1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip) ){ 48 assert( pExpr->op==TK_COLLATE ); 49 pExpr = pExpr->pLeft; 50 assert( pExpr!=0 ); 51 } 52 op = pExpr->op; 53 if( op==TK_SELECT ){ 54 assert( pExpr->flags&EP_xIsSelect ); 55 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 56 } 57 if( op==TK_REGISTER ) op = pExpr->op2; 58 #ifndef SQLITE_OMIT_CAST 59 if( op==TK_CAST ){ 60 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 61 return sqlite3AffinityType(pExpr->u.zToken, 0); 62 } 63 #endif 64 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 65 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 66 } 67 if( op==TK_SELECT_COLUMN ){ 68 assert( pExpr->pLeft->flags&EP_xIsSelect ); 69 return sqlite3ExprAffinity( 70 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 71 ); 72 } 73 if( op==TK_VECTOR ){ 74 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 75 } 76 return pExpr->affExpr; 77 } 78 79 /* 80 ** Set the collating sequence for expression pExpr to be the collating 81 ** sequence named by pToken. Return a pointer to a new Expr node that 82 ** implements the COLLATE operator. 83 ** 84 ** If a memory allocation error occurs, that fact is recorded in pParse->db 85 ** and the pExpr parameter is returned unchanged. 86 */ 87 Expr *sqlite3ExprAddCollateToken( 88 Parse *pParse, /* Parsing context */ 89 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 90 const Token *pCollName, /* Name of collating sequence */ 91 int dequote /* True to dequote pCollName */ 92 ){ 93 if( pCollName->n>0 ){ 94 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 95 if( pNew ){ 96 pNew->pLeft = pExpr; 97 pNew->flags |= EP_Collate|EP_Skip; 98 pExpr = pNew; 99 } 100 } 101 return pExpr; 102 } 103 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 104 Token s; 105 assert( zC!=0 ); 106 sqlite3TokenInit(&s, (char*)zC); 107 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 108 } 109 110 /* 111 ** Skip over any TK_COLLATE operators. 112 */ 113 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 114 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 115 assert( pExpr->op==TK_COLLATE ); 116 pExpr = pExpr->pLeft; 117 } 118 return pExpr; 119 } 120 121 /* 122 ** Skip over any TK_COLLATE operators and/or any unlikely() 123 ** or likelihood() or likely() functions at the root of an 124 ** expression. 125 */ 126 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 127 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 128 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 129 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 130 assert( pExpr->x.pList->nExpr>0 ); 131 assert( pExpr->op==TK_FUNCTION ); 132 pExpr = pExpr->x.pList->a[0].pExpr; 133 }else{ 134 assert( pExpr->op==TK_COLLATE ); 135 pExpr = pExpr->pLeft; 136 } 137 } 138 return pExpr; 139 } 140 141 /* 142 ** Return the collation sequence for the expression pExpr. If 143 ** there is no defined collating sequence, return NULL. 144 ** 145 ** See also: sqlite3ExprNNCollSeq() 146 ** 147 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 148 ** default collation if pExpr has no defined collation. 149 ** 150 ** The collating sequence might be determined by a COLLATE operator 151 ** or by the presence of a column with a defined collating sequence. 152 ** COLLATE operators take first precedence. Left operands take 153 ** precedence over right operands. 154 */ 155 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 156 sqlite3 *db = pParse->db; 157 CollSeq *pColl = 0; 158 Expr *p = pExpr; 159 while( p ){ 160 int op = p->op; 161 if( op==TK_REGISTER ) op = p->op2; 162 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 163 && p->y.pTab!=0 164 ){ 165 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 166 ** a TK_COLUMN but was previously evaluated and cached in a register */ 167 int j = p->iColumn; 168 if( j>=0 ){ 169 const char *zColl = p->y.pTab->aCol[j].zColl; 170 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 171 } 172 break; 173 } 174 if( op==TK_CAST || op==TK_UPLUS ){ 175 p = p->pLeft; 176 continue; 177 } 178 if( op==TK_VECTOR ){ 179 p = p->x.pList->a[0].pExpr; 180 continue; 181 } 182 if( op==TK_COLLATE ){ 183 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 184 break; 185 } 186 if( p->flags & EP_Collate ){ 187 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 188 p = p->pLeft; 189 }else{ 190 Expr *pNext = p->pRight; 191 /* The Expr.x union is never used at the same time as Expr.pRight */ 192 assert( p->x.pList==0 || p->pRight==0 ); 193 if( p->x.pList!=0 194 && !db->mallocFailed 195 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 196 ){ 197 int i; 198 for(i=0; i<p->x.pList->nExpr; i++){ 199 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 200 pNext = p->x.pList->a[i].pExpr; 201 break; 202 } 203 } 204 } 205 p = pNext; 206 } 207 }else{ 208 break; 209 } 210 } 211 if( sqlite3CheckCollSeq(pParse, pColl) ){ 212 pColl = 0; 213 } 214 return pColl; 215 } 216 217 /* 218 ** Return the collation sequence for the expression pExpr. If 219 ** there is no defined collating sequence, return a pointer to the 220 ** defautl collation sequence. 221 ** 222 ** See also: sqlite3ExprCollSeq() 223 ** 224 ** The sqlite3ExprCollSeq() routine works the same except that it 225 ** returns NULL if there is no defined collation. 226 */ 227 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 228 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 229 if( p==0 ) p = pParse->db->pDfltColl; 230 assert( p!=0 ); 231 return p; 232 } 233 234 /* 235 ** Return TRUE if the two expressions have equivalent collating sequences. 236 */ 237 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 238 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 239 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 240 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 241 } 242 243 /* 244 ** pExpr is an operand of a comparison operator. aff2 is the 245 ** type affinity of the other operand. This routine returns the 246 ** type affinity that should be used for the comparison operator. 247 */ 248 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 249 char aff1 = sqlite3ExprAffinity(pExpr); 250 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 251 /* Both sides of the comparison are columns. If one has numeric 252 ** affinity, use that. Otherwise use no affinity. 253 */ 254 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 255 return SQLITE_AFF_NUMERIC; 256 }else{ 257 return SQLITE_AFF_BLOB; 258 } 259 }else{ 260 /* One side is a column, the other is not. Use the columns affinity. */ 261 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 262 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 263 } 264 } 265 266 /* 267 ** pExpr is a comparison operator. Return the type affinity that should 268 ** be applied to both operands prior to doing the comparison. 269 */ 270 static char comparisonAffinity(Expr *pExpr){ 271 char aff; 272 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 273 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 274 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 275 assert( pExpr->pLeft ); 276 aff = sqlite3ExprAffinity(pExpr->pLeft); 277 if( pExpr->pRight ){ 278 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 279 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 280 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 281 }else if( aff==0 ){ 282 aff = SQLITE_AFF_BLOB; 283 } 284 return aff; 285 } 286 287 /* 288 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 289 ** idx_affinity is the affinity of an indexed column. Return true 290 ** if the index with affinity idx_affinity may be used to implement 291 ** the comparison in pExpr. 292 */ 293 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 294 char aff = comparisonAffinity(pExpr); 295 if( aff<SQLITE_AFF_TEXT ){ 296 return 1; 297 } 298 if( aff==SQLITE_AFF_TEXT ){ 299 return idx_affinity==SQLITE_AFF_TEXT; 300 } 301 return sqlite3IsNumericAffinity(idx_affinity); 302 } 303 304 /* 305 ** Return the P5 value that should be used for a binary comparison 306 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 307 */ 308 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 309 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 310 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 311 return aff; 312 } 313 314 /* 315 ** Return a pointer to the collation sequence that should be used by 316 ** a binary comparison operator comparing pLeft and pRight. 317 ** 318 ** If the left hand expression has a collating sequence type, then it is 319 ** used. Otherwise the collation sequence for the right hand expression 320 ** is used, or the default (BINARY) if neither expression has a collating 321 ** type. 322 ** 323 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 324 ** it is not considered. 325 */ 326 CollSeq *sqlite3BinaryCompareCollSeq( 327 Parse *pParse, 328 Expr *pLeft, 329 Expr *pRight 330 ){ 331 CollSeq *pColl; 332 assert( pLeft ); 333 if( pLeft->flags & EP_Collate ){ 334 pColl = sqlite3ExprCollSeq(pParse, pLeft); 335 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 336 pColl = sqlite3ExprCollSeq(pParse, pRight); 337 }else{ 338 pColl = sqlite3ExprCollSeq(pParse, pLeft); 339 if( !pColl ){ 340 pColl = sqlite3ExprCollSeq(pParse, pRight); 341 } 342 } 343 return pColl; 344 } 345 346 /* Expresssion p is a comparison operator. Return a collation sequence 347 ** appropriate for the comparison operator. 348 ** 349 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 350 ** However, if the OP_Commuted flag is set, then the order of the operands 351 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 352 ** correct collating sequence is found. 353 */ 354 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, Expr *p){ 355 if( ExprHasProperty(p, EP_Commuted) ){ 356 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 357 }else{ 358 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 359 } 360 } 361 362 /* 363 ** Generate code for a comparison operator. 364 */ 365 static int codeCompare( 366 Parse *pParse, /* The parsing (and code generating) context */ 367 Expr *pLeft, /* The left operand */ 368 Expr *pRight, /* The right operand */ 369 int opcode, /* The comparison opcode */ 370 int in1, int in2, /* Register holding operands */ 371 int dest, /* Jump here if true. */ 372 int jumpIfNull, /* If true, jump if either operand is NULL */ 373 int isCommuted /* The comparison has been commuted */ 374 ){ 375 int p5; 376 int addr; 377 CollSeq *p4; 378 379 if( pParse->nErr ) return 0; 380 if( isCommuted ){ 381 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 382 }else{ 383 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 384 } 385 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 386 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 387 (void*)p4, P4_COLLSEQ); 388 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 389 return addr; 390 } 391 392 /* 393 ** Return true if expression pExpr is a vector, or false otherwise. 394 ** 395 ** A vector is defined as any expression that results in two or more 396 ** columns of result. Every TK_VECTOR node is an vector because the 397 ** parser will not generate a TK_VECTOR with fewer than two entries. 398 ** But a TK_SELECT might be either a vector or a scalar. It is only 399 ** considered a vector if it has two or more result columns. 400 */ 401 int sqlite3ExprIsVector(Expr *pExpr){ 402 return sqlite3ExprVectorSize(pExpr)>1; 403 } 404 405 /* 406 ** If the expression passed as the only argument is of type TK_VECTOR 407 ** return the number of expressions in the vector. Or, if the expression 408 ** is a sub-select, return the number of columns in the sub-select. For 409 ** any other type of expression, return 1. 410 */ 411 int sqlite3ExprVectorSize(Expr *pExpr){ 412 u8 op = pExpr->op; 413 if( op==TK_REGISTER ) op = pExpr->op2; 414 if( op==TK_VECTOR ){ 415 return pExpr->x.pList->nExpr; 416 }else if( op==TK_SELECT ){ 417 return pExpr->x.pSelect->pEList->nExpr; 418 }else{ 419 return 1; 420 } 421 } 422 423 /* 424 ** Return a pointer to a subexpression of pVector that is the i-th 425 ** column of the vector (numbered starting with 0). The caller must 426 ** ensure that i is within range. 427 ** 428 ** If pVector is really a scalar (and "scalar" here includes subqueries 429 ** that return a single column!) then return pVector unmodified. 430 ** 431 ** pVector retains ownership of the returned subexpression. 432 ** 433 ** If the vector is a (SELECT ...) then the expression returned is 434 ** just the expression for the i-th term of the result set, and may 435 ** not be ready for evaluation because the table cursor has not yet 436 ** been positioned. 437 */ 438 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 439 assert( i<sqlite3ExprVectorSize(pVector) ); 440 if( sqlite3ExprIsVector(pVector) ){ 441 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 442 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 443 return pVector->x.pSelect->pEList->a[i].pExpr; 444 }else{ 445 return pVector->x.pList->a[i].pExpr; 446 } 447 } 448 return pVector; 449 } 450 451 /* 452 ** Compute and return a new Expr object which when passed to 453 ** sqlite3ExprCode() will generate all necessary code to compute 454 ** the iField-th column of the vector expression pVector. 455 ** 456 ** It is ok for pVector to be a scalar (as long as iField==0). 457 ** In that case, this routine works like sqlite3ExprDup(). 458 ** 459 ** The caller owns the returned Expr object and is responsible for 460 ** ensuring that the returned value eventually gets freed. 461 ** 462 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 463 ** then the returned object will reference pVector and so pVector must remain 464 ** valid for the life of the returned object. If pVector is a TK_VECTOR 465 ** or a scalar expression, then it can be deleted as soon as this routine 466 ** returns. 467 ** 468 ** A trick to cause a TK_SELECT pVector to be deleted together with 469 ** the returned Expr object is to attach the pVector to the pRight field 470 ** of the returned TK_SELECT_COLUMN Expr object. 471 */ 472 Expr *sqlite3ExprForVectorField( 473 Parse *pParse, /* Parsing context */ 474 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 475 int iField /* Which column of the vector to return */ 476 ){ 477 Expr *pRet; 478 if( pVector->op==TK_SELECT ){ 479 assert( pVector->flags & EP_xIsSelect ); 480 /* The TK_SELECT_COLUMN Expr node: 481 ** 482 ** pLeft: pVector containing TK_SELECT. Not deleted. 483 ** pRight: not used. But recursively deleted. 484 ** iColumn: Index of a column in pVector 485 ** iTable: 0 or the number of columns on the LHS of an assignment 486 ** pLeft->iTable: First in an array of register holding result, or 0 487 ** if the result is not yet computed. 488 ** 489 ** sqlite3ExprDelete() specifically skips the recursive delete of 490 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 491 ** can be attached to pRight to cause this node to take ownership of 492 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 493 ** with the same pLeft pointer to the pVector, but only one of them 494 ** will own the pVector. 495 */ 496 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 497 if( pRet ){ 498 pRet->iColumn = iField; 499 pRet->pLeft = pVector; 500 } 501 assert( pRet==0 || pRet->iTable==0 ); 502 }else{ 503 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 504 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 505 sqlite3RenameTokenRemap(pParse, pRet, pVector); 506 } 507 return pRet; 508 } 509 510 /* 511 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 512 ** it. Return the register in which the result is stored (or, if the 513 ** sub-select returns more than one column, the first in an array 514 ** of registers in which the result is stored). 515 ** 516 ** If pExpr is not a TK_SELECT expression, return 0. 517 */ 518 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 519 int reg = 0; 520 #ifndef SQLITE_OMIT_SUBQUERY 521 if( pExpr->op==TK_SELECT ){ 522 reg = sqlite3CodeSubselect(pParse, pExpr); 523 } 524 #endif 525 return reg; 526 } 527 528 /* 529 ** Argument pVector points to a vector expression - either a TK_VECTOR 530 ** or TK_SELECT that returns more than one column. This function returns 531 ** the register number of a register that contains the value of 532 ** element iField of the vector. 533 ** 534 ** If pVector is a TK_SELECT expression, then code for it must have 535 ** already been generated using the exprCodeSubselect() routine. In this 536 ** case parameter regSelect should be the first in an array of registers 537 ** containing the results of the sub-select. 538 ** 539 ** If pVector is of type TK_VECTOR, then code for the requested field 540 ** is generated. In this case (*pRegFree) may be set to the number of 541 ** a temporary register to be freed by the caller before returning. 542 ** 543 ** Before returning, output parameter (*ppExpr) is set to point to the 544 ** Expr object corresponding to element iElem of the vector. 545 */ 546 static int exprVectorRegister( 547 Parse *pParse, /* Parse context */ 548 Expr *pVector, /* Vector to extract element from */ 549 int iField, /* Field to extract from pVector */ 550 int regSelect, /* First in array of registers */ 551 Expr **ppExpr, /* OUT: Expression element */ 552 int *pRegFree /* OUT: Temp register to free */ 553 ){ 554 u8 op = pVector->op; 555 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 556 if( op==TK_REGISTER ){ 557 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 558 return pVector->iTable+iField; 559 } 560 if( op==TK_SELECT ){ 561 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 562 return regSelect+iField; 563 } 564 *ppExpr = pVector->x.pList->a[iField].pExpr; 565 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 566 } 567 568 /* 569 ** Expression pExpr is a comparison between two vector values. Compute 570 ** the result of the comparison (1, 0, or NULL) and write that 571 ** result into register dest. 572 ** 573 ** The caller must satisfy the following preconditions: 574 ** 575 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 576 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 577 ** otherwise: op==pExpr->op and p5==0 578 */ 579 static void codeVectorCompare( 580 Parse *pParse, /* Code generator context */ 581 Expr *pExpr, /* The comparison operation */ 582 int dest, /* Write results into this register */ 583 u8 op, /* Comparison operator */ 584 u8 p5 /* SQLITE_NULLEQ or zero */ 585 ){ 586 Vdbe *v = pParse->pVdbe; 587 Expr *pLeft = pExpr->pLeft; 588 Expr *pRight = pExpr->pRight; 589 int nLeft = sqlite3ExprVectorSize(pLeft); 590 int i; 591 int regLeft = 0; 592 int regRight = 0; 593 u8 opx = op; 594 int addrDone = sqlite3VdbeMakeLabel(pParse); 595 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 596 597 if( pParse->nErr ) return; 598 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 599 sqlite3ErrorMsg(pParse, "row value misused"); 600 return; 601 } 602 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 603 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 604 || pExpr->op==TK_LT || pExpr->op==TK_GT 605 || pExpr->op==TK_LE || pExpr->op==TK_GE 606 ); 607 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 608 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 609 assert( p5==0 || pExpr->op!=op ); 610 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 611 612 p5 |= SQLITE_STOREP2; 613 if( opx==TK_LE ) opx = TK_LT; 614 if( opx==TK_GE ) opx = TK_GT; 615 616 regLeft = exprCodeSubselect(pParse, pLeft); 617 regRight = exprCodeSubselect(pParse, pRight); 618 619 for(i=0; 1 /*Loop exits by "break"*/; i++){ 620 int regFree1 = 0, regFree2 = 0; 621 Expr *pL, *pR; 622 int r1, r2; 623 assert( i>=0 && i<nLeft ); 624 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 625 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 626 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); 627 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 628 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 629 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 630 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 631 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 632 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 633 sqlite3ReleaseTempReg(pParse, regFree1); 634 sqlite3ReleaseTempReg(pParse, regFree2); 635 if( i==nLeft-1 ){ 636 break; 637 } 638 if( opx==TK_EQ ){ 639 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 640 p5 |= SQLITE_KEEPNULL; 641 }else if( opx==TK_NE ){ 642 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 643 p5 |= SQLITE_KEEPNULL; 644 }else{ 645 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 646 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 647 VdbeCoverageIf(v, op==TK_LT); 648 VdbeCoverageIf(v, op==TK_GT); 649 VdbeCoverageIf(v, op==TK_LE); 650 VdbeCoverageIf(v, op==TK_GE); 651 if( i==nLeft-2 ) opx = op; 652 } 653 } 654 sqlite3VdbeResolveLabel(v, addrDone); 655 } 656 657 #if SQLITE_MAX_EXPR_DEPTH>0 658 /* 659 ** Check that argument nHeight is less than or equal to the maximum 660 ** expression depth allowed. If it is not, leave an error message in 661 ** pParse. 662 */ 663 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 664 int rc = SQLITE_OK; 665 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 666 if( nHeight>mxHeight ){ 667 sqlite3ErrorMsg(pParse, 668 "Expression tree is too large (maximum depth %d)", mxHeight 669 ); 670 rc = SQLITE_ERROR; 671 } 672 return rc; 673 } 674 675 /* The following three functions, heightOfExpr(), heightOfExprList() 676 ** and heightOfSelect(), are used to determine the maximum height 677 ** of any expression tree referenced by the structure passed as the 678 ** first argument. 679 ** 680 ** If this maximum height is greater than the current value pointed 681 ** to by pnHeight, the second parameter, then set *pnHeight to that 682 ** value. 683 */ 684 static void heightOfExpr(Expr *p, int *pnHeight){ 685 if( p ){ 686 if( p->nHeight>*pnHeight ){ 687 *pnHeight = p->nHeight; 688 } 689 } 690 } 691 static void heightOfExprList(ExprList *p, int *pnHeight){ 692 if( p ){ 693 int i; 694 for(i=0; i<p->nExpr; i++){ 695 heightOfExpr(p->a[i].pExpr, pnHeight); 696 } 697 } 698 } 699 static void heightOfSelect(Select *pSelect, int *pnHeight){ 700 Select *p; 701 for(p=pSelect; p; p=p->pPrior){ 702 heightOfExpr(p->pWhere, pnHeight); 703 heightOfExpr(p->pHaving, pnHeight); 704 heightOfExpr(p->pLimit, pnHeight); 705 heightOfExprList(p->pEList, pnHeight); 706 heightOfExprList(p->pGroupBy, pnHeight); 707 heightOfExprList(p->pOrderBy, pnHeight); 708 } 709 } 710 711 /* 712 ** Set the Expr.nHeight variable in the structure passed as an 713 ** argument. An expression with no children, Expr.pList or 714 ** Expr.pSelect member has a height of 1. Any other expression 715 ** has a height equal to the maximum height of any other 716 ** referenced Expr plus one. 717 ** 718 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 719 ** if appropriate. 720 */ 721 static void exprSetHeight(Expr *p){ 722 int nHeight = 0; 723 heightOfExpr(p->pLeft, &nHeight); 724 heightOfExpr(p->pRight, &nHeight); 725 if( ExprHasProperty(p, EP_xIsSelect) ){ 726 heightOfSelect(p->x.pSelect, &nHeight); 727 }else if( p->x.pList ){ 728 heightOfExprList(p->x.pList, &nHeight); 729 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 730 } 731 p->nHeight = nHeight + 1; 732 } 733 734 /* 735 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 736 ** the height is greater than the maximum allowed expression depth, 737 ** leave an error in pParse. 738 ** 739 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 740 ** Expr.flags. 741 */ 742 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 743 if( pParse->nErr ) return; 744 exprSetHeight(p); 745 sqlite3ExprCheckHeight(pParse, p->nHeight); 746 } 747 748 /* 749 ** Return the maximum height of any expression tree referenced 750 ** by the select statement passed as an argument. 751 */ 752 int sqlite3SelectExprHeight(Select *p){ 753 int nHeight = 0; 754 heightOfSelect(p, &nHeight); 755 return nHeight; 756 } 757 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 758 /* 759 ** Propagate all EP_Propagate flags from the Expr.x.pList into 760 ** Expr.flags. 761 */ 762 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 763 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 764 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 765 } 766 } 767 #define exprSetHeight(y) 768 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 769 770 /* 771 ** This routine is the core allocator for Expr nodes. 772 ** 773 ** Construct a new expression node and return a pointer to it. Memory 774 ** for this node and for the pToken argument is a single allocation 775 ** obtained from sqlite3DbMalloc(). The calling function 776 ** is responsible for making sure the node eventually gets freed. 777 ** 778 ** If dequote is true, then the token (if it exists) is dequoted. 779 ** If dequote is false, no dequoting is performed. The deQuote 780 ** parameter is ignored if pToken is NULL or if the token does not 781 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 782 ** then the EP_DblQuoted flag is set on the expression node. 783 ** 784 ** Special case: If op==TK_INTEGER and pToken points to a string that 785 ** can be translated into a 32-bit integer, then the token is not 786 ** stored in u.zToken. Instead, the integer values is written 787 ** into u.iValue and the EP_IntValue flag is set. No extra storage 788 ** is allocated to hold the integer text and the dequote flag is ignored. 789 */ 790 Expr *sqlite3ExprAlloc( 791 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 792 int op, /* Expression opcode */ 793 const Token *pToken, /* Token argument. Might be NULL */ 794 int dequote /* True to dequote */ 795 ){ 796 Expr *pNew; 797 int nExtra = 0; 798 int iValue = 0; 799 800 assert( db!