283 2284 return exprNodeIsConstant(pWalker, pExpr); 2285 } 2286 2287 /* 2288 ** Walk the expression tree passed as the first argument. Return non-zero 2289 ** if the expression consists entirely of constants or copies of terms 2290 ** in pGroupBy that sort with the BINARY collation sequence. 2291 ** 2292 ** This routine is used to determine if a term of the HAVING clause can 2293 ** be promoted into the WHERE clause. In order for such a promotion to work, 2294 ** the value of the HAVING clause term must be the same for all members of 2295 ** a "group". The requirement that the GROUP BY term must be BINARY 2296 ** assumes that no other collating sequence will have a finer-grained 2297 ** grouping than binary. In other words (A=B COLLATE binary) implies 2298 ** A=B in every other collating sequence. The requirement that the 2299 ** GROUP BY be BINARY is stricter than necessary. It would also work 2300 ** to promote HAVING clauses that use the same alternative collating 2301 ** sequence as the GROUP BY term, but that is much harder to check, 2302 ** alternative collating sequences are uncommon, and this is only an 2303 ** optimization, so we take the easy way out and simply require the 2304 ** GROUP BY to use the BINARY collating sequence. 2305 */ 2306 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2307 Walker w; 2308 w.eCode = 1; 2309 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2310 w.xSelectCallback = 0; 2311 w.u.pGroupBy = pGroupBy; 2312 w.pParse = pParse; 2313 sqlite3WalkExpr(&w, p); 2314 return w.eCode; 2315 } 2316 2317 /* 2318 ** Walk an expression tree for the DEFAULT field of a column definition 2319 ** in a CREATE TABLE statement. Return non-zero if the expression is 2320 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2321 ** the expression is constant or a function call with constant arguments. 2322 ** Return and 0 if there are any variables. 2323 ** 2324 ** isInit is true when parsing from sqlite_schema. isInit is false when 2325 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2326 ** (such as ? or $abc) in the expression are converted into NULL. When 2327 ** isInit is false, parameters raise an error. Parameters should not be 2328 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2329 ** allowed it, so we need to support it when reading sqlite_schema for 2330 ** backwards compatibility. 2331 ** 2332 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2333 ** 2334 ** For the purposes of this function, a double-quoted string (ex: "abc") 2335 ** is considered a variable but a single-quoted string (ex: 'abc') is 2336 ** a constant. 2337 */ 2338 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2339 assert( isInit==0 || isInit==1 ); 2340 return exprIsConst(p, 4+isInit, 0); 2341 } 2342 2343 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2344 /* 2345 ** Walk an expression tree. Return 1 if the expression contains a 2346 ** subquery of some kind. Return 0 if there are no subqueries. 2347 */ 2348 int sqlite3ExprContainsSubquery(Expr *p){ 2349 Walker w; 2350 w.eCode = 1; 2351 w.xExprCallback = sqlite3ExprWalkNoop; 2352 w.xSelectCallback = sqlite3SelectWalkFail; 2353 #ifdef SQLITE_DEBUG 2354 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2355 #endif 2356 sqlite3WalkExpr(&w, p); 2357 return w.eCode==0; 2358 } 2359 #endif 2360 2361 /* 2362 ** If the expression p codes a constant integer that is small enough 2363 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2364 ** in *pValue. If the expression is not an integer or if it is too big 2365 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2366 */ 2367 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 2368 int rc = 0; 2369 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2370 2371 /* If an expression is an integer literal that fits in a signed 32-bit 2372 ** integer, then the EP_IntValue flag will have already been set */ 2373 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2374 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2375 2376 if( p->flags & EP_IntValue ){ 2377 *pValue = p->u.iValue; 2378 return 1; 2379 } 2380 switch( p->op ){ 2381 case TK_UPLUS: { 2382 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2383 break; 2384 } 2385 case TK_UMINUS: { 2386 int v; 2387 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2388 assert( v!=(-2147483647-1) ); 2389 *pValue = -v; 2390 rc = 1; 2391 } 2392 break; 2393 } 2394 default: break; 2395 } 2396 return rc; 2397 } 2398 2399 /* 2400 ** Return FALSE if there is no chance that the expression can be NULL. 2401 ** 2402 ** If the expression might be NULL or if the expression is too complex 2403 ** to tell return TRUE. 2404 ** 2405 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2406 ** when we know that a value cannot be NULL. Hence, a false positive 2407 ** (returning TRUE when in fact the expression can never be NULL) might 2408 ** be a small performance hit but is otherwise harmless. On the other 2409 ** hand, a false negative (returning FALSE when the result could be NULL) 2410 ** will likely result in an incorrect answer. So when in doubt, return 2411 ** TRUE. 2412 */ 2413 int sqlite3ExprCanBeNull(const Expr *p){ 2414 u8 op; 2415 assert( p!=0 ); 2416 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2417 p = p->pLeft; 2418 assert( p!=0 ); 2419 } 2420 op = p->op; 2421 if( op==TK_REGISTER ) op = p->op2; 2422 switch( op ){ 2423 case TK_INTEGER: 2424 case TK_STRING: 2425 case TK_FLOAT: 2426 case TK_BLOB: 2427 return 0; 2428 case TK_COLUMN: 2429 return ExprHasProperty(p, EP_CanBeNull) || 2430 p->y.pTab==0 || /* Reference to column of index on expression */ 2431 (p->iColumn>=0 2432 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2433 && p->y.pTab->aCol[p->iColumn].notNull==0); 2434 default: 2435 return 1; 2436 } 2437 } 2438 2439 /* 2440 ** Return TRUE if the given expression is a constant which would be 2441 ** unchanged by OP_Affinity with the affinity given in the second 2442 ** argument. 2443 ** 2444 ** This routine is used to determine if the OP_Affinity operation 2445 ** can be omitted. When in doubt return FALSE. A false negative 2446 ** is harmless. A false positive, however, can result in the wrong 2447 ** answer. 2448 */ 2449 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2450 u8 op; 2451 int unaryMinus = 0; 2452 if( aff==SQLITE_AFF_BLOB ) return 1; 2453 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2454 if( p->op==TK_UMINUS ) unaryMinus = 1; 2455 p = p->pLeft; 2456 } 2457 op = p->op; 2458 if( op==TK_REGISTER ) op = p->op2; 2459 switch( op ){ 2460 case TK_INTEGER: { 2461 return aff>=SQLITE_AFF_NUMERIC; 2462 } 2463 case TK_FLOAT: { 2464 return aff>=SQLITE_AFF_NUMERIC; 2465 } 2466 case TK_STRING: { 2467 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2468 } 2469 case TK_BLOB: { 2470 return !unaryMinus; 2471 } 2472 case TK_COLUMN: { 2473 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2474 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2475 } 2476 default: { 2477 return 0; 2478 } 2479 } 2480 } 2481 2482 /* 2483 ** Return TRUE if the given string is a row-id column name. 2484 */ 2485 int sqlite3IsRowid(const char *z){ 2486 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2487 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2488 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2489 return 0; 2490 } 2491 2492 /* 2493 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2494 ** that can be simplified to a direct table access, then return 2495 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2496 ** or if the SELECT statement needs to be manifested into a transient 2497 ** table, then return NULL. 2498 */ 2499 #ifndef SQLITE_OMIT_SUBQUERY 2500 static Select *isCandidateForInOpt(const Expr *pX){ 2501 Select *p; 2502 SrcList *pSrc; 2503 ExprList *pEList; 2504 Table *pTab; 2505 int i; 2506 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2507 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2508 p = pX->x.pSelect; 2509 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2510 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2511 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2512 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2513 return 0; /* No DISTINCT keyword and no aggregate functions */ 2514 } 2515 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2516 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2517 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2518 pSrc = p->pSrc; 2519 assert( pSrc!=0 ); 2520 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2521 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2522 pTab = pSrc->a[0].pTab; 2523 assert( pTab!=0 ); 2524 assert( !IsView(pTab) ); /* FROM clause is not a view */ 2525 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2526 pEList = p->pEList; 2527 assert( pEList!=0 ); 2528 /* All SELECT results must be columns. */ 2529 for(i=0; i<pEList->nExpr; i++){ 2530 Expr *pRes = pEList->a[i].pExpr; 2531 if( pRes->op!=TK_COLUMN ) return 0; 2532 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2533 } 2534 return p; 2535 } 2536 #endif /* SQLITE_OMIT_SUBQUERY */ 2537 2538 #ifndef SQLITE_OMIT_SUBQUERY 2539 /* 2540 ** Generate code that checks the left-most column of index table iCur to see if 2541 ** it contains any NULL entries. Cause the register at regHasNull to be set 2542 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2543 ** to be set to NULL if iCur contains one or more NULL values. 2544 */ 2545 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2546 int addr1; 2547 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2548 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2549 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2550 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2551 VdbeComment((v, "first_entry_in(%d)", iCur)); 2552 sqlite3VdbeJumpHere(v, addr1); 2553 } 2554 #endif 2555 2556 2557 #ifndef SQLITE_OMIT_SUBQUERY 2558 /* 2559 ** The argument is an IN operator with a list (not a subquery) on the 2560 ** right-hand side. Return TRUE if that list is constant. 2561 */ 2562 static int sqlite3InRhsIsConstant(Expr *pIn){ 2563 Expr *pLHS; 2564 int res; 2565 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2566 pLHS = pIn->pLeft; 2567 pIn->pLeft = 0; 2568 res = sqlite3ExprIsConstant(pIn); 2569 pIn->pLeft = pLHS; 2570 return res; 2571 } 2572 #endif 2573 2574 /* 2575 ** This function is used by the implementation of the IN (...) operator. 2576 ** The pX parameter is the expression on the RHS of the IN operator, which 2577 ** might be either a list of expressions or a subquery. 2578 ** 2579 ** The job of this routine is to find or create a b-tree object that can 2580 ** be used either to test for membership in the RHS set or to iterate through 2581 ** all members of the RHS set, skipping duplicates. 2582 ** 2583 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2584 ** and pX->iTable is set to the index of that cursor. 2585 ** 2586 ** The returned value of this function indicates the b-tree type, as follows: 2587 ** 2588 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2589 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2590 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2591 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2592 ** populated epheremal table. 2593 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2594 ** implemented as a sequence of comparisons. 2595 ** 2596 ** An existing b-tree might be used if the RHS expression pX is a simple 2597 ** subquery such as: 2598 ** 2599 ** SELECT <column1>, <column2>... FROM <table> 2600 ** 2601 ** If the RHS of the IN operator is a list or a more complex subquery, then 2602 ** an ephemeral table might need to be generated from the RHS and then 2603 ** pX->iTable made to point to the ephemeral table instead of an 2604 ** existing table. 2605 ** 2606 ** The inFlags parameter must contain, at a minimum, one of the bits 2607 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2608 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2609 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2610 ** be used to loop over all values of the RHS of the IN operator. 2611 ** 2612 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2613 ** through the set members) then the b-tree must not contain duplicates. 2614 ** An epheremal table will be created unless the selected columns are guaranteed 2615 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2616 ** a UNIQUE constraint or index. 2617 ** 2618 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2619 ** for fast set membership tests) then an epheremal table must 2620 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2621 ** index can be found with the specified <columns> as its left-most. 2622 ** 2623 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2624 ** if the RHS of the IN operator is a list (not a subquery) then this 2625 ** routine might decide that creating an ephemeral b-tree for membership 2626 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2627 ** calling routine should implement the IN operator using a sequence 2628 ** of Eq or Ne comparison operations. 2629 ** 2630 ** When the b-tree is being used for membership tests, the calling function 2631 ** might need to know whether or not the RHS side of the IN operator 2632 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2633 ** if there is any chance that the (...) might contain a NULL value at 2634 ** runtime, then a register is allocated and the register number written 2635 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2636 ** NULL value, then *prRhsHasNull is left unchanged. 2637 ** 2638 ** If a register is allocated and its location stored in *prRhsHasNull, then 2639 ** the value in that register will be NULL if the b-tree contains one or more 2640 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2641 ** NULL values. 2642 ** 2643 ** If the aiMap parameter is not NULL, it must point to an array containing 2644 ** one element for each column returned by the SELECT statement on the RHS 2645 ** of the IN(...) operator. The i'th entry of the array is populated with the 2646 ** offset of the index column that matches the i'th column returned by the 2647 ** SELECT. For example, if the expression and selected index are: 2648 ** 2649 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2650 ** CREATE INDEX i1 ON t1(b, c, a); 2651 ** 2652 ** then aiMap[] is populated with {2, 0, 1}. 2653 */ 2654 #ifndef SQLITE_OMIT_SUBQUERY 2655 int sqlite3FindInIndex( 2656 Parse *pParse, /* Parsing context */ 2657 Expr *pX, /* The IN expression */ 2658 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2659 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2660 int *aiMap, /* Mapping from Index fields to RHS fields */ 2661 int *piTab /* OUT: index to use */ 2662 ){ 2663 Select *p; /* SELECT to the right of IN operator */ 2664 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2665 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2666 int mustBeUnique; /* True if RHS must be unique */ 2667 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2668 2669 assert( pX->op==TK_IN ); 2670 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2671 2672 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2673 ** whether or not the SELECT result contains NULL values, check whether 2674 ** or not NULL is actually possible (it may not be, for example, due 2675 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2676 ** set prRhsHasNull to 0 before continuing. */ 2677 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2678 int i; 2679 ExprList *pEList = pX->x.pSelect->pEList; 2680 for(i=0; i<pEList->nExpr; i++){ 2681 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2682 } 2683 if( i==pEList->nExpr ){ 2684 prRhsHasNull = 0; 2685 } 2686 } 2687 2688 /* Check to see if an existing table or index can be used to 2689 ** satisfy the query. This is preferable to generating a new 2690 ** ephemeral table. */ 2691 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2692 sqlite3 *db = pParse->db; /* Database connection */ 2693 Table *pTab; /* Table <table>. */ 2694 int iDb; /* Database idx for pTab */ 2695 ExprList *pEList = p->pEList; 2696 int nExpr = pEList->nExpr; 2697 2698 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2699 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2700 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2701 pTab = p->pSrc->a[0].pTab; 2702 2703 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2704 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2705 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2706 sqlite3CodeVerifySchema(pParse, iDb); 2707 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2708 2709 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2710 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2711 /* The "x IN (SELECT rowid FROM table)" case */ 2712 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2713 VdbeCoverage(v); 2714 2715 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2716 eType = IN_INDEX_ROWID; 2717 ExplainQueryPlan((pParse, 0, 2718 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2719 sqlite3VdbeJumpHere(v, iAddr); 2720 }else{ 2721 Index *pIdx; /* Iterator variable */ 2722 int affinity_ok = 1; 2723 int i; 2724 2725 /* Check that the affinity that will be used to perform each 2726 ** comparison is the same as the affinity of each column in table 2727 ** on the RHS of the IN operator. If it not, it is not possible to 2728 ** use any index of the RHS table. */ 2729 for(i=0; i<nExpr && affinity_ok; i++){ 2730 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2731 int iCol = pEList->a[i].pExpr->iColumn; 2732 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2733 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2734 testcase( cmpaff==SQLITE_AFF_BLOB ); 2735 testcase( cmpaff==SQLITE_AFF_TEXT ); 2736 switch( cmpaff ){ 2737 case SQLITE_AFF_BLOB: 2738 break; 2739 case SQLITE_AFF_TEXT: 2740 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2741 ** other has no affinity and the other side is TEXT. Hence, 2742 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2743 ** and for the term on the LHS of the IN to have no affinity. */ 2744 assert( idxaff==SQLITE_AFF_TEXT ); 2745 break; 2746 default: 2747 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2748 } 2749 } 2750 2751 if( affinity_ok ){ 2752 /* Search for an existing index that will work for this IN operator */ 2753 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2754 Bitmask colUsed; /* Columns of the index used */ 2755 Bitmask mCol; /* Mask for the current column */ 2756 if( pIdx->nColumn<nExpr ) continue; 2757 if( pIdx->pPartIdxWhere!