=0 ); 801 if( pToken ){ 802 if( op!=TK_INTEGER || pToken->z==0 803 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 804 nExtra = pToken->n+1; 805 assert( iValue>=0 ); 806 } 807 } 808 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 809 if( pNew ){ 810 memset(pNew, 0, sizeof(Expr)); 811 pNew->op = (u8)op; 812 pNew->iAgg = -1; 813 if( pToken ){ 814 if( nExtra==0 ){ 815 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 816 pNew->u.iValue = iValue; 817 }else{ 818 pNew->u.zToken = (char*)&pNew[1]; 819 assert( pToken->z!=0 || pToken->n==0 ); 820 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 821 pNew->u.zToken[pToken->n] = 0; 822 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 823 sqlite3DequoteExpr(pNew); 824 } 825 } 826 } 827 #if SQLITE_MAX_EXPR_DEPTH>0 828 pNew->nHeight = 1; 829 #endif 830 } 831 return pNew; 832 } 833 834 /* 835 ** Allocate a new expression node from a zero-terminated token that has 836 ** already been dequoted. 837 */ 838 Expr *sqlite3Expr( 839 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 840 int op, /* Expression opcode */ 841 const char *zToken /* Token argument. Might be NULL */ 842 ){ 843 Token x; 844 x.z = zToken; 845 x.n = sqlite3Strlen30(zToken); 846 return sqlite3ExprAlloc(db, op, &x, 0); 847 } 848 849 /* 850 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 851 ** 852 ** If pRoot==NULL that means that a memory allocation error has occurred. 853 ** In that case, delete the subtrees pLeft and pRight. 854 */ 855 void sqlite3ExprAttachSubtrees( 856 sqlite3 *db, 857 Expr *pRoot, 858 Expr *pLeft, 859 Expr *pRight 860 ){ 861 if( pRoot==0 ){ 862 assert( db->mallocFailed ); 863 sqlite3ExprDelete(db, pLeft); 864 sqlite3ExprDelete(db, pRight); 865 }else{ 866 if( pRight ){ 867 pRoot->pRight = pRight; 868 pRoot->flags |= EP_Propagate & pRight->flags; 869 } 870 if( pLeft ){ 871 pRoot->pLeft = pLeft; 872 pRoot->flags |= EP_Propagate & pLeft->flags; 873 } 874 exprSetHeight(pRoot); 875 } 876 } 877 878 /* 879 ** Allocate an Expr node which joins as many as two subtrees. 880 ** 881 ** One or both of the subtrees can be NULL. Return a pointer to the new 882 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 883 ** free the subtrees and return NULL. 884 */ 885 Expr *sqlite3PExpr( 886 Parse *pParse, /* Parsing context */ 887 int op, /* Expression opcode */ 888 Expr *pLeft, /* Left operand */ 889 Expr *pRight /* Right operand */ 890 ){ 891 Expr *p; 892 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 893 if( p ){ 894 memset(p, 0, sizeof(Expr)); 895 p->op = op & 0xff; 896 p->iAgg = -1; 897 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 898 sqlite3ExprCheckHeight(pParse, p->nHeight); 899 }else{ 900 sqlite3ExprDelete(pParse->db, pLeft); 901 sqlite3ExprDelete(pParse->db, pRight); 902 } 903 return p; 904 } 905 906 /* 907 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 908 ** do a memory allocation failure) then delete the pSelect object. 909 */ 910 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 911 if( pExpr ){ 912 pExpr->x.pSelect = pSelect; 913 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 914 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 915 }else{ 916 assert( pParse->db->mallocFailed ); 917 sqlite3SelectDelete(pParse->db, pSelect); 918 } 919 } 920 921 922 /* 923 ** Join two expressions using an AND operator. If either expression is 924 ** NULL, then just return the other expression. 925 ** 926 ** If one side or the other of the AND is known to be false, then instead 927 ** of returning an AND expression, just return a constant expression with 928 ** a value of false. 929 */ 930 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 931 sqlite3 *db = pParse->db; 932 if( pLeft==0 ){ 933 return pRight; 934 }else if( pRight==0 ){ 935 return pLeft; 936 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 937 && !IN_RENAME_OBJECT 938 ){ 939 sqlite3ExprDelete(db, pLeft); 940 sqlite3ExprDelete(db, pRight); 941 return sqlite3Expr(db, TK_INTEGER, "0"); 942 }else{ 943 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 944 } 945 } 946 947 /* 948 ** Construct a new expression node for a function with multiple 949 ** arguments. 950 */ 951 Expr *sqlite3ExprFunction( 952 Parse *pParse, /* Parsing context */ 953 ExprList *pList, /* Argument list */ 954 Token *pToken, /* Name of the function */ 955 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 956 ){ 957 Expr *pNew; 958 sqlite3 *db = pParse->db; 959 assert( pToken ); 960 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 961 if( pNew==0 ){ 962 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 963 return 0; 964 } 965 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 966 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 967 } 968 pNew->x.pList = pList; 969 ExprSetProperty(pNew, EP_HasFunc); 970 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 971 sqlite3ExprSetHeightAndFlags(pParse, pNew); 972 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 973 return pNew; 974 } 975 976 /* 977 ** Check to see if a function is usable according to current access 978 ** rules: 979 ** 980 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 981 ** 982 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 983 ** top-level SQL 984 ** 985 ** If the function is not usable, create an error. 986 */ 987 void sqlite3ExprFunctionUsable( 988 Parse *pParse, /* Parsing and code generating context */ 989 Expr *pExpr, /* The function invocation */ 990 FuncDef *pDef /* The function being invoked */ 991 ){ 992 assert( !IN_RENAME_OBJECT ); 993 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 994 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 995 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 996 || (pParse->db->flags & SQLITE_TrustedSchema)==0 997 ){ 998 /* Functions prohibited in triggers and views if: 999 ** (1) tagged with SQLITE_DIRECTONLY 1000 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1001 ** is tagged with SQLITE_FUNC_UNSAFE) and 1002 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1003 ** that the schema is possibly tainted). 1004 */ 1005 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1006 } 1007 } 1008 } 1009 1010 /* 1011 ** Assign a variable number to an expression that encodes a wildcard 1012 ** in the original SQL statement. 1013 ** 1014 ** Wildcards consisting of a single "?" are assigned the next sequential 1015 ** variable number. 1016 ** 1017 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1018 ** sure "nnn" is not too big to avoid a denial of service attack when 1019 ** the SQL statement comes from an external source. 1020 ** 1021 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1022 ** as the previous instance of the same wildcard. Or if this is the first 1023 ** instance of the wildcard, the next sequential variable number is 1024 ** assigned. 1025 */ 1026 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1027 sqlite3 *db = pParse->db; 1028 const char *z; 1029 ynVar x; 1030 1031 if( pExpr==0 ) return; 1032 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1033 z = pExpr->u.zToken; 1034 assert( z!=0 ); 1035 assert( z[0]!=0 ); 1036 assert( n==(u32)sqlite3Strlen30(z) ); 1037 if( z[1]==0 ){ 1038 /* Wildcard of the form "?". Assign the next variable number */ 1039 assert( z[0]=='?' ); 1040 x = (ynVar)(++pParse->nVar); 1041 }else{ 1042 int doAdd = 0; 1043 if( z[0]=='?' ){ 1044 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1045 ** use it as the variable number */ 1046 i64 i; 1047 int bOk; 1048 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1049 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1050 bOk = 1; 1051 }else{ 1052 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1053 } 1054 testcase( i==0 ); 1055 testcase( i==1 ); 1056 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1057 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1058 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1059 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1060 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1061 return; 1062 } 1063 x = (ynVar)i; 1064 if( x>pParse->nVar ){ 1065 pParse->nVar = (int)x; 1066 doAdd = 1; 1067 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1068 doAdd = 1; 1069 } 1070 }else{ 1071 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1072 ** number as the prior appearance of the same name, or if the name 1073 ** has never appeared before, reuse the same variable number 1074 */ 1075 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1076 if( x==0 ){ 1077 x = (ynVar)(++pParse->nVar); 1078 doAdd = 1; 1079 } 1080 } 1081 if( doAdd ){ 1082 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1083 } 1084 } 1085 pExpr->iColumn = x; 1086 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1087 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1088 } 1089 } 1090 1091 /* 1092 ** Recursively delete an expression tree. 1093 */ 1094 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1095 assert( p!=0 ); 1096 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1097 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1098 1099 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1100 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1101 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1102 #ifdef SQLITE_DEBUG 1103 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1104 assert( p->pLeft==0 ); 1105 assert( p->pRight==0 ); 1106 assert( p->x.pSelect==0 ); 1107 } 1108 #endif 1109 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1110 /* The Expr.x union is never used at the same time as Expr.pRight */ 1111 assert( p->x.pList==0 || p->pRight==0 ); 1112 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1113 if( p->pRight ){ 1114 assert( !ExprHasProperty(p, EP_WinFunc) ); 1115 sqlite3ExprDeleteNN(db, p->pRight); 1116 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1117 assert( !ExprHasProperty(p, EP_WinFunc) ); 1118 sqlite3SelectDelete(db, p->x.pSelect); 1119 }else{ 1120 sqlite3ExprListDelete(db, p->x.pList); 1121 #ifndef SQLITE_OMIT_WINDOWFUNC 1122 if( ExprHasProperty(p, EP_WinFunc) ){ 1123 sqlite3WindowDelete(db, p->y.pWin); 1124 } 1125 #endif 1126 } 1127 } 1128 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1129 if( !ExprHasProperty(p, EP_Static) ){ 1130 sqlite3DbFreeNN(db, p); 1131 } 1132 } 1133 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1134 if( p ) sqlite3ExprDeleteNN(db, p); 1135 } 1136 1137 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1138 ** expression. 1139 */ 1140 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1141 if( p ){ 1142 if( IN_RENAME_OBJECT ){ 1143 sqlite3RenameExprUnmap(pParse, p); 1144 } 1145 sqlite3ExprDeleteNN(pParse->db, p); 1146 } 1147 } 1148 1149 /* 1150 ** Return the number of bytes allocated for the expression structure 1151 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1152 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1153 */ 1154 static int exprStructSize(Expr *p){ 1155 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1156 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1157 return EXPR_FULLSIZE; 1158 } 1159 1160 /* 1161 ** The dupedExpr*Size() routines each return the number of bytes required 1162 ** to store a copy of an expression or expression tree. They differ in 1163 ** how much of the tree is measured. 1164 ** 1165 ** dupedExprStructSize() Size of only the Expr structure 1166 ** dupedExprNodeSize() Size of Expr + space for token 1167 ** dupedExprSize() Expr + token + subtree components 1168 ** 1169 *************************************************************************** 1170 ** 1171 ** The dupedExprStructSize() function returns two values OR-ed together: 1172 ** (1) the space required for a copy of the Expr structure only and 1173 ** (2) the EP_xxx flags that indicate what the structure size should be. 1174 ** The return values is always one of: 1175 ** 1176 ** EXPR_FULLSIZE 1177 ** EXPR_REDUCEDSIZE | EP_Reduced 1178 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1179 ** 1180 ** The size of the structure can be found by masking the return value 1181 ** of this routine with 0xfff. The flags can be found by masking the 1182 ** return value with EP_Reduced|EP_TokenOnly. 1183 ** 1184 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1185 ** (unreduced) Expr objects as they or originally constructed by the parser. 1186 ** During expression analysis, extra information is computed and moved into 1187 ** later parts of the Expr object and that extra information might get chopped 1188 ** off if the expression is reduced. Note also that it does not work to 1189 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1190 ** to reduce a pristine expression tree from the parser. The implementation 1191 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1192 ** to enforce this constraint. 1193 */ 1194 static int dupedExprStructSize(Expr *p, int flags){ 1195 int nSize; 1196 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1197 assert( EXPR_FULLSIZE<=0xfff ); 1198 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1199 if( 0==flags || p->op==TK_SELECT_COLUMN 1200 #ifndef SQLITE_OMIT_WINDOWFUNC 1201 || ExprHasProperty(p, EP_WinFunc) 1202 #endif 1203 ){ 1204 nSize = EXPR_FULLSIZE; 1205 }else{ 1206 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1207 assert( !ExprHasProperty(p, EP_FromJoin) ); 1208 assert( !ExprHasProperty(p, EP_MemToken) ); 1209 assert( !ExprHasProperty(p, EP_NoReduce) ); 1210 if( p->pLeft || p->x.pList ){ 1211 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1212 }else{ 1213 assert( p->pRight==0 ); 1214 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1215 } 1216 } 1217 return nSize; 1218 } 1219 1220 /* 1221 ** This function returns the space in bytes required to store the copy 1222 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1223 ** string is defined.) 1224 */ 1225 static int dupedExprNodeSize(Expr *p, int flags){ 1226 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1227 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1228 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1229 } 1230 return ROUND8(nByte); 1231 } 1232 1233 /* 1234 ** Return the number of bytes required to create a duplicate of the 1235 ** expression passed as the first argument. The second argument is a 1236 ** mask containing EXPRDUP_XXX flags. 1237 ** 1238 ** The value returned includes space to create a copy of the Expr struct 1239 ** itself and the buffer referred to by Expr.u.zToken, if any. 1240 ** 1241 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1242 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1243 ** and Expr.pRight variables (but not for any structures pointed to or 1244 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1245 */ 1246 static int dupedExprSize(Expr *p, int flags){ 1247 int nByte = 0; 1248 if( p ){ 1249 nByte = dupedExprNodeSize(p, flags); 1250 if( flags&EXPRDUP_REDUCE ){ 1251 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1252 } 1253 } 1254 return nByte; 1255 } 1256 1257 /* 1258 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1259 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1260 ** to store the copy of expression p, the copies of p->u.zToken 1261 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1262 ** if any. Before returning, *pzBuffer is set to the first byte past the 1263 ** portion of the buffer copied into by this function. 1264 */ 1265 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1266 Expr *pNew; /* Value to return */ 1267 u8 *zAlloc; /* Memory space from which to build Expr object */ 1268 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1269 1270 assert( db!=0 ); 1271 assert( p ); 1272 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1273 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1274 1275 /* Figure out where to write the new Expr structure. */ 1276 if( pzBuffer ){ 1277 zAlloc = *pzBuffer; 1278 staticFlag = EP_Static; 1279 }else{ 1280 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1281 staticFlag = 0; 1282 } 1283 pNew = (Expr *)zAlloc; 1284 1285 if( pNew ){ 1286 /* Set nNewSize to the size allocated for the structure pointed to 1287 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1288 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1289 ** by the copy of the p->u.zToken string (if any). 1290 */ 1291 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1292 const int nNewSize = nStructSize & 0xfff; 1293 int nToken; 1294 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1295 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1296 }else{ 1297 nToken = 0; 1298 } 1299 if( dupFlags ){ 1300 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1301 memcpy(zAlloc, p, nNewSize); 1302 }else{ 1303 u32 nSize = (u32)exprStructSize(p); 1304 memcpy(zAlloc, p, nSize); 1305 if( nSize<EXPR_FULLSIZE ){ 1306 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1307 } 1308 } 1309 1310 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1311 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1312 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1313 pNew->flags |= staticFlag; 1314 1315 /* Copy the p->u.zToken string, if any. */ 1316 if( nToken ){ 1317 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1318 memcpy(zToken, p->u.zToken, nToken); 1319 } 1320 1321 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1322 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1323 if( ExprHasProperty(p, EP_xIsSelect) ){ 1324 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1325 }else{ 1326 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1327 } 1328 } 1329 1330 /* Fill in pNew->pLeft and pNew->pRight. */ 1331 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1332 zAlloc += dupedExprNodeSize(p, dupFlags); 1333 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1334 pNew->pLeft = p->pLeft ? 1335 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1336 pNew->pRight = p->pRight ? 1337 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1338 } 1339 #ifndef SQLITE_OMIT_WINDOWFUNC 1340 if( ExprHasProperty(p, EP_WinFunc) ){ 1341 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1342 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1343 } 1344 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1345 if( pzBuffer ){ 1346 *pzBuffer = zAlloc; 1347 } 1348 }else{ 1349 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1350 if( pNew->op==TK_SELECT_COLUMN ){ 1351 pNew->pLeft = p->pLeft; 1352 assert( p->iColumn==0 || p->pRight==0 ); 1353 assert( p->pRight==0 || p->pRight==p->pLeft ); 1354 }else{ 1355 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1356 } 1357 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1358 } 1359 } 1360 } 1361 return pNew; 1362 } 1363 1364 /* 1365 ** Create and return a deep copy of the object passed as the second 1366 ** argument. If an OOM condition is encountered, NULL is returned 1367 ** and the db->mallocFailed flag set. 1368 */ 1369 #ifndef SQLITE_OMIT_CTE 1370 static With *withDup(sqlite3 *db, With *p){ 1371 With *pRet = 0; 1372 if( p ){ 1373 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1374 pRet = sqlite3DbMallocZero(db, nByte); 1375 if( pRet ){ 1376 int i; 1377 pRet->nCte = p->nCte; 1378 for(i=0; i<p->nCte; i++){ 1379 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1380 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1381 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1382 } 1383 } 1384 } 1385 return pRet; 1386 } 1387 #else 1388 # define withDup(x,y) 0 1389 #endif 1390 1391 #ifndef SQLITE_OMIT_WINDOWFUNC 1392 /* 1393 ** The gatherSelectWindows() procedure and its helper routine 1394 ** gatherSelectWindowsCallback() are used to scan all the expressions 1395 ** an a newly duplicated SELECT statement and gather all of the Window 1396 ** objects found there, assembling them onto the linked list at Select->pWin. 1397 */ 1398 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1399 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1400 Select *pSelect = pWalker->u.pSelect; 1401 Window *pWin = pExpr->y.pWin; 1402 assert( pWin ); 1403 assert( IsWindowFunc(pExpr) ); 1404 assert( pWin->ppThis==0 ); 1405 sqlite3WindowLink(pSelect, pWin); 1406 } 1407 return WRC_Continue; 1408 } 1409 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1410 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1411 } 1412 static void gatherSelectWindows(Select *p){ 1413 Walker w; 1414 w.xExprCallback = gatherSelectWindowsCallback; 1415 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1416 w.xSelectCallback2 = 0; 1417 w.pParse = 0; 1418 w.u.pSelect = p; 1419 sqlite3WalkSelect(&w, p); 1420 } 1421 #endif 1422 1423 1424 /* 1425 ** The following group of routines make deep copies of expressions, 1426 ** expression lists, ID lists, and select statements. The copies can 1427 ** be deleted (by being passed to their respective ...Delete() routines) 1428 ** without effecting the originals. 1429 ** 1430 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1431 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1432 ** by subsequent calls to sqlite*ListAppend() routines. 1433 ** 1434 ** Any tables that the SrcList might point to are not duplicated. 1435 ** 1436 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1437 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1438 ** truncated version of the usual Expr structure that will be stored as 1439 ** part of the in-memory representation of the database schema. 1440 */ 1441 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1442 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1443 return p ? exprDup(db, p, flags, 0) : 0; 1444 } 1445 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1446 ExprList *pNew; 1447 struct ExprList_item *pItem, *pOldItem; 1448 int i; 1449 Expr *pPriorSelectCol = 0; 1450 assert( db!=0 ); 1451 if( p==0 ) return 0; 1452 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1453 if( pNew==0 ) return 0; 1454 pNew->nExpr = p->nExpr; 1455 pItem = pNew->a; 1456 pOldItem = p->a; 1457 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1458 Expr *pOldExpr = pOldItem->pExpr; 1459 Expr *pNewExpr; 1460 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1461 if( pOldExpr 1462 && pOldExpr->op==TK_SELECT_COLUMN 1463 && (pNewExpr = pItem->pExpr)!=0 1464 ){ 1465 assert( pNewExpr->iColumn==0 || i>0 ); 1466 if( pNewExpr->iColumn==0 ){ 1467 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1468 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1469 }else{ 1470 assert( i>0 ); 1471 assert( pItem[-1].pExpr!=0 ); 1472 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1473 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1474 pNewExpr->pLeft = pPriorSelectCol; 1475 } 1476 } 1477 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1478 pItem->sortFlags = pOldItem->sortFlags; 1479 pItem->eEName = pOldItem->eEName; 1480 pItem->done = 0; 1481 pItem->bNulls = pOldItem->bNulls; 1482 pItem->bSorterRef = pOldItem->bSorterRef; 1483 pItem->u = pOldItem->u; 1484 } 1485 return pNew; 1486 } 1487 1488 /* 1489 ** If cursors, triggers, views and subqueries are all omitted from 1490 ** the build, then none of the following routines, except for 1491 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1492 ** called with a NULL argument. 1493 */ 1494 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1495 || !defined(SQLITE_OMIT_SUBQUERY) 1496 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1497 SrcList *pNew; 1498 int i; 1499 int nByte; 1500 assert( db!=0 ); 1501 if( p==0 ) return 0; 1502 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1503 pNew = sqlite3DbMallocRawNN(db, nByte ); 1504 if( pNew==0 ) return 0; 1505 pNew->nSrc = pNew->nAlloc = p->nSrc; 1506 for(i=0; i<p->nSrc; i++){ 1507 struct SrcList_item *pNewItem = &pNew->a[i]; 1508 struct SrcList_item *pOldItem = &p->a[i]; 1509 Table *pTab; 1510 pNewItem->pSchema = pOldItem->pSchema; 1511 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1512 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1513 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1514 pNewItem->fg = pOldItem->fg; 1515 pNewItem->iCursor = pOldItem->iCursor; 1516 pNewItem->addrFillSub = pOldItem->addrFillSub; 1517 pNewItem->regReturn = pOldItem->regReturn; 1518 if( pNewItem->fg.isIndexedBy ){ 1519 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1520 } 1521 pNewItem->pIBIndex = pOldItem->pIBIndex; 1522 if( pNewItem->fg.isTabFunc ){ 1523 pNewItem->u1.pFuncArg = 1524 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1525 } 1526 pTab = pNewItem->pTab = pOldItem->pTab; 1527 if( pTab ){ 1528 pTab->nTabRef++; 1529 } 1530 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1531 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1532 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1533 pNewItem->colUsed = pOldItem->colUsed; 1534 } 1535 return pNew; 1536 } 1537 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1538 IdList *pNew; 1539 int i; 1540 assert( db!=0 ); 1541 if( p==0 ) return 0; 1542 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1543 if( pNew==0 ) return 0; 1544 pNew->nId = p->nId; 1545 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1546 if( pNew->a==0 ){ 1547 sqlite3DbFreeNN(db, pNew); 1548 return 0; 1549 } 1550 /* Note that because the size of the allocation for p->a[] is not 1551 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1552 ** on the duplicate created by this function. */ 1553 for(i=0; i<p->nId; i++){ 1554 struct IdList_item *pNewItem = &pNew->a[i]; 1555 struct IdList_item *pOldItem = &p->a[i]; 1556 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1557 pNewItem->idx = pOldItem->idx; 1558 } 1559 return pNew; 1560 } 1561 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1562 Select *pRet = 0; 1563 Select *pNext = 0; 1564 Select **pp = &pRet; 1565 Select *p; 1566 1567 assert( db!=0 ); 1568 for(p=pDup; p; p=p->pPrior){ 1569 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1570 if( pNew==0 ) break; 1571 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1572 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1573 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1574 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1575 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1576 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1577 pNew->op = p->op; 1578 pNew->pNext = pNext; 1579 pNew->pPrior = 0; 1580 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1581 pNew->iLimit = 0; 1582 pNew->iOffset = 0; 1583 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1584 pNew->addrOpenEphm[0] = -1; 1585 pNew->addrOpenEphm[1] = -1; 1586 pNew->nSelectRow = p->nSelectRow; 1587 pNew->pWith = withDup(db, p->pWith); 1588 #ifndef SQLITE_OMIT_WINDOWFUNC 1589 pNew->pWin = 0; 1590 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1591 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1592 #endif 1593 pNew->selId = p->selId; 1594 *pp = pNew; 1595 pp = &pNew->pPrior; 1596 pNext = pNew; 1597 } 1598 1599 return pRet; 1600 } 1601 #else 1602 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1603 assert( p==0 ); 1604 return 0; 1605 } 1606 #endif 1607 1608 1609 /* 1610 ** Add a new element to the end of an expression list. If pList is 1611 ** initially NULL, then create a new expression list. 1612 ** 1613 ** The pList argument must be either NULL or a pointer to an ExprList 1614 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1615 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1616 ** Reason: This routine assumes that the number of slots in pList->a[] 1617 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1618 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1619 ** 1620 ** If a memory allocation error occurs, the entire list is freed and 1621 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1622 ** that the new entry was successfully appended. 1623 */ 1624 ExprList *sqlite3ExprListAppend( 1625 Parse *pParse, /* Parsing context */ 1626 ExprList *pList, /* List to which to append. Might be NULL */ 1627 Expr *pExpr /* Expression to be appended. Might be NULL */ 1628 ){ 1629 struct ExprList_item *pItem; 1630 sqlite3 *db = pParse->db; 1631 assert( db!=0 ); 1632 if( pList==0 ){ 1633 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1634 if( pList==0 ){ 1635 goto no_mem; 1636 } 1637 pList->nExpr = 0; 1638 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1639 ExprList *pNew; 1640 pNew = sqlite3DbRealloc(db, pList, 1641 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1642 if( pNew==0 ){ 1643 goto no_mem; 1644 } 1645 pList = pNew; 1646 } 1647 pItem = &pList->a[pList->nExpr++]; 1648 assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) ); 1649 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1650 memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName)); 1651 pItem->pExpr = pExpr; 1652 return pList; 1653 1654 no_mem: 1655 /* Avoid leaking memory if malloc has failed. */ 1656 sqlite3ExprDelete(db, pExpr); 1657 sqlite3ExprListDelete(db, pList); 1658 return 0; 1659 } 1660 1661 /* 1662 ** pColumns and pExpr form a vector assignment which is part of the SET 1663 ** clause of an UPDATE statement. Like this: 1664 ** 1665 ** (a,b,c) = (expr1,expr2,expr3) 1666 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1667 ** 1668 ** For each term of the vector assignment, append new entries to the 1669 ** expression list pList. In the case of a subquery on the RHS, append 1670 ** TK_SELECT_COLUMN expressions. 1671 */ 1672 ExprList *sqlite3ExprListAppendVector( 1673 Parse *pParse, /* Parsing context */ 1674 ExprList *pList, /* List to which to append. Might be NULL */ 1675 IdList *pColumns, /* List of names of LHS of the assignment */ 1676 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1677 ){ 1678 sqlite3 *db = pParse->db; 1679 int n; 1680 int i; 1681 int iFirst = pList ? pList->nExpr : 0; 1682 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1683 ** exit prior to this routine being invoked */ 1684 if( NEVER(pColumns==0) ) goto vector_append_error; 1685 if( pExpr==0 ) goto vector_append_error; 1686 1687 /* If the RHS is a vector, then we can immediately check to see that 1688 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1689 ** wildcards ("*") in the result set of the SELECT must be expanded before 1690 ** we can do the size check, so defer the size check until code generation. 1691 */ 1692 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1693 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1694 pColumns->nId, n); 1695 goto vector_append_error; 1696 } 1697 1698 for(i=0; i<pColumns->nId; i++){ 1699 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1700 assert( pSubExpr!=0 || db->mallocFailed ); 1701 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1702 if( pSubExpr==0 ) continue; 1703 pSubExpr->iTable = pColumns->nId; 1704 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1705 if( pList ){ 1706 assert( pList->nExpr==iFirst+i+1 ); 1707 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1708 pColumns->a[i].zName = 0; 1709 } 1710 } 1711 1712 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1713 Expr *pFirst = pList->a[iFirst].pExpr; 1714 assert( pFirst!=0 ); 1715 assert( pFirst->op==TK_SELECT_COLUMN ); 1716 1717 /* Store the SELECT statement in pRight so it will be deleted when 1718 ** sqlite3ExprListDelete() is called */ 1719 pFirst->pRight = pExpr; 1720 pExpr = 0; 1721 1722 /* Remember the size of the LHS in iTable so that we can check that 1723 ** the RHS and LHS sizes match during code generation. */ 1724 pFirst->iTable = pColumns->nId; 1725 } 1726 1727 vector_append_error: 1728 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1729 sqlite3IdListDelete(db, pColumns); 1730 return pList; 1731 } 1732 1733 /* 1734 ** Set the sort order for the last element on the given ExprList. 1735 */ 1736 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1737 struct ExprList_item *pItem; 1738 if( p==0 ) return; 1739 assert( p->nExpr>0 ); 1740 1741 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1742 assert( iSortOrder==SQLITE_SO_UNDEFINED 1743 || iSortOrder==SQLITE_SO_ASC 1744 || iSortOrder==SQLITE_SO_DESC 1745 ); 1746 assert( eNulls==SQLITE_SO_UNDEFINED 1747 || eNulls==SQLITE_SO_ASC 1748 || eNulls==SQLITE_SO_DESC 1749 ); 1750 1751 pItem = &p->a[p->nExpr-1]; 1752 assert( pItem->bNulls==0 ); 1753 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1754 iSortOrder = SQLITE_SO_ASC; 1755 } 1756 pItem->sortFlags = (u8)iSortOrder; 1757 1758 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1759 pItem->bNulls = 1; 1760 if( iSortOrder!=eNulls ){ 1761 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1762 } 1763 } 1764 } 1765 1766 /* 1767 ** Set the ExprList.a[].zEName element of the most recently added item 1768 ** on the expression list. 1769 ** 1770 ** pList might be NULL following an OOM error. But pName should never be 1771 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1772 ** is set. 1773 */ 1774 void sqlite3ExprListSetName( 1775 Parse *pParse, /* Parsing context */ 1776 ExprList *pList, /* List to which to add the span. */ 1777 Token *pName, /* Name to be added */ 1778 int dequote /* True to cause the name to be dequoted */ 1779 ){ 1780 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1781 if( pList ){ 1782 struct ExprList_item *pItem; 1783 assert( pList->nExpr>0 ); 1784 pItem = &pList->a[pList->nExpr-1]; 1785 assert( pItem->zEName==0 ); 1786 assert( pItem->eEName==ENAME_NAME ); 1787 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1788 if( dequote ) sqlite3Dequote(pItem->zEName); 1789 if( IN_RENAME_OBJECT ){ 1790 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1791 } 1792 } 1793 } 1794 1795 /* 1796 ** Set the ExprList.a[].zSpan element of the most recently added item 1797 ** on the expression list. 1798 ** 1799 ** pList might be NULL following an OOM error. But pSpan should never be 1800 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1801 ** is set. 1802 */ 1803 void sqlite3ExprListSetSpan( 1804 Parse *pParse, /* Parsing context */ 1805 ExprList *pList, /* List to which to add the span. */ 1806 const char *zStart, /* Start of the span */ 1807 const char *zEnd /* End of the span */ 1808 ){ 1809 sqlite3 *db = pParse->db; 1810 assert( pList!=0 || db->mallocFailed!=0 ); 1811 if( pList ){ 1812 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1813 assert( pList->nExpr>0 ); 1814 if( pItem->zEName==0 ){ 1815 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1816 pItem->eEName = ENAME_SPAN; 1817 } 1818 } 1819 } 1820 1821 /* 1822 ** If the expression list pEList contains more than iLimit elements, 1823 ** leave an error message in pParse. 1824 */ 1825 void sqlite3ExprListCheckLength( 1826 Parse *pParse, 1827 ExprList *pEList, 1828 const char *zObject 1829 ){ 1830 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1831 testcase( pEList && pEList->nExpr==mx ); 1832 testcase( pEList && pEList->nExpr==mx+1 ); 1833 if( pEList && pEList->nExpr>mx ){ 1834 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1835 } 1836 } 1837 1838 /* 1839 ** Delete an entire expression list. 1840 */ 1841 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1842 int i = pList->nExpr; 1843 struct ExprList_item *pItem = pList->a; 1844 assert( pList->nExpr>0 ); 1845 do{ 1846 sqlite3ExprDelete(db, pItem->pExpr); 1847 sqlite3DbFree(db, pItem->zEName); 1848 pItem++; 1849 }while( --i>0 ); 1850 sqlite3DbFreeNN(db, pList); 1851 } 1852 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1853 if( pList ) exprListDeleteNN(db, pList); 1854 } 1855 1856 /* 1857 ** Return the bitwise-OR of all Expr.flags fields in the given 1858 ** ExprList. 1859 */ 1860 u32 sqlite3ExprListFlags(const ExprList *pList){ 1861 int i; 1862 u32 m = 0; 1863 assert( pList!=0 ); 1864 for(i=0; i<pList->nExpr; i++){ 1865 Expr *pExpr = pList->a[i].pExpr; 1866 assert( pExpr!=0 ); 1867 m |= pExpr->flags; 1868 } 1869 return m; 1870 } 1871 1872 /* 1873 ** This is a SELECT-node callback for the expression walker that 1874 ** always "fails". By "fail" in this case, we mean set 1875 ** pWalker->eCode to zero and abort. 1876 ** 1877 ** This callback is used by multiple expression walkers. 1878 */ 1879 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1880 UNUSED_PARAMETER(NotUsed); 1881 pWalker->eCode = 0; 1882 return WRC_Abort; 1883 } 1884 1885 /* 1886 ** Check the input string to see if it is "true" or "false" (in any case). 1887 ** 1888 ** If the string is.... Return 1889 ** "true" EP_IsTrue 1890 ** "false" EP_IsFalse 1891 ** anything else 0 1892 */ 1893 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1894 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1895 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1896 return 0; 1897 } 1898 1899 1900 /* 1901 ** If the input expression is an ID with the name "true" or "false" 1902 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1903 ** the conversion happened, and zero if the expression is unaltered. 1904 */ 1905 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1906 u32 v; 1907 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1908 if( !ExprHasProperty(pExpr, EP_Quoted) 1909 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 1910 ){ 1911 pExpr->op = TK_TRUEFALSE; 1912 ExprSetProperty(pExpr, v); 1913 return 1; 1914 } 1915 return 0; 1916 } 1917 1918 /* 1919 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1920 ** and 0 if it is FALSE. 1921 */ 1922 int sqlite3ExprTruthValue(const Expr *pExpr){ 1923 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1924 assert( pExpr->op==TK_TRUEFALSE ); 1925 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1926 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1927 return pExpr->u.zToken[4]==0; 1928 } 1929 1930 /* 1931 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1932 ** terms that are always true or false. Return the simplified expression. 1933 ** Or return the original expression if no simplification is possible. 1934 ** 1935 ** Examples: 1936 ** 1937 ** (x<10) AND true => (x<10) 1938 ** (x<10) AND false => false 1939 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1940 ** (x<10) AND (y=22 OR true) => (x<10) 1941 ** (y=22) OR true => true 1942 */ 1943 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1944 assert( pExpr!=0 ); 1945 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1946 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1947 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1948 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1949 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1950 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1951 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1952 } 1953 } 1954 return pExpr; 1955 } 1956 1957 1958 /* 1959 ** These routines are Walker callbacks used to check expressions to 1960 ** see if they are "constant" for some definition of constant. The 1961 ** Walker.eCode value determines the type of "constant" we are looking 1962 ** for. 1963 ** 1964 ** These callback routines are used to implement the following: 1965 ** 1966 ** sqlite3ExprIsConstant() pWalker->eCode==1 1967 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1968 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1969 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1970 ** 1971 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1972 ** is found to not be a constant. 1973 ** 1974 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 1975 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 1976 ** when parsing an existing schema out of the sqlite_master table and 4 1977 ** when processing a new CREATE TABLE statement. A bound parameter raises 1978 ** an error for new statements, but is silently converted 1979 ** to NULL for existing schemas. This allows sqlite_master tables that 1980 ** contain a bound parameter because they were generated by older versions 1981 ** of SQLite to be parsed by newer versions of SQLite without raising a 1982 ** malformed schema error. 1983 */ 1984 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1985 1986 /* If pWalker->eCode is 2 then any term of the expression that comes from 1987 ** the ON or USING clauses of a left join disqualifies the expression 1988 ** from being considered constant. */ 1989 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1990 pWalker->eCode = 0; 1991 return WRC_Abort; 1992 } 1993 1994 switch( pExpr->op ){ 1995 /* Consider functions to be constant if all their arguments are constant 1996 ** and either pWalker->eCode==4 or 5 or the function has the 1997 ** SQLITE_FUNC_CONST flag. */ 1998 case TK_FUNCTION: 1999 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2000 && !ExprHasProperty(pExpr, EP_WinFunc) 2001 ){ 2002 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2003 return WRC_Continue; 2004 }else{ 2005 pWalker->eCode = 0; 2006 return WRC_Abort; 2007 } 2008 case TK_ID: 2009 /* Convert "true" or "false" in a DEFAULT clause into the 2010 ** appropriate TK_TRUEFALSE operator */ 2011 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2012 return WRC_Prune; 2013 } 2014 /* Fall thru */ 2015 case TK_COLUMN: 2016 case TK_AGG_FUNCTION: 2017 case TK_AGG_COLUMN: 2018 testcase( pExpr->op==TK_ID ); 2019 testcase( pExpr->op==TK_COLUMN ); 2020 testcase( pExpr->op==TK_AGG_FUNCTION ); 2021 testcase( pExpr->op==TK_AGG_COLUMN ); 2022 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2023 return WRC_Continue; 2024 } 2025 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2026 return WRC_Continue; 2027 } 2028 /* Fall through */ 2029 case TK_IF_NULL_ROW: 2030 case TK_REGISTER: 2031 testcase( pExpr->op==TK_REGISTER ); 2032 testcase( pExpr->op==TK_IF_NULL_ROW ); 2033 pWalker->eCode = 0; 2034 return WRC_Abort; 2035 case TK_VARIABLE: 2036 if( pWalker->eCode==5 ){ 2037 /* Silently convert bound parameters that appear inside of CREATE 2038 ** statements into a NULL when parsing the CREATE statement text out 2039 ** of the sqlite_master table */ 2040 pExpr->op = TK_NULL; 2041 }else if( pWalker->eCode==4 ){ 2042 /* A bound parameter in a CREATE statement that originates from 2043 ** sqlite3_prepare() causes an error */ 2044 pWalker->eCode = 0; 2045 return WRC_Abort; 2046 } 2047 /* Fall through */ 2048 default: 2049 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2050 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2051 return WRC_Continue; 2052 } 2053 } 2054 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2055 Walker w; 2056 w.eCode = initFlag; 2057 w.xExprCallback = exprNodeIsConstant; 2058 w.xSelectCallback = sqlite3SelectWalkFail; 2059 #ifdef SQLITE_DEBUG 2060 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2061 #endif 2062 w.u.iCur = iCur; 2063 sqlite3WalkExpr(&w, p); 2064 return w.eCode; 2065 } 2066 2067 /* 2068 ** Walk an expression tree. Return non-zero if the expression is constant 2069 ** and 0 if it involves variables or function calls. 2070 ** 2071 ** For the purposes of this function, a double-quoted string (ex: "abc") 2072 ** is considered a variable but a single-quoted string (ex: 'abc') is 2073 ** a constant. 2074 */ 2075 int sqlite3ExprIsConstant(Expr *p){ 2076 return exprIsConst(p, 1, 0); 2077 } 2078 2079 /* 2080 ** Walk an expression tree. Return non-zero if 2081 ** 2082 ** (1) the expression is constant, and 2083 ** (2) the expression does originate in the ON or USING clause 2084 ** of a LEFT JOIN, and 2085 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2086 ** operands created by the constant propagation optimization. 2087 ** 2088 ** When this routine returns true, it indicates that the expression 2089 ** can be added to the pParse->pConstExpr list and evaluated once when 2090 ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). 2091 */ 2092 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2093 return exprIsConst(p, 2, 0); 2094 } 2095 2096 /* 2097 ** Walk an expression tree. Return non-zero if the expression is constant 2098 ** for any single row of the table with cursor iCur. In other words, the 2099 ** expression must not refer to any non-deterministic function nor any 2100 ** table other than iCur. 2101 */ 2102 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2103 return exprIsConst(p, 3, iCur); 2104 } 2105 2106 2107 /* 2108 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2109 */ 2110 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2111 ExprList *pGroupBy = pWalker->u.pGroupBy; 2112 int i; 2113 2114 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2115 ** it constant. */ 2116 for(i=0; i<pGroupBy->nExpr; i++){ 2117 Expr *p = pGroupBy->a[i].pExpr; 2118 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2119 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2120 if( sqlite3IsBinary(pColl) ){ 2121 return WRC_Prune; 2122 } 2123 } 2124 } 2125 2126 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2127 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2128 pWalker->eCode = 0; 2129 return WRC_Abort; 2130 } 2131 2132 return exprNodeIsConstant(pWalker, pExpr); 2133 } 2134 2135 /* 2136 ** Walk the expression tree passed as the first argument. Return non-zero 2137 ** if the expression consists entirely of constants or copies of terms 2138 ** in pGroupBy that sort with the BINARY collation sequence. 2139 ** 2140 ** This routine is used to determine if a term of the HAVING clause can 2141 ** be promoted into the WHERE clause. In order for such a promotion to work, 2142 ** the value of the HAVING clause term must be the same for all members of 2143 ** a "group". The requirement that the GROUP BY term must be BINARY 2144 ** assumes that no other collating sequence will have a finer-grained 2145 ** grouping than binary. In other words (A=B COLLATE binary) implies 2146 ** A=B in every other collating sequence. The requirement that the 2147 ** GROUP BY be BINARY is stricter than necessary. It would also work 2148 ** to promote HAVING clauses that use the same alternative collating 2149 ** sequence as the GROUP BY term, but that is much harder to check, 2150 ** alternative collating sequences are uncommon, and this is only an 2151 ** optimization, so we take the easy way out and simply require the 2152 ** GROUP BY to use the BINARY collating sequence. 2153 */ 2154 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2155 Walker w; 2156 w.eCode = 1; 2157 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2158 w.xSelectCallback = 0; 2159 w.u.pGroupBy = pGroupBy; 2160 w.pParse = pParse; 2161 sqlite3WalkExpr(&w, p); 2162 return w.eCode; 2163 } 2164 2165 /* 2166 ** Walk an expression tree for the DEFAULT field of a column definition 2167 ** in a CREATE TABLE statement. Return non-zero if the expression is 2168 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2169 ** the expression is constant or a function call with constant arguments. 2170 ** Return and 0 if there are any variables. 2171 ** 2172 ** isInit is true when parsing from sqlite_master. isInit is false when 2173 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2174 ** (such as ? or $abc) in the expression are converted into NULL. When 2175 ** isInit is false, parameters raise an error. Parameters should not be 2176 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2177 ** allowed it, so we need to support it when reading sqlite_master for 2178 ** backwards compatibility. 2179 ** 2180 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2181 ** 2182 ** For the purposes of this function, a double-quoted string (ex: "abc") 2183 ** is considered a variable but a single-quoted string (ex: 'abc') is 2184 ** a constant. 2185 */ 2186 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2187 assert( isInit==0 || isInit==1 ); 2188 return exprIsConst(p, 4+isInit, 0); 2189 } 2190 2191 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2192 /* 2193 ** Walk an expression tree. Return 1 if the expression contains a 2194 ** subquery of some kind. Return 0 if there are no subqueries. 2195 */ 2196 int sqlite3ExprContainsSubquery(Expr *p){ 2197 Walker w; 2198 w.eCode = 1; 2199 w.xExprCallback = sqlite3ExprWalkNoop; 2200 w.xSelectCallback = sqlite3SelectWalkFail; 2201 #ifdef SQLITE_DEBUG 2202 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2203 #endif 2204 sqlite3WalkExpr(&w, p); 2205 return w.eCode==0; 2206 } 2207 #endif 2208 2209 /* 2210 ** If the expression p codes a constant integer that is small enough 2211 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2212 ** in *pValue. If the expression is not an integer or if it is too big 2213 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2214 */ 2215 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2216 int rc = 0; 2217 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2218 2219 /* If an expression is an integer literal that fits in a signed 32-bit 2220 ** integer, then the EP_IntValue flag will have already been set */ 2221 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2222 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2223 2224 if( p->flags & EP_IntValue ){ 2225 *pValue = p->u.iValue; 2226 return 1; 2227 } 2228 switch( p->op ){ 2229 case TK_UPLUS: { 2230 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2231 break; 2232 } 2233 case TK_UMINUS: { 2234 int v; 2235 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2236 assert( v!=(-2147483647-1) ); 2237 *pValue = -v; 2238 rc = 1; 2239 } 2240 break; 2241 } 2242 default: break; 2243 } 2244 return rc; 2245 } 2246 2247 /* 2248 ** Return FALSE if there is no chance that the expression can be NULL. 2249 ** 2250 ** If the expression might be NULL or if the expression is too complex 2251 ** to tell return TRUE. 2252 ** 2253 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2254 ** when we know that a value cannot be NULL. Hence, a false positive 2255 ** (returning TRUE when in fact the expression can never be NULL) might 2256 ** be a small performance hit but is otherwise harmless. On the other 2257 ** hand, a false negative (returning FALSE when the result could be NULL) 2258 ** will likely result in an incorrect answer. So when in doubt, return 2259 ** TRUE. 2260 */ 2261 int sqlite3ExprCanBeNull(const Expr *p){ 2262 u8 op; 2263 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2264 p = p->pLeft; 2265 } 2266 op = p->op; 2267 if( op==TK_REGISTER ) op = p->op2; 2268 switch( op ){ 2269 case TK_INTEGER: 2270 case TK_STRING: 2271 case TK_FLOAT: 2272 case TK_BLOB: 2273 return 0; 2274 case TK_COLUMN: 2275 return ExprHasProperty(p, EP_CanBeNull) || 2276 p->y.pTab==0 || /* Reference to column of index on expression */ 2277 (p->iColumn>=0 2278 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2279 && p->y.pTab->aCol[p->iColumn].notNull==0); 2280 default: 2281 return 1; 2282 } 2283 } 2284 2285 /* 2286 ** Return TRUE if the given expression is a constant which would be 2287 ** unchanged by OP_Affinity with the affinity given in the second 2288 ** argument. 2289 ** 2290 ** This routine is used to determine if the OP_Affinity operation 2291 ** can be omitted. When in doubt return FALSE. A false negative 2292 ** is harmless. A false positive, however, can result in the wrong 2293 ** answer. 