=0 ) continue; 2758 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2759 ** BITMASK(nExpr) without overflowing */ 2760 testcase( pIdx->nColumn==BMS-2 ); 2761 testcase( pIdx->nColumn==BMS-1 ); 2762 if( pIdx->nColumn>=BMS-1 ) continue; 2763 if( mustBeUnique ){ 2764 if( pIdx->nKeyCol>nExpr 2765 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2766 ){ 2767 continue; /* This index is not unique over the IN RHS columns */ 2768 } 2769 } 2770 2771 colUsed = 0; /* Columns of index used so far */ 2772 for(i=0; i<nExpr; i++){ 2773 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2774 Expr *pRhs = pEList->a[i].pExpr; 2775 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2776 int j; 2777 2778 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2779 for(j=0; j<nExpr; j++){ 2780 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2781 assert( pIdx->azColl[j] ); 2782 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2783 continue; 2784 } 2785 break; 2786 } 2787 if( j==nExpr ) break; 2788 mCol = MASKBIT(j); 2789 if( mCol & colUsed ) break; /* Each column used only once */ 2790 colUsed |= mCol; 2791 if( aiMap ) aiMap[i] = j; 2792 } 2793 2794 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2795 if( colUsed==(MASKBIT(nExpr)-1) ){ 2796 /* If we reach this point, that means the index pIdx is usable */ 2797 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2798 ExplainQueryPlan((pParse, 0, 2799 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2800 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2801 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2802 VdbeComment((v, "%s", pIdx->zName)); 2803 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2804 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2805 2806 if( prRhsHasNull ){ 2807 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2808 i64 mask = (1<<nExpr)-1; 2809 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2810 iTab, 0, 0, (u8*)&mask, P4_INT64); 2811 #endif 2812 *prRhsHasNull = ++pParse->nMem; 2813 if( nExpr==1 ){ 2814 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2815 } 2816 } 2817 sqlite3VdbeJumpHere(v, iAddr); 2818 } 2819 } /* End loop over indexes */ 2820 } /* End if( affinity_ok ) */ 2821 } /* End if not an rowid index */ 2822 } /* End attempt to optimize using an index */ 2823 2824 /* If no preexisting index is available for the IN clause 2825 ** and IN_INDEX_NOOP is an allowed reply 2826 ** and the RHS of the IN operator is a list, not a subquery 2827 ** and the RHS is not constant or has two or fewer terms, 2828 ** then it is not worth creating an ephemeral table to evaluate 2829 ** the IN operator so return IN_INDEX_NOOP. 2830 */ 2831 if( eType==0 2832 && (inFlags & IN_INDEX_NOOP_OK) 2833 && !ExprHasProperty(pX, EP_xIsSelect) 2834 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2835 ){ 2836 eType = IN_INDEX_NOOP; 2837 } 2838 2839 if( eType==0 ){ 2840 /* Could not find an existing table or index to use as the RHS b-tree. 2841 ** We will have to generate an ephemeral table to do the job. 2842 */ 2843 u32 savedNQueryLoop = pParse->nQueryLoop; 2844 int rMayHaveNull = 0; 2845 eType = IN_INDEX_EPH; 2846 if( inFlags & IN_INDEX_LOOP ){ 2847 pParse->nQueryLoop = 0; 2848 }else if( prRhsHasNull ){ 2849 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2850 } 2851 assert( pX->op==TK_IN ); 2852 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2853 if( rMayHaveNull ){ 2854 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2855 } 2856 pParse->nQueryLoop = savedNQueryLoop; 2857 } 2858 2859 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2860 int i, n; 2861 n = sqlite3ExprVectorSize(pX->pLeft); 2862 for(i=0; i<n; i++) aiMap[i] = i; 2863 } 2864 *piTab = iTab; 2865 return eType; 2866 } 2867 #endif 2868 2869 #ifndef SQLITE_OMIT_SUBQUERY 2870 /* 2871 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2872 ** function allocates and returns a nul-terminated string containing 2873 ** the affinities to be used for each column of the comparison. 2874 ** 2875 ** It is the responsibility of the caller to ensure that the returned 2876 ** string is eventually freed using sqlite3DbFree(). 2877 */ 2878 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 2879 Expr *pLeft = pExpr->pLeft; 2880 int nVal = sqlite3ExprVectorSize(pLeft); 2881 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2882 char *zRet; 2883 2884 assert( pExpr->op==TK_IN ); 2885 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2886 if( zRet ){ 2887 int i; 2888 for(i=0; i<nVal; i++){ 2889 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2890 char a = sqlite3ExprAffinity(pA); 2891 if( pSelect ){ 2892 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2893 }else{ 2894 zRet[i] = a; 2895 } 2896 } 2897 zRet[nVal] = '\0'; 2898 } 2899 return zRet; 2900 } 2901 #endif 2902 2903 #ifndef SQLITE_OMIT_SUBQUERY 2904 /* 2905 ** Load the Parse object passed as the first argument with an error 2906 ** message of the form: 2907 ** 2908 ** "sub-select returns N columns - expected M" 2909 */ 2910 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2911 if( pParse->nErr==0 ){ 2912 const char *zFmt = "sub-select returns %d columns - expected %d"; 2913 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2914 } 2915 } 2916 #endif 2917 2918 /* 2919 ** Expression pExpr is a vector that has been used in a context where 2920 ** it is not permitted. If pExpr is a sub-select vector, this routine 2921 ** loads the Parse object with a message of the form: 2922 ** 2923 ** "sub-select returns N columns - expected 1" 2924 ** 2925 ** Or, if it is a regular scalar vector: 2926 ** 2927 ** "row value misused" 2928 */ 2929 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2930 #ifndef SQLITE_OMIT_SUBQUERY 2931 if( pExpr->flags & EP_xIsSelect ){ 2932 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2933 }else 2934 #endif 2935 { 2936 sqlite3ErrorMsg(pParse, "row value misused"); 2937 } 2938 } 2939 2940 #ifndef SQLITE_OMIT_SUBQUERY 2941 /* 2942 ** Generate code that will construct an ephemeral table containing all terms 2943 ** in the RHS of an IN operator. The IN operator can be in either of two 2944 ** forms: 2945 ** 2946 ** x IN (4,5,11) -- IN operator with list on right-hand side 2947 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2948 ** 2949 ** The pExpr parameter is the IN operator. The cursor number for the 2950 ** constructed ephermeral table is returned. The first time the ephemeral 2951 ** table is computed, the cursor number is also stored in pExpr->iTable, 2952 ** however the cursor number returned might not be the same, as it might 2953 ** have been duplicated using OP_OpenDup. 2954 ** 2955 ** If the LHS expression ("x" in the examples) is a column value, or 2956 ** the SELECT statement returns a column value, then the affinity of that 2957 ** column is used to build the index keys. If both 'x' and the 2958 ** SELECT... statement are columns, then numeric affinity is used 2959 ** if either column has NUMERIC or INTEGER affinity. If neither 2960 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2961 ** is used. 2962 */ 2963 void sqlite3CodeRhsOfIN( 2964 Parse *pParse, /* Parsing context */ 2965 Expr *pExpr, /* The IN operator */ 2966 int iTab /* Use this cursor number */ 2967 ){ 2968 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2969 int addr; /* Address of OP_OpenEphemeral instruction */ 2970 Expr *pLeft; /* the LHS of the IN operator */ 2971 KeyInfo *pKeyInfo = 0; /* Key information */ 2972 int nVal; /* Size of vector pLeft */ 2973 Vdbe *v; /* The prepared statement under construction */ 2974 2975 v = pParse->pVdbe; 2976 assert( v!=0 ); 2977 2978 /* The evaluation of the IN must be repeated every time it 2979 ** is encountered if any of the following is true: 2980 ** 2981 ** * The right-hand side is a correlated subquery 2982 ** * The right-hand side is an expression list containing variables 2983 ** * We are inside a trigger 2984 ** 2985 ** If all of the above are false, then we can compute the RHS just once 2986 ** and reuse it many names. 2987 */ 2988 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2989 /* Reuse of the RHS is allowed */ 2990 /* If this routine has already been coded, but the previous code 2991 ** might not have been invoked yet, so invoke it now as a subroutine. 2992 */ 2993 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2994 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2995 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2996 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2997 pExpr->x.pSelect->selId)); 2998 } 2999 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3000 pExpr->y.sub.iAddr); 3001 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 3002 sqlite3VdbeJumpHere(v, addrOnce); 3003 return; 3004 } 3005 3006 /* Begin coding the subroutine */ 3007 ExprSetProperty(pExpr, EP_Subrtn); 3008 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3009 pExpr->y.sub.regReturn = ++pParse->nMem; 3010 pExpr->y.sub.iAddr = 3011 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3012 VdbeComment((v, "return address")); 3013 3014 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3015 } 3016 3017 /* Check to see if this is a vector IN operator */ 3018 pLeft = pExpr->pLeft; 3019 nVal = sqlite3ExprVectorSize(pLeft); 3020 3021 /* Construct the ephemeral table that will contain the content of 3022 ** RHS of the IN operator. 3023 */ 3024 pExpr->iTable = iTab; 3025 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3026 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3027 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3028 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3029 }else{ 3030 VdbeComment((v, "RHS of IN operator")); 3031 } 3032 #endif 3033 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3034 3035 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3036 /* Case 1: expr IN (SELECT ...) 3037 ** 3038 ** Generate code to write the results of the select into the temporary 3039 ** table allocated and opened above. 3040 */ 3041 Select *pSelect = pExpr->x.pSelect; 3042 ExprList *pEList = pSelect->pEList; 3043 3044 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3045 addrOnce?"":"CORRELATED ", pSelect->selId 3046 )); 3047 /* If the LHS and RHS of the IN operator do not match, that 3048 ** error will have been caught long before we reach this point. */ 3049 if( ALWAYS(pEList->nExpr==nVal) ){ 3050 Select *pCopy; 3051 SelectDest dest; 3052 int i; 3053 int rc; 3054 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3055 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3056 pSelect->iLimit = 0; 3057 testcase( pSelect->selFlags & SF_Distinct ); 3058 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3059 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3060 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3061 sqlite3SelectDelete(pParse->db, pCopy); 3062 sqlite3DbFree(pParse->db, dest.zAffSdst); 3063 if( rc ){ 3064 sqlite3KeyInfoUnref(pKeyInfo); 3065 return; 3066 } 3067 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3068 assert( pEList!=0 ); 3069 assert( pEList->nExpr>0 ); 3070 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3071 for(i=0; i<nVal; i++){ 3072 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3073 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3074 pParse, p, pEList->a[i].pExpr 3075 ); 3076 } 3077 } 3078 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3079 /* Case 2: expr IN (exprlist) 3080 ** 3081 ** For each expression, build an index key from the evaluation and 3082 ** store it in the temporary table. If <expr> is a column, then use 3083 ** that columns affinity when building index keys. If <expr> is not 3084 ** a column, use numeric affinity. 3085 */ 3086 char affinity; /* Affinity of the LHS of the IN */ 3087 int i; 3088 ExprList *pList = pExpr->x.pList; 3089 struct ExprList_item *pItem; 3090 int r1, r2; 3091 affinity = sqlite3ExprAffinity(pLeft); 3092 if( affinity<=SQLITE_AFF_NONE ){ 3093 affinity = SQLITE_AFF_BLOB; 3094 }else if( affinity==SQLITE_AFF_REAL ){ 3095 affinity = SQLITE_AFF_NUMERIC; 3096 } 3097 if( pKeyInfo ){ 3098 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3099 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3100 } 3101 3102 /* Loop through each expression in <exprlist>. */ 3103 r1 = sqlite3GetTempReg(pParse); 3104 r2 = sqlite3GetTempReg(pParse); 3105 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3106 Expr *pE2 = pItem->pExpr; 3107 3108 /* If the expression is not constant then we will need to 3109 ** disable the test that was generated above that makes sure 3110 ** this code only executes once. Because for a non-constant 3111 ** expression we need to rerun this code each time. 3112 */ 3113 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3114 sqlite3VdbeChangeToNoop(v, addrOnce); 3115 ExprClearProperty(pExpr, EP_Subrtn); 3116 addrOnce = 0; 3117 } 3118 3119 /* Evaluate the expression and insert it into the temp table */ 3120 sqlite3ExprCode(pParse, pE2, r1); 3121 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3122 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3123 } 3124 sqlite3ReleaseTempReg(pParse, r1); 3125 sqlite3ReleaseTempReg(pParse, r2); 3126 } 3127 if( pKeyInfo ){ 3128 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3129 } 3130 if( addrOnce ){ 3131 sqlite3VdbeJumpHere(v, addrOnce); 3132 /* Subroutine return */ 3133 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3134 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3135 sqlite3ClearTempRegCache(pParse); 3136 } 3137 } 3138 #endif /* SQLITE_OMIT_SUBQUERY */ 3139 3140 /* 3141 ** Generate code for scalar subqueries used as a subquery expression 3142 ** or EXISTS operator: 3143 ** 3144 ** (SELECT a FROM b) -- subquery 3145 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3146 ** 3147 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3148 ** 3149 ** Return the register that holds the result. For a multi-column SELECT, 3150 ** the result is stored in a contiguous array of registers and the 3151 ** return value is the register of the left-most result column. 3152 ** Return 0 if an error occurs. 3153 */ 3154 #ifndef SQLITE_OMIT_SUBQUERY 3155 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3156 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3157 int rReg = 0; /* Register storing resulting */ 3158 Select *pSel; /* SELECT statement to encode */ 3159 SelectDest dest; /* How to deal with SELECT result */ 3160 int nReg; /* Registers to allocate */ 3161 Expr *pLimit; /* New limit expression */ 3162 3163 Vdbe *v = pParse->pVdbe; 3164 assert( v!=0 ); 3165 if( pParse->nErr ) return 0; 3166 testcase( pExpr->op==TK_EXISTS ); 3167 testcase( pExpr->op==TK_SELECT ); 3168 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3169 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3170 pSel = pExpr->x.pSelect; 3171 3172 /* If this routine has already been coded, then invoke it as a 3173 ** subroutine. */ 3174 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3175 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3176 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3177 pExpr->y.sub.iAddr); 3178 return pExpr->iTable; 3179 } 3180 3181 /* Begin coding the subroutine */ 3182 ExprSetProperty(pExpr, EP_Subrtn); 3183 pExpr->y.sub.regReturn = ++pParse->nMem; 3184 pExpr->y.sub.iAddr = 3185 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3186 VdbeComment((v, "return address")); 3187 3188 3189 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3190 ** is encountered if any of the following is true: 3191 ** 3192 ** * The right-hand side is a correlated subquery 3193 ** * The right-hand side is an expression list containing variables 3194 ** * We are inside a trigger 3195 ** 3196 ** If all of the above are false, then we can run this code just once 3197 ** save the results, and reuse the same result on subsequent invocations. 3198 */ 3199 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3200 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3201 } 3202 3203 /* For a SELECT, generate code to put the values for all columns of 3204 ** the first row into an array of registers and return the index of 3205 ** the first register. 3206 ** 3207 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3208 ** into a register and return that register number. 