2294 */ 2295 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2296 u8 op; 2297 int unaryMinus = 0; 2298 if( aff==SQLITE_AFF_BLOB ) return 1; 2299 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2300 if( p->op==TK_UMINUS ) unaryMinus = 1; 2301 p = p->pLeft; 2302 } 2303 op = p->op; 2304 if( op==TK_REGISTER ) op = p->op2; 2305 switch( op ){ 2306 case TK_INTEGER: { 2307 return aff>=SQLITE_AFF_NUMERIC; 2308 } 2309 case TK_FLOAT: { 2310 return aff>=SQLITE_AFF_NUMERIC; 2311 } 2312 case TK_STRING: { 2313 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2314 } 2315 case TK_BLOB: { 2316 return !unaryMinus; 2317 } 2318 case TK_COLUMN: { 2319 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2320 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2321 } 2322 default: { 2323 return 0; 2324 } 2325 } 2326 } 2327 2328 /* 2329 ** Return TRUE if the given string is a row-id column name. 2330 */ 2331 int sqlite3IsRowid(const char *z){ 2332 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2333 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2334 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2335 return 0; 2336 } 2337 2338 /* 2339 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2340 ** that can be simplified to a direct table access, then return 2341 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2342 ** or if the SELECT statement needs to be manifested into a transient 2343 ** table, then return NULL. 2344 */ 2345 #ifndef SQLITE_OMIT_SUBQUERY 2346 static Select *isCandidateForInOpt(Expr *pX){ 2347 Select *p; 2348 SrcList *pSrc; 2349 ExprList *pEList; 2350 Table *pTab; 2351 int i; 2352 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2353 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2354 p = pX->x.pSelect; 2355 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2356 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2357 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2358 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2359 return 0; /* No DISTINCT keyword and no aggregate functions */ 2360 } 2361 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2362 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2363 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2364 pSrc = p->pSrc; 2365 assert( pSrc!=0 ); 2366 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2367 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2368 pTab = pSrc->a[0].pTab; 2369 assert( pTab!=0 ); 2370 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2371 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2372 pEList = p->pEList; 2373 assert( pEList!=0 ); 2374 /* All SELECT results must be columns. */ 2375 for(i=0; i<pEList->nExpr; i++){ 2376 Expr *pRes = pEList->a[i].pExpr; 2377 if( pRes->op!=TK_COLUMN ) return 0; 2378 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2379 } 2380 return p; 2381 } 2382 #endif /* SQLITE_OMIT_SUBQUERY */ 2383 2384 #ifndef SQLITE_OMIT_SUBQUERY 2385 /* 2386 ** Generate code that checks the left-most column of index table iCur to see if 2387 ** it contains any NULL entries. Cause the register at regHasNull to be set 2388 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2389 ** to be set to NULL if iCur contains one or more NULL values. 2390 */ 2391 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2392 int addr1; 2393 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2394 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2395 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2396 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2397 VdbeComment((v, "first_entry_in(%d)", iCur)); 2398 sqlite3VdbeJumpHere(v, addr1); 2399 } 2400 #endif 2401 2402 2403 #ifndef SQLITE_OMIT_SUBQUERY 2404 /* 2405 ** The argument is an IN operator with a list (not a subquery) on the 2406 ** right-hand side. Return TRUE if that list is constant. 2407 */ 2408 static int sqlite3InRhsIsConstant(Expr *pIn){ 2409 Expr *pLHS; 2410 int res; 2411 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2412 pLHS = pIn->pLeft; 2413 pIn->pLeft = 0; 2414 res = sqlite3ExprIsConstant(pIn); 2415 pIn->pLeft = pLHS; 2416 return res; 2417 } 2418 #endif 2419 2420 /* 2421 ** This function is used by the implementation of the IN (...) operator. 2422 ** The pX parameter is the expression on the RHS of the IN operator, which 2423 ** might be either a list of expressions or a subquery. 2424 ** 2425 ** The job of this routine is to find or create a b-tree object that can 2426 ** be used either to test for membership in the RHS set or to iterate through 2427 ** all members of the RHS set, skipping duplicates. 2428 ** 2429 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2430 ** and pX->iTable is set to the index of that cursor. 2431 ** 2432 ** The returned value of this function indicates the b-tree type, as follows: 2433 ** 2434 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2435 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2436 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2437 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2438 ** populated epheremal table. 2439 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2440 ** implemented as a sequence of comparisons. 2441 ** 2442 ** An existing b-tree might be used if the RHS expression pX is a simple 2443 ** subquery such as: 2444 ** 2445 ** SELECT <column1>, <column2>... FROM <table> 2446 ** 2447 ** If the RHS of the IN operator is a list or a more complex subquery, then 2448 ** an ephemeral table might need to be generated from the RHS and then 2449 ** pX->iTable made to point to the ephemeral table instead of an 2450 ** existing table. 2451 ** 2452 ** The inFlags parameter must contain, at a minimum, one of the bits 2453 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2454 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2455 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2456 ** be used to loop over all values of the RHS of the IN operator. 2457 ** 2458 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2459 ** through the set members) then the b-tree must not contain duplicates. 2460 ** An epheremal table will be created unless the selected columns are guaranteed 2461 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2462 ** a UNIQUE constraint or index. 2463 ** 2464 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2465 ** for fast set membership tests) then an epheremal table must 2466 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2467 ** index can be found with the specified <columns> as its left-most. 2468 ** 2469 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2470 ** if the RHS of the IN operator is a list (not a subquery) then this 2471 ** routine might decide that creating an ephemeral b-tree for membership 2472 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2473 ** calling routine should implement the IN operator using a sequence 2474 ** of Eq or Ne comparison operations. 2475 ** 2476 ** When the b-tree is being used for membership tests, the calling function 2477 ** might need to know whether or not the RHS side of the IN operator 2478 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2479 ** if there is any chance that the (...) might contain a NULL value at 2480 ** runtime, then a register is allocated and the register number written 2481 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2482 ** NULL value, then *prRhsHasNull is left unchanged. 2483 ** 2484 ** If a register is allocated and its location stored in *prRhsHasNull, then 2485 ** the value in that register will be NULL if the b-tree contains one or more 2486 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2487 ** NULL values. 2488 ** 2489 ** If the aiMap parameter is not NULL, it must point to an array containing 2490 ** one element for each column returned by the SELECT statement on the RHS 2491 ** of the IN(...) operator. The i'th entry of the array is populated with the 2492 ** offset of the index column that matches the i'th column returned by the 2493 ** SELECT. For example, if the expression and selected index are: 2494 ** 2495 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2496 ** CREATE INDEX i1 ON t1(b, c, a); 2497 ** 2498 ** then aiMap[] is populated with {2, 0, 1}. 2499 */ 2500 #ifndef SQLITE_OMIT_SUBQUERY 2501 int sqlite3FindInIndex( 2502 Parse *pParse, /* Parsing context */ 2503 Expr *pX, /* The IN expression */ 2504 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2505 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2506 int *aiMap, /* Mapping from Index fields to RHS fields */ 2507 int *piTab /* OUT: index to use */ 2508 ){ 2509 Select *p; /* SELECT to the right of IN operator */ 2510 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2511 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2512 int mustBeUnique; /* True if RHS must be unique */ 2513 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2514 2515 assert( pX->op==TK_IN ); 2516 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2517 2518 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2519 ** whether or not the SELECT result contains NULL values, check whether 2520 ** or not NULL is actually possible (it may not be, for example, due 2521 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2522 ** set prRhsHasNull to 0 before continuing. */ 2523 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2524 int i; 2525 ExprList *pEList = pX->x.pSelect->pEList; 2526 for(i=0; i<pEList->nExpr; i++){ 2527 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2528 } 2529 if( i==pEList->nExpr ){ 2530 prRhsHasNull = 0; 2531 } 2532 } 2533 2534 /* Check to see if an existing table or index can be used to 2535 ** satisfy the query. This is preferable to generating a new 2536 ** ephemeral table. */ 2537 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2538 sqlite3 *db = pParse->db; /* Database connection */ 2539 Table *pTab; /* Table <table>. */ 2540 i16 iDb; /* Database idx for pTab */ 2541 ExprList *pEList = p->pEList; 2542 int nExpr = pEList->nExpr; 2543 2544 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2545 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2546 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2547 pTab = p->pSrc->a[0].pTab; 2548 2549 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2550 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2551 sqlite3CodeVerifySchema(pParse, iDb); 2552 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2553 2554 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2555 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2556 /* The "x IN (SELECT rowid FROM table)" case */ 2557 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2558 VdbeCoverage(v); 2559 2560 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2561 eType = IN_INDEX_ROWID; 2562 ExplainQueryPlan((pParse, 0, 2563 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2564 sqlite3VdbeJumpHere(v, iAddr); 2565 }else{ 2566 Index *pIdx; /* Iterator variable */ 2567 int affinity_ok = 1; 2568 int i; 2569 2570 /* Check that the affinity that will be used to perform each 2571 ** comparison is the same as the affinity of each column in table 2572 ** on the RHS of the IN operator. If it not, it is not possible to 2573 ** use any index of the RHS table. */ 2574 for(i=0; i<nExpr && affinity_ok; i++){ 2575 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2576 int iCol = pEList->a[i].pExpr->iColumn; 2577 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2578 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2579 testcase( cmpaff==SQLITE_AFF_BLOB ); 2580 testcase( cmpaff==SQLITE_AFF_TEXT ); 2581 switch( cmpaff ){ 2582 case SQLITE_AFF_BLOB: 2583 break; 2584 case SQLITE_AFF_TEXT: 2585 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2586 ** other has no affinity and the other side is TEXT. Hence, 2587 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2588 ** and for the term on the LHS of the IN to have no affinity. */ 2589 assert( idxaff==SQLITE_AFF_TEXT ); 2590 break; 2591 default: 2592 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2593 } 2594 } 2595 2596 if( affinity_ok ){ 2597 /* Search for an existing index that will work for this IN operator */ 2598 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2599 Bitmask colUsed; /* Columns of the index used */ 2600 Bitmask mCol; /* Mask for the current column */ 2601 if( pIdx->nColumn<nExpr ) continue; 2602 if( pIdx->pPartIdxWhere!=0 ) continue; 2603 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2604 ** BITMASK(nExpr) without overflowing */ 2605 testcase( pIdx->nColumn==BMS-2 ); 2606 testcase( pIdx->nColumn==BMS-1 ); 2607 if( pIdx->nColumn>=BMS-1 ) continue; 2608 if( mustBeUnique ){ 2609 if( pIdx->nKeyCol>nExpr 2610 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2611 ){ 2612 continue; /* This index is not unique over the IN RHS columns */ 2613 } 2614 } 2615 2616 colUsed = 0; /* Columns of index used so far */ 2617 for(i=0; i<nExpr; i++){ 2618 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2619 Expr *pRhs = pEList->a[i].pExpr; 2620 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2621 int j; 2622 2623 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2624 for(j=0; j<nExpr; j++){ 2625 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2626 assert( pIdx->azColl[j] ); 2627 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2628 continue; 2629 } 2630 break; 2631 } 2632 if( j==nExpr ) break; 2633 mCol = MASKBIT(j); 2634 if( mCol & colUsed ) break; /* Each column used only once */ 2635 colUsed |= mCol; 2636 if( aiMap ) aiMap[i] = j; 2637 } 2638 2639 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2640 if( colUsed==(MASKBIT(nExpr)-1) ){ 2641 /* If we reach this point, that means the index pIdx is usable */ 2642 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2643 ExplainQueryPlan((pParse, 0, 2644 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2645 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2646 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2647 VdbeComment((v, "%s", pIdx->zName)); 2648 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2649 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2650 2651 if( prRhsHasNull ){ 2652 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2653 i64 mask = (1<<nExpr)-1; 2654 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2655 iTab, 0, 0, (u8*)&mask, P4_INT64); 2656 #endif 2657 *prRhsHasNull = ++pParse->nMem; 2658 if( nExpr==1 ){ 2659 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2660 } 2661 } 2662 sqlite3VdbeJumpHere(v, iAddr); 2663 } 2664 } /* End loop over indexes */ 2665 } /* End if( affinity_ok ) */ 2666 } /* End if not an rowid index */ 2667 } /* End attempt to optimize using an index */ 2668 2669 /* If no preexisting index is available for the IN clause 2670 ** and IN_INDEX_NOOP is an allowed reply 2671 ** and the RHS of the IN operator is a list, not a subquery 2672 ** and the RHS is not constant or has two or fewer terms, 2673 ** then it is not worth creating an ephemeral table to evaluate 2674 ** the IN operator so return IN_INDEX_NOOP. 2675 */ 2676 if( eType==0 2677 && (inFlags & IN_INDEX_NOOP_OK) 2678 && !ExprHasProperty(pX, EP_xIsSelect) 2679 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2680 ){ 2681 eType = IN_INDEX_NOOP; 2682 } 2683 2684 if( eType==0 ){ 2685 /* Could not find an existing table or index to use as the RHS b-tree. 2686 ** We will have to generate an ephemeral table to do the job. 2687 */ 2688 u32 savedNQueryLoop = pParse->nQueryLoop; 2689 int rMayHaveNull = 0; 2690 eType = IN_INDEX_EPH; 2691 if( inFlags & IN_INDEX_LOOP ){ 2692 pParse->nQueryLoop = 0; 2693 }else if( prRhsHasNull ){ 2694 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2695 } 2696 assert( pX->op==TK_IN ); 2697 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2698 if( rMayHaveNull ){ 2699 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2700 } 2701 pParse->nQueryLoop = savedNQueryLoop; 2702 } 2703 2704 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2705 int i, n; 2706 n = sqlite3ExprVectorSize(pX->pLeft); 2707 for(i=0; i<n; i++) aiMap[i] = i; 2708 } 2709 *piTab = iTab; 2710 return eType; 2711 } 2712 #endif 2713 2714 #ifndef SQLITE_OMIT_SUBQUERY 2715 /* 2716 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2717 ** function allocates and returns a nul-terminated string containing 2718 ** the affinities to be used for each column of the comparison. 2719 ** 2720 ** It is the responsibility of the caller to ensure that the returned 2721 ** string is eventually freed using sqlite3DbFree(). 2722 */ 2723 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2724 Expr *pLeft = pExpr->pLeft; 2725 int nVal = sqlite3ExprVectorSize(pLeft); 2726 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2727 char *zRet; 2728 2729 assert( pExpr->op==TK_IN ); 2730 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2731 if( zRet ){ 2732 int i; 2733 for(i=0; i<nVal; i++){ 2734 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2735 char a = sqlite3ExprAffinity(pA); 2736 if( pSelect ){ 2737 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2738 }else{ 2739 zRet[i] = a; 2740 } 2741 } 2742 zRet[nVal] = '\0'; 2743 } 2744 return zRet; 2745 } 2746 #endif 2747 2748 #ifndef SQLITE_OMIT_SUBQUERY 2749 /* 2750 ** Load the Parse object passed as the first argument with an error 2751 ** message of the form: 2752 ** 2753 ** "sub-select returns N columns - expected M" 2754 */ 2755 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2756 if( pParse->nErr==0 ){ 2757 const char *zFmt = "sub-select returns %d columns - expected %d"; 2758 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2759 } 2760 } 2761 #endif 2762 2763 /* 2764 ** Expression pExpr is a vector that has been used in a context where 2765 ** it is not permitted. If pExpr is a sub-select vector, this routine 2766 ** loads the Parse object with a message of the form: 2767 ** 2768 ** "sub-select returns N columns - expected 1" 2769 ** 2770 ** Or, if it is a regular scalar vector: 2771 ** 2772 ** "row value misused" 2773 */ 2774 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2775 #ifndef SQLITE_OMIT_SUBQUERY 2776 if( pExpr->flags & EP_xIsSelect ){ 2777 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2778 }else 2779 #endif 2780 { 2781 sqlite3ErrorMsg(pParse, "row value misused"); 2782 } 2783 } 2784 2785 #ifndef SQLITE_OMIT_SUBQUERY 2786 /* 2787 ** Generate code that will construct an ephemeral table containing all terms 2788 ** in the RHS of an IN operator. The IN operator can be in either of two 2789 ** forms: 2790 ** 2791 ** x IN (4,5,11) -- IN operator with list on right-hand side 2792 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2793 ** 2794 ** The pExpr parameter is the IN operator. The cursor number for the 2795 ** constructed ephermeral table is returned. The first time the ephemeral 2796 ** table is computed, the cursor number is also stored in pExpr->iTable, 2797 ** however the cursor number returned might not be the same, as it might 2798 ** have been duplicated using OP_OpenDup. 2799 ** 2800 ** If the LHS expression ("x" in the examples) is a column value, or 2801 ** the SELECT statement returns a column value, then the affinity of that 2802 ** column is used to build the index keys. If both 'x' and the 2803 ** SELECT... statement are columns, then numeric affinity is used 2804 ** if either column has NUMERIC or INTEGER affinity. If neither 2805 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2806 ** is used. 2807 */ 2808 void sqlite3CodeRhsOfIN( 2809 Parse *pParse, /* Parsing context */ 2810 Expr *pExpr, /* The IN operator */ 2811 int iTab /* Use this cursor number */ 2812 ){ 2813 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2814 int addr; /* Address of OP_OpenEphemeral instruction */ 2815 Expr *pLeft; /* the LHS of the IN operator */ 2816 KeyInfo *pKeyInfo = 0; /* Key information */ 2817 int nVal; /* Size of vector pLeft */ 2818 Vdbe *v; /* The prepared statement under construction */ 2819 2820 v = pParse->pVdbe; 2821 assert( v!=0 ); 2822 2823 /* The evaluation of the IN must be repeated every time it 2824 ** is encountered if any of the following is true: 2825 ** 2826 ** * The right-hand side is a correlated subquery 2827 ** * The right-hand side is an expression list containing variables 2828 ** * We are inside a trigger 2829 ** 2830 ** If all of the above are false, then we can compute the RHS just once 2831 ** and reuse it many names. 2832 */ 2833 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2834 /* Reuse of the RHS is allowed */ 2835 /* If this routine has already been coded, but the previous code 2836 ** might not have been invoked yet, so invoke it now as a subroutine. 2837 */ 2838 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2839 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2840 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2841 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2842 pExpr->x.pSelect->selId)); 2843 } 2844 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2845 pExpr->y.sub.iAddr); 2846 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2847 sqlite3VdbeJumpHere(v, addrOnce); 2848 return; 2849 } 2850 2851 /* Begin coding the subroutine */ 2852 ExprSetProperty(pExpr, EP_Subrtn); 2853 pExpr->y.sub.regReturn = ++pParse->nMem; 2854 pExpr->y.sub.iAddr = 2855 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2856 VdbeComment((v, "return address")); 2857 2858 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2859 } 2860 2861 /* Check to see if this is a vector IN operator */ 2862 pLeft = pExpr->pLeft; 2863 nVal = sqlite3ExprVectorSize(pLeft); 2864 2865 /* Construct the ephemeral table that will contain the content of 2866 ** RHS of the IN operator. 2867 */ 2868 pExpr->iTable = iTab; 2869 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2870 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2871 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2872 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2873 }else{ 2874 VdbeComment((v, "RHS of IN operator")); 2875 } 2876 #endif 2877 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2878 2879 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2880 /* Case 1: expr IN (SELECT ...) 2881 ** 2882 ** Generate code to write the results of the select into the temporary 2883 ** table allocated and opened above. 2884 */ 2885 Select *pSelect = pExpr->x.pSelect; 2886 ExprList *pEList = pSelect->pEList; 2887 2888 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2889 addrOnce?"":"CORRELATED ", pSelect->selId 2890 )); 2891 /* If the LHS and RHS of the IN operator do not match, that 2892 ** error will have been caught long before we reach this point. */ 2893 if( ALWAYS(pEList->nExpr==nVal) ){ 2894 SelectDest dest; 2895 int i; 2896 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2897 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2898 pSelect->iLimit = 0; 2899 testcase( pSelect->selFlags & SF_Distinct ); 2900 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2901 if( sqlite3Select(pParse, pSelect, &dest) ){ 2902 sqlite3DbFree(pParse->db, dest.zAffSdst); 2903 sqlite3KeyInfoUnref(pKeyInfo); 2904 return; 2905 } 2906 sqlite3DbFree(pParse->db, dest.zAffSdst); 2907 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2908 assert( pEList!=0 ); 2909 assert( pEList->nExpr>0 ); 2910 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2911 for(i=0; i<nVal; i++){ 2912 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2913 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2914 pParse, p, pEList->a[i].pExpr 2915 ); 2916 } 2917 } 2918 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2919 /* Case 2: expr IN (exprlist) 2920 ** 2921 ** For each expression, build an index key from the evaluation and 2922 ** store it in the temporary table. If <expr> is a column, then use 2923 ** that columns affinity when building index keys. If <expr> is not 2924 ** a column, use numeric affinity. 2925 */ 2926 char affinity; /* Affinity of the LHS of the IN */ 2927 int i; 2928 ExprList *pList = pExpr->x.pList; 2929 struct ExprList_item *pItem; 2930 int r1, r2; 2931 affinity = sqlite3ExprAffinity(pLeft); 2932 if( affinity<=SQLITE_AFF_NONE ){ 2933 affinity = SQLITE_AFF_BLOB; 2934 } 2935 if( pKeyInfo ){ 2936 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2937 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2938 } 2939 2940 /* Loop through each expression in <exprlist>. */ 2941 r1 = sqlite3GetTempReg(pParse); 2942 r2 = sqlite3GetTempReg(pParse); 2943 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2944 Expr *pE2 = pItem->pExpr; 2945 2946 /* If the expression is not constant then we will need to 2947 ** disable the test that was generated above that makes sure 2948 ** this code only executes once. Because for a non-constant 2949 ** expression we need to rerun this code each time. 2950 */ 2951 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2952 sqlite3VdbeChangeToNoop(v, addrOnce); 2953 ExprClearProperty(pExpr, EP_Subrtn); 2954 addrOnce = 0; 2955 } 2956 2957 /* Evaluate the expression and insert it into the temp table */ 2958 sqlite3ExprCode(pParse, pE2, r1); 2959 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2960 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2961 } 2962 sqlite3ReleaseTempReg(pParse, r1); 2963 sqlite3ReleaseTempReg(pParse, r2); 2964 } 2965 if( pKeyInfo ){ 2966 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2967 } 2968 if( addrOnce ){ 2969 sqlite3VdbeJumpHere(v, addrOnce); 2970 /* Subroutine return */ 2971 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2972 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2973 sqlite3ClearTempRegCache(pParse); 2974 } 2975 } 2976 #endif /* SQLITE_OMIT_SUBQUERY */ 2977 2978 /* 2979 ** Generate code for scalar subqueries used as a subquery expression 2980 ** or EXISTS operator: 2981 ** 2982 ** (SELECT a FROM b) -- subquery 2983 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2984 ** 2985 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 2986 ** 2987 ** Return the register that holds the result. For a multi-column SELECT, 2988 ** the result is stored in a contiguous array of registers and the 2989 ** return value is the register of the left-most result column. 2990 ** Return 0 if an error occurs. 2991 */ 2992 #ifndef SQLITE_OMIT_SUBQUERY 2993 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 2994 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 2995 int rReg = 0; /* Register storing resulting */ 2996 Select *pSel; /* SELECT statement to encode */ 2997 SelectDest dest; /* How to deal with SELECT result */ 2998 int nReg; /* Registers to allocate */ 2999 Expr *pLimit; /* New limit expression */ 3000 3001 Vdbe *v = pParse->pVdbe; 3002 assert( v!=0 ); 3003 testcase( pExpr->op==TK_EXISTS ); 3004 testcase( pExpr->op==TK_SELECT ); 3005 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3006 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3007 pSel = pExpr->x.pSelect; 3008 3009 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3010 ** is encountered if any of the following is true: 3011 ** 3012 ** * The right-hand side is a correlated subquery 3013 ** * The right-hand side is an expression list containing variables 3014 ** * We are inside a trigger 3015 ** 3016 ** If all of the above are false, then we can run this code just once 3017 ** save the results, and reuse the same result on subsequent invocations. 3018 */ 3019 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3020 /* If this routine has already been coded, then invoke it as a 3021 ** subroutine. */ 3022 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3023 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3024 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3025 pExpr->y.sub.iAddr); 3026 return pExpr->iTable; 3027 } 3028 3029 /* Begin coding the subroutine */ 3030 ExprSetProperty(pExpr, EP_Subrtn); 3031 pExpr->y.sub.regReturn = ++pParse->nMem; 3032 pExpr->y.sub.iAddr = 3033 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3034 VdbeComment((v, "return address")); 3035 3036 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3037 } 3038 3039 /* For a SELECT, generate code to put the values for all columns of 3040 ** the first row into an array of registers and return the index of 3041 ** the first register. 3042 ** 3043 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3044 ** into a register and return that register number. 3045 ** 3046 ** In both cases, the query is augmented with "LIMIT 1". Any 3047 ** preexisting limit is discarded in place of the new LIMIT 1. 3048 */ 3049 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3050 addrOnce?"":"CORRELATED ", pSel->selId)); 3051 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3052 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3053 pParse->nMem += nReg; 3054 if( pExpr->op==TK_SELECT ){ 3055 dest.eDest = SRT_Mem; 3056 dest.iSdst = dest.iSDParm; 3057 dest.nSdst = nReg; 3058 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3059 VdbeComment((v, "Init subquery result")); 3060 }else{ 3061 dest.eDest = SRT_Exists; 3062 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3063 VdbeComment((v, "Init EXISTS result")); 3064 } 3065 if( pSel->pLimit ){ 3066 /* The subquery already has a limit. If the pre-existing limit is X 3067 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3068 sqlite3 *db = pParse->db; 3069 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3070 if( pLimit ){ 3071 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3072 pLimit = sqlite3PExpr(pParse, TK_NE, 3073 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3074 } 3075 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3076 pSel->pLimit->pLeft = pLimit; 3077 }else{ 3078 /* If there is no pre-existing limit add a limit of 1 */ 3079 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3080 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3081 } 3082 pSel->iLimit = 0; 3083 if( sqlite3Select(pParse, pSel, &dest) ){ 3084 return 0; 3085 } 3086 pExpr->iTable = rReg = dest.iSDParm; 3087 ExprSetVVAProperty(pExpr, EP_NoReduce); 3088 if( addrOnce ){ 3089 sqlite3VdbeJumpHere(v, addrOnce); 3090 3091 /* Subroutine return */ 3092 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3093 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3094 sqlite3ClearTempRegCache(pParse); 3095 } 3096 3097 return rReg; 3098 } 3099 #endif /* SQLITE_OMIT_SUBQUERY */ 3100 3101 #ifndef SQLITE_OMIT_SUBQUERY 3102 /* 3103 ** Expr pIn is an IN(...) expression. This function checks that the 3104 ** sub-select on the RHS of the IN() operator has the same number of 3105 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3106 ** a sub-query, that the LHS is a vector of size 1. 3107 */ 3108 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3109 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3110 if( (pIn->flags & EP_xIsSelect) ){ 3111 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3112 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3113 return 1; 3114 } 3115 }else if( nVector!=1 ){ 3116 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3117 return 1; 3118 } 3119 return 0; 3120 } 3121 #endif 3122 3123 #ifndef SQLITE_OMIT_SUBQUERY 3124 /* 3125 ** Generate code for an IN expression. 3126 ** 3127 ** x IN (SELECT ...) 3128 ** x IN (value, value, ...) 3129 ** 3130 ** The left-hand side (LHS) is a scalar or vector expression. The 3131 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3132 ** subquery. If the RHS is a subquery, the number of result columns must 3133 ** match the number of columns in the vector on the LHS. If the RHS is 3134 ** a list of values, the LHS must be a scalar. 3135 ** 3136 ** The IN operator is true if the LHS value is contained within the RHS. 3137 ** The result is false if the LHS is definitely not in the RHS. The 3138 ** result is NULL if the presence of the LHS in the RHS cannot be 3139 ** determined due to NULLs. 3140 ** 3141 ** This routine generates code that jumps to destIfFalse if the LHS is not 3142 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3143 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3144 ** within the RHS then fall through. 3145 ** 3146 ** See the separate in-operator.md documentation file in the canonical 3147 ** SQLite source tree for additional information. 3148 */ 3149 static void sqlite3ExprCodeIN( 3150 Parse *pParse, /* Parsing and code generating context */ 3151 Expr *pExpr, /* The IN expression */ 3152 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3153 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3154 ){ 3155 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3156 int eType; /* Type of the RHS */ 3157 int rLhs; /* Register(s) holding the LHS values */ 3158 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3159 Vdbe *v; /* Statement under construction */ 3160 int *aiMap = 0; /* Map from vector field to index column */ 3161 char *zAff = 0; /* Affinity string for comparisons */ 3162 int nVector; /* Size of vectors for this IN operator */ 3163 int iDummy; /* Dummy parameter to exprCodeVector() */ 3164 Expr *pLeft; /* The LHS of the IN operator */ 3165 int i; /* loop counter */ 3166 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3167 int destStep6 = 0; /* Start of code for Step 6 */ 3168 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3169 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3170 int addrTop; /* Top of the step-6 loop */ 3171 int iTab = 0; /* Index to use */ 3172 3173 pLeft = pExpr->pLeft; 3174 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3175 zAff = exprINAffinity(pParse, pExpr); 3176 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3177 aiMap = (int*)sqlite3DbMallocZero( 3178 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3179 ); 3180 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3181 3182 /* Attempt to compute the RHS. After this step, if anything other than 3183 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3184 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3185 ** the RHS has not yet been coded. */ 3186 v = pParse->pVdbe; 3187 assert( v!=0 ); /* OOM detected prior to this routine */ 3188 VdbeNoopComment((v, "begin IN expr")); 3189 eType = sqlite3FindInIndex(pParse, pExpr, 3190 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3191 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3192 aiMap, &iTab); 3193 3194 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3195 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3196 ); 3197 #ifdef SQLITE_DEBUG 3198 /* Confirm that aiMap[] contains nVector integer values between 0 and 3199 ** nVector-1. */ 3200 for(i=0; i<nVector; i++){ 3201 int j, cnt; 3202 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3203 assert( cnt==1 ); 3204 } 3205 #endif 3206 3207 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3208 ** vector, then it is stored in an array of nVector registers starting 3209 ** at r1. 3210 ** 3211 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3212 ** so that the fields are in the same order as an existing index. The 3213 ** aiMap[] array contains a mapping from the original LHS field order to 3214 ** the field order that matches the RHS index. 3215 */ 3216 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3217 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3218 if( i==nVector ){ 3219 /* LHS fields are not reordered */ 3220 rLhs = rLhsOrig; 3221 }else{ 3222 /* Need to reorder the LHS fields according to aiMap */ 3223 rLhs = sqlite3GetTempRange(pParse, nVector); 3224 for(i=0; i<nVector; i++){ 3225 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3226 } 3227 } 3228 3229 /* If sqlite3FindInIndex() did not find or create an index that is 3230 ** suitable for evaluating the IN operator, then evaluate using a 3231 ** sequence of comparisons. 3232 ** 3233 ** This is step (1) in the in-operator.md optimized algorithm. 3234 */ 3235 if( eType==IN_INDEX_NOOP ){ 3236 ExprList *pList = pExpr->x.pList; 3237 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3238 int labelOk = sqlite3VdbeMakeLabel(pParse); 3239 int r2, regToFree; 3240 int regCkNull = 0; 3241 int ii; 3242 int bLhsReal; /* True if the LHS of the IN has REAL affinity */ 3243 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3244 if( destIfNull!=destIfFalse ){ 3245 regCkNull = sqlite3GetTempReg(pParse); 3246 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3247 } 3248 bLhsReal = sqlite3ExprAffinity(pExpr->pLeft)==SQLITE_AFF_REAL; 3249 for(ii=0; ii<pList->nExpr; ii++){ 3250 if( bLhsReal ){ 3251 r2 = regToFree = sqlite3GetTempReg(pParse); 3252 sqlite3ExprCode(pParse, pList->a[ii].pExpr, r2); 3253 sqlite3VdbeAddOp4(v, OP_Affinity, r2, 1, 0, "E", P4_STATIC); 3254 }else{ 3255 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3256 } 3257 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3258 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3259 } 3260 sqlite3ReleaseTempReg(pParse, regToFree); 3261 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3262 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3263 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3264 (void*)pColl, P4_COLLSEQ); 3265 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3266 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3267 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3268 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3269 sqlite3VdbeChangeP5(v, zAff[0]); 3270 }else{ 3271 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3272 assert( destIfNull==destIfFalse ); 3273 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3274 (void*)pColl, P4_COLLSEQ); 3275 VdbeCoverageIf(v, op==OP_Ne); 3276 VdbeCoverageIf(v, op==OP_IsNull); 3277 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3278 } 3279 } 3280 if( regCkNull ){ 3281 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3282 sqlite3VdbeGoto(v, destIfFalse); 3283 } 3284 sqlite3VdbeResolveLabel(v, labelOk); 3285 sqlite3ReleaseTempReg(pParse, regCkNull); 3286 goto sqlite3ExprCodeIN_finished; 3287 } 3288 3289 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3290 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3291 ** We will then skip the binary search of the RHS. 3292 */ 3293 if( destIfNull==destIfFalse ){ 3294 destStep2 = destIfFalse; 3295 }else{ 3296 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3297 } 3298 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3299 for(i=0; i<nVector; i++){ 3300 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3301 if( sqlite3ExprCanBeNull(p) ){ 3302 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3303 VdbeCoverage(v); 3304 } 3305 } 3306 3307 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3308 ** of the RHS using the LHS as a probe. If found, the result is 3309 ** true. 3310 */ 3311 if( eType==IN_INDEX_ROWID ){ 3312 /* In this case, the RHS is the ROWID of table b-tree and so we also 3313 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3314 ** into a single opcode. */ 3315 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3316 VdbeCoverage(v); 3317 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3318 }else{ 3319 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3320 if( destIfFalse==destIfNull ){ 3321 /* Combine Step 3 and Step 5 into a single opcode */ 3322 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3323 rLhs, nVector); VdbeCoverage(v); 3324 goto sqlite3ExprCodeIN_finished; 3325 } 3326 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3327 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3328 rLhs, nVector); VdbeCoverage(v); 3329 } 3330 3331 /* Step 4. If the RHS is known to be non-NULL and we did not find 3332 ** an match on the search above, then the result must be FALSE. 3333 */ 3334 if( rRhsHasNull && nVector==1 ){ 3335 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3336 VdbeCoverage(v); 3337 } 3338 3339 /* Step 5. If we do not care about the difference between NULL and 3340 ** FALSE, then just return false. 3341 */ 3342 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3343 3344 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3345 ** If any comparison is NULL, then the result is NULL. If all 3346 ** comparisons are FALSE then the final result is FALSE. 3347 ** 3348 ** For a scalar LHS, it is sufficient to check just the first row 3349 ** of the RHS. 3350 */ 3351 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3352 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3353 VdbeCoverage(v); 3354 if( nVector>1 ){ 3355 destNotNull = sqlite3VdbeMakeLabel(pParse); 3356 }else{ 3357 /* For nVector==1, combine steps 6 and 7 by immediately returning 3358 ** FALSE if the first comparison is not NULL */ 3359 destNotNull = destIfFalse; 3360 } 3361 for(i=0; i<nVector; i++){ 3362 Expr *p; 3363 CollSeq *pColl; 3364 int r3 = sqlite3GetTempReg(pParse); 3365 p = sqlite3VectorFieldSubexpr(pLeft, i); 3366 pColl = sqlite3ExprCollSeq(pParse, p); 3367 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3368 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3369 (void*)pColl, P4_COLLSEQ); 3370 VdbeCoverage(v); 3371 sqlite3ReleaseTempReg(pParse, r3); 3372 } 3373 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3374 if( nVector>1 ){ 3375 sqlite3VdbeResolveLabel(v, destNotNull); 3376 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3377 VdbeCoverage(v); 3378 3379 /* Step 7: If we reach this point, we know that the result must 3380 ** be false. */ 3381 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3382 } 3383 3384 /* Jumps here in order to return true. */ 3385 sqlite3VdbeJumpHere(v, addrTruthOp); 3386 3387 sqlite3ExprCodeIN_finished: 3388 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3389 VdbeComment((v, "end IN expr")); 3390 sqlite3ExprCodeIN_oom_error: 3391 sqlite3DbFree(pParse->db, aiMap); 3392 sqlite3DbFree(pParse->db, zAff); 3393 } 3394 #endif /* SQLITE_OMIT_SUBQUERY */ 3395 3396 #ifndef SQLITE_OMIT_FLOATING_POINT 3397 /* 3398 ** Generate an instruction that will put the floating point 3399 ** value described by z[0..n-1] into register iMem. 3400 ** 3401 ** The z[] string will probably not be zero-terminated. But the 3402 ** z[n] character is guaranteed to be something that does not look 3403 ** like the continuation of the number. 3404 */ 3405 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3406 if( ALWAYS(z!=0) ){ 3407 double value; 3408 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3409 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3410 if( negateFlag ) value = -value; 3411 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3412 } 3413 } 3414 #endif 3415 3416 3417 /* 3418 ** Generate an instruction that will put the integer describe by 3419 ** text z[0..n-1] into register iMem. 3420 ** 3421 ** Expr.u.zToken is always UTF8 and zero-terminated. 3422 */ 3423 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3424 Vdbe *v = pParse->pVdbe; 3425 if( pExpr->flags & EP_IntValue ){ 3426 int i = pExpr->u.iValue; 3427 assert( i>=0 ); 3428 if( negFlag ) i = -i; 3429 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3430 }else{ 3431 int c; 3432 i64 value; 3433 const char *z = pExpr->u.zToken; 3434 assert( z!=0 ); 3435 c = sqlite3DecOrHexToI64(z, &value); 3436 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3437 #ifdef SQLITE_OMIT_FLOATING_POINT 3438 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3439 #else 3440 #ifndef SQLITE_OMIT_HEX_INTEGER 3441 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3442 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3443 }else 3444 #endif 3445 { 3446 codeReal(v, z, negFlag, iMem); 3447 } 3448 #endif 3449 }else{ 3450 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3451 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3452 } 3453 } 3454 } 3455 3456 3457 /* Generate code that will load into register regOut a value that is 3458 ** appropriate for the iIdxCol-th column of index pIdx. 3459 */ 3460 void sqlite3ExprCodeLoadIndexColumn( 3461 Parse *pParse, /* The parsing context */ 3462 Index *pIdx, /* The index whose column is to be loaded */ 3463 int iTabCur, /* Cursor pointing to a table row */ 3464 int iIdxCol, /* The column of the index to be loaded */ 3465 int regOut /* Store the index column value in this register */ 3466 ){ 3467 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3468 if( iTabCol==XN_EXPR ){ 3469 assert( pIdx->aColExpr ); 3470 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3471 pParse->iSelfTab = iTabCur + 1; 3472 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3473 pParse->iSelfTab = 0; 3474 }else{ 3475 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3476 iTabCol, regOut); 3477 } 3478 } 3479 3480 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3481 /* 3482 ** Generate code that will compute the value of generated column pCol 3483 ** and store the result in register regOut 3484 */ 3485 void sqlite3ExprCodeGeneratedColumn( 3486 Parse *pParse, 3487 Column *pCol, 3488 int regOut 3489 ){ 3490 int iAddr; 3491 Vdbe *v = pParse->pVdbe; 3492 assert( v!=0 ); 3493 assert( pParse->iSelfTab!=0 ); 3494 if( pParse->iSelfTab>0 ){ 3495 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3496 }else{ 3497 iAddr = 0; 3498 } 3499 sqlite3ExprCode(pParse, pCol->pDflt, regOut); 3500 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3501 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3502 } 3503 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3504 } 3505 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3506 3507 /* 3508 ** Generate code to extract the value of the iCol-th column of a table. 3509 */ 3510 void sqlite3ExprCodeGetColumnOfTable( 3511 Vdbe *v, /* Parsing context */ 3512 Table *pTab, /* The table containing the value */ 3513 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3514 int iCol, /* Index of the column to extract */ 3515 int regOut /* Extract the value into this register */ 3516 ){ 3517 Column *pCol; 3518 assert( v!=0 ); 3519 if( pTab==0 ){ 3520 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3521 return; 3522 } 3523 if( iCol<0 || iCol==pTab->iPKey ){ 3524 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3525 }else{ 3526 int op; 3527 int x; 3528 if( IsVirtual(pTab) ){ 3529 op = OP_VColumn; 3530 x = iCol; 3531 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3532 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3533 Parse *pParse = sqlite3VdbeParser(v); 3534 if( pCol->colFlags & COLFLAG_BUSY ){ 3535 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3536 }else{ 3537 int savedSelfTab = pParse->iSelfTab; 3538 pCol->colFlags |= COLFLAG_BUSY; 3539 pParse->iSelfTab = iTabCur+1; 3540 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3541 pParse->iSelfTab = savedSelfTab; 3542 pCol->colFlags &= ~COLFLAG_BUSY; 3543 } 3544 return; 3545 #endif 3546 }else if( !HasRowid(pTab) ){ 3547 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3548 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3549 op = OP_Column; 3550 }else{ 3551 x = sqlite3TableColumnToStorage(pTab,iCol); 3552 testcase( x!=iCol ); 3553 op = OP_Column; 3554 } 3555 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3556 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3557 } 3558 } 3559 3560 /* 3561 ** Generate code that will extract the iColumn-th column from 3562 ** table pTab and store the column value in register iReg. 3563 ** 3564 ** There must be an open cursor to pTab in iTable when this routine 3565 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3566 */ 3567 int sqlite3ExprCodeGetColumn( 3568 Parse *pParse, /* Parsing and code generating context */ 3569 Table *pTab, /* Description of the table we are reading from */ 3570 int iColumn, /* Index of the table column */ 3571 int iTable, /* The cursor pointing to the table */ 3572 int iReg, /* Store results here */ 3573 u8 p5 /* P5 value for OP_Column + FLAGS */ 3574 ){ 3575 assert( pParse->pVdbe!=0 ); 3576 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3577 if( p5 ){ 3578 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3579 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3580 } 3581 return iReg; 3582 } 3583 3584 /* 3585 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3586 ** over to iTo..iTo+nReg-1. 3587 */ 3588 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3589 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3590 } 3591 3592 /* 3593 ** Convert a scalar expression node to a TK_REGISTER referencing 3594 ** register iReg. The caller must ensure that iReg already contains 3595 ** the correct value for the expression. 3596 */ 3597 static void exprToRegister(Expr *pExpr, int iReg){ 3598 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3599 p->op2 = p->op; 3600 p->op = TK_REGISTER; 3601 p->iTable = iReg; 3602 ExprClearProperty(p, EP_Skip); 3603 } 3604 3605 /* 3606 ** Evaluate an expression (either a vector or a scalar expression) and store 3607 ** the result in continguous temporary registers. Return the index of 3608 ** the first register used to store the result. 3609 ** 3610 ** If the returned result register is a temporary scalar, then also write 3611 ** that register number into *piFreeable. If the returned result register 3612 ** is not a temporary or if the expression is a vector set *piFreeable 3613 ** to 0. 3614 */ 3615 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3616 int iResult; 3617 int nResult = sqlite3ExprVectorSize(p); 3618 if( nResult==1 ){ 3619 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3620 }else{ 3621 *piFreeable = 0; 3622 if( p->op==TK_SELECT ){ 3623 #if SQLITE_OMIT_SUBQUERY 3624 iResult = 0; 3625 #else 3626 iResult = sqlite3CodeSubselect(pParse, p); 3627 #endif 3628 }else{ 3629 int i; 3630 iResult = pParse->nMem+1; 3631 pParse->nMem += nResult; 3632 for(i=0; i<nResult; i++){ 3633 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3634 } 3635 } 3636 } 3637 return iResult; 3638 } 3639 3640 /* 3641 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3642 ** so that a subsequent copy will not be merged into this one. 3643 */ 3644 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3645 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3646 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3647 } 3648 } 3649 3650 /* 3651 ** Generate code to implement special SQL functions that are implemented 3652 ** in-line rather than by using the usual callbacks. 3653 */ 3654 static int exprCodeInlineFunction( 3655 Parse *pParse, /* Parsing context */ 3656 ExprList *pFarg, /* List of function arguments */ 3657 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3658 int target /* Store function result in this register */ 3659 ){ 3660 int nFarg; 3661 Vdbe *v = pParse->pVdbe; 3662 assert( v!=0 ); 3663 assert( pFarg!=0 ); 3664 nFarg = pFarg->nExpr; 3665 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3666 switch( iFuncId ){ 3667 case INLINEFUNC_coalesce: { 3668 /* Attempt a direct implementation of the built-in COALESCE() and 3669 ** IFNULL() functions. This avoids unnecessary evaluation of 3670 ** arguments past the first non-NULL argument. 3671 */ 3672 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3673 int i; 3674 assert( nFarg>=2 ); 3675 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3676 for(i=1; i<nFarg; i++){ 3677 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3678 VdbeCoverage(v); 3679 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3680 } 3681 setDoNotMergeFlagOnCopy(v); 3682 sqlite3VdbeResolveLabel(v, endCoalesce); 3683 break; 3684 } 3685 3686 default: { 3687 /* The UNLIKELY() function is a no-op. The result is the value 3688 ** of the first argument. 