3209 ** 3210 ** In both cases, the query is augmented with "LIMIT 1". Any 3211 ** preexisting limit is discarded in place of the new LIMIT 1. 3212 */ 3213 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3214 addrOnce?"":"CORRELATED ", pSel->selId)); 3215 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3216 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3217 pParse->nMem += nReg; 3218 if( pExpr->op==TK_SELECT ){ 3219 dest.eDest = SRT_Mem; 3220 dest.iSdst = dest.iSDParm; 3221 dest.nSdst = nReg; 3222 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3223 VdbeComment((v, "Init subquery result")); 3224 }else{ 3225 dest.eDest = SRT_Exists; 3226 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3227 VdbeComment((v, "Init EXISTS result")); 3228 } 3229 if( pSel->pLimit ){ 3230 /* The subquery already has a limit. If the pre-existing limit is X 3231 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3232 sqlite3 *db = pParse->db; 3233 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3234 if( pLimit ){ 3235 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3236 pLimit = sqlite3PExpr(pParse, TK_NE, 3237 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3238 } 3239 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3240 pSel->pLimit->pLeft = pLimit; 3241 }else{ 3242 /* If there is no pre-existing limit add a limit of 1 */ 3243 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3244 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3245 } 3246 pSel->iLimit = 0; 3247 if( sqlite3Select(pParse, pSel, &dest) ){ 3248 if( pParse->nErr ){ 3249 pExpr->op2 = pExpr->op; 3250 pExpr->op = TK_ERROR; 3251 } 3252 return 0; 3253 } 3254 pExpr->iTable = rReg = dest.iSDParm; 3255 ExprSetVVAProperty(pExpr, EP_NoReduce); 3256 if( addrOnce ){ 3257 sqlite3VdbeJumpHere(v, addrOnce); 3258 } 3259 3260 /* Subroutine return */ 3261 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3262 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3263 sqlite3ClearTempRegCache(pParse); 3264 return rReg; 3265 } 3266 #endif /* SQLITE_OMIT_SUBQUERY */ 3267 3268 #ifndef SQLITE_OMIT_SUBQUERY 3269 /* 3270 ** Expr pIn is an IN(...) expression. This function checks that the 3271 ** sub-select on the RHS of the IN() operator has the same number of 3272 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3273 ** a sub-query, that the LHS is a vector of size 1. 3274 */ 3275 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3276 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3277 if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){ 3278 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3279 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3280 return 1; 3281 } 3282 }else if( nVector!=1 ){ 3283 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3284 return 1; 3285 } 3286 return 0; 3287 } 3288 #endif 3289 3290 #ifndef SQLITE_OMIT_SUBQUERY 3291 /* 3292 ** Generate code for an IN expression. 3293 ** 3294 ** x IN (SELECT ...) 3295 ** x IN (value, value, ...) 3296 ** 3297 ** The left-hand side (LHS) is a scalar or vector expression. The 3298 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3299 ** subquery. If the RHS is a subquery, the number of result columns must 3300 ** match the number of columns in the vector on the LHS. If the RHS is 3301 ** a list of values, the LHS must be a scalar. 3302 ** 3303 ** The IN operator is true if the LHS value is contained within the RHS. 3304 ** The result is false if the LHS is definitely not in the RHS. The 3305 ** result is NULL if the presence of the LHS in the RHS cannot be 3306 ** determined due to NULLs. 3307 ** 3308 ** This routine generates code that jumps to destIfFalse if the LHS is not 3309 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3310 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3311 ** within the RHS then fall through. 3312 ** 3313 ** See the separate in-operator.md documentation file in the canonical 3314 ** SQLite source tree for additional information. 3315 */ 3316 static void sqlite3ExprCodeIN( 3317 Parse *pParse, /* Parsing and code generating context */ 3318 Expr *pExpr, /* The IN expression */ 3319 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3320 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3321 ){ 3322 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3323 int eType; /* Type of the RHS */ 3324 int rLhs; /* Register(s) holding the LHS values */ 3325 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3326 Vdbe *v; /* Statement under construction */ 3327 int *aiMap = 0; /* Map from vector field to index column */ 3328 char *zAff = 0; /* Affinity string for comparisons */ 3329 int nVector; /* Size of vectors for this IN operator */ 3330 int iDummy; /* Dummy parameter to exprCodeVector() */ 3331 Expr *pLeft; /* The LHS of the IN operator */ 3332 int i; /* loop counter */ 3333 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3334 int destStep6 = 0; /* Start of code for Step 6 */ 3335 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3336 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3337 int addrTop; /* Top of the step-6 loop */ 3338 int iTab = 0; /* Index to use */ 3339 u8 okConstFactor = pParse->okConstFactor; 3340 3341 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3342 pLeft = pExpr->pLeft; 3343 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3344 zAff = exprINAffinity(pParse, pExpr); 3345 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3346 aiMap = (int*)sqlite3DbMallocZero( 3347 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3348 ); 3349 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3350 3351 /* Attempt to compute the RHS. After this step, if anything other than 3352 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3353 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3354 ** the RHS has not yet been coded. */ 3355 v = pParse->pVdbe; 3356 assert( v!=0 ); /* OOM detected prior to this routine */ 3357 VdbeNoopComment((v, "begin IN expr")); 3358 eType = sqlite3FindInIndex(pParse, pExpr, 3359 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3360 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3361 aiMap, &iTab); 3362 3363 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3364 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3365 ); 3366 #ifdef SQLITE_DEBUG 3367 /* Confirm that aiMap[] contains nVector integer values between 0 and 3368 ** nVector-1. */ 3369 for(i=0; i<nVector; i++){ 3370 int j, cnt; 3371 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3372 assert( cnt==1 ); 3373 } 3374 #endif 3375 3376 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3377 ** vector, then it is stored in an array of nVector registers starting 3378 ** at r1. 3379 ** 3380 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3381 ** so that the fields are in the same order as an existing index. The 3382 ** aiMap[] array contains a mapping from the original LHS field order to 3383 ** the field order that matches the RHS index. 3384 ** 3385 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3386 ** even if it is constant, as OP_Affinity may be used on the register 3387 ** by code generated below. */ 3388 assert( pParse->okConstFactor==okConstFactor ); 3389 pParse->okConstFactor = 0; 3390 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3391 pParse->okConstFactor = okConstFactor; 3392 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3393 if( i==nVector ){ 3394 /* LHS fields are not reordered */ 3395 rLhs = rLhsOrig; 3396 }else{ 3397 /* Need to reorder the LHS fields according to aiMap */ 3398 rLhs = sqlite3GetTempRange(pParse, nVector); 3399 for(i=0; i<nVector; i++){ 3400 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3401 } 3402 } 3403 3404 /* If sqlite3FindInIndex() did not find or create an index that is 3405 ** suitable for evaluating the IN operator, then evaluate using a 3406 ** sequence of comparisons. 3407 ** 3408 ** This is step (1) in the in-operator.md optimized algorithm. 3409 */ 3410 if( eType==IN_INDEX_NOOP ){ 3411 ExprList *pList = pExpr->x.pList; 3412 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3413 int labelOk = sqlite3VdbeMakeLabel(pParse); 3414 int r2, regToFree; 3415 int regCkNull = 0; 3416 int ii; 3417 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3418 if( destIfNull!=destIfFalse ){ 3419 regCkNull = sqlite3GetTempReg(pParse); 3420 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3421 } 3422 for(ii=0; ii<pList->nExpr; ii++){ 3423 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3424 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3425 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3426 } 3427 sqlite3ReleaseTempReg(pParse, regToFree); 3428 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3429 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3430 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3431 (void*)pColl, P4_COLLSEQ); 3432 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3433 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3434 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3435 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3436 sqlite3VdbeChangeP5(v, zAff[0]); 3437 }else{ 3438 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3439 assert( destIfNull==destIfFalse ); 3440 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3441 (void*)pColl, P4_COLLSEQ); 3442 VdbeCoverageIf(v, op==OP_Ne); 3443 VdbeCoverageIf(v, op==OP_IsNull); 3444 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3445 } 3446 } 3447 if( regCkNull ){ 3448 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3449 sqlite3VdbeGoto(v, destIfFalse); 3450 } 3451 sqlite3VdbeResolveLabel(v, labelOk); 3452 sqlite3ReleaseTempReg(pParse, regCkNull); 3453 goto sqlite3ExprCodeIN_finished; 3454 } 3455 3456 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3457 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3458 ** We will then skip the binary search of the RHS. 3459 */ 3460 if( destIfNull==destIfFalse ){ 3461 destStep2 = destIfFalse; 3462 }else{ 3463 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3464 } 3465 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3466 for(i=0; i<nVector; i++){ 3467 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3468 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3469 if( sqlite3ExprCanBeNull(p) ){ 3470 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3471 VdbeCoverage(v); 3472 } 3473 } 3474 3475 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3476 ** of the RHS using the LHS as a probe. If found, the result is 3477 ** true. 3478 */ 3479 if( eType==IN_INDEX_ROWID ){ 3480 /* In this case, the RHS is the ROWID of table b-tree and so we also 3481 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3482 ** into a single opcode. */ 3483 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3484 VdbeCoverage(v); 3485 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3486 }else{ 3487 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3488 if( destIfFalse==destIfNull ){ 3489 /* Combine Step 3 and Step 5 into a single opcode */ 3490 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3491 rLhs, nVector); VdbeCoverage(v); 3492 goto sqlite3ExprCodeIN_finished; 3493 } 3494 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3495 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3496 rLhs, nVector); VdbeCoverage(v); 3497 } 3498 3499 /* Step 4. If the RHS is known to be non-NULL and we did not find 3500 ** an match on the search above, then the result must be FALSE. 3501 */ 3502 if( rRhsHasNull && nVector==1 ){ 3503 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3504 VdbeCoverage(v); 3505 } 3506 3507 /* Step 5. If we do not care about the difference between NULL and 3508 ** FALSE, then just return false. 3509 */ 3510 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3511 3512 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3513 ** If any comparison is NULL, then the result is NULL. If all 3514 ** comparisons are FALSE then the final result is FALSE. 3515 ** 3516 ** For a scalar LHS, it is sufficient to check just the first row 3517 ** of the RHS. 3518 */ 3519 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3520 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3521 VdbeCoverage(v); 3522 if( nVector>1 ){ 3523 destNotNull = sqlite3VdbeMakeLabel(pParse); 3524 }else{ 3525 /* For nVector==1, combine steps 6 and 7 by immediately returning 3526 ** FALSE if the first comparison is not NULL */ 3527 destNotNull = destIfFalse; 3528 } 3529 for(i=0; i<nVector; i++){ 3530 Expr *p; 3531 CollSeq *pColl; 3532 int r3 = sqlite3GetTempReg(pParse); 3533 p = sqlite3VectorFieldSubexpr(pLeft, i); 3534 pColl = sqlite3ExprCollSeq(pParse, p); 3535 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3536 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3537 (void*)pColl, P4_COLLSEQ); 3538 VdbeCoverage(v); 3539 sqlite3ReleaseTempReg(pParse, r3); 3540 } 3541 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3542 if( nVector>1 ){ 3543 sqlite3VdbeResolveLabel(v, destNotNull); 3544 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3545 VdbeCoverage(v); 3546 3547 /* Step 7: If we reach this point, we know that the result must 3548 ** be false. */ 3549 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3550 } 3551 3552 /* Jumps here in order to return true. */ 3553 sqlite3VdbeJumpHere(v, addrTruthOp); 3554 3555 sqlite3ExprCodeIN_finished: 3556 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3557 VdbeComment((v, "end IN expr")); 3558 sqlite3ExprCodeIN_oom_error: 3559 sqlite3DbFree(pParse->db, aiMap); 3560 sqlite3DbFree(pParse->db, zAff); 3561 } 3562 #endif /* SQLITE_OMIT_SUBQUERY */ 3563 3564 #ifndef SQLITE_OMIT_FLOATING_POINT 3565 /* 3566 ** Generate an instruction that will put the floating point 3567 ** value described by z[0..n-1] into register iMem. 3568 ** 3569 ** The z[] string will probably not be zero-terminated. But the 3570 ** z[n] character is guaranteed to be something that does not look 3571 ** like the continuation of the number. 3572 */ 3573 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3574 if( ALWAYS(z!=0) ){ 3575 double value; 3576 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3577 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3578 if( negateFlag ) value = -value; 3579 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3580 } 3581 } 3582 #endif 3583 3584 3585 /* 3586 ** Generate an instruction that will put the integer describe by 3587 ** text z[0..n-1] into register iMem. 3588 ** 3589 ** Expr.u.zToken is always UTF8 and zero-terminated. 3590 */ 3591 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3592 Vdbe *v = pParse->pVdbe; 3593 if( pExpr->flags & EP_IntValue ){ 3594 int i = pExpr->u.iValue; 3595 assert( i>=0 ); 3596 if( negFlag ) i = -i; 3597 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3598 }else{ 3599 int c; 3600 i64 value; 3601 const char *z = pExpr->u.zToken; 3602 assert( z!=0 ); 3603 c = sqlite3DecOrHexToI64(z, &value); 3604 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3605 #ifdef SQLITE_OMIT_FLOATING_POINT 3606 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3607 #else 3608 #ifndef SQLITE_OMIT_HEX_INTEGER 3609 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3610 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3611 }else 3612 #endif 3613 { 3614 codeReal(v, z, negFlag, iMem); 3615 } 3616 #endif 3617 }else{ 3618 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3619 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3620 } 3621 } 3622 } 3623 3624 3625 /* Generate code that will load into register regOut a value that is 3626 ** appropriate for the iIdxCol-th column of index pIdx. 3627 */ 3628 void sqlite3ExprCodeLoadIndexColumn( 3629 Parse *pParse, /* The parsing context */ 3630 Index *pIdx, /* The index whose column is to be loaded */ 3631 int iTabCur, /* Cursor pointing to a table row */ 3632 int iIdxCol, /* The column of the index to be loaded */ 3633 int regOut /* Store the index column value in this register */ 3634 ){ 3635 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3636 if( iTabCol==XN_EXPR ){ 3637 assert( pIdx->aColExpr ); 3638 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3639 pParse->iSelfTab = iTabCur + 1; 3640 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3641 pParse->iSelfTab = 0; 3642 }else{ 3643 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3644 iTabCol, regOut); 3645 } 3646 } 3647 3648 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3649 /* 3650 ** Generate code that will compute the value of generated column pCol 3651 ** and store the result in register regOut 3652 */ 3653 void sqlite3ExprCodeGeneratedColumn( 3654 Parse *pParse, /* Parsing context */ 3655 Table *pTab, /* Table containing the generated column */ 3656 Column *pCol, /* The generated column */ 3657 int regOut /* Put the result in this register */ 3658 ){ 3659 int iAddr; 3660 Vdbe *v = pParse->pVdbe; 3661 assert( v!=0 ); 3662 assert( pParse->iSelfTab!=0 ); 3663 if( pParse->iSelfTab>0 ){ 3664 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3665 }else{ 3666 iAddr = 0; 3667 } 3668 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 3669 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3670 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3671 } 3672 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3673 } 3674 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3675 3676 /* 3677 ** Generate code to extract the value of the iCol-th column of a table. 