3689 */ 3690 assert( nFarg==1 || nFarg==2 ); 3691 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3692 break; 3693 } 3694 3695 /*********************************************************************** 3696 ** Test-only SQL functions that are only usable if enabled 3697 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3698 */ 3699 case INLINEFUNC_expr_compare: { 3700 /* Compare two expressions using sqlite3ExprCompare() */ 3701 assert( nFarg==2 ); 3702 sqlite3VdbeAddOp2(v, OP_Integer, 3703 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3704 target); 3705 break; 3706 } 3707 3708 case INLINEFUNC_expr_implies_expr: { 3709 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3710 assert( nFarg==2 ); 3711 sqlite3VdbeAddOp2(v, OP_Integer, 3712 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3713 target); 3714 break; 3715 } 3716 3717 case INLINEFUNC_implies_nonnull_row: { 3718 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3719 Expr *pA1; 3720 assert( nFarg==2 ); 3721 pA1 = pFarg->a[1].pExpr; 3722 if( pA1->op==TK_COLUMN ){ 3723 sqlite3VdbeAddOp2(v, OP_Integer, 3724 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3725 target); 3726 }else{ 3727 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3728 } 3729 break; 3730 } 3731 3732 #ifdef SQLITE_DEBUG 3733 case INLINEFUNC_affinity: { 3734 /* The AFFINITY() function evaluates to a string that describes 3735 ** the type affinity of the argument. This is used for testing of 3736 ** the SQLite type logic. 3737 */ 3738 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3739 char aff; 3740 assert( nFarg==1 ); 3741 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3742 sqlite3VdbeLoadString(v, target, 3743 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3744 break; 3745 } 3746 #endif 3747 } 3748 return target; 3749 } 3750 3751 3752 /* 3753 ** Generate code into the current Vdbe to evaluate the given 3754 ** expression. Attempt to store the results in register "target". 3755 ** Return the register where results are stored. 3756 ** 3757 ** With this routine, there is no guarantee that results will 3758 ** be stored in target. The result might be stored in some other 3759 ** register if it is convenient to do so. The calling function 3760 ** must check the return code and move the results to the desired 3761 ** register. 3762 */ 3763 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3764 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3765 int op; /* The opcode being coded */ 3766 int inReg = target; /* Results stored in register inReg */ 3767 int regFree1 = 0; /* If non-zero free this temporary register */ 3768 int regFree2 = 0; /* If non-zero free this temporary register */ 3769 int r1, r2; /* Various register numbers */ 3770 Expr tempX; /* Temporary expression node */ 3771 int p5 = 0; 3772 3773 assert( target>0 && target<=pParse->nMem ); 3774 if( v==0 ){ 3775 assert( pParse->db->mallocFailed ); 3776 return 0; 3777 } 3778 3779 expr_code_doover: 3780 if( pExpr==0 ){ 3781 op = TK_NULL; 3782 }else{ 3783 op = pExpr->op; 3784 } 3785 switch( op ){ 3786 case TK_AGG_COLUMN: { 3787 AggInfo *pAggInfo = pExpr->pAggInfo; 3788 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3789 if( !pAggInfo->directMode ){ 3790 assert( pCol->iMem>0 ); 3791 return pCol->iMem; 3792 }else if( pAggInfo->useSortingIdx ){ 3793 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3794 pCol->iSorterColumn, target); 3795 return target; 3796 } 3797 /* Otherwise, fall thru into the TK_COLUMN case */ 3798 } 3799 case TK_COLUMN: { 3800 int iTab = pExpr->iTable; 3801 int iReg; 3802 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3803 /* This COLUMN expression is really a constant due to WHERE clause 3804 ** constraints, and that constant is coded by the pExpr->pLeft 3805 ** expresssion. However, make sure the constant has the correct 3806 ** datatype by applying the Affinity of the table column to the 3807 ** constant. 3808 */ 3809 int aff; 3810 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3811 if( pExpr->y.pTab ){ 3812 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3813 }else{ 3814 aff = pExpr->affExpr; 3815 } 3816 if( aff>SQLITE_AFF_BLOB ){ 3817 static const char zAff[] = "B\000C\000D\000E"; 3818 assert( SQLITE_AFF_BLOB=='A' ); 3819 assert( SQLITE_AFF_TEXT=='B' ); 3820 if( iReg!=target ){ 3821 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3822 iReg = target; 3823 } 3824 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3825 &zAff[(aff-'B')*2], P4_STATIC); 3826 } 3827 return iReg; 3828 } 3829 if( iTab<0 ){ 3830 if( pParse->iSelfTab<0 ){ 3831 /* Other columns in the same row for CHECK constraints or 3832 ** generated columns or for inserting into partial index. 3833 ** The row is unpacked into registers beginning at 3834 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3835 ** immediately prior to the first column. 3836 */ 3837 Column *pCol; 3838 Table *pTab = pExpr->y.pTab; 3839 int iSrc; 3840 int iCol = pExpr->iColumn; 3841 assert( pTab!=0 ); 3842 assert( iCol>=XN_ROWID ); 3843 assert( iCol<pTab->nCol ); 3844 if( iCol<0 ){ 3845 return -1-pParse->iSelfTab; 3846 } 3847 pCol = pTab->aCol + iCol; 3848 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3849 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3850 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3851 if( pCol->colFlags & COLFLAG_GENERATED ){ 3852 if( pCol->colFlags & COLFLAG_BUSY ){ 3853 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3854 pCol->zName); 3855 return 0; 3856 } 3857 pCol->colFlags |= COLFLAG_BUSY; 3858 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3859 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3860 } 3861 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3862 return iSrc; 3863 }else 3864 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3865 if( pCol->affinity==SQLITE_AFF_REAL ){ 3866 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3867 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3868 return target; 3869 }else{ 3870 return iSrc; 3871 } 3872 }else{ 3873 /* Coding an expression that is part of an index where column names 3874 ** in the index refer to the table to which the index belongs */ 3875 iTab = pParse->iSelfTab - 1; 3876 } 3877 } 3878 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3879 pExpr->iColumn, iTab, target, 3880 pExpr->op2); 3881 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3882 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 3883 } 3884 return iReg; 3885 } 3886 case TK_INTEGER: { 3887 codeInteger(pParse, pExpr, 0, target); 3888 return target; 3889 } 3890 case TK_TRUEFALSE: { 3891 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3892 return target; 3893 } 3894 #ifndef SQLITE_OMIT_FLOATING_POINT 3895 case TK_FLOAT: { 3896 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3897 codeReal(v, pExpr->u.zToken, 0, target); 3898 return target; 3899 } 3900 #endif 3901 case TK_STRING: { 3902 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3903 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3904 return target; 3905 } 3906 default: { 3907 /* Make NULL the default case so that if a bug causes an illegal 3908 ** Expr node to be passed into this function, it will be handled 3909 ** sanely and not crash. But keep the assert() to bring the problem 3910 ** to the attention of the developers. */ 3911 assert( op==TK_NULL ); 3912 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3913 return target; 3914 } 3915 #ifndef SQLITE_OMIT_BLOB_LITERAL 3916 case TK_BLOB: { 3917 int n; 3918 const char *z; 3919 char *zBlob; 3920 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3921 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3922 assert( pExpr->u.zToken[1]=='\'' ); 3923 z = &pExpr->u.zToken[2]; 3924 n = sqlite3Strlen30(z) - 1; 3925 assert( z[n]=='\'' ); 3926 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3927 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3928 return target; 3929 } 3930 #endif 3931 case TK_VARIABLE: { 3932 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3933 assert( pExpr->u.zToken!=0 ); 3934 assert( pExpr->u.zToken[0]!=0 ); 3935 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3936 if( pExpr->u.zToken[1]!=0 ){ 3937 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3938 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 3939 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3940 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3941 } 3942 return target; 3943 } 3944 case TK_REGISTER: { 3945 return pExpr->iTable; 3946 } 3947 #ifndef SQLITE_OMIT_CAST 3948 case TK_CAST: { 3949 /* Expressions of the form: CAST(pLeft AS token) */ 3950 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3951 if( inReg!=target ){ 3952 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3953 inReg = target; 3954 } 3955 sqlite3VdbeAddOp2(v, OP_Cast, target, 3956 sqlite3AffinityType(pExpr->u.zToken, 0)); 3957 return inReg; 3958 } 3959 #endif /* SQLITE_OMIT_CAST */ 3960 case TK_IS: 3961 case TK_ISNOT: 3962 op = (op==TK_IS) ? TK_EQ : TK_NE; 3963 p5 = SQLITE_NULLEQ; 3964 /* fall-through */ 3965 case TK_LT: 3966 case TK_LE: 3967 case TK_GT: 3968 case TK_GE: 3969 case TK_NE: 3970 case TK_EQ: { 3971 Expr *pLeft = pExpr->pLeft; 3972 if( sqlite3ExprIsVector(pLeft) ){ 3973 codeVectorCompare(pParse, pExpr, target, op, p5); 3974 }else{ 3975 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3976 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3977 codeCompare(pParse, pLeft, pExpr->pRight, op, 3978 r1, r2, inReg, SQLITE_STOREP2 | p5, 3979 ExprHasProperty(pExpr,EP_Commuted)); 3980 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3981 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3982 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3983 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3984 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3985 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3986 testcase( regFree1==0 ); 3987 testcase( regFree2==0 ); 3988 } 3989 break; 3990 } 3991 case TK_AND: 3992 case TK_OR: 3993 case TK_PLUS: 3994 case TK_STAR: 3995 case TK_MINUS: 3996 case TK_REM: 3997 case TK_BITAND: 3998 case TK_BITOR: 3999 case TK_SLASH: 4000 case TK_LSHIFT: 4001 case TK_RSHIFT: 4002 case TK_CONCAT: { 4003 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4004 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4005 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4006 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4007 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4008 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4009 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4010 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4011 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4012 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4013 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4014 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4015 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4016 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4017 testcase( regFree1==0 ); 4018 testcase( regFree2==0 ); 4019 break; 4020 } 4021 case TK_UMINUS: { 4022 Expr *pLeft = pExpr->pLeft; 4023 assert( pLeft ); 4024 if( pLeft->op==TK_INTEGER ){ 4025 codeInteger(pParse, pLeft, 1, target); 4026 return target; 4027 #ifndef SQLITE_OMIT_FLOATING_POINT 4028 }else if( pLeft->op==TK_FLOAT ){ 4029 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4030 codeReal(v, pLeft->u.zToken, 1, target); 4031 return target; 4032 #endif 4033 }else{ 4034 tempX.op = TK_INTEGER; 4035 tempX.flags = EP_IntValue|EP_TokenOnly; 4036 tempX.u.iValue = 0; 4037 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4038 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4039 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4040 testcase( regFree2==0 ); 4041 } 4042 break; 4043 } 4044 case TK_BITNOT: 4045 case TK_NOT: { 4046 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4047 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4048 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4049 testcase( regFree1==0 ); 4050 sqlite3VdbeAddOp2(v, op, r1, inReg); 4051 break; 4052 } 4053 case TK_TRUTH: { 4054 int isTrue; /* IS TRUE or IS NOT TRUE */ 4055 int bNormal; /* IS TRUE or IS FALSE */ 4056 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4057 testcase( regFree1==0 ); 4058 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4059 bNormal = pExpr->op2==TK_IS; 4060 testcase( isTrue && bNormal); 4061 testcase( !isTrue && bNormal); 4062 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4063 break; 4064 } 4065 case TK_ISNULL: 4066 case TK_NOTNULL: { 4067 int addr; 4068 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4069 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4070 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4071 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4072 testcase( regFree1==0 ); 4073 addr = sqlite3VdbeAddOp1(v, op, r1); 4074 VdbeCoverageIf(v, op==TK_ISNULL); 4075 VdbeCoverageIf(v, op==TK_NOTNULL); 4076 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4077 sqlite3VdbeJumpHere(v, addr); 4078 break; 4079 } 4080 case TK_AGG_FUNCTION: { 4081 AggInfo *pInfo = pExpr->pAggInfo; 4082 if( pInfo==0 ){ 4083 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4084 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4085 }else{ 4086 return pInfo->aFunc[pExpr->iAgg].iMem; 4087 } 4088 break; 4089 } 4090 case TK_FUNCTION: { 4091 ExprList *pFarg; /* List of function arguments */ 4092 int nFarg; /* Number of function arguments */ 4093 FuncDef *pDef; /* The function definition object */ 4094 const char *zId; /* The function name */ 4095 u32 constMask = 0; /* Mask of function arguments that are constant */ 4096 int i; /* Loop counter */ 4097 sqlite3 *db = pParse->db; /* The database connection */ 4098 u8 enc = ENC(db); /* The text encoding used by this database */ 4099 CollSeq *pColl = 0; /* A collating sequence */ 4100 4101 #ifndef SQLITE_OMIT_WINDOWFUNC 4102 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4103 return pExpr->y.pWin->regResult; 4104 } 4105 #endif 4106 4107 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4108 /* SQL functions can be expensive. So try to move constant functions 4109 ** out of the inner loop, even if that means an extra OP_Copy. */ 4110 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4111 } 4112 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4113 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 4114 pFarg = 0; 4115 }else{ 4116 pFarg = pExpr->x.pList; 4117 } 4118 nFarg = pFarg ? pFarg->nExpr : 0; 4119 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4120 zId = pExpr->u.zToken; 4121 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4122 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4123 if( pDef==0 && pParse->explain ){ 4124 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4125 } 4126 #endif 4127 if( pDef==0 || pDef->xFinalize!=0 ){ 4128 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4129 break; 4130 } 4131 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4132 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4133 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4134 return exprCodeInlineFunction(pParse, pFarg, 4135 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4136 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4137 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4138 } 4139 4140 for(i=0; i<nFarg; i++){ 4141 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4142 testcase( i==31 ); 4143 constMask |= MASKBIT32(i); 4144 } 4145 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4146 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4147 } 4148 } 4149 if( pFarg ){ 4150 if( constMask ){ 4151 r1 = pParse->nMem+1; 4152 pParse->nMem += nFarg; 4153 }else{ 4154 r1 = sqlite3GetTempRange(pParse, nFarg); 4155 } 4156 4157 /* For length() and typeof() functions with a column argument, 4158 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4159 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4160 ** loading. 4161 */ 4162 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4163 u8 exprOp; 4164 assert( nFarg==1 ); 4165 assert( pFarg->a[0].pExpr!=0 ); 4166 exprOp = pFarg->a[0].pExpr->op; 4167 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4168 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4169 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4170 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4171 pFarg->a[0].pExpr->op2 = 4172 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4173 } 4174 } 4175 4176 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4177 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4178 }else{ 4179 r1 = 0; 4180 } 4181 #ifndef SQLITE_OMIT_VIRTUALTABLE 4182 /* Possibly overload the function if the first argument is 4183 ** a virtual table column. 4184 ** 4185 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4186 ** second argument, not the first, as the argument to test to 4187 ** see if it is a column in a virtual table. This is done because 4188 ** the left operand of infix functions (the operand we want to 4189 ** control overloading) ends up as the second argument to the 4190 ** function. The expression "A glob B" is equivalent to 4191 ** "glob(B,A). We want to use the A in "A glob B" to test 4192 ** for function overloading. But we use the B term in "glob(B,A)". 4193 */ 4194 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4195 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4196 }else if( nFarg>0 ){ 4197 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4198 } 4199 #endif 4200 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4201 if( !pColl ) pColl = db->pDfltColl; 4202 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4203 } 4204 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4205 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4206 Expr *pArg = pFarg->a[0].pExpr; 4207 if( pArg->op==TK_COLUMN ){ 4208 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4209 }else{ 4210 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4211 } 4212 }else 4213 #endif 4214 { 4215 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4216 pDef, pExpr->op2); 4217 } 4218 if( nFarg ){ 4219 if( constMask==0 ){ 4220 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4221 }else{ 4222 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4223 } 4224 } 4225 return target; 4226 } 4227 #ifndef SQLITE_OMIT_SUBQUERY 4228 case TK_EXISTS: 4229 case TK_SELECT: { 4230 int nCol; 4231 testcase( op==TK_EXISTS ); 4232 testcase( op==TK_SELECT ); 4233 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4234 sqlite3SubselectError(pParse, nCol, 1); 4235 }else{ 4236 return sqlite3CodeSubselect(pParse, pExpr); 4237 } 4238 break; 4239 } 4240 case TK_SELECT_COLUMN: { 4241 int n; 4242 if( pExpr->pLeft->iTable==0 ){ 4243 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4244 } 4245 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4246 if( pExpr->iTable!=0 4247 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4248 ){ 4249 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4250 pExpr->iTable, n); 4251 } 4252 return pExpr->pLeft->iTable + pExpr->iColumn; 4253 } 4254 case TK_IN: { 4255 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4256 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4257 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4258 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4259 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4260 sqlite3VdbeResolveLabel(v, destIfFalse); 4261 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4262 sqlite3VdbeResolveLabel(v, destIfNull); 4263 return target; 4264 } 4265 #endif /* SQLITE_OMIT_SUBQUERY */ 4266 4267 4268 /* 4269 ** x BETWEEN y AND z 4270 ** 4271 ** This is equivalent to 4272 ** 4273 ** x>=y AND x<=z 4274 ** 4275 ** X is stored in pExpr->pLeft. 4276 ** Y is stored in pExpr->pList->a[0].pExpr. 4277 ** Z is stored in pExpr->pList->a[1].pExpr. 4278 */ 4279 case TK_BETWEEN: { 4280 exprCodeBetween(pParse, pExpr, target, 0, 0); 4281 return target; 4282 } 4283 case TK_SPAN: 4284 case TK_COLLATE: 4285 case TK_UPLUS: { 4286 pExpr = pExpr->pLeft; 4287 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4288 } 4289 4290 case TK_TRIGGER: { 4291 /* If the opcode is TK_TRIGGER, then the expression is a reference 4292 ** to a column in the new.* or old.* pseudo-tables available to 4293 ** trigger programs. In this case Expr.iTable is set to 1 for the 4294 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4295 ** is set to the column of the pseudo-table to read, or to -1 to 4296 ** read the rowid field. 4297 ** 4298 ** The expression is implemented using an OP_Param opcode. The p1 4299 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4300 ** to reference another column of the old.* pseudo-table, where 4301 ** i is the index of the column. For a new.rowid reference, p1 is 4302 ** set to (n+1), where n is the number of columns in each pseudo-table. 4303 ** For a reference to any other column in the new.* pseudo-table, p1 4304 ** is set to (n+2+i), where n and i are as defined previously. For 4305 ** example, if the table on which triggers are being fired is 4306 ** declared as: 4307 ** 4308 ** CREATE TABLE t1(a, b); 4309 ** 4310 ** Then p1 is interpreted as follows: 4311 ** 4312 ** p1==0 -> old.rowid p1==3 -> new.rowid 4313 ** p1==1 -> old.a p1==4 -> new.a 4314 ** p1==2 -> old.b p1==5 -> new.b 4315 */ 4316 Table *pTab = pExpr->y.pTab; 4317 int iCol = pExpr->iColumn; 4318 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4319 + sqlite3TableColumnToStorage(pTab, iCol); 4320 4321 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4322 assert( iCol>=-1 && iCol<pTab->nCol ); 4323 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4324 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4325 4326 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4327 VdbeComment((v, "r[%d]=%s.%s", target, 4328 (pExpr->iTable ? "new" : "old"), 4329 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4330 )); 4331 4332 #ifndef SQLITE_OMIT_FLOATING_POINT 4333 /* If the column has REAL affinity, it may currently be stored as an 4334 ** integer. Use OP_RealAffinity to make sure it is really real. 4335 ** 4336 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4337 ** floating point when extracting it from the record. */ 4338 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4339 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4340 } 4341 #endif 4342 break; 4343 } 4344 4345 case TK_VECTOR: { 4346 sqlite3ErrorMsg(pParse, "row value misused"); 4347 break; 4348 } 4349 4350 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4351 ** that derive from the right-hand table of a LEFT JOIN. The 4352 ** Expr.iTable value is the table number for the right-hand table. 4353 ** The expression is only evaluated if that table is not currently 4354 ** on a LEFT JOIN NULL row. 4355 */ 4356 case TK_IF_NULL_ROW: { 4357 int addrINR; 4358 u8 okConstFactor = pParse->okConstFactor; 4359 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4360 /* Temporarily disable factoring of constant expressions, since 4361 ** even though expressions may appear to be constant, they are not 4362 ** really constant because they originate from the right-hand side 4363 ** of a LEFT JOIN. */ 4364 pParse->okConstFactor = 0; 4365 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4366 pParse->okConstFactor = okConstFactor; 4367 sqlite3VdbeJumpHere(v, addrINR); 4368 sqlite3VdbeChangeP3(v, addrINR, inReg); 4369 break; 4370 } 4371 4372 /* 4373 ** Form A: 4374 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4375 ** 4376 ** Form B: 4377 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4378 ** 4379 ** Form A is can be transformed into the equivalent form B as follows: 4380 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4381 ** WHEN x=eN THEN rN ELSE y END 4382 ** 4383 ** X (if it exists) is in pExpr->pLeft. 4384 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4385 ** odd. The Y is also optional. If the number of elements in x.pList 4386 ** is even, then Y is omitted and the "otherwise" result is NULL. 4387 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4388 ** 4389 ** The result of the expression is the Ri for the first matching Ei, 4390 ** or if there is no matching Ei, the ELSE term Y, or if there is 4391 ** no ELSE term, NULL. 4392 */ 4393 case TK_CASE: { 4394 int endLabel; /* GOTO label for end of CASE stmt */ 4395 int nextCase; /* GOTO label for next WHEN clause */ 4396 int nExpr; /* 2x number of WHEN terms */ 4397 int i; /* Loop counter */ 4398 ExprList *pEList; /* List of WHEN terms */ 4399 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4400 Expr opCompare; /* The X==Ei expression */ 4401 Expr *pX; /* The X expression */ 4402 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4403 Expr *pDel = 0; 4404 sqlite3 *db = pParse->db; 4405 4406 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4407 assert(pExpr->x.pList->nExpr > 0); 4408 pEList = pExpr->x.pList; 4409 aListelem = pEList->a; 4410 nExpr = pEList->nExpr; 4411 endLabel = sqlite3VdbeMakeLabel(pParse); 4412 if( (pX = pExpr->pLeft)!=0 ){ 4413 pDel = sqlite3ExprDup(db, pX, 0); 4414 if( db->mallocFailed ){ 4415 sqlite3ExprDelete(db, pDel); 4416 break; 4417 } 4418 testcase( pX->op==TK_COLUMN ); 4419 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4420 testcase( regFree1==0 ); 4421 memset(&opCompare, 0, sizeof(opCompare)); 4422 opCompare.op = TK_EQ; 4423 opCompare.pLeft = pDel; 4424 pTest = &opCompare; 4425 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4426 ** The value in regFree1 might get SCopy-ed into the file result. 