3678 */ 3679 void sqlite3ExprCodeGetColumnOfTable( 3680 Vdbe *v, /* Parsing context */ 3681 Table *pTab, /* The table containing the value */ 3682 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3683 int iCol, /* Index of the column to extract */ 3684 int regOut /* Extract the value into this register */ 3685 ){ 3686 Column *pCol; 3687 assert( v!=0 ); 3688 if( pTab==0 ){ 3689 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3690 return; 3691 } 3692 if( iCol<0 || iCol==pTab->iPKey ){ 3693 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3694 }else{ 3695 int op; 3696 int x; 3697 if( IsVirtual(pTab) ){ 3698 op = OP_VColumn; 3699 x = iCol; 3700 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3701 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3702 Parse *pParse = sqlite3VdbeParser(v); 3703 if( pCol->colFlags & COLFLAG_BUSY ){ 3704 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3705 pCol->zCnName); 3706 }else{ 3707 int savedSelfTab = pParse->iSelfTab; 3708 pCol->colFlags |= COLFLAG_BUSY; 3709 pParse->iSelfTab = iTabCur+1; 3710 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 3711 pParse->iSelfTab = savedSelfTab; 3712 pCol->colFlags &= ~COLFLAG_BUSY; 3713 } 3714 return; 3715 #endif 3716 }else if( !HasRowid(pTab) ){ 3717 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3718 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3719 op = OP_Column; 3720 }else{ 3721 x = sqlite3TableColumnToStorage(pTab,iCol); 3722 testcase( x!=iCol ); 3723 op = OP_Column; 3724 } 3725 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3726 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3727 } 3728 } 3729 3730 /* 3731 ** Generate code that will extract the iColumn-th column from 3732 ** table pTab and store the column value in register iReg. 3733 ** 3734 ** There must be an open cursor to pTab in iTable when this routine 3735 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3736 */ 3737 int sqlite3ExprCodeGetColumn( 3738 Parse *pParse, /* Parsing and code generating context */ 3739 Table *pTab, /* Description of the table we are reading from */ 3740 int iColumn, /* Index of the table column */ 3741 int iTable, /* The cursor pointing to the table */ 3742 int iReg, /* Store results here */ 3743 u8 p5 /* P5 value for OP_Column + FLAGS */ 3744 ){ 3745 assert( pParse->pVdbe!=0 ); 3746 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3747 if( p5 ){ 3748 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3749 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3750 } 3751 return iReg; 3752 } 3753 3754 /* 3755 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3756 ** over to iTo..iTo+nReg-1. 3757 */ 3758 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3759 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3760 } 3761 3762 /* 3763 ** Convert a scalar expression node to a TK_REGISTER referencing 3764 ** register iReg. The caller must ensure that iReg already contains 3765 ** the correct value for the expression. 3766 */ 3767 static void exprToRegister(Expr *pExpr, int iReg){ 3768 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3769 if( NEVER(p==0) ) return; 3770 p->op2 = p->op; 3771 p->op = TK_REGISTER; 3772 p->iTable = iReg; 3773 ExprClearProperty(p, EP_Skip); 3774 } 3775 3776 /* 3777 ** Evaluate an expression (either a vector or a scalar expression) and store 3778 ** the result in continguous temporary registers. Return the index of 3779 ** the first register used to store the result. 3780 ** 3781 ** If the returned result register is a temporary scalar, then also write 3782 ** that register number into *piFreeable. If the returned result register 3783 ** is not a temporary or if the expression is a vector set *piFreeable 3784 ** to 0. 3785 */ 3786 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3787 int iResult; 3788 int nResult = sqlite3ExprVectorSize(p); 3789 if( nResult==1 ){ 3790 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3791 }else{ 3792 *piFreeable = 0; 3793 if( p->op==TK_SELECT ){ 3794 #if SQLITE_OMIT_SUBQUERY 3795 iResult = 0; 3796 #else 3797 iResult = sqlite3CodeSubselect(pParse, p); 3798 #endif 3799 }else{ 3800 int i; 3801 iResult = pParse->nMem+1; 3802 pParse->nMem += nResult; 3803 for(i=0; i<nResult; i++){ 3804 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3805 } 3806 } 3807 } 3808 return iResult; 3809 } 3810 3811 /* 3812 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3813 ** so that a subsequent copy will not be merged into this one. 3814 */ 3815 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3816 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3817 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3818 } 3819 } 3820 3821 /* 3822 ** Generate code to implement special SQL functions that are implemented 3823 ** in-line rather than by using the usual callbacks. 3824 */ 3825 static int exprCodeInlineFunction( 3826 Parse *pParse, /* Parsing context */ 3827 ExprList *pFarg, /* List of function arguments */ 3828 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3829 int target /* Store function result in this register */ 3830 ){ 3831 int nFarg; 3832 Vdbe *v = pParse->pVdbe; 3833 assert( v!=0 ); 3834 assert( pFarg!=0 ); 3835 nFarg = pFarg->nExpr; 3836 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3837 switch( iFuncId ){ 3838 case INLINEFUNC_coalesce: { 3839 /* Attempt a direct implementation of the built-in COALESCE() and 3840 ** IFNULL() functions. This avoids unnecessary evaluation of 3841 ** arguments past the first non-NULL argument. 3842 */ 3843 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3844 int i; 3845 assert( nFarg>=2 ); 3846 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3847 for(i=1; i<nFarg; i++){ 3848 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3849 VdbeCoverage(v); 3850 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3851 } 3852 setDoNotMergeFlagOnCopy(v); 3853 sqlite3VdbeResolveLabel(v, endCoalesce); 3854 break; 3855 } 3856 case INLINEFUNC_iif: { 3857 Expr caseExpr; 3858 memset(&caseExpr, 0, sizeof(caseExpr)); 3859 caseExpr.op = TK_CASE; 3860 caseExpr.x.pList = pFarg; 3861 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3862 } 3863 3864 default: { 3865 /* The UNLIKELY() function is a no-op. The result is the value 3866 ** of the first argument. 3867 */ 3868 assert( nFarg==1 || nFarg==2 ); 3869 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3870 break; 3871 } 3872 3873 /*********************************************************************** 3874 ** Test-only SQL functions that are only usable if enabled 3875 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3876 */ 3877 #if !defined(SQLITE_UNTESTABLE) 3878 case INLINEFUNC_expr_compare: { 3879 /* Compare two expressions using sqlite3ExprCompare() */ 3880 assert( nFarg==2 ); 3881 sqlite3VdbeAddOp2(v, OP_Integer, 3882 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3883 target); 3884 break; 3885 } 3886 3887 case INLINEFUNC_expr_implies_expr: { 3888 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3889 assert( nFarg==2 ); 3890 sqlite3VdbeAddOp2(v, OP_Integer, 3891 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3892 target); 3893 break; 3894 } 3895 3896 case INLINEFUNC_implies_nonnull_row: { 3897 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3898 Expr *pA1; 3899 assert( nFarg==2 ); 3900 pA1 = pFarg->a[1].pExpr; 3901 if( pA1->op==TK_COLUMN ){ 3902 sqlite3VdbeAddOp2(v, OP_Integer, 3903 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3904 target); 3905 }else{ 3906 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3907 } 3908 break; 3909 } 3910 3911 case INLINEFUNC_affinity: { 3912 /* The AFFINITY() function evaluates to a string that describes 3913 ** the type affinity of the argument. This is used for testing of 3914 ** the SQLite type logic. 3915 */ 3916 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3917 char aff; 3918 assert( nFarg==1 ); 3919 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3920 sqlite3VdbeLoadString(v, target, 3921 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3922 break; 3923 } 3924 #endif /* !defined(SQLITE_UNTESTABLE) */ 3925 } 3926 return target; 3927 } 3928 3929 3930 /* 3931 ** Generate code into the current Vdbe to evaluate the given 3932 ** expression. Attempt to store the results in register "target". 3933 ** Return the register where results are stored. 3934 ** 3935 ** With this routine, there is no guarantee that results will 3936 ** be stored in target. The result might be stored in some other 3937 ** register if it is convenient to do so. The calling function 3938 ** must check the return code and move the results to the desired 3939 ** register. 3940 */ 3941 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3942 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3943 int op; /* The opcode being coded */ 3944 int inReg = target; /* Results stored in register inReg */ 3945 int regFree1 = 0; /* If non-zero free this temporary register */ 3946 int regFree2 = 0; /* If non-zero free this temporary register */ 3947 int r1, r2; /* Various register numbers */ 3948 Expr tempX; /* Temporary expression node */ 3949 int p5 = 0; 3950 3951 assert( target>0 && target<=pParse->nMem ); 3952 assert( v!=0 ); 3953 3954 expr_code_doover: 3955 if( pExpr==0 ){ 3956 op = TK_NULL; 3957 }else{ 3958 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3959 op = pExpr->op; 3960 } 3961 switch( op ){ 3962 case TK_AGG_COLUMN: { 3963 AggInfo *pAggInfo = pExpr->pAggInfo; 3964 struct AggInfo_col *pCol; 3965 assert( pAggInfo!=0 ); 3966 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3967 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3968 if( !pAggInfo->directMode ){ 3969 assert( pCol->iMem>0 ); 3970 return pCol->iMem; 3971 }else if( pAggInfo->useSortingIdx ){ 3972 Table *pTab = pCol->pTab; 3973 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3974 pCol->iSorterColumn, target); 3975 if( pCol->iColumn<0 ){ 3976 VdbeComment((v,"%s.rowid",pTab->zName)); 3977 }else{ 3978 VdbeComment((v,"%s.%s", 3979 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 3980 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3981 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3982 } 3983 } 3984 return target; 3985 } 3986 /* Otherwise, fall thru into the TK_COLUMN case */ 3987 /* no break */ deliberate_fall_through 3988 } 3989 case TK_COLUMN: { 3990 int iTab = pExpr->iTable; 3991 int iReg; 3992 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3993 /* This COLUMN expression is really a constant due to WHERE clause 3994 ** constraints, and that constant is coded by the pExpr->pLeft 3995 ** expresssion. However, make sure the constant has the correct 3996 ** datatype by applying the Affinity of the table column to the 3997 ** constant. 3998 */ 3999 int aff; 4000 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 4001 if( pExpr->y.pTab ){ 4002 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 4003 }else{ 4004 aff = pExpr->affExpr; 4005 } 4006 if( aff>SQLITE_AFF_BLOB ){ 4007 static const char zAff[] = "B\000C\000D\000E"; 4008 assert( SQLITE_AFF_BLOB=='A' ); 4009 assert( SQLITE_AFF_TEXT=='B' ); 4010 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 4011 &zAff[(aff-'B')*2], P4_STATIC); 4012 } 4013 return iReg; 4014 } 4015 if( iTab<0 ){ 4016 if( pParse->iSelfTab<0 ){ 4017 /* Other columns in the same row for CHECK constraints or 4018 ** generated columns or for inserting into partial index. 4019 ** The row is unpacked into registers beginning at 4020 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4021 ** immediately prior to the first column. 4022 */ 4023 Column *pCol; 4024 Table *pTab = pExpr->y.pTab; 4025 int iSrc; 4026 int iCol = pExpr->iColumn; 4027 assert( pTab!=0 ); 4028 assert( iCol>=XN_ROWID ); 4029 assert( iCol<pTab->nCol ); 4030 if( iCol<0 ){ 4031 return -1-pParse->iSelfTab; 4032 } 4033 pCol = pTab->aCol + iCol; 4034 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4035 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4036 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4037 if( pCol->colFlags & COLFLAG_GENERATED ){ 4038 if( pCol->colFlags & COLFLAG_BUSY ){ 4039 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4040 pCol->zCnName); 4041 return 0; 4042 } 4043 pCol->colFlags |= COLFLAG_BUSY; 4044 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4045 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 4046 } 4047 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4048 return iSrc; 4049 }else 4050 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4051 if( pCol->affinity==SQLITE_AFF_REAL ){ 4052 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4053 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4054 return target; 4055 }else{ 4056 return iSrc; 4057 } 4058 }else{ 4059 /* Coding an expression that is part of an index where column names 4060 ** in the index refer to the table to which the index belongs */ 4061 iTab = pParse->iSelfTab - 1; 4062 } 4063 } 4064 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4065 pExpr->iColumn, iTab, target, 4066 pExpr->op2); 4067 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4068 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4069 } 4070 return iReg; 4071 } 4072 case TK_INTEGER: { 4073 codeInteger(pParse, pExpr, 0, target); 4074 return target; 4075 } 4076 case TK_TRUEFALSE: { 4077 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4078 return target; 4079 } 4080 #ifndef SQLITE_OMIT_FLOATING_POINT 4081 case TK_FLOAT: { 4082 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4083 codeReal(v, pExpr->u.zToken, 0, target); 4084 return target; 4085 } 4086 #endif 4087 case TK_STRING: { 4088 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4089 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4090 return target; 4091 } 4092 default: { 4093 /* Make NULL the default case so that if a bug causes an illegal 4094 ** Expr node to be passed into this function, it will be handled 4095 ** sanely and not crash. But keep the assert() to bring the problem 4096 ** to the attention of the developers. */ 4097 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4098 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4099 return target; 4100 } 4101 #ifndef SQLITE_OMIT_BLOB_LITERAL 4102 case TK_BLOB: { 4103 int n; 4104 const char *z; 4105 char *zBlob; 4106 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4107 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4108 assert( pExpr->u.zToken[1]=='\'' ); 4109 z = &pExpr->u.zToken[2]; 4110 n = sqlite3Strlen30(z) - 1; 4111 assert( z[n]=='\'' ); 4112 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4113 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4114 return target; 4115 } 4116 #endif 4117 case TK_VARIABLE: { 4118 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4119 assert( pExpr->u.zToken!=0 ); 4120 assert( pExpr->u.zToken[0]!=0 ); 4121 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4122 if( pExpr->u.zToken[1]!=0 ){ 4123 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4124 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4125 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4126 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4127 } 4128 return target; 4129 } 4130 case TK_REGISTER: { 4131 return pExpr->iTable; 4132 } 4133 #ifndef SQLITE_OMIT_CAST 4134 case TK_CAST: { 4135 /* Expressions of the form: CAST(pLeft AS token) */ 4136 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4137 if( inReg!=target ){ 4138 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4139 inReg = target; 4140 } 4141 sqlite3VdbeAddOp2(v, OP_Cast, target, 4142 sqlite3AffinityType(pExpr->u.zToken, 0)); 4143 return inReg; 4144 } 4145 #endif /* SQLITE_OMIT_CAST */ 4146 case TK_IS: 4147 case TK_ISNOT: 4148 op = (op==TK_IS) ? TK_EQ : TK_NE; 4149 p5 = SQLITE_NULLEQ; 4150 /* fall-through */ 4151 case TK_LT: 4152 case TK_LE: 4153 case TK_GT: 4154 case TK_GE: 4155 case TK_NE: 4156 case TK_EQ: { 4157 Expr *pLeft = pExpr->pLeft; 4158 if( sqlite3ExprIsVector(pLeft) ){ 4159 codeVectorCompare(pParse, pExpr, target, op, p5); 4160 }else{ 4161 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4162 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4163 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4164 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4165 sqlite3VdbeCurrentAddr(v)+2, p5, 4166 ExprHasProperty(pExpr,EP_Commuted)); 4167 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4168 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4169 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4170 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4171 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4172 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4173 if( p5==SQLITE_NULLEQ ){ 4174 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4175 }else{ 4176 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4177 } 4178 testcase( regFree1==0 ); 4179 testcase( regFree2==0 ); 4180 } 4181 break; 4182 } 4183 case TK_AND: 4184 case TK_OR: 4185 case TK_PLUS: 4186 case TK_STAR: 4187 case TK_MINUS: 4188 case TK_REM: 4189 case TK_BITAND: 4190 case TK_BITOR: 4191 case TK_SLASH: 4192 case TK_LSHIFT: 4193 case TK_RSHIFT: 4194 case TK_CONCAT: { 4195 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4196 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4197 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4198 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4199 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4200 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4201 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4202 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4203 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4204 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4205 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4206 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4207 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4208 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4209 testcase( regFree1==0 ); 4210 testcase( regFree2==0 ); 4211 break; 4212 } 4213 case TK_UMINUS: { 4214 Expr *pLeft = pExpr->pLeft; 4215 assert( pLeft ); 4216 if( pLeft->op==TK_INTEGER ){ 4217 codeInteger(pParse, pLeft, 1, target); 4218 return target; 4219 #ifndef SQLITE_OMIT_FLOATING_POINT 4220 }else if( pLeft->op==TK_FLOAT ){ 4221 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4222 codeReal(v, pLeft->u.zToken, 1, target); 4223 return target; 4224 #endif 4225 }else{ 4226 tempX.op = TK_INTEGER; 4227 tempX.flags = EP_IntValue|EP_TokenOnly; 4228 tempX.u.iValue = 0; 4229 ExprClearVVAProperties(&tempX); 4230 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4231 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4232 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4233 testcase( regFree2==0 ); 4234 } 4235 break; 4236 } 4237 case TK_BITNOT: 4238 case TK_NOT: { 4239 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4240 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4241 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4242 testcase( regFree1==0 ); 4243 sqlite3VdbeAddOp2(v, op, r1, inReg); 4244 break; 4245 } 4246 case TK_TRUTH: { 4247 int isTrue; /* IS TRUE or IS NOT TRUE */ 4248 int bNormal; /* IS TRUE or IS FALSE */ 4249 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4250 testcase( regFree1==0 ); 4251 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4252 bNormal = pExpr->op2==TK_IS; 4253 testcase( isTrue && bNormal); 4254 testcase( !isTrue && bNormal); 4255 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4256 break; 4257 } 4258 case TK_ISNULL: 4259 case TK_NOTNULL: { 4260 int addr; 4261 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4262 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4263 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4264 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4265 testcase( regFree1==0 ); 4266 addr = sqlite3VdbeAddOp1(v, op, r1); 4267 VdbeCoverageIf(v, op==TK_ISNULL); 4268 VdbeCoverageIf(v, op==TK_NOTNULL); 4269 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4270 sqlite3VdbeJumpHere(v, addr); 4271 break; 4272 } 4273 case TK_AGG_FUNCTION: { 4274 AggInfo *pInfo = pExpr->pAggInfo; 4275 if( pInfo==0 4276 || NEVER(pExpr->iAgg<0) 4277 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4278 ){ 4279 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4280 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4281 }else{ 4282 return pInfo->aFunc[pExpr->iAgg].iMem; 4283 } 4284 break; 4285 } 4286 case TK_FUNCTION: { 4287 ExprList *pFarg; /* List of function arguments */ 4288 int nFarg; /* Number of function arguments */ 4289 FuncDef *pDef; /* The function definition object */ 4290 const char *zId; /* The function name */ 4291 u32 constMask = 0; /* Mask of function arguments that are constant */ 4292 int i; /* Loop counter */ 4293 sqlite3 *db = pParse->db; /* The database connection */ 4294 u8 enc = ENC(db); /* The text encoding used by this database */ 4295 CollSeq *pColl = 0; /* A collating sequence */ 4296 4297 #ifndef SQLITE_OMIT_WINDOWFUNC 4298 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4299 return pExpr->y.pWin->regResult; 4300 } 4301 #endif 4302 4303 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4304 /* SQL functions can be expensive. So try to avoid running them 4305 ** multiple times if we know they always give the same result */ 4306 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4307 } 4308 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4309 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4310 pFarg = pExpr->x.pList; 4311 nFarg = pFarg ? pFarg->nExpr : 0; 4312 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4313 zId = pExpr->u.zToken; 4314 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4315 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4316 if( pDef==0 && pParse->explain ){ 4317 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4318 } 4319 #endif 4320 if( pDef==0 || pDef->xFinalize!=0 ){ 4321 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4322 break; 4323 } 4324 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4325 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4326 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4327 return exprCodeInlineFunction(pParse, pFarg, 4328 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4329 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4330 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4331 } 4332 4333 for(i=0; i<nFarg; i++){ 4334 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4335 testcase( i==31 ); 4336 constMask |= MASKBIT32(i); 4337 } 4338 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4339 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4340 } 4341 } 4342 if( pFarg ){ 4343 if( constMask ){ 4344 r1 = pParse->nMem+1; 4345 pParse->nMem += nFarg; 4346 }else{ 4347 r1 = sqlite3GetTempRange(pParse, nFarg); 4348 } 4349 4350 /* For length() and typeof() functions with a column argument, 4351 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4352 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4353 ** loading. 4354 */ 4355 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4356 u8 exprOp; 4357 assert( nFarg==1 ); 4358 assert( pFarg->a[0].pExpr!=0 ); 4359 exprOp = pFarg->a[0].pExpr->op; 4360 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4361 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4362 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4363 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4364 pFarg->a[0].pExpr->op2 = 4365 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4366 } 4367 } 4368 4369 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4370 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4371 }else{ 4372 r1 = 0; 4373 } 4374 #ifndef SQLITE_OMIT_VIRTUALTABLE 4375 /* Possibly overload the function if the first argument is 4376 ** a virtual table column. 4377 ** 4378 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4379 ** second argument, not the first, as the argument to test to 4380 ** see if it is a column in a virtual table. This is done because 4381 ** the left operand of infix functions (the operand we want to 4382 ** control overloading) ends up as the second argument to the 4383 ** function. The expression "A glob B" is equivalent to 4384 ** "glob(B,A). We want to use the A in "A glob B" to test 4385 ** for function overloading. But we use the B term in "glob(B,A)". 4386 */ 4387 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4388 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4389 }else if( nFarg>0 ){ 4390 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4391 } 4392 #endif 4393 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4394 if( !pColl ) pColl = db->pDfltColl; 4395 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4396 } 4397 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4398 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4399 Expr *pArg = pFarg->a[0].pExpr; 4400 if( pArg->op==TK_COLUMN ){ 4401 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4402 }else{ 4403 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4404 } 4405 }else 4406 #endif 4407 { 4408 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4409 pDef, pExpr->op2); 4410 } 4411 if( nFarg ){ 4412 if( constMask==0 ){ 4413 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4414 }else{ 4415 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4416 } 4417 } 4418 return target; 4419 } 4420 #ifndef SQLITE_OMIT_SUBQUERY 4421 case TK_EXISTS: 4422 case TK_SELECT: { 4423 int nCol; 4424 testcase( op==TK_EXISTS ); 4425 testcase( op==TK_SELECT ); 4426 if( pParse->db->mallocFailed ){ 4427 return 0; 4428 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4429 sqlite3SubselectError(pParse, nCol, 1); 4430 }else{ 4431 return sqlite3CodeSubselect(pParse, pExpr); 4432 } 4433 break; 4434 } 4435 case TK_SELECT_COLUMN: { 4436 int n; 4437 if( pExpr->pLeft->iTable==0 ){ 4438 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4439 } 4440 assert( pExpr->pLeft->op==TK_SELECT || pExpr->pLeft->op==TK_ERROR ); 4441 n = sqlite3ExprVectorSize(pExpr->pLeft); 4442 if( pExpr->iTable!=n ){ 4443 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4444 pExpr->iTable, n); 4445 } 4446 return pExpr->pLeft->iTable + pExpr->iColumn; 4447 } 4448 case TK_IN: { 4449 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4450 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4451 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4452 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4453 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4454 sqlite3VdbeResolveLabel(v, destIfFalse); 4455 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4456 sqlite3VdbeResolveLabel(v, destIfNull); 4457 return target; 4458 } 4459 #endif /* SQLITE_OMIT_SUBQUERY */ 4460 4461 4462 /* 4463 ** x BETWEEN y AND z 4464 ** 4465 ** This is equivalent to 4466 ** 4467 ** x>=y AND x<=z 4468 ** 4469 ** X is stored in pExpr->pLeft. 4470 ** Y is stored in pExpr->pList->a[0].pExpr. 4471 ** Z is stored in pExpr->pList->a[1].pExpr. 4472 */ 4473 case TK_BETWEEN: { 4474 exprCodeBetween(pParse, pExpr, target, 0, 0); 4475 return target; 4476 } 4477 case TK_SPAN: 4478 case TK_COLLATE: 4479 case TK_UPLUS: { 4480 pExpr = pExpr->pLeft; 4481 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4482 } 4483 4484 case TK_TRIGGER: { 4485 /* If the opcode is TK_TRIGGER, then the expression is a reference 4486 ** to a column in the new.* or old.* pseudo-tables available to 4487 ** trigger programs. In this case Expr.iTable is set to 1 for the 4488 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4489 ** is set to the column of the pseudo-table to read, or to -1 to 4490 ** read the rowid field. 4491 ** 4492 ** The expression is implemented using an OP_Param opcode. The p1 4493 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4494 ** to reference another column of the old.* pseudo-table, where 4495 ** i is the index of the column. For a new.rowid reference, p1 is 4496 ** set to (n+1), where n is the number of columns in each pseudo-table. 4497 ** For a reference to any other column in the new.* pseudo-table, p1 4498 ** is set to (n+2+i), where n and i are as defined previously. For 4499 ** example, if the table on which triggers are being fired is 4500 ** declared as: 4501 ** 4502 ** CREATE TABLE t1(a, b); 4503 ** 4504 ** Then p1 is interpreted as follows: 4505 ** 4506 ** p1==0 -> old.rowid p1==3 -> new.rowid 4507 ** p1==1 -> old.a p1==4 -> new.a 4508 ** p1==2 -> old.b p1==5 -> new.b 4509 */ 4510 Table *pTab = pExpr->y.pTab; 4511 int iCol = pExpr->iColumn; 4512 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4513 + sqlite3TableColumnToStorage(pTab, iCol); 4514 4515 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4516 assert( iCol>=-1 && iCol<pTab->nCol ); 4517 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4518 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4519 4520 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4521 VdbeComment((v, "r[%d]=%s.%s", target, 4522 (pExpr->iTable ? "new" : "old"), 4523 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 4524 )); 4525 4526 #ifndef SQLITE_OMIT_FLOATING_POINT 4527 /* If the column has REAL affinity, it may currently be stored as an 4528 ** integer. Use OP_RealAffinity to make sure it is really real. 4529 ** 4530 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4531 ** floating point when extracting it from the record. */ 4532 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4533 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4534 } 4535 #endif 4536 break; 4537 } 4538 4539 case TK_VECTOR: { 4540 sqlite3ErrorMsg(pParse, "row value misused"); 4541 break; 4542 } 4543 4544 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4545 ** that derive from the right-hand table of a LEFT JOIN. The 4546 ** Expr.iTable value is the table number for the right-hand table. 4547 ** The expression is only evaluated if that table is not currently 4548 ** on a LEFT JOIN NULL row. 4549 */ 4550 case TK_IF_NULL_ROW: { 4551 int addrINR; 4552 u8 okConstFactor = pParse->okConstFactor; 4553 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4554 /* Temporarily disable factoring of constant expressions, since 4555 ** even though expressions may appear to be constant, they are not 4556 ** really constant because they originate from the right-hand side 4557 ** of a LEFT JOIN. */ 4558 pParse->okConstFactor = 0; 4559 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4560 pParse->okConstFactor = okConstFactor; 4561 sqlite3VdbeJumpHere(v, addrINR); 4562 sqlite3VdbeChangeP3(v, addrINR, inReg); 4563 break; 4564 } 4565 4566 /* 4567 ** Form A: 4568 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4569 ** 4570 ** Form B: 4571 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4572 ** 4573 ** Form A is can be transformed into the equivalent form B as follows: 4574 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4575 ** WHEN x=eN THEN rN ELSE y END 4576 ** 4577 ** X (if it exists) is in pExpr->pLeft. 4578 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4579 ** odd. The Y is also optional. If the number of elements in x.pList 4580 ** is even, then Y is omitted and the "otherwise" result is NULL. 4581 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4582 ** 4583 ** The result of the expression is the Ri for the first matching Ei, 4584 ** or if there is no matching Ei, the ELSE term Y, or if there is 4585 ** no ELSE term, NULL. 4586 */ 4587 case TK_CASE: { 4588 int endLabel; /* GOTO label for end of CASE stmt */ 4589 int nextCase; /* GOTO label for next WHEN clause */ 4590 int nExpr; /* 2x number of WHEN terms */ 4591 int i; /* Loop counter */ 4592 ExprList *pEList; /* List of WHEN terms */ 4593 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4594 Expr opCompare; /* The X==Ei expression */ 4595 Expr *pX; /* The X expression */ 4596 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4597 Expr *pDel = 0; 4598 sqlite3 *db = pParse->db; 4599 4600 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4601 assert(pExpr->x.pList->nExpr > 0); 4602 pEList = pExpr->x.pList; 4603 aListelem = pEList->a; 4604 nExpr = pEList->nExpr; 4605 endLabel = sqlite3VdbeMakeLabel(pParse); 4606 if( (pX = pExpr->pLeft)!=0 ){ 4607 pDel = sqlite3ExprDup(db, pX, 0); 4608 if( db->mallocFailed ){ 4609 sqlite3ExprDelete(db, pDel); 4610 break; 4611 } 4612 testcase( pX->op==TK_COLUMN ); 4613 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4614 testcase( regFree1==0 ); 4615 memset(&opCompare, 0, sizeof(opCompare)); 4616 opCompare.op = TK_EQ; 4617 opCompare.pLeft = pDel; 4618 pTest = &opCompare; 4619 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4620 ** The value in regFree1 might get SCopy-ed into the file result. 4621 ** So make sure that the regFree1 register is not reused for other 4622 ** purposes and possibly overwritten. */ 4623 regFree1 = 0; 4624 } 4625 for(i=0; i<nExpr-1; i=i+2){ 4626 if( pX ){ 4627 assert( pTest!=0 ); 4628 opCompare.pRight = aListelem[i].pExpr; 4629 }else{ 4630 pTest = aListelem[i].pExpr; 4631 } 4632 nextCase = sqlite3VdbeMakeLabel(pParse); 4633 testcase( pTest->op==TK_COLUMN ); 4634 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4635 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4636 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4637 sqlite3VdbeGoto(v, endLabel); 4638 sqlite3VdbeResolveLabel(v, nextCase); 4639 } 4640 if( (nExpr&1)!=0 ){ 4641 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4642 }else{ 4643 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4644 } 4645 sqlite3ExprDelete(db, pDel); 4646 setDoNotMergeFlagOnCopy(v); 4647 sqlite3VdbeResolveLabel(v, endLabel); 4648 break; 4649 } 4650 #ifndef SQLITE_OMIT_TRIGGER 4651 case TK_RAISE: { 4652 assert( pExpr->affExpr==OE_Rollback 4653 || pExpr->affExpr==OE_Abort 4654 || pExpr->affExpr==OE_Fail 4655 || pExpr->affExpr==OE_Ignore 4656 ); 4657 if( !pParse->pTriggerTab && !pParse->nested ){ 4658 sqlite3ErrorMsg(pParse, 4659 "RAISE() may only be used within a trigger-program"); 4660 return 0; 4661 } 4662 if( pExpr->affExpr==OE_Abort ){ 4663 sqlite3MayAbort(pParse); 4664 } 4665 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4666 if( pExpr->affExpr==OE_Ignore ){ 4667 sqlite3VdbeAddOp4( 4668 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4669 VdbeCoverage(v); 4670 }else{ 4671 sqlite3HaltConstraint(pParse, 4672 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4673 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4674 } 4675 4676 break; 4677 } 4678 #endif 4679 } 4680 sqlite3ReleaseTempReg(pParse, regFree1); 4681 sqlite3ReleaseTempReg(pParse, regFree2); 4682 return inReg; 4683 } 4684 4685 /* 4686 ** Generate code that will evaluate expression pExpr just one time 4687 ** per prepared statement execution. 