4427 ** So make sure that the regFree1 register is not reused for other 4428 ** purposes and possibly overwritten. */ 4429 regFree1 = 0; 4430 } 4431 for(i=0; i<nExpr-1; i=i+2){ 4432 if( pX ){ 4433 assert( pTest!=0 ); 4434 opCompare.pRight = aListelem[i].pExpr; 4435 }else{ 4436 pTest = aListelem[i].pExpr; 4437 } 4438 nextCase = sqlite3VdbeMakeLabel(pParse); 4439 testcase( pTest->op==TK_COLUMN ); 4440 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4441 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4442 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4443 sqlite3VdbeGoto(v, endLabel); 4444 sqlite3VdbeResolveLabel(v, nextCase); 4445 } 4446 if( (nExpr&1)!=0 ){ 4447 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4448 }else{ 4449 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4450 } 4451 sqlite3ExprDelete(db, pDel); 4452 setDoNotMergeFlagOnCopy(v); 4453 sqlite3VdbeResolveLabel(v, endLabel); 4454 break; 4455 } 4456 #ifndef SQLITE_OMIT_TRIGGER 4457 case TK_RAISE: { 4458 assert( pExpr->affExpr==OE_Rollback 4459 || pExpr->affExpr==OE_Abort 4460 || pExpr->affExpr==OE_Fail 4461 || pExpr->affExpr==OE_Ignore 4462 ); 4463 if( !pParse->pTriggerTab ){ 4464 sqlite3ErrorMsg(pParse, 4465 "RAISE() may only be used within a trigger-program"); 4466 return 0; 4467 } 4468 if( pExpr->affExpr==OE_Abort ){ 4469 sqlite3MayAbort(pParse); 4470 } 4471 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4472 if( pExpr->affExpr==OE_Ignore ){ 4473 sqlite3VdbeAddOp4( 4474 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4475 VdbeCoverage(v); 4476 }else{ 4477 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4478 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4479 } 4480 4481 break; 4482 } 4483 #endif 4484 } 4485 sqlite3ReleaseTempReg(pParse, regFree1); 4486 sqlite3ReleaseTempReg(pParse, regFree2); 4487 return inReg; 4488 } 4489 4490 /* 4491 ** Factor out the code of the given expression to initialization time. 4492 ** 4493 ** If regDest>=0 then the result is always stored in that register and the 4494 ** result is not reusable. If regDest<0 then this routine is free to 4495 ** store the value whereever it wants. The register where the expression 4496 ** is stored is returned. When regDest<0, two identical expressions will 4497 ** code to the same register. 4498 */ 4499 int sqlite3ExprCodeAtInit( 4500 Parse *pParse, /* Parsing context */ 4501 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4502 int regDest /* Store the value in this register */ 4503 ){ 4504 ExprList *p; 4505 assert( ConstFactorOk(pParse) ); 4506 p = pParse->pConstExpr; 4507 if( regDest<0 && p ){ 4508 struct ExprList_item *pItem; 4509 int i; 4510 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4511 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4512 return pItem->u.iConstExprReg; 4513 } 4514 } 4515 } 4516 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4517 p = sqlite3ExprListAppend(pParse, p, pExpr); 4518 if( p ){ 4519 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4520 pItem->reusable = regDest<0; 4521 if( regDest<0 ) regDest = ++pParse->nMem; 4522 pItem->u.iConstExprReg = regDest; 4523 } 4524 pParse->pConstExpr = p; 4525 return regDest; 4526 } 4527 4528 /* 4529 ** Generate code to evaluate an expression and store the results 4530 ** into a register. Return the register number where the results 4531 ** are stored. 4532 ** 4533 ** If the register is a temporary register that can be deallocated, 4534 ** then write its number into *pReg. If the result register is not 4535 ** a temporary, then set *pReg to zero. 4536 ** 4537 ** If pExpr is a constant, then this routine might generate this 4538 ** code to fill the register in the initialization section of the 4539 ** VDBE program, in order to factor it out of the evaluation loop. 4540 */ 4541 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4542 int r2; 4543 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4544 if( ConstFactorOk(pParse) 4545 && pExpr->op!=TK_REGISTER 4546 && sqlite3ExprIsConstantNotJoin(pExpr) 4547 ){ 4548 *pReg = 0; 4549 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4550 }else{ 4551 int r1 = sqlite3GetTempReg(pParse); 4552 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4553 if( r2==r1 ){ 4554 *pReg = r1; 4555 }else{ 4556 sqlite3ReleaseTempReg(pParse, r1); 4557 *pReg = 0; 4558 } 4559 } 4560 return r2; 4561 } 4562 4563 /* 4564 ** Generate code that will evaluate expression pExpr and store the 4565 ** results in register target. The results are guaranteed to appear 4566 ** in register target. 4567 */ 4568 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4569 int inReg; 4570 4571 assert( target>0 && target<=pParse->nMem ); 4572 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4573 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4574 if( inReg!=target && pParse->pVdbe ){ 4575 u8 op; 4576 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4577 op = OP_Copy; 4578 }else{ 4579 op = OP_SCopy; 4580 } 4581 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4582 } 4583 } 4584 4585 /* 4586 ** Make a transient copy of expression pExpr and then code it using 4587 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4588 ** except that the input expression is guaranteed to be unchanged. 4589 */ 4590 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4591 sqlite3 *db = pParse->db; 4592 pExpr = sqlite3ExprDup(db, pExpr, 0); 4593 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4594 sqlite3ExprDelete(db, pExpr); 4595 } 4596 4597 /* 4598 ** Generate code that will evaluate expression pExpr and store the 4599 ** results in register target. The results are guaranteed to appear 4600 ** in register target. If the expression is constant, then this routine 4601 ** might choose to code the expression at initialization time. 4602 */ 4603 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4604 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4605 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4606 }else{ 4607 sqlite3ExprCode(pParse, pExpr, target); 4608 } 4609 } 4610 4611 /* 4612 ** Generate code that pushes the value of every element of the given 4613 ** expression list into a sequence of registers beginning at target. 4614 ** 4615 ** Return the number of elements evaluated. The number returned will 4616 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4617 ** is defined. 4618 ** 4619 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4620 ** filled using OP_SCopy. OP_Copy must be used instead. 4621 ** 4622 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4623 ** factored out into initialization code. 4624 ** 4625 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4626 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4627 ** in registers at srcReg, and so the value can be copied from there. 4628 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4629 ** are simply omitted rather than being copied from srcReg. 4630 */ 4631 int sqlite3ExprCodeExprList( 4632 Parse *pParse, /* Parsing context */ 4633 ExprList *pList, /* The expression list to be coded */ 4634 int target, /* Where to write results */ 4635 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4636 u8 flags /* SQLITE_ECEL_* flags */ 4637 ){ 4638 struct ExprList_item *pItem; 4639 int i, j, n; 4640 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4641 Vdbe *v = pParse->pVdbe; 4642 assert( pList!=0 ); 4643 assert( target>0 ); 4644 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4645 n = pList->nExpr; 4646 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4647 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4648 Expr *pExpr = pItem->pExpr; 4649 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4650 if( pItem->bSorterRef ){ 4651 i--; 4652 n--; 4653 }else 4654 #endif 4655 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4656 if( flags & SQLITE_ECEL_OMITREF ){ 4657 i--; 4658 n--; 4659 }else{ 4660 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4661 } 4662 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4663 && sqlite3ExprIsConstantNotJoin(pExpr) 4664 ){ 4665 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4666 }else{ 4667 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4668 if( inReg!=target+i ){ 4669 VdbeOp *pOp; 4670 if( copyOp==OP_Copy 4671 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4672 && pOp->p1+pOp->p3+1==inReg 4673 && pOp->p2+pOp->p3+1==target+i 4674 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4675 ){ 4676 pOp->p3++; 4677 }else{ 4678 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4679 } 4680 } 4681 } 4682 } 4683 return n; 4684 } 4685 4686 /* 4687 ** Generate code for a BETWEEN operator. 4688 ** 4689 ** x BETWEEN y AND z 4690 ** 4691 ** The above is equivalent to 4692 ** 4693 ** x>=y AND x<=z 4694 ** 4695 ** Code it as such, taking care to do the common subexpression 4696 ** elimination of x. 4697 ** 4698 ** The xJumpIf parameter determines details: 4699 ** 4700 ** NULL: Store the boolean result in reg[dest] 4701 ** sqlite3ExprIfTrue: Jump to dest if true 4702 ** sqlite3ExprIfFalse: Jump to dest if false 4703 ** 4704 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4705 */ 4706 static void exprCodeBetween( 4707 Parse *pParse, /* Parsing and code generating context */ 4708 Expr *pExpr, /* The BETWEEN expression */ 4709 int dest, /* Jump destination or storage location */ 4710 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4711 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4712 ){ 4713 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4714 Expr compLeft; /* The x>=y term */ 4715 Expr compRight; /* The x<=z term */ 4716 int regFree1 = 0; /* Temporary use register */ 4717 Expr *pDel = 0; 4718 sqlite3 *db = pParse->db; 4719 4720 memset(&compLeft, 0, sizeof(Expr)); 4721 memset(&compRight, 0, sizeof(Expr)); 4722 memset(&exprAnd, 0, sizeof(Expr)); 4723 4724 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4725 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4726 if( db->mallocFailed==0 ){ 4727 exprAnd.op = TK_AND; 4728 exprAnd.pLeft = &compLeft; 4729 exprAnd.pRight = &compRight; 4730 compLeft.op = TK_GE; 4731 compLeft.pLeft = pDel; 4732 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4733 compRight.op = TK_LE; 4734 compRight.pLeft = pDel; 4735 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4736 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4737 if( xJump ){ 4738 xJump(pParse, &exprAnd, dest, jumpIfNull); 4739 }else{ 4740 /* Mark the expression is being from the ON or USING clause of a join 4741 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4742 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4743 ** for clarity, but we are out of bits in the Expr.flags field so we 4744 ** have to reuse the EP_FromJoin bit. Bummer. */ 4745 pDel->flags |= EP_FromJoin; 4746 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4747 } 4748 sqlite3ReleaseTempReg(pParse, regFree1); 4749 } 4750 sqlite3ExprDelete(db, pDel); 4751 4752 /* Ensure adequate test coverage */ 4753 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4754 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4755 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4756 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4757 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4758 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4759 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4760 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4761 testcase( xJump==0 ); 4762 } 4763 4764 /* 4765 ** Generate code for a boolean expression such that a jump is made 4766 ** to the label "dest" if the expression is true but execution 4767 ** continues straight thru if the expression is false. 4768 ** 4769 ** If the expression evaluates to NULL (neither true nor false), then 4770 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4771 ** 4772 ** This code depends on the fact that certain token values (ex: TK_EQ) 4773 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4774 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4775 ** the make process cause these values to align. Assert()s in the code 4776 ** below verify that the numbers are aligned correctly. 4777 */ 4778 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4779 Vdbe *v = pParse->pVdbe; 4780 int op = 0; 4781 int regFree1 = 0; 4782 int regFree2 = 0; 4783 int r1, r2; 4784 4785 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4786 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4787 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4788 op = pExpr->op; 4789 switch( op ){ 4790 case TK_AND: 4791 case TK_OR: { 4792 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4793 if( pAlt!=pExpr ){ 4794 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4795 }else if( op==TK_AND ){ 4796 int d2 = sqlite3VdbeMakeLabel(pParse); 4797 testcase( jumpIfNull==0 ); 4798 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4799 jumpIfNull^SQLITE_JUMPIFNULL); 4800 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4801 sqlite3VdbeResolveLabel(v, d2); 4802 }else{ 4803 testcase( jumpIfNull==0 ); 4804 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4805 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4806 } 4807 break; 4808 } 4809 case TK_NOT: { 4810 testcase( jumpIfNull==0 ); 4811 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4812 break; 4813 } 4814 case TK_TRUTH: { 4815 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4816 int isTrue; /* IS TRUE or IS NOT TRUE */ 4817 testcase( jumpIfNull==0 ); 4818 isNot = pExpr->op2==TK_ISNOT; 4819 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4820 testcase( isTrue && isNot ); 4821 testcase( !isTrue && isNot ); 4822 if( isTrue ^ isNot ){ 4823 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4824 isNot ? SQLITE_JUMPIFNULL : 0); 4825 }else{ 4826 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4827 isNot ? SQLITE_JUMPIFNULL : 0); 4828 } 4829 break; 4830 } 4831 case TK_IS: 4832 case TK_ISNOT: 4833 testcase( op==TK_IS ); 4834 testcase( op==TK_ISNOT ); 4835 op = (op==TK_IS) ? TK_EQ : TK_NE; 4836 jumpIfNull = SQLITE_NULLEQ; 4837 /* Fall thru */ 4838 case TK_LT: 4839 case TK_LE: 4840 case TK_GT: 4841 case TK_GE: 4842 case TK_NE: 4843 case TK_EQ: { 4844 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4845 testcase( jumpIfNull==0 ); 4846 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4847 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4848 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4849 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4850 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4851 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4852 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4853 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4854 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4855 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4856 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4857 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4858 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4859 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4860 testcase( regFree1==0 ); 4861 testcase( regFree2==0 ); 4862 break; 4863 } 4864 case TK_ISNULL: 4865 case TK_NOTNULL: { 4866 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4867 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4868 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4869 sqlite3VdbeAddOp2(v, op, r1, dest); 4870 VdbeCoverageIf(v, op==TK_ISNULL); 4871 VdbeCoverageIf(v, op==TK_NOTNULL); 4872 testcase( regFree1==0 ); 4873 break; 4874 } 4875 case TK_BETWEEN: { 4876 testcase( jumpIfNull==0 ); 4877 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4878 break; 4879 } 4880 #ifndef SQLITE_OMIT_SUBQUERY 4881 case TK_IN: { 4882 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4883 int destIfNull = jumpIfNull ? dest : destIfFalse; 4884 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4885 sqlite3VdbeGoto(v, dest); 4886 sqlite3VdbeResolveLabel(v, destIfFalse); 4887 break; 4888 } 4889 #endif 4890 default: { 4891 default_expr: 4892 if( ExprAlwaysTrue(pExpr) ){ 4893 sqlite3VdbeGoto(v, dest); 4894 }else if( ExprAlwaysFalse(pExpr) ){ 4895 /* No-op */ 4896 }else{ 4897 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4898 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4899 VdbeCoverage(v); 4900 testcase( regFree1==0 ); 4901 testcase( jumpIfNull==0 ); 4902 } 4903 break; 4904 } 4905 } 4906 sqlite3ReleaseTempReg(pParse, regFree1); 4907 sqlite3ReleaseTempReg(pParse, regFree2); 4908 } 4909 4910 /* 4911 ** Generate code for a boolean expression such that a jump is made 4912 ** to the label "dest" if the expression is false but execution 4913 ** continues straight thru if the expression is true. 4914 ** 4915 ** If the expression evaluates to NULL (neither true nor false) then 4916 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4917 ** is 0. 4918 */ 4919 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4920 Vdbe *v = pParse->pVdbe; 4921 int op = 0; 4922 int regFree1 = 0; 4923 int regFree2 = 0; 4924 int r1, r2; 4925 4926 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4927 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4928 if( pExpr==0 ) return; 4929 4930 /* The value of pExpr->op and op are related as follows: 4931 ** 4932 ** pExpr->op op 4933 ** --------- ---------- 4934 ** TK_ISNULL OP_NotNull 4935 ** TK_NOTNULL OP_IsNull 4936 ** TK_NE OP_Eq 4937 ** TK_EQ OP_Ne 4938 ** TK_GT OP_Le 4939 ** TK_LE OP_Gt 4940 ** TK_GE OP_Lt 4941 ** TK_LT OP_Ge 4942 ** 4943 ** For other values of pExpr->op, op is undefined and unused. 4944 ** The value of TK_ and OP_ constants are arranged such that we 4945 ** can compute the mapping above using the following expression. 4946 ** Assert()s verify that the computation is correct. 4947 */ 4948 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4949 4950 /* Verify correct alignment of TK_ and OP_ constants 4951 */ 4952 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4953 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4954 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4955 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4956 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4957 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4958 assert( pExpr->op!=TK_GT || op==OP_Le ); 4959 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4960 4961 switch( pExpr->op ){ 4962 case TK_AND: 4963 case TK_OR: { 4964 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4965 if( pAlt!=pExpr ){ 4966 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 4967 }else if( pExpr->op==TK_AND ){ 4968 testcase( jumpIfNull==0 ); 4969 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4970 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4971 }else{ 4972 int d2 = sqlite3VdbeMakeLabel(pParse); 4973 testcase( jumpIfNull==0 ); 4974 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 4975 jumpIfNull^SQLITE_JUMPIFNULL); 4976 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4977 sqlite3VdbeResolveLabel(v, d2); 4978 } 4979 break; 4980 } 4981 case TK_NOT: { 4982 testcase( jumpIfNull==0 ); 4983 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4984 break; 4985 } 4986 case TK_TRUTH: { 4987 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4988 int isTrue; /* IS TRUE or IS NOT TRUE */ 4989 testcase( jumpIfNull==0 ); 4990 isNot = pExpr->op2==TK_ISNOT; 4991 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4992 testcase( isTrue && isNot ); 4993 testcase( !isTrue && isNot ); 4994 if( isTrue ^ isNot ){ 4995 /* IS TRUE and IS NOT FALSE */ 4996 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4997 isNot ? 0 : SQLITE_JUMPIFNULL); 4998 4999 }else{ 5000 /* IS FALSE and IS NOT TRUE */ 5001 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5002 isNot ? 0 : SQLITE_JUMPIFNULL); 5003 } 5004 break; 5005 } 5006 case TK_IS: 5007 case TK_ISNOT: 5008 testcase( pExpr->op==TK_IS ); 5009 testcase( pExpr->op==TK_ISNOT ); 5010 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5011 jumpIfNull = SQLITE_NULLEQ; 5012 /* Fall thru */ 5013 case TK_LT: 5014 case TK_LE: 5015 case TK_GT: 5016 case TK_GE: 5017 case TK_NE: 5018 case TK_EQ: { 5019 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5020 testcase( jumpIfNull==0 ); 5021 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5022 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5023 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5024 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5025 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5026 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5027 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5028 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5029 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5030 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5031 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5032 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5033 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5034 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5035 testcase( regFree1==0 ); 5036 testcase( regFree2==0 ); 5037 break; 5038 } 5039 case TK_ISNULL: 5040 case TK_NOTNULL: { 5041 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5042 sqlite3VdbeAddOp2(v, op, r1, dest); 5043 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5044 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5045 testcase( regFree1==0 ); 5046 break; 5047 } 5048 case TK_BETWEEN: { 5049 testcase( jumpIfNull==0 ); 5050 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5051 break; 5052 } 5053 #ifndef SQLITE_OMIT_SUBQUERY 5054 case TK_IN: { 5055 if( jumpIfNull ){ 5056 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5057 }else{ 5058 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5059 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5060 sqlite3VdbeResolveLabel(v, destIfNull); 5061 } 5062 break; 5063 } 5064 #endif 5065 default: { 5066 default_expr: 5067 if( ExprAlwaysFalse(pExpr) ){ 5068 sqlite3VdbeGoto(v, dest); 5069 }else if( ExprAlwaysTrue(pExpr) ){ 5070 /* no-op */ 5071 }else{ 5072 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5073 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5074 VdbeCoverage(v); 5075 testcase( regFree1==0 ); 5076 testcase( jumpIfNull==0 ); 5077 } 5078 break; 5079 } 5080 } 5081 sqlite3ReleaseTempReg(pParse, regFree1); 5082 sqlite3ReleaseTempReg(pParse, regFree2); 5083 } 5084 5085 /* 5086 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5087 ** code generation, and that copy is deleted after code generation. This 5088 ** ensures that the original pExpr is unchanged. 5089 */ 5090 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5091 sqlite3 *db = pParse->db; 5092 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5093 if( db->mallocFailed==0 ){ 5094 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5095 } 5096 sqlite3ExprDelete(db, pCopy); 5097 } 5098 5099 /* 5100 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5101 ** type of expression. 5102 ** 5103 ** If pExpr is a simple SQL value - an integer, real, string, blob 5104 ** or NULL value - then the VDBE currently being prepared is configured 5105 ** to re-prepare each time a new value is bound to variable pVar. 5106 ** 5107 ** Additionally, if pExpr is a simple SQL value and the value is the 5108 ** same as that currently bound to variable pVar, non-zero is returned. 5109 ** Otherwise, if the values are not the same or if pExpr is not a simple 5110 ** SQL value, zero is returned. 5111 */ 5112 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5113 int res = 0; 5114 int iVar; 5115 sqlite3_value *pL, *pR = 0; 5116 5117 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5118 if( pR ){ 5119 iVar = pVar->iColumn; 5120 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5121 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5122 if( pL ){ 5123 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5124 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5125 } 5126 res = 0==sqlite3MemCompare(pL, pR, 0); 5127 } 5128 sqlite3ValueFree(pR); 5129 sqlite3ValueFree(pL); 5130 } 5131 5132 return res; 5133 } 5134 5135 /* 5136 ** Do a deep comparison of two expression trees. Return 0 if the two 5137 ** expressions are completely identical. Return 1 if they differ only 5138 ** by a COLLATE operator at the top level. Return 2 if there are differences 5139 ** other than the top-level COLLATE operator. 5140 ** 5141 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5142 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5143 ** 5144 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5145 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5146 ** 5147 ** Sometimes this routine will return 2 even if the two expressions 5148 ** really are equivalent. If we cannot prove that the expressions are 5149 ** identical, we return 2 just to be safe. So if this routine 5150 ** returns 2, then you do not really know for certain if the two 5151 ** expressions are the same. But if you get a 0 or 1 return, then you 5152 ** can be sure the expressions are the same. In the places where 5153 ** this routine is used, it does not hurt to get an extra 2 - that 5154 ** just might result in some slightly slower code. But returning 5155 ** an incorrect 0 or 1 could lead to a malfunction. 5156 ** 5157 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5158 ** pParse->pReprepare can be matched against literals in pB. The 5159 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5160 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5161 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5162 ** pB causes a return value of 2. 