4688 ** 4689 ** If the expression uses functions (that might throw an exception) then 4690 ** guard them with an OP_Once opcode to ensure that the code is only executed 4691 ** once. If no functions are involved, then factor the code out and put it at 4692 ** the end of the prepared statement in the initialization section. 4693 ** 4694 ** If regDest>=0 then the result is always stored in that register and the 4695 ** result is not reusable. If regDest<0 then this routine is free to 4696 ** store the value whereever it wants. The register where the expression 4697 ** is stored is returned. When regDest<0, two identical expressions might 4698 ** code to the same register, if they do not contain function calls and hence 4699 ** are factored out into the initialization section at the end of the 4700 ** prepared statement. 4701 */ 4702 int sqlite3ExprCodeRunJustOnce( 4703 Parse *pParse, /* Parsing context */ 4704 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4705 int regDest /* Store the value in this register */ 4706 ){ 4707 ExprList *p; 4708 assert( ConstFactorOk(pParse) ); 4709 p = pParse->pConstExpr; 4710 if( regDest<0 && p ){ 4711 struct ExprList_item *pItem; 4712 int i; 4713 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4714 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4715 return pItem->u.iConstExprReg; 4716 } 4717 } 4718 } 4719 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4720 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4721 Vdbe *v = pParse->pVdbe; 4722 int addr; 4723 assert( v ); 4724 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4725 pParse->okConstFactor = 0; 4726 if( !pParse->db->mallocFailed ){ 4727 if( regDest<0 ) regDest = ++pParse->nMem; 4728 sqlite3ExprCode(pParse, pExpr, regDest); 4729 } 4730 pParse->okConstFactor = 1; 4731 sqlite3ExprDelete(pParse->db, pExpr); 4732 sqlite3VdbeJumpHere(v, addr); 4733 }else{ 4734 p = sqlite3ExprListAppend(pParse, p, pExpr); 4735 if( p ){ 4736 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4737 pItem->reusable = regDest<0; 4738 if( regDest<0 ) regDest = ++pParse->nMem; 4739 pItem->u.iConstExprReg = regDest; 4740 } 4741 pParse->pConstExpr = p; 4742 } 4743 return regDest; 4744 } 4745 4746 /* 4747 ** Generate code to evaluate an expression and store the results 4748 ** into a register. Return the register number where the results 4749 ** are stored. 4750 ** 4751 ** If the register is a temporary register that can be deallocated, 4752 ** then write its number into *pReg. If the result register is not 4753 ** a temporary, then set *pReg to zero. 4754 ** 4755 ** If pExpr is a constant, then this routine might generate this 4756 ** code to fill the register in the initialization section of the 4757 ** VDBE program, in order to factor it out of the evaluation loop. 4758 */ 4759 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4760 int r2; 4761 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4762 if( ConstFactorOk(pParse) 4763 && ALWAYS(pExpr!=0) 4764 && pExpr->op!=TK_REGISTER 4765 && sqlite3ExprIsConstantNotJoin(pExpr) 4766 ){ 4767 *pReg = 0; 4768 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4769 }else{ 4770 int r1 = sqlite3GetTempReg(pParse); 4771 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4772 if( r2==r1 ){ 4773 *pReg = r1; 4774 }else{ 4775 sqlite3ReleaseTempReg(pParse, r1); 4776 *pReg = 0; 4777 } 4778 } 4779 return r2; 4780 } 4781 4782 /* 4783 ** Generate code that will evaluate expression pExpr and store the 4784 ** results in register target. The results are guaranteed to appear 4785 ** in register target. 4786 */ 4787 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4788 int inReg; 4789 4790 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4791 assert( target>0 && target<=pParse->nMem ); 4792 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4793 if( pParse->pVdbe==0 ) return; 4794 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4795 if( inReg!=target ){ 4796 u8 op; 4797 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4798 op = OP_Copy; 4799 }else{ 4800 op = OP_SCopy; 4801 } 4802 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4803 } 4804 } 4805 4806 /* 4807 ** Make a transient copy of expression pExpr and then code it using 4808 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4809 ** except that the input expression is guaranteed to be unchanged. 4810 */ 4811 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4812 sqlite3 *db = pParse->db; 4813 pExpr = sqlite3ExprDup(db, pExpr, 0); 4814 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4815 sqlite3ExprDelete(db, pExpr); 4816 } 4817 4818 /* 4819 ** Generate code that will evaluate expression pExpr and store the 4820 ** results in register target. The results are guaranteed to appear 4821 ** in register target. If the expression is constant, then this routine 4822 ** might choose to code the expression at initialization time. 4823 */ 4824 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4825 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4826 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4827 }else{ 4828 sqlite3ExprCodeCopy(pParse, pExpr, target); 4829 } 4830 } 4831 4832 /* 4833 ** Generate code that pushes the value of every element of the given 4834 ** expression list into a sequence of registers beginning at target. 4835 ** 4836 ** Return the number of elements evaluated. The number returned will 4837 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4838 ** is defined. 4839 ** 4840 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4841 ** filled using OP_SCopy. OP_Copy must be used instead. 4842 ** 4843 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4844 ** factored out into initialization code. 4845 ** 4846 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4847 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4848 ** in registers at srcReg, and so the value can be copied from there. 4849 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4850 ** are simply omitted rather than being copied from srcReg. 4851 */ 4852 int sqlite3ExprCodeExprList( 4853 Parse *pParse, /* Parsing context */ 4854 ExprList *pList, /* The expression list to be coded */ 4855 int target, /* Where to write results */ 4856 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4857 u8 flags /* SQLITE_ECEL_* flags */ 4858 ){ 4859 struct ExprList_item *pItem; 4860 int i, j, n; 4861 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4862 Vdbe *v = pParse->pVdbe; 4863 assert( pList!=0 ); 4864 assert( target>0 ); 4865 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4866 n = pList->nExpr; 4867 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4868 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4869 Expr *pExpr = pItem->pExpr; 4870 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4871 if( pItem->bSorterRef ){ 4872 i--; 4873 n--; 4874 }else 4875 #endif 4876 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4877 if( flags & SQLITE_ECEL_OMITREF ){ 4878 i--; 4879 n--; 4880 }else{ 4881 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4882 } 4883 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4884 && sqlite3ExprIsConstantNotJoin(pExpr) 4885 ){ 4886 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4887 }else{ 4888 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4889 if( inReg!=target+i ){ 4890 VdbeOp *pOp; 4891 if( copyOp==OP_Copy 4892 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4893 && pOp->p1+pOp->p3+1==inReg 4894 && pOp->p2+pOp->p3+1==target+i 4895 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4896 ){ 4897 pOp->p3++; 4898 }else{ 4899 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4900 } 4901 } 4902 } 4903 } 4904 return n; 4905 } 4906 4907 /* 4908 ** Generate code for a BETWEEN operator. 4909 ** 4910 ** x BETWEEN y AND z 4911 ** 4912 ** The above is equivalent to 4913 ** 4914 ** x>=y AND x<=z 4915 ** 4916 ** Code it as such, taking care to do the common subexpression 4917 ** elimination of x. 4918 ** 4919 ** The xJumpIf parameter determines details: 4920 ** 4921 ** NULL: Store the boolean result in reg[dest] 4922 ** sqlite3ExprIfTrue: Jump to dest if true 4923 ** sqlite3ExprIfFalse: Jump to dest if false 4924 ** 4925 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4926 */ 4927 static void exprCodeBetween( 4928 Parse *pParse, /* Parsing and code generating context */ 4929 Expr *pExpr, /* The BETWEEN expression */ 4930 int dest, /* Jump destination or storage location */ 4931 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4932 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4933 ){ 4934 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4935 Expr compLeft; /* The x>=y term */ 4936 Expr compRight; /* The x<=z term */ 4937 int regFree1 = 0; /* Temporary use register */ 4938 Expr *pDel = 0; 4939 sqlite3 *db = pParse->db; 4940 4941 memset(&compLeft, 0, sizeof(Expr)); 4942 memset(&compRight, 0, sizeof(Expr)); 4943 memset(&exprAnd, 0, sizeof(Expr)); 4944 4945 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4946 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4947 if( db->mallocFailed==0 ){ 4948 exprAnd.op = TK_AND; 4949 exprAnd.pLeft = &compLeft; 4950 exprAnd.pRight = &compRight; 4951 compLeft.op = TK_GE; 4952 compLeft.pLeft = pDel; 4953 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4954 compRight.op = TK_LE; 4955 compRight.pLeft = pDel; 4956 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4957 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4958 if( xJump ){ 4959 xJump(pParse, &exprAnd, dest, jumpIfNull); 4960 }else{ 4961 /* Mark the expression is being from the ON or USING clause of a join 4962 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4963 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4964 ** for clarity, but we are out of bits in the Expr.flags field so we 4965 ** have to reuse the EP_FromJoin bit. Bummer. */ 4966 pDel->flags |= EP_FromJoin; 4967 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4968 } 4969 sqlite3ReleaseTempReg(pParse, regFree1); 4970 } 4971 sqlite3ExprDelete(db, pDel); 4972 4973 /* Ensure adequate test coverage */ 4974 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4975 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4976 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4977 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4978 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4979 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4980 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4981 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4982 testcase( xJump==0 ); 4983 } 4984 4985 /* 4986 ** Generate code for a boolean expression such that a jump is made 4987 ** to the label "dest" if the expression is true but execution 4988 ** continues straight thru if the expression is false. 4989 ** 4990 ** If the expression evaluates to NULL (neither true nor false), then 4991 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4992 ** 4993 ** This code depends on the fact that certain token values (ex: TK_EQ) 4994 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4995 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4996 ** the make process cause these values to align. Assert()s in the code 4997 ** below verify that the numbers are aligned correctly. 4998 */ 4999 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5000 Vdbe *v = pParse->pVdbe; 5001 int op = 0; 5002 int regFree1 = 0; 5003 int regFree2 = 0; 5004 int r1, r2; 5005 5006 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5007 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5008 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 5009 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 5010 op = pExpr->op; 5011 switch( op ){ 5012 case TK_AND: 5013 case TK_OR: { 5014 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5015 if( pAlt!=pExpr ){ 5016 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5017 }else if( op==TK_AND ){ 5018 int d2 = sqlite3VdbeMakeLabel(pParse); 5019 testcase( jumpIfNull==0 ); 5020 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5021 jumpIfNull^SQLITE_JUMPIFNULL); 5022 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5023 sqlite3VdbeResolveLabel(v, d2); 5024 }else{ 5025 testcase( jumpIfNull==0 ); 5026 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5027 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5028 } 5029 break; 5030 } 5031 case TK_NOT: { 5032 testcase( jumpIfNull==0 ); 5033 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5034 break; 5035 } 5036 case TK_TRUTH: { 5037 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5038 int isTrue; /* IS TRUE or IS NOT TRUE */ 5039 testcase( jumpIfNull==0 ); 5040 isNot = pExpr->op2==TK_ISNOT; 5041 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5042 testcase( isTrue && isNot ); 5043 testcase( !isTrue && isNot ); 5044 if( isTrue ^ isNot ){ 5045 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5046 isNot ? SQLITE_JUMPIFNULL : 0); 5047 }else{ 5048 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5049 isNot ? SQLITE_JUMPIFNULL : 0); 5050 } 5051 break; 5052 } 5053 case TK_IS: 5054 case TK_ISNOT: 5055 testcase( op==TK_IS ); 5056 testcase( op==TK_ISNOT ); 5057 op = (op==TK_IS) ? TK_EQ : TK_NE; 5058 jumpIfNull = SQLITE_NULLEQ; 5059 /* no break */ deliberate_fall_through 5060 case TK_LT: 5061 case TK_LE: 5062 case TK_GT: 5063 case TK_GE: 5064 case TK_NE: 5065 case TK_EQ: { 5066 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5067 testcase( jumpIfNull==0 ); 5068 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5069 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5070 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5071 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5072 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5073 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5074 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5075 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5076 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5077 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5078 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5079 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5080 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5081 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5082 testcase( regFree1==0 ); 5083 testcase( regFree2==0 ); 5084 break; 5085 } 5086 case TK_ISNULL: 5087 case TK_NOTNULL: { 5088 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5089 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5090 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5091 sqlite3VdbeAddOp2(v, op, r1, dest); 5092 VdbeCoverageIf(v, op==TK_ISNULL); 5093 VdbeCoverageIf(v, op==TK_NOTNULL); 5094 testcase( regFree1==0 ); 5095 break; 5096 } 5097 case TK_BETWEEN: { 5098 testcase( jumpIfNull==0 ); 5099 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5100 break; 5101 } 5102 #ifndef SQLITE_OMIT_SUBQUERY 5103 case TK_IN: { 5104 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5105 int destIfNull = jumpIfNull ? dest : destIfFalse; 5106 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5107 sqlite3VdbeGoto(v, dest); 5108 sqlite3VdbeResolveLabel(v, destIfFalse); 5109 break; 5110 } 5111 #endif 5112 default: { 5113 default_expr: 5114 if( ExprAlwaysTrue(pExpr) ){ 5115 sqlite3VdbeGoto(v, dest); 5116 }else if( ExprAlwaysFalse(pExpr) ){ 5117 /* No-op */ 5118 }else{ 5119 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5120 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5121 VdbeCoverage(v); 5122 testcase( regFree1==0 ); 5123 testcase( jumpIfNull==0 ); 5124 } 5125 break; 5126 } 5127 } 5128 sqlite3ReleaseTempReg(pParse, regFree1); 5129 sqlite3ReleaseTempReg(pParse, regFree2); 5130 } 5131 5132 /* 5133 ** Generate code for a boolean expression such that a jump is made 5134 ** to the label "dest" if the expression is false but execution 5135 ** continues straight thru if the expression is true. 5136 ** 5137 ** If the expression evaluates to NULL (neither true nor false) then 5138 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5139 ** is 0. 5140 */ 5141 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5142 Vdbe *v = pParse->pVdbe; 5143 int op = 0; 5144 int regFree1 = 0; 5145 int regFree2 = 0; 5146 int r1, r2; 5147 5148 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5149 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5150 if( pExpr==0 ) return; 5151 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5152 5153 /* The value of pExpr->op and op are related as follows: 5154 ** 5155 ** pExpr->op op 5156 ** --------- ---------- 5157 ** TK_ISNULL OP_NotNull 5158 ** TK_NOTNULL OP_IsNull 5159 ** TK_NE OP_Eq 5160 ** TK_EQ OP_Ne 5161 ** TK_GT OP_Le 5162 ** TK_LE OP_Gt 5163 ** TK_GE OP_Lt 5164 ** TK_LT OP_Ge 5165 ** 5166 ** For other values of pExpr->op, op is undefined and unused. 5167 ** The value of TK_ and OP_ constants are arranged such that we 5168 ** can compute the mapping above using the following expression. 5169 ** Assert()s verify that the computation is correct. 5170 */ 5171 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5172 5173 /* Verify correct alignment of TK_ and OP_ constants 5174 */ 5175 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5176 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5177 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5178 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5179 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5180 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5181 assert( pExpr->op!=TK_GT || op==OP_Le ); 5182 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5183 5184 switch( pExpr->op ){ 5185 case TK_AND: 5186 case TK_OR: { 5187 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5188 if( pAlt!=pExpr ){ 5189 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5190 }else if( pExpr->op==TK_AND ){ 5191 testcase( jumpIfNull==0 ); 5192 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5193 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5194 }else{ 5195 int d2 = sqlite3VdbeMakeLabel(pParse); 5196 testcase( jumpIfNull==0 ); 5197 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5198 jumpIfNull^SQLITE_JUMPIFNULL); 5199 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5200 sqlite3VdbeResolveLabel(v, d2); 5201 } 5202 break; 5203 } 5204 case TK_NOT: { 5205 testcase( jumpIfNull==0 ); 5206 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5207 break; 5208 } 5209 case TK_TRUTH: { 5210 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5211 int isTrue; /* IS TRUE or IS NOT TRUE */ 5212 testcase( jumpIfNull==0 ); 5213 isNot = pExpr->op2==TK_ISNOT; 5214 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5215 testcase( isTrue && isNot ); 5216 testcase( !isTrue && isNot ); 5217 if( isTrue ^ isNot ){ 5218 /* IS TRUE and IS NOT FALSE */ 5219 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5220 isNot ? 0 : SQLITE_JUMPIFNULL); 5221 5222 }else{ 5223 /* IS FALSE and IS NOT TRUE */ 5224 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5225 isNot ? 0 : SQLITE_JUMPIFNULL); 5226 } 5227 break; 5228 } 5229 case TK_IS: 5230 case TK_ISNOT: 5231 testcase( pExpr->op==TK_IS ); 5232 testcase( pExpr->op==TK_ISNOT ); 5233 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5234 jumpIfNull = SQLITE_NULLEQ; 5235 /* no break */ deliberate_fall_through 5236 case TK_LT: 5237 case TK_LE: 5238 case TK_GT: 5239 case TK_GE: 5240 case TK_NE: 5241 case TK_EQ: { 5242 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5243 testcase( jumpIfNull==0 ); 5244 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5245 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5246 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5247 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5248 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5249 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5250 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5251 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5252 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5253 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5254 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5255 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5256 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5257 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5258 testcase( regFree1==0 ); 5259 testcase( regFree2==0 ); 5260 break; 5261 } 5262 case TK_ISNULL: 5263 case TK_NOTNULL: { 5264 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5265 sqlite3VdbeAddOp2(v, op, r1, dest); 5266 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5267 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5268 testcase( regFree1==0 ); 5269 break; 5270 } 5271 case TK_BETWEEN: { 5272 testcase( jumpIfNull==0 ); 5273 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5274 break; 5275 } 5276 #ifndef SQLITE_OMIT_SUBQUERY 5277 case TK_IN: { 5278 if( jumpIfNull ){ 5279 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5280 }else{ 5281 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5282 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5283 sqlite3VdbeResolveLabel(v, destIfNull); 5284 } 5285 break; 5286 } 5287 #endif 5288 default: { 5289 default_expr: 5290 if( ExprAlwaysFalse(pExpr) ){ 5291 sqlite3VdbeGoto(v, dest); 5292 }else if( ExprAlwaysTrue(pExpr) ){ 5293 /* no-op */ 5294 }else{ 5295 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5296 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5297 VdbeCoverage(v); 5298 testcase( regFree1==0 ); 5299 testcase( jumpIfNull==0 ); 5300 } 5301 break; 5302 } 5303 } 5304 sqlite3ReleaseTempReg(pParse, regFree1); 5305 sqlite3ReleaseTempReg(pParse, regFree2); 5306 } 5307 5308 /* 5309 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5310 ** code generation, and that copy is deleted after code generation. This 5311 ** ensures that the original pExpr is unchanged. 5312 */ 5313 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5314 sqlite3 *db = pParse->db; 5315 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5316 if( db->mallocFailed==0 ){ 5317 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5318 } 5319 sqlite3ExprDelete(db, pCopy); 5320 } 5321 5322 /* 5323 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5324 ** type of expression. 5325 ** 5326 ** If pExpr is a simple SQL value - an integer, real, string, blob 5327 ** or NULL value - then the VDBE currently being prepared is configured 5328 ** to re-prepare each time a new value is bound to variable pVar. 5329 ** 5330 ** Additionally, if pExpr is a simple SQL value and the value is the 5331 ** same as that currently bound to variable pVar, non-zero is returned. 5332 ** Otherwise, if the values are not the same or if pExpr is not a simple 5333 ** SQL value, zero is returned. 5334 */ 5335 static int exprCompareVariable( 5336 const Parse *pParse, 5337 const Expr *pVar, 5338 const Expr *pExpr 5339 ){ 5340 int res = 0; 5341 int iVar; 5342 sqlite3_value *pL, *pR = 0; 5343 5344 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5345 if( pR ){ 5346 iVar = pVar->iColumn; 5347 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5348 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5349 if( pL ){ 5350 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5351 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5352 } 5353 res = 0==sqlite3MemCompare(pL, pR, 0); 5354 } 5355 sqlite3ValueFree(pR); 5356 sqlite3ValueFree(pL); 5357 } 5358 5359 return res; 5360 } 5361 5362 /* 5363 ** Do a deep comparison of two expression trees. Return 0 if the two 5364 ** expressions are completely identical. Return 1 if they differ only 5365 ** by a COLLATE operator at the top level. Return 2 if there are differences 5366 ** other than the top-level COLLATE operator. 5367 ** 5368 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5369 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5370 ** 5371 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5372 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5373 ** 5374 ** Sometimes this routine will return 2 even if the two expressions 5375 ** really are equivalent. If we cannot prove that the expressions are 5376 ** identical, we return 2 just to be safe. So if this routine 5377 ** returns 2, then you do not really know for certain if the two 5378 ** expressions are the same. But if you get a 0 or 1 return, then you 5379 ** can be sure the expressions are the same. In the places where 5380 ** this routine is used, it does not hurt to get an extra 2 - that 5381 ** just might result in some slightly slower code. But returning 5382 ** an incorrect 0 or 1 could lead to a malfunction. 5383 ** 5384 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5385 ** pParse->pReprepare can be matched against literals in pB. The 5386 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5387 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5388 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5389 ** pB causes a return value of 2. 5390 */ 5391 int sqlite3ExprCompare( 5392 const Parse *pParse, 5393 const Expr *pA, 5394 const Expr *pB, 5395 int iTab 5396 ){ 5397 u32 combinedFlags; 5398 if( pA==0 || pB==0 ){ 5399 return pB==pA ? 0 : 2; 5400 } 5401 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5402 return 0; 5403 } 5404 combinedFlags = pA->flags | pB->flags; 5405 if( combinedFlags & EP_IntValue ){ 5406 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5407 return 0; 5408 } 5409 return 2; 5410 } 5411 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5412 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5413 return 1; 5414 } 5415 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5416 return 1; 5417 } 5418 return 2; 5419 } 5420 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5421 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5422 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5423 #ifndef SQLITE_OMIT_WINDOWFUNC 5424 assert( pA->op==pB->op ); 5425 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5426 return 2; 5427 } 5428 if( ExprHasProperty(pA,EP_WinFunc) ){ 5429 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5430 return 2; 5431 } 5432 } 5433 #endif 5434 }else if( pA->op==TK_NULL ){ 5435 return 0; 5436 }else if( pA->op==TK_COLLATE ){ 5437 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5438 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5439 return 2; 5440 } 5441 } 5442 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5443 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5444 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5445 if( combinedFlags & EP_xIsSelect ) return 2; 5446 if( (combinedFlags & EP_FixedCol)==0 5447 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5448 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5449 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5450 if( pA->op!=TK_STRING 5451 && pA->op!=TK_TRUEFALSE 5452 && ALWAYS((combinedFlags & EP_Reduced)==0) 5453 ){ 5454 if( pA->iColumn!=pB->iColumn ) return 2; 5455 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5456 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5457 return 2; 5458 } 5459 } 5460 } 5461 return 0; 5462 } 5463 5464 /* 5465 ** Compare two ExprList objects. Return 0 if they are identical, 1 5466 ** if they are certainly different, or 2 if it is not possible to 5467 ** determine if they are identical or not. 5468 ** 5469 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5470 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5471 ** 5472 ** This routine might return non-zero for equivalent ExprLists. The 5473 ** only consequence will be disabled optimizations. But this routine 5474 ** must never return 0 if the two ExprList objects are different, or 5475 ** a malfunction will result. 5476 ** 5477 ** Two NULL pointers are considered to be the same. But a NULL pointer 5478 ** always differs from a non-NULL pointer. 5479 */ 5480 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 5481 int i; 5482 if( pA==0 && pB==0 ) return 0; 5483 if( pA==0 || pB==0 ) return 1; 5484 if( pA->nExpr!=pB->nExpr ) return 1; 5485 for(i=0; i<pA->nExpr; i++){ 5486 int res; 5487 Expr *pExprA = pA->a[i].pExpr; 5488 Expr *pExprB = pB->a[i].pExpr; 5489 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5490 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5491 } 5492 return 0; 5493 } 5494 5495 /* 5496 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5497 ** are ignored. 5498 */ 5499 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 5500 return sqlite3ExprCompare(0, 5501 sqlite3ExprSkipCollateAndLikely(pA), 5502 sqlite3ExprSkipCollateAndLikely(pB), 5503 iTab); 5504 } 5505 5506 /* 5507 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5508 ** 5509 ** Or if seenNot is true, return non-zero if Expr p can only be 5510 ** non-NULL if pNN is not NULL 5511 */ 5512 static int exprImpliesNotNull( 5513 const Parse *pParse,/* Parsing context */ 5514 const Expr *p, /* The expression to be checked */ 5515 const Expr *pNN, /* The expression that is NOT NULL */ 5516 int iTab, /* Table being evaluated */ 5517 int seenNot /* Return true only if p can be any non-NULL value */ 5518 ){ 5519 assert( p ); 5520 assert( pNN ); 5521 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5522 return pNN->op!=TK_NULL; 5523 } 5524 switch( p->op ){ 5525 case TK_IN: { 5526 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5527 assert( ExprHasProperty(p,EP_xIsSelect) 5528 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5529 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5530 } 5531 case TK_BETWEEN: { 5532 ExprList *pList = p->x.pList; 5533 assert( pList!=0 ); 5534 assert( pList->nExpr==2 ); 5535 if( seenNot ) return 0; 5536 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5537 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5538 ){ 5539 return 1; 5540 } 5541 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5542 } 5543 case TK_EQ: 5544 case TK_NE: 5545 case TK_LT: 5546 case TK_LE: 5547 case TK_GT: 5548 case TK_GE: 5549 case TK_PLUS: 5550 case TK_MINUS: 5551 case TK_BITOR: 5552 case TK_LSHIFT: 5553 case TK_RSHIFT: 5554 case TK_CONCAT: 5555 seenNot = 1; 5556 /* no break */ deliberate_fall_through 5557 case TK_STAR: 5558 case TK_REM: 5559 case TK_BITAND: 5560 case TK_SLASH: { 5561 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5562 /* no break */ deliberate_fall_through 5563 } 5564 case TK_SPAN: 5565 case TK_COLLATE: 5566 case TK_UPLUS: 5567 case TK_UMINUS: { 5568 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5569 } 5570 case TK_TRUTH: { 5571 if( seenNot ) return 0; 5572 if( p->op2!=TK_IS ) return 0; 5573 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5574 } 5575 case TK_BITNOT: 5576 case TK_NOT: { 5577 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5578 } 5579 } 5580 return 0; 5581 } 5582 5583 /* 5584 ** Return true if we can prove the pE2 will always be true if pE1 is 5585 ** true. Return false if we cannot complete the proof or if pE2 might 5586 ** be false. Examples: 5587 ** 5588 ** pE1: x==5 pE2: x==5 Result: true 5589 ** pE1: x>0 pE2: x==5 Result: false 5590 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5591 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5592 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5593 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5594 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5595 ** 5596 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5597 ** Expr.iTable<0 then assume a table number given by iTab. 5598 ** 5599 ** If pParse is not NULL, then the values of bound variables in pE1 are 5600 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5601 ** modified to record which bound variables are referenced. If pParse 5602 ** is NULL, then false will be returned if pE1 contains any bound variables. 5603 ** 5604 ** When in doubt, return false. Returning true might give a performance 5605 ** improvement. Returning false might cause a performance reduction, but 5606 ** it will always give the correct answer and is hence always safe. 5607 */ 5608 int sqlite3ExprImpliesExpr( 5609 const Parse *pParse, 5610 const Expr *pE1, 5611 const Expr *pE2, 5612 int iTab 5613 ){ 5614 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5615 return 1; 5616 } 5617 if( pE2->op==TK_OR 5618 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5619 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5620 ){ 5621 return 1; 5622 } 5623 if( pE2->op==TK_NOTNULL 5624 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5625 ){ 5626 return 1; 5627 } 5628 return 0; 5629 } 5630 5631 /* 5632 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5633 ** If the expression node requires that the table at pWalker->iCur 5634 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5635 ** 5636 ** This routine controls an optimization. False positives (setting 5637 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5638 ** (never setting pWalker->eCode) is a harmless missed optimization. 5639 */ 5640 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5641 testcase( pExpr->op==TK_AGG_COLUMN ); 5642 testcase( pExpr->op==TK_AGG_FUNCTION ); 5643 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5644 switch( pExpr->op ){ 5645 case TK_ISNOT: 5646 case TK_ISNULL: 5647 case TK_NOTNULL: 5648 case TK_IS: 5649 case TK_OR: 5650 case TK_VECTOR: 5651 case TK_CASE: 5652 case TK_IN: 5653 case TK_FUNCTION: 5654 case TK_TRUTH: 5655 testcase( pExpr->op==TK_ISNOT ); 5656 testcase( pExpr->op==TK_ISNULL ); 5657 testcase( pExpr->op==TK_NOTNULL ); 5658 testcase( pExpr->op==TK_IS ); 5659 testcase( pExpr->op==TK_OR ); 5660 testcase( pExpr->op==TK_VECTOR ); 5661 testcase( pExpr->op==TK_CASE ); 5662 testcase( pExpr->op==TK_IN ); 5663 testcase( pExpr->op==TK_FUNCTION ); 5664 testcase( pExpr->op==TK_TRUTH ); 5665 return WRC_Prune; 5666 case TK_COLUMN: 5667 if( pWalker->u.iCur==pExpr->iTable ){ 5668 pWalker->eCode = 1; 5669 return WRC_Abort; 5670 } 5671 return WRC_Prune; 5672 5673 case TK_AND: 5674 if( pWalker->eCode==0 ){ 5675 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5676 if( pWalker->eCode ){ 5677 pWalker->eCode = 0; 5678 sqlite3WalkExpr(pWalker, pExpr->pRight); 5679 } 5680 } 5681 return WRC_Prune; 5682 5683 case TK_BETWEEN: 5684 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5685 assert( pWalker->eCode ); 5686 return WRC_Abort; 5687 } 5688 return WRC_Prune; 5689 5690 /* Virtual tables are allowed to use constraints like x=NULL. So 5691 ** a term of the form x=y does not prove that y is not null if x 5692 ** is the column of a virtual table */ 5693 case TK_EQ: 5694 case TK_NE: 5695 case TK_LT: 5696 case TK_LE: 5697 case TK_GT: 5698 case TK_GE: { 5699 Expr *pLeft = pExpr->pLeft; 5700 Expr *pRight = pExpr->pRight; 5701 testcase( pExpr->op==TK_EQ ); 5702 testcase( pExpr->op==TK_NE ); 5703 testcase( pExpr->op==TK_LT ); 5704 testcase( pExpr->op==TK_LE ); 5705 testcase( pExpr->op==TK_GT ); 5706 testcase( pExpr->op==TK_GE ); 5707 /* The y.pTab=0 assignment in wherecode.c always happens after the 5708 ** impliesNotNullRow() test */ 5709 if( (pLeft->op==TK_COLUMN && pLeft->y.pTab!