5163 */ 5164 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5165 u32 combinedFlags; 5166 if( pA==0 || pB==0 ){ 5167 return pB==pA ? 0 : 2; 5168 } 5169 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5170 return 0; 5171 } 5172 combinedFlags = pA->flags | pB->flags; 5173 if( combinedFlags & EP_IntValue ){ 5174 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5175 return 0; 5176 } 5177 return 2; 5178 } 5179 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5180 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5181 return 1; 5182 } 5183 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5184 return 1; 5185 } 5186 return 2; 5187 } 5188 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5189 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5190 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5191 #ifndef SQLITE_OMIT_WINDOWFUNC 5192 assert( pA->op==pB->op ); 5193 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5194 return 2; 5195 } 5196 if( ExprHasProperty(pA,EP_WinFunc) ){ 5197 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5198 return 2; 5199 } 5200 } 5201 #endif 5202 }else if( pA->op==TK_NULL ){ 5203 return 0; 5204 }else if( pA->op==TK_COLLATE ){ 5205 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5206 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5207 return 2; 5208 } 5209 } 5210 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5211 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5212 if( (combinedFlags & EP_TokenOnly)==0 ){ 5213 if( combinedFlags & EP_xIsSelect ) return 2; 5214 if( (combinedFlags & EP_FixedCol)==0 5215 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5216 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5217 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5218 if( pA->op!=TK_STRING 5219 && pA->op!=TK_TRUEFALSE 5220 && (combinedFlags & EP_Reduced)==0 5221 ){ 5222 if( pA->iColumn!=pB->iColumn ) return 2; 5223 if( pA->op2!=pB->op2 ){ 5224 if( pA->op==TK_TRUTH ) return 2; 5225 if( pA->op==TK_FUNCTION && iTab<0 ){ 5226 /* Ex: CREATE TABLE t1(a CHECK( a<julianday('now') )); 5227 ** INSERT INTO t1(a) VALUES(julianday('now')+10); 5228 ** Without this test, sqlite3ExprCodeAtInit() will run on the 5229 ** the julianday() of INSERT first, and remember that expression. 5230 ** Then sqlite3ExprCodeInit() will see the julianday() in the CHECK 5231 ** constraint as redundant, reusing the one from the INSERT, even 5232 ** though the julianday() in INSERT lacks the critical NC_IsCheck 5233 ** flag. See ticket [830277d9db6c3ba1] (2019-10-30) 5234 */ 5235 return 2; 5236 } 5237 } 5238 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5239 return 2; 5240 } 5241 } 5242 } 5243 return 0; 5244 } 5245 5246 /* 5247 ** Compare two ExprList objects. Return 0 if they are identical, 1 5248 ** if they are certainly different, or 2 if it is not possible to 5249 ** determine if they are identical or not. 5250 ** 5251 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5252 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5253 ** 5254 ** This routine might return non-zero for equivalent ExprLists. The 5255 ** only consequence will be disabled optimizations. But this routine 5256 ** must never return 0 if the two ExprList objects are different, or 5257 ** a malfunction will result. 5258 ** 5259 ** Two NULL pointers are considered to be the same. But a NULL pointer 5260 ** always differs from a non-NULL pointer. 5261 */ 5262 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5263 int i; 5264 if( pA==0 && pB==0 ) return 0; 5265 if( pA==0 || pB==0 ) return 1; 5266 if( pA->nExpr!=pB->nExpr ) return 1; 5267 for(i=0; i<pA->nExpr; i++){ 5268 int res; 5269 Expr *pExprA = pA->a[i].pExpr; 5270 Expr *pExprB = pB->a[i].pExpr; 5271 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5272 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5273 } 5274 return 0; 5275 } 5276 5277 /* 5278 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5279 ** are ignored. 5280 */ 5281 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5282 return sqlite3ExprCompare(0, 5283 sqlite3ExprSkipCollateAndLikely(pA), 5284 sqlite3ExprSkipCollateAndLikely(pB), 5285 iTab); 5286 } 5287 5288 /* 5289 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5290 ** 5291 ** Or if seenNot is true, return non-zero if Expr p can only be 5292 ** non-NULL if pNN is not NULL 5293 */ 5294 static int exprImpliesNotNull( 5295 Parse *pParse, /* Parsing context */ 5296 Expr *p, /* The expression to be checked */ 5297 Expr *pNN, /* The expression that is NOT NULL */ 5298 int iTab, /* Table being evaluated */ 5299 int seenNot /* Return true only if p can be any non-NULL value */ 5300 ){ 5301 assert( p ); 5302 assert( pNN ); 5303 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5304 return pNN->op!=TK_NULL; 5305 } 5306 switch( p->op ){ 5307 case TK_IN: { 5308 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5309 assert( ExprHasProperty(p,EP_xIsSelect) 5310 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5311 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5312 } 5313 case TK_BETWEEN: { 5314 ExprList *pList = p->x.pList; 5315 assert( pList!=0 ); 5316 assert( pList->nExpr==2 ); 5317 if( seenNot ) return 0; 5318 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5319 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5320 ){ 5321 return 1; 5322 } 5323 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5324 } 5325 case TK_EQ: 5326 case TK_NE: 5327 case TK_LT: 5328 case TK_LE: 5329 case TK_GT: 5330 case TK_GE: 5331 case TK_PLUS: 5332 case TK_MINUS: 5333 case TK_BITOR: 5334 case TK_LSHIFT: 5335 case TK_RSHIFT: 5336 case TK_CONCAT: 5337 seenNot = 1; 5338 /* Fall thru */ 5339 case TK_STAR: 5340 case TK_REM: 5341 case TK_BITAND: 5342 case TK_SLASH: { 5343 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5344 /* Fall thru into the next case */ 5345 } 5346 case TK_SPAN: 5347 case TK_COLLATE: 5348 case TK_UPLUS: 5349 case TK_UMINUS: { 5350 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5351 } 5352 case TK_TRUTH: { 5353 if( seenNot ) return 0; 5354 if( p->op2!=TK_IS ) return 0; 5355 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5356 } 5357 case TK_BITNOT: 5358 case TK_NOT: { 5359 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5360 } 5361 } 5362 return 0; 5363 } 5364 5365 /* 5366 ** Return true if we can prove the pE2 will always be true if pE1 is 5367 ** true. Return false if we cannot complete the proof or if pE2 might 5368 ** be false. Examples: 5369 ** 5370 ** pE1: x==5 pE2: x==5 Result: true 5371 ** pE1: x>0 pE2: x==5 Result: false 5372 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5373 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5374 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5375 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5376 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5377 ** 5378 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5379 ** Expr.iTable<0 then assume a table number given by iTab. 5380 ** 5381 ** If pParse is not NULL, then the values of bound variables in pE1 are 5382 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5383 ** modified to record which bound variables are referenced. If pParse 5384 ** is NULL, then false will be returned if pE1 contains any bound variables. 5385 ** 5386 ** When in doubt, return false. Returning true might give a performance 5387 ** improvement. Returning false might cause a performance reduction, but 5388 ** it will always give the correct answer and is hence always safe. 5389 */ 5390 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5391 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5392 return 1; 5393 } 5394 if( pE2->op==TK_OR 5395 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5396 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5397 ){ 5398 return 1; 5399 } 5400 if( pE2->op==TK_NOTNULL 5401 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5402 ){ 5403 return 1; 5404 } 5405 return 0; 5406 } 5407 5408 /* 5409 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5410 ** If the expression node requires that the table at pWalker->iCur 5411 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5412 ** 5413 ** This routine controls an optimization. False positives (setting 5414 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5415 ** (never setting pWalker->eCode) is a harmless missed optimization. 5416 */ 5417 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5418 testcase( pExpr->op==TK_AGG_COLUMN ); 5419 testcase( pExpr->op==TK_AGG_FUNCTION ); 5420 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5421 switch( pExpr->op ){ 5422 case TK_ISNOT: 5423 case TK_ISNULL: 5424 case TK_NOTNULL: 5425 case TK_IS: 5426 case TK_OR: 5427 case TK_VECTOR: 5428 case TK_CASE: 5429 case TK_IN: 5430 case TK_FUNCTION: 5431 case TK_TRUTH: 5432 testcase( pExpr->op==TK_ISNOT ); 5433 testcase( pExpr->op==TK_ISNULL ); 5434 testcase( pExpr->op==TK_NOTNULL ); 5435 testcase( pExpr->op==TK_IS ); 5436 testcase( pExpr->op==TK_OR ); 5437 testcase( pExpr->op==TK_VECTOR ); 5438 testcase( pExpr->op==TK_CASE ); 5439 testcase( pExpr->op==TK_IN ); 5440 testcase( pExpr->op==TK_FUNCTION ); 5441 testcase( pExpr->op==TK_TRUTH ); 5442 return WRC_Prune; 5443 case TK_COLUMN: 5444 if( pWalker->u.iCur==pExpr->iTable ){ 5445 pWalker->eCode = 1; 5446 return WRC_Abort; 5447 } 5448 return WRC_Prune; 5449 5450 case TK_AND: 5451 if( pWalker->eCode==0 ){ 5452 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5453 if( pWalker->eCode ){ 5454 pWalker->eCode = 0; 5455 sqlite3WalkExpr(pWalker, pExpr->pRight); 5456 } 5457 } 5458 return WRC_Prune; 5459 5460 case TK_BETWEEN: 5461 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5462 assert( pWalker->eCode ); 5463 return WRC_Abort; 5464 } 5465 return WRC_Prune; 5466 5467 /* Virtual tables are allowed to use constraints like x=NULL. So 5468 ** a term of the form x=y does not prove that y is not null if x 5469 ** is the column of a virtual table */ 5470 case TK_EQ: 5471 case TK_NE: 5472 case TK_LT: 5473 case TK_LE: 5474 case TK_GT: 5475 case TK_GE: { 5476 Expr *pLeft = pExpr->pLeft; 5477 Expr *pRight = pExpr->pRight; 5478 testcase( pExpr->op==TK_EQ ); 5479 testcase( pExpr->op==TK_NE ); 5480 testcase( pExpr->op==TK_LT ); 5481 testcase( pExpr->op==TK_LE ); 5482 testcase( pExpr->op==TK_GT ); 5483 testcase( pExpr->op==TK_GE ); 5484 /* The y.pTab=0 assignment in wherecode.c always happens after the 5485 ** impliesNotNullRow() test */ 5486 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5487 && IsVirtual(pLeft->y.pTab)) 5488 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5489 && IsVirtual(pRight->y.pTab)) 5490 ){ 5491 return WRC_Prune; 5492 } 5493 } 5494 default: 5495 return WRC_Continue; 5496 } 5497 } 5498 5499 /* 5500 ** Return true (non-zero) if expression p can only be true if at least 5501 ** one column of table iTab is non-null. In other words, return true 5502 ** if expression p will always be NULL or false if every column of iTab 5503 ** is NULL. 5504 ** 5505 ** False negatives are acceptable. In other words, it is ok to return 5506 ** zero even if expression p will never be true of every column of iTab 5507 ** is NULL. A false negative is merely a missed optimization opportunity. 5508 ** 5509 ** False positives are not allowed, however. A false positive may result 5510 ** in an incorrect answer. 5511 ** 5512 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5513 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5514 ** 5515 ** This routine is used to check if a LEFT JOIN can be converted into 5516 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5517 ** clause requires that some column of the right table of the LEFT JOIN 5518 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5519 ** ordinary join. 5520 */ 5521 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5522 Walker w; 5523 p = sqlite3ExprSkipCollateAndLikely(p); 5524 if( p==0 ) return 0; 5525 if( p->op==TK_NOTNULL ){ 5526 p = p->pLeft; 5527 }else{ 5528 while( p->op==TK_AND ){ 5529 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5530 p = p->pRight; 5531 } 5532 } 5533 w.xExprCallback = impliesNotNullRow; 5534 w.xSelectCallback = 0; 5535 w.xSelectCallback2 = 0; 5536 w.eCode = 0; 5537 w.u.iCur = iTab; 5538 sqlite3WalkExpr(&w, p); 5539 return w.eCode; 5540 } 5541 5542 /* 5543 ** An instance of the following structure is used by the tree walker 5544 ** to determine if an expression can be evaluated by reference to the 5545 ** index only, without having to do a search for the corresponding 5546 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5547 ** is the cursor for the table. 5548 */ 5549 struct IdxCover { 5550 Index *pIdx; /* The index to be tested for coverage */ 5551 int iCur; /* Cursor number for the table corresponding to the index */ 5552 }; 5553 5554 /* 5555 ** Check to see if there are references to columns in table 5556 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5557 ** pWalker->u.pIdxCover->pIdx. 5558 */ 5559 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5560 if( pExpr->op==TK_COLUMN 5561 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5562 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5563 ){ 5564 pWalker->eCode = 1; 5565 return WRC_Abort; 5566 } 5567 return WRC_Continue; 5568 } 5569 5570 /* 5571 ** Determine if an index pIdx on table with cursor iCur contains will 5572 ** the expression pExpr. Return true if the index does cover the 5573 ** expression and false if the pExpr expression references table columns 5574 ** that are not found in the index pIdx. 5575 ** 5576 ** An index covering an expression means that the expression can be 5577 ** evaluated using only the index and without having to lookup the 5578 ** corresponding table entry. 5579 */ 5580 int sqlite3ExprCoveredByIndex( 5581 Expr *pExpr, /* The index to be tested */ 5582 int iCur, /* The cursor number for the corresponding table */ 5583 Index *pIdx /* The index that might be used for coverage */ 5584 ){ 5585 Walker w; 5586 struct IdxCover xcov; 5587 memset(&w, 0, sizeof(w)); 5588 xcov.iCur = iCur; 5589 xcov.pIdx = pIdx; 5590 w.xExprCallback = exprIdxCover; 5591 w.u.pIdxCover = &xcov; 5592 sqlite3WalkExpr(&w, pExpr); 5593 return !w.eCode; 5594 } 5595 5596 5597 /* 5598 ** An instance of the following structure is used by the tree walker 5599 ** to count references to table columns in the arguments of an 5600 ** aggregate function, in order to implement the 5601 ** sqlite3FunctionThisSrc() routine. 5602 */ 5603 struct SrcCount { 5604 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5605 int nThis; /* Number of references to columns in pSrcList */ 5606 int nOther; /* Number of references to columns in other FROM clauses */ 5607 }; 5608 5609 /* 5610 ** Count the number of references to columns. 5611 */ 5612 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5613 /* There was once a NEVER() on the second term on the grounds that 5614 ** sqlite3FunctionUsesThisSrc() was always called before 5615 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5616 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5617 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5618 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5619 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5620 int i; 5621 struct SrcCount *p = pWalker->u.pSrcCount; 5622 SrcList *pSrc = p->pSrc; 5623 int nSrc = pSrc ? pSrc->nSrc : 0; 5624 for(i=0; i<nSrc; i++){ 5625 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5626 } 5627 if( i<nSrc ){ 5628 p->nThis++; 5629 }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){ 5630 /* In a well-formed parse tree (no name resolution errors), 5631 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5632 ** outer context. Those are the only ones to count as "other" */ 5633 p->nOther++; 5634 } 5635 } 5636 return WRC_Continue; 5637 } 5638 5639 /* 5640 ** Determine if any of the arguments to the pExpr Function reference 5641 ** pSrcList. Return true if they do. Also return true if the function 5642 ** has no arguments or has only constant arguments. Return false if pExpr 5643 ** references columns but not columns of tables found in pSrcList. 5644 */ 5645 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5646 Walker w; 5647 struct SrcCount cnt; 5648 assert( pExpr->op==TK_AGG_FUNCTION ); 5649 memset(&w, 0, sizeof(w)); 5650 w.xExprCallback = exprSrcCount; 5651 w.xSelectCallback = sqlite3SelectWalkNoop; 5652 w.u.pSrcCount = &cnt; 5653 cnt.pSrc = pSrcList; 5654 cnt.nThis = 0; 5655 cnt.nOther = 0; 5656 sqlite3WalkExprList(&w, pExpr->x.pList); 5657 #ifndef SQLITE_OMIT_WINDOWFUNC 5658 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5659 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5660 } 5661 #endif 5662 return cnt.nThis>0 || cnt.nOther==0; 5663 } 5664 5665 /* 5666 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5667 ** the new element. Return a negative number if malloc fails. 5668 */ 5669 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5670 int i; 5671 pInfo->aCol = sqlite3ArrayAllocate( 5672 db, 5673 pInfo->aCol, 5674 sizeof(pInfo->aCol[0]), 5675 &pInfo->nColumn, 5676 &i 5677 ); 5678 return i; 5679 } 5680 5681 /* 5682 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5683 ** the new element. Return a negative number if malloc fails. 5684 */ 5685 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5686 int i; 5687 pInfo->aFunc = sqlite3ArrayAllocate( 5688 db, 5689 pInfo->aFunc, 5690 sizeof(pInfo->aFunc[0]), 5691 &pInfo->nFunc, 5692 &i 5693 ); 5694 return i; 5695 } 5696 5697 /* 5698 ** This is the xExprCallback for a tree walker. It is used to 5699 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5700 ** for additional information. 5701 */ 5702 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5703 int i; 5704 NameContext *pNC = pWalker->u.pNC; 5705 Parse *pParse = pNC->pParse; 5706 SrcList *pSrcList = pNC->pSrcList; 5707 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5708 5709 assert( pNC->ncFlags & NC_UAggInfo ); 5710 switch( pExpr->op ){ 5711 case TK_AGG_COLUMN: 5712 case TK_COLUMN: { 5713 testcase( pExpr->op==TK_AGG_COLUMN ); 5714 testcase( pExpr->op==TK_COLUMN ); 5715 /* Check to see if the column is in one of the tables in the FROM 5716 ** clause of the aggregate query */ 5717 if( ALWAYS(pSrcList!=0) ){ 5718 struct SrcList_item *pItem = pSrcList->a; 5719 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5720 struct AggInfo_col *pCol; 5721 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5722 if( pExpr->iTable==pItem->iCursor ){ 5723 /* If we reach this point, it means that pExpr refers to a table 5724 ** that is in the FROM clause of the aggregate query. 5725 ** 5726 ** Make an entry for the column in pAggInfo->aCol[] if there 5727 ** is not an entry there already. 5728 */ 5729 int k; 5730 pCol = pAggInfo->aCol; 5731 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5732 if( pCol->iTable==pExpr->iTable && 5733 pCol->iColumn==pExpr->iColumn ){ 5734 break; 5735 } 5736 } 5737 if( (k>=pAggInfo->nColumn) 5738 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5739 ){ 5740 pCol = &pAggInfo->aCol[k]; 5741 pCol->pTab = pExpr->y.pTab; 5742 pCol->iTable = pExpr->iTable; 5743 pCol->iColumn = pExpr->iColumn; 5744 pCol->iMem = ++pParse->nMem; 5745 pCol->iSorterColumn = -1; 5746 pCol->pExpr = pExpr; 5747 if( pAggInfo->pGroupBy ){ 5748 int j, n; 5749 ExprList *pGB = pAggInfo->pGroupBy; 5750 struct ExprList_item *pTerm = pGB->a; 5751 n = pGB->nExpr; 5752 for(j=0; j<n; j++, pTerm++){ 5753 Expr *pE = pTerm->pExpr; 5754 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5755 pE->iColumn==pExpr->iColumn ){ 5756 pCol->iSorterColumn = j; 5757 break; 5758 } 5759 } 5760 } 5761 if( pCol->iSorterColumn<0 ){ 5762 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5763 } 5764 } 5765 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5766 ** because it was there before or because we just created it). 5767 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5768 ** pAggInfo->aCol[] entry. 5769 */ 5770 ExprSetVVAProperty(pExpr, EP_NoReduce); 5771 pExpr->pAggInfo = pAggInfo; 5772 pExpr->op = TK_AGG_COLUMN; 5773 pExpr->iAgg = (i16)k; 5774 break; 5775 } /* endif pExpr->iTable==pItem->iCursor */ 5776 } /* end loop over pSrcList */ 5777 } 5778 return WRC_Prune; 5779 } 5780 case TK_AGG_FUNCTION: { 5781 if( (pNC->ncFlags & NC_InAggFunc)==0 5782 && pWalker->walkerDepth==pExpr->op2 5783 ){ 5784 /* Check to see if pExpr is a duplicate of another aggregate 5785 ** function that is already in the pAggInfo structure 5786 */ 5787 struct AggInfo_func *pItem = pAggInfo->aFunc; 5788 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5789 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5790 break; 5791 } 5792 } 5793 if( i>=pAggInfo->nFunc ){ 5794 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5795 */ 5796 u8 enc = ENC(pParse->db); 5797 i = addAggInfoFunc(pParse->db, pAggInfo); 5798 if( i>=0 ){ 5799 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5800 pItem = &pAggInfo->aFunc[i]; 5801 pItem->pExpr = pExpr; 5802 pItem->iMem = ++pParse->nMem; 5803 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5804 pItem->pFunc = sqlite3FindFunction(pParse->db, 5805 pExpr->u.zToken, 5806 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5807 if( pExpr->flags & EP_Distinct ){ 5808 pItem->iDistinct = pParse->nTab++; 5809 }else{ 5810 pItem->iDistinct = -1; 5811 } 5812 } 5813 } 5814 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5815 */ 5816 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5817 ExprSetVVAProperty(pExpr, EP_NoReduce); 5818 pExpr->iAgg = (i16)i; 5819 pExpr->pAggInfo = pAggInfo; 5820 return WRC_Prune; 5821 }else{ 5822 return WRC_Continue; 5823 } 5824 } 5825 } 5826 return WRC_Continue; 5827 } 5828 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5829 UNUSED_PARAMETER(pSelect); 5830 pWalker->walkerDepth++; 5831 return WRC_Continue; 5832 } 5833 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5834 UNUSED_PARAMETER(pSelect); 5835 pWalker->walkerDepth--; 5836 } 5837 5838 /* 5839 ** Analyze the pExpr expression looking for aggregate functions and 5840 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5841 ** points to. Additional entries are made on the AggInfo object as 5842 ** necessary. 5843 ** 5844 ** This routine should only be called after the expression has been 5845 ** analyzed by sqlite3ResolveExprNames(). 5846 */ 5847 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5848 Walker w; 5849 w.xExprCallback = analyzeAggregate; 5850 w.xSelectCallback = analyzeAggregatesInSelect; 5851 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5852 w.walkerDepth = 0; 5853 w.u.pNC = pNC; 5854 w.pParse = 0; 5855 assert( pNC->pSrcList!=0 ); 5856 sqlite3WalkExpr(&w, pExpr); 5857 } 5858 5859 /* 5860 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5861 ** expression list. Return the number of errors. 5862 ** 5863 ** If an error is found, the analysis is cut short. 5864 */ 5865 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5866 struct ExprList_item *pItem; 5867 int i; 5868 if( pList ){ 5869 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5870 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5871 } 5872 } 5873 } 5874 5875 /* 5876 ** Allocate a single new register for use to hold some intermediate result. 5877 */ 5878 int sqlite3GetTempReg(Parse *pParse){ 5879 if( pParse->nTempReg==0 ){ 5880 return ++pParse->nMem; 5881 } 5882 return pParse->aTempReg[--pParse->nTempReg]; 5883 } 5884 5885 /* 5886 ** Deallocate a register, making available for reuse for some other 5887 ** purpose. 5888 */ 5889 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5890 if( iReg ){ 5891 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 5892 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5893 pParse->aTempReg[pParse->nTempReg++] = iReg; 5894 } 5895 } 5896 } 5897 5898 /* 5899 ** Allocate or deallocate a block of nReg consecutive registers. 5900 */ 5901 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5902 int i, n; 5903 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5904 i = pParse->iRangeReg; 5905 n = pParse->nRangeReg; 5906 if( nReg<=n ){ 5907 pParse->iRangeReg += nReg; 5908 pParse->nRangeReg -= nReg; 5909 }else{ 5910 i = pParse->nMem+1; 5911 pParse->nMem += nReg; 5912 } 5913 return i; 5914 } 5915 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5916 if( nReg==1 ){ 5917 sqlite3ReleaseTempReg(pParse, iReg); 5918 return; 5919 } 5920 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 5921 if( nReg>pParse->nRangeReg ){ 5922 pParse->nRangeReg = nReg; 5923 pParse->iRangeReg = iReg; 5924 } 5925 } 5926 5927 /* 5928 ** Mark all temporary registers as being unavailable for reuse. 5929 ** 5930 ** Always invoke this procedure after coding a subroutine or co-routine 5931 ** that might be invoked from other parts of the code, to ensure that 5932 ** the sub/co-routine does not use registers in common with the code that 5933 ** invokes the sub/co-routine. 5934 */ 5935 void sqlite3ClearTempRegCache(Parse *pParse){ 5936 pParse->nTempReg = 0; 5937 pParse->nRangeReg = 0; 5938 } 5939 5940 /* 5941 ** Validate that no temporary register falls within the range of 5942 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5943 ** statements. 5944 */ 5945 #ifdef SQLITE_DEBUG 5946 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5947 int i; 5948 if( pParse->nRangeReg>0 5949 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5950 && pParse->iRangeReg <= iLast 5951 ){ 5952 return 0; 5953 } 5954 for(i=0; i<pParse->nTempReg; i++){ 5955 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5956 return 0; 5957 } 5958 } 5959 return 1; 5960 } 5961 #endif /* SQLITE_DEBUG */ 5962