=0 5710 && IsVirtual(pLeft->y.pTab)) 5711 || (pRight->op==TK_COLUMN && pRight->y.pTab!=0 5712 && IsVirtual(pRight->y.pTab)) 5713 ){ 5714 return WRC_Prune; 5715 } 5716 /* no break */ deliberate_fall_through 5717 } 5718 default: 5719 return WRC_Continue; 5720 } 5721 } 5722 5723 /* 5724 ** Return true (non-zero) if expression p can only be true if at least 5725 ** one column of table iTab is non-null. In other words, return true 5726 ** if expression p will always be NULL or false if every column of iTab 5727 ** is NULL. 5728 ** 5729 ** False negatives are acceptable. In other words, it is ok to return 5730 ** zero even if expression p will never be true of every column of iTab 5731 ** is NULL. A false negative is merely a missed optimization opportunity. 5732 ** 5733 ** False positives are not allowed, however. A false positive may result 5734 ** in an incorrect answer. 5735 ** 5736 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5737 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5738 ** 5739 ** This routine is used to check if a LEFT JOIN can be converted into 5740 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5741 ** clause requires that some column of the right table of the LEFT JOIN 5742 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5743 ** ordinary join. 5744 */ 5745 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5746 Walker w; 5747 p = sqlite3ExprSkipCollateAndLikely(p); 5748 if( p==0 ) return 0; 5749 if( p->op==TK_NOTNULL ){ 5750 p = p->pLeft; 5751 }else{ 5752 while( p->op==TK_AND ){ 5753 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5754 p = p->pRight; 5755 } 5756 } 5757 w.xExprCallback = impliesNotNullRow; 5758 w.xSelectCallback = 0; 5759 w.xSelectCallback2 = 0; 5760 w.eCode = 0; 5761 w.u.iCur = iTab; 5762 sqlite3WalkExpr(&w, p); 5763 return w.eCode; 5764 } 5765 5766 /* 5767 ** An instance of the following structure is used by the tree walker 5768 ** to determine if an expression can be evaluated by reference to the 5769 ** index only, without having to do a search for the corresponding 5770 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5771 ** is the cursor for the table. 5772 */ 5773 struct IdxCover { 5774 Index *pIdx; /* The index to be tested for coverage */ 5775 int iCur; /* Cursor number for the table corresponding to the index */ 5776 }; 5777 5778 /* 5779 ** Check to see if there are references to columns in table 5780 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5781 ** pWalker->u.pIdxCover->pIdx. 5782 */ 5783 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5784 if( pExpr->op==TK_COLUMN 5785 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5786 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5787 ){ 5788 pWalker->eCode = 1; 5789 return WRC_Abort; 5790 } 5791 return WRC_Continue; 5792 } 5793 5794 /* 5795 ** Determine if an index pIdx on table with cursor iCur contains will 5796 ** the expression pExpr. Return true if the index does cover the 5797 ** expression and false if the pExpr expression references table columns 5798 ** that are not found in the index pIdx. 5799 ** 5800 ** An index covering an expression means that the expression can be 5801 ** evaluated using only the index and without having to lookup the 5802 ** corresponding table entry. 5803 */ 5804 int sqlite3ExprCoveredByIndex( 5805 Expr *pExpr, /* The index to be tested */ 5806 int iCur, /* The cursor number for the corresponding table */ 5807 Index *pIdx /* The index that might be used for coverage */ 5808 ){ 5809 Walker w; 5810 struct IdxCover xcov; 5811 memset(&w, 0, sizeof(w)); 5812 xcov.iCur = iCur; 5813 xcov.pIdx = pIdx; 5814 w.xExprCallback = exprIdxCover; 5815 w.u.pIdxCover = &xcov; 5816 sqlite3WalkExpr(&w, pExpr); 5817 return !w.eCode; 5818 } 5819 5820 5821 /* 5822 ** An instance of the following structure is used by the tree walker 5823 ** to count references to table columns in the arguments of an 5824 ** aggregate function, in order to implement the 5825 ** sqlite3FunctionThisSrc() routine. 5826 */ 5827 struct SrcCount { 5828 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5829 int iSrcInner; /* Smallest cursor number in this context */ 5830 int nThis; /* Number of references to columns in pSrcList */ 5831 int nOther; /* Number of references to columns in other FROM clauses */ 5832 }; 5833 5834 /* 5835 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5836 ** SELECT with a FROM clause encountered during this iteration, set 5837 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5838 ** the FROM cause. 5839 */ 5840 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5841 struct SrcCount *p = pWalker->u.pSrcCount; 5842 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5843 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5844 } 5845 return WRC_Continue; 5846 } 5847 5848 /* 5849 ** Count the number of references to columns. 5850 */ 5851 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5852 /* There was once a NEVER() on the second term on the grounds that 5853 ** sqlite3FunctionUsesThisSrc() was always called before 5854 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5855 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5856 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5857 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5858 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5859 int i; 5860 struct SrcCount *p = pWalker->u.pSrcCount; 5861 SrcList *pSrc = p->pSrc; 5862 int nSrc = pSrc ? pSrc->nSrc : 0; 5863 for(i=0; i<nSrc; i++){ 5864 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5865 } 5866 if( i<nSrc ){ 5867 p->nThis++; 5868 }else if( pExpr->iTable<p->iSrcInner ){ 5869 /* In a well-formed parse tree (no name resolution errors), 5870 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5871 ** outer context. Those are the only ones to count as "other" */ 5872 p->nOther++; 5873 } 5874 } 5875 return WRC_Continue; 5876 } 5877 5878 /* 5879 ** Determine if any of the arguments to the pExpr Function reference 5880 ** pSrcList. Return true if they do. Also return true if the function 5881 ** has no arguments or has only constant arguments. Return false if pExpr 5882 ** references columns but not columns of tables found in pSrcList. 5883 */ 5884 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5885 Walker w; 5886 struct SrcCount cnt; 5887 assert( pExpr->op==TK_AGG_FUNCTION ); 5888 memset(&w, 0, sizeof(w)); 5889 w.xExprCallback = exprSrcCount; 5890 w.xSelectCallback = selectSrcCount; 5891 w.u.pSrcCount = &cnt; 5892 cnt.pSrc = pSrcList; 5893 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5894 cnt.nThis = 0; 5895 cnt.nOther = 0; 5896 sqlite3WalkExprList(&w, pExpr->x.pList); 5897 #ifndef SQLITE_OMIT_WINDOWFUNC 5898 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5899 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5900 } 5901 #endif 5902 return cnt.nThis>0 || cnt.nOther==0; 5903 } 5904 5905 /* 5906 ** This is a Walker expression node callback. 5907 ** 5908 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5909 ** object that is referenced does not refer directly to the Expr. If 5910 ** it does, make a copy. This is done because the pExpr argument is 5911 ** subject to change. 5912 ** 5913 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5914 ** This will cause the expression to be deleted automatically when the 5915 ** Parse object is destroyed, but the zero register number means that it 5916 ** will not generate any code in the preamble. 5917 */ 5918 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5919 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5920 && pExpr->pAggInfo!=0 5921 ){ 5922 AggInfo *pAggInfo = pExpr->pAggInfo; 5923 int iAgg = pExpr->iAgg; 5924 Parse *pParse = pWalker->pParse; 5925 sqlite3 *db = pParse->db; 5926 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5927 if( pExpr->op==TK_AGG_COLUMN ){ 5928 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5929 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5930 pExpr = sqlite3ExprDup(db, pExpr, 0); 5931 if( pExpr ){ 5932 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5933 sqlite3ExprDeferredDelete(pParse, pExpr); 5934 } 5935 } 5936 }else{ 5937 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5938 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5939 pExpr = sqlite3ExprDup(db, pExpr, 0); 5940 if( pExpr ){ 5941 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5942 sqlite3ExprDeferredDelete(pParse, pExpr); 5943 } 5944 } 5945 } 5946 } 5947 return WRC_Continue; 5948 } 5949 5950 /* 5951 ** Initialize a Walker object so that will persist AggInfo entries referenced 5952 ** by the tree that is walked. 5953 */ 5954 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5955 memset(pWalker, 0, sizeof(*pWalker)); 5956 pWalker->pParse = pParse; 5957 pWalker->xExprCallback = agginfoPersistExprCb; 5958 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5959 } 5960 5961 /* 5962 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5963 ** the new element. Return a negative number if malloc fails. 5964 */ 5965 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5966 int i; 5967 pInfo->aCol = sqlite3ArrayAllocate( 5968 db, 5969 pInfo->aCol, 5970 sizeof(pInfo->aCol[0]), 5971 &pInfo->nColumn, 5972 &i 5973 ); 5974 return i; 5975 } 5976 5977 /* 5978 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5979 ** the new element. Return a negative number if malloc fails. 5980 */ 5981 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5982 int i; 5983 pInfo->aFunc = sqlite3ArrayAllocate( 5984 db, 5985 pInfo->aFunc, 5986 sizeof(pInfo->aFunc[0]), 5987 &pInfo->nFunc, 5988 &i 5989 ); 5990 return i; 5991 } 5992 5993 /* 5994 ** This is the xExprCallback for a tree walker. It is used to 5995 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5996 ** for additional information. 5997 */ 5998 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5999 int i; 6000 NameContext *pNC = pWalker->u.pNC; 6001 Parse *pParse = pNC->pParse; 6002 SrcList *pSrcList = pNC->pSrcList; 6003 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 6004 6005 assert( pNC->ncFlags & NC_UAggInfo ); 6006 switch( pExpr->op ){ 6007 case TK_AGG_COLUMN: 6008 case TK_COLUMN: { 6009 testcase( pExpr->op==TK_AGG_COLUMN ); 6010 testcase( pExpr->op==TK_COLUMN ); 6011 /* Check to see if the column is in one of the tables in the FROM 6012 ** clause of the aggregate query */ 6013 if( ALWAYS(pSrcList!=0) ){ 6014 SrcItem *pItem = pSrcList->a; 6015 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 6016 struct AggInfo_col *pCol; 6017 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6018 if( pExpr->iTable==pItem->iCursor ){ 6019 /* If we reach this point, it means that pExpr refers to a table 6020 ** that is in the FROM clause of the aggregate query. 6021 ** 6022 ** Make an entry for the column in pAggInfo->aCol[] if there 6023 ** is not an entry there already. 6024 */ 6025 int k; 6026 pCol = pAggInfo->aCol; 6027 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6028 if( pCol->iTable==pExpr->iTable && 6029 pCol->iColumn==pExpr->iColumn ){ 6030 break; 6031 } 6032 } 6033 if( (k>=pAggInfo->nColumn) 6034 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6035 ){ 6036 pCol = &pAggInfo->aCol[k]; 6037 pCol->pTab = pExpr->y.pTab; 6038 pCol->iTable = pExpr->iTable; 6039 pCol->iColumn = pExpr->iColumn; 6040 pCol->iMem = ++pParse->nMem; 6041 pCol->iSorterColumn = -1; 6042 pCol->pCExpr = pExpr; 6043 if( pAggInfo->pGroupBy ){ 6044 int j, n; 6045 ExprList *pGB = pAggInfo->pGroupBy; 6046 struct ExprList_item *pTerm = pGB->a; 6047 n = pGB->nExpr; 6048 for(j=0; j<n; j++, pTerm++){ 6049 Expr *pE = pTerm->pExpr; 6050 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 6051 pE->iColumn==pExpr->iColumn ){ 6052 pCol->iSorterColumn = j; 6053 break; 6054 } 6055 } 6056 } 6057 if( pCol->iSorterColumn<0 ){ 6058 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6059 } 6060 } 6061 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6062 ** because it was there before or because we just created it). 6063 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6064 ** pAggInfo->aCol[] entry. 6065 */ 6066 ExprSetVVAProperty(pExpr, EP_NoReduce); 6067 pExpr->pAggInfo = pAggInfo; 6068 pExpr->op = TK_AGG_COLUMN; 6069 pExpr->iAgg = (i16)k; 6070 break; 6071 } /* endif pExpr->iTable==pItem->iCursor */ 6072 } /* end loop over pSrcList */ 6073 } 6074 return WRC_Prune; 6075 } 6076 case TK_AGG_FUNCTION: { 6077 if( (pNC->ncFlags & NC_InAggFunc)==0 6078 && pWalker->walkerDepth==pExpr->op2 6079 ){ 6080 /* Check to see if pExpr is a duplicate of another aggregate 6081 ** function that is already in the pAggInfo structure 6082 */ 6083 struct AggInfo_func *pItem = pAggInfo->aFunc; 6084 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6085 if( pItem->pFExpr==pExpr ) break; 6086 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6087 break; 6088 } 6089 } 6090 if( i>=pAggInfo->nFunc ){ 6091 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6092 */ 6093 u8 enc = ENC(pParse->db); 6094 i = addAggInfoFunc(pParse->db, pAggInfo); 6095 if( i>=0 ){ 6096 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6097 pItem = &pAggInfo->aFunc[i]; 6098 pItem->pFExpr = pExpr; 6099 pItem->iMem = ++pParse->nMem; 6100 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 6101 pItem->pFunc = sqlite3FindFunction(pParse->db, 6102 pExpr->u.zToken, 6103 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6104 if( pExpr->flags & EP_Distinct ){ 6105 pItem->iDistinct = pParse->nTab++; 6106 }else{ 6107 pItem->iDistinct = -1; 6108 } 6109 } 6110 } 6111 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6112 */ 6113 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6114 ExprSetVVAProperty(pExpr, EP_NoReduce); 6115 pExpr->iAgg = (i16)i; 6116 pExpr->pAggInfo = pAggInfo; 6117 return WRC_Prune; 6118 }else{ 6119 return WRC_Continue; 6120 } 6121 } 6122 } 6123 return WRC_Continue; 6124 } 6125 6126 /* 6127 ** Analyze the pExpr expression looking for aggregate functions and 6128 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6129 ** points to. Additional entries are made on the AggInfo object as 6130 ** necessary. 6131 ** 6132 ** This routine should only be called after the expression has been 6133 ** analyzed by sqlite3ResolveExprNames(). 6134 */ 6135 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6136 Walker w; 6137 w.xExprCallback = analyzeAggregate; 6138 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6139 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6140 w.walkerDepth = 0; 6141 w.u.pNC = pNC; 6142 w.pParse = 0; 6143 assert( pNC->pSrcList!=0 ); 6144 sqlite3WalkExpr(&w, pExpr); 6145 } 6146 6147 /* 6148 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6149 ** expression list. Return the number of errors. 6150 ** 6151 ** If an error is found, the analysis is cut short. 6152 */ 6153 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6154 struct ExprList_item *pItem; 6155 int i; 6156 if( pList ){ 6157 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6158 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6159 } 6160 } 6161 } 6162 6163 /* 6164 ** Allocate a single new register for use to hold some intermediate result. 6165 */ 6166 int sqlite3GetTempReg(Parse *pParse){ 6167 if( pParse->nTempReg==0 ){ 6168 return ++pParse->nMem; 6169 } 6170 return pParse->aTempReg[--pParse->nTempReg]; 6171 } 6172 6173 /* 6174 ** Deallocate a register, making available for reuse for some other 6175 ** purpose. 6176 */ 6177 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6178 if( iReg ){ 6179 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6180 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6181 pParse->aTempReg[pParse->nTempReg++] = iReg; 6182 } 6183 } 6184 } 6185 6186 /* 6187 ** Allocate or deallocate a block of nReg consecutive registers. 6188 */ 6189 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6190 int i, n; 6191 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6192 i = pParse->iRangeReg; 6193 n = pParse->nRangeReg; 6194 if( nReg<=n ){ 6195 pParse->iRangeReg += nReg; 6196 pParse->nRangeReg -= nReg; 6197 }else{ 6198 i = pParse->nMem+1; 6199 pParse->nMem += nReg; 6200 } 6201 return i; 6202 } 6203 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6204 if( nReg==1 ){ 6205 sqlite3ReleaseTempReg(pParse, iReg); 6206 return; 6207 } 6208 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6209 if( nReg>pParse->nRangeReg ){ 6210 pParse->nRangeReg = nReg; 6211 pParse->iRangeReg = iReg; 6212 } 6213 } 6214 6215 /* 6216 ** Mark all temporary registers as being unavailable for reuse. 6217 ** 6218 ** Always invoke this procedure after coding a subroutine or co-routine 6219 ** that might be invoked from other parts of the code, to ensure that 6220 ** the sub/co-routine does not use registers in common with the code that 6221 ** invokes the sub/co-routine. 6222 */ 6223 void sqlite3ClearTempRegCache(Parse *pParse){ 6224 pParse->nTempReg = 0; 6225 pParse->nRangeReg = 0; 6226 } 6227 6228 /* 6229 ** Validate that no temporary register falls within the range of 6230 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6231 ** statements. 6232 */ 6233 #ifdef SQLITE_DEBUG 6234 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6235 int i; 6236 if( pParse->nRangeReg>0 6237 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6238 && pParse->iRangeReg <= iLast 6239 ){ 6240 return 0; 6241 } 6242 for(i=0; i<pParse->nTempReg; i++){ 6243 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6244 return 0; 6245 } 6246 } 6247 return 1; 6248 } 6249 #endif /* SQLITE_